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Abstract

The end of the last millenium witnessed the triumph of the Standard Model (SM): the electroweak
theory combined with quantum chromodynamics (QCD) provide an unified framework to describe three
fundamental interactions of Nature, i.e. the electromagnetic, the weak and the strong interactions.
The discovery of the Higgs boson ten years ago has completed the SM, which has been extensively
tested in the last decades. The high-precision measurements carried out at LEP, SLC, Tevatron, LHC
and low energy high intensity experiments have firmly established that the SM provides the correct
effective description of the strong and electroweak interactions at the currently reachable energies.
Nevertheless, some of the Higgs couplings remain for the moment nearly unconstrained. One example
are the light quark Yukawa couplings. Current bounds and HL-LHC sensitivity studies show that the
first generation quark Yukawa couplings can be constrained only up to several order of magnitude with
respect to their Standard Model value.
In this Master thesis we investigate the possibility of building some concrete ultraviolet realisations
providing large deviations in the light quarks Yukawa couplings.
To do that, we parameterize new physics (NP) contribution within the Standard Model effective field
theory (SMEFT), and we focus on dimension six effective operators that can generate non-SM Yukawa-
like terms. Once they are added to the SM Lagrangian, the Yukawa couplings get modified, in particular
they can be enhanced by choosing appropriate NP parameters.
We choose to generate these effective operators at the high energy scale by introducing three new heavy
vector-like quarks (VLQ), which interact with the SM particles and modify their couplings.
Matching the NP model to the SMEFT at the NP scale, we obtain bounds on the model parameters,
namely the couplings of the VLQs to the SM particles and their mass, by confronting with bounds
obtained from electroweak precision tests (EWPT) [1], flavour probes in particular for ∆F = 2 processes
[2] and Higgs Physics [3, 4].
In the light of the experimental bounds obtained on the UV parameters, we will finally show how large
the enhancements of the light quark Yukawa couplings can be.
Those results will give a guideline which sensitivities should be obtained in experimental searches for
light quark Yukawa couplings to probe realistic parameter space.
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics provides the correct description of the strong and elec-
troweak interactions at the currently reachable energies. It was developed by many scientists over the
decades, nevertheless the main contributors can be identified as Weinberg, Glashow and Salam, whose
original papers can be found in [5–7]. The SM is formulated as a quantum field theory and as any
model of particle physics, it has to be constructed specifying:

• the gauge group G of the theory;

• the particle content of the theory;

• the possibility of spontaneous symmetry breaking of the group G into a smaller group GSSB.

Let us introduce each ingredient.

1.1 Gauge group

The gauge group of a theory is the set of symmetries that underlie that theory’s quantum field equa-
tions. The gauge group of the Standard Model is the product of three individual contributions, corre-
sponding to the three fundamental forces described by the theory:

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (1.1)

The symmetry group is local and as such gauged. We can immediately recognize two main sectors:

• Strong interaction sector: The strong interaction is described by the SU(3)c factor of the
gauge group and it is mediated by particles called gluons. Gluons are massless, electrically neutral
bosons that carry "color charge," which is the charge associated with the strong force.

• Electroweak interaction sector: The electroweak symmetry group, SU(2)L ⊗ U(1)Y is a
combination of two separate symmetry groups: the first one is associated with the weak isospin
force, while the second one is referred as the hypercharge.

At high energy scales the electroweak force is unified and mediated by the generator of the weak isospin
and hypercharge gauge groups, namely three vector bosons W and one vector boson B, respectively.
At the electroweak scale the SM symmetry group breaks into

GSSBSM = SU(3)c ⊗ U(1)em. (1.2)

While the strong sector stays untouched, the electroweak sector breaks into two distinct interactions:
the weak interaction and the electromagnetic interaction. The first is mediated by three massive vector
bosons (W±, Z) while the second is mediated by the massless vector boson known as photon (γ).

1



1.2 Fields content Chapter 1. The Standard Model

1.2 Fields content

The SM contains all known elementary particles and their interactions. They can be divided into two
categories: 1/2-spin particles (fermions) and integer-spin particles (bosons).

Fermions: Fermions are the building blocks of matter and come organized in three families called
generations. Each fermion has both left- and right-handed components (except for neutrinos, which are
only left-handed). The electroweak force is maximally parity violating, only the left-handed fermions
couple to the SU(2) gauge bosons. There are basically two kinds of fermions:

• The first kind of fermions are called quarks. They carry charge under the SU(3)c and as a
consequence of this gauge interaction, they get bound into singlets of color charge called hadrons.
There exist 6 different types of quarks, three of them with electric charge 2/3 (up, charm, top)
and the other three with electric charge -1/3 (down, strange, and bottom). Their masses cover a
very large range: they go from few MeV for the lightest ones (namely the up and down quarks,
which are also the main constituents of matter since they form protons and neutrons) to the top
quark, which with its 173 GeV mass is the heaviest particle of the SM [8].

• The second kind of fermions are called leptons. They are color singlets and, like quarks, there
exist 6 particles. Three of them have a negative electric charge: the electron, the muon and
the tau. In addition, there are three neutral and very light leptons called neutrinos. In the SM
neutrinos are actually considered massless, while the charged lepton masses go from 511 keV
(electron mass) to ∼ 1.78 GeV (tau mass)[8].

Bosons: In the SM there are two categories of bosons fields:

• Gauge fields: These are spin-1 particles that mediate the interactions between fermions. In
particular, they correspond to the generators of each symmetry group, whose number for a given
SU(N) group is N2 − 1. In the electroweak sector we have the field Bµ which is associated to
the generator of the U(1)Y group and three fields W i

µ with i = 1, 2, 3 which are related to the
generators of the SU(2)L group. In the strong interaction sector, the eight generators of the
SU(3)c group are represented by an octet of fields Gaµ with a = 1, ..., 8 called gluons.

• Higgs field: the last piece to complete the SM content is the Higgs field, which is a complex scalar
field not charged under the color group but transforming in the fundamental representation of
SU(2)L and carrying hypercharge Yϕ = 1/2.
The Higgs field plays a key role in the theory through the Spontaneous Symmetry Breaking
(SSB) mechanism.

1.3 Higgs mechanism

Up to now, the gauge fields and the fermion fields have been kept massless. The reason is that the
incorporation of explicit mass terms in the Lagrangian produces a manifest violation of the local
SU(2)L ⊗ U(1)Y gauge invariance. However, we know from experiments that fermions and three of
the gauge bosons are massive. How can we incorporate those masses into the SM without explicitly
violating gauge invariance? The answer is provided by the Higgs-Brout-Englert mechanism, or just
the Higgs mechanism for short [9–11].

The potential of the scalar field has a "Mexican hat-shape" (see figure 1.1), which means that its
ground state is at value different from zero, i.e. it acquires a vacuum expectation value (vev), breaking
the SU(2)L⊗U(1)Y symmetry and leaving a smaller U(1)em group unbroken. The Goldstone theorem
states that for every spontaneously broken symmetry, the theory contains a number of massless scalar
bosons (called Goldstone bosons) equal to the number of broken generators; in this case, as a net result
three generators are broken. Those three would-be Goldstone bosons are absorbed by the new fields
W±
µ , Zµ, becoming their longitudinal polarization. Thus, the weak physical bosons W±

µ , Zµ become
massive. Instead, the photon associated to the unbroken U(1)em symmetry remains massless.
The Higgs field is crucial also for the generation of the fermion masses, via the introduction of the
Yukawa interaction, which is the main sector of interest for this thesis. For this reason, we will save
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Chapter 1. The Standard Model 1.4 The SM Lagrangian

Figure 1.1: Representation of the mexican-hat potential of the Higgs field. The field configuration
with minimal energy is not for a vanishing Higgs field (A) but for a non-vanishing vev of the Higgs
field (B). The acquisition of this vev spontaneously breaks the symmetry.

its treatment for the next section.

1.4 The SM Lagrangian

1.4.1 Unbroken Lagrangian

The SM Lagrangian can be written in a compact form as

LSM = L
g.b.
kin + L

f
kin + L

ϕ
kin + L

ϕ
pot + LY . (1.3)

In particular:

• L
g.b.
kin is also called Yang-Mills term and contains all the kinetic terms of gauge bosons. Due to

the non-abelian nature of the theory, it contains also interactions between gauge bosons,

L
g.b
kin = −1

4
GAµνGAµν −

1

4
W IµνW I

µν −
1

4
BµνBµν , (1.4)

where the gauge boson field strength are defined as follows:

GAµν = ∂µG
A
ν − ∂νGAµ + g3f

ABCGBµG
C
ν , (1.5)

W I
µν = ∂µW

I
ν − ∂νW I

µ + g2ϵ
IJKW J

µW
K
ν , (1.6)

Bµν = ∂µBν − ∂νBµ, (1.7)

with fABC and ϵIJK the structure constants of SU(3) and SU(2) respectively, defined by the
commutation relations of the corresponding generators.

• L
f
kin is the gauge invariant kinetic term for matter fermions, which contains also the interactions

between fermions and the gauge bosons.
As said previously, the left-handed components of the fermions transform as doublets of SU(2)L
while their right-handed components are singlets of SU(2)L. For this reason, it’s convenient to
express the fields as follows:

QiL =

(
uiL
diL

)
, uiR, d

i
R, (1.8)

LiL =

(
νiL
eiL

)
, eiR, (1.9)

where the index i = 1, 2, 3 runs over the three generations. In addition, all the quarks in the
above equation have a color index that runs from 1 to 3, which is omitted for ease.
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1.4 The SM Lagrangian Chapter 1. The Standard Model

Finally, fermions are all carrying hypercharge, which is defined in terms of the third component
of the weak isospin I3f and the electric charge Qf in units of the proton charge (+e) as follows:

Yf = Qf − I3f . (1.10)

So in particular we have:

YQi
L
= 1/6, YuiR

= 2/3, YdiR
= −1/3, (1.11)

YLi
L
= −1/2, YeiR

= −1. (1.12)

The kinetic term for fermions can be written in compact form as:

L
f
kin =

∑
f

ψ̄f i /Dψf , (1.13)

where we introduced the notation /D = γµDµ and the covariant derivative:

Dµ = ∂µ − ig3
λA

2
WA
µ − ig2

σI

2
W I
µ − ig1YfBµ, (1.14)

where λA with A = 1, ..., 8 are the Gell-Mann matrices (generators of the SU(3)c), σI with
I = 1, 2, 3 are the Pauli matrices (generators of the SU(2)L), Yf the hypercharge and g1, g2 and
g3 are the coupling constants of U(1)Y , SU(2)L and SU(3)c respectively.

• L
ϕ
kin is the kinetic term for the Higgs field:

L
ϕ
kin = (Dµϕ)

†(Dµϕ). (1.15)

This term contains the interactions between the Higgs field and the gauge bosons, and, remark-
ably, gives mass to the physical gauge bosons through the spontaneous symmetry breaking (SSB)
mechanism.

• L
ϕ
pot is the potential term for the Higgs field. Being a crucial ingredient for the Higgs mechanism,

upon SSB it leads to a Higgs mass and Higgs self-interactions.

L
ϕ
pot = −V (ϕ†ϕ) = −µ2ϕ†ϕ− λ(ϕ†ϕ)2. (1.16)

• LY is the Yukawa term. It generates the fermion masses and contains the Higgs interactions
with fermions

LY =
∑
f

ψ̄fyfϕψf , (1.17)

where yf is the Yukawa coupling of the fermion f .

Thus the renormalizable part of the SM Lagrangian invariant under the GSM = SU(3)c ⊗ SU(2)L ⊗
U(1)Y assuming massless neutrinos is explicitly given by

LSM =− 1

4
GAµνGAµν −

1

4
W IµνW I

µν −
1

4
BµνBµν

+ (Dµϕ)
†(Dµϕ)− µ2ϕ†ϕ− λ(ϕ†ϕ)2

+
∑
i

[
L̄iL /DL

i
L + Q̄iL /DQ

i
L + ēiR /De

i
R + ūiR /Du

i
R + d̄iR /Dd

i
R

]
−
∑
ij

[
L̄iLy

ij
e ϕe

j
R + Q̄iLy

ij
d ϕd

j
R + Q̄iLy

ij
u (ϕ̃)u

j
R + h.c.

