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Abstract

This thesis examines the performance of triangle counting algorithms in memory hier-

archy systems when dealing with random graphs. The objective is to assess the effec-

tiveness of cache-optimized algorithms in processing large-scale graph data compared to

traditional algorithms designed for RAM.

The thesis initially presents and investigates the MinBucket algorithm both theoreti-

cally and experimentally, contrasting its performance with that of the trivial algorithm in

power-law random graphs generated using the Erased Configuration Model. The experi-

ments measure both execution time and the number of I/O operations on the CPU cache

memory.

Subsequently, experimental comparisons are made between the MinBucket algorithm

and a randomized cache-aware algorithm, utilizing power-law random ECM graphs, uni-

formly distributed random graphs, and real-world graphs, adjusting hyperparameters and

comparing execution times and cache misses.

The experimental results demonstrate the superior performance of cache-aware algo-

rithms over MinBucket when applied to power-law distributed graphs. This highlights

the potential of memory hierarchy-optimized algorithms to significantly enhance compu-

tation speed compared to traditional algorithms for this category of graphs, suggesting a

promising direction for future algorithm development.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the explosion of data generated by various applications such as social net-

works, biological networks, and communication networks has sparked a growing interest

in graph analytics. Graphs provide a powerful abstraction for modeling complex rela-

tionships between entities, enabling the representation and analysis of intricate networks.

Among the various tasks in graph analysis, triangle counting holds a significant place due

to its implications in various domains, including social network analysis, recommendation

systems, and community detection.

A triangle in a graph consists of three vertices connected by three edges, forming a

closed loop. The count of triangles in a graph provides crucial insights into its structure

and connectivity patterns. For instance, in social networks, triangles represent clusters of

interconnected individuals, indicating tight-knit communities or cliques. Understanding

these triangular relationships can help uncover hidden patterns, identify influential nodes,

and predict network behavior.

However, exact triangle counting in large-scale graphs poses significant computational

challenges. Therefore, it’s crucial to fully leverage both the inherent characteristics of

computer architectures and the structures of the graphs themselves to achieve reasonable

computing times. In this regard, one of the most crucial features of modern computer

hardware architectures to exploit is the memory hierarchy.

The memory hierarchy consists of multiple levels of storage devices with varying

access speeds and capacities, ranging from fast but small caches to slower but larger

main memory and disk storage. The performance of algorithms can heavily depend on

their ability to exploit the hierarchical nature of memory and minimize data movement

between different levels. Traditional algorithms designed without considering memory

hierarchy often suffer from poor cache utilization and excessive data transfers, leading to
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suboptimal performances.

Motivated by these challenges, researchers have focused on developing triangle count-

ing algorithms optimized for memory hierarchies. These algorithms aim to minimize

memory access patterns, exploit spatial and temporal locality, and efficiently utilize cache

resources to achieve better performance. In this thesis, we will compare a very simple al-

gorithm for counting triangles in a graph with an algorithm designed to efficiently exploit

the memory hierarchy, seeking the objective to assess whether the increased complexity

of the latter algorithm implementation is justified. We will delve into the details of each

algorithm and test their behavior on various types of graphs. Finally, we will compare the

performance of the two algorithms, aiming to understand if efficient cache utilization can

enhance triangle counting computation times.

1.2 Scope and Organization of the Thesis

The thesis will start by introducing fundamental concepts in graph theory and memory

hierarchy models, to provide the necessary background for understanding subsequent dis-

cussions on triangle counting algorithms and cache aware optimizations.

Following the introduction, we will delve into the analysis of random graph generation

algorithms, exploring various models such as Erdős-Rényi, Configuration Model, and In-

homogeneous Random Graphs (IRGs). We will pay special attention to power-law graphs

and their generation algorithms, focusing on understanding their structural characteristics

and their impact on the performance of triangle counting algorithms.

The core of the thesis will be dedicated to studying the behavior of the two triangle

counting algorithms, especially when running on random graphs. We will experimen-

tally evaluate their computation times and cache efficiency, comparing them to determine

if an algorithm optimized for the memory hierarchy can outperform a common, simple

algorithm designed for the RAM model.

Finally, we will conclude with a summary of key findings and future research direc-

tions. Our aim is to provide a comprehensive resource for researchers and practitioners

interested in graph analytics, memory hierarchy optimization, and algorithm design for

large-scale graph data.
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Chapter 2

Preliminaries

2.1 Graph Theory Fundamentals

2.1.1 Definition of Graph

In graph theory, a graph G is a mathematical structure consisting of two sets: a set of

vertices V and a set of edges E.

• The vertices set V is a collection of distinct objects called vertices (or nodes).

These vertices represent the entities or points in the graph. Formally, V can be

defined as V = {v1, v2, ..., vn}, where n is the number of vertices in the graph, and

each vi represents a unique vertex.

• The edge set E is a collection of pairs of vertices, representing the connections

or relationships between the vertices in the graph. An edge can be either directed

or undirected, depending on whether the relationship between the vertices has a

direction associated with it. Formally, E can be defined as E = {e1, e2, ..., em},
where m is the number of edges in the graph, and each ei is a pair (u, v) representing

a connection between vertices u and v.

Thus, a graph G can be formally represented as G = (V,E), where V is the set of vertices

and E is the set of edges.

2.1.2 Basic Definitions

• Edge Incident to a Vertex: An edge is said to be incident to a vertex if that vertex is

one of the endpoints of the edge. In other words, if the edge connects two vertices,

then it is incident to both of those vertices.
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• Self-Loop Edge: An edge is said to be a self-loop edge if it connects a vertex to

itself. More formally, a loop edge is an edge (v, v) ∈ E with v ∈ V .

• Parallel Edges: Two edges in a graph are said to be parallel edges if they connect

the same pair of vertices. Formally, Two edges e1, e2 ∈ E are said to be parallel

edges if, with u, v ∈ V , e1 = (u, v) and e2 = (u, v).

• Adjacent Vertices: Two vertices are said to be adjacent if they are connected by an

edge. Formally, two vertices u, v ∈ V are adjacent if and only if ∃(u, v) ∈ E.

• Neighbors of a Vertex: The neighbors of a vertex are the vertices that are directly

connected to it by an edge. In an undirected graph, the neighbors of a vertex are

the other vertices that share an edge with it. In a directed graph, the neighbors

of a vertex depend on the direction of the edges: the outgoing neighbors are the

vertices that can be reached from the given vertex, and the incoming neighbors are

the vertices from which the given vertex can be reached. Mathematically, we can

define the neighbors set of a vertex v as: N(v) = {u | (u, v) ∈ E}

• Degree of a vertex: The degree of a vertex in a graph represents the count of edges

connected to that vertex. Formally, let G = (V,E) be a graph, and let v be a

vertex in V , the degree of v, denoted by deg(v), is defined as the number of edges

incident to v. For a directed graph, the degree of a vertex includes both the in-

degree (number of incoming edges) and the out-degree (number of outgoing edges)

of the vertex.

• Path: A path (or walk) in a graph is a sequence of vertices in which each consecu-

tive pair is connected by an edge. A path can not contain the same vertex more than

once (unless it is at the same time the starting and ending vertex of the path), and

edges can’t repeat either. The length of a path is the number of edges it contains.

• Cycle: A cycle is a path that starts and ends at the same vertex.

• Multigraph: A multigraph is a graph where E contains self-loop edges or parallel

edges.

• Simple Graph: A graph is simple if it does not contain self-loop edges nor parallel

edges.

• Connected Graph: A graph is said to be connected if there is a path between every

pair of vertices in the graph.

• Disconnected Graph: A graph is disconnected if there are at least two vertices in

the graph that are not connected by any path.
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Figure 2.1: A very simple graph

• Triangle: In a graph, a triangle refers to a set of three vertices (u, v, w) such that

there exists an edge between every pair of vertices in the set. We can also define a

triangle as a cycle of length 3.

2.1.3 Graph Representation in Memory

In computer memory, vertices and their connections in a graph can be represented in

various ways. Each method employs a distinct data structure, each with its own set of

characteristics in terms of spatial requirements and time complexity for graph operations.

In this section, we explore the most common methods, explaining their main advantages

and disadvantages.

Adjacency Matrix

An adjacency matrix, denoted by M, is a square two-dimensional array of size n× n,

where n represents the number of vertices (nodes) in the graph. Each element M[i][j]

within the matrix corresponds to the relationship between vertex i and vertex j. Here’s

how the value determines the connection:

• M[i][j] ̸= 0: This signifies the existence of an edge (connection) between vertex i

and vertex j. The specific value (often 1) depends from the application, for example

in weighted graphs it can represent the weight of the edge.

• M[i][j] = 0: Conversely, a value of 0 (or any other pre-defined value signifying

absence) denotes the absence of an edge between vertex i and vertex j.

The advantages of this kind of representation are easily understandable:
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• Constant-Time Edge Lookups: Determining if there’s a direct connection

between two vertices, i and j, simply involves examining the corresponding cell

M[i][j]). This operation has constant time complexity (O(1)), making it

independent from the graph’s size. This efficiency becomes particularly valuable

when frequent queries about edge existence are required.

• Suitability for Dense Graphs: In scenarios where graphs exhibit high density,

meaning that vertices possess connections with a large number of other vertices,

adjacency matrices are the best choice for graph representation. In dense graphs,

where the number of edges approaches the total potential connections, the spatial

demand of the matrix does not result in significant space wastage. Additionally,

the constant-time edge checks become even more advantageous for frequent

queries on this kind of graphs.

On the other hand, these advantages may turn on disadvantages in other situations:

• Space Inefficiency for Sparse Graphs: The primary drawback of adjacency

matrices arises from their space complexity. The size of the matrix grows

quadratically (O(n2)) with the number of vertices (n) in the graph. This implies

that even for moderately sized sparse graphs (where most vertices have few

connections), the matrix can consume a considerable amount of memory. The

inefficiency derives from the storage of numerous zero values in the matrix,

representing non-existent edges.

• Inefficient Neighbor Finding: While checking for a specific edge is efficient,

retrieving all the neighboring vertices (connected nodes) of a particular vertex can

be time-consuming with an adjacency matrix. To achieve this, one would need to

iterate through the entire row corresponding to that vertex, leading to linear time

complexity (O(V )). This can become a bottleneck for algorithms requiring

frequent neighbor discovery.

Adjacency List

An alternative approach to graph representation is through the use of adjacency lists.

The adjacency list data structure can be implemented using an array of pointers to

adjacency lists: the size of the array is equal to the number of vertices (n) in the graph

and each element in the array, denoted by adjList[v], points to a list that stores the

vertices adjacent to vertex v.

The main advantages of using an adjacency list representation are:

14



• Space Efficiency for Sparse Graph: A significant benefit of adjacency lists lies

in their space complexity. Unlike adjacency matrices that grow quadratically with

the number of vertices, adjacency lists only store actual connections. In sparse

graphs, where most vertices have few connections, this translates to significant

memory savings as the data structure avoids storing unnecessary zero values.

• Efficient Neighbor Finding: Retrieving all the neighboring vertices of a specific

vertex is a strength of adjacency lists. By simply iterating through the adjacency

list corresponding to that vertex, we can efficiently discover all its connected

neighbors. This operation exhibits linear time complexity (O(deg[v])), where

deg[v] represents the number of connections for vertex v.

