'\

S ; o
A% s I TR
~E ..IrA,H UNIVERSITA DIPARTIMENTO
7 —) DIINGEGNERIA
= DELL’INFORMAZIONE

: = pEGLI STUDI
s t\jl'l v

Vo s/ Dl PADOVA
[u

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN ICT FOR INTERNET AND
MULTIMEDIA

“Automated environment for the analysis of ASPICE
compliance for automotive FW”

Relatore: Correlatore:
Prof. GIAN ANTONIO SUSTO Ing. FRANCESCO SARTORIO
Ing. DENIS DONI

Laureanda:
NORHEN ABDENNADHER

ANNO ACCADEMICO: 2023 - 2024
Data di laurea: 03/07/2023

Abstract

This thesis summarizes the work carried out as part of the end-of-studies project
to obtain a master’s degree from the University of Padova, performed as an internship in
collaboration with Infineon Technologies and the University of Padova.

Automotive Software Process Improvement and Capability Determination is the ab-

breviation for Automotive Spice (ASPICE). It was developed to evaluate the effectiveness
of original equipment manufacturer (OEM) suppliers’ product development processes in
the automobile industry. To guarantee the greatest level of embedded automotive soft-
ware development quality, it outlines best practices and procedures. The audit performed
by outside, impartial, and ASPICE-certified assessors serves as the foundation for the
certification procedure.
In this thesis, we define and implement an automation environment that allows the anal-
ysis of work products related to Firmware development in order to evaluate the state
of ASPICE compliance. The dashboard introduces a tool to fetch, store, and visualize
the data related to different software programs, as well as the result of each undergoing
test. Python scripts were set in place to do the extraction of the data as well as populate
the tool’s data in a MySQL database. Finally, a Tableau dashboard was implemented
and integrated to display this data in a clear and approachable way, that facilitates the
decision-making process related to the ASPICE compliance state.

Keywords: ASPICE, Automotive SW/FW, Quality standards evolution, Key per-
formance indicator (KPI), V-model, Continuous Integration, Data fetching, Database
management systems, Web scrapping, Application programming interface, and Project
management.

Dedications

To my family, thank you for all your support, help, prayers, and
advice, thank you for believing in me, for being strong and patient, for
appreciating my achievements, and finally, thank you for what you
taught me to be the person I am today. This work is the culmination of
your great efforts. May God Bless You with Good Health and Long
Life,

To my parents, Tarek and Sthem, so many words cannot express my
love and affection. You have always supported and encouraged me
throughout my journey. On this memorable day, for me as well as for
you, receive this work as a sign of my deep appreciation and my
profound esteem,

To my brother and sister, Riadh and Rihab, I can never imagine how
the world would be without you. Both of you have been my best
cheerleaders. Wishing you all luck and success in your lives,

To someone close to my heart and far from the eyes, someone who was
there for me in my ups and downs. To my beloved Neji, the one [
always rely on when [felt anxious and stressed, I cannot express my
deepest gratitude for the continuous support you have always shown.
Thank you for everything you have added to my life.

To all my dear ones, to all of you

Thank you.

- Norhen

11

Acknowledgement

I have been lucky enough to have a chance to spend a few months working at Infineon
Technologies Padova, Italy. A rich and highly dynamic learning environment provided me
with valuable hands-on experience and a solid knowledge base for my current and future
work.

I would like to take this opportunity to express my heartfelt gratitude to a number of
people whose I was blessed to know and work with. My 20 years of studies had come to
a successful conclusion thanks to you.

First, to my thesis tutor at the University of Padova Prof. Gian Antonio Susto
for his valuable support and advice during the period of the internship.

To my thesis supervisor at Infineon company Mr. Doni Denis, the one I turn
to whenever I run into a trouble spot, was an incredible mentor to me. I can’t forget
his generosity and his kind support. He was always there to provide me with valuable
suggestions to make my internship succeed and faces all the encountered problems. Thank
you for all the lessons you've given me, and for trusting my skills. Without your guidance,
I wouldn’t make it this far.

To my thesis tutor at Infineon Technologies Mr. Francesco Sartorio I would like to
express my heartfelt gratitude for his unwavering support and encouragement throughout
my internship. He has created an exceptional work environment to foster my learning. I
am thankful for his belief in my abilities and for entrusting me with valuable opportunities
to explore the professional world.

Thanks to all of the UNIPD teachers who were involved in my education during my
time at the university, and to all Infineon colleagues who have never hesitated to provide
help. T am fortunate to be part of such a collaborative and supportive team that has
embraced a culture of mutual growth and development.

I would like to express my gratitude to the members of the jury for the honor they
have bestowed upon me by reviewing my graduation project, and I hope that they can
find the clarification and inspiration that they seek in this report.

I11

Contents

Abstract L I
Dedications 11
Acknowledgement 111
General Introduction oL 1
1 Internship context & Scope Definition 3
1.1 The host enterprise 4
1.1.1 Infineon Technologies 4

1.1.2 Sector of activity 5

1.1.3 Infineon technologies, Padova Italy 6

1.2 Thesis overview and problem statement 6
1.2.1 Problem Statement & Motivation 6

1.2.2 Objectives & Proposed solution 7

1.2.3 Project Workflow 8

2 General overview 10
2.1 What is software development? 11
2.1.1 Software development process steps 11

2.1.2 Software development life cycle (SDLC) 12

2.1.2.1 V-shaped Model 12

2.1.2.2 Project definition phases in a V-model 13

2.1.2.3 Validation phases ina V-model 14

2.1.2.4 Advantages of the V-shaped models 15

2.1.2.5 Disadvantages of the V-shaped models 15

2.2 What is Automotive SPICE? 16
2.2.1 Process reference model 16

2.2.1.1 Primary Life Cycle Processes 17

2.2.1.2 Supporting Life Cycle Processes 18

2.2.1.3 Organizational Life Cycle Processes Category 18

2.2.2 Standard for All Processes 18

2.2.3 Capability Measurement L. 19

2.2.4 Benefits of ASPICE 20

2.2.5 Challenges with ASPICE 21

2.2.6 ASPICE Vs ISO-26262 22

Contents

3 KPI Analysis and Data Retrieval 23
3.1 Key Performance Indicators (KPIs) selection 24
3.1.1 Whatisa KPI? o 24

3.1.1.1 Typesof KPIs 24

3.1.1.2 Advantagesof KPIs 25

3.1.1.3 Challenges with KPIs 25

3.1.2 Selection of KPIs for ASPICE SWE assessment 26

3.1.2.1 SOFTWARE REQUIREMENTS ANALYSIS - SWE.1 KPIs 26
3.1.2.2 SOFTWARE ARCHITECTURAL DESIGN - SWE.2 KPIs 32
3.1.2.3 SOFTWARE DETAILED DESIGN AND UNIT CON-

STRUCTION -SWE.3, 34

3.1.2.4 SOFTWARE UNIT VERIFICATION - SWE.4 in Auto-
motive SPICE KPIs 39

3.1.2.5 SOFTWARE INTEGRATION AND INTEGRATION TEST

- SWE.5 in Automotive SPICE KPIs 41

3.1.2.6 SOFTWARE QUALIFICATION TEST — SWE.6 in Au-
tomotive SPICE KPIs 42
3.2 KPI data retrieval 43
3.2.1 Data retrieval using web scrapping 44
3.2.1.1 Acquiring web resources 44
3.2.1.2 Data parsing and extraction 45
3.2.2 Application Programming Interfaces (APIs) 46
3.2.2.1 What’san API? 46
3.2.2.2 Howdo APIswork? 47
3.2.2.3 Why APIs are important 7 47
3.224 SOAPvs. RESTAPIs. 48
3.2.2.5 APIs for fetching data 48
3.2.3 File-based Retrieval 50
4 Data Collection and Database Design 52
4.1 Introduction to databases 53
4.1.1 What is a database? 53
4.1.2 Whatisa DBMS? 53
4.1.3 What are the types of Databases?” 54
4.1.4 What is Structured Query Language (SQL) 54
4.2 Designing and implementing a database for the ASPICE dashboard 55
4.2.1 Database requirement analysis 55
4.2.1.1 Objective of the ASPICE database 55
4.2.1.2 Users and stakeholders of the ASPICE dashboard 56
4.2.1.3 Functional requirements 56
4.2.1.4 Non functional requirements 57
4.2.1.5 Constraints 58
4.2.2 Database conceptual and logical design 58
4.2.2.1 Entity-Relationship Schema 58
4.2.2.2 Data dictionaryo 59
4.2.3 Database physical design L. 61

Contents

4.2.3.1 Database creation L. 62
4.2.3.2 Tablecreation 62
4.2.3.3 Populate the database 64
4.2.3.4 Queriying the database 65
5 Dashboard development and automation 66
5.1 Overview of the dashboard framework 67
5.1.1 Tableau for ASPICE dashboard 67
5.1.1.1 Data Source Connection 68
5.1.1.2 Data pivoting and filtering using Tableau 68
5.1.1.3 Publishing and Sharing the dashboard 71
5.2 Dashboard automation using Jenkins continuous integration 71
5.2.1 Version Control with Git and Bitbucket 71
5.2.1.1 What is Git and Bitbucket? 71
5.2.1.2 ASPICE dashboard repository setup 72
5.2.2 Continuous Integration and Deployment (CI/CD) of ASPICE dashboard 73
5.2.2.1 Whatis (CI/CD)? 73
5222 CI/CDtools 73
5.2.2.3 ASPICE dashboard integration 74
5.3 ASPICE Dashboard Presentation 75
General Conclusion 78
References 82

VI

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

5.1
5.2
2.3
5.4
2.5
0.6

Infineon’s Logo 4
Project’s workflow 9
V-shaped model in software development 13
Automotive SPICE process reference model 16
Template for the process description 18
Maturity levels in ASPICE[8] 20
Early defect detectiono o 21
Automotive SPICE as part of VDA Scope [10] 26
Importance of Software requirements documentation 27
Measuring requirements statuso L. 29
Software development process traceability 30
CRs and PRs workflow 32
Control Flow Graph [18], 37
POST and GET requests 44
HTML flow chart [27) 45
How do APIs work? [29] 47
REST Vs SOAP APIs [31] oo 48
How to create a JIRA filter 49
Database management system 53
How does SQL work? [39] 55
ER schema of ASPICE database 59
ASPICE database Info 62
What’s data pivoting? [39] 69
Last10 filter in Tableau? 71
CI/CD . . . 73
Project’s Jenkins Pipeline 74
Primary KPIs visualization 76
Secondary KPIs visualization 76

VII

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1

Software requirements status KPI 28
Traced requirements KPT. 30
VD assigned requirements KPTo 31
VD assigned requirements KPT 32
SWA Coverage KPI. 34
No. Of S WA KPI 34
SWUD Coverage KPI 35
Number Of SWUD KPI 36
SWDI Coverage KPI 36
Cyclometric Complexity KPT 37
MISRA Compliance KPI 38
Polyspace Compliance KPT 38
Binary size KPTo 38
Code coverage KPI 40
Unit Test Specification Coverage KPT 40
Unit Test Result KPT 40
Integration Test Specification Coverage KPT 42
Integration test KPT 42
Software Tester test results KPI 43
ASPICE database dictionary oL 61

VIII

List of acronyms

ASPICE

SW
FW
OEM
KPI
CI
DBMS
API
BP
SQL
CR
PR
CCB
SWRQ
SWA
SWUD
SWDI

CC

Automotive Software Process Improvement and Capability

dEtermination

SoftWare

FirmWare

Original Equipment Manufacturer
Key Performance Indicator
Continuous Integration

DataBase Management System
Application Programming Interface
Body Power

Structured Query Language
Change Request

Problem Report

Control Change Board

Software ReQuirements

Software Architecture

Software unit design

Software Design Implementation

Cyclomatic Complezity

IX

List of acronyms

MISRA
MC/DC
ITCov
UTCov
SOAP
REST

DBMS

Motor Industry Software Reliability Association
Modified Condition/Decision Coverage
Integration Test Specification Coverage

Unit Test Specification Coverage

Simple Object Access technology
Representational state transfer

Database Management System

General Introduction

In today’s world, embedded systems have become ubiquitous, powering everything
from mobile devices to industrial machinery. In particular, firmware plays a critical role
in enabling the functionality of these embedded systems, providing the low-level software
necessary to interface with hardware components and execute system-level tasks. In
the automotive industry, firmware is essential to the operation of vehicles, controlling
everything from engine timing to infotainment systems. As vehicles have become an
essential part of our transportation system, and with the increasing demand for more
advanced and efficient solutions, the automotive industry is constantly evolving [1].

As automotive systems have become more complex and interconnected, ensuring the
quality and reliability of firmware has become increasingly important, and the need for
sophisticated software to control all operations has increased. Firmware plays a critical
role in ensuring that the car operates smoothly, efficiently, and safely, and this complexity
brings with it many challenges including the need for rigorous testing and validation
[2]. One approach to achieving this, is through compliance with the Automotive SPICE
(ASPICE) standard. ASPICE [3] is a framework for assessing and improving the software
development processes used in the automotive industry by providing guidelines for the
development process, ensuring that the software meets the necessary quality and safety
requirements. By adhering to ASPICE, automotive companies can ensure that their
firmware development processes are well-defined, well-controlled, and capable of delivering
high-quality and reliable firmware.

The implementation of ASPICE in automotive firmware development is critical. It’s
quite a challenge to ensure that the software meets the necessary safety standards and
that the car operates as intended. Without proper implementation of ASPICE, the risk of
software errors, bugs, and vulnerabilities increases, potentially leading to safety hazards
and costly recalls.

Therefore, in this thesis, we will discuss the importance of implementing ASPICE
in automotive firmware development. We will examine the various aspects of ASPICE,
including its benefits, challenges, and how it can be integrated into the software devel-
opment process. Additionally, we will automate an environment that allows the analysis
of work products related to the firmware development in order to evaluate the state of
ASPICE compliance.

General Introduction

This report provides a comprehensive overview of my master’s degree graduation
project conducted at the University of Padova. It is structured into five chapters, start-
ing with an introduction to the project’s context and scope. Then we discussed the
significance of ASPICE in evaluating software quality in the automotive industry. The
subsequent chapter focuses on key performance indicators (KPIs) and the various tech-
niques employed to retrieve data for the ASPICE dashboard. The database design and
the seamless integration of the dashboard are presented in detail. Finally, the report con-
cludes with a summary of the project and outlines potential avenues for future research
and development.

Chapter 1

Internship context & Scope
Definition

Chapter 1. Internship context & Scope Definition

Introduction

This report is the result of a master thesis stage which is realized during a six months
internship in Infineon’s Development Center at Padova. As a member of the body power
team, I had the chance to work on the subject given to me and to present a solution that
will be implemented to achieve the desired goals, and this report comes as a summary of
every step of the thesis project. This first chapter aims to introduce the surroundings of
this thesis as well as some technical elements for the sake of setting the rest of the report
clear and understandable. Finally, the problem statement and the thesis goals will be
presented at the end of this chapter.

1.1 The host enterprise

In this section, we will present the host enterprise and its activity sector.

1.1.1 Infineon Technologies

Infineon Technologies [4] is a leader in the world of semiconductor solutions that
make life easier, safer, and greener. It is a leading innovator in the international semicon-
ductor industry founded in April 1999. It is headquartered in Munich, Germany but, it
has 17 Production sites and 35 Research and Development ones scattered all over Europe,
the Americas, and the Pacific Regions, and more than 40k employees worldwide.

Infineon

Figure 1.1: Infineon’s Logo

Semiconductors, which are hardly visible, have evolved into a need for daily living.
With microelectronics that connect the physical and digital worlds, Infineon is instru-
mental in defining a brighter future. Their semiconductors make it possible to manage
energy effectively, move about intelligently, and communicate securely and easily in a
linked environment.