]
,

(1.18)

where ϕ̃ = iσ2ϕ
∗ denotes the SU(2) doublet of hypercharge −1/2.
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Chapter 1. The Standard Model 1.4 The SM Lagrangian

1.4.2 Broken Lagrangian

As said previously, the electroweak gauge symmetry is broken once the Higgs field has acquired a
vacuum expectation value. For the considered potential (1.16), the minimum is at

⟨ϕ⟩0 = ⟨0|ϕ|0⟩ =
(
−µ

2

2λ

)1/2

≡ v√
2
. (1.19)

We expand the Higgs field around the vev, which at first order can be written in terms of four fields
θ1,2,3(x) and h(x) as follows [12]:

ϕ =

 θ2 + iθ1
1√
2
(v + h(x))− iθ3

 =
1√
2
eiθa(x)σ

a(x)/v

(
0

v + h(x)

)
. (1.20)

It’s now convenient to make a gauge transformation on this field to move to the so called unitary gauge:

ϕu.g. =
1√
2

(
0

v + h(x)

)
. (1.21)

Now we expand the kinetic term |Dµϕ|2 of the Lagrangian and we define the new fields:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), Zµ =

g2W
3
µ − g1Bµ√
g22 + g21

, Aµ =
g2W

3
µ + g1Bµ√
g22 + g21

. (1.22)

Each sector of the SM Lagrangian get modified after SSB, in particular:

• The bosonic sector in the unitary gauge reads

LSSBbos |u.g. =−
1

4
GAµνGAµν −

1

4
W IµνW I

µν −
1

4
BµνBµν

+
1

2
(∂µh)(∂

µh)− 1

2
m2
hh

2 − λvh3 − λ

4
h4

+
(v + h)2

4
g22W

+
µ W

−µ +
(v + h)2

2

(g21 + g22)

4
ZµZ

µ.

(1.23)

Notice the appearence of the physical gauge boson mass terms:

M2
W± =

(g2v)
2

4
, M2

Z =
(g21 + g22)v

2

4
. (1.24)

• The fermionic sector in the unitary gauge reads

LSSBf |u.g. =
∑
f

f̄Li/∂fL +
∑
f

f̄Ri/∂fR Kinetic term (1.25)

− g2√
2
(W−

µ J
+µ +W+

µ J
−µ) Weak CC (1.26)

− g2
cW

ZµJ
µ
Z Weak NC (1.27)

− eAµJµem Electromagnetic current (1.28)
+ LY , Yukawa sector (1.29)

(1.30)

where the fermionic currents are:

J−
µ = ūLγµdL + ν̄LγµeL, J+

µ = d̄LγµuL + ēLγµνL, (1.31)

Jemµ =
∑
f

Qf f̄γµf, JZµ =
∑
f

f̄LγµI
3
ffL +

∑
f

Qf f̄γµf. (1.32)

5



1.4 The SM Lagrangian Chapter 1. The Standard Model

• The Yukawa sector in the unitary gauge becomes:

LY |u.g. = −
v + h(x)√

2

[
ūiLy

ij
u u

j
R + d̄iLy

ij
d d

j
R + ēiLy

ij
e e

j
R + h.c.

]
, (1.33)

where yijf with i, j = 1, 2, 3 are 3× 3 flavor mixing matrices.

1.4.3 Mass basis

In the following we will discuss further the Yukawa sector. Matter fields can be organized in triplets
in flavor space:

uL,R =

uc
t


L,R

, dL,R =

ds
b


L,R

, eL,R =

e
µ
τ


L,R

. (1.34)

The Yukawa matrices yijf in (1.33) are generic 3× 3 matrices in the interaction basis. The term with
the vev in (1.33) gives a mass to the fermions. In order to have a consistent definition of the fermion
masses, we would like to pass to the basis in which these matrices are diagonal. Let us rotate the fields:

u′L = LuuL

d′L = LddL

e′L = LeeL


u′R = RuuR

d′R = RddR

e′R = ReeR

(1.35)

where the rotation matrices are all unitary:

LL† = L†L = 1, RR† = R†R = 1. (1.36)

Performing these rotations the Yukawa sector Lagrangian becomes

LY |u.g. = −
v + h(x)√

2

[
ūL(L

†
uLu)yu(R

†
uRu)uR + d̄L(L

†
dLd)yd(R

†
dRd)dR + ēL(L

†
eLe)ye(R

†
eRe)eR + h.c.

]
=

(1.37)

= −v + h(x)√
2

[
ū′L(LuyuR

†
u)u

′
R + d̄′L(LdydR

†
d)d

′
R + ē′L(LeyeR

†
e)e

′
R + h.c.

]
. (1.38)

It can be demonstrated that it is always possible to diagonalize a generic matrix by means of a biunitary
transformation, so we can choose the R,L matrices such that

ŷf = LfyfR
†
f =

yf1 yf2
yf3

 . (1.39)

Thus the fermion masses can be defined as

mij
f =

v√
2
ŷijf , (1.40)

and in particular we have

mij
u =

mu

mc

mt

 , mij
d =

md

ms

mb

 , mij
e =

me

mµ

mτ

 . (1.41)
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Chapter 1. The Standard Model 1.5 The Higgs couplings

1.4.4 CKM Matrix

The change of basis (1.35) allows to obtain diagonal mass matrices, but can influence other interactions.
Since the matrices Lf and Rf are unitary, the interactions involving the same type of fermions are not
affected, so in particular the kinetic sector, the electromagnetic and the weak neutral interactions are
still flavor diagonal in the mass basis. On the contrary, the weak charged interaction involves up-type
and down-type fermions, so it is not possible to exploit the unitarity of the Lf matrices:

LCC = − g2√
2

{
ū′L(LuL

†
d) /W

+
d′L + ν̄ ′L(LνL

†
e) /W

+
e′L

}
. (1.42)

The matrix LuL
†
d is called Cabibbo-Kobayashi-Maskawa (VCKM ) matrix [13], while the analogous

matrix for leptons LνL
†
e is called Pontecorvo-Maki-Sakata-Nakagawa (UPMSN ) matrix [14]. They are

unitary matrices which have flavor mixing properties. Notice that if neutrinos are assumed to be
massless, we can choose Lν ≡ Le, so that UPMSN = 1.

The matter content of the SM and its properties are summarized in the figure 1.2.

Figure 1.2: Summary of the SM field content. Schematically, on the left part three generations of
fermions are shown, 6 quarks and 6 leptons. In the middle the force mediators are located, while in the
upper right corner the Higgs boson is placed. All the fundamental properties (mass, electric charge,
color charge, spin) are reported for each particle. Notice that particles are also organized in relation
to which fundamental force they are involved in. In the lower right corner, not included in the SM
framework, the graviton appears, which is thought to be the mediator of the gravitational force.

1.5 The Higgs couplings

More than ten years after the Higgs boson discovery at LHC [15], the properties of this particle are
still to be fully understand, in particular its couplings to other SM particles. While the Higgs boson

7



1.5 The Higgs couplings Chapter 1. The Standard Model

couplings to gauge bosons and to third generation fermions have been measured at the O(5 − 20)%
level [3, 4], the Higgs boson couplings to the first two generations and the Higgs self-couplings remain
more elusive.

Figure 1.3: State-of-the-art of the Higgs couplings to the SM particles [16]. Upper plot: on the vertical
axis, the SM prediction multiplied by a κ-parameter is shown, while the horizontal axis shows the
particle mass in GeV. Lower plot: the ratio to the SM is given as a function of the particle mass. The
couplings to heavy fermions and gauge bosons are well measured and in great agreement with their
SM expectation, but the absence of light quark couplings catches the eye.

To study possible deviations from the SM induced by new physics, the so called κ-framework has been
introduced, which is described in details in [17, 18]. The value of κ parameterizes a potential deviation
of the Higgs couplings with respect to their SM values as follows:

κi =
ghi
gSMhi

. (1.43)

Figure 1.3 from the CMS collaboration [16] shows the state-of-the-art of the Higgs couplings mea-
surements. Remarkably, the Higgs boson couplings to gauge bosons and heavy fermions have been
measured very precisely and they are in wonderful agreement with their SM predictions, however the
absence of the Higgs couplings to light fermions stands out. The reason is that, according to the Higgs
mechanism of SM, the Yukawa couplings of the fermions are proportional to the ratio between their
mass and the Higgs vev, namely:

yf ∝
mf

v
, with v = 246 GeV. (1.44)

In particular, for the light fermions the ratio mf/v is vanishingly small, and hence the scattering
processes involving their interaction with the Higgs boson are so strongly suppressed that they are in
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practice unobservable in the SM. Moreover, in the quark case their production is immediately followed
by hadronization, so they appear as (quasi) indistinguishable jets in the detector. On the other hand,
there exist various proposal on how to constrain the light Yukawa couplings exploiting measurements of
specific processes. For the charm quark, for instance, the V h production with subsequent decay h −→ cc̄
and Higgs+charm production processes can be exploited [19–21], but also exclusive Higgs decays to
vector mesons can be used to constrain the charm Yukawa coupling [22–25]. For the strange quark the
Yukawa coupling constraining is more challenging, but there are some proposals for strange tagging at
lepton colliders [26].
For the first quark generation a different approach is needed since the Higgs decays to light quarks
cannot be measured directly. Some constraints can be obtained by exploiting the fact that for en-
hanced light quark Yukawa couplings, a significant contribution to the Higgs production can come
from processes in which the Higgs boson couples directly to the quark content of the parton distri-
bution, which in the case of protons is dominated by up and down quarks. In this sense one can
use processes like Higgs+γ [27], Higgs+jet [28, 29], Higgs pair production [30, 31], tri-vector boson
production [32, 33] and the charge asymmetry in W±h [34, 35]. Even at the high-luminosity LHC
(HL-LHC) the constraints remain quite relaxed: in a global fit the following limits were found [36]

κu < 560, κc < 1.2, (1.45)
κd < 260, κs < 13. (1.46)

A recent study [37] has shown that, using kinematic discriminants in the analysis of the Higgs off-shell
production, the up and down Yukawa couplings can be further constrained at the HL-LHC (assuming
only experimental systematic uncertainties):

κu < 260, κd < 156. (1.47)

This is a considerable improvement, but nevertheless these couplings can be constrained only up to
several order of magnitude with respect to their SM values. Thus the question, which motivated this
work, is the following: is it possible to build a new physics (NP) model, consistent with all
the current experimental bounds, in which these light quark Yukawa couplings are largely
enhanced?
The aim of this Master’s thesis is exactly to investigate this possibility. The first step is to identify the
best approach to parameterize NP effects in a handy and theoretically consistent way.
The best choice is to adopt an effective field theory description, since it is a model-independent and
theoretical consistent framework. Indeed, the κ parameterization is not gauge invariant and does not
allow for new Lorentz structures. Nevertheless, constraints derived in the κ analysis can be directly
exploited to put constraints on NP parameters, as will be discussed in chapter 5.
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Chapter 2

Effective Field Theory

2.1 A very powerful tool

Effective field theories have in the past proven to be very useful tools. For instance, we can describe
the motion of an apple falling off a tree without the exact knowledge of the dynamics of the atoms in
the apple.
The same holds true for the SM which can be regarded as an effective field theory up to some scale
Λ≫ v, where Λ cannot be larger as the Planck scale where gravitational interactions will be relevant.
In order to advance in our understanding of fundamental interactions, we can proceed through a
direct discovery of a new particle or indirectly. Crucially, the information gathered through indirect
methods have historically directed the search for a new particle or new theoretical framework. A
striking example was the construction of the Large Hadron Collider (LHC), which was based on the
expectation that the SSB mechanism SU(2)L ⊗ U(1)Y −→ U(1)em would be revealed by probing the
TeV energy range. As known, this expectation has been met to date with the discovery of the Higgs
boson in July 2012, which completed the SM framework. Since then, the SM predictions have been
extensively tested, giving an astonishing agreement between theory and experiments. In the last years,
the lack of statistically significant deviations in the global data set has suggested that there is a gap
between the electroweak scale and the new physics scale. This fact at the same time motivates:

• the upgrade of experimental facilities (e.g. HL-LHC) to improve statistically marginal measure-
ments;

• an increasing understanding of the SM to improve theoretical predictions;

• the sharpening of our theoretical tools to indirectly search for physics beyond the SM.

Effective field theories have been proven in the last few years as a useful tool to parameterise our
ignorance of the possible UV dynamics.
The general idea is to use field theories to describe Physics at low energy (or, equivalently, at long
distances) even if we don’t know the ultimate, complete theory. In short, an EFT provides an effective
description of physics up to a certain energy scale Λ (in jargon "cutoff"), which represents a "threshold
of ignorance" beyond which not included physics comes into play.
The main advantage of EFT is that it allows to study large sets of experimental data without the claim
to be valid to arbitrarily high energies. Despite being non renormalizable theories, the EFT utilities
are remarkable:

• Firstly, EFTs can be very useful even when the complete theory is known: for instance, the
full theory could be quite complicated and passing to an EFT could simplify things greatly. In
this case, the EFT can be constructed from its UV completion by simply integrating out its
heavy degrees of freedom. This can be done in two ways: through the effective action Seff or
manipulating the equation of motion. The result is a theory with a limited range of applicability,
but much more handy in that range than the corresponding complete theory.