However, these advantages come with the drawback that the efficiency of edge existence

checks is compromised. Unlike adjacency matrices, which offer constant-time edge

existence checks, adjacency lists require traversing the associated linked list to determine

whether an edge exists between two vertices. In dense graphs, where most vertices are

connected, this traversal can result in a much higher time complexity for edge existence

checks.

Despite these limitations, adjacency lists remain a popular choice for graph

representation, particularly in scenarios where memory efficiency is crucial, or when the

graph is expected to be sparse.

Edge List

The edge list representation of a graph consists into a single list that contains all the

edges present within it. This approach differs from adjacency matrices and adjacency

lists, which focus on storing information around vertices.

An edge list is typically implemented as a two-dimensional array or as array of tuples,

where each tuple represents a single edge. A single tuple typically contains two pieces of

information:

• Source Vertex: This identifies the starting point of the edge, often denoted by a

vertex identifier.

• Target Vertex: This identifies the ending point of the edge, also denoted by a

vertex identifier.

Usually, in undirected graphs, the source vertex u and target vertex v are determined in

the way that u < v. Furthermore, the edge list is often sorted lexicographically to

enhance the efficiency of edge retrieval. Infact, if the edge list is ordered in such way, we

can find edges much more quickly by using the binary search algorithm. On the other

15



hand, this representation suffers of very poor performances for neighborhood

retrieving, which requires to iterate through the entire list.

Hash Table

Hash tables offer an alternative approach to graph representation, leveraging their ability

to store key-value pairs for efficient retrieval. In the context of graph representation, a

possible implementation can use an adjacency lists approach implementing an hash table

instead of using a linked list or an array. Choosing a good hash function, this

implementation can bring to multiple advantages:

• Fast Average-Case Edge Lookups: Retrieving the adjacency information for a

specific vertex can be achieved in average constant time (O(1)) due to the direct

indexing capabilities of hash tables. This can be advantageous for operations that

frequently check for edge existence.

• Maintains Space Efficiency For Sparse Graphs: As adjacency lists, it only store

entries for vertices that actually have connections.

However, despite its theoretical superiority, the representation of graphs using hash

tables hides practical difficulties. The efficiency of hash tables heavily relies on a good

hash function and managing collisions effectively. In the worst case, with a poor hash

function or excessive collisions (which are frequent in large graphs), lookup times can

deteriorate in practise, making hash table slower than other well-implemented

representation methods.

2.2 Power-law Distributed Graphs

If we analyze complex real world networks, we can often observe that the degrees of

their vertices are not completely random, but they follow a power-law distribution.

This distribution signifies a remarkable imbalance in the connectivity of nodes. In this

section we will try to understand why real-world data often follows a power-law

distribution, the nature of the distribution itself, and the key characteristics of graphs

exhibiting this phenomenon.

2.2.1 Introduction to Power-law Graphs

The prevalence of power-law distributions in real-world networks suggests the existence

of underlying mechanisms that favor the creation of highly connected nodes (often called
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Figure 2.2: Degree distribution of real-word graphs in a log-log plot: the closeness to a

straight line indicates a power-law distribution - Credits: Thomas Bläsius - Introductory

Presentation to Geometric Inhomogeneous Random Graphs

”hubs”) compared to others. Several real-world phenomena can explain this typical

behaviour:

• Preferential Attachment: This principle, also known as the ”rich-get-richer”

phenomenon, implies that nodes with a high number of connections are more

likely to attract new connections. Imagine a social network where popular

individuals (hubs) tend to gain more followers than those with fewer connections.

This self-reinforcing mechanism leads to a skewed distribution where a few nodes

accumulate a disproportionate number of connections.

• Growth and Evolution: Many real-world networks exhibit continuous growth

and evolution. New nodes are constantly added, and connections are formed based

on existing connections. In such scenarios, preferential attachment naturally

emerges. As the network grows, new nodes are more likely to connect to existing

hubs, further reinforcing the power-law distribution.

• Copying Mechanisms: In some networks, new nodes may form connections by

mimicking the connection patterns of existing nodes. This ”copying” behavior can

amplify existing imbalances, leading to a power-law distribution.

These mechanisms, operating alone or in combination, can lead to the emergence of

power-law distributions in real-world networks. Understanding these mechanisms is

crucial aspect for designing efficient algorithms for network analysis, where we can

exploit them to achieve better performances in practical usage.
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2.2.2 Characteristics and Properties

Definition 2.1. The probability density function (PDF) of a power-law distribution is

given by:

fD(x) = c · x−τ

where c is a normalization constant and τ is the power law parameter.

Definition 2.2. The complementary cumulative distribution function (CCDF) of a

power-law distribution is computed from the PDF through integration:

FD(x) =

∫

∞

x

fD(t) dt

Resulting in:

FD(x) = e−b · x−α

Where α = τ − 1 and b is a constant.

Definition 2.2 tells us how likely it is for a number from a power-law distribution to be

equal to or bigger than x. In simple terms, it shows the chance of seeing something as

big as x or even bigger. For example, if F (x) = 0.1, it means there’s a 10% chance of

finding something with a size of x or larger.

In the context of power-law distributed graphs, we consider the degree of a vertex as a

random variable following a power-law distribution. The power-law CCDF then

quantifies the probability that this random variable exceeds or equals a given value x. In

simpler terms, it indicates the probability of encountering a vertex with a degree equal to

or greater than x.

Theorem 2.1. Let X be the random variable denoting the degree of a vertex in a graph

G, let τ be the parameter of the power-law degree distribution of G, let n be the number

of vertices in the graph, then:

E[X] ∈ Θ(1) if τ > 2

E[X] ∈ Θ(log(n)) if τ = 2

E[X] ∈ Θ(n2−τ ) if τ < 2

Proof: Let xmin the minimum value allowed from the power-law distribution. We will

compute the expected value E[X] using the PDF and integrate over the entire range.

E[X] =

∫

∞

xmin

x · f(x) dx
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E[X] =

∫

∞

xmin

x1−τ dx

Performing the integration, we get what is stated by the theorem.

That means that the average degree of the vertices in the graph is finite only when τ > 2.

This is a typical value in real-world power-law graphs, thus the other cases are usually

not of interest.

Theorem 2.2. Let X be a random variable following a power-law distribution of

parameter τ , let xmin the minimum value that X can assume, the variance Var[X] is:

V ar[X] ∈ Θ(1) if τ > 3

V ar[X] ∈ Θ(log(n)) if τ = 3

V ar[X] ∈ Θ(n2−τ ) if τ < 3

Proof: To compute the variance of a power-law distribution, we first find the second

moment, then subtract the square of the first moment (expected value). We notice that:

Var[X] = E[X2]− (E[X])2 = Θ(E[X2])

The second moment is found computing the integral:

E[X2] =

∫

∞

xmin

x2 · f(x) dx =

∫

∞

xmin

x2−τ dx

Performing the integration, we get what is stated by the theorem

Theorems 2.1 and 2.2 explain how a power-law graph behaves differently as τ changes.

When τ is greater than 2, the average degree of the graph doesn’t depend on the size of

the graph (n). However, the variance of degrees in the graph becomes constant only

when τ is greater than 3.

2.3 Random Graph Generation Algorithms

2.3.1 Introduction to Random Graphs

In general, many real-world networks, such as social networks (e.g., Facebook,

Instagram, X), the internet and citation networks in scientific literature, exhibit

characteristics that are neither purely deterministic nor entirely random. These networks

often display properties like:
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• Small-world phenomenon: In many real-world networks, even in large ones,

most nodes can be reached from any other node through a relatively short path of

connections.

• Clustering: Nodes tend to connect with others that share similar properties,

leading to the formation of densely connected communities within the network.

• Power-law distribution: The degree distribution (number of connections per

node) follows a power law, meaning a few nodes have a very high number of

connections (hubs), while most nodes have relatively few.

Random graph models provide a way to capture these essential features in a

mathematically tractable manner. By introducing randomness into the process of

creating a graph, we can analyze the resulting network structure and its properties

statistically. This allows us to compare real-world networks to these models, identifying

deviations that might reveal underlying mechanisms or functionalities of the network.

We can also use these models to test algorithms on graphs that mimic real-world data,

also observing their behaviour varying the characteristics of the input networks. It this

section we will explore some random graph generation models, delving into their

functioning and their main characteristics.

2.3.2 The G(n,m) Model

The G(n,m) model is a classic approach to generating random graphs. In this model,

both the number of vertices, denoted as n, and the number of edges, denoted as m, are

fixed. The generation process involves incrementally adding m edges to n vertices,

chosen uniformly at random from the set of all possible edges on n vertices.

Algorithm 2.1 shows the typical implementation of the G(n,m) model: the graph

generation process begins with a set of n isolated vertices. Edges are then added one by

one until the desired number m is reached. To add an edge, two distinct vertices are

selected uniformly at random from the set of n vertices, and an edge is added between

them (if it does not already exist). This process continues until m edges have been added.

Despite its simplicity, the G(n,m) model is a random graph generator that provides very

important guarantees:

• Fixed Number of Edges: By fixing the number of edges m, researchers can

control the graph’s density and connectivity properties.

• Simple Implementation: The algorithm for generating G(n,m) graphs is

straightforward.
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Algorithm 2.1 G(n,m) Random Graph Generation

1: Initialize an empty graph G with n vertices

2: edges← 0
3: while edges < m do

4: Select two distinct vertices u and v uniformly at random from G
5: if (u, v) is not an edge in G then

6: Add edge (u, v) to G
7: edges← edges+ 1
8: end if

9: end while

10: return G

However, precisely because of its simplicity, fails into generate graphs that reflect the

properties of the graphs that we can find in the real world, for several key reasons:

• Uniform Edge Distribution: As we discussed above, real-world networks often

exhibit heterogeneity in the number of connections nodes have. Some nodes might

be highly connected, while others have very few connections. The G(n,m) model,

with its uniform edge probability, assigns an equal chance of connection to all

node pairs.

• Absence of Underlying Mechanisms: Real-world networks often form due to

specific processes or mechanisms. For example, social networks might see

connections based on shared interests or geographical proximity. The G(n,m)

model simply throws random edges, ignoring these underlying mechanisms that

govern network formation.

• No Control Over Degree Distribution: The G(n,m) model doesn’t offer direct

control over the degree distribution (number of connections per node) of the

generated graph. For this reason, we can not directly generate graphs with degree

distributions that mimic real-world graphs.

2.3.3 The Erdős-Rényi Model

The Erdős-Rényi model is an other classic random graph generation approach. In this

model, a graph is generated by independently adding each possible edge between n

vertices with a fixed probability p.

Algorithm 2.2 shows the steps to generate an Erdős-Rényi graph. The graph generation

process begins with a set of n isolated vertices. Then, each possible edge is added with a

fixed probability p. This means that for each pair of vertices, an edge between them is

included with probability p, independent of the other edges. The trivial implementation

21



is obviously Θ(n2), but there exists implementations that lower the time complexity to

Θ(n+m) [6].

Algorithm 2.2 Erdős-Rényi Model Random Graph Generation

1: Initialize an empty graph G with n vertices

2: for each pair of vertices u and v do

3: Generate a random number r between 0 and 1

4: if r f p then

5: Add edge (u, v) to G
6: end if

7: end for

8: return G

While Erdős-Rényi can appear similar to the G(n, m) model, it is generally more used

because of its additional advantages:

• More flexibility: In this model, each pair of vertices is connected with probability

p, independently of the other pairs. This means you can specify the expected

number of edges in the graph, rather than the exact number as in the G(n,m)

model.