Chapter 1. Internship context & Scope Definition

1.1.2 Sector of activity

Today the company is working on 4 business areas. Here follows the official presen-
tation given by the company for these 4 areas :

o Automotive (ATV): In the ATV segment, Infineon actively participates in defin-
ing the industry’s fundamental trends as well as creating products and solutions for
traditional drive trains. The expanding number of electronic applications in automo-
biles, which is a trend further amplified by the rising popularity of electro-mobility,
is driving up demand for our power semiconductors. We are the undisputed market
leader in silicon-based IGBTs and IGBT modules. Our expertise in silicon carbide
is also increasingly relevant for automotive power semiconductors. We are paving
the way for self-driving cars with our radar sensors and microcontrollers. Positioned
as number two in the radar sensor market, we are already noting strong momentum
from the proliferation of driver assistance systems. In the long term, radar systems
will be fused with other sensor technologies. We are laying the groundwork for this
by developing products such as LIDAR solutions. With our AURIX™ family, we are
also benefiting from the trend toward increased automation. Our products here con-
trol electronic systems such as steering and braking, also acting as host controllers
to provide functional safety and data security for central computing platforms.

o Industrial Power Control (IPC): This industry sector focuses on the effective con-
version of electric energy across the whole supply chain, from generation and trans-
mission all the way through to consumption. Here, applications include electric car
charging stations, home appliances, high-voltage DC transmission systems, energy
storage systems, and wind turbines. The market leader for power semiconductor
modules and discrete power semiconductors based on IGBTs is Infineon. We intend
to achieve technological leadership in silicon carbide in order to further enhance
this core ITPC business. We are also placing more emphasis on complementary
product categories, particularly Intelligent Power Modules (IPMs), which integrate
controllers, drivers, and switches to allow digital control capabilities.

o Power Management and Multimarket (PMM): Our PMM section concentrates on
power semiconductors for energy management as well as parts for mobile devices
and wireless networks. For applications in sectors like aerospace, PMM also spe-
cializes in incredibly dependable parts. Infineon is without a doubt the market
leader for MOSFETs worldwide. Excellent levels of energy efficiency are provided
by our CoolMOSTM and OptiMOSTM series. Additionally, we provide cutting-
edge technologies built on gallium nitride. We are working to broaden our selection
of complimentary drivers and controllers in addition to this product category. One
of the power semiconductors’ most rapidly expanding uses is in battery-powered
gadgets. We have a significant technological presence in the high-frequency and
sensor arena thanks to our MEMS microphones (silicon in particular), time-of-flight
sensors for 3D cameras, and radar applications. In each market, we have already
built quite strong positions. At the same time, we can apply our knowledge in these
fields to a growing number of use cases that will take off in the upcoming years. Fa-
cial recognition and human-machine interaction (HMI) are two important examples

5

Chapter 1. Internship context & Scope Definition

here.

« Digital and Security Solutions (DSS): The Digital Security Solutions (DSS) segment
has over thirty years of experience delivering some of the world’s most challenging
and large-scale digital security projects. Our success here is built on our wealth of
expertise in conventional smart card applications. We are transferring our core skills
in payment cards and government documents to the fast-growing field of embed-
ded security applications. As digitization shapes more and more areas of everyday
life, security is becoming a key success factor for applications across industries as
diverse as computing, automotive, Industry 4.0 and smart homes. Parallel to its
role as an independent business segment, DSS acts as a competence center for our
other three segments, supporting their efforts to hardware security functionality
into their respective system solutions. Working in all these fields Infineon keeps
tight relationships with many customers. Some of them are shown in Figure 1.2.

1.1.3 Infineon technologies, Padova Italy

Established in 1999 and operational since 2000, Infineon Technologies Italy is a
fully owned subsidiary of Infineon Technologies BV and with offices in Milan for Central
Functions and Sales, Padova and Pavia for R&D activities. The Development Centre
Pauda was founded in 2001 and focuses its activities on:

o Competence center for DCDC, NVMs and Functional Safety
o Product Development of Power Management 1Cs
o Technical Marketing and Product Development of LED lighting solutions.

o Technical Marketing, Application and Product Engineering of Micro-controllers
Non-Volatile Memories

1.2 Thesis overview and problem statement

In this section, we will provide the motivation and objectives of our work. We will
also provide a general overview to figure out the current problem and the motivation to
implement an automated ASPICE environment.

1.2.1 Problem Statement & Motivation

Everything from mobile gadgets to industrial machines is now powered by embed-
ded systems. Firmware, in particular, is crucial in allowing the functionality of these
embedded systems because it offers the low-level software required to communicate with
hardware parts and carry out system-level operations. Firmware is crucial to the running
of automobiles in the automotive industry, handling everything from engine timing to
entertainment systems.

Chapter 1. Internship context & Scope Definition

Over the previous few decades, vehicle software has expanded tremendously, moving

from having zero lines of code to as much as 200 million in certain situations today.
Projects may require the cooperation of hundreds of engineers to satisfy tens of thousands
of criteria due to their complexity. Making ensuring everyone is on the same page is
crucial if OEM specifications are to be met. TI’ll give you an example. It is customary
to do numerous walkthroughs while a house is being built by a construction company to
make sure the authorized building plans are being followed. When a significant mistake,
such as bad plumbing, is discovered early on in the project, it is easier and less expensive
to fix. The same is true for software development, however, it might be more difficult to
see clearly through a software project while it is being created. In reality, OEMs may feel
safe knowing that ASPICE will take their projects’ demands into consideration at every
level because of the fact that this is where ASPICE operates.
An industry-standard method for assessing software development processes is Automotive
Spice or ASPICE. Since its launch in 2005, ASPICE has assisted automotive suppliers in
implementing best practices to find flaws earlier in the development process and guarantee
that OEM specifications are satisfied. OEM found that the average ASPICE supplier
discovered 90 percent of defects 11 months before the start of production, whereas the
average non-ASPICE supplier discovered 90 percent of defects just two months before the
start of production, endangering an on-time launch.

Because of this, ASPICE is seen as a crucial stage in incorporating best practices,

spotting flaws earlier in the development process, and guaranteeing that OEM standards
are followed. What therefore is the secret to assessing compliance and making ASPICE
data-driven decisions?
Understanding data is essential in today’s world if you want to run any organization
successfully. Even the most data-savvy individual may find it difficult to handle the
amount of information that is always at their disposal. Making data-driven ASPICE
choices requires locating the most crucial facts and organizing them in a way that is
simple to comprehend. The creation of a dashboard that conveniently shows all of your
data visualizations in one location is one of the simplest methods to make data simple
to grasp for both technical and non-technical users. Your data will become out of date if
you have to manually import, export, and convert it from one platform to another before
your dashboard can display it. This will result in inefficiencies at best and erroneous
assumptions and serious decision-making errors at worst. For this reason, finding an
automated system that collects and presents all necessary data in real-time to serve as a
rapid and precise reference for its users is quite crucial.

1.2.2 Objectives & Proposed solution

The major goal of this work is to define and put into place an automated framework
that enables the examination of work products for firmware development on a weekly
basis in order to assess ASPICE compliance.

ASPICE data of different sorts may be graphically displayed in one location using this
automated system. Typically, a dashboard’s purpose is to present various, linked facts
in an easy-to-understand style. The organization has to be able to quickly observe and
comprehend things like key performance indicators (KPIs) or other crucial business in-

7

Chapter 1. Internship context & Scope Definition

formation.

The goal is to develop a dashboard that provides each project with real-time ASPICE-
related data updates because, in today’s business, data can change within hours or even
minutes. Stakeholders can easily keep a close check on activities that may be going behind
or projects that are underperforming with the use of a dashboard, which acts as a fast
reference point for them so they can take remedial action.

1.2.3 Project Workflow

The workflow of the project is divided into four main parts:

o Fetching Data from Different Tools: In this step, data is collected from various
tools and sources relevant to the project. These tools may include version control
systems, bug tracking systems, testing frameworks, and other software development
tools. The data collected includes information about code changes, bug reports,
test results, and other relevant metrics.

o Storing Data into a Database: Once the data is fetched, it needs to be stored in
a MySQL database for further processing and analysis. The data is organized and
structured in a way that facilitates easy retrieval and manipulation for subsequent
steps.

o Integration with Jenkins for Automation: After the data is stored, the next step is
to integrate the scripts and processes with Jenkins, a popular automation server.
Jenkins allows for the automation of various tasks, such as running tests, generating
reports, and performing continuous integration and deployment. By integrating
the scripts with Jenkins, the project can benefit from automated workflows and
streamlined processes.

« Visualizing Data with Tableau: The final step involves visualizing the collected and
processed data using Tableau, a powerful data visualization tool. Tableau provides
a range of features and visualizations that allow for interactive exploration and
analysis of the data. By visualizing the data, project stakeholders can gain valuable
insights, identify patterns, and make data-driven decisions.

By following this workflow (Check Figure 1.2), the project can effectively gather data
from different tools, store it in a database, automate processes using Jenkins, and visualize
the data using Tableau, enabling efficient analysis and informed decision-making.

Chapter 1.

Internship context & Scope Definition

ﬁa Of SWRQ (SWE.01) =4 <&
Traced Requirement (SWE.01) T3]

VD assigned Requirement (SWE.01)[I[0[3]
SWA Coverage (SWE.02)[I[of]

No. Of SWA (SWE.02)4"

SWUD Coverage (SWE.03)

No. Of SWUD (SWE.03) 4 U]

Unit Test Result (SWE.04) -«
Int. Test Result (SWE.05) 4"
SW. Test Result (SWE.06) "
Unit Test Report Coverage (SWE.04)

Int. Test Report Coverage (SWE.05)
QV Test Report Coverage (SWE.06)

Unit Test Spec Coverage (SWE.04)-4" ;;’;//
Int. Test Spec Coverage (SWE05):1 “ gl

SW. Test Spec Coverage (SWE.06) = AMA

Work product Defects oA ol
Work product Open CRs/PRs Ak
Not analyzed CR/PR (SWE.OT) 4

Conclusion

Through this chapter, we highlighted the context of our project by presenting in
first place the host company shortly and its activities. We introduced the problem and
the currently available solutions and we identified the objectives and contributions of this

project.

(4}1:,_ Tableau Environment '\

Enterprise Architect

)

No. Of SWA (SWE.02) '
No. Of SWUD (SWE03)=4"

ol

“©

Total vs. Closed Status
via Secondary Database

Current Status
via DataMart / Sec. Database

O REQTIFY
SWA Coverage (SWE.02) [I[o]
SWUD Coverage (SWE.03)[0[0[7]
SWDI Coverage (SWE.03)[l3]
Unit Test Spec Coverage (SWE.04) 4"
Int. Test Spec Coverage (SWE.05) &
Unit Test Report Coverage (SWE.04)[o[of7]
Int. Test Report Coverage (SWE.05)[ojol3]

%mnnmmus Integration

Cyclometric Complexity (SWE.03)[[0[3]
MISRA Compliance (SWE.03)[EES]
Polyspace Compliance (SWE.03)0[i[3]
Binary Size (SWE.03)

Code Coverage (SWE.04)

Unit Test Result (SWE.04)

Int. Test Result (SWE.05) ~4"

Figure 1.2: Project’s workflow

Chapter 2

General overview

10

Chapter 2. General overview

Introduction

This chapter summarizes the relevant fundamentals for further understanding of the
proposed work. We will gain a general understanding of software development, leverage
the V model, and the Automotive SPICE process model and the purpose of its application
in the development of software-based systems.

2.1 What is software development?

Software is made up of a number of instructions or programs that provide com-
puters the capacity to do specific tasks. The capacity to design and oversee computer
systems is also provided. It enables flexibility and programming in computing systems by
enabling computers to do a wide range of jobs and activities in line with preprogrammed
instructions.

The creation and maintenance of the source code are both steps in the software de-
velopment process. However, it goes much further than that, spanning every stage from
conceptualizing the needed program to its actual implementation, often in line with a
planned and ordered methodology that frequently overlaps with software engineering. All
actions that lead to the creation of software products, including research, new develop-
ment, prototyping, modification, reuse, re-engineering, maintenance, and others, are seen
as being a component of software development. [5].

2.1.1 Software development process steps

Software development typically involves a series of stages and activities, which can
be summarized as follows [6]:

o Methodology Selection: Choosing a suitable methodology to give a framework for
the software development process, such as Agile, De- vOps, RAD, SAFe, V model,
or others.

« Gathering requirements: Being aware of and recording user and stakeholder needs
and expectations.

o Architecture Selection/Development: Choosing or developing the foundational frame-
work and structure within which the program will run.

e Design Development: Producing answers to the specified criteria, sometimes with
the use of process models and storyboards.

o Model Creation: Conducting early design validation, prototyping, and simulation
using modeling tools and languages like SysML or UML.

o Code construction: Using the selected programming language to write the real
code, with peer and team reviews to find and fix problems as soon as possible and
guarantee high-quality software

11

Chapter 2. General overview

o Testing: Conducting testing activities, including predefined scenarios, to verify the
functionality and performance of the software.

« Configuration and Defect Management: Managing software artifacts, addressing
and tracking defects, establishing quality assurance priorities, and release criteria.

o Deployment: Deploying the software for use and addressing any user problems or
issues that arise.

o Data Migration: Transferring data from existing applications or sources to the new
or updated software, if necessary.

e Project Management and Measurement: Monitoring and evaluating the project to
ensure quality and on-time delivery, utilizing models like the Capability Maturity
Model (CMM) to assess the development process.

o The software development process aligns with application lifecycle management
(ALM), which includes stages like requirements analysis, design and development,
testing, deployment, and maintenance and support. The lifecycle emphasizes the
importance of continuous improvement, as issues identified during maintenance and
support can inform requirements for future cycles.

2.1.2 Software development life cycle (SDLC)

Organizations have the freedom to select the most suitable software development life
cycle (SDLC) model or alternative methodology for managing various projects, includ-
ing software development. It is crucial to thoroughly study and understand the chosen
approach in order to align it with the specific characteristics and risks of the project [6].

A software life cycle model can be classified as either descriptive or prescriptive, de-
pending on its purpose. A descriptive model provides a retrospective account of the
development process of a particular software system, documenting its historical progres-
sion. Descriptive models are valuable for analyzing and improving software development
processes or serving as a basis for creating empirically-based prescriptive models. Con-
versely, prescriptive models offer recommended approaches or a set of guidelines for the
development of software.

2.1.2.1 V-shaped Model

A systematic and structured approach to the software development life cycle (SDLC)
is emphasized by the V-model, a software development paradigm. Its distinctive V-shaped
figure, which depicts the activity flow during the development process, gave rise to its
name. The V-model includes a parallel and sequential link between the testing phases
and the development phases. There is a distinct testing phase connected with each stage
of the software development process, creating a parallel structure, see Figure 2.1.

12

Chapter 2. General overview

|User Requirements |, | User Acceptiance ‘
(BRS) Testing

[System Specrﬁcations}(
‘ (SRS)

Test
Flans

| Architecture Design | I
(HLD)

Mo}m Design |‘ I /7
/7

(HLD)
‘ Implementation I“' —————————— b: Unit Testing |

-- ’]I System Testing |

b

Figure 2.1: V-shaped model in software development

In this model, known as the V-model, every stage must be successfully finished before
advancing to the subsequent one. The V-model prioritizes testing more heavily than other
development models. Before any coding is done, testing processes are created and carried
out in each phase leading up to the implementation.

Gathering needs is the first step in the life cycle. A system test plan is created prior
to the start of development, and it is focused on ensuring that the functionality that was
stated during requirements gathering is fulfilled.

System architecture and design are the main focus during the high-level design phase.
For the purpose of assessing the interoperability of various software components, this step
also includes developing an integration test strategy.

The actual software components are designed at the low-level design phase, along
with unit testing. Coding activities take performed during the implementation phase.
The development process proceeds along the route of execution upwards on the right side
of the V-model when the coding phase is finished.

At this stage, the previously developed test plans are put into action. The testing
phase encompasses executing the system and integration tests, ensuring that the software
meets the defined requirements and functions effectively.

2.1.2.2 Project definition phases in a V-model

o Requirements analysis:
Analyzing user requirements is a step in gathering product requirements. Without
going into specifics of the system’s architecture or implementation, this phase largely
focuses on defining the required functionality of the system. A detailed explanation
of the functionality, interface, performance, data, security, and other requirements as
requested by the user is provided in the user requirements document. It serves as a
channel of communication between users and business analysts, offering direction to
system designers throughout the next design stage. At this level, user acceptability

13

Chapter 2. General overview

tests are also created.

To effectively gather requirements in both software and hardware development
methodologies, various methods such as interviews, questionnaires, prototypes, and
use case analysis are employed. These methods facilitate the process of capturing
and understanding user needs.

o System design:

During the systems design phase, system engineers carefully examine the user re-
quirements document to gain a comprehensive understanding of the proposed sys-
tem’s business aspects. They explore various possibilities and methods to effectively
implement the user requirements. If any requirements are deemed impractical or
unattainable, the user is promptly notified, and efforts are made to find a suitable
solution. As a result, the user requirement document is updated and revised to
reflect the agreed-upon resolutions.

o Architecture design:
High-level design is the term used to describe the process of creating computer and
software architecture. The main goal while choosing the architecture is to make sure
it satisfies all the prerequisites. This comprises identifying the interface links and
dependencies, defining the modules’ core functionality, choosing the database tables,
drawing architectural diagrams, and supplying technical information. During this
particular stage, the design for integration testing is also developed.

o Module design:
Low-level design is another name for the phase known as module design. In order
to allow direct coding by the programmer, each module in the intended system is
broken down into smaller components or modules at this step. Additionally, at this
point, the unit testing design is designed.