• The power of EFT emerges in all its glory especially in the exploration of new physics models

11



2.2 SMEFT Chapter 2. Effective Field Theory

that could extend the SM: they provide a theoretical well-defined framework with an ordering to
describe model-independently NP.

Overall, EFTs are a valuable tool in theoretical physics, providing a pragmatic and flexible approach to
studying physical systems, particularly when dealing with different energy scales and degrees of com-
plexity. It allows physicists to effectively model and understand various phenomena without having to
resort to the full complexity of the underlying theories.
The concept of EFT has a rich history and is extensively employed in many fields of Physics: Gravity
Physics (e.g. GEFT = Gravitational EFT), Cosmology (EFT of Inflation), Material Physics (EMT
= Effective Medium Theory), Nuclear and Atomic Physics (NRQFT=non relativistic QFT), Electro-
magnetism, neutrino Physics and many others.
In the 1980s and beyond, EFT became increasingly relevant in particle physics, for instance the Fermi
Theory of β Decay [38], Low Energy Field Theory(LEFT) [39, 40], Chiral Perturbation Theory (ChPT)
[41, 42] and Heavy Quark Effective Theory (HQET) [43].
In the Higgs Physics context, the main EFT of interest are the Standard Model effective field theory
(SMEFT) and the Higgs effective field theory (HEFT). The main difference between the two is that the
former assumes that the scalar field transforms as a SU(2)L doublet, while in the latter this assumption
is lifted. In this work we make use of the SMEFT framework, which will be discussed in section 2.2.
For the treatment of HEFT we suggest the reading of [44].

2.2 SMEFT

The SMEFT provides a simple and well-defined model-independent framework to study NP beyond
the SM. For an extensive treatment of SMEFT see for instance [44]. Being an effective field theory,
SMEFT is only valid at energies below the threshold of production of any extra degrees of freedom.
It provides a parameterization of the NP effects preserving the SM gauge group. The SMEFT which
follows from this assumption is defined as:

LSMEFT = LSM + L(5) + L(6) + L(7) + ... (2.1)

where the general term is defined as:

L(d) =

nd∑
i=1

Cdi
Λd−4

Qdi , for d > 4. (2.2)

The Qdi are higher dimensional operators, each suppressed by d− 4 powers of the cutoff scale Λ, while
the Cdi are dimensionless coupling constants called Wilson coefficients. Remarkably, not all the op-
erators Qdi are independent: by exploiting algebraic identities and field redefinitions, certain linear
combinations can be removed from LSMEFT .
Due to the suppression factor of powers of the cutoff Λ, the most relevant effective contributions to
the SM Lagrangian turn out to be the new "lowest" dimensions terms.
Let us start considering L(5): the dimension-5 operators involve the lepton number violation (∆L = 2)
and its Hermitian conjugate (∆L = −2). These operators are relevant for processes involving neu-
trino masses and oscillations, but they do not affect the Higgs interactions. On the other hand, the
dimension-6 operators in SMEFT are the first ones that become important for collider physics at en-
ergies beyond the electroweak scale. For this reason, we shall start directly considering dimension-6
operators. Although the number of non-redundant operators in L(6) was known [45], it took more than
twenty years to obtain a complete non redundant operator basis for L(6). In the next section the most
famous dimension-6 operator basis is reported.

2.2.1 A non redundant 6-dim operator basis: the Warsaw basis

In this work we choose the first non-redundant operator basis for L(6) determined in [46], which is
known in literature as the "Warsaw basis". Assuming baryon number conservation, Rosiek et al.
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Chapter 2. Effective Field Theory 2.2 SMEFT

found 59 independent operators (barring flavour structure and Hermitian conjugations), compared to
the 80 operators listed in [45].
To obtain a non-redundant basis it is necessary to employ field redefinitions, Fierz identities and partial
integration. To find all the gauge-invariant operators is sufficient to impose the SU(3)c ⊗ SU(2)L ⊗
U(1)Y gauge invariance and use as building blocks:

• the matter fields ljLp, eRp, q
αj
Lp, u

α
Rp, d

α
Rp, ϕ

j (with p =generation index, j = SU(2)L index,
α =color index);

• the field strength tensors Xµν ∈ GAµν ,W I
µν , Bµν ;

• covariant derivatives D of these objects.

The complete basis is reported in tables 2.1,2.2, where for sake of simplicity we dropped the chiral
subscript with respect to (1.8). Notice also that the indices p, r, s, t are generations indices of the
fermion fields, to be supplemented when needed (e.g. Qll −→ Qprstll ).

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAνµ GBρν GCµρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(L̄perϕ)

QG̃ fABCG̃Aνµ GBρν GCµρ Qϕ□ (ϕ†ϕ)□(ϕ†ϕ) Quϕ (ϕ†ϕ)(Q̄purϕ̃)

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD (ϕ†Dµϕ)∗(ϕ†Dµϕ) Qdϕ (ϕ†ϕ)(Q̄pdrϕ)

QW̃ ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGAµνG
Aµν QeW (L̄pσ

µνer)σ
IϕW I

µν Q
(1)
ϕl (ϕ†i

←→
D µϕ)(L̄pγ

µLr)

QϕG̃ ϕ†ϕG̃AµνG
Aµν QeB (L̄pσ

µνer)ϕBµν Q
(3)
ϕl (ϕ†i

←→
D I

µϕ)(L̄pσ
IγµLr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (Q̄pσ
µνur)T

Aϕ̃GAµν Qϕe (ϕ†i
←→
D µϕ)(ēpγ

µer)

QϕW̃ ϕ†ϕW̃ I
µνW

Iµν QuW (Q̄pσ
µνur)σ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

←→
D µϕ)(Q̄pγ

µQr)

QϕB ϕ†ϕBµνB
µν QuB (Q̄pσ

µνur)ϕ̃Bµν Q
(3)
ϕq (ϕ†i

←→
D I

µϕ)(Q̄pσ
IγµQr)

QϕB̃ ϕ†ϕB̃µνB
µν QdG (Q̄pσ

µνdr)T
AϕGAµν Qϕu (ϕ†i

←→
D µϕ)(ūpγ

µur)

QϕWB ϕ†σIϕW I
µνB

µν QdW (Q̄pσ
µνdr)σ

IϕW I
µν Qϕd (ϕ†i

←→
D µϕ)(d̄pγ

µdr)

QϕW̃B ϕ†σIϕW̃ I
µνB

µν QdB (Q̄pσ
µνdr)ϕBµν Qϕud (ϕ̃†i

←→
D µϕ)(ūpγ

µdr)

Table 2.1: Basis of dimension-six operators other than four-fermion interactions.

Let’s briefly describe each kind of operators, starting from the bosonic ones.

Bosonic operators Purely bosonic operators should contain an even number of Higgs field ϕ (because
of the constraints on the SU(2)L tensor product) and an even number of covariant derivatives (to
contract all the Lorentz indices). Moreover, since the mass dimension of ϕ and D is 1, while for the
strength tensor X is 2, no dimension 5 operators can emerge in the bosonic sector. The possibilities
for the dimension 6 bosonic operator field are: X3, ϕ6, ϕ4D2, ϕ2D4, ϕ2XD2, X2D2. Actually it is
possible to demonstrate that the last three reduce by the equations of motion (EoMs) either to the
former classes or to operators containing fermions. This is the reason why they do not appear in table
2.1.

Single-fermionic-current operators The non redundant single-fermionic-current operators can be
divided in three classes:

• ψ2ϕ3: Since the fermion current must be an isospin doublet and color singlet of the form ψ̄iψj ,
the only possibilities for this class are the Yukawa terms multiplied by ϕ†ϕ. Notice that the
number of conjugated and unconjugated scalar fields in ϕ3 is set by hypercharge constraints.

• ψ2Xϕ: In this case the Higgs field and the antisymmetric tensor require an isospin doublet of
the form ψ̄iσ

µνψj . The Higgs field combines to the fermion current analogously to the standard
Yukawa terms, while the tensors W I

µν and GAµν need to be contracted with isospin triplets and
color octects respectively.
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2.3 Light Yukawa couplings in EFT Chapter 2. Effective Field Theory

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (L̄pγµLr)(L̄sγ
µLt) Qee (ēpγµer)(ēsγ

µet) Qle (L̄pγµLr)(ēsγ
µet)

Q
(1)
qq (Q̄pγµQr)(Q̄sγ

µQt) Quu (ūpγµur)(ūsγ
µut) Qlu (L̄pγµLr)(ūsγ

µut)

Q
(3)
qq (Q̄pγµσ

IQr)(Q̄sγ
µσIQt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (L̄pγµLr)(d̄sγ
µdt)

Q
(1)
lq (L̄pγµLr)(Q̄sγ

µQt) Qeu (ēpγµer)(ūsγ
µut) Qqe (Q̄pγµQr)(ēsγ

µet)

Q
(3)
lq (L̄pγµσ

ILr)(Q̄sγ
µσIQt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (Q̄pγµQr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (Q̄pγµT

AQr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (Q̄pγµQr)(d̄sγ

µdt)

Q
(8)
qd (Q̄pγµT

AQr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating
Qledq (L̄jper)(d̄sQ

j
t ) Qduq ϵαβγϵjk [(d

α
p )
TCuβr ] [(Q

γj
s )TCLkt ]

Q
(1)
quqd (Q̄jpur)ϵjk(Q̄

k
sdt) Qqqu ϵαβγϵjk [(Q

αj
p )TCQβkr ] [(uγs )TCet]

Q
(8)
quqd (Q̄jpTAur)ϵjk(Q̄

k
sT

Adt) Qqqq ϵαβγϵjnϵkm [(Qαjp )TCQβkr ] [(Qγms )TCLnt ]

Q
(1)
leqd (L̄jpur)ϵjk(Q̄

k
sut) Qduu ϵαβγ [(dαp )

TCuβr ] [(u
γ
s )TCet]

Q
(3)
leqd (L̄jpσµνer)ϵjk(Q̄

k
sσ

µνut)

Table 2.2: Basis of dimension-six operators for four-fermion interactions.

• ψ2ϕ2D: When the derivative acts on any of the fermion field, its contraction with the fermionic
current produces EoMs which leads to the already discussed class ψ2ϕ3, so it’s sufficient to
consider the cases in which derivatives act on the scalars only. Hermitianity requires the presence
of
←→
D µ ≡ Dµ −

←−
Dµ, which explicity leads to terms like:

ϕ†i
←→
D µϕ = iϕ†(Dµϕ)− i(Dµϕ)

†ϕ. (2.3)

Four-fermion operators This class of operators can be further classified in (L̄L)(L̄L),(R̄R)(R̄R),
(L̄L)(R̄R),(L̄R)(R̄L) and (L̄R)(L̄R)), plus four B−violating operators. They are all collected in table
2.2.

2.3 Light Yukawa couplings in EFT

In this work we are interested in an enhancement of the Yukawa couplings. In [47] a complete set of
Feynman rules for the SMEFT is given. In particular, the quark-Higgs vertices receive a contribution
from the following dimension-six operators appearing in tables 2.1,2.2: Qϕ□, QϕD, Quϕ and Qdϕ.
The first two operators require a redefinition of the Higgs field to have canonical normalised kinetic
terms and lead to a general shift of the Higgs couplings. Their contributions thus affect also other
Higgs couplings, so they can be constrained exploiting for instance Higgs couplings to vector bosons,
which are experimentally much better constrained than light Yukawa couplings. For this reason, we
just consider the operators:

Quϕ = (ϕ†ϕ)(Q̄purϕ̃), (2.4)

Qdϕ = (ϕ†ϕ)(Q̄pdrϕ). (2.5)

The new Yukawa sector becomes:

LY+NP = Q̄iLy
ij
d ϕd

j
R + Q̄iLy

ij
u ϕ̃u

j
R −

(ϕ†ϕ)

Λ2

(
Q̄iLC

ij
dϕϕd

j
R + Q̄iLC

ij
uϕϕ̃u

j
R+

)
+ h.c. (2.6)

Let us pass to the unitary gauge:

LY+NP |u.g. =
v + h√

2

(
d̄iLy

ij
d d

j
R + ūiLy

ij
u u

j
R

)
− v + h√

2

(v + h)2

2Λ2

(
d̄iLC

ij
dϕd

j
R + ūiLC

ij
uϕu

j
R+

)
+ h.c. (2.7)
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Therefore, the mass matrices of the up-type and down-type quarks get modified as follows:

M ij
q =

v√
2

(
yijq −

v2

2Λ2
Cijqϕ

)
, with q = u, d. (2.8)

This modification of the mass matrix implies a modification of the rotation matrices (1.35) which allow
to pass from the interaction basis to the mass eigenbasis:

mij
f =

v√
2
L′
f

(
yijq −

v2

2Λ2
Cijqϕ

)
(R′

f )
†. (2.9)

In the mass basis we denote the Wilson coefficients as:

(C̃qϕ)ij =
(
L′
fCqϕ(R

′
f )

†)
ij
. (2.10)

The Lagrangian in the mass basis now reads:

LY+NP |m.b. =
v + h√

2

(
d̄′Lŷdd

′
R + ū′Lŷuu

′
R

)
− v + h√

2

(v + h)2

2Λ2

(
d̄′LC̃dϕd

′
R + ū′LC̃uϕu

′
R

)
+ h.c. (2.11)

=
v + h√

2

[
mqi q̄iqjδij +

v2

2Λ2
q̄i(C̃qϕ)ijqj −

v2 + 2vh+ h2

2Λ2
q̄i(C̃qϕ)ijqj

]
+ h.c. (2.12)

=
v + h√

2

[
mqi q̄iqjδij −

vh

Λ2
q̄i(C̃qϕ)ijqj −

h2

2Λ2
q̄i(C̃qϕ)ijqj

]
+ h.c. (2.13)

where in the last two rows qi with flavor index i = 1, 2, 3 and q = u, d are the quark fields in the mass
basis.