• Easier Analysis: Differently from G(n,m) model, in this model each edge is added

independently from previously added edges. This makes the resulting graph

mathematically easier to analyze using the probability theory. This model is thus a

more tractable model for theoretical purposes.

On the other hand, it still has the same criticalities of the G(n,m) model. As G(n,m)

model, it can not capture real-world underlying mechanisms, even the simplest ones such

as preferential attachment or community structure. Basically, it is like trying to

understand how people make friends by randomly assigning friendships rather than

considering factors like common interests or mutual friends. Consequently, while the

G(n,p) model provides a good basic framework for understanding certain aspects of

network behavior, it doesn’t fully capture the complexities we often see in real-world

networks. In the next sections we will see more complex algorithms that can mimic

certain properties of real-world networks, such as the degree distribution and the

tendency to form clusters between similar nodes.

2.3.4 The Configuration Model

While G(n,m) and G(n,p) models do not provide any control over the generated graph

structure, the Configuration Model (CM) is a random graph generation approach that
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allows to specify the graph’s degree sequence in input. In other words, given a specific

degree sequence, it generates a random graph having exactly that degree sequence.

Algorithm 2.3 shows the functioning of the configuration model. Given a desired degree

sequence, the algorithm creates for each vertex as many ”stubs” as specified on its

degree. The algorithm then randomly matches pairs of stubs to form edges. This process

ensures that the resulting graph has the specified degree sequence.

Algorithm 2.3 Configuration Model Random Graph Generation

1: Specify the desired degree sequence d1, d2, ..., dn
2: Initialize an empty graph G
3: for each vertex v with degree dv do

4: Create dv stubs for vertex v
5: end for

6: while there are unmatched stubs do

7: Randomly select two unmatched stubs and add an edge between them

8: end while

9: return G

The Configuration Model possesses important advantages over the models seen above:

• Control over degree distribution: The model allows for the specification of a

desired degree sequence, which can be sampled from any probability distribution

model.

• Realism: We can generate graphs that mimic real-world networks characteristics

by giving in input a realistic degree sequence. For example, we can sample it from

a power-law probability distribution (as we seen in sections above) or just copy it

from a real-world graph.

• Easy to implement: The configuration model can be easily implemented by

generating an array of stubs and randomly shuffle them, forming edges by

coupling stubs in the order they appear. This algorithm is straightforward and its

complexity is Θ(m).

It is important to highlight that the configuration model produces in output a

multigraph. This means that it is not guaranteed that the graph will not include

self-loops or redundant arcs. This may be seen as an advantage, since many real-world

graphs are actually multigraphs, but it can be also useless or even a complication in

certain contexts. For example, when counting triangles in a graph, redundant arcs may

produce multiple counts of the same triangle, while self-loops are simply irrelevant. The

configuration model can be modified by adding a post-processing phase that removes all
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redundant arcs and self-loops from the graph. In that case, the model takes the name of

Erased Configuration Model. Note that the probability of generating a self-loop or a

redundant arc using the configuration model decreases when m increases, thus an erased

configuration model graph may be very similar or even equal to the not-erased graph

when m is large.

In this thesis we will extensively use erased configuration model to generate large

random power-law graphs, to mimic real-world networks and test the triangle counting

algorithms.

2.3.5 The Chung-Lu Model

In the Chung-Lu random graph model, proposed by F.Chung and L.Lu [3], the degree

sequence is not a strict constraint for the output graph, unlike the configuration model.

Instead, the degree distribution d1, d2, . . . , dn serves as a sequence of weights that

determine the probability for each edge to appear in the graph. For each pair of vertices i

and j, an edge is added between them with probability pij , where pij is calculated as:

pij =
di · dj
2m

Here, di and dj are the degrees of vertices i and j respectively, and m is the total number

of edges in the graph.

One can easily show that the degree assigned to each vertex in the degree sequence

corresponds to the expectation of the actual degree in the output graph:

Theorem 2.3. Let G = (V,E) be a graph and let v ∈ V be a vertex in the graph. Let dv

be its degree specified in the degree sequence given as input to the Chung-Lu model. Let

Xv be the random variable denoting the actual degree of v in the graph generated by the

Chung-Lu model. Then, it holds that:

E[Xv] = dv

Algorithm 2.4 shows a straightforward implementation of the Chung-Lu generation

process. The proposed algorithm is clearly Θ(n2), but there exists more sophisticated

implementations that lower the complexity to Θ(n+m) in expectation [6].

Graphs generated by the Chung-Lu model has several differences between graphs

generated by the erased configuration model, the most relevant are:

• Degree Expectation: The expectation of the degree of a vertex is equal to its

degree given in input to the model. This is not true for erased configuration model
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Algorithm 2.4 Chung-Lu Random Graphs Generation

1: Specify the desired degree distribution d1, d2, ..., dn
2: Initialize an empty graph G
3: for each pair of vertices i and j do

4: Calculate the edge probability pij =
di·dj
2m

using the degree sequence

5: Generate a random number r between 0 and 1

6: if r f pij then

7: Add edge (i, j) to G
8: end if

9: end for

10: return G

where the erasing process can modify the graph’s structure, especially for small

values of m.

• Easier Analysis: The probability of an edge to appear in the graph is independent

from the presence of the other edges, which is not true for the configuration model.

This makes the theoretical analysis of the model much easier.

Despite his theoretical superiority, the model hides some practical problems:

• Soft Constraints: The output graph will have the same degree sequence specified

in input only in expectation. This means that to make a good experimental analysis

we need to generate more graphs to obtain reliable results.

• Higher Complexity: Compared to the configuration model, the Chung-Lu model

has an higher complexity. This may be a problem when we want to generate very

large graphs.

2.3.6 Geometric Inhomogeneous Random Graphs

The models we have seen so far only focus on the number of connections each node has,

ignoring everything else that shapes real networks. Imagine we want to make a random

graph that looks like a social network. Using those models would be like randomly

assigning friends to each person, just based on some probability. But in real social

networks, connections are influenced by other factors like where people live, what they

are interested in, and so on. Consequently, it is more likely that connections happen

between nodes that are close in some way, like geographically or based on shared

interests. Geometric Inhomogeneous Random Graphs (GIRGs) resolve this problem by

incorporating spatial information into the generation process. In GIRGs, vertices are

randomly placed in a metric space, such as Euclidean space, according to a spatial

distribution. The spatial distribution may reflect underlying characteristics of the system
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being modeled, such as geographical locations in social networks or physical distances

in sensor networks.

During the edges generation process, vertices that are close in the metric space have a

higher probability of being connected, which is also conditioned by the specified degree

for the vertices. In particular, given n vertices placed randomly in a d-dimensional space,

given a degree sequence w1, w2, ..., wn and a constant a (that regulates the average

degree), an edge (u, v) is formed iff:

dist(u, v)d f a · wu · wv

n

This condition is expressed as:

Pr[(u, v) ∈ E|wu, wv] = Pr
[

dist(u, v)d f a · wu · wv

n

]

However, this formulation is just a threshold case. Infact, it is useful to introduce an

additional parameter T (where T ∈ (0, 1)), called ”temperature”, to interpolate between

high and low locality effect. The probability Pru,v of forming an edge between vertices u

and v is then actually defined as:

Pru,v = min







1,

(

1

dist(u, v)d
· a · wu · wv

n

)1/T






Note that for T = 0 we obtain the threshold case seen above.

Using this definition, a straightforward implementation of the algorithm is very similar

to the Chung-Lu algorithm (refer to Algorithm 2.4), but also in this case, it is available a

more efficient implementation that generates a GIRG in expected linear time [2].

From the practical point of view, using Geometric Inhomogeneous Random Graphs

rather simpler degree-distribution-based models has many advantages on the resulting

network realism, which can be summarized as follows:

• Incorporation of Spatial Information: GIRGs incorporate spatial information

into the graph generation process, allowing for the modeling of networks where

proximity plays a significant role in edge formation.

• Heterogeneous Connectivity: By combining spatial proximity with specified

degree distributions, GIRGs generate graphs with heterogeneous connectivity

patterns. Some regions of the graph may exhibit dense connectivity, while others

may be sparser, reflecting the underlying spatial structure.
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• Realism in Complex Systems: GIRGs are particularly suitable for modeling

complex systems where spatial proximity influences connectivity, such as social

networks, sensor networks, and biological networks.

On the other hand, GIRGs introduce dependencies on various factors beyond mere

degree distribution. Parameters such as the metric space and temperature play crucial

roles in shaping the resulting graph structure and, while this complexity allows for more

realistic modeling, it also complicates the analysis process, both theoretically and

experimentally.

2.4 Memory Hierarchy Model

The memory hierarchy is a crucial aspect of modern computing systems, designed to

optimize data access and storage by organizing memory into multiple levels with varying

speeds, capacities, and costs. This hierarchical structure aims to minimize the latency of

memory accesses while maximizing throughput, improving overall system performance.

In this section, we will provide an overview of the memory hierarchy model, discuss its

implementation in modern computing systems, and explore the categories of algorithms

designed to efficiently manage data within this hierarchy.

2.4.1 Overview of Memory Hierarchy

The memory hierarchy model is a memory architecture that consists of multiple levels of

memory, each with different characteristics and access times. The primary goal of the

hierarchy is to exploit the principle of locality, which states that programs tend to access

a small portion of their data and instructions repeatedly, either spatially (within a small

region of memory) or temporally (over a short period of time). By organizing memory

into hierarchical levels, the system aims to optimize memory access for both spatial and

temporal locality.

At the top of the memory hierarchy are registers, which are small, fast storage locations

directly accessible by the CPU. Registers typically hold data and instructions currently

being processed by the CPU, providing the fastest access times but limited capacity.

Below registers are various levels of cache memory, usually Level-1 (L1), Level-2 (L2)

and Level-3 (L3) caches, which are small, high-speed memory units located closer to the

CPU than main memory (RAM). Caches store copies of frequently accessed data and

instructions, exploiting temporal locality to reduce the latency of memory accesses.

Further down the hierarchy is the main memory, which serves as the primary storage for

program data and instructions. While main memory offers larger capacities compared to
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Figure 2.3: Typical memory hierarchy architecture in a multi-core CPU system

caches, it has much higher access times, making it slower to access data.

Finally, at the bottom of the hierarchy are secondary storage devices such as hard disk

drives (HDDs) and solid-state drives (SSDs). These devices provide large storage

capacities but have much slower access times compared to caches and main memory.

Modern computing systems employ sophisticated memory hierarchies tailored to meet

the demands of increasingly complex applications and workloads. These systems often

feature multiple levels of cache memory (usually 3 levels), with each level designed to

balance between access times, capacities, and costs.

Multicore CPUs often feature distinct L1 caches for instructions and data per core,

where L1 data caches typically prioritize speed over capacity, ensuring faster access

times compared to L1 instruction caches. Moreover, these CPUs commonly integrate

larger shared L2 and L3 caches across cores, to further improve cache hit rates and

reduce memory latency.

Beyond caches, modern systems may also incorporate techniques such as prefetching,

where the CPU predicts and fetches data from main memory or secondary storage before

it is actually needed, to reduce memory access latency.