2.1.2.3 Validation phases in a V-model

Each level of the verification phase and its equivalent stage in the validation phase
are parallel in the V-model. This guarantees that the validation and verification processes
are in sync. The validation step of the V-model generally consists of the following phases:

o Unit testing:
Unit Test Plans (UTPs) are created at the module design stage of the V-Model.
These UTPs are used to find and fix issues at the unit or code level. The smallest
autonomous item, such a program module, is referred to as a unit. Unit testing
guarantees that the tiniest object functions properly when separated from the other
programs or units.

o Integration testing:
In the architectural design phase, integration test plans are created. These test
plans are designed to validate the coexistence and communication capabilities of
independently created and tested units. The tests ensure that the integrated units
function harmoniously together. The results of these tests are shared with the

14

Chapter 2. General overview

customer’s team to provide transparency and ensure alignment with the project’s
objectives.

o System testing:

During the phase of System Design, the development of System Test Plans takes
place, which distinguishes them from Unit and Integration Test Plans. These plans
are created by the business team of the client with the objective of validating the
application’s alignment with the client’s expectations. System Testing encompasses
a comprehensive evaluation of the entire application, including its functionality,
interdependencies, and communication aspects. Its primary purpose is to verify
the fulfillment of both functional and non-functional requirements. To ensure the
application’s robustness and reliability, various subsets of System Testing, such as
load and performance testing, stress testing, and regression testing, are conducted.
These subsets further contribute to the assurance of a high-quality application.

o User acceptance testing:

When conducting the requirements analysis, the development of User Acceptance
Test (UAT) Plans takes place. These plans are created by business users who will
be the ultimate users of the system. UAT is conducted in an environment that
closely simulates the production environment, utilizing realistic data. The primary
objective of UAT is to verify that the delivered system meets the user’s requirements
and is fully prepared for real-world usage. It serves as a conclusive confirmation that
the system fulfills user expectations and is ready for deployment.

2.1.2.4 Advantages of the V-shaped models

o Straightforward and user-friendly.
o Every phase has distinct outputs or deliverables.

o Compared to the waterfall paradigm, test plans are prepared earlier in the life cycle,
increasing the likelihood of success.

o Well-suited for smaller projects with clear and easily comprehensible requirements.

2.1.2.5 Disadvantages of the V-shaped models

o Highly inflexible, similar to the waterfall model.
o Limited adaptability and making changes to the scope is challenging and costly.

o Software development occurs solely during the implementation phase, with no pro-
vision for early software prototypes.

o The model lacks a well-defined approach for addressing issues discovered during
testing stages.

15

Chapter 2. General overview

2.2 What is Automotive SPICE?

Software Process Improvement and Capability Determination, or Automotive SPICE,
is a standard of quality created to evaluate business processes from a quality and safety
standpoint. It was created to evaluate, compare, and improve the processes associated
with software development for the automobile industry. This standard takes into account
not only software operations but also how software, hardware, and mechanics interact in
a mechatronic system.

The outcome of this standard is a process model that conforms to the ISO/IEC 30xx
series of standards and is acknowledged worldwide. As a result, the worldwide automobile
industry is quickly adopting it as the acknowledged development standard.

2.2.1 Process reference model

There are two important components in the process reference model [7]. The first
is the process aspect, which describes the defined processes and their associated require-
ments. Each process offers a detailed summary of the tasks that must be accomplished as
part of a project. The maturity or capacity element is the second part of the model. This
makes it possible to assess each process’s capacity. To simplify the process dimensions, the
VDA has defined 16 key processes that are fundamental to the creation of software-based
systems (see Figure 2.2).

Acquisition Process System Engineering Process Group (SYS) Management Process
Group (ACQ) Group (MAN)

AcQ3 sys.1 MAN.3
) 2 Project Management

Contract

ACQ.4 5Ys.2 SYS.5 MAN.5
Supplier Monitoring SvﬂemA':‘e;: ;sl;':ments System Qualification Te: Risk Management
SYS.3 5Ys.4

AcQ.11 \ MAN.6
Technical Requirements SVS‘E"‘;E';';:EC‘“BI Sysﬁi';g:;fg:q%’;[a“d Measurement

ACQ.12 N .4
Legaland Arimirystrative \Software Engineering Process Group (SWE)

Requirements

SWE.1
Software Requirements
Analysis

ACQ.13
Project Requirements

Software Qualification Test

SWE.2
Software Architectural
Design

SWE.5
Software Integration and
Integration Test

Al
Request for Proposals

Reuse Process Group

SWE.3 (REU)

Software Detailed Design
and Unit Construction

Al

Supplier Qualification Software Unit Verification

o)
o o
= =
= a

REU.2
Reuse Program
Management

SPL.2

Product Release Catigls st

Management

Problem Resolution Change Request

Management Management Process Improvement

Supply Process Group Supporting Process Group (SUP)
(SPL)
SPL.1 SUP.1 SuP.2 SuUP.4 Sup.7 Process Improvement
Supplier Tendering Quality Assurance Verification Joint Review Documentation Process Group (PIM)

=
£
w

‘ SUP.8 ‘ ‘ SUP.9 ‘ ‘ SUP.10 ‘

‘ Primary Life Cycle Processes | o] | Life Cycle Procs] | Supporting Life Cycle Processes ‘

Figure 2.2: Automotive SPICE process reference model

Let’s now take a closer look at the process dimensions’ structure. The process dimen-
sions may first be arranged into separate categories, and then according to the activities
they cover, they can be further divided into process groups.

16

Chapter 2. General overview

Primary life cycle processes, organizational life cycle processes, and supporting life
cycle processes are the three basic categories under which the process dimensions may be
divided. Every process has a purpose statement that describes its specific goals when it
is carried out in a particular setting. There is a list of precise outcomes that correspond
to each purpose statement, and these outcomes indicate the intended benefits of carrying
out the procedure.

2.2.1.1 Primary Life Cycle Processes

Four types of activities that are crucial for the creation of software-based systems
in the automobile sector are included in the Primary Life Cycle activities Category of the
automobile SPICE model. These four groups are the Software Engineering process group,
the System Engineering process group, the Supply process group, and the Acquisition
process group. A brief description of each of these process groups is provided below,
along with an illustration of each:

 Acquisition process group (ACQ): This group of processes focuses on identifying
and selecting suppliers for software-based systems. An example of a process in this
group might involve developing a request for proposal to send to potential sup-
pliers and evaluating their proposals to determine which supplier best meets the
needs of the project. The ACQ processes are: Contract Agreement, Supplier Mon-
itoring, Technical Requirements, Legal and Administrative Requirements, Project
Requirements, Request for Proposals, and Supplier Qualification.

« Supply process group (SPL): This group of processes focuses on managing the re-
lationship between the customer and the supplier of software-based systems. An
example of a process in this group might involve negotiating a service level agree-
ment (SLA) with the supplier to ensure that the software-based systems meet the
specified quality and performance requirements. The SPL processes are Supplier
Tendering and Product Release.

« System Engineering process group (SYS): This group of processes focuses on design-
ing and developing the entire system that includes software, hardware, and mechan-
ical components. An example of a process in this group might involve developing
a system architecture that defines the various components of the system and how
they interact with each other. The SYS processes are Requirements Elicitation,
System Requirements Analysis, System Architectural Design, System Integration
and Integration Test, and System Qualification Test.

« The Software Engineering process group (SWE) is responsible for the creation of
software-based systems. Within this group, specific processes are carried out to de-
velop and maintain software components. For instance, these processes can involve
tasks such as writing code for a car infotainment system or conducting thorough
testing to ensure the software meets the defined quality and performance crite-
ria. The SWE processes encompass activities like Software Requirements Analysis,
Software Architectural Design, Software Detailed Design and Unit Construction,
Software Unit Verification, Software Integration, Integration Test, and Software
Qualification Test.

17

Chapter 2. General overview

2.2.1.2 Supporting Life Cycle Processes

A group of procedures that are necessary for the successful management and support
of the major life cycle processes are included in the Supporting Life Cycle Procedures
(SUP) category of the Automotive SPICE model. These procedures emphasize resource
management, project monitoring and control, and assuring the efficient use of tools and
techniques. The SUP processes include Configuration Management, Problem Resolution
Management, Verification, Joint Review, Documentation, Quality Assurance, and Change
Request Management.

2.2.1.3 Organizational Life Cycle Processes Category

The term “organizational life cycle processes” refers to a group of procedures that
aid in the creation of process, product, and resource assets. These resources help the
organization accomplish its business objectives when they are used by initiatives inside
the company. Three categories make up the organizational life cycle processes cate-
gory: Management process group (MAN), Process Improvement process group (PIM),
and Reuse process group (REU).

2.2.2 Standard for All Processes

The description of each process follows a standardized documentation format, which
includes an ID, process name, process purpose, process outcome, basic practices, and
output work products (refer to Figure 2.2).

The process reference model (highlighted by a red line) and the process performance
indicators used to build the process assessment model are both included in the process
dimension tables, where each belongs to a particular process. The basic practices (shown
by a green line) and output work products (represented by a blue line) make up the
process performance indicators.

Process ID The individual processes are described in terms of
process name, process purpose, and process
outcomes to define the Automotive SPICE process
Process purpose reference model. Additionally a process identifier is

Process outcomes | Provided.

Process name

Process
reference
model

Base practices A set of base practices for the process providing a
definition of the tasks and activities needed to

i 3 ® accomplish the process purpose and fuffill the process
@ & =] outcomes
[\
:_5 E % Output work A number of output work products associated with
o & € | products each process
o

NOTE: Refer to Annex B for the characteristics
associated with each work product.

Figure 2.3: Template for the process description

18

Chapter 2. General overview

The following is a description of each element’s significance:

o The process is distinctively recognized by its ID and process name.

o Process purpose is a brief description of the primary objective of the process that
must be negotiated and agreed upon by the vendor.

o The process outcome clearly outlines the requirements, obligations, deliverables,
commitments, and ultimate result of a completed process as well as the expectations
of the provider and acquirer.

» Basic practices outline the specific activities required to be executed for the purpose
of accomplishing the envisioned process outcome. They act as indicators for the
process dimension and are the cornerstones of process evaluation.

o The output work products provide the potential deliverables that might be produced
as a result of the process. It’s vital to remember that this list is only recommended
and not required. Depending on the circumstances, the work output may be divided
among several deliverables.

2.2.3 Capability Measurement

ASPICE specifies a set of process capability levels that businesses may use to assess
the effectiveness of their software development processes. These levels range from ASPICE
Level 0 (Non-Compliant) to ASPICE Level 5 (Optimized). The standard also specifies a
set of process qualities that must be met in order to achieve each capability level, as shown
in Figure 2.3. These characteristics let enterprises analyze their adherence to Automotive
SPICE and find opportunities for improvement.

o Level 0: Basic. The process is either not conducted or does not achieve its intended
goal. At this point, organizations can only achieve ASPICE criteria to a certain
extent and should concentrate on managing vital activities over attaining higher
standards.

o Level 1: Performed. The process is implemented and achieves its intended goal.
Organizations at this point can deliver standard requirements to a significant extent
or completely, although there may still be some gaps in their processes.

o Level 2: Managed. The process is managed, as well as the work products are
developed, monitored, and maintained. Organizations at this point consistently
deliver work products and achieve ASPICE standards to a significant extent or
completely.

o Level 3: Established. A defined process is used based on a standard process. At
this point, organizations have set performance standards for the entire organization
and continually evaluate and learn from them.

19

Chapter 2. General overview

o Level 4: Predictable. The process is consistently enacted within defined limits. A
defined process is used based on a standard process. In addition to establishing and
meeting performance standards, organizations at this level measure, record, and
analyze outcomes to enable objective evaluation.

o Level 5: Optimizing. The process is continuously improved to meet current and
projected business goals. At this highest level, organizations not only achieve and
analyze performance standards for quantitative feedback and causal analysis reso-
lutions but also invest in continuous improvement.

~

Incomplete - Process is incomplete and fails

to achieve its purpose.

(No attributes)
P
~

Performed - Process is implemented and allows

to achieve its purpose.

(Process Performance))
~

Managed - Process is managed and work products are
planned, controlled and maintained
(Performance Management, Work Product Management)

VOV VOV

J
Established - Process is used based on standard
rules set across organisation
(Process Definition, Process Deployment)
b
=~
Predictable - Process is enacted consistently and helps
to achieve targeted goals within defined limits.
(Process Measurement, Process Control) o
~
Optimising - Process is continuously improved and
changed to meet important business goals.
(Process Innovation, Process Optimization)
J

Figure 2.4: Maturity levels in ASPICE|[g]

2.2.4 Benefits of ASPICE

Implementing ASPICE for software development in the automotive industry offers
several advantages. Some of them are:

o Enhanced Software Quality: ASPICE provides a structured framework for evaluat-
ing and enhancing software development processes. This enables the identification
and elimination of inefficiencies, reducing the occurrence of defects and errors in
software development see figure 2.4.

« Improved Efficiency: By adopting ASPICE, organizations can streamline their soft-
ware development processes, resulting in reduced time and resources required for
software development and maintenance. This leads to cost savings and increased
productivity.

20

Chapter 2. General overview

o Enhanced Communication: ASPICE establishes a common language and a set of
expectations for software development processes across the industry. This fosters
better communication among suppliers, manufacturers, and other stakeholders in-
volved in the software development lifecycle.

« Heightened Customer Satisfaction: The improved quality and reliability of software
developed under ASPICE can significantly enhance customer satisfaction. This, in
turn, contributes to a positive brand reputation, customer loyalty, and increased
business success.

o Compliance with Industry Standards: Adhering to ASPICE helps organizations
comply with industry standards and regulations, demonstrating their commitment
to delivering high-quality software. This ensures the safety and reliability of their
products, aligning with the expectations of customers and regulatory bodies.

Requirement Design Lj:n ?td'l%egs‘t So.lf.?s Tre SYI.Z‘:F Field Use
5% 20% 40% 20% 10% <5%
Level 5
Optimizing
.—
4% 12% 30% 30% 20% 5%
Level 4
Predictable
>
Level 3 0% 2% 20% 38% 32% 8%
Established
o
Level 2 0% 0% 3% 30% 50% 17%
Managed
.
Tevel 1 0% 0% 2% 15% 50% 33%
Performed
10% 50%
Defect Insertion

Figure 2.5: Early defect detection

2.2.5 Challenges with ASPICE

While ASPICE offers valuable advantages for software development in the auto-
motive industry, it does present certain challenges. Here are some common challenges
associated with ASPICE implementation:

o Complexity: ASPICE is a comprehensive and intricate framework that can be chal-
lenging for organizations to comprehend and implement. Its complexity may lead
to resistance from team members and require additional time and resources for
successful adoption.

o Resource Constraints: Implementing ASPICE demands substantial resources, in-
cluding investments in training, tools, and processes. This can pose challenges,
especially for smaller organizations with limited resources.

21

Chapter 2. General overview

o Resistance to Change: Implementing ASPICE necessitates significant changes to
an organization’s existing processes and practices. Resistance to change from team
members or stakeholders can impede the smooth implementation of the framework.

o Lack of Industry Standardization: Although ASPICE is widely used in the automo-
tive industry, there is still a lack of standardization across different companies and
organizations. Inconsistencies in its application can arise, making it challenging for
suppliers to meet the requirements of multiple customers.

o Integration with Existing Processes: ASPICE must be integrated with an orga-
nization’s existing processes, tools, and methodologies. This can pose difficulties,
particularly if the organization has already invested in tools and processes that may
not align seamlessly with the ASPICE framework.

2.2.6 ASPICE Vs ISO-26262

ASPICE and ISO 26262 are two standards relevant to the automotive industry,
although they differ in their scope and focus [8]. ASPICE, as previously mentioned,
is a process assessment model specifically designed to evaluate and enhance software
development processes within the automotive sector. It encompasses the entire software
development lifecycle and emphasizes an organization’s process capabilities.

In contrast, [SO 26262 is a safety standard that provides guidelines to ensure the func-
tional safety of electrical and electronic systems in vehicles. It outlines requirements for
safety management, hazard analysis and risk assessment, safety verification and valida-
tion, and other aspects. The primary emphasis of this standard is on effectively managing
and controlling safety risks associated with the utilization of such systems in vehicles.

While ASPICE focuses on the software development process and its capabilities, ISO
26262 is primarily concerned with the safety aspects of electrical and electronic systems
employed in vehicles. These two standards complement each other, and many organiza-
tions involved in automotive software development must comply with both.

To summarize, ASPICE offers a framework for assessing and improving software devel-
opment processes, while ISO 26262 provides guidelines for ensuring the safety of electrical
and electronic systems in vehicles.

Conclusion

Through this chapter, we have clarified the different concepts related to ASPICE to
improve software quality and reliability. That will help us to better undertake the project
and understand the workflow. The next chapter will cover the details of the data analysis
and retrieval to implement our solution.

22

Chapter 3

KPI Analysis and Data Retrieval

23

Chapter 3. KPI Analysis and Data Retrieval

Introduction

The following chapter will present an in-depth analysis of the key KPIs chosen for the
dashboard and elucidate the techniques employed to retrieve and integrate the requisite
data. By examining the KPIs and data retrieval process, this chapter aims to establish
a solid foundation for understanding how the dashboard will provide meaningful insights
and facilitates data-informed decision-making processes.

3.1 Key Performance Indicators (KPIs) selection

3.1.1 What is a KPI?

A Key Performance Indicator (KPI) is a quantifiable measure that signifies the
performance and advancement of an organization or a particular aspect of its operations.
KPIs serve the purpose of assessing the attainment of strategic objectives, monitoring
progress toward specific goals, and offering valuable insights into the efficiency of different
processes, activities, or initiatives.

The selection of KPIs is done with great care to align with the critical success factors
and goals of the organization. They play a vital role in monitoring performance, identify-
ing areas that require improvement, and facilitating data-driven decision-making. KPIs
can take the form of quantitative or qualitative measures and are typically established
using specific metrics or benchmarks.