From equation (2.13) the couplings of the Higgs boson to quarks are immediately derived:

ghqiq̄j =
mq

v
δij −

1√
2

v2

Λ2
(C̃qϕ)ij , ghhqiq̄j = −

3

2
√
2

v

Λ2
(C̃qϕ)ij , ghhhqiq̄j = −

1

2
√
2

1

Λ2
(C̃qϕ)ij . (2.14)
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Chapter 3

UV model

The aim of this thesis is to construct a model in which the large enhancements of the Yukawa couplings
are concretely realized. To do that, we need to introduce new degrees of freedom, namely new particles,
which arise at high energy scales, and whose interactions with the SM particles can have effects on the
Yukawa couplings.
While in principle there exist an infinite amount of theories one should follow certain guidelines in
order to stay consistent with experimental observations. Given the consistency of the SM with all
experimental measurements so far the following guidelines should be used:

1. At energy scales below a certain cutoff Λ, Nature is well described by a four-dimensional Poincaré-
invariant local effective Lagrangian LBSM .

2. LBSM includes as a subset all the fields appearing in the SM and they have the same transfor-
mation rules under the SM gauge group.

3. LBSM contains only fields representing particles of spin ≤ 1.

4. the only fermion fields with chiral transformations under the gauge group GSM are the ones of
the SM. This means that all the extra fermions are vector-like with respect to GSM (see next
section for details).

In particular, assumption 2 is crucial for the perturbative unitarity of a theory which contains SM
gauge bosons; the assumption 3 is to avoid renormalizability issues with interacting particles of spin
> 1 [48]; the last requirement is due to the fact that a fourth generation of chiral fermions should
couple to the Higgs doublet in order to gain mass, but this is excluded by observations.
Overall, these assumptions ensure that at low energies (where low means much smaller than the masses
of the extra particles) the theory is well described by the SMEFT. This will turn out to be crucial in
the following to be allowed to exploit all the model-independent results obtained within the effective
theory framework.
In this work we are interested in the sector of LBSM that can give contributions at the classical level
to the dimension-six operators in SMEFT. It can be shown [49] that this can be realised by extra fields
that can have gauge-invariant linear interactions with the SM fields of dimension d ≤ 4. This condition
strongly restricts the quantum number of the possible extra fields, which are collected in table 3.1,
classified into irreducible representations of the Lorentz and gauge symmetry groups.
If all the vector bosons in the theory are the additional gauge bosons of an extended gauge symmetry
G ⊃ GSM and LBSM is invariant under G with no anomalies, then we obtain a unitary effective QFT
that can be exploited to perform perturbative calculations to arbitrary precision at energies below the
cutoff Λ. However, to keep a model-independent spirit, one should consider general theories without
enforcing any gauge invariance beyond GSM , so all the covariant derivatives appearing in the following
are understood to be covariant only with respect to GSM .
The part of the LBSM that contributes classically to the effective Lagrangian of dimension d ≤ 6
involves a finite number of fields and a finite number of operators. The complete Lagrangian can be
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generally written as:
LBSM = L0 + LS + LF + LV + Lmix + ... (3.1)

where:

• L0 contains terms of d ≤ 6 with only SM fields;

• LS,F,V include terms of d ≤ 5 with new scalars, fermions and vectors fields respectively, without
products of new fields with different spin;

• Lmix contains terms of d ≤ 4 with products of extra fields with different spin;

• the dots correspond to terms that do not contribute in our approximation.

In this thesis we choose to introduce new heavy fermions, as with respect to scalars their contributions
to the effective operators Cuϕ, Cdϕ turn out to carry less suppression factors (see [49], equations D.61,
D.63).
In the following section, we will only present the relevant term for this work, namely LF , but each
piece appearing in (3.1) can be found explicitely written in [49].

Scalar bosons
Name S S1 S2 ϕ Ξ Ξ1 Θ1 Θ3

Irrepr (1, 1)0 (1, 1)1 (1, 1)2 (1, 2)1/2 (1, 3)0 (1, 3)1 (1, 4)1/2 (1, 4)3/2
Name ω1 ω2 ω4 Π1 Π7 ζ
Irrepr (3, 1)−1/3 (3, 1)2/3 (3, 2)−4/3 (3, 2)1/6 (3, 2)7/6 (3, 3)−1/3

Name Ω1 Ω2 Ω4 Υ Φ
Irrepr (6, 1)1/3 (6, 1)−2/3 (6, 1)4/3 (6, 3)1/3 (8, 2)1/2

Vector-like fermions
Name N E ∆1 ∆3 Σ Σ1

Irrepr (1, 1)0 (1, 1)−1 (1, 2)−1/2 (1, 2)−3/2 (1, 3)0 (1, 3)−1

Name U D Q1 Q5 Q7 T1 T2
Irrepr (3, 1)2/3 (3, 1)−1/3 (3, 2)1/6 (3, 2)−5/6 (3, 2)7/6 (3, 3)−1/3 (3, 3)2/3

Vector bosons
Name B B1 W W1 G G1 H L1

Irrepr (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2)1/2
Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrepr (1, 2)−3/2 (3, 1)2/3 (3, 1)5/3 (3, 2)1/6 (3, 2)−5/6 (3, 3)2/3 (6̄, 2)1/6 (6̄, 2)−5/6

Table 3.1: New scalar bosons, vector-like fermions and vector bosons contributing to the dimension-six
SMEFT at tree level. The notation for the irreducible representation is: (SU(3)c, SU(2)L)Y .

3.1 Our choice: Vector-like quarks

3.1.1 Why vector-like quarks?

Vector-like quarks are hypothetical spin 1/2 particles that transform as triplets under the colour gauge
group and whose left- and right-handed components transform in the same way under the SU(2)L
gauge group. This new kind of particles is very promising for several reasons. First of all, they are the
simplest example of coloured fermions still allowed by experimental data. Indeed, extra quarks with
chiral couplings, such as fourth generation quarks, are now excluded [50] by the recent measurements
of Higgs-mediated cross sections [51, 52], when combined with direct searches at the Large Hadron
Collider (LHC) [53, 54]. Vector-like quarks, on the other hand, do not need to receive their masses
solely from Yukawa couplings to a Higgs doublet, since their explicit mass terms do not violate the
gauge invariance, so they are consistent with existing Higgs data.
Secondly, they can mix with the SM quarks and thereby modify their couplings to the Z,W and
Higgs boson. Thus, as we will discuss later, the addition of vector-like quarks to the SM implies
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the modification of some observable quantities. For instance, they can give rise to tree-level flavour-
changing neutral currents [55, 56] and they can introduce new sources of CP violation [57, 58].
Overall, the heavy VLQ at the TeV scale are well motivated scenarios, which have rich phenomenological
implications and constitute a promising research field and appear in various context:

• as a solution to the hierarchy problem [59];

• to solve naturalness issues in supersymmetry [60];

• in little Higgs models [61];

• in models with partial compositeness (e.g. [62]).

All these reasons make VLQs an interesting possibility worthy of being explored. This motivates the
choice of VLQ for our toy model.

3.1.2 Our selection of VLQ

The general Lagrangian LF of (3.1) is given by:

LF = L
quad
F + LintF , (3.2)

where

L
quad
F =

∑
ψ

[
ψ̄i /Dψ −Mψψ̄ψ

]
, (3.3)

LintF = L
(4)
leptons + L

(4)
quarks + L

(5)
leptons + L

(5)
quarks. (3.4)

In our case, we are interested in the quark term of dimension 4.
The effective operators in (2.4) can be generated by heavy VL fermions, for instance as depicted in
figure 3.1.

QL

ϕ
ϕ

uR

ϕ

F1 F2

MFi
≫1

−−−−−→

QL

ϕ
ϕ

uR

ϕ

Figure 3.1: The effective operator Quϕ can be generated at tree-level in the underlying heavy theory
involving exchange of heavy VL fermions F1, F2 as depicted in the diagram on the left.

As anticipated in the last section, we need to include colored charged fermions, which means quarks,
to ensure gauge invariance under SU(3)c. Secondly, to respect SU(2)L invariance two types of SU(2)L
VLQ multiplets could be adopted: (F1, F2) = (doublet, singlet) or (F1, F2) = (doublet, triplet). Fi-
nally, we have some freedom in choosing the hypercharge. The possible combinations of VLQ comparing
in table 3.1 which could be adopted are reported in table 3.2.

(doublet, singlet) (doublet, triplet)
up (Q1, U), (Q7, U) (Q1, T1), (Q1, T2), (Q7, T2)

down (Q1, D), (Q5, D) (Q1, T1), (Q1, T2), (Q5, T2)

Table 3.2: VLQs possible combinations for the realization of figure 3.1, in the up and down sectors.

The simplest choice for each sector is the first option, namely:

• SU(2) doublet Q1i = (Q1u, Q1d)i
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3.1 Our choice: Vector-like quarks Chapter 3. UV model

• up-type SU(2) singlet Ui
• down-type SU(2) singlet Di

They correspond to the three VLQ located in table 3.3 with their quantum numbers. As one can
observe, we are substantially adding three new particles which have the same quantum numbers of the
SM quarks, but are vector-like and kave much heavier mass. Indeed, it is reasonable to assume a mass
of few TeV in order to avoid the experimental constraints, especially electroweak precision tests. The
mass of the VLQs defines the energy scale at which our UV model is working. In what follows, we will
call this energy scale Λ and constrain it in chapter 5.
To mimic the SM situation and to construct a more general model, notice that we assume that
Ui, Di, Q1i are each coming in three generations (i.e. i = 1, 2, 3).

Vector-like fermions
Name Ui Di Q1i

Irrepr (3, 1)2/3 (3, 1)−1/3 (3, 2)1/6

Table 3.3: VLQ selection for the UV model. The notation for the irreducible representation is:
(SU(3)c, SU(2)L)Y .

To include these extra fields we need to introduce new terms to the SM Lagrangian:

−L(4)
quarks =(λU )riŪRrϕ̃

†QLi + (λD)riD̄Rrϕ
†QLi + (λuQ1

)riQ̄1Lrϕ̃uRi (3.5)

+ (λdQ1
)riQ̄1LrϕdRi + (λUQ1)riŪLrϕ̃

†Q1Ri + (λDQ1)riD̄Lrϕ
†Q1Ri + h.c. (3.6)

Notice the appearance of some free parameters of the new theory, in particular:

• The VLQ masses: MUi ,MDiand MQ1i ;

• The couplings of the VLQs to the SM particles: λU , λD, λuQ1
, λdQ1

;

• The couplings between VLQs: λUQ1 , λDQ1 .

The couplings λ are generic 3 × 3 matrices which in general implies flavor mixing. At this point, one
could be interested in calculate explicitly, in the UV theory, how the new interaction terms can affect
the interactions between the SM particles. Before performing the calculations, we need to pass to the
mass basis in order for the propagators to be defined properly.
The complete Lagrangian is:

−Ldown =(λD)riD̄Rrϕ
†QLi + (λdQ1

)riQ̄1LrϕdRi + (λDQ1)riD̄Lrϕ
†Q1Ri + ydd̄Rϕ

†QL+ (3.7)

+MDD̄LDR +MQ1Q̄1LQ1R + h.c. (3.8)

We pass to the unitary gauge:

−Ldown|u.g. =
v + h√

2

[
λDD̄RdL + λdQ1

Q̄1dLdR + λDQ1D̄LQ1dR + ydd̄RdL
]
+MDD̄LDR +MQ1Q̄1LQ1R + h.c.