2.4.2 Algorithms For Memory Hierarchy

Efficient management of data within the memory hierarchy requires specialized

algorithms designed to optimize memory access patterns and minimize cache misses.

The two main categories of algorithms for memory hierarchy management are

cache-aware and cache-oblivious algorithms, each with distinct characteristics and
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approaches.

Cache-Aware Algorithms

Cache-aware algorithms are designed with explicit knowledge of the cache architecture

and parameters, such as cache size and line size. These algorithms aim to maximize

cache utilization and minimize cache misses by taking advantage of the cache’s

properties and optimizing data access patterns accordingly.

One common strategy employed by cache-aware algorithms is to organize data structures

and access patterns to exploit spatial and temporal locality, thereby improving cache hit

rates. For example, algorithms may reorder data accesses to improve temporal locality,

ensuring that frequently accessed data remains in the cache for faster access.

Additionally, cache-aware algorithms may utilize techniques such as cache blocking or

loop tiling to enhance cache efficiency. By partitioning data into blocks that fit within the

cache and optimizing loop iterations to operate on these blocks, these algorithms can

reduce cache thrashing and improve data reuse within the cache.

While cache-aware algorithms can achieve high performance on specific cache

configurations, they may be less portable and may require manual tuning to optimize for

different cache architectures.

Cache-Oblivious Algorithms

Cache-oblivious algorithms, in contrast, are designed to perform efficiently across a

wide range of cache configurations without explicit knowledge of the cache parameters.

These algorithms aim to achieve optimal performance by adaptively adjusting their

behavior based on the available memory hierarchy without relying on cache-specific

optimizations.

One key characteristic of cache-oblivious algorithms is their recursive or hierarchical

structure, which allows them to exploit locality of reference at multiple levels of the

memory hierarchy. By recursively dividing the problem into smaller subproblems,

cache-oblivious algorithms can naturally exploit spatial and temporal locality, resulting

in efficient cache utilization.

A common example of a cache-oblivious algorithm is the cache-oblivious matrix

multiplication algorithm. This algorithm recursively partitions matrices into smaller

submatrices, performing matrix multiplication on each submatrix and combining the

results to obtain the final result. By carefully managing data accesses and recursive

subdivisions, the algorithm optimizes cache performance without relying on

cache-specific optimizations.
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Cache-oblivious algorithms offer the advantage of portability and ease of

implementation, as they can adapt to different cache architectures without requiring

manual tuning. However, they may not always achieve the same level of performance as

cache-aware algorithms optimized for specific cache configurations.
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Chapter 3

Triangle Counting Algorithms

3.1 Introduction to Triangle Counting

The triangle enumeration problem is a fundamental task in graph theory, involving the

identification and listing of all triangles within a given graph. A triangle, in graph theory,

is defined as a set of three vertices interconnected by edges, forming a cycle of length 3.

This problem is of particular interest because triangles represent tight relationships

between vertices, indicating strong connectivity patterns within the graph.

The triangle counting problem shares similarities with enumeration but with a distinct

focus: instead of listing every triangle, the objective is simply to determine the total

count of triangles present within the graph. This task involves determining the number of

triangles without necessarily listing them explicitly.

Triangle counting algorithms play a crucial role in graph analysis due to their wide range

of applications. One common application is community detection, where the goal is to

identify groups of vertices that exhibit dense internal connections and, since triangles

represent strong local connectivity, communities within a graph are expected to contain a

significant number of triangles. By leveraging triangle counting, analysts can effectively

detect and delineate these communities.

Moreover, the number of triangles in a graph is particularly used to measure the

clustering tendency of the vertices. A common metric is the clustering coefficient, which

measures the degree to which nodes tend to cluster together. High clustering coefficients

indicate dense local neighborhoods, often characterized by the presence of numerous

triangles. Thus, by computing the total number of triangles in a graph, analysts can

better understand the network’s overall clustering behavior and identify regions of high

connectivity.

Given the significance of triangle counting in graph analysis, there is substantial interest

in finding fast methods to compute it. Faster triangle counting not only speeds up the
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process itself but also accelerates other tasks that rely on triangle counting, such as

clustering coefficient calculation.

In this chapter, we will explore the triangle counting algorithms utilized in my research

training activity, delving into their functioning and characteristics. Subsequently, we will

investigate how the worst-case performances of these algorithms can be mitigated when

applied to power-law graphs. Finally, we will see how an algorithm designed for

execution in a memory hierarchy architecture can enhance the speed of the triangle

counting process in practice.

3.2 Trivial Triangle Counting

The first, trivial algorithm that we can build for counting triangles in a graph is a

straightforward approach that uses directly the definition of triangle in graph theory. The

essence of the algorithm lies in simply examining all possible paths of length 2 within

the graph and checking whether they are closed by a third edge, forming a triangle.

Given G = (E, V ), Pseudocode 3.1 shows the trivial algorithm functioning.

Algorithm 3.1 Trivial Triangle Counting

1: for each vertex v ∈ V do

2: for each couple of neighbors u, w ∈ N(v) do

3: if (u, w) ∈ E then

4: Count triangle (v, u, w)
5: end if

6: end for

7: end for

Theorem 3.1. Let G = (V,E), n = |V |, m = |E|. Let d1, d2, ..., dn be the degree

sequence of the vertices in V . The trivial algorithm has a running time:

Θ(
n
∑

v=1

d2v)

Proof: For each vertex v ∈ V , the algorithm involves taking pairs of neighbors of v to

check if there exists an edge between them. Since the degree of v is dv, this requires

examining
(

dv
2

)

pairs of vertices, which is Θ(d2v). Since we have to repeat this process for

each vertex v, the total time complexity is Θ(
∑n

v=1 d
2
v).

The complexity provided by Theorem 3.1 can degrade to O(n3) in a worst-case scenario,

particularly when the graph is complete or close to be complete.
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The main inefficiency of this algorithm arises from the fact that, during execution, it

enumerates each triangle present in the graph three times. Indeed, it is evident that we

enumerate all the P2s (paths of length 2) starting from each vertex in the graph, and since

each cycle of length 3 has three possible starting vertices, each triangle is enumerated

three times.

However, despite the trivial algorithm not being the most efficient in terms of theoretical

time complexity, its simplicity makes it an excellent starting point for developing better

algorithms. In fact, through the analysis of this simple algorithm, we can discover some

important characteristics:

• Dependency from the degree sequence: Despite the bad performances in a

worst-case scenario, the actual time complexity of the trivial algorithm is

dependent from the degree sequence of the graph. This means that the actual

complexity can be much lower than the worst case scenario in some cases. This

aspect will be studied in depth in the next sections.

• Highly parallelizable: It is evident that this algorithm can be readily parallelized

by subdividing each P2 enumeration task based on the starting vertex. The ability

to parallelize the process easily can significantly enhance computation times,

despite the algorithm’s poor theoretical performance. This can potentially make it

faster than superior algorithms on paper, although non-parallelizable.

Knowing these considerable advantages, we can try to improve the trivial algorithm,

trying to mitigate its criticalities while maintaining its positive aspects. A notable

improvement of this algorithm in this sense is represented by the MinBucket algorithm.

3.3 MinBucket Algorithm

The MinBucket algorithm can be viewed as an enhancement of the trivial algorithm. The

name originates from the paper ”Why do simple algorithms for triangle enumeration

work in the real world?” by Berry et al. [1], which forms the foundation for the

theoretical analysis of both the trivial and MinBucket algorithms, but it is known also

with other names (e.g NodeIterator++). These analyses are presented in the

following sections of this thesis, and they served as the basis for my research training

work. As we have seen in the section above, the trivial algorithm suffers of the fact that it

produces multiple enumerations of the same triangle. This is clearly an inefficient

behaviour that can not be avoided without computing additional structures to trace

whether a triangle has already been enumerated or not. A simple example is given by

Example 3.2.
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Example 3.2. let G = (V,E) be a graph consisting only in a triangle of three vertices,

means that V = {v, u, w} and E = {(v, u), (v, w), (u, w)}.
Looking at Algorithm 3.1 it is easy to see that the algorithm counts 3 triangles:

(v, u, w), (u, w, v), (w, v, u)

Note that, in order to count the triangle only once, it would be enough to choose

arbitrarily one vertex as start for the trivial algorithm, and ignore the other ones. Thus,

multiple enumerations can be avoided if, using some heuristic, we choose only one of

these vertices to enumerate all the P2s using the trivial algorithm.

Since the P2s enumeration task has complexity Θ(d2v), where dv is the starting vertex

degree, and since we can choose any of the three vertices of the triangle, it is reasonable

to choose the vertex having the lowest degree. The MinBucket algorithm consists

exactly into applying this heuristic to the trivial algorithm.

From the practical point of view, the functioning of the MinBucket algorithm is

described by Algorithm 3.2.

Algorithm 3.2 MinBucket Algorithm

1: Create n empty buckets B1, B2, . . . , Bn

2: for each edge (u, v) ∈ E do

3: if du f dv then

4: Place v in Bu

5: else

6: Place u in Bv

7: end if

8: end for

9: for each vertex v do

10: Enumerate all P2 formed by vertices in Bv, and output the closed ones

11: end for

To better understand what Algorithm 3.2 algorithm does, we can refer to Figure 3.1. The

algorithm formally involves re-computing the adjacency lists of vertices in the graph,

denoted as B1, B2, . . . , Bn, where each list Bv includes only the neighbors of vertex v

that have a higher degree compared to vertex v. The result is a transformation of the

graph into a directed graph, where every edge starts from the vertex with the lowest

degree and ends at a vertex with a higher degree.

It is important to note that in this transformed graph, within each triangle, we always

have one vertex that has no outgoing edges, and it always corresponds to the triangle’s

vertex with the highest degree. Note also that, in such triangle, the trivial algorithm can

detect the triangle only by starting from the vertex having the lowest degree, which is

exactly the improvement that we aimed to obtain.
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Figure 3.1: Graphical Representation of MinBucket

The algorithm requires an additional Θ(m) time to compute buckets and Θ(m)

additional space to store them. We can easily observe that, in a worst-case scenario (e.g.

large dense bipartite graphs), the computational time of this algorithm is still

impracticable. However, it has been shown experimentally that this algorithm beats

trivial algorithm by a constant factor of more than 100 in common datasets [8]. The

explanation of this paradox lies in the dependency of the MinBucket algorithm

performances on the degree sequence of the graph. As we have seen in Chapter 2,

real-world networks differ significantly from the worst-case scenario, as they are

typically very sparse, with a degree sequence that often follows a power-law distribution.

In the next section, we will provide a theoretical explanation of this phenomenon,

demonstrating why this simple algorithm can perform very well when operating on

real-world networks.

3.4 Triangle Counting In Power-law Graphs

We have seen in the previous section that MinBucket algorithm can count triangles in a

graph much faster than trivial algorithm in common datasets, despite its very poor

theoretical upper bound. The reader might therefore ask if we can, given certain

conditions, obtain a theoretical explanation of this results, and prove mathematically the

superiority of MinBucket algorithm in real-world networks. The answer comes from the

work of Berry et. al [1], that studied theoretically the behaviour of trivial and MinBucket

algorithms under the assumption of using random graphs that reflects the characteristics

of real-world networks. My research training has been centered on studying the bounds
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established by these theorems and experimentally verifying their results. The outcomes

of these experiments are detailed in the Results chapter.