3.1.1.1 Types of KPIs

Most Key Performance Indicators can be categorized into distinct groups, each with
its own unique characteristics, time frame, and intended users [9]:

o Financial KPIs: KPIs that revolve around finance primarily focus on revenue and
profit margins, particularly net profit. Examples of financial KPIs include liquidity
ratios, profitability ratios, solvency ratios, and turnover ratios.

o Customer Experience KPIs: These KPIs primarily concentrate on the efficiency,
satisfaction, and retention of customers before they become actual customers. Cus-
tomer service teams utilize these metrics to gain a better understanding of the ser-
vice customers receive. Examples of customer experience KPIs include the number
of new ticket requests, number of resolved tickets, average resolution time, average
response time, top customer service agent, type of request, and customer satisfaction
rating.

e Process Performance KPIs: Process metrics are used to measure and monitor opera-
tional performance within an organization. These KPIs assess task performance and
identify process, quality, or performance issues. They are particularly valuable for
companies with repetitive processes or those in cyclical industries. Examples of pro-

24

Chapter 3. KPI Analysis and Data Retrieval

cess performance KPIs include production efficiency, total cycle time, throughput,
and error and quality rate.

o Marketing KPIs: Marketing KPIs are utilized to assess the effectiveness of mar-
keting and promotional campaigns, focusing on measuring conversion rates and the
actions taken by potential customers in response to marketing efforts. Examples of
marketing KPIs include website traffic, social media traffic, the conversion rate on
call-to-action content, and click-through rates.

o [T KPIs: In pursuit of operational excellence, companies may monitor the perfor-
mance of their internal technology (IT) department. IT KPIs and metrics related
to hardware, software, and other internal technology aspects are used. Examples of
IT KPIs include total system downtime, number of tickets/resolutions, number of
developed features, count of critical bugs, and backup frequency.

o Sales KPIs: Generating revenue through sales is a primary objective for companies.
While financial KPIs measure revenue, sales KPIs offer a more detailed analysis
using non-financial data to gain insights into the sales process. Examples of sales
KPIs include customer lifetime value (CLV), customer acquisition cost (CAC), the
average dollar value for new contracts, average conversion time, and the number of
engaged leads.

o Human Resource and Staffing KPIs: Analyzing employee-specific KPIs can be ben-
eficial for companies, allowing them to delve into metrics related to turnover, re-
tention, and satisfaction, given the abundance of available information about their
staff. Examples of human resource or staffing KPIs include absenteeism rate, num-
ber of overtime hours worked, employee satisfaction, employee turnover rate, and
number of applicants.

3.1.1.2 Advantages of KPIs

The benefits of using Key Performance Indicators in a business are numerous, and
a company would like to analyze KPIs for several reasons. In fact, KPIs serve as valu-
able tools for management, offering quantitative insights into specific issues and aiding
in strategic planning to achieve a certain objective. Furthermore, KPIs act as a vital
link between business operations and overarching goals. While companies may establish
targets, it is the ability to track progress through KPIs that gives purpose to those plans.
KPIs enable companies to set objectives and systematically monitor their advancement,
ensuring alignment with different goals.

3.1.1.3 Challenges with KPIs

Many challenges can arise in the process of defining and measuring KPIs, of which we can
mention long-time framed KPIs. These KPIs require a long time frame to be collected
and used by the company to provide meaningful insights on trends and satisfaction rates
over a long period of time. Without ongoing monitoring and diligent follow-up, a KPI is

25

Chapter 3. KPI Analysis and Data Retrieval

unuseful. Simply preparing a KPI report without subsequent analysis is meaningless and
doesn’t help in decision-making.

3.1.2 Selection of KPIs for ASPICE SWE assessment

KPIs play a vital role in the dashboard by providing quantifiable measurements to
assess the effectiveness of ASPICE implementation. The main focus of this project is to
provide a dashboard incorporating ASPICE SWE KPIs to assess the state of ASPICE
compliance during the process of software development.

The dashboard exclusively focuses on Software Engineering (SWE) metrics, as it is
specifically tailored to track and monitor the performance of software development activ-
ities within our team see Figure 3.1.

SYsS.1

SVS2 SYS5
svs3 svs4 U
N ook \ / 3. YRS e
POy \ o

System level | ; g‘ / T ‘\ ‘ a— R g g
Domain level < 2 ‘ | ‘ 3 |3 13 |13
SWE. 1; SWE.6 — [

—J= MECHANICAL SOFTWARE 7 —J= HARDWARE
ENGINEERING ENGINEERING STV‘E ENGINEERING
intacs plugin - \/ >— intacs plugin

=

SWE.4

S

/ HWE

SWE.2

SWE.3

MEE

Y

Figure 3.1: Automotive SPICE as part of VDA Scope [10]

Software Engineering (SWE) consists of six essential components that play a crucial
role in ensuring the success and quality of software development processes. Within each
component of SWE, we have carefully curated a collection of KPIs and metrics. These
indicators and metrics offer valuable insights and provide a comprehensive view of each
step in the software development process. By monitoring and analyzing these KPIs, we
gain a deeper understanding of the progress, performance, and quality of our software
development efforts.

3.1.2.1 SOFTWARE REQUIREMENTS ANALYSIS - SWE.1 KPIs

The process of software requirements analysis in Automotive SPICE involves con-
verting the software-related aspects of system requirements into a set of software require-
ments, as stated in [11].

The documentation of software requirements is essential for several reasons. While
system or customer requirements may already be in place, investing time and effort into
documenting additional software requirements serves important purposes. The ultimate
goal of any project is to deliver the agreed-upon results within the allocated timeframe,

26

Chapter 3. KPI Analysis and Data Retrieval

and budget, and meet the customer’s quality standards. By documenting software re-
quirements, you reduce the risk of overlooking crucial functionality or misinterpreting
the customer’s expectations. Neglecting to document these requirements can lead to un-
expected costs, delays, and potential misunderstandings. Furthermore, without proper
documentation, you may overlook critical aspects of your software, both in terms of func-
tionality and non-functional requirements. This oversight can result in false starts or
the need for additional development cycles, leading to further delays and resource con-
sumption. Therefore, the documentation of software requirements is crucial to ensure
accurate understanding, effective communication, and successful outcomes in software
development.

H stomer was billed c
documented needed

How the project was

How the customer explained How the project leader How the programmer wrote
it understoed it it

Figure 3.2: Importance of Software requirements documentation

The most important aspect of software requirements is that you need to consider more
than your customer’s expectations. Every software has to meet standards, norms, and
other regulations that are considered as requirements.

The software requirements describe the software as a black box, it answers the "What?”
and not the "How?” and according to Automotive SPICE, adherence to certain base
practices is essential to ensure compliance with industry standards and achieve desired
quality outcomes. Some of these base practices we can mention:

o BP1: Specify software requirements by utilizing system requirements, system ar-
chitecture, and any changes to them. This process involves identifying the necessary
functions and capabilities of the software, both functional and non-functional, and
documenting them in a software requirements specification.

o BP2: Structure software requirements by organizing them in the software require-
ments specification using various techniques, such as: Grouping them into clusters
that are relevant to the project.

o BP3: Analyze software requirements to ensure their correctness, technical feasibil-
ity, and verifiability, and to identify any risks associated with them. Analyze the
impact of the requirements on cost, schedule, and technical aspects.

o BP4: Evaluate the influence of the software requirements on system interfaces and
the operational environment. Examine the implications of the requirements for the
interactions between software, hardware components, operating systems, and other
elements within the system.

27

Chapter 3. KPI Analysis and Data Retrieval

o BP5: Define verification criteria. Define the criteria for verifying each software
requirement, including qualitative and quantitative measures. These criteria serve
as the basis for developing software test cases or other verification measures to
ensure compliance with the requirements.

« BPG6: Ensure bidirectional traceability. Establish a bidirectional relationship be-
tween system requirements and software requirements. Establish a bidirectional
connection between the system architecture and software requirements. Bidirec-
tional traceability enables coverage, consistency, and impact analysis.

« BP7: Maintain consistency. It is essential to maintain consistency between the
system requirements and software requirements, as well as between the system ar-
chitecture and software requirements. Consistency can be achieved through bidi-
rectional traceability and can be demonstrated through review records.

« BP8: Communicate agreed software requirements. Share and communicate the
agreed software requirements, as well as any updates or changes to the software
requirements, with all relevant stakeholders.

Now that we have discussed the base practices related to software requirements analysis
(SWE.1), let’s delve into the key performance indicators associated with this component:

Software requirements status KPI:

To effectively monitor the overall project status, it is recommended to continuously
track the progress of each requirement, as mentioned in [12]. This can be achieved by
considering the use of a requirement attribute specifically designed to store this informa-
tion. By actively monitoring requirement statuses, you can address the common challenge
of software projects often being perceived as "ninety percent done” indefinitely. At any
given time, each requirement can be categorized into one of the following statuses:

- Proposed: The requirement was suggested by someone.

- Approved: The requirement has been allocated to a baseline.

- Implemented: The code for the requirement has been designed, written, and unit tested.
- Verified: The requirement has successfully passed its tests after being integrated.

- Deferred: The requirement is scheduled for implementation in a future release.

- Deleted: The decision has been made not to implement the requirement at all.

- Rejected: The idea behind the requirement was never approved.

| SWE.01 | No. Of SWRQ | | | | | | | | | |

Wk1 Wk2 | Wk3 | Wk4 [Wk5 | Wk6 | Wk7 | Wk8 | Wk9 | Wk10
in work 10 25 35 30 25 15 10 7 0 0
proposed | 12 19 25 30 30 35 35 21 20 0
approved | 0 5 5 5 10 15 20 35 43 63
rejected | 0 5 5 5 5 5 5 7 7 7

Table 3.1: Software requirements status KPI

28

Chapter 3. KPI Analysis and Data Retrieval

When inquiring about the progress of a project, receiving detailed information from
your employees can be more enlightening than vague statements like "I'm about ninety
percent done. Lookin’ good!” They might instead provide specific details such as, ”Out
of the eighty-seven requirements assigned to this subsystem, sixty-one have been verified,
nine have been implemented but not yet verified, and seventeen are still in the process of
being fully implemented.”

To visually represent the completeness of a project, a graph depicting the status
of requirements can be immensely helpful. This graph showcases the distribution of
requirement statuses, offering valuable insights into the progress made and the remaining
work. By examining this visual representation, stakeholders can better understand the
overall project status and evaluate the level of effort needed to successfully complete the
project.

The graph effectively highlights various requirement statuses, including "Proposed,”
”Approved,” "Implemented,” and "Deferred.” Each status provides specific information
about the state of the corresponding requirement. For instance, if a significant portion of
requirements is marked as "Not Started,” it indicates that there is substantial work ahead,
necessitating the allocation of more effort to initiate those requirements. Conversely, a
higher proportion of requirements labeled as "Completed” signifies progress and suggests
that the project is advancing toward its intended goals.

REVISE HOW YOU LABEL YOUR REQUIREMENTS BEWARE OF TOO MANY CHANGES TO REQUIREMENTS

(V) (V]

HOW MUCH EFFORT SHOULD YOU PUT IN?

Proposed Rejected

UNDERSTAND WHAT REQUIREMENTS VOLATILITY IS

REQUIREMENTS VOLATILITY =
ADDED + MODIFIED + DELETED REQUIREMENTS

PROJECT EFFORT

INITIAL NUMBER OF REQUIREMENTS

REQUIREMENTS SIZE

Figure 3.3: Measuring requirements status

Traced Requirement:

By implementing Traceability, we define relations of different types between develop-
ment artifacts such as requirements, architecture, implementation design, tests, issues,
and change requests.

29

Chapter 3. KPI Analysis and Data Retrieval

| SWE.O01 Traced Requirement

Total SWRQ 350
With upward trace 230
Without upward trace | 120

Table 3.2: Traced requirements KPI

Ensuring that each business need is linked to a specific requirement and that each re-
quirement is connected to a tangible deliverable is the essence of requirements traceability.
This practice holds great significance for business analysts as it establishes connections
between requirements, solution components, and other related artifacts [13].

By implementing traceability, you gain the capability to navigate through these ar-
tifacts and conduct coverage or impact analyses. This provides a comprehensive view
of your project’s status, as depicted in Figure 3.4. Initially driven by the necessity to
comply with safety standards like TEC-61508 and 1SO26262, traceability is now increas-
ingly acknowledged and adopted across various industries as a valuable tool for enhancing
product quality and reliability.

Project Overview
[Software_Requirement }

{ Integration Test Report]

(=} Justification_arch_unit
=)

] Unit_Test_Report v2_0_0_0]

] Unit_Test_Report v2 0_0_1]

@ Unit_Test_Report_v2_0_0_2 J

Unit_Tests

source files

Figure 3.4: Software development process traceability

Traceability involves the systematic tracking of requirements throughout the entire
product development life-cycle. It serves as a documented thread that offers both forward
and backward visibility into all the activities associated with each requirement (including
design, development, testing, and support) check figure 3.4. Bidirectional traceability
refers to the capability of tracing information in both forward and backward directions.
This means being able to trace from a requirement to a corresponding test case as well as
from a test case back to the requirement. Establishing bidirectional traceability establishes
a relationship between two artifacts, allowing seamless navigation between them. This
ability to trace from one item to another and back again is crucial for maintaining a
comprehensive understanding of the relationships, dependencies, and coverage within a
project.

30

Chapter 3. KPI Analysis and Data Retrieval

VD Assigned Requirement:

The term “verification domain assigned requirements” describes the action of tying
particular requirements to a specific verification domain. In other words, it entails clas-
sifying or organizing the requirements according to the component or area of the system
to which they apply.

It is simpler to coordinate and organize the verification efforts when requirements
are assigned to various verification domains. There may be a unique collection of tests,
processes, and standards for each verification domain’s associated requirements verifica-
tion. With the help of this strategy, a targeted and orderly verification process can be
carried out, guaranteeing that all requirements for each domain are correctly verified and
validated.

Assigning requirements to verification domains facilitates effective tracking and ad-
ministration of verification efforts as well as complete system coverage. Additionally, it
promotes traceability.

| SWE.01 | VD Assigned Requirement
Total SWRQ 350

With VD Assigned 254

Without VD Assigned | 96

Table 3.3: VD assigned requirements KPI

Not Analysed CR/PR:

A change request (CR) is an official proposal put forth by a stakeholder involved in a
project to suggest modifications to the project’s scope, deliverables, schedule, or resources.
It is a documented formal request that outlines the desired changes, the reasoning behind
them, and the potential impacts they may have on the project. Change requests are
typically utilized when there is a need to alter the original project plan due to various
factors such as new requirements, unforeseen circumstances, or evolving stakeholder needs.
These requests undergo a thorough evaluation, analysis, and approval process conducted
by the change control board (CCB) to assess their feasibility, impact, and alignment with
the project’s objectives. Once approved, a change request leads to adjustments in project
activities, timelines, budgets, or other relevant aspects [13]. Monitoring the number of
CRs assists in prioritizing and managing customer requirements, ultimately resulting in
a higher level of customer satisfaction.

A problem report (PR) is a formal document that identifies and describes an issue
or problem encountered in a product, system, or project. It is commonly employed in
software development and quality control processes. A problem report is created whenever
a problem or flaw is discovered during testing or actual production use. The report
provides details about the nature of the problem, its impact on the product’s usability or
performance, steps to replicate the issue, and any other pertinent information.

Problem reporting plays a crucial role in the problem-solving and troubleshooting
process. It aids in identifying and documenting issues, assigning tasks to the appropriate
individuals or teams for resolution, and keeping track of the steps taken to address the

31

Chapter 3. KPI Analysis and Data Retrieval

concerns [14]. Tracking the number of problem reports helps identify the overall quality
of the software by highlighting areas that require improvement or bug fixing. A high
number of problem reports may indicate potential software defects or functionality gaps
that need to be addressed.

By monitoring and tracking problem reports and change requests, project managers
gain valuable metrics to assess the progress and health of the software development
project. These metrics aid in resource allocation, task prioritization, and identification of
potential bottlenecks or risks. Tracking these metrics enables project managers to make
informed decisions and take appropriate actions to keep the project on track.

[SWE.01 [Not Analysed CR/PR | | | | | | | | | |
Wk1 Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | Wk9 | Wk10
Total CR/PR 7 12 12 15 17 |20 24 [30 [35 |38
With CCB decision 0 4 4 4 6 8 12 18 20 20
Without CCB Decision | 7 8 8 11 11 12 12 12 15 18

Table 3.4: VD assigned requirements KPI

The workflow of both CRs and PRs is shown in figure 3.5

ATV CR Workflow i arentant " con sanperss Lo
R’Ieﬂ“ vs m N: Walchers, Assignee Wiicheis, Assines:

"‘“_}M startad
P Assinee, CCB, Aaministrators, Lead
] N Watchers
IMPLEMENTED
staried

P: €CC8, Administrators
" Lead
coa. sameses tors ...