(3.9)
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Let us collect in matrix form the mass terms and the Higgs interactions:

−Ldown|u.g. =

 d
D
Q1d


R


ydv√
2

0
λdQ1

v
√
2

λDv√
2

MD 0

0
λ∗DQ1

v
√
2

MQ1


︸ ︷︷ ︸

M

 d
D
Q1d


L

+ (3.10)

+

 d
D
Q1d


R


yd√
2

0
λdQ1√
2

λD√
2

0 0

0
λ∗DQ1√

2
0


︸ ︷︷ ︸

H

 d
D
Q1d


L

h+ h.c. (3.11)

Since d,D and Q1 come in three generations, the matrices M and H are 9 × 9 generic matrices in
flavor space. To pass to the mass basis, the matrix M has to be diagonalized through a biunitary
transformation

V †
dMUd =X, with X diagonal. (3.12)

The rotation matrices Vd and Ud are the ones that diagonalize the Hermitian matrices M †M and MM †

respectively, namely:{
Ud(XX)U †

d =M †M

Vd(XX)V †
d =MM † , with XX = D2 diagonal. (3.13)

In our case an exact analytical way to express the rotation matrices Vd and Ud was not found; the
mass matrix can be diagonalized numerically using the Mathematica code with the singular value
decomposition function.
However, we prefer to exploit the potency of the SMEFT: as we will see in the next chapter, this
approach allows to perform all the required analysis in a model-independent fashion and match on the
UV model only at the end.
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Chapter 4

Matching and Running

After introducing the UV model and the SMEFT framework, the next step is to establish a connection
between the two. As anticipated, the strategy is to use SMEFT as a bridge to connect our UV model
to the precision observables and constrain the UV parameters. This connection is established through
a three-step procedure, which is schematically illustrated in the figure 4.1:

1. Match the UV model onto the SMEFT at high scale Λ. This provides the Wilson coefficients as
a function of the UV parameters at the scale Λ.

2. Run the Wilson coefficients down to the weak scale, using the renormalization group equations
(RGE) of the SMEFT [63–66].

3. Map the Wilson coefficients onto observables, for instance compute the weak scale observables
using the effective Lagrangian at the weak scale.

In this chapter we discuss step 1 and step 2, while we leave the last step for the next chapter.

Figure 4.1: The connection scheme between UV models and weak scale precision observables using
SMEFT as a bridge.
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4.1 UV theory and EFT Matching

In order to study the physics of LBSM at energy scales much below the masses of the extra particles, we
can use an effective Lagrangian. Via matching a correspondence between the EFT parameters and the
UV parameters is obtained by calculating S matrix elements both in the EFT and the UV completion.
The results are then equated at a fixed energy scale. This defines the matching conditions that fixes
the Wilson coefficients in terms of the parameters of the UV completion.

To obtain the low energy limit of the UV calculations, the heavy fields are integrated out. This
approach was developed by Wilson [67, 68] and at the classical level can be performed by

1. eliminating the heavy fields by using the equation of motion of LBSM ;

2. expanding the propagators of the heavy fields in inverse powers of D/M , where D and M stand
for covariant derivative and heavy particle mass, respectively.

At any finite order in D/M the result of the procedure is a local Lagrangian. This is the so called
functional approach. Equivalently, the first step can be completed in terms of Feynman diagrams,
which in many cases it’s an easier path.
Let us consider for instance the effective operator

Qdϕ = (ϕ†ϕ)(Q̄LϕdR). (4.1)

It generates the following Feynman diagram, whose correspondent Feynman amplitude M is given by

On the other hand, this effective operator can be generated in the underlying NP theory by the
mediation of the heavy VLQ D and Q1 as follows

where the Feynman rules of the vertices can be derived by (3.7) and the fermionic propagator is

∆(pi) = −
i /pi +M

M2

(
1− p2i

M2

)
+ O(1/M5). (4.2)

In the low energy limit, i.e. assuming that the external momentum is much smaller than the VLQ
masses, the propagators reduce to ∆ = −1/M , thus equating the two amplitudes gives:

(Cdϕ)ij |D,Q1 = −
(λDQ1)sr(λD)

∗
si(λ

d
Q1

)rj

MQ1rMDs

(4.3)
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The Wilson operator Qdϕ receives also contributions from diagrams which involve only one type of
extra particles, namely [49]:

(Cdϕ)ij |1 type =
yd∗jk(λD)rk(λD)

∗
ri

2M2
Dr

+
yd∗ki (λ

d
Q1

)rj(λ
d
Q1

)∗rk
2M2

Q1r

+ ... (4.4)

These contributions clearly suffer from a further suppression with respect to contribution (4.3) given
by the Yukawa factor. For this reason, we decide to neglect these contributions and to focus on the
one in (4.3).

The extra fields we chose to introduce in our BSM theory appearing in table 3.3 generate the effective
operators shown in table 4.1 [49] and defined in table 2.1.

Fields Operators
U Quϕ, Q

(1)
ϕq , Q

(3)
ϕq

D Qdϕ, Q
(1)
ϕq , Q

(3)
ϕq

Q1 Quϕ, Qdϕ, Qϕu, Qϕd, Qϕud

Table 4.1: Operators generated by the heavy VLQs in table 3.3.

All the tree-level contributions to the Wilson coefficients of the dimension-six SMEFT in UV comple-
tions with general extra particles can be found in literature, for example in [49].
We report here the matching of the operators of interest. Two kinds of indices appears: r, s = 1, 2, 3
indicate the VLQs generations, while i, j = 1, 2, 3 indicate the SM-quarks generations.

(Cdϕ)ij |D,Q1 = −
(λDQ1)sr(λD)

∗
si(λ

d
Q1

)rj

MQ1rMDs

, (Cϕd)ij |Q1 =
(λdQ1

)rj(λ
d
Q1

)∗ri

2M2
Q1r

, (4.5)

(Cuϕ)ij |U,Q1 = −
(λUQ1)sr(λU )

∗
si(λ

u
Q1

)rj

MQ1rMUs

, (Cϕu)ij |Q1 =
(λuQ1

)rj(λ
u
Q1

)∗ri

2M2
Q1r

, (4.6)

(C
(1)
ϕq )ij |D,U =

(λU )rj(λU )
∗
ri

4M2
Ur

− (λD)rj(λD)
∗
ri

4M2
Dr

, (Cϕud)ij |Q1 =
(λdQ1

)rj(λ
u
Q1

)∗ri

2M2
Q1r

, (4.7)

(C
(3
ϕq)ij |D,U = −(λU )rj(λU )

∗
ri

4M2
Ur

− (λD)rj(λD)
∗
ri

4M2
Dr

. (4.8)

Notice that we changed notation with respect to chapter 2: here and in the following, the Wilson
coefficients have mass dimension −2, namely the factor 1/Λ2 is inglobated in Ci. This has to be kept
in mind, and we hope it will not be source of confusion when in chapter 5 the masses of the VLQs will
be set to Λ to obtain constraints on the NP energy scale.

4.2 Running

To connect with measurements, the Wilson coefficients Ci(Λ) in (4.3) need to be evolved from the
matching scale Λ down to the weak scale µEW , according to their renormalization group (RG) equation.
The concept of RG arises from comparing physical quantities at different length/energy scales. Let
us consider a physical quantity A(gi;E) which can depend in general on a set of couplings gi and an
energy scale E. Being an artificial parameter, if the cut-off of the theory µ is changed, physics on
energies scales below µ has to remain constant, so the RG theory postulates that the couplings must
change with µ. The RG flow of the theory is determined by imposing that

A(gi(µ);E)µ = A(gi(µ
′);E)µ′ . (4.9)

The dependence of a coupling g(µ) on the energy-scale is known as "running of the coupling".
As anticipated in figure 4.1, the RG equations that relate the Wilson coefficients at different scales at
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leading order are governed by the anomalous dimension of the operator basis γij :

dCi(µ)

dlogµ
=

∑
j

1

16π2
γijCj . (4.10)

The anomalous dimension matrix encodes operator mixing effects and its computation is a non trivial
task. Fortunately, RG running is intrinsic to the SMEFT and hence only need to be done once even
for different UV model. In recent years, there has been significant exploration into the RG evolution
of the SMEFT. In particular, great progress has been made in the determination of the anomalous
dimension matrix γij : remarkably, the entire one-loop anomalous dimension matrix within a complete
operator basis is available in literature [63–66].
The RG analysis is a conceptually important step and it can provide relevant corrections to the SM
amplitudes: in particular, the SM parameters have anomalous dimension contributions of order v2/Λ2

from coefficients in the dimension-six Lagrangian, which lead to corrections of the same order of the
ones coming from dimension-six operators [63].
To understand when the running of Wilson coefficients is of practical relevance, one needs to remind
that the estimated sensitivity of near future measurements is at the per mille level, so perturbative
calculation can be truncated at one loop.
Since RG evolution contributes as a loop factor, the general rule of thumb is that the RG evolution of
Ci(Λ) is relevant for into Cj(µEW ) when Ci(Λ) is generated at tree level from the UV model (because
otherwise its contribution would be of higher order loop size) and Cj(Λ) is not generated at tree level
(because in this case the contribution of into Ci(Λ) is subdominant).
For instance, our selection of VLQ generates at tree level the operator Q(1)

ϕq but not the operator

Q
(1)
qq (which is relevant e.g. for flavor changing neutral currents processes). Then, operators mixing,

namely the introduction of C(1)
qq (µEW ) by the RGE running from C

(1)
ϕq (Λ) can turn out to set relevant

constraints.
In order to illustrate the assumptions we use when performing the RGE, let us consider the running
of C(1)

qq that can be found in appendix A.8 of [64]:

Ċ(1)
qq =

1

2

[
Y †
uYu − Y

†
d Yd

]
C

(1)
ϕq where Ċ ≡ 16π2µ

d

dµ
C (4.11)

The term in squared brackets is the anomalous dimension written in terms of the Yukawa matrices.
In first approximation, the RGE analysis can be simplified assuming the so-called leading log (LL)
approximation, which consists in considering the right hand side independent from the running scale
µ.
Within this approximation, the equation (4.11) becomes a differential equation which can be solved
by separating variables. The result is:

C(1)
qq |LL =

1

64π2
[
Y †
uYu − Y

†
d Yd

]
C

(1)
ϕq · log

(
µ2

Λ2

)
. (4.12)

In general, the LL approximation leads to

µ
d

dµ
Ci =

∑
j

1

16π2
γijCj −−→

LL
Ci(µ) = Ci(Λ) +

1

16π2
log

(
µ

Λ

)∑
j

γijCj(Λ). (4.13)
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Chapter 5

Experimental limits

The final step is to check that all the observables that receive a modification of our NP scenario
remain within their experimental bounds. In the past decade, indeed, the scientific community has
accumulated a wealth of very precise measurements worldwide, which substantially confirm the validity
of the SM with astonishing precision. For our interests, the most stringent bounds come from flavour
physics, from electroweak precision tests and Higgs physics.
In the following sections each of them will be considered in detail, but we can anticipate that they
share the same procedure: the Wilson coefficients are run down to the energy scale of the experimental
bounds and mapped onto the observables. Subsequently, the constraints on the Wilson coefficients are
translated to constraints on the UV model.
We found that the most effective way to tune our UV parameters is to fix the values of the couplings
and to obtain the constraint on Λ. The final results will be discussed in the last chapter, but from
preliminary estimates we suggest to keep in mind that Λ ∼ 5 TeV is sufficient to obtain a two-orders-
of-magnitude enhancement of the light quark Yukawa couplings.

5.1 Flavour Changing Neutral Currents

The first experimental bounds which can constrain our UV model regard flavour physics. In particular,
the flavour changing neutral current processes (FCNC) are processes with a change of flavor without
a net charge transfer of fermions. Remarkable examples of FCNC are meson decays like KL → µ+µ−

and meson-antimeson oscillations like K0 − K̄0.

As seen in the first section, in the SM flavor changing processes are mediated only by the charged
current (CC) sector of the SM Lagrangian at tree level. An example can be found in figure 5.1.

c

b

e−

ν

W−

Figure 5.1: Example of flavour changing charged current (FCCC).

On the contrary, the Z-bosons and photons couple up to up and down to down, so they remain diagonal
in the mass basis. This implies that in the SM FCNC are not allowed at tree level.
However, they can arise at loop level through the mediation of CC interactions, for instance as shown
in figure 5.2.

27



5.1 Flavour Changing Neutral Currents Chapter 5. Experimental limits

b s

s b

ui

ui

W W

Figure 5.2: Example of meson-antimeson oscillation, particularly the B0
s = (b̄s)←→ B̄0

s = (bs̄).