From the theoretical point of view, the time performance of a triangle counting algorithm

can be summarized by the number of P2s (also called ”wedges”) enumerated by it. Let’s

first focus in detail on the number of wedges enumerated by the MinBucket algorithm.

By looking Algorithm 3.2, we know that, once we have computed all the buckets, we

have to enumerate all the wedges within each bucket. This in practical terms consists

into enumerating all the possible couples of the vertices that are in that bucket.

Definition 3.1. Let Xv be the size of the bucket Bv, then the Bucket Work of Bv is

defined as:

BW (v) =

(

Xv

2

)

=
Xv(Xv − 1)

2

Definition 3.2. Let G = (V,E) be a graph, let n = |V |, let Xv be the size of the bucket

Bv, then the Total Work of MinBucket algorithm for counting triangles in graph G is

defined as:

TW (G) =
n
∑

v=1

BW (v)

The total work represents the number of wedges enumerated by the algorithm. These

definitions can be readily adapted for the trivial algorithm, wherein the bucket sizes

coincide with the degrees of the vertices.

It’s important to note that in MinBucket each bucket size, denoted as Xv, is

upper-bounded by the degree of the corresponding vertex, dv. Consequently, it’s evident

that the total work is in some way dependent on the degrees of the vertices of the graph.

Note also that TW (G) can quickly escalate if there are ”too many” large buckets.

Fortunately, as discussed in the Preliminaries, real-world data often follows a power-law

distribution, where only a few nodes have high degrees while the vast majority of

vertices have low degrees.

To study the total work more formally, we require a random graph model capable of

mathematically describing a graph that mirrors a specific degree sequence. Berry et al.

[1] selected the Erased Configuration Model for their research. The main results of

their work are summarized by the following theorems:

Theorem 3.3. Consider a degree sequence d = (d1, d2, . . . , dn) for its vertices, with

maximum degree dm <
√
m/2, then the total work of MinBucket algorithm over the

random graph ECM(d) is:

TW (G) ∈ O(n+m−2(E[d4/3v ]3))
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Theorem 3.3 shows how the total work upper bound of MinBucket algorithm heavily

depends on the 4/3-moment of the degrees probability distribution. When this moment is

high, the total work tends to escalate cubically. Note that, in these terms, the trivial

algorithm has an O(nE[d2v]) upper bound. However, in the context of triangle counting,

we are mostly interested in power-law distributed degree sequences. So how these

algorithms perform over power-law distributed graphs? The answer is provided by

Theorem 3.4

Theorem 3.4. Consider a power law degree graph with exponent τ , and maximum

degree dm. Then the expected number of P2s enumerated over this graph are:

• O(n+ nd7−3τ
m ) for MinBucket algorithm

• O(n+ nd3−τ
m ) for trivial algorithm

Theorem 3.4 finally shows us that the MinBucket algorithm is superior to the trivial

algorithm for a class of power-law distributed graphs. The MinBucket algorithm

outperforms the trivial algorithm only when τ > 2, and it becomes linear when τ > 7/3

(approximately 2.33). Note that the trivial algorithm becomes linear when τ > 3. In

other words, this result tells us that we have the maximum advantage using the

MinBucket algorithm when 2 < τ < 3. For τ < 2 the MinBucket algorithm performs

worse, while for τ k 3 the two algorithms can be considered mostly equivalent.

Fortunately, the majority of real-world networks have 2 < τ < 3, which explains why

the MinBucket algorithm beats the trivial algorithm in practice.

Berry et al. [1] also provided another theorem that further lowers the upper bound when

the expected value and the 4/3-moment of the degree distribution are finite. The

statement is reported in Theorem 3.5.

Theorem 3.5. (Constant factors in MinBucket total work): Let Xv be the random

variable indicating the size of the bucket Bv in a graph of n nodes. Fix any n and a

degree distribution D such that E[d] and E[d4/3] are finite. Then the total work of

MinBucket algorithm is O(nC), where:

C ≡ lim
n→∞

1

n
E

[

n
∑

v=1

(

Xv

2

)

]

=
1

2(E[d])2

∞
∑

t1=1

∞
∑

t2=t1

∞
∑

t3=t1

t1(t1−1)t2t3f(t1)f(t2)f(t3) ∈ (0,∞).

Lemma 3.6. Let C be the constant defined by Theorem 3.5, then it holds that:

C ∈ O((E[d4/3v ]3))

In other words, Theorem 3.5 provides a tighter bound for the total work of the

MinBucket algorithm when τ > 7/3, essentially bounding the constant factors present in
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the total work. Lemma 3.6 proves that this bound is upper-bounded by the bound

provided by Theorem 3.3.

It is worth noting that Berry et al. also proved that all the theorems presented above hold

true when MinBucket is run on a random graph generated using the Chung-Lu model.

This demonstrates the equivalence of the two models in terms of MinBucket

performance.

3.5 Triangle Counting in Memory Hierarchy

In the sections above we have seen the theoretical and practical superiority of the

MinBucket algorithm for counting triangles in a power-law distributed graph. For this

reason, the MinBucket algorithm is one of the most commonly used algorithms when an

exact count of triangles is needed in real-world networks. We have seen the work

provided by Berry et al. [1] that gives a theoretical bound for the number of wedges

enumerated by the algorithm and, consequentially, the theoretical bound in terms of

computation time. Now, what direction should we take to further improve the algorithm

performances in practise, and lower down the execution time? We have seen in the

Preliminaries how a wise cache usage can strongly improve in practise an algorithm

performances. Two algorithms sharing the same theoretical bound in terms of

computation time may have completely different execution times in practise due the

different usage of the cache memory. Thus, it is important to try to minimize not only the

time complexity, but also the I/O complexity of the cache memory.

The MinBucket algorithm is not designed to exploit the cache memory, we can notice it

directly from the functioning of the algorithm itself (Algorithm 3.2). For each bucket Bv,

the algorithm iterates within it by taking all the possible couples of vertices in the bucket

and it check if there exists a closing edge between them. If all the edges do not fit in the

cache memory, the algorithm causes frequent cache-misses during the iterations,

significantly lengthening data access times.

Thus, can we design a triangle counting algorithm that takes advantage of cache

memory? The answer comes from Pagh and Silvestri [7], that proposed a randomized

cache-aware algorithm that exactly counts the triangles in a graph, exploiting the cache

memory.

Before delving into the characteristics of this algorithm, we need to add some specific

preliminaries:

Theorem 3.7. [9] Let G = (V,E). The I/O complexity of sorting the edge set sort(E) is

sort(E) = O

(

E log(E/B)

B logM
+

E

B

)

38



Definition 3.3. Let G = (V,E) and v1, v2, v3 ∈ V . For a triangle {v1, v2, v3}, with

v1 < v2 < v3, we call the edge {v2, v3} its pivot edge, and the vertex v1 its cone vertex.

Moreover, this algorithm makes some assumptions in order to simplify the theoretical

analysis:

• Vertices in V are ordered according to their degree. Each edge {v1, v2} is

represented by the tuple (v1, v2) such that v1 < v2, and these tuples are ordered

lexicographically. If the graph does not meet these requirements, it can be

converted to this form in sort(E) I/Os.

• Each edge requires one memory word.

• Cache rows are replaced using an optimal replacement policy.

The algorithm is based on two subroutines:

• Subroutine 1: (Pagh et al. [7, Lemma 1]) This subroutine counts, given an edge

set E and a vertex v, the number of triangles in E that contain v. This algorithm

has an O(sort(E)) I/O complexity and it is used to count triangles for ”too high”

degree vertices, a process that would not be efficient using Subroutine 2. The

pseudocode of this subroutine is shown in Algorithm 3.3.

• Subroutine 2: (Hu et al. [5, Algorithm 1, step 2], Pagh et al. [7, Lemma 2]) This

subroutine counts all the triangles in an edge set E with a pivot edge in E ′ ¦ E.

The algorithm has an O
(

⌈

E′

M

⌉
∑

v∈V
deg(v)
B

)

∈ O
(

E
B
+ E′E

MB

)

I/O complexity. The

pseudocode of this subroutine is shown in Algorithm 3.4.

The main algorithm (Algorithm 3.5) utilizes the two subroutines to count all the

triangles in the graph. The algorithm is divided into steps:

1. Vh computation: The algorithm determines the set of high-degree vertices Vh,

which contains all the vertices v ∈ V having deg(v) >
√
EM . The algorithm also

determines the set Eh of all edges incident to at least one vertex in Vh. The sets

Vl = V \ Vh and El = E \ Eh are determined consequentially.

2. Triangle counting on high-degree vertices: The algorithm counts all the triangles

in the graph that include at least one vertex in Vh, using Subroutine 1.

3. Vertices coloring and edge partitioning: The algorithm partitions the vertices into

c =
√

E/M partitions, inducing c2 = E/M partitions in El, where each partition

is characterized by the color of the starting vertex τ1 and the ending vertex τ2.

More formally, each partition of El is defined as
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Eτ1,τ2 = {{v1, v2} ∈ El | v1 < v2, ξ(v1) = τ1, ξ(v2) = τ2} . Once we apply

vertex coloring, all the sets Eτ1,τ2 can be constructed using a sorting algorithm

over El.

4. Triangle counting on low-degree vertices: For every triple

(τ1, τ2, τ3) ∈ {1, . . . , c}3, enumerate all triangles with a cone vertex of color τ1 and

a pivot edge in Eτ2,τ3 . We use the algorithm in Subroutine 2 by setting the pivot

edge to Eτ2,τ3 , the edge set to Eτ1,τ2 ∪ Eτ1,τ3 ∪ Eτ2,τ3 , and ignoring triangles where

the cone vertex does not have color τ1.

Algorithm 3.3 Cache-Aware Triangle Enumeration: Subroutine 1

Require: v ∈ V
1: Γv ← N(v)
2: Sort Γv by degree

3: Sort E by smallest vertex

4: Find the set Ev ¦ E of edges with the smallest vertex in Γv

5: Sort Ev by largest vertex

6: Compute the set of edges E ′

v ¦ Ev with both both vertices in Γv

7: for e = {u, w} ∈ E ′

v do

8: Count triangle {v, u, w}
9: end for

Algorithm 3.4 Cache-Aware Triangle Enumeration: Subroutine 2

Require: Pivot edge set E ′, Edge set E, color τ1
1: Γmem ← vertices appearing in edges of E ′ in internal memory

2: for each vertex v ∈ V do

3: Γv ← {u | (v, u) ∈ E, u > v, u ∈ Γmem}
4: end for

5: Count all triangles where {u, w} ∈ E ′ and u, w ∈ Γv

Let’s break down this algorithm for a clearer understanding. The algorithm begins by

focusing on triangles involving vertices with high degrees. Since these vertices are

incident to many edges, it’s more efficient in terms of I/O operations of the cache

memory to count triangles using set intersections. Once all triangles involving at least

one high-degree vertex are counted, they can be safely removed from the graph, leaving

a subgraph comprising only low-degree vertices, Gl = (Vl, El).