W
verified—’
VERIFIED
in_analysis implemented

Permission anyone
Notfication: Watchers, pCC

P Reporter, Assignss, CCB
Acministrators, Lead
N Wetchws accepted_assigned

P. CCB, Administrators, Lead
N: Watchers, Reporier

P. CCB, Administrators. Lead
N Watchers. Reporter

Figure 3.5: CRs and PRs workflow

3.1.2.2 SOFTWARE ARCHITECTURAL DESIGN - SWE.2 KPIs

The objective of Software architecture is to establish how the intended functionality,
as outlined in the Software requirements, will be realized. While the requirements outline
the desired outcomes, the architecture focuses on the approach and methodology for
implementing the functionality. In essence, the requirements specify the "what” while the
architecture defines the "how” [15].

The aim of the Software Architectural Design Process is to create a comprehensive
architectural design, allocate specific software requirements to corresponding software ele-
ments, and assess the software architectural design based on predefined criteria. According
to ASPICE, the base practices of software architectural design are:

32

Chapter 3. KPI Analysis and Data Retrieval

o BP1: Develop and record the software architectural design, which outlines the soft-
ware elements in accordance with both functional and non-functional software re-
quirements.

o BP2: Allocate software requirements: Assign the software requirements to the com-
ponents within the software architectural design.

o BP3: Define interfaces of software elements. Identify, develop and document the
interfaces of each software element.

o BP4: Describe dynamic behavior: Assess and document the timing and interactive
behavior of software components to ensure they meet the specified dynamic behavior
of the system.

o BP5: Establish resource consumption objectives: Identify and document the re-
source consumption objectives for relevant elements within the software architec-
tural design at the appropriate hierarchical level. These objectives typically include
considerations such as memory usage (ROM, RAM, external/internal EEPROM, or
Data Flash) and CPU load.

o BPG6: Assess alternative software architectures: Establish evaluation criteria for the
architecture and evaluate different software architectures based on the defined cri-
teria. Document the reasoning behind selecting the chosen software architecture.
Evaluation criteria may encompass quality characteristics (modularity, maintain-
ability, expandability, scalability, reliability, security realization, and usability) as
well as the outcomes of make-buy-reuse analysis.

o BPT7: Establish bidirectional traceability: Establish bidirectional traceability be-
tween software requirements and elements within the software architectural design.
This traceability ensures that there is a clear connection and understanding of how
software requirements are fulfilled by the architectural elements.

« BP8: Maintain consistency: Ensure that there is consistency between the soft-
ware requirements and the software architectural design. This alignment helps to
ensure that the design accurately reflects and satisfies the specified requirements.
Consistency can be supported by establishing bidirectional traceability and can be
demonstrated through review records.

o BP9: Communicate the software architectural design: Effectively communicate the
agreed-upon software architectural design and any updates to all relevant stake-
holders. This ensures that all parties involved are aware of the design decisions and
can provide their input or feedback as needed. Clear communication helps to foster
understanding and collaboration throughout the development process.

Now that we have discussed the base practices related to software architectural design
(SWE.2), let’s delve into the key performance indicators associated with this component:

33

Chapter 3. KPI Analysis and Data Retrieval

SWA Coverage :

Software architecture coverage provides confidence that the software architecture
is comprehensive, aligned with the requirements, and capable of delivering the intended
functionality and quality. By evaluating software architecture coverage, development
teams can identify any gaps or inconsistencies between the requirements and the archi-
tectural design early in the development process. This allows for timely adjustments,
refinements, and improvements to ensure that the architecture fully addresses the needs
and expectations of the software system.

ASPICE requires bi-directionality to test the SWA coverage to ensure that architec-
tural design adequately supports the desired system requirements and vice-versa, check
Table 3.5.

| SWE.02 | SWA Coverage |

No. Of SWRQ (not rejected) | 100
Traced SWRQ (from SWA) [55

SWA Total 300
SWA Traced to SWRQ 155

Table 3.5: SWA Coverage KPI

No. Of SWA:

Tracking the status of software architectures provides visibility into the progress
and status of ongoing architectural design activities. It enables team members, project
managers, and stakeholders to see precisely which architectures are being developed, which
ones are being considered for approval, and which ones have already been rejected. This
encourages accountability and transparency throughout the development process.

| SWE.02 [No. Of SWA | | | | | | | | | |

Wkl Wk2 | Wk3 | Wk4 [Wk5 | Wk6 [Wk7 | Wk8 | Wk9 | Wk10
in work 10 25 35 30 25 15 10 7 0 0
proposed | 12 19 25 30 30 35 35 21 20 0
approved | 0 5 5 5 10 15 20 35 43 63
rejected | 0) 5) 5 5 5 7 7 7

Table 3.6: No. Of SWA KPI

3.1.2.3 SOFTWARE DETAILED DESIGN AND UNIT CONSTRUCTION
- SWE.3

The Automotive SPICE Software Detailed Design and Unit Construction process
also referred to as SWE.3, assists the organization in producing a thoroughly evaluated
detailed design for software components and in defining and constructing software units
[16]. The precise purpose of software design is often challenging for organizations to grasp.
It involves capturing the intricate design of the software system. In this process, there
are a few essential best practices (BP) that need to be followed:

34

Chapter 3. KPI Analysis and Data Retrieval

o BP1: Develop detailed software design. Create a comprehensive design for each
software component outlined in the software architecture, specifying all software
units based on functional and non-functional software requirements.

o BP2: Define software unit interfaces. Identify, define, and document the interfaces
for each software unit.

o BP3: Describe dynamic behavior. Assess and document the dynamic behavior and
interactions among relevant software units. Note that not all software units may
have dynamic behavior requiring description.

« BP4: Evaluate software design. Evaluate the software design with respect to inter-
operability, interaction, criticality, technical complexity, risks, and testability. The
evaluation results can be utilized for software unit verification.

o BP5: Establish bidirectional traceability. Establish bidirectional traceability be-
tween software requirements and software units. Also, establish bidirectional trace-
ability between the software architectural design and the detailed software design.

« BP6: Maintain consistency. Ensure that there is consistency between the software
requirements and the software units. Additionally, ensure consistency between the
software architectural design, the detailed software design, and the software units.

o BP7: Communicate approved software detailed design. Effectively communicate
the approved software’s detailed design and any updates to all relevant parties.

o BPS8: Implement software units. Create and document the executable representa-
tions of each software unit in accordance with the software’s detailed design.

SWUD Coverage :

By tracking SWUD coverage, we can ensure that each software unit has been de-
signed and implemented to address specific software requirements. It helps verify that all
requirements have been adequately covered by the software units, ensuring completeness
and reducing the risk of missing any critical functionality.

| SWE.02 [No. Of SWA | | | | | | | | | |

Wkl Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | Wk9 [Wk10
in work | 10 25 35 30 25 15 10 7 0 0
proposed | 12 19 25 30 30 35 35 21 20 0
approved | 0) 5) 10 15 20 35 43 63
rejected | 0)))))) 7 7 7

Table 3.7: SWUD Coverage KPI

Tracking software unit design bidirectional coverage ensures alignment between re-
quirements and implementation, promotes traceability and accountability over time, fa-
cilitates change management, and supports long-term maintenance and evolution of the
software system.

35

Chapter 3. KPI Analysis and Data Retrieval

Number Of SWUD :

By tracking the status of software unit design every week, we can monitor the
progress of each unit’s development. It provides visibility into which units are currently
being worked on, which are awaiting approval, and which have been rejected. This infor-
mation helps project managers and stakeholders stay informed about the overall progress
of the software development process.

| SWE.03 | No. Of SWUD | | | | | | | | | |

Wkl Wk2 [Wk3 | Wk4 | Wk5 | Wk6 | WK7 | Wk8 | Wk9 | Wk10
in work | 10 25 35 30 25 15 10 7 0 0
proposed | 12 19 25 30 30 35 35 21 20 0
approved | 0 5 5 5 10 15 20 35 43 63
rejected | 0 5 5 5 5 5) 7 7 7

Table 3.8: Number Of SWUD KPI

SWDI Coverage :

Tracking the software design implementation coverage provides traceability between
the design and the software units. It allows you to establish a clear relationship between
the design specifications and the implemented code, enabling impact analysis. This trace-
ability helps in understanding the implications of design changes or modifications on the
implemented units, facilitating change management and ensuring consistency throughout
the development process.

| SWE.03 | SWDI Coverage

SWUD Total 500
SWUD Traced (from SWDI) | 325

Table 3.9: SWDI Coverage KPI

Cyclometric Complexity :

The cyclomatic complexity (CC) metric is utilized to quantify the number of dis-
tinct paths that can be taken through a section of code [17]. Code segments with lower
cyclomatic complexity tend to be more comprehensible and carry less risk when it comes
to making modifications. To calculate the cyclomatic complexity, a Control Flow Graph
is constructed for the code, which captures the number of independent paths that can be
traversed within a program module (refer to Figure 3.6 for an illustration).

The complexity M is then defined as M = E — N + 2 x P where:
FE = the number of edges of the graph.

N = the number of nodes of the graph.

P = the number of connected components.

36

Chapter 3. KPI Analysis and Data Retrieval

SWE.03 | Cyclomatic complexity
[<=5] [6-10] | [11 - 15] | [>15]
Count 350 60 2 0

Table 3.10: Cyclometric Complexity KPI

PRINTA ,B,C

Figure 3.6: Control Flow Graph [18§]

The above control flow diagram depicted in Figure 3.6 is utilized to calculate the
cyclomatic complexity, which consists of seven nodes and eight edges. As a result, the
cyclomatic complexity is determined by the formula 8 - 7 + 2, resulting in a value of 3.

Cyclomatic complexity serves various purposes in software development, making it
a valuable tool. It functions as a quality metric, allowing for comparisons of different
designs based on their relative complexity. By measuring the minimum effort required
and identifying optimal areas for testing, it facilitates a streamlined testing process with
comprehensive coverage. Another advantage is its ease of application, making it a conve-
nient choice for software development teams.

MISRA Compliance :

MISRA is a set of C and C++ coding standards and guidelines, developed by the
Motor Industry Software Reliability Association (MISRA). MISRA ensures that C/C++

code is safe, secure, and reliable.

C and C++ are highly popular languages utilized in embedded software development.
C, specifically, has been implemented for almost every processor, offering extensive re-
sources and libraries. It is supported by a wide range of tools and benefits from a large
pool of skilled developers. However, even a C program that fully complies with the ISO
language standard can still contain code with unpredictable behavior, which is unaccept-
able in critical applications such as a car braking system [19]. To mitigate these risks,
the MISRA coding guidelines aim to impose restrictions on the usage of the language,
significantly reducing potential dangers [20].

Misra compliance information is extracted from Polyspace Bug Finder which identifies
software bugs, concurrency issues, run-time errors, and other C and C++ source code
defects.

37

Chapter 3. KPI Analysis and Data Retrieval

| SWE.03 | MISRA Compliance

Total Warnings 577
Unjustified Warnings | 68
Justified Warnings 509

Table 3.11: MISRA Compliance KPI

Polyspace Compliance :

Polyspace, a software product created by MathWorks, is a static code analysis tool
employed to identify vulnerabilities and critical run-time errors in C, C++, and other
programming languages. It also ensures that your source code adheres to the required
code standards by conducting comprehensive proof-checking.

Ployspace compliance information is extracted from Polyspace Code Prover which
looks for run-time issues including overflow, buffer overrun, division-by-zero, out-of-bounds
array access, and others in the correctness of C and C++ source code. Every code in-
struction is verified by the tool, which also offers a formal diagnostic for each operation
in both typical and unusual usage scenarios.

| SWE.03 Polyspace Compliance | |

Red Violation Orange Violation | Grey Violation
Unjustified | 2 8 7
Justified 3 12 8

Table 3.12: Polyspace Compliance KPI

Binary size :

The binary size of a microcontroller refers to the size of the compiled firmware
or software that is programmed into the microcontroller’s memory. It represents the
amount of storage space required to store the compiled code and any associated data or
resources on the microcontroller like ROM, IRAM, DRAM, and STACK. The binary size
of a microcontroller program is typically measured in bytes and can vary depending on
the complexity of the code, the features and libraries used, and the available memory
capacity of the microcontroller. Managing the binary size is crucial in microcontroller
development to ensure efficient memory utilization and optimize the performance of the
embedded system.

SWE.03 | Binary size | | | | | | | I I |

Wkl Wk2 | Wk3 | Wk4 | Wkb | Wk6 | Wk7 | Wk8 [Wk9 | Wk10
ROM 23% 23% | 25% | 25% | 30% | 30% | 40% | 40% | 40% | 40%
IRAM 56% 65% | 75% | 5% | 80% | 80% | 90% | 93% | 94% | 97%
DRAM | 25% 32% | 5% | 5% | 5% | 5% | 5% | 8% | 80% | 82%
STACK | 10% 12% | 68% | 68% | 68% | 68% | 70% | 72% | 80% | 82%

Table 3.13: Binary size KPI

38

Chapter 3. KPI Analysis and Data Retrieval

3.1.2.4 SOFTWARE UNIT VERIFICATION -~ SWE.4 in Automotive SPICE
KPIs

The Software Unit Verification process in Automotive SPICE, also referred to as
SWE.4, enables organizations to ensure that software units meet the specified level of
quality by implementing detailed design and non-functional requirements [21]. Unit veri-
fication plays a crucial role in the testing process and should not be overlooked. Neglecting
unit verification can lead to various undesirable consequences. To prevent such issues, the
following fundamental practices should be followed:

o BP1: Formulate a comprehensive software unit verification strategy, encompassing
a regression strategy for re-verification in case of software unit modifications. The
verification strategy should provide evidence of compliance between the software
units, software detailed design, and non-functional requirements.

o BP2: Establish criteria for unit verification that effectively demonstrate compliance
of the software units and their interactions within the component with the software’s
detailed design and non-functional requirements. When conducting unit testing, the
criteria should be defined in a unit test specification.

o BP3: Conduct static verification of software units to ensure correctness, adhering
to the defined verification criteria. Document the outcomes of the static verification
process.

o BP4: Perform testing on software units based on the unit test specification aligned
with the software unit verification strategy. Document the test results and associ-
ated logs.

o BP5: Establish bidirectional traceability, connecting software units to static veri-
fication results. Establish bidirectional traceability between the software’s detailed
design and the unit test specification. Additionally, establish bidirectional trace-
ability between the unit test specification and the corresponding unit test results.

« BP6: Maintain consistency by ensuring alignment between the software detailed
design and the unit test specification.

o BP7: Summarize the results of unit tests and static verification, and effectively
communicate these results to all relevant stakeholders.

Now that we have discussed the base practices related to software unit verification
(SWE.4), let’s delve into the key performance indicators associated with this component:

Code Coverage:

Code coverage, as mentioned in [22], measures the percentage of executed source
code during a specific test suite. High test coverage indicates extensive code execution,
reducing the likelihood of undiscovered software bugs compared to low coverage. Metrics
such as subroutine and statement coverage percentages are used to assess test coverage.
Achieving high code coverage ensures thorough testing and minimizes the risk of unde-
tected issues in the software.

39

Chapter 3. KPI Analysis and Data Retrieval

| SWE.04 | Code Coverage |

Statement | 90%
Branch 81%
MC/DC | 67%

Table 3.14: Code coverage KPI

Statement coverage means whether each statement in the program has been executed.
It aims to cover all the statements while executing a program at least once.

Branch coverage means whether each branch in the program has been covered with
True and False. It focuses on covering both conditional and unconditional branches. It
is a stronger criterion than the statement coverage as covering all branches also implies
covering all statements [23].

Modified Condition/Decision Coverage (MC/DC) is used in software testing to test
highly critical systems. This criterion mandates that all possible states of each condi-
tion should be tested while keeping other conditions fixed, ensuring thorough coverage.
Additionally, MC/DC demands that a change in an individual condition should be demon-
strated to have an impact on the final result.

Unit Test Specification Coverage (UTCov):

MC/DC, a testing method commonly employed for highly critical systems, ensures
comprehensive coverage by testing all possible states of each condition while keeping other
conditions constant. It goes a step further by requiring that a change in a single condition
must affect the final result, thereby demonstrating the impact of individual condition
changes. This criterion is crucial for thorough testing and validating the reliability of
critical software systems.