Beside being loop suppressed, in the SM meson-antimeson oscillations suffer from further suppression
via the Glashow-Iliopoulos-Maiani (GIM) mechanism [69]. Introduced in 1970 to explain the suppres-
sion of the ∆S = 2 processes, the GIM mechanism predicted the existence of a fourth quark, the charm.
Relying on the unitarity of the charged weak current flavor, the FCNC box diagrams are suppressed by
the mass difference between the various virtual quarks. The most relevant oscillations of the neutral
pseudoscalar mesons M0 in their antiparticle M̄0 are:

• Kaons: K0 = (s̄d)←→ K̄0 = (sd̄);

• D mesons: D0 = (ūc)←→ D̄0 = (uc̄);

• B mesons: B0
d = (b̄d)←→ B̄0

d = (bd̄) and B0
s = (b̄s)←→ B̄0

s = (bs̄).

The oscillation phenomenon implies that M and M̄ , with M = K0, D0, B0
d , B

0
s , are not mass eigen-

states. The flavor basis consists of

|M0⟩ =
(
1
0

)
and |M̄0⟩ =

(
0
1

)
. (5.1)

The meson-antimeson system is described by an Hamiltonian made of two pieces: a mixing matrix M
and a decay matrix Γ

H =M − i

2
Γ. (5.2)

The mixing matrix and the decay matrix are 2×2 hermitian matrices in the flavour basis. By exploiting
CPT invariance and the hermitianity of the matricesM,Γ we can write the Hamiltonian in the matricial
form

H =

M11 −
i

2
Γ11 M12 −

i

2
Γ12

M21 −
i

2
Γ21 M22 −

i

2
Γ22

 =

 M − i

2
Γ M12 −

i

2
Γ12

M∗
12 −

i

2
Γ∗
12 M − i

2
Γ

 . (5.3)

Particularly, the M12 element encodes the mixing probability. When diagonalizing the Hamiltonian,
two eigenvalues are found. Using the common notation (L for light, H for heavy) we find

µL,H = (M − i

2
Γ)±

√
(M12 −

i

2
Γ12)(M∗

12 −
i

2
Γ∗
12) = mL,H −

i

2
ΓL,H . (5.4)

Thus we define {
∆m = mH −mL,

∆Γ = ΓL − ΓH ,
(5.5)

which are the measurable quantities.
The off-diagonal element of the mass matrix mixing can obtain contributions from NP as follows:

M12 = [M12]SM + [M12]BSM. (5.6)

In meson-antimeson oscillations the flavour is violated by two units: for this reason, they are commonly
known as ∆F = 2 processes. The effects from ∆F = 1 processes are expected to be subdominant with
respect to the ∆F = 2 case and will be neglected in this work. In some scenarios ∆F = 1 transitions
can though give dominant bounds if ∆F = 2 suffer from suppression.
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5.1.1 ∆F = 2 from NP

The most important Wilson coefficients of SMEFT operators that contribute to ∆F = 2 processes are

{Q(1)
qq , Q

(3)
qq , Q

(1)
qa , Q

(8)
qa , Qaa}, (5.7)

where a stands for u, d. As shown in table 4.1, our UV model does not generate any of operators
in (5.7) at tree level . However, they arise through their RG evolution, receiving contributions from
operators

{Q(1)
ϕq , Q

(3)
ϕq , Qϕu, Qϕd, Qϕud}. (5.8)

The observables related to meson-antimeson oscillations are measured at energy scales µ = µhad of few
GeV, which is set by the masses of the neutral mesons. For this reason, it is convenient to parameterize
the contributions from NP within the Low Effective Field Theory (LEFT), which is the effective field
theory obtained from the SM by the decoupling of the heavy electroweak gauge bosons, the Higgs field
and the top quark. The effective Hamiltonian [70] of interest for ∆F = 2 processes can be written as:

H
ij
∆F=2 = [Hij

∆F=2]SM +
∑
a

Cija (µ)Q
ij
a , (5.9)

where ij = ds for kaon mixing and ij = sb, db for B-mesons mixing. The SM term consists in only one
∆F = 2 operator

QijV LL = [d̄iγµPLdj ][d̄iγ
µPLdj ]. (5.10)

The ∆F = 2 effective operators Qija appearing in the second term with their respective Wilson co-
efficients Cija parameterize the BSM contributions to observables. In particular, in the case of the
off-diagonal element of the mass matrix one has [71]

[M ij
12]BSM =

1

2MM0

∑
a

Cija (µ)⟨Qija (µ)⟩+ O(dim-8), (5.11)

where the hadronic matrix elements of the operators

⟨Qija (µ)⟩ = ⟨M0|Qija (µ)|M̄0⟩ (5.12)

are calculated with non-perturbative methods like Lattice Quantum Chromodynamics (LQCD). In
the past, several ∆F = 2 operator bases have been chosen, for example the Buras-Misiak-Urban
(BMU) basis [72], the SUSY basis [73] and the Jenkins-Manohar-Stoffer (JMS) basis [74]. The latter
is particularly useful for the purpose of matching with SMEFT. Indeed, a full one-loop matching of
SMEFT to LEFT in the JMS basis can be found in [75]. As illustrated in figure 5.3, the experimental
constraints on UV models can be obtained following the procedure:

1. Match the UV theory and the SMEFT at the high scale Λ. This provides the Wilson SMEFT
coefficients in terms of UV parameters (Cb(Λ)).

2. Run down the SMEFT coefficients to the electroweak scale. This includes RGE mixing of the
SMEFT Wilson coefficients into Ca(µEW ).

3. Match the SMEFT and the LEFT at the scale µEW. This provides the Wilson coefficients of
LEFT in terms of the ones of SMEFT at the weak scale (Ci(µEW)).

4. Run down the LEFT coefficients to the energy scale of measurements. This provides Cj(µhad).

5. Map the weak Wilson coefficients Cj(µhad) into observables.

5.1.2 Experimental bounds on our UV model

In order to put experimental bounds on our UV model, we used the constraints in [2]. This work
provides the model-independent bounds on the SMEFT from flavor physics, derived by following the
procedure illustrated in the previous section. In particular, these constraints are obtained from K−K̄,
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Figure 5.3: The connection scheme between UV models and low scale precision observables using
SMEFT and LEFT as a bridge.

D− D̄, Bd− B̄d and Bs− B̄s mixing and constrain the (real, imaginary) parts of Wilson coefficient of
the ∆F = 2 weak Hamiltonian. These bounds are translated into bounds on Wilson coefficients of 5.7
and presented for the real and imaginary part of each element, at the scale Λ = 1 TeV.

Thus, to study how the constraints on the SMEFT Wilson coefficients presented in [2] translate in
turn into bounds on our UV parameters, we adhered to the following procedure:

1. Run down to the scale µ = 1TeV, which is the scale at which [2] gives their bounds, by solving
the RGE for the operators (5.7) in the leading log approximation, and considering the mixing
with the operators (5.8) that are generated at tree level (see figure 5.4).

2. Write the operators in terms of the UV parameters exploiting the matching expressions at the
NP scale.

3. Consider, element by element, the bounds on {C(1)
qq , C

(3)
qq , C

(1)
qa , C

(8)
qa , Caa} coming from [2].

In the first step we considered the RG running contribution of Yukawa matrices, given in [64], which
assuming the LL approximation lead to the following equations:

(C(1)
qq )[prst] =

1

64π2

([
Y †
uYu − Y

†
d Yd

]
pr
(C

(1)
ϕq )st · log

(
µ2

Λ2

)
+
[
Y †
uYu − Y

†
d Yd

]
st
(C

(1)
ϕq )pr · log

(
µ2

Λ2

))
(5.13)

(C(3)
qq )[prst] = −

1

64π2

([
Y †
uYu + Y †

d Yd
]
pr
(C

(1)
ϕq )st · log

(
µ2

Λ2

)
+
[
Y †
uYu + Y †

d Yd
]
st
(C

(1)
ϕq )pr · log

(
µ2

Λ2

))
(5.14)

(Cuu)[prst] = −
1

32π2

([
Y †
uYu

]
pr
(Cϕu)st · log

(
µ2

Λ2

)
+
[
Y †
uYu

]
st
(Cϕu)pr · log

(
µ2

Λ2

))
(5.15)

(Cdd)[prst] =
1

32π2

([
Y †
d Yd

]
pr
(Cϕd)st · log

(
µ2

Λ2

)
+
[
Y †
d Yd

]
st
(Cϕd)pr · log

(
µ2

Λ2

))
(5.16)

(C(1)
qu )[prst] =

1

32π2

([
Y †
uYu − Y

†
d Yd

]
pr
(Cϕu)st · log

(
µ2

Λ2

)
− 2

[
YuY

†
u

]
st
(C

(1)
ϕq )pr · log

(
µ2

Λ2

))
(5.17)

(C
(1)
qd )[prst] =

1

32π2

([
Y †
uYu − Y

†
d Yd

]
pr
(Cϕd)st · log

(
µ2

Λ2

)
+ 2

[
YdY

†
d

]
st
(C

(1)
ϕq )pr · log

(
µ2

Λ2

))
(5.18)
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Figure 5.4: The energy scales scheme of the procedure.

At that point, we obtained a system of equations with the NP couplings λi and the masses of the
VLQs as free parameters. To obtain analytic constraints using Mathematica, some assumptions were
in need. First of all, the coupling matrices λ were assumed flavor diagonal and universal, namely

λij⋆ =λ⋆

1
1

1

 with λ⋆ = λU,D, λ
u,d
Q1 , λUQ1 , λDQ1 . (5.19)

With this assumption, the contributions to the Wilson coefficients simplify a lot, leading to several
cancellations in most of the elements. In particular, all the Wilson coefficients become diagonal, which
implies that only the elements [aaxy] or [xyaa] are non-vanishing, with x, y, a = 1, 2, 3.
Secondly, in order to derive bounds from the ones presented in [2], the couplings were set to 1 and the
masses of the VLQs were all set to Λ, allowing to obtain a constraint on Λ.
Using equations (5.14)-(5.18) one obtains

C[aaxy]|computed =
b · log

( 1

Λ2

)
Λ2

(5.20)

where with Λ we indicated the NP scale expressed in TeV, and with b a numerical constant. Then we
impose

C[aaxy]|computed ≤ C[aaxy]|bound. (5.21)

From this equation we get the minimum Λ to respect the flavor bounds setting the Wilson coefficient
with natural values.
For simplification, we considered two cases in which either up-type or down-type VLQs are present,
namely:

• λD, λ
d
Q, λDQ1 = 1 and λU , λuQ, λUQ1 = 0;

• λD, λ
d
Q, λDQ1 = 0 and λU , λuQ, λUQ1 = 1.

Relevant differences between the two cases were not found, so we will present the results just once.
In the case with both up-type and down-type VLQs, the only difference is in operators Q(1,3)

ϕq , since
the other operators in (5.8) depend on just one type of VLQ (see the matching relations in chapter 4).
The experimental bounds on Q(1,3)

ϕq can be trivially satisfied e.g. by choosing equal λ⋆.
We present in table 5.1 the bounds obtained from each Wilson coefficient, providing only the element

31



5.2 Electroweak Precision Tests (EWPT) Chapter 5. Experimental limits

Operator Element Meson type Bound on Λ (TeV)
C

(1)
qq 1122 K − K̄ 0.998

C
(3)
qq 1133 K − K̄ 0.959

C
(1)
qd 3311 K − K̄ 0.149

C
(1)
qu 1133 K − K̄ 0.617
Cdd 2223 Bs − B̄s 0.001

Table 5.1: Bounds on Λ from ∆F = 2 constraints, up basis.

which implied the stringest bound. The most significant is the first one, i.e. the one coming from C
(1)
qq ,

which requires Λ of almost ∼ 1 TeV.
An opposite analysis was also performed: the energy scale Λ was set to 2 TeV and all the couplings
were set to λ. The upper limits obtained on λ were highly beyond perturbative values. For this reason
we chose to show only the constraints on Λ.

5.2 Electroweak Precision Tests (EWPT)

One of the most constraining limits stem from Z-pole measurements at LEP, namely that set of
experiments and measurements in particle physics designed to test the predictions of the electroweak
theory. They concern physical observables which are only sensitive to the electroweak sector, for
example

• the electron magnetic dipole moment g.

• the decay rate of the muon Γµ.

• the Z boson pole mass MZ .

• the W boson pole mass MW .

• the polarization asymmetry in the Z boson production ALR.