Next, the aim is to partition Vl into c =
√

E
M

partitions, where E represents the number

of edges in the graph and M is the cache memory size. Note that, since this is a

cache-aware algorithm, it requires a knowledge of the cache memory present in the

system, particularly of its size. Since the vertices set is divided into c =
√

E/M , and

considering each edge connects two vertices, the edge set is consequentially divided into
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Algorithm 3.5 Cache-Aware Triangle Enumeration

1: c←
√

E/M

2: Vh ← set of high-degree vertices such that deg(v) >
√
EM

3: Vl ← V \ Vh

4: El ← {(v, u) ∈ E | v, u ∈ Vl}
5: for each vertex v ∈ Vh do

6: Subroutine1(v)

7: end for

8: Choose ξ uniformly at random from a 4-wise independent family of functions

9: Construct sets Eτ1,τ2 using a sorting algorithm on El

10: for every triple (τ1, τ2, τ3) ∈ {1, . . . , c}3 do

11: Subroutine2(Eτ2,τ3 , Eτ1,τ2 ∪ Eτ1,τ3 ∪ Eτ2,τ3 , τ1)
12: end for

c2 = E/M partitions, means that each partition has a size of M , which exactly fits into

the cache memory. However, due to the random nature of the coloring function, this

holds true only in expectation.

If all the partitions fit in the cache memory, operations within it do not cause cache

memory I/Os. Subroutine 2 can then utilize a partition as a pivot set E ′, checking how

many adjacent vertices form triangles with each edge in E ′. Notably, if a partition Eτ2,τ3

is used as the pivot set, the remaining two edges of the triangle must be in Eτ1,τ2 ∪Eτ1,τ3 ,

reducing the edge set E for Subroutine 2 and limiting its I/O complexity. Note that, in

general, if E ′ fM , as expected, the I/O complexity of Subroutine 2 is

O(
∑

v∈Vl
deg(v)/B).
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Chapter 4

Experimental Evaluation

In this chapter, we present the experimental evaluation of MinBucket and cache aware

algorithms. The primary focus of this analysis is to understand the performance

implications of these algorithms when used on modern computational architectures that

feature multiple levels of memory hierarchies. In my experiments, I extensively used

random graphs varying in size, density, and degree distribution, to assess the robustness

and scalability of the algorithms across different graph configurations. The following

sections detail the experimental setup, including the hardware and software

environments, the specific implementations of the algorithms, and the methodologies

employed for data collection and analysis. Subsequently, we present a comprehensive set

of results, followed by a discussion on the observed trends and their implications for both

theoretical and practical aspects of triangle counting in hierarchical memory systems.

4.1 Benchmark Setup and Performance Metrics

The experiments were conducted on the AlgoDei cluster, provided by the University of

Padua. The AlgoDei cluster features 125GB of RAM and two Intel Xeon(R) W-2245

CPU 3.90GHz processors, each equipped with a cache memory having the following

characteristics:

• L1 Data Cache: 8 x 32 KiB

• L1 Instruction Cache: 8 x 256 KiB

• L2 cache: 8 x 1024 MiB

• L3 cache: 16.5 MiB

The experimental evaluations of the two triangle counting algorithm are primarily

focused on two aspects:
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1. Total Computation Time: This metric represents the overall time taken by the

algorithm to execute and compute the total number of triangles within a given

graph instance. This is the metric of most interest to practitioners focused on fast

computation.

2. Number of Cache Misses: Cache misses occur when the required data is not

present at the current cache level and must be retrieved from a higher level,

requiring additional time. The count of cache misses serves as a crucial indicator

of cache utilization efficiency within the hierarchical memory architecture.

All algorithm implementations were developed from scratch in the C language, aiming

to minimize overheads and maximize memory locality in the utilized data structures.

Power-law distributed weights for the Erased Configuration Model are generated using

the PLSeqGen library by Del Genio et al. [4].

Cache misses were measured using the Intel Performance Monitoring Unit (PMU), an

integrated hardware component within modern Intel CPUs that provides access to

hardware counters, including the cache misses counter. Access to the Intel PMU was

achieved using the perf event subsystem provided by the Linux kernel, which can be

utilized in a C program through system calls. The decision to directly utilize hardware

counters offers several advantages:

• Realism: Unlike software simulation tools such as Valgrind, using hardware

events allows us to observe the actual behavior of algorithms in a real environment.

• Accuracy: The Intel PMU counters enable us to obtain more precise information

about cache misses compared to external tools like perf, especially when we are

interested in measuring specific parts of the code.

4.2 Results and Analysis

Here, we present all the results obtained from the conducted experiments, analyzing the

outcomes and trying to provide explanations for them. Firstly, we present the results of

my research training activity, which primarily focused on understanding the MinBucket

algorithm and testing it using random ECM graphs, following the approach of Berry et

al. [1]. Secondly, we present the results of the cache aware algorithm, using them to

compare the two algorithms, assessing the advantage of utilizing the memory hierarchy.
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4.2.1 MinBucket Algorithm

Total Work Analysis

These analyses follow the work of Berry et al. [1], aiming to experimentally validate the

theorems presented in their study.

The experiment involved measuring the total number of P2s enumerated by the

MinBucket algorithm (referred to as Total Work in Definition 3.2) to verify the bound

provided by Theorem 3.4.

For this experiment, ECM graphs of various sizes were generated based on a power-law

degree distribution with a power-law exponent of τ , where τ < 7/3 and τ > 7/3, with

the maximum degree truncated to
√
N .

In this tests, sizes ranging from 103 to 107 nodes were used, with τ values chosen from

{2.2, 2.4, 2.6}. Each total work value represents the mean over 10 experiments.

Table 4.1 presents the obtained results, also including the total work of the trivial

algorithm for comparison. Figure 4.1 illustrates the results varying with N for each τ

value, considering experimental errors. Additionally, Figure 4.2 plots the results

obtained for the trivial algorithm.

Table 4.1: MinBucket Total Work

τ N Avg. MinBucket Total Work Avg. Trivial Total Work

2.2 104 (8.08± 2.26)× 103 2.35× 106

2.4 104 (2.73± 0.72)× 103 2.93× 105

2.6 104 (1.00± 0.38)× 103 1.02× 105

2.2 105 (1.57± 0.18)× 105 9.48× 107

2.4 105 (3.76± 0.38)× 104 1.04× 107

2.6 105 (1.13± 0.14)× 104 2.13× 106

2.2 106 (2.65± 0.28)× 106 1.68× 109

2.4 106 (4.57± 0.32)× 105 2.56× 108

2.6 106 (1.20± 0.12)× 105 3.53× 107

2.2 107 (4.35± 0.14)× 107 1.81× 1010

2.4 107 (5.37± 0.22)× 106 3.06× 109

2.6 107 (1.25± 0.02)× 106 6.60× 108
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Table 4.2: MinBucket Constant Factors

τ N Constant Factors C

2.4 104 0.27 0.63

2.6 104 0.10 0.30

2.4 105 0.38 0.63

2.6 105 0.11 0.30

2.4 106 0.46 0.63

2.6 106 0.12 0.30

2.4 107 0.54 0.63

2.6 107 0.13 0.30

Figure 4.1: MinBucket Total work varying N and τ

Figure 4.2: Trivial Algorithm Total work varying N and τ
46



Figure 4.3: MinBucket Constant Factors Plot

From Figure 4.1, we can assess the validity of Theorem 3.4. The plot shows the line

y = x, as a reference. It is evident from the plot that for τ > 2.3, the total work tends to

increase almost linearly with N , and as τ increases, the total work behavior becomes

increasingly linear. It is noteworthy that, as stipulated by the theorem, the trivial

algorithm begins to exhibit linear behavior only when τ > 3, as illustrated in Figure 4.2.

Moreover, Table 4.1 demonstrates that the trivial algorithm requires over 100 times more

total work compared to the MinBucket algorithm. Consequently, in power-law graphs

under identical testing conditions, we can find that the execution time of the trivial

algorithm will exhibit a similar ratio relative to the MinBucket execution time in

power-law graphs. This assertion is corroborated by Suri et al.’s experiments [8] on real

graphs, which are known to follow a power-law distribution.

To test Theorem 3.5, I computed the C value as defined by the theorem for τ = 2.4 and

τ = 2.6, and compared it to the constant factors derived from the total work shown in

Table 4.1. These constant factors were computed as the ratio between the total work and

N . It is worth recalling that the theorem states that the total work is O(nC) when

τ > 7/3.

Table 4.2 presents the results, and Figure 4.3 illustrates the constant factors as a function

of N . The figure also includes the case where τ = 2.2, where the theorem bound is not

applicable.

The results prove that the theorem is valid; in fact, the actual constant factors given by
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the experiments are upper-bounded by the C constant given by the theorem.

Execution Time Analysis

Berry et al. [1] in their study assumed that checking the existence of an edge requires

constant time. This performance can be easily achieved using an adjacency matrix, but

the space requirements (O(n2)) make its usage infeasible for large graph instances.

Thus, in my research training activity, I evaluated two possible solutions to address this

problem:

• Hash table: Using an array of hash tables, one for each adjacency list, should

guarantee constant-time edge existence checks on average.

• Binary Search: If edges are stored in lexicographic order, then a simple binary

search algorithm on the correct bucket can check edge existence in O(log(Xv))

time, where the edge to check is (v, u) and Xv is the size of the bucket Bv.

To determine the optimal approach for checking the existence of edges (necessary for

verifying if a P2 is closed in the MinBucket algorithm), I conducted profiling on two

versions of the MinBucket algorithm: one utilizing the hash table approach and the other

employing the binary search approach.

Measurements were carried out using the gprof tool in Linux, which allows analysis of

the time spent inside a function during program execution and the total count of calls to

that function. By understanding the total time spent within the function and the overall

number of calls, I calculated the mean time spent per execution of the function.

The mean execution time for checking edge existence was measured for both the hash

table and binary search versions. These measurements were taken across varying values

of N and τ . Table 4.3 presents the mean execution time based on 10 instances for each

combination of N and τ . From the results, it is evident that the binary search approach is

significantly faster than the hash table approach, despite its theoretical dependency on

the size of the search space. These observed execution times may be attributed to the

issues of collisions and the overhead introduced by the hash table structure, as described

in the Preliminaries. For this reason, all the measurements conducted in the time analysis

section refer to the binary search version.

Table 4.4 shows the mean execution time, along with its experimental error. Figure 4.4

illustrates the execution time plot as N increases. The plot is clearly similar to the plot in

Figure 4.1, confirming that the time performance is mainly determined by the number of

P2s enumerated. However, the results are slightly different because of the time needed to

check if each P2 is closed, which is not constant for the reasons described above.
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Table 4.3: Hash Table vs. Binary Search Lookup Time

τ N Binary Search Avg. Lookup Time (us) Hash Table Avg. Lookup Time (us)

2.1 105 0.062 0.112

2.3 105 0.054 0.114

2.5 105 0.057 0.137

2.1 106 0.082 0.269

2.3 106 0.085 0.228

2.5 106 0.084 0.207

2.7 106 0.101 0.254

2.1 107 0.105 0.360

2.3 107 0.113 0.363

2.5 107 0.117 0.344

2.7 107 0.123 0.319

Table 4.4: MinBucket Execution Time Varying N and τ
τ N Avg. Execution Time (ms)

2.2 104 1.43 ± 0.2

2.4 104 1.22 ± 0.35

2.6 104 1.03 ± 0.32

2.2 105 22.75 ± 0.9

2.4 105 12.28 ± 0.35

2.6 105 9.63 ± 0.21

2.2 106 539.9 ± 21.55

2.4 106 264.76 ± 8.94

2.6 106 201.58 ± 7.74

2.2 107 10009.3 ± 124.48

2.4 107 4097.77 ± 46.59

2.6 107 2890.29 ± 33.31

Figure 4.4: MinBucket Execution Time Plot
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Cache I/O Analysis

The number of cache I/O operations can be effectively summarized by the count of cache

misses occurring during the algorithm’s execution. As mentioned at the beginning of this

section, to profile the count of cache misses for each parameter setting, I utilized the

perf event subsystem in Linux to count the Last-Level Cache misses. As in the all

other experiments, to ensure reliable results, the test was performed by repeating the

execution 10 times for each combination of the parameters N and τ . Table 4.5 shows the

experiment results.