[SWE.04 | UTCov | | | | | | | | | |
Wkl Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | WK9 | Wk10
No. Of SWUD 555 600 |675 |675 |[800 |825 | 825 |830 |832 | 832
SWUD traced (from test spec) | 200 200 | 300 | 300 |[600 |600 [700 | 700 [800 | 800
% Coverage 36% 33% | 44% | 44% | 5% | 3% | 85% | 84% | 96% | 96%

Table 3.15: Unit Test Specification Coverage KPI

Unit Test Result:

| SWE.04 | Unit Test Result | | | | | | | | | |
Wk1 Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 [Wk8 [Wk9 | Wk10
Total Testcase | 10 15 25 75 100 | 112 | 115 | 115 | 117 | 117
Run 0 0 0 25 30 40 75 100 | 117 | 117
Pass 0 0 0 25 30 38 70 100 | 110 | 117
% Pass 0% 0% 0% 33% | 30% | 34% | 61% | 87% | 94% | 100%

Table 3.16: Unit Test Result KPI

40

Chapter 3. KPI Analysis and Data Retrieval

3.1.2.5 SOFTWARE INTEGRATION AND INTEGRATION TEST - SWE.5
in Automotive SPICE KPIs

The Software Integration and Integration Test process, referred to as SWE.5 in Au-
tomotive SPICE [24], assists organizations in effectively integrating individual software
architecture elements. This process includes thorough testing to validate the proper func-
tioning and interaction of these elements based on the specified software architecture. By
following this process, organizations can guarantee a smooth integration of all software
components, ensuring their cohesive operation as originally intended. To demonstrate
compliance of the integrated software items with the software architectural design, the
following best practices are recommended:

o BP1: Establish a software integration strategy that aligns with the project plan
and release plan. This involves identifying the software items based on the software
architectural design and defining a logical sequence for their integration.

o BP2: Formulate a software integration test strategy, including a regression test
strategy, to validate the integrated software items following the established integra-
tion strategy. The regression test strategy ensures that integrated software items
are retested if any software item undergoes changes.

o BP3: Develop a comprehensive test specification for the software integration test.
This includes creating test cases based on the software integration test strategy
for each integrated software item. The test specification should be designed to
provide evidence of compliance of the integrated software items with the software
architectural design.

o BP4: Carry out the integration of software units into software items and software
items into the integrated software as outlined in the software integration strategy.

« BP5: Choose appropriate test cases from the software integration test specification.
Ensure that the selected test cases provide adequate coverage based on the software
integration test strategy and the release plan.

o BP6: Conduct the software integration test by executing the chosen test cases.
Document the results and logs generated during the integration testing process

o BPT7: Establish bidirectional traceability by linking the elements of the software ar-
chitectural design with the test cases specified in the software integration test spec-
ification. Additionally, establish bidirectional traceability between the test cases
included in the software integration test specification and the results obtained from
the software integration tests. This traceability facilitates coverage analysis, con-
sistency checks, and impact analysis.

« BPS&: Ensure consistency by maintaining coherence between the elements of the
software architectural design and the test cases outlined in the software integration
test specification. Bidirectional traceability aids in ensuring this consistency, which
can also be verified through review records.

41

Chapter 3. KPI Analysis and Data Retrieval

o BP9: Summarize the results of the software integration tests and effectively commu-
nicate them to all relevant parties. This includes consolidating the test outcomes,
analyzing the findings, and conveying the information to the stakeholders involved
in the software integration process.

Now that we have discussed the base practices related to software unit verification
(SWE.5), let’s delve into the key performance indicators associated with this component:

Integration Test Specification Coverage (ITCov):

Through practical experience, we have come to understand that the isolation prop-
erty of unit tests may not always suffice for certain functions. In such cases, one possible
solution is to conduct tests that assess how different parts of the application function col-
lectively as a cohesive whole. This approach is known as integration testing [25]. Unlike
unit testing, integration testing takes into account the potential side effects right from
the start. In fact, these side effects may even be intentional and desired outcomes of the
testing process.

Integration test plays a crucial role in uncovering issues that may not be immediately
apparent through individual examination of an application or specific unit. It focuses on
identifying defects that arise from the interaction between different parts of the applica-
tion. Oftentimes, these defects can be difficult to track or replicate, making integration
testing all the more essential in ensuring the overall reliability and functionality of the
system.

[SWE.05 [meov| [[[[[[[| |
Wk1 Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | Wk9 | Wk10
No. Of SWA 555 600 675 675 800 825 825 830 832 832
SWA traced (from test spec) | 100 100 150 [300 | 600 | 600 | 600 [600 700 725
% Coverage 18% 17% | 22% | 44% | 75% | 73% | 3% | 2% | 84% | 87%

Table 3.17: Integration Test Specification Coverage KPI

Integration Test Result:

| SWE.05 | Int. Test Result | | | | | | | | | |
Wk1 Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | Wk9 | Wk10
Total Testcase | 10 15 25 75 100 112 115 115 117 117
Run 0 0 0 25 30 40 75 100 | 117 | 117
Pass 0 0 0 5 5 5 40 100 100 | 117
% Pass 0% 0% | 0% | ™ |5% |4% |35% | 8% | 8% | 100%

Table 3.18: Integration test KPI

3.1.2.6 SOFTWARE QUALIFICATION TEST — SWE.6 in Automotive SPICE
KPIs

The Software Qualification Test process, part of Automotive SPICE SWE.6, plays
a vital role in ensuring that the integrated software aligns with the defined software

42

Chapter 3. KPI Analysis and Data Retrieval

requirements. The purpose of this process is to assess the software against the established
requirements and verify if they have been fully met and correctly implemented. As the
Software Qualification Test is conducted shortly before software delivery, it closely relates
to other processes such as Project Management, Configuration Management, Product
Release, and Software Requirements Analysis. A successful Software Qualification Test
is crucial as it helps identify potential errors that might otherwise go unnoticed, thereby
maintaining customer satisfaction. The test environment employed can vary based on the
product, with examples including SIL, PIL, or HIL.

Software Test Result:

| SWE.06 | ST Test Result | | | | | | | | | |
Wk1 Wk2 | Wk3 | Wk4 | Wk5 | Wk6 | Wk7 | Wk8 | WKk9 | Wk10
Total Testcase | 10 15 25 75 100 112 115 115 117 | 117
Run 0 0 0 25 30 40 75 100 | 117 | 117
Pass 0 0 0 25 30 40 75 90 90 117
% Pass 0% 0% 0% 33% | 30% | 36% | 65% | 78% | 7% | 100%

Table 3.19: Software Tester test results KPI

3.2 KPI data retrieval

In several applications spanning diverse industries, data retrieval is essential. Or-
ganizations rely on fast and accurate information in today’s data-driven environment to
make wise decisions, get insights, and foster corporate growth. Accessing current and rel-
evant data is essential for constructing intelligent systems as well as for market research,
competitive analysis, and data analysis.

Data retrieval plays a vital role in the development of dashboards, especially when the
aim is to present real-time data to users. Dashboards serve as a visual representation of
critical information, allowing users to monitor and analyze key metrics and make informed
decisions. To achieve this, the process of data retrieval becomes crucial. Real-time data
retrieval ensures that the information displayed on the dashboard is constantly updated,
providing users with the most current insights on the software process development.

To ensure successful data retrieval for dashboard development, considerations such as
data source compatibility, data validation and cleansing, and efficient querying techniques
need to be addressed. Additionally, attention should be given to data security and privacy,
as sensitive information may be involved.

The majority of the KPI data mentioned in the previous section is sourced from
web pages, which necessitates the use of web scraping techniques for data extraction.
Additionally, a portion of the data is obtained from CSV and XLS files, employing file-
based retrieval methods. The remaining data is fetched from online platforms, through
dedicated Application programming interface (API) channels.

43

Chapter 3. KPI Analysis and Data Retrieval

3.2.1 Data retrieval using web scrapping

Web scraping, also referred to as web extraction or harvesting, is a method used to
extract data from the World Wide Web (WWW) and store it in a file system or database
for future retrieval or analysis [26]. The process of obtaining data from the internet can be
broken down into two consecutive steps: acquiring web resources and extracting specific
information from the acquired data.

3.2.1.1 Acquiring web resources

The process of web scraping begins with a web scraping program sending an HTTP
request to a targeted website in order to acquire resources. This request can be in the
form of a URL with a GET query or a section of an HTTP message with a POST query.

A GET request is one method of communication used for web interactions. It is a
request made by a client to retrieve a specific resource from a server. After processing
the request, the server responds by providing the requested resource.

On the other hand, a POST request is utilized by a client to submit data that needs
to be processed by a server. Unlike a GET request, which retrieves data, a POST request
is used to send data to the server for the purpose of creating, updating, or modifying a
resource (refer to Figure 3.7 for more details).

s 8

Module Server

GET Request

—
Intornot Services - \\———"/

AT Interfaca > it Dats
\ ‘write to
Upload PHP

POST Request with Data

Figure 3.7: POST and GET requests

The moment the targeted website successfully receives and processes the request, the
demanded resource is retrieved and sent back to the web scraping program. The resource
can be received in various formats, such as HT'ML-based web pages, XML or JSON data
feeds, or multimedia files like images, audio, or videos. After downloading the web data,
the extraction process proceeds to parse, reformat, and organize the data in a structured
manner.

The main modules used to compose HTTP requests are Urllib2 or Selenium, The Url-
1ib2 module offers a range of functions for handling HTTP requests, including authentica-
tion, redirections, and cookies. On the other hand, Selenium acts as a web browser wrap-
per that allows users to automate website browsing by programming, utilizing browsers
like Google Chrome or Internet Explorer.

44

Chapter 3. KPI Analysis and Data Retrieval

3.2.1.2 Data parsing and extraction

After getting the requested data, we move to the process of extracting specific infor-
mation from the HTML markup and converting it into a structured format that can be
easily processed and understood by a computer program. The HTML file is parsed by an
HTML parser, which analyzes the structure and elements of the HTML document. This
process involves breaking down the HTML code into a structured representation known
as a parse tree or DOM (Document Object Model).

For data extraction, Beautiful Soup is specifically designed for scraping HTML and
XML documents. It provides convenient Pythonic functions for navigating, searching,
and modifying a parse tree, check Figure 3.8. Beautiful Soup also offers a toolkit for
decomposing HTML files and extracting desired information using libraries like Ixml or
html5lib. Additionally, Beautiful Soup can automatically detect the encoding of the
parsed content and convert it to a format readable by the client. Similarly, Pyquery
provides a set of Jquery-like functions for parsing XML documents. However, unlike
Beautiful Soup, Pyquery exclusively supports Ixml for efficient XML processing.

[
| v ¥
- p p
mg [class="normal’] [class="special]
v v v v
| “Some webpage" ‘ ‘ “This is the first paragraph” | | “This is the second paragraph.” ‘

“This is in bold."

Figure 3.8: HTML flow chart [27]

To fetch the data from Continuous integration tools and some platforms like Reqtify
and Polyspace Bug Finder or Code Prover tools, we used web scraping and Python li-
braries. Most web pages are structured in tables, for this reason, we created a Python
class that transforms the HI'ML page into data frames. The class has different functions
as shown in the algorithm below:

45

Chapter 3. KPI Analysis and Data Retrieval

Algorithm 1: HTML to DataFrame Conversion

1 Static Method get_html_tables(html: str) — list[list[str]]
Input : HTML content as a string

Output: List of HTML tables as a nested list of strings
2 if html then

3 soup < BeautifulSoup(html, "html.parser”)

4 soup.prettify()

5 extractTables <— soup.find_ all("table”)

6

7

8

return extractTables

end
Static Method select_table(tag: str, tableFeature: str, allTables: list, all:

int) — list[str]
Input : Tag name as a string, table feature as a string, list of tables, flag for

returning all tables
Output: Specific table(s) as a list of strings
9 try htmlTable « [table for table in allTables for header in
table.find_all(tag) if tableFeature == header.text]
10 if all = 0 then

11 ‘ return htmlTable[0]

12 end

13 else

14 ‘ return htmlTable

15 end

16 catch TypeError, IndexError return None

17 Static Method get_value(dfTable, row: str, column: str) — str
Input : Dataframe table, row name as a string, column name as a string

Output: Value from the specified row and column as a string
18 dfValue < dfTable[dfTable.values == row|[column].item()
19 return dfValue

20 Static Method list_2df (table) — pd.DataFrame
Input : HTML table as a list of strings

Output: Dataframe representation of the table

21 ex + Extractor(table)

22 ex.parse()

23 listOfLines <— ex.returnList()

24 df + pd.DataFrame(listOfLines[1:], columns=listOfLines[0])
25 return df

3.2.2 Application Programming Interfaces (APIs)
3.2.2.1 What’s an API?

An application programming interface (API) enables communication between two
or more computer programs. It serves as a software interface that enables your product
or service to provide services to other products or services [28]. In simple words, APIs

46

Chapter 3. KPI Analysis and Data Retrieval

are messengers that take requests and tell the system what is requested to be done and
then return the response back to the source.

3.2.2.2 How do APIs work?

One of the most familiar examples of an API is to think of it as a waiter in a
restaurant. Imagine some hosts sitting at a table with a menu of choices to order from.
And the kitchen is the part of the system which will prepare the order. So the waiter is
the critical link to communicating your order to the kitchen, in an easy-to-follow manner
and delivering the food back to the table. From their handwritten notes to the computer
system to the kitchen cooks, they translate your request for pancakes, and ultimately they
come back with your small stack. And that’s what an API (or in this case the waiter)
does, view Figure 3.9.

+
4

Figure 3.9: How do APIs work? [29]

There are four types of API actions:

e GET: This action is to request data from a server.
o POST: This action is to send new information to a server.
« PUT: This action is to make changes to existing data on a server.

o« DELETE: This action is to remove already existing data from a server.

3.2.2.3 Why APIs are important 7

APIs are of paramount importance in modern software development. They facil-
itate seamless communication and data sharing between different software systems and
applications. By providing pre-built functions and modules, APIs promote code reusabil-
ity and accelerate the development process. They enable modular development, allowing
developers to create independent software components that can be easily connected via

47

Chapter 3. KPI Analysis and Data Retrieval

APIs, enhancing scalability and modularity. APIs also foster collaboration and innovation
by encouraging third-party developers to build applications and services that integrate
with existing platforms. In the mobile and web development realm, APIs provide a
standardized way to access data and functionality from servers, enabling the creation of
interactive and dynamic applications. Additionally, APIs are essential in service-oriented
architectures, enabling the exposure and utilization of capabilities in a standardized and
interoperable manner. Overall, APIs simplify development, promote integration, foster
collaboration, and enhance the capabilities of software applications and services in the
modern digital landscape.

3.2.2.4 SOAP vs. REST APIs

SOAP (Simple Object Access technology) API provides organized data exchange be-
tween computer systems. Requests are sent in XML format, and replies are sent in XML
format as well. Interoperability between different platforms and programming languages
is a key feature of SOAP APIs. They include cutting-edge features including error man-
agement, support for intricate computations, and encryption. Even though SOAP API
implementation might be complicated, they are frequently utilized in business settings
that value security and resilience.

REST (Representational state transfer) was developed in order to offer a more
user-friendly method of accessing internet services. Modern web-based application de-
velopment commonly takes advantage of the architectural pattern known as REST [30].
Depending on how it is created, what is added to it, and the use it is intended for, a REST
API might be very simple or very complex. When resources are limited, rigorous security
is not necessary, browser client compatibility is vital, and data integrity and scalability
are needed, they are acceptable.

SOAP is an XML-based REST isan

Figure 3.10: REST Vs SOAP APIs [31]

3.2.2.5 APIs for fetching data

In order to retrieve data related to JIRA KPIs, REST APIs provided by JIRA were
utilized. These APIs allow seamless communication with the JIRA system, enabling the
extraction of specific information through tailored queries. By leveraging these REST

48

Chapter 3. KPI Analysis and Data Retrieval

APIs, we were able to define and execute requests to fetch the desired KPI data from
JIRA. This approach provided a standardized and efficient method for obtaining the
necessary metrics and insights, empowering us to analyze and monitor the performance
of our projects and workflows within the JIRA ecosystem.

In addition to the REST APIs, JIRA also offers a range of filters that enhance the data
retrieval process as shown in Figure 3.11. These filters provide an intuitive and flexible way
to select specific data based on various criteria. By utilizing JIRA’s filter functionality,
we were able to refine our data retrieval process and narrow down the information to meet
our specific requirements. These filters allowed us to focus on relevant project data, such
as specific issue types, statuses, priorities, or timeframes. By leveraging these powerful
filtering capabilities, we could efficiently extract and analyze the data that was most
pertinent to our KPI tracking and reporting needs.

Search saveas

Zapier Content ¥ Story~ ToDo~ Unassigned, J.. v Contains text m Q Advanced
Search

Order b s

il Epic Link

0 zc-s - . !

& zapierContent /| [| ¢

Create epics Epic Name

o zcs Create epics ~ Flagged

Add defects %

Impact
il D e
0 7 ¢ B ¢ o |
. ssue color

LLEsigsua Add a description..]