These precision tests are crucial because they provide stringent constraints on the parameters of the
electroweak theory and can reveal any deviations or inconsistencies with experimental data. The
success of the electroweak theory in accurately predicting the outcomes of these tests has been a
significant triumph of particle physics and has led to a deeper understanding of the fundamental forces
and particles in the universe.
In addition to testing the SM, EWPT can also be used to perform model-independent analysis, to
place constraints on new physics models.
Among the strongest bounds are those on operators that modify the vector-boson self-energies, which
however are not generated by our UV model. From the current experimental limits on electric dipole
moments (EDMs) and anomalous magnetic moments can constrain the dipole operators QuW , QuB,
QuG, QdW , QdB, QdG [1, 76], but again we do not generate contributions to this operators.
On the contrary, we do have to consider the operators C(1)

ϕq , C(3)
ϕq , Cϕu and Cϕd, which are strongly

constrained by Z-pole measurements, as they modify the couplings to quarks. In the next paragraph,
we explain how the results of [77] can be used to perform a fit on these Wilson coefficients and
consequently obtain bounds.

5.2.1 Bounds from Z-pole observables

The bounds on dimension 6-operators coming from EWPT can be obtained as explained in [1]. In this
work they construct a likelihood for a given observable O as follows:

L ∝ exp[−(OSM + δO −Oexp)2

2∆O2
exp

], (5.22)
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where Oexp ±∆Oexp is the experimental value of the observable, OSM is its SM prediction and δO is
the correction due to the effective operators. A likelihood was constructed for the various coefficients
by computing their contributions to the Z-pole observables. Two fits were performed separately: one
on the coefficients of the operators involving the light quarks (u, d, s) and one on operators involving
charged leptons and heavy quarks (c, b). The relevant observables for the first fit are

• the Z total width Γtot,

• the hadronic pole cross section σhad, defined as

σhad =
12π

M2
Z

ΓeeΓhad
Γ2
Z

(5.23)

• the parameter Rl, defined as

Rl =
Γhad
Γll

, (5.24)

where Γhad =
∑

q ̸=t Γq̄q while Γee, Γll are the partial width of the Z into electrons and charged lepton
respectively.
The observables Γtot, σhad and Rl depend on the SMEFT Wilson coefficients only through the following
linear combination:

l

v2
=

(
−1

4
+

1

3
sin2θW

)
·
[
(C

(1)
ϕq )11 − (C

(3)
ϕq )11

]
+

(
−1

3
− 1

6
sin2θW

)
·
[
(C

(1)
ϕq )11 + (C

(3)
ϕq )11+

+ (C
(1)
ϕq )22 + (C

(3)
ϕq )22

]
+

1

3
sin2θW · (Cϕu)11 −

1

6
sin2θW ·

[
(Cϕd)11 + (Cϕd)22

]
.

(5.25)

The value of l is constrained to lie with 95% probability in the interval [1]

−0.63× 10−3 < l < 1.2× 10−3. (5.26)

The second fit, performed on the coefficients of the operators with leptons and heavy quarks, involve
all the observables at the Z pole and produces the following results:

− 0.003 < v2
[
(C

(1)
ϕq )22 − (C

(3)
ϕq )22

]
< 0.01, (5.27)

− 0.01 < v2(Cϕu)22 < 0.02, (5.28)

− 0.008 < v2
[
(C

(1)
ϕq )33 + (C

(3)
ϕq )33

]
< 0.002, (5.29)

The study of the implications of bounds (5.26)–(5.29) on our model has been performed as follows:

1. The Wilson coefficients of the operators of interest, namely C
(1)
ϕq , C(3)

ϕq , Cϕu, Cϕd have been
considered. They are generated at tree level by our VLQs, thus a tree-level matching on the NP
scale Λ has been performed as explained in section 4.1.

2. These Wilson coefficients were run from the scale Λ down to the scale at which the bounds
(5.26)–(5.29) are given, namely µ =MZ . Since these operators are generated at tree level at the
scale Λ, we expect negligible effects due to the running.
As for FCNC, we considered here the RG running contribution of Yukawa matrices, given in [64],
in the LL approximation:

(C
(1)
ϕq )pr(µ) =(C

(1)
ϕq )pr(Λ) +

1

16π2
log

(
µ

Λ

)
·
(
−[Y †

u ]ps(Cϕu)st[Yu]tr − [Y †
d ]ps(Cϕd)st[Yd]tr

+
3

2
[Y †
d Yd + Y †

uYu]pt(C
(1)
ϕq )tr +

3

2
(C

(1)
ϕq )pt[Y

†
d Yd + Y †

uYu]tr

+
9

2
[Y †
d Yd − Y

†
uYu]pt(C

(3)
ϕq )tr +

9

2
(C

(3)
ϕq )pt[Y

†
d Yd − Y

†
uYu]tr

) (5.30)
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(C
(3)
ϕq )pr(µ) =(C

(3)
ϕq )pr(Λ) +

1

16π2
log

(
µ

Λ

)
·
(
3

2
[Y †
d Yd − Y

†
uYu]pt(C

(1)
ϕq )tr +

3

2
(C

(1)
ϕq )pt[Y

†
d Yd − Y

†
uYu]tr

+
1

2
[Y †
d Yd + Y †

uYu]pt(C
(3)
ϕq )tr +

1

2
(C

(3)
ϕq )pt[Y

†
d Yd + Y †

uYu]tr

)
(5.31)

(Cϕd)pr(µ) =(Cϕd)pr(Λ) +
1

16π2
log

(
µ

Λ

)
·
(
−2[Yd]ps(C

(1)
ϕq )st[Y

†
d ]tr + 3[YdY

†
d ]pt(Cϕd)tr

+ 3(Cϕd)pt[YdY
†
d ]tr − [YdY

†
u ]pt(Cϕud)tr − (C∗

ϕud)tp[YuY
†
d ]tr

) (5.32)

(Cϕu)pr(µ) =(Cϕu)pr(Λ) +
1

16π2
log

(
µ

Λ

)
·
(
−2[Yu]ps(C(1)

ϕq )st[Y
†
u ]tr + 3[YuY

†
u ]pt(Cϕu)tr

+ 3(Cϕu)pt[YuY
†
u ]tr − [YuY

†
d ]pt(C

∗
ϕud)rt − (Cϕud)pt[YdY

†
u ]tr.

) (5.33)

3. The elements (C
(1)
ϕq )11, (C

(1)
ϕq )22, (C

(1)
ϕq )33 (C

(3)
ϕq )11, (C

(3)
ϕq )22, (C

(3)
ϕq )33, (Cϕu)11, (Cϕu)22, (Cϕd)11

and (Cϕd)22 were computed with Mathematica within the same assumptions of the previous
section, i.e. flavor diagonal and universal couplings λ = 1 and Ma = Λ (with a = U,D,Q1) while
Λ was kept as parameter.

4. The linear combination l and the coefficients appearing in (5.27)–(5.29) were thus computed as a
function of the NP scale Λ. The bounds (5.26)–(5.29) translate into bounds on Λ. In particular,
for l three cases were considered:

• Case a: with λD, λdQ = 0 and λU , λuQ = 1;

• Case b: with λD, λdQ = 1 and λU , λuQ = 0;

• Case c: with λD, λdQ = 1 and λU , λuQ = 1.

The results are shown in Table 5.2.

5.2.2 Bounds from the Peskin-Takeuchi parameters

Another way EWPT can test extensions of SM is through the Peskin-Takeuchi parameters S, T and U
[78, 79], which parameterize potential new physics contributions to electroweak radiative corrections.
The point S = T = U = 0 is defined with the top mass mt = 173 GeV and the Higgs boson mass
mh = 126 GeV. Current experimental measurements [80] give

S = 0.02± 0.07, T = 0.06± 0.06, (5.34)

with a correlation of 81%. This fit is illustrated in figure 5.5 and fixes U = 0. The S parameter
is considered to be sensitive to the difference between the number of left-handed and right-handed
fermions, whereas the T parameter is usually interpreted as a measure of custodial symmetry violation.
In practice, S and T tend to give stronger constraints on BSM physics than U .
The standard operator based approach identifies the S parameter with the operator QϕWB and the T
parameter with the operator QϕD,

S =
4scv2

α
CϕWB, T =− v2 1

2α
CϕD, (5.35)

where α = e2/(4π) is evaluated at the energy scale of the Z-boson, namely α(MZ) ≈ (127.5)−1 [81],
whereas s = sin θW and c = cos θW .
We remind that neither of them are generated at tree level by our VLQs. To calculate the contribution
of CϕWB and CϕD to S and T at the weak scale, we have to consider their RG evolutions [65]. The
former does not contain contributions from our tree-level-generated operators, while the latter gets
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Figure 5.5: T versus S for various data set [80].

contributions from the mixing with C
(1)
ϕq , Cϕu, Cϕd and Cϕud. Its RG equation [65] within the LL

approximation reads

CϕD =
g21
2π2

log
(
µ

Λ

)
·
[
−1

3
(Cϕd)tt +

2

3
(Cϕu)tt +

1

3
(C

(1)
ϕq )tt

]
− 2η, (5.36)

with t an index in the sum and

η =
1

16π2
log

(
µ

Λ

)(
12(C

(1)
ϕq )rs[Y

†
d Yd − Y

†
uYu]sr + 12(Cϕu)rs[YuY

†
u ]sr − 12(Cϕd)rs[YdY

†
d ]sr

+ 6(Cϕud)rs[YdY
†
u ]sr + 6(C∗

ϕud)sr[YuY
†
d ]sr

)
.

(5.37)

As before, the value of T was computed with Mathematica assuming flavor diagonal and universal
couplings λ = 1 and setting the masses of the VLQs equal to Λ. The consequent bound on the NP
scale is reported in 5.2.

Constrained quantity Bound on Λ

l (case a) Λ ≳ 3.47 TeV
l (case b) Λ ≳ 4.9 TeV
l (case c) Λ ≳ 6 TeV

(C
(1)
ϕq )22 − (C

(3)
ϕq )22 Λ ≳ 1.74 TeV

(Cϕu)22 Λ ≳ 1.74 TeV
(C

(1)
ϕq )33 + (C

(3)
ϕq )33 Λ ≳ 2.39 TeV

T Λ ≳ 0.09 TeV

Table 5.2: Bounds on Λ from EWPT constraints, up basis.

Remarkably, the strongest bound is provided by the limit on l, particularly by the case with both
the up-type and the down-type VLQs interactions are turned on, which is is clearly understood when
looking at its expression.
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5.3 Higgs Physics

The production mechanisms at the Tevatron collider and the LHC, as portrayed in the left side of
figure 5.6, are gluon fusion (ggF), weak-boson fusion (VBF), associated production with a gauge boson
(Vh), associated production with a top or bottom quark pair (tt̄h and bb̄h respectively) and associated
production with a single top quark (th).
The Higgs boson decays into heavy vector boson pairs, fermion-antifermion pairs, and photon/Z-boson
pairs (see figure 5.6, right). The discovery of the Higgs boson was made essentially through bosonic
final states. These decays probed mostly the couplings of the Higgs boson to vector bosons.
However, the predominant Higgs boson production mode is the gluon fusion, occurring only through
loops dominated by the coupling of the Higgs boson to fermions. The observation of the Higgs boson
in the two photons or two gluons decay modes is also an indirect evidence for the coupling of the Higgs
boson to fermions (and in particular to the top quark). Nevertheless, the observation of either decays
to fermions or production modes which unambiguously proceed through fermion couplings provide
direct probes of the coupling of the Higgs boson to fermions.
In the next sections we consider the existing experimental bounds on the Higgs couplings to the top
quark and the bottom quark, and to gluons/photons. We do not consider the couplings to the vector
bosons or leptons since our NP does not modify them.

Figure 5.6: Production mechanisms (left): a) ggF, b) VBF, c) Vh, d) tt̄h, bb̄h e,f) th.
Decay mechanisms (right): g) Higgs to vector bosons, h) Higgs to fermion pair, i,j) Higgs to γ, Z.
Figure from [4].

5.3.1 Higgs to top and bottom

The coupling of the Higgs boson to the bottom quark is directly provided by the measurements of the
h→ bb̄, which occurs at tree level (see figure 5.6, diagram h). For a Higgs boson with mh ∼ 125 GeV,
the branching fraction to bb̄ is about 58% [82], but the presence of very large backgrounds makes the
isolation of a Higgs boson signal in these channels quite challenging. In the search for the decay of the
Higgs boson to a pair of b-quarks, the most sensitive production modes are the associated WH and
ZH processes which can be triggered by the leptonic decays of W and Z, but ATLAS and CMS have
also searched for h→ bb̄ in the VBF production mode.
The direct observation of the Higgs boson decaying to a pair of b-quarks was obtained by both ATLAS
and CMS independently via the analysis of a impressive dataset collected in 2015, 2016 and 2017.
These results provided direct evidence for the h→ bb̄ decay through the V H production mode.