Table 4.5: MinBucket Cache Misses Varying N and τ
N τ Avg. Number of Edges Avg. Triangles Count Avg. Cache Misses

104 2.2 1.45× 104 7.07× 103 (1.30± 1)× 100

104 2.4 1.08× 104 1.26× 103 (4.00± 2)× 100

104 2.6 8.85× 103 2.58× 102 (3.90± 2)× 100

105 2.2 1.53× 105 9.25× 104 (1.35± 0.26)× 103

105 2.4 1.10× 105 1.04× 104 (8.73± 3.55)× 102

105 2.6 8.67× 104 7.00× 102 (5.46± 1.32)× 102

106 2.2 1.64× 106 1.69× 106 (1.88± 0.1)× 105

106 2.4 1.11× 106 8.61× 104 (1.48± 0.036)× 105

106 2.6 8.75× 105 4.66× 103 (1.21± 0.056)× 105

107 2.2 1.71× 107 2.98× 107 (2.95± 0.078)× 107

107 2.4 1.11× 107 7.19× 105 (2.06± 0.021)× 107

107 2.6 8.76× 106 2.78× 104 (1.80± 0.005)× 107

4.2.2 Cache Aware Algorithm

Implementation

Before presenting the experimental results, it is appropriate to delve into the details of

my implementation of the cache-aware algorithm. The implementation of Subroutine 1

and the main algorithm are simply developed as described in Pseudocodes 3.3 and 3.5.

The particularity of my specific implementation resides in the implementation of

Subroutine 2 (Pseudocode 3.4), particularly in step 5.

During my experiments, I was not able to run the algorithm in a feasible amount of time

on large graphs instances using the straightforward implementation of step 5. This

straightforward implementation consists of checking, for every {u, v} in the pivot edge

set, if u and v are both in the same Γv. Essentially, this requires scanning all of Γv for

each edge in the pivot set.

My implementation draws inspiration from the MinBucket algorithm. Given Eτ1,τ2 ,

Eτ1,τ3 , and the pivot edge set Eτ2,τ3 , my implementation enumerates each possible pair of
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vertices u, w such that (v1, u) ∈ Eτ1,τ2 and (v2, w) ∈ Eτ1,τ3 with v1 = v2. For each such

pair, the algorithm performs a binary search in the pivot edge set. If the edge exists, then

a new triangle is counted. The pseudocode for this implementation is provided in

Pseudocode 4.1.

This implementation does not incur more I/O operations in the cache memory compared

to the straightforward implementation if all the sets Eτ1,τ2 , Eτ1,τ3 , and Eτ2,τ3 together fit

into the cache memory. Experimentally, this implementation has been able to compute

the total number of triangles in a reasonable time, even for large graphs instances.

To verify the correctness of the algorithm, it is imperative to ensure that a single iteration

of Subroutine 2 does not result in more cache misses than the size of the input sets. In

other words, experimentally, we need to ascertain that, by utilizing a suitable value of

parameter c that ensures that all the sets fit together into the cache memory, the ratio

between the number of cache misses produced in an iteration and the size of the input

sets closely approximates 1 in expectation (taking into account the size of the cache line

B). To conduct this assessment, the algorithm has been tested on L1 cache over different

ECM power-law graphs. Each ECM configuration was subjected to 10 repetitions of the

experiment.

The experimental results are presented in Table 4.6. Additionally, the table highlights the

advantage of employing the binary search approach, which enables the algorithm to

reduce cache misses by approximately 25% compared to a simple linear search in the

pivot set.

Since the pivot set arrives in lexicographic order, a further optimization that may reduce

the computation time, particularly when dealing with low values of c, involves using an

additional data structure to store pointers to the list of neighbors of each vertex

{v | (v, u) ∈ Eτ2,τ3}. This would enable the algorithm to ”jump” directly to the relevant

portion of the pivot set for the search. While this would require additional O(Eτ2,τ3)

I/Os, it may reduce the search time within the pivot set, thus decreasing the overall

computation time.

Algorithm 4.1 Subroutine 2: Implementation

Require: Pivot edge set Eτ2,τ3 , Sets Eτ1,τ2 , Eτ1,τ3

1: Γmem ← vertices appearing in edges of Eτ2,τ3

2: for each couple of vertices u, w ∈ Γmem such that (v1, u) ∈ Eτ1,τ2 , (v2, w) ∈ Eτ1,τ3

with v1 = v2 do

3: if BinarySearch((u, w), Eτ2,τ3) then

4: Count triangle (u, w, v)
5: end if

6: end for
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Table 4.6: Cache Misses / Input size Ratio

N τ Avg. N. of edges Avg. Ratio (Linear Search) Avg. Ratio (Binary Search)

8× 105 2.2 (1.31± 0.02)× 106 1.07± 0.04 0.80± 0.01
8× 105 2.4 (8.80± 0.14)× 105 1.03± 0.01 0.75± 0.01
6× 105 2.2 (9.82± 0.14)× 105 1.08± 0.07 0.80± 0.01
6× 105 2.4 (6.80± 0.13)× 105 1.03± 0.01 0.74± 0.01
4× 105 2.2 (6.50± 0.09)× 105 1.11± 0.05 0.81± 0.01
4× 105 2.4 (4.43± 0.07)× 105 1.01± 0.01 0.74± 0.01

Hyperparameter Tuning

From a practical point of view, the most important objective is to reduce the computation

time needed to process graph instances as much as possible. From the definition of the

algorithm [7], we know that vertices are partitioned using c =
√

E/M different colors,

inducing c2 partitions of the edge set, each of size M in expectation. However, the

parameter c can be adjusted by a suitable constant α to interpolate between a high

number of small partitions and a low number of large partitions. For example, to ensure

that during the execution of Subroutine 2 all three partitions involved fit into the cache

memory in expectation, we need α >
√
3.

However, this may not be the best choice in terms of overall computation time for several

reasons:

• Number of partitions: A large number of partitions may increase the overhead of

the algorithm, slowing down the computation process.

• Optimizations: The use of optimizations (e.g., the binary search approach

described above, the use of additional data structures) may change the theoretical

number of I/O operations.

• Hidden mechanisms: Some hidden mechanisms may interfere with the ideal

cache behavior (e.g., prefetching, replacement policy, etc.).

Therefore, we need to tune α through an experimental process, evaluating the

computation time and choosing the best values, which may change based on the

characteristics of the graphs involved. Thus, I evaluated the computation time of the

algorithm over different ECM power-law graphs, uniformly distributed graphs, and

common real-world networks. Tables 4.7 to 4.9 present the experimental results, which

are graphically illustrated in Figures 4.5 to 4.7. These figures depict the execution times

for each graph, normalized with respect to the minimum execution time obtained within

each graph.
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Table 4.7: Execution Time Varying α Across Power-law ECM Graphs

N τ Avg. number of edges α Avg. Execution Time (s)

1.00× 107 2.1 2.35× 107 0.5 19.16± 1.01
1.00× 107 2.1 2.35× 107 1.0 19.01± 1.48
1.00× 107 2.1 2.35× 107 1.5 20.54± 1.56
2.00× 107 2.4 2.23× 107 0.5 5.02± 0.04
2.00× 107 2.4 2.23× 107 1.0 7.43± 0.05
2.00× 107 2.4 2.23× 107 1.5 10.98± 0.48
3.00× 107 2.7 2.42× 107 0.5 5.79± 0.01
3.00× 107 2.7 2.42× 107 1.0 9.20± 0.01
6.00× 107 3.0 4.11× 107 0.5 10.79± 0.05
6.00× 107 3.0 4.11× 107 1.0 27.17± 0.76

Table 4.8: Execution Time Varying α Across Uniformly Distributed Graphs

N Avg. number of edges α Avg. Execution Time (s)

1.00× 107 2.35× 107 0.5 10.24
1.00× 107 2.35× 107 1.0 11.72
1.00× 107 2.35× 107 1.5 12.82
2.00× 107 2.23× 107 0.5 8.96
2.00× 107 2.23× 107 1.0 11.15
2.00× 107 2.23× 107 1.5 12.71
3.00× 107 2.42× 107 0.5 9.91
3.00× 107 2.42× 107 1.0 12.73
3.00× 107 2.42× 107 1.5 14.39
6.00× 107 4.11× 107 0.5 17.39
6.00× 107 4.11× 107 1.0 26.3
6.00× 107 4.11× 107 1.5 53.02
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Table 4.9: Execution Time Varying α Across Real-World Graphs

Graph α Average Execution Time (s)

LiveJournal1 0.5 41.18± 0.11
LiveJournal1 1.0 42.07± 0.64
LiveJournal1 1.5 46.53± 0.04
LiveJournal1 2.0 54.12± 1.50

soc-Pokec 0.5 15.53± 0.04
soc-Pokec 1.0 15.43± 0.01
soc-Pokec 1.5 16.06± 0.03
soc-Pokec 2.0 18.10± 0.03

higgs-twitter 1.0 19.84± 0.06
higgs-twitter 1.5 18.77± 0.01
higgs-twitter 2.0 18.82± 0.26

as-Skitter 1.0 4.99± 0.01
as-Skitter 1.5 5.28± 0.01
as-Skitter 2.0 5.72± 0.02
wiki-Talk 1.0 2.46± 0.01
wiki-Talk 2.5 2.61± 0.01

Figure 4.5: Avg. Execution Time (Normalized) Varying α in Power-law ECM Graphs
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Figure 4.6: Avg. Execution Time (Normalized) Varying α in Uniformly Distributed

Graphs

Figure 4.7: Avg. Execution Time (Normalized) Varying α in Real-World Graphs
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Execution Time And Cache Misses Analysis

Here, we present the results of experiments aimed at measuring the execution time and

cache misses required by the MinBucket and cache aware algorithms for computing

triangles on different types of graphs. The experiments involved the usage of:

• Power-law distributed ECM random graphs

• Uniform sparse graphs, generated using the G(n,m) model

• Uniform dense graphs, generated using the G(n, p) model

• Real-world graphs datasets

Like all other experiments, each result represents the average of 10 experiments, with the

corresponding experimental error also reported. Tables 4.10 to 4.17 present the

experimental results.

The results underscore the superior performance of the cache-aware algorithm over the

MinBucket algorithm in graphs following a power-law distribution, both random and

real. This highlights the advantage of efficient cache utilization in such graphs, which is

particularly encouraging news for practitioners, as these are the types of graphs they are

most interested in.

However, for uniformly distributed graphs, this advantage almost disappears. This

outcome is not unexpected: in graphs following a power-law distribution, a few nodes

(hubs) have very high degrees, while most nodes have low degrees. Consequently, the

cache-aware algorithm can effectively leverage this by processing these nodes in a more

cache-efficient manner compared to MinBucket.