0 zcs Label

Break issues down into tasks Subtaiks " Organizations
0 zcs T

Priority
Add issues [zc-13 Break epics intc
O zc-a Rank
" -..excluding 8 hidden

Create a sprint Activity R

Figure 3.11: How to create a JIRA filter

Some of the queries that were used to fetch the needed data from JIRA are:

wp_postccb_not_analysed = project in ("183982309", "8781637293",
— "623872735", "76273698")

AND issuetype in (ChangeRequest, ProblemReport)

AND status in (Closed, "Accepted Assigned", Started, Verified,
<~ Deferred, Rejected, Closed_FixFuture, Closed_Done, "Transfer to
<~ CR", Implemented)

wp_defects = project in ("387674903", "903898747", "397984687",
— "287633094") AND issuetype in (ChangeRequest, ProblemReport)
< AND "Issue Category" = Bugl

wp_open = project in ("093094874", "309984784", "124823480",
— "0408900943") AND issuetype in (ChangeRequest, ProblemReport)
< AND status in (Submitted, "In Analysis", "Accepted Assigned",
< Started, Verified, Deferred, "In Rework", Implemented) AND "
— Issue Category" = Bug

wp_cr = project in ("908907234", "0937874094", "983749827",

<> "988742849") AND issuetype = ChangeRequest

49

Chapter 3. KPI Analysis and Data Retrieval

wp_pr = project in ("904982743", "934878374", "0000069640",
< "0000069641") AND issuetype = ProblemReport
wp_preccb_not_analysed = project in ("734398232", "98786474",
— "7687634723", "876468734") AND issuetype in (ChangeRequest,
< ProblemReport) AND status in (Submitted, "In Analysis", "In

<~ Rework")

wp_postccb_not_analysed = project in ("8746764387", "8736487634",
— "008374829", "87837498") AND issuetype in (ChangeRequest,
< ProblemReport) AND status in (Closed, "Accepted Assigned",
<~ Started, Verified, Deferred, Rejected, Closed_FixFuture,
< Closed_Done, "Transfer to CR", Implemented)

3.2.3 File-based Retrieval

File-based data retrieval refers to the process of accessing and extracting data from
files stored on a computer or a file system. This approach involves reading and parsing
data from various types of files, such as CSV (Comma-Separated Values), Excel spread-
sheets (XLS or XLSX), JSON (JavaScript Object Notation), XML (eXtensible Markup

Language), and others.

In file-based data retrieval, the data is typically structured in a specific format within
the files. The retrieval process involves opening the file, reading its contents, and extract-
ing the relevant data elements. This can be done using programming languages or tools
that provide file input/output operations, parsing capabilities, and data manipulation
functions like Python.

File-based data retrieval is commonly used when working with locally stored data files
or when exchanging data with external systems that provide data in file formats. It offers
a flexible and convenient method for accessing and processing structured data stored in
files.

In the context of fetching KPI's data, it is worth noting that the data required for
analysis and reporting can be sourced from various systems and formats. In some cases,
KPI data resides within continuous integration tools, where metrics and measurements
are collected during the execution of software pipelines. Additionally, reports containing
valuable insights are generated in formats such as XLS (Excel) and XML (eXtensible
Markup Language) after the completion of pipeline runs. To retrieve and gather the
necessary information, we employ a file-based retrieval approach. This method allows
us to access and extract the relevant data from these generated files, enabling us to
incorporate it into our KPI analysis and reporting processes.

Conclusion

In this chapter, we leveraged the key performance indicators (KPIs) necessary for
our dashboard and explored various methods for data retrieval. We discussed the impor-
tance of data retrieval in extracting real-time information and uncovering insights and the

50

Chapter 3. KPI Analysis and Data Retrieval

methods used. These methods provide us with the necessary data to populate our dash-
boards and make informed decisions. By employing efficient data retrieval techniques,
we ensure the availability of up-to-date and accurate information, enabling us to monitor
and analyze KPlIs effectively.

51

Chapter 4

Data Collection and Database
Design

52

Chapter 4. Data Collection and Database Design

Introduction

In this chapter, we delve into the crucial process of creating an efficient and well-
structured database for our dashboard. We explore the principles and methodologies
involved in designing a robust database schema that ensures data integrity and supports
optimal data storage and retrieval.

4.1 Introduction to databases

4.1.1 What is a database?

A database is a structured and organized collection of information or data that is
stored electronically in a computer system. It is managed by a database management sys-
tem (DBMS), which controls and handles the data. The combination of the data, DBMS,
and associated applications is referred to as a database system. In modern databases,
data is typically arranged in tables with rows and columns, allowing for efficient process-
ing and querying. This enables easy access, management, modification, update, control,
and organization of the data [32]. The common language used for writing and querying
data in most databases is structured query language (SQL).

4.1.2 What is a DBMS?

Database Management Systems (DBMS) are software systems designed to store,
retrieve, and perform queries on data. They act as an intermediary between users and
databases, enabling users to create, read, update, and delete data within the database
[33]. A DBMS takes care of managing the data itself, the database engine responsible for
processing operations, and the database schema that defines the structure and organiza-
tion of the data. This allows users and other programs to manipulate and extract data
while ensuring data security, integrity, concurrency, and consistent data administration
procedures, check Figure 4.1.

Figure 4.1: Database management system

53

Chapter 4. Data Collection and Database Design

4.1.3 What are the types of Databases?

There are various types of databases, each designed to cater to specific require-

ments and manage different types of data. Here are some commonly encountered types

of databases:

to

Relational Databases (RDBMS) [34]: Relational databases organize data into tables
with rows and columns, using SQL to manipulate and query the data. They offer a
structured and efficient approach to storing and retrieving structured data.

NoSQL Database [35]s: NoSQL databases are non-relational databases that provide
flexibility in handling unstructured or rapidly changing data. They are particularly
suitable for scalable and distributed architectures where quick data retrieval is es-
sential.

Object-Oriented Databases (OODBMS) [36]: Object-oriented databases store data
in objects, incorporating both data and associated behaviors. They are well-suited
for applications that require complex data structures and leverage object-oriented
programming concepts.

Hierarchical Databases [37]: Hierarchical databases organize data in a tree-like
structure, establishing parent-child relationships between data elements. They are
suitable for managing data with inherent hierarchical characteristics, such as file
systems or organizational structures.

Network Databases: Network databases are similar to hierarchical databases but
allow more intricate relationships between data elements. They employ a network
model to represent data, enabling multiple records to be linked together.

Graph Databases [38]: Graph databases utilize graph structures to store and man-
age data. They excel in scenarios involving highly interconnected data and prove
valuable in managing complex relationships and performing graph-based algorithms.

Time-Series Databases [39]: Time-series databases specialize in storing and analyz-
ing time-stamped data, such as sensor readings or financial data. They efficiently
handle data points over time and support specific time-based queries and aggrega-
tions.

These are just a few examples of the different types of databases available, each tailored
meet specific data management needs. The selection of a database type depends

on factors like data characteristics, application requirements, scalability demands, and
performance considerations.

4.1.4 What is Structured Query Language (SQL)

SQL is a computer language, which is flexible and crucial for handling relational

databases. Users may interact with databases using this tool to complete a variety of
activities, including data retrieval, updating, and organization. A standardized set of

54

Chapter 4. Data Collection and Database Design

SQL commands and syntax enables smooth communication between users and databases,
enabling sophisticated data manipulation and complicated procedures. It gives users
the ability to build complex queries, apply data integrity policies, and carry out in-depth
computations and analyses, Check Figure 4.2. SQL is essential for effectively dealing with
structured data because of its wide acceptance and interoperability with many database
management systems.

©y spiceworks
HOW DOES SQL WORK?

SQL Query

Query Language Parser +
Processor Optimizer
i File Manager +
DBMS Engine Transaction Manager

Physical Database

Figure 4.2: How does SQL work? [39]

4.2 Designing and implementing a database for the
ASPICE dashboard

4.2.1 Database requirement analysis

4.2.1.1 Objective of the ASPICE database

The objective of designing an ASPICE database is to provide an efficient and orga-
nized storage solution for the dashboard data and update information related to ASPICE.
By structuring the data in a database, it becomes easier to manage and retrieve the re-
quired information for the dashboard. The database allows for the seamless updating
of data related to ASPICE, ensuring that the dashboard reflects the most recent and
accurate information. Additionally, a structured database enables the implementation of
data integrity rules, data validation, and efficient querying, promoting data consistency
and reliability. The ultimate goal is to create a reliable and scalable database system that
supports the effective management and updating of dashboard data in line with ASPICE
requirements.

We opted to implement a relational database for the ASPICE dashboard based on
several factors. Firstly, relational databases excel at organizing structured data into tables

55

Chapter 4. Data Collection and Database Design

with defined relationships, allowing for efficient data management. This structure ensures
the integrity of the information presented on the dashboard. Additionally, the versatility
of SQL queries supported by relational databases enables me to extract valuable insights
through complex data retrieval and analysis. The scalability of relational databases was
also a key consideration, as they can handle large data volumes and accommodate future
growth. Lastly, the extensive ecosystem surrounding relational databases provides ample
resources and support for managing, modeling, and integrating the database into my
dashboard application. In summary, the decision to utilize a relational database was
driven by its strength in structured data management, query flexibility, scalability, and
the availability of a robust ecosystem.

4.2.1.2 Users and stakeholders of the ASPICE dashboard

The users of an ASPICE dashboard can vary depending on the context and purpose
of the dashboard. Typically, the primary users of an ASPICE dashboard are individ-
uals and teams involved in software development and engineering processes within an
organization. These users can be:

o Team manager: they utilize the dashboard to monitor team performance, track
progress, and identify areas for improvement.

o Project managers: they rely on the dashboard to gain visibility into project sta-
tus, resource allocation, and adherence to ASPICE requirements. They can make
informed decisions, manage project risks, and ensure successful project outcomes.

o Quality assurance teams: they rely on the dashboard to monitor and assess the
quality of software development processes and ensure compliance with ASPICE
standards. They can track metrics, identify potential issues, and take corrective
actions to improve quality throughout the software development lifecycle.

» Software engineers: they maintain and ensure the functionality of the ASPICE
dashboard. They address technical issues, implement updates, optimize perfor-
mance, and enhance security. Testing and documentation are carried out to ensure
reliability, and backup mechanisms are established for data protection. Their role
is vital in providing a well-functioning and reliable dashboard for users.

The ASPICE dashboard serves as a centralized platform for these users to access and
visualize key metrics, KPIs, and process-related information related to software develop-
ment projects following the Automotive SPICE framework. It helps facilitate decision-
making, performance tracking, and process improvement efforts by providing relevant and
real-time insights to the users.

4.2.1.3 Functional requirements

The database has to store all the chosen data related to ASPICE compliance metrics
in every site of Infineon and for every single ongoing project in each department, to

56

Chapter 4. Data Collection and Database Design

correctly visualize and interpret them in the ASPICE dashboard system. In particular,
the system must efficiently store:

o The ongoing project’s data, with their identifiers.

o The team data like the name and the site identifiers.

o The KPI's data.

The database should manage login operations from users and admin, to provide dif-

ferent rights for each user role. And it must allow the administrator to define, configure,
and monitor roles in the application.

The system must allow the maintenance engineer with admin credentials to :

e View and edit KPI’s information.
e Insert and define new metrics.

e Alter unused historical data.

4.2.1.4 Non functional requirements

Non-functional requirements are criteria that describe the qualities, characteristics,
and constraints of a system or software application, rather than its specific functionality.
Unlike functional requirements that focus on what the system should do, non-functional
requirements define how the system should perform and behave in terms of its perfor-
mance, usability, reliability, security, and other important aspects.

The database should encompass:

o Performance: Verify the dashboard’s response time, throughput, and resource usage
requirements, ensuring it meets performance expectations under various conditions
and user loads.

o Reliability: Check the database’s ability to perform consistently and reliably over
time, including measures such as availability, fault tolerance, and error handling.

o Security: Specifies the system’s security measures and requirements, including ac-
cess control, data protection, authentication, and encryption to ensure the confi-
dentiality, integrity, and availability of sensitive information.

o Scalability: Defines the database’s ability to handle the increased workload or ac-
commodate growth in terms of users, data volume, or system components, ensuring
it can scale effectively without significant performance degradation.

o Maintainability: Describes the ease with which the system can be modified, up-
dated, repaired, and extended over its lifecycle.

57

Chapter 4. Data Collection and Database Design

o Compliance: Specifies any legal, regulatory, or industry-specific standards and re-
quirements that the system must adhere to, ensuring it meets relevant compliance
obligations.

4.2.1.5 Constraints
The DBMS application should satisfy the following additional constraints:

o Be implemented with MySQL.

o High security as it contains internal data, protecting sensitive data by defining access
controls, user privileges, and data encryption methods.

o Database optimization by using some techniques to enhance its performance, such
as indexing, partitioning, and query optimization strategies.

4.2.2 Database conceptual and logical design

The main goal of the conceptual design phase is to build a conceptual model based
on the previously specified criteria and get it closer to the final physical model. An
entity-relationship model is a type of conceptual model that is often utilized [40].

4.2.2.1 Entity-Relationship Schema

An entity-relationship (ER) schema [41] is a graphical representation of the database’s
entities, properties, and connections. It works as a visual tool for designing and outlining
a database system’s structure. A clear understanding of the organization of the database
is made possible by ER diagrams, which describe entities, properties, and connections
using symbols and shapes.

One may learn more about the entities that are present in the database, their related
properties, and the links between them by utilizing an ER diagram. The graphic gives a
clear summary of the database schema, which makes it simpler to understand the connec-
tions between elements. ER diagrams are frequently used in database design to improve
database creation, ease maintenance of the database system, and facilitate communica-
tion.

The relationships between the ASPICE database tables can be described as follows:

o Sites Table and Projects Table: This relationship is a one-to-many relationship,
where each site can have multiple projects, but each project belongs to only one
site. This is represented by the foreign key relationship between the site ID in the
Sites table and the site ID in the Projects table.

o Projects Table and KPI Tables: This relationship is a one-to-one relationship, where
each project can have only one KPI, and each KPI belongs to only one project. This
is represented by the foreign key relationship between the project ID in the Projects
table and the project ID in each KPI table.

58

Chapter 4. Data Collection and Database Design

Company site

Site_id Primary key Char{50) NOT NULL

Location

Department | Char(50) NOT NULL

Site location Char{50) NOT NULL

Project

Project_id | Primary key Char{50) NOT NULL

Site_id | Foreign Key Char(50) NOT NULL

Start_date | Date NOT NULL

MISRA compliance

+MC id

—H +Project id FK
+total wamnings
+unjustified_warnings
+ustified_warnings
+date

Binary size

+BS id

—H +FProject id FK
+rom

+dram

+stack

+date

JIRA wp defects

Hlwp id

+Project_id FK
+wp_defecis

+Wp_open
+wp_precch_notanalysed
+wp_postcch_notanalyzed
+date

+Wp_pr

+HWp_cr

unit_test_spec_coverage

+MC id

+number_SWUD
+SWUD_{raced_tesizpec
+ratio

+date

Figure 4.3: ER schema of ASPICE database

=Project_id FK H—

polyspace_compliance

+PC id

+Project_id FK
+red_justified_warnings
+red_unjustified_warnings
+orange_justified_warnings
+orange_unjustified_warnings
+grey_justified_warnings
+grey_unjustified_warnings
+date

Int_test_spec_coverage

Cyclomatic complexity

+CC id
+Project_id FK
+range’
+range2
+range3
+ranged

+date

Code coverage

+Cd id
+Praject id FK
+sum_branch
+MC\DC
+sum_statement
+date

int_test results

+MC id
+Project id FK
+otal_testcase
+un

+pass
+percentage_pass
+date

swdi_coverage

+MC id

+Project id FK
+number_SWA
+SWA_traced_festspac
+ratio

+date

unit_test_results

4.2.2.2 Data dictionary

+MC id
+Project id FK
+total_tesicase
+un

+pass
+percentage_pass
+date

+swdi id

+Project id FK
+swud_total
+swud_traced_from_swdi
+date

59

Chapter 4. Data Collection and Database Design

| Entity | Description Attributes Identifier
This table represents
the set of sites site id
that the company has | location
Company site all over the world department site_ id
This table represents | project_id
the set of ongoing site_id
Project projects start_ date project_id
CC_id
This table represents | project_id
the cyclomatic rangel
complexity metric, range?2
and the number of range3
functions having a range4
Cyclomatic CC in a certain range | date CC_id
Complexity
MC_id
project_id
total warnings
This table represents | unjustified warnings
the Misra compliance | justified warnings
MISRA compli- | KPI date MC_id
ance
BS id
project_id
rom
dram
This table represents | stack
Binary size the binary size KPI date BS_id
Cd_id
project_id
sum_ branch
This table represents | MC\DC
the code coverage sum__statement
Code coverage KPI date Cd_id
Jwp_id
project_id
wp_ defect
Wp__open
wp_ preccb_notanalyzed
wp_ postccb notanalyzed
This table represents | wp_ pr
the Jira work product | wp_cr
Jira wp defects | defects date jwp_id

60

Chapter 4. Data Collection and Database Design

Polyspace com-
pliance

This table represents
the polyspace
compliance KPI

PC_id

project_id

red_justified warnings
red_unjustified warnings

orange justified_warnings
orange unjustified warning

grey justified warnings

grey_unjustified_ warnings

date

PC id

Int test results

This table represents
the integration test
results

int id
Project_id

total testcase
run

pass

percentage pass
date

int id

Unit test results

This table represents
the unit test results

uni_id
Project_id

total testcase
run

pass

percentage pass
date

uni_id

Int_ test_spec
__coverage

This table represents
the integration test
specification coverage

Int_spec_id
Project_id

number SWA

SWA traced_testspec
ratio

date

int_ spec_id

Unit_ test_ spec

__coverage

This table represents
the unit test
specification coverage

Unit_ spec_id
Project_id

number SWUD
SWUD _ traced_ testspec
ratio

date

unit_ spec_id

4.2.3 Database physical design

Table 4.1: ASPICE database dictionary

A physical schema, also known as a physical data model, is a representation of the
database structure at the physical level. It describes how the data is physically stored
and organized in the database system. The physical schema includes details such as

61

Chapter 4. Data Collection and Database Design

the storage format, indexing mechanisms, partitioning strategies, and any other physical
implementation considerations.