In the case of the top quark, the direct decay h → tt̄ cannot occur due to kinematical reasons. How-
ever, indirect evidence of this coupling is provided by the compatibility of observed rates of the Higgs
boson in the principal discovery channels, given that the main production process – the gluon fusion
– is dominated by a top quark loop (figure 5.6, diagram a).
Direct evidence of this coupling at the LHC and the future e+e− colliders will be mainly available
through the ttH final state and will permit a clean measurement of the top quark-Higgs boson Yukawa
coupling.
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Currently, the existing bounds on the coupling strenght modifiers κb and κt, defined in (5.41), are [4]:

0.83 < κb < 1.16, 0.91 < κt < 1.12. (5.38)

In terms of the effective operators Cuϕ, Cdϕ, which modify the Yukawa couplings, we have

κ⋆ =
gh⋆
gSMh⋆

=

m⋆

v
− 1√

2
v2C⋆ϕ

m⋆

v

with ⋆ = b, t. (5.39)

where with Cbϕ and Ctϕ we mean (Cdϕ)33 and (Cuϕ)33, respectively. By exploiting the matching
conditions in 4.5, we can constrain our NP model via the Wilson coefficients. As previously done, we
set the couplings λi to 1 and the masses of the VLQs to Λ.
Thus, the limits (5.38) translate into bounds on Λ with 95% probability:

for κb → Λ ≳ 2.73 TeV, for κt → Λ ≳ 0.033 TeV. (5.40)

We can observe that, despite having similar uncertainties, the coupling strength modifier related to
the bottom quark is much more constraining than the one of the top quark. This is due to the fact
that, in a universally enhanced Yukawa paradigm, the bottom quark coupling is much more modified
than the top quark one, due to their difference of masses [8].

5.3.2 Higgs to gluons and photons

The effective coupling of the Higgs to gluons has been constrained by the measurements carried out
at LHC by the CMS and ATLAS collaborations. The constraint is given in terms of the modifier κg,
defined as

κg =
|MSM +MNP |2

|MSM |2
. (5.41)

The experimental constraint on κg is obtained from single Higgs production processes and reads [4]

κg = 0.92± 0.08. (5.42)

These constraints come from the analysis of processes involving a gluon-gluon single-Higgs production.
From the theoretical point of view, this process can occur via the following diagrams:

g

ϕ

g

+

g

g

ϕ + ...

The SM production occurs via the triangle loop in which mainly a virtual top circulates, while the
contributions from NP can be relevant for the single Higgs production in two ways:

• via the modification of the top Yukawa coupling;

• with the effective interaction hgg, which in our case can be generated at high energy by the
circulation of the VLQs in the triangle loop.

To put a constraint on our model, let us translate the bounds on κg into bounds on the effective
operators, in a model-independent approach. On this purpose, we consider the operators

Qtϕ = (Quϕ)33 = (ϕ†ϕ)(Q̄Lϕ̃tR), (5.43)

QϕG = GaµνG
aµνϕ†ϕ. (5.44)
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As seen in the previous section, the first operator modifies the top Yukawa coupling, while the second
operator describes the effective interaction between two gluons and two Higgs doublets (see the right-
hand side of 5.7).
As it becomes clear once we move to the broken phase, the QϕG operator includes the effective inter-
action between two gluons and one Higgs boson. Indeed:

CϕG
Λ2

GaµνG
aµνϕ†ϕ −→

CϕG
Λ2

GaµνG
aµνv2

(
1

2
+
h

v
+

h2

2v2

)
. (5.45)

In the case of single Higgs production, the relevant effective operators can be rewritten as:

Cuϕ
Λ2

Quϕ → c1
mt

v
ht̄t with c1 = 1− v

mt
· 1√

2

v2

Λ2
Ctϕ, (5.46)

CϕG
Λ2

QϕG → c2
αs
πv
hGaµνG

aµν with c2 =
CϕG
Λ2
· v

2π

αs
. (5.47)

The LO matrix element for the process gg → h can be decomposed in [83]

Mgg→h(p1, p2) = i
αs
3πv

ϵµ(p1)ϵν(p2)[p
ν
1p
µ
2 − (p1 · p2)gµν ]F (xH), (5.48)

where p1, p2 are the gluon momenta, ϵ(p1), ϵ(p2) are their polarizations and xH = 4m2
t /m

2
h. The form

factor F (x) is defined as

F (x) = c1 · F1(x) + c2 · F2(x), (5.49)

with

F1(x) =
3

2
x[1 + (1− x)f(x)], (5.50)

F2(x) = 12. (5.51)

The function f is defined as

f(x) =


arcsin2 1√

x
, for x ≥ 1

−1

4

[
log

1 +
√
1− x

1−
√
1− x

− iπ
]2
, for x < 1

(5.52)

The coefficient c1 describes modifications of the tt̄h coupling, so the pure SM contribution is obtained
by setting c1 = 1 and c2 = 0. Thus, we can translate the bound on κg to a bound on c1, c2 via the
following relation obtained from (5.41)

κg =
|c1 · F1 + c2 · F2|2

|F1|2
= c21 + 2

F2

F1
· c1 · c2 +

F 2
2

F 2
1

· c22, (5.53)

where the second equality holds since we are dealing with real quantities.
In turn, a bound on c1, c2 means a bound on CϕG, Ctϕ, which allows to constrain our specific model.
On this purpose, a matching of CϕG coefficient is needed. To perfom this matching, which is represented
by diagrams in figure 5.7, a previous calculation was used [84]. In this work, the effective interaction
between two gluons and two Higgs boson is described by the Lagrangian term

Lhhgg =
g2s

96π2v2
K2gG

a
µνG

aµνh2. (5.54)
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ϕ†

ϕ

Figure 5.7: The effective operator QϕG can be generated at loop-level in the underlying heavy theory
involving exchange of heavy VLQs as depicted in the diagram on the left.

The Feynman amplitudes are calculated in the broken phase:

g h

g h

mi

mi

mi mj A =
αs
4π
δabϵaµϵ

b
ν(−s)A

µν
1 ·

4∑
i,j=1

g2hq̄iqjF□(mi,mj), (5.55)

g

g

h

h

A =
αs

3πv2
δabϵaµϵ

b
νA

µν
1 ·K2g. (5.56)

where

• Aµν1 = pν1p
µ
2 − p1 · p2gµν with p1, p2 the gluon momenta;

• ghq̄iqj =
1

2
(λhff,ij + λhff,ji) with λhff,ij the (ith,jth) matrix element of the coupling matrix in

the mass eigenstate basis.

In the large quark mass limit for mi = mj the form factor reduces to F□ = −2s/(3m2
i ).

Then, by comparing equations (5.55) and (5.56) we obtain the matching condition on K2g:

K2g =
v2

2

4∑
i,j=1

g2hq̄iqj
m2
i

. (5.57)

The last step is to relate the K2g coupling, which is specific for the hhgg interaction, to the CϕG
operator. This is quickly done by comparing the terms of interest in equations (5.45) and (5.54). This
implies

CϕG
Λ2

=
g2s

48π2v2
·K2g =

g2s
96π2

∑
A=U,D

(λAQ1)
2

M2
V LQ

. (5.58)

In the last equality we assumed for simplicity real and flavor diagonal λDQ1 , λUQ1 and MQ1 = MU =
MD =MV LQ, thus the terms in the sum are all equal. The possible combinations are depicted in figure
5.8, for a total of 8 possibilities. At this point, by exploiting the matching relations for the Wilson
coefficients Ctϕ, CϕG, we can express κg in terms of our UV parameters, namely the couplings λi and
the masses of the VLQs. As before, we choose to set all the new couplings to 1 and MV LQ = Λ. Thus
a bound on the NP energy scale is obtained with 95% probability:

Λ ≳ 2.74 TeV. (5.59)

Notice that with the assumption of having only the top quark circulating in the triangle among the
SM quarks, we are neglecting the contributions from the bottom quark. However, by neglecting this
contribution both on the numerator and the denominator of 5.41, the committed error is minimal.
For what concerns the coupling of the Higgs to photons, the effect of the VLQs again is minimal since
the Higgs boson to photons is dominated by W bosons loop (see figure 5.6, diagram i). Since our
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Figure 5.8: Possible combinations of VLQs running in the box loop for the gg → ϕϕ process.

NP model does not influence this loop, the effect on κγ is smaller than the experimental error on κγ .
For this reason, we can safely assume the experimental constraint on hγγ is not providing a bound
stronger than the one from hgg.

40



Chapter 6

Results and conclusions

The aim of this work was to build a model in which large enhancements of the light quark Yukawa
couplings are concretely realized. In particular we tried to answer the question “how large can the light
quark Yukawa couplings be?”

In order to answer the question a concrete model of NP was considered. The model was identified to
be among the class of models that generate tree-level contributions to the dimension-six operators Quϕ
and Qdϕ when matched to the SMEFT. Those operators are the equivalent to the SM Yukawa couplings
but containing an additional ϕ†ϕ. While there exists a huge plethora of models that get contributions
to this operators by tree-level matching, we identify the ones with vector-like quarks as being the most
promising ones as they do not suffer from Yukawa suppression. Given this, we studied an example case
in which the VLQs are heavier copies of the right-handed up-type or respectively down-type quarks as
well as the left-handed SU(2) doublet quark fields. The NP contributions were parameterized within
the SMEFT, which was then exploited to connect the UV theory to the experimental bounds. In this
way, it was possible to constrain our NP model from lower energy probes such as the ones stemming
from flavour physics, electroweak precision tests and Higgs physics making use of the RGE running and
operator mixing within the SMEFT. In particular we could constrain the NP energy scale Λ identified
as the mass of the VLQ. Here we present our results in light of these bounds, which are summarized
in fig. 6.1. The plots show the coupling strength modifiers κi with i = u, d as function of the mass of
the VLQs. The vertical lines represent the constraints on MV LQ = Λ obtained from the considered
experimental bounds, namely FCNC (pink dashed line), EWPT (red dashed line) and Higgs physics
(green dashed line), by setting the couplings λ to 1, while the horizontal line represents the projected
sensitivity on κi from off-shell Higgs production from ref. [37]. The plots present a scenario in which
both right-handed up-and down-type VLQs are present. The strongest limit is imposed by EWPT
(Λ ≳ 6 TeV). For this value of Λ the coupling strength modifiers are κu ∼ 128 and κd ∼ 62, so the
enhancement can be moderately realized. We note though, that in particular the bounds from EWPTs
become weaker in scenarios were only either down- or up-type singlet VLQs are present. In this case
one can though obtain large modifications only either for the light down-type or up-type quarks.

Keeping in mind that the purpose of the thesis was to answer the question on how large the enhance-
ments of the light quark Yukawa couplings get, we did not attempt to solve any of the open puzzles of
the SM by means of adding the VLQs. In general, VLQs are the ingredient of various BSM theories,
which try to address one or more of these open puzzles. In such a framework, the simplified model
solution proposed in this thesis might be realised and lead to strongly enhanced light quark Yukawa
couplings, requiring to test such scenarios in experiments. We note also that the proposed NP theory
may not be the most attractive due to the non-negligible amount of tuning which is required to fix the
mass value of the light quark while having an increased coupling to the Higgs boson. Nevertheless, the
obtained result gives an indication of the range of coupling values that experimental probes of the light
quark Yukawa couplings should aim for. Indeed, we demonstrate that it is possible to realise by 2–3
orders of magnitude enhanced light quark Yukawa. While current proposals to probe this couplings
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Figure 6.1: On the vertical axis, the coupling strength modifier κ for the up quark (left) and the down
quark (right) are shown, while the horizontal axis shows the masses of the VLQs. In these plots the
couplings λ were set to 1. The experimental constraints on Λ are shown, in particular from EWPT
(red line), from Higgs physics (green line) and from FCNC (pink line). The horizontal lines describe
the HL-LHC projected sensitivity on κi, taken from [37].

at the HL-LHC seem not to be reaching this interesting parameter space just yet, this work indicates
that at least we might be probing an interesting order of magnitude that can be explicitly realised in
concrete models. The provided range might also provide a physics case for future collider facilities.

For future work, it might be interesting to explore alternative flavour structures, motivated by the
fact that so far the FCNC constrains seem to be much weaker as the ones from EWPTs. In addition,
it might be interesting to study ∆F = 1 processes to which also non-logarithmic contributions might
be relevant. Furthermore, it might be useful to systematically study other combinations of VLQs
appearing in table 3.2 to get a more systematic answer of our initial question.
While the analysis has been performed within a SMEFT framework, which seems justified in
retroperspective given the rather large NP scale Λ, it might anyways be interesting to confront
concrete model predictions with their SMEFT counterparts. In the former case, further experimental
constrains might be relevant such as for instance the unitarity of the CKM matrix VCKM .
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