In uniformly distributed graphs instead, node degrees are relatively evenly distributed,

with no significant hubs. This means that every part of the graph is accessed roughly

equally, reducing the advantage of cache-aware optimizations. Moreover:

• In uniform sparse graphs, nodes have a small number of neighbors. This implies

that, in MinBucket, each bucket will likely have a small size, potentially fitting

into the cache memory. Thus, even though the MinBucket algorithm is not

explicitly designed for memory hierarchy, its cache efficiency increases in

uniformly sparse graphs, making it comparable to a cache-aware algorithm.

• In uniform dense graphs, all nodes tend to have a high number of neighbors.

While it is true that the cache-aware approach will decrease the total number of

I/O operations, it is also true that the time complexity of both algorithms explodes

on dense graphs. Moreover, the overhead introduced by the cache-aware algorithm

may nullify its advantages compared to a simpler algorithm like MinBucket.
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These arguments are also supported by Tables 4.14 to 4.17, which show the number of

cache misses incurred by both algorithms during the experiments.
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Table 4.10: Execution time comparison in ECM power-law graphs

N τ Avg. Number of edges Avg. Number of triangles CacheAware Avg. Ex. time (s) MinBucket Avg. Ex. time (s)

1.50× 107 2.10 3.56× 107 2.74× 108 35.63± 2.03 72.83± 3.59
1.50× 107 2.40 1.67× 107 1.10× 106 3.60± 0.04 6.60± 0.11
1.00× 107 2.10 2.35× 107 1.66× 108 19.52± 1.31 39.41± 3.01
1.00× 107 2.40 1.12× 107 7.74× 105 2.32± 0.03 4.15± 0.07
5.00× 106 2.10 1.15× 107 6.54× 107 7.43± 0.43 15.19± 1.09
5.00× 106 2.40 5.61× 106 5.18× 105 1.10± 0.01 1.86± 0.04

Table 4.11: Execution time comparison in uniformly distributed sparse random graphs

N Number of edges Avg. Number of triangles CacheAware Avg. Ex. time (s) MinBucket Avg. Ex. time (s)

1.50× 107 3.56× 107 19.40 15.00± 0.61 11.32± 0.06
1.50× 107 1.67× 107 1.30 3.75± 0.01 4.61± 0.02
1.00× 107 2.35× 107 17.10 7.58± 0.03 7.12± 0.03
1.00× 107 1.12× 107 2.20 2.41± 0.01 2.94± 0.02
5.00× 106 1.15× 107 17.90 2.62± 0.01 3.13± 0.01
5.00× 106 5.61× 106 1.50 1.13± 0.01 1.35± 0.01
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Table 4.12: Execution time comparison in uniformly distributed dense random graphs

N Number of edges Avg. Number of triangles CacheAware Avg. Ex. time (s) MinBucket Avg. Ex. time (s)

4000 2.40× 106 2.88× 108 65.13± 0.12 66.86± 0.08
4500 3.04× 106 4.10× 108 94.20± 0.08 96.45± 0.14
5000 3.75× 106 5.62× 108 130.79± 0.23 133.88± 0.11

Table 4.13: Execution time comparison in real-world graphs

Graph Name N Number of edges Cache Aware Avg. Ex. Time (s) MinBucket Ex. time (s)

higgs-twitter 4.57× 105 1.25× 107 19.54± 0.06 39.94

LiveJournal1 4.85× 106 4.29× 107 41.16± 0.23 55.62

soc-Pokec 1.63× 106 2.23× 107 15.18± 0.05 21.76

as-Skitter 1.70× 106 1.11× 107 4.94± 0.02 7.12

wiki-Talk 2.39× 106 4.66× 106 2.43± 0.01 4.11

Table 4.14: Cache misses comparison in ECM power-law graphs

N τ Avg. Number of edges Avg. Number of triangles CacheAware Avg. Cache Misses MinBucket Avg. Cache Misses

1.50× 107 2.10 3.56× 107 2.74× 108 (8.80± 1.57)× 107 (4.59± 0.28)× 108

1.50× 107 2.40 1.67× 107 1.10× 106 (1.63± 0.02)× 107 (5.17± 0.05)× 107

1.00× 107 2.10 2.35× 107 1.66× 108 (2.95± 0.08)× 107 (2.01± 0.17)× 108

1.00× 107 2.40 1.12× 107 7.74× 105 (9.00± 0.13)× 106 (3.12± 0.02)× 107

5.00× 106 2.10 1.15× 107 6.54× 107 (5.31± 0.20)× 106 (5.03± 0.34)× 107

5.00× 106 2.40 5.61× 106 5.18× 105 (3.18± 0.07)× 106 (1.31± 0.01)× 107
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Table 4.15: Cache misses comparison in uniformly distributed sparse random graphs

N Number of edges Avg. Number of triangles MinBucket Avg. Cache Misses CacheAware Avg. Cache Misses

1.50× 107 3.56× 107 19.40 (1.18± 0.00)× 108 (1.62± 0.28)× 108

1.50× 107 1.67× 107 1.30 (4.30± 0.01)× 107 (2.76± 0.01)× 107

1.00× 107 2.35× 107 17.10 (7.35± 0.01)× 107 (7.41± 0.05)× 107

1.00× 107 1.12× 107 2.20 (2.69± 0.01)× 107 (1.54± 0.02)× 107

5.00× 106 1.15× 107 17.90 (3.06± 0.00)× 107 (1.80± 0.01)× 107

5.00× 106 5.61× 106 1.50 (1.15± 0.00)× 107 (5.58± 0.06)× 106

Table 4.16: Cache misses comparison in uniformly distributed dense random graphs

N Avg. Number of edges Avg. Number of triangles CacheAware Avg. Cache Misses MinBucket Avg. Cache Misses

4000 2.40× 106 2.88× 108 (2.13± 0.17)× 105 (9.32± 0.23)× 106

4500 3.04× 106 4.10× 108 (4.15± 0.37)× 105 (2.44± 0.04)× 107

5000 3.75× 106 5.62× 108 (7.04± 1.42)× 105 (4.97± 0.04)× 107

Table 4.17: Cache misses comparison in real-world graphs

Graph Name N Number of edges Number of triangles CacheAware Avg. Cache Misses MinBucket Cache Misses

higgs-twitter 4.57× 105 1.25× 107 8.30× 107 (5.81± 0.23)× 106 1.64× 108

LiveJournal1 4.85× 106 4.29× 107 2.86× 108 (9.99± 0.13)× 107 2.13× 108

soc-Pokec 1.63× 106 2.23× 107 3.26× 107 (2.34± 0.03)× 107 1.24× 108

as-Skitter 1.70× 106 1.11× 107 2.88× 107 (3.93± 0.02)× 106 1.10× 107

wiki-Talk 2.39× 106 4.66× 106 9.20× 106 (6.26± 0.16)× 105 8.03× 106
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we investigated the performance of triangle counting algorithms on

random graphs in hierarchical memory architectures. Specifically, we focused on two

algorithms: the MinBucket algorithm and a cache aware algorithm. Our experiments

were conducted on a variety of graph types, including power-law distributed ECM

graphs, uniformly distributed sparse and dense graphs, and real-world graph datasets.

We evaluated the algorithms based on total work (i.e. the total number of P2s

enumerated), execution time, and cache efficiency.

The experimental results evaluated the MinBucket algorithm’s performance across

different types of graphs to validate its theoretical bounds. Key findings include:

• Total Work Analysis: The experimental results confirmed the theoretical

predictions by Berry et al. [1]. For power-law graphs, the total work of the

MinBucket algorithm scales almost linearly with N for τ > 2.3, validating

Theorem 3.4. The trivial algorithm, by comparison, required significantly more

total work, particularly when τ is small.

• Execution Time: A binary search approach for checking edge existence proved

superior to the hash table approach, reducing the mean execution time. The time

performance of the MinBucket algorithm has been proved to closely follow its

total work performance, affirming that the primary factor influencing execution

time was the number of P2s enumerated.

• Cache I/O Analysis: Profiling with perf event showed that cache misses are a

significant factor in performance. The MinBucket algorithm, while not specifically

designed for cache efficiency, demonstrated varying cache performance based on

graph structure and size.
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We then evaluated the cache aware algorithm, designed to exploit the memory hierarchy,

aiming to minimize cache misses and improve execution times. Key findings include:

• Implementation: An optimized implementation of Subroutine 2 using binary

search within the pivot set significantly improved performance. The tuning of the

hyperparameter α was crucial, as it influenced the number of partitions and overall

computation time.

• Performance Analysis: The cache aware algorithm demonstrated superior

performance on power-law graphs, both random and real-world, compared to the

MinBucket algorithm. This advantage was primarily due to efficient cache

utilization, which is critical in power-law distributed graphs with high-degree

nodes.

• Uniform Graphs Problem: In uniformly distributed graphs, the performance

advantage of the cache aware algorithm diminished. Uniform sparse graphs

allowed MinBucket to benefit from smaller bucket sizes that fit into cache, while

uniform dense graphs led to high time complexity for both algorithms, neutralizing

the benefits of cache-aware optimizations.

The experimental results underscore the importance of considering memory hierarchy in

algorithm design, particularly for large-scale graph processing. The cache aware

algorithm’s performance boost in power-law graphs highlights the potential of tailored

memory-efficient algorithms in practical applications, such as social network analysis,

web graph mining, and bioinformatics.

However, the results also indicate that for uniformly distributed graphs, simpler

algorithms like MinBucket can be competitive, especially when graph density varies.

This suggests that algorithm selection should be context-dependent, based on the specific

characteristics of the input graph.

5.2 Future Work

This study opens several directions for future research, which can further enhance our

understanding and capabilities in triangle counting algorithms and their performance in

hierarchical memory architectures. Key areas for future work may include:

• Extended Graph Types: While this thesis focused on power-law distributed ECM

graphs, uniformly distributed graphs, and real-world datasets, it would be valuable

to investigate the performance of triangle counting algorithms on other types of

graphs. Geometric Inhomogeneous Random Graphs, for instance, present unique
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challenges and opportunities for optimization. These graphs are characterized by

non-uniform distribution of nodes and edges in a geometric space, where nodes

closer together are more likely to be connected. Understanding how memory

hierarchy impacts these structures could lead to the development of more adaptive

and resilient algorithms.

• Deeper Cache Analysis: A more detailed analysis of cache behavior, including

the effects of different cache levels (L1, L2, L3) and architectures, would provide

deeper insights into the performance bottlenecks and opportunities for

optimization. For example, given the size and structure of the graph, it may be

advantageous to tailor algorithms to operate with a specific memory hierarchy level

in mind and, by adjusting parameters accordingly and implementing optimizations

tailored to the graph’s characteristics, we can maximize performance gains.

• Parallelization: It is possible to parallelize the operations of the cache-aware

algorithm by leveraging multi-core processing. Additionally, evaluating the

utilization of parallelization frameworks such as MapReduce could facilitate the

efficient processing of extensive graph datasets by distributing computations

across multiple machines. Moreover, exploring the potential for parallelizing the

algorithm on GPUs or other specialized hardware accelerators could lead to

significant performance improvements.

• Algorithmic Optimizations and Data Structures: Further optimization of the

existing algorithms and exploration of new data structures could lead to substantial

performance gains. Investigating the use of concurrent data structures in

multi-threaded environments could also enhance the execution speed of triangle

counting algorithms.
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