The physical schema is derived from the logical schema, which defines the database
structure at a conceptual level, and it takes into account the specific characteristics and
constraints of the database management system and the underlying hardware infrastruc-
ture. Physical schema optimization aims to achieve efficient data storage, retrieval, and
performance by considering factors such as disk space utilization, data access patterns,
and query optimization techniques. In short, it specifies the actual implementation of
the database design, taking into consideration the technical aspects of storage and perfor-
mance to ensure the efficient management of data in the physical database environment.

4.2.3.1 Database creation

CREATE DATABASE "ASPICE"
CHARACTER SET utf8
COLLATE utf8_general ci;

The CHARACTER SET utf8 specifies the encoding type as UTF-8, which supports
a wide range of characters from different languages. The COLLATE utf8 general ci
specifies the collation for the character set, which determines the rules for comparing and
sorting the data check Figure 4.4.

Info Tables Columns Indexes Triggers Views Stored Procedures Functions Grants Events

3 j; ASPICE

Schema Details

Default collation: utf8mb4_general_ci
Default characterset: utf8mb4

Table count: 18

Database size (rough estmate): 752.0 KiB

Figure 4.4: ASPICE database Info

4.2.3.2 Table creation

Create the tables in the right order with respect to foreign keys

CREATE TABLE “site” (
“site_id~ VARCHAR(50) PRIMARY KEY NOT NULL,
“location™ VARCHAR(50) NOT NULL,
“department™ VARCHAR(50) NOT NULL,

)

CREATE TABLE “project™ (
“project_id~ VARCHAR(50) PRIMARY KEY NOT NULL,

62

Chapter 4. Data Collection and Database Design

“start_date® DATE NOT NULL,
“site_id~ VARCHAR(50),

FOREIGN KEY (“site_id~) REFERENCES “site” (“site_id")
)

CREATE TABLE “cyclomatic_complexity™ (
“cc_id™ BIGINT(20) PRIMARY KEY NOT NULL AUTOINCREMENT,
“project_id™ VARCHAR(50) NOT NULL,
“rangel” VARCHAR(50) NOT NULL,
“range2” VARCHAR(50) NOT NULL,
“range3~ VARCHAR(50) NOT NULL,
“range4”~ VARCHAR(50) NOT NULL,
“date” DATE NOT NULL,

FOREIGN KEY ("project_id”) REFERENCES “project”™ (“project_id~)
)

CREATE TABLE “misra_compliance™ (
‘mc_id” int PRIMARY KEY NOT NULL AUTOINCREMENT,
“project_id~ VARCHAR(50) NOT NULL,
“total_warnings™ BIGINT(20) NOT NULL,
“unjustified_warnings™ BIGINT(20) NOT NULL,
“justified_warnings™ BIGINT(20) NOT NULL,
“date” DATE NOT NULL,

FOREIGN KEY (“project_id”) REFERENCES “project” (“project_id~)
);

CREATE TABLE “binary_size™ (
“bs_id™ BIGINT(20) PRIMARY KEY NOT NULL AUTOINCREMENT,
“project_id~ VARCHAR(50) NOT NULL,
“rom~ FLOAT NOT NULL,
“dram”~ FLOAT NOT NULL,
“stack™ FLOAT NOT NULL,
“date” DATE NOT NULL,

FOREIGN KEY ("project_id”) REFERENCES “project”™ (“project_id~)
)

CREATE TABLE “binary_size™ (
“bs_id™ BIGINT(20) PRIMARY KEY NOT NULL AUTOINCREMENT,
“project_id™ VARCHAR(50) NOT NULL,
“rom~ FLOAT NOT NULL,
“dram”~ FLOAT NOT NULL,
“stack™ FLOAT NOT NULL,

63

Chapter 4. Data Collection and Database Design

“date” DATE NOT NULL,

FOREIGN KEY (“project_id”) REFERENCES “project”™ (“project_id~)
);

CREATE TABLE “code_coverage™ (
“cd_id™ BIGINT(20) PRIMARY KEY NOT NULL AUTOINCREMENT,
“project_id~ VARCHAR(50) NOT NULL,
“sum_branch”™ FLOAT NOT NULL,
"MC\DC"~ FLOAT NOT NULL,
“sum_statement ™ FLOAT NOT NULL,
“date” DATE NOT NULL,

FOREIGN KEY ("project_id”) REFERENCES “project” (“project_id~)
);

etc

4.2.3.3 Populate the database

The process of populating the database was automated using a Python script that
utilized the SQLalchemy library. After extracting the relevant data from various tools,
such as continuous integration systems or test management software, the Python script
processed and transformed the data into a suitable format for insertion into the database.
SQLalchemy, a powerful Python library for interacting with databases, was employed to
establish a connection with the database and execute the necessary SQL statements for
data insertion. By leveraging this approach, the database population process was stream-
lined and executed programmatically, ensuring efficiency and accuracy in transferring the
extracted data into the database.

To facilitate the database population process, we created a Python class for each
table in the database. These classes served as representations of the tables and provided a
convenient way to interact with the database. We established a connection to the database
using SQLalchemy, which allowed us to establish a communication channel between our
Python script and the database.

Once the connection was established, we fetched the relevant data from various sources,
such as external files or APIs, using appropriate data retrieval techniques. We then
transformed the fetched data into suitable formats that matched the structure of the
corresponding tables.

Using the Python classes we created, we performed the necessary operations to insert
the fetched data into the respective tables of the database. This involved constructing
SQL statements and executing them through the SQLalchemy library, ensuring that the
data was accurately inserted into the designated tables.

64

Chapter 4. Data Collection and Database Design

By encapsulating the database operations within Python classes and leveraging SQLalchemy’s
functionality, we streamlined the process of populating the database. This approach pro-
vided a structured and efficient means of connecting to the database, fetching the required
data, and inserting it into the appropriate tables, ensuring the integrity and consistency
of the database contents.

4.2.3.4 Queriying the database

Query the binary size data associated with project glomanhaV2 0 0 in Italy Padova.

SELECT *

FROM binary_size

WHERE project_name = 'glomanhaV2_0_0'
AND site_id = 'ITPD';

Query the number of change requests from ’2023-05-12" to '2023-06-12’ associated with
project ’glomanhaV2 0 0’ in Austria Graz.

SELECT COUNT (wp_cr)

FROM Jira_wp_defects

WHERE date >= '2023-05-12' AND date <= '2023-06-12'
AND project_id = 'glomanhaV2_0_0'
AND site_id = 'AUGR'

Conclusion

In conclusion, in this chapter, we presented the database design for the ASPICE
dashboard which provides a structured and efficient storage solution for managing the
data related to KPIs, projects, and other relevant information. Moreover, by leveraging
Database Management Systems (DBMS), the dashboard can effectively manage KPI’s
structured data and support real-time updates and streamlined data processing capabili-
ties.

65

Chapter 5

Dashboard development and
automation

66

Chapter 5. Dashboard development and automation

Introduction

In this chapter, we delve into the key aspects of building an effective and user-
friendly dashboard showcasing various charts, graphs, and visual elements that enhance
the presentation of information. We begin with an overview of the chosen dashboard
framework, highlighting its features and capabilities. We also focus on the integration of
data fetching and database functionalities, explaining how we seamlessly connect to the
underlying database to retrieve and update relevant data.

5.1 Overview of the dashboard framework

There are various options for dashboard development frameworks, each with its own
strengths and considerations. Some popular frameworks include:

o Tableau: is a business intelligence and data visualization platform that allows users
to connect, display, and exchange data in a very dynamic way. With a drag-and-
drop interface, it enables users to swiftly examine and explore huge and complicated
datasets without the need for coding or programming knowledge. Line charts, bar
charts, maps, scatter plots, and many more chart kinds and visualization choices
are available in Tableau [42].

o Power BI: Microsoft’s business analytics service that enables users to visualize and
analyze data with interactive dashboards, reports, and visualizations. It offers
strong integration with Microsoft products and cloud services.

« QlikView/QlikSense: is a first-generation analytics platform. Qlik’s data discovery
and visualization tools allow users to create dashboards and reports in an interactive
way. They offer powerful data exploration and associative search features.

o D3.js: This a JavaScript toolkit designed to build interactive and dynamic data
visualizations exclusively for web browsers. It offers significant customization and
control over the visualization design.

o Google Data Studio: A free online tool for creating customized data and dashboards,
introduced by Google. This tool provides smooth integration with regard to various
data sources.

5.1.1 Tableau for ASPICE dashboard

During the evaluation process, we assessed the functionality provided by each frame-
work, including data integration capabilities, visualization options, interactive features,
and Ease of use for both developers and end-users. We looked for a framework with
user-friendly interfaces and intuitive tools. Additionally, it is important to examine the
framework’s ability to connect to various data sources and to handle scalability and per-
formance requirements.

67

Chapter 5. Dashboard development and automation

After careful consideration of various available tools, we made the decision to work with
Tableau due to its numerous advantages. Tableau stood out as the most suitable choice
based on factors such as powerful data visualization capabilities, a user-friendly interface,
robust data integration features, interactive and dynamic functionality, scalability and
performance, and a strong community support system. Taking all these factors into
account, Tableau emerged as the optimal framework for our dashboard development,
providing us with the necessary tools and resources to create a visually appealing and
effective dashboard solution.

5.1.1.1 Data Source Connection

To create the KPI's graph in Tableau, it is essential to establish a connection with
the ASPICE database. This connection allows Tableau to access and retrieve the rele-
vant data needed for the graph. By connecting to the ASPICE database, Tableau can
execute queries and fetch the necessary information, related to the KPIs, project details,
and other relevant data points. This seamless integration between Tableau and the AS-
PICE database ensures that the graph is based on accurate and up-to-date data, enabling
meaningful visualizations and insightful analysis.

To connect to the ASPICE database, we provided the required connection details,
including the server name, port number, database name, and authentication credentials.
Tableau attempted to connect to the specified data source using the information provided.
If the connection was successful, we could proceed with data exploration and visualization.
Once connected, we selected the tables and views from the ASPICE database we wanted
to work with and define any necessary links or filters. Tableau imported the data into
the workbook and allowed us to create visualizations, perform analysis and create the
dashboard based on the connected data source.

5.1.1.2 Data pivoting and filtering using Tableau

Data pivoting is a technique used to transform data from a row-based format to
a column-based format. Essentially, it involves converting data from a cross-tabular or
multiple response structure into a more manageable columnar format [43].

Pivoting data becomes particularly useful when dealing with crosstab or multiple-
response questions where the same data appears in multiple fields. By pivoting the data,
we can consolidate and organize it into distinct columns, making it easier to analyze and
work with. This transformation simplifies data handling and enables a more efficient
representation of the underlying information (Check Figure 5.1).

68

Chapter 5. Dashboard development and automation

A B c
Question 1 Question2 Qi
4

Ken Flerlage

John Smith

Willy Wonka
Fyodor Dostoevsky
George Orwell

TSI RPN
- o wo =
anolw s %o
W — —|w o % m
N N

4
2
2 A B C
5 Respondent Question Answer
Ken Flerlage Question 1 1
Ken Flerlage Question 2
Ken Flerlage Question 3
Ken Flerlage Question 4
Ken Flerlage Question 5
|John smith Question 1
John Smith Question 2
John Smith Question 3
10 | John Smith Question 4
11 | John Smith Question 5
12 |Wily Wonka Question 1
13 Wiy Wonka Question 2
14 Wiy Wonka Question 3
15 |Willy Wonka Question 4
16 |Wily Wonka Question 5

® N n s w N o

©
N =N w o ww A 0N oA A

Figure 5.1: What’s data pivoting? [39]

When working with data sources such as PDF, Excel, or TXT files in Tableau, the
process of pivoting the data is relatively straightforward. You can simply add the data
source to Tableau, select the desired columns, and use the pivot function to transform
the data from a row-based to a column-based format. This allows you to easily analyze
and visualize the data.

However, when dealing with SQL data sources, the pivot functionality may not be
directly available. In such cases, you can utilize custom SQL queries to achieve the
desired data transformation. Custom SQL queries allow you to write specific instructions
to manipulate and reshape the data retrieved from the SQL database. By crafting custom
SQL statements, you can perform the necessary pivoting operations or any other required
data transformations to prepare the data for analysis in Tableau. By leveraging custom
SQL, we had more flexibility in shaping and preparing the data according to our specific
requirements.

To effectively visualize and create graphs for certain KPIs like integration and unit test
results in Tableau, it was necessary to perform data pivoting using custom SQL queries.
To do so we used a specific SQL query:

SELECT “unit_test_results™. id~,

unit _test _results’. date’,
‘unit_test_results”. percentage_pass’,

'Run' AS “unittest_name’,
‘unit_test_results”. run” AS Tunittest_value’
FROM “bp_unit_test_results”

UNION ALL

SELECT “unit_test results™. id~,
‘unit_test_results’ . date’,
‘unit_test_results’. percentage_pass’,

'Pass' AS "unittest_name’,
“unit_test_results . Pass™ AS “unittest value~
FROM “unit_test_results’

69

Chapter 5. Dashboard development and automation

UNION ALL

SELECT “unit_test results . id’,
‘unit_test_results’. date’,

‘unit_test_results’. percentage_pass’,

'Total Testcase' AS "Unittest_name’,
‘unit_test_results . Total testcase™ AS “Unittest_value~
FROM “unit_test_results’

This query transforms a table called unit_test_results having the attributes (id, date,
run, pass, total test_case, percentage pass) into a pivoted table having the attributes
(id, date, unittest_name, unittest_ value).

Furthermore, in certain graphs, it was necessary to derive additional measurements or
calculations to achieve the desired graph format. This was accomplished by creating new
calculated fields within Tableau.

By defining custom calculations using formulas and functions, we were able to manipu-
late and transform the existing data to derive new insights and metrics. These calculated
fields allowed us to perform complex calculations, aggregations, comparisons, or data
transformations that were not directly available in the original dataset. By leveraging
Tableau’s calculation capabilities, we could incorporate additional dimensions and met-
rics that enhanced the depth and richness of the visual representations, enabling more
comprehensive analysis and interpretation of the data. One of the added calculations is
mentioned above:

Role: Continuous Measure
Type: Calculated Field
Status: Valid

Formula

CASE ATTR([unit_test _name])
WHEN 'Total testcase' THEN INDEX()+[Space]
WHEN 'Run' THEN INDEX() +[Space]
WHEN 'Pass' THEN INDEX() +[Space]+[Space]
ELSE INDEX()
END

In certain graphs as well, it was necessary to focus on the most recent data by filtering
the last 10 weeks” worth of information. To accomplish this, we implemented a filtering
mechanism within Tableau. Specifically, we created a filter that selects the last 10 elements
in a table based on a specific sorting criterion, such as a date or a unique identifier Check
Figure 5.2.

By applying this filter, the graph displays only the data relevant to the most recent
10 weeks, allowing for more focused analysis and visualization. This filtering capability

70

Chapter 5. Dashboard development and automation

in Tableau enables us to dynamically adjust the displayed data, ensuring that the graphs
accurately reflect the desired time frame and provide meaningful insights into recent trends
and patterns.

Folders Describe Field
& Date

|d

we Measure Names last1Q

=Tle Role: Discrete Measure

Pass Type: Calculated Field
Percentage Pass Status: Valid

% Formula

= Space R 48

Total Testcase .

Figure 5.2: Last10 filter in Tableau?

5.1.1.3 Publishing and Sharing the dashboard

The main purpose of publishing a Tableau dashboard is to make it accessible to
others, and it involves several steps. First, ensure that the dashboard is complete and
functioning properly. Then, configure the permissions to determine who should have
access. Next, upload the dashboard file and data sources to Tableau Server or Tableau
Online, providing a title, description, and relevant tags. Set refresh schedules because the
data needs to be regularly updated. Thoroughly test the dashboard before sharing it with
others, ensuring all functionalities work correctly. Share the dashboard with the intended
audience, providing them with access links or embed codes. Encourage collaboration and
feedback by enabling features such as commenting and subscriptions. Monitor the usage
and performance of the published dashboard, addressing any issues or errors promptly.
Regularly update the dashboard as needed to accommodate changing requirements.

5.2 Dashboard automation using Jenkins continuous
integration

5.2.1 Version Control with Git and Bitbucket
5.2.1.1 What is Git and Bitbucket?

Git is a widely used distributed version control system (VCS) that facilitates collab-
oration and tracks file changes among multiple contributors. It enables efficient teamwork
by managing different versions of source code, merging updates from team members, and
maintaining a comprehensive history of project development. With features like branch-
ing, merging, and tagging, Git empowers developers to handle code effectively and work
on different aspects of a project simultaneously.

71

Chapter 5. Dashboard development and automation

Bitbucket, on the other hand, is a web-based service designed for hosting Git repos-
itories. It provides a platform for teams to store, manage, and collaborate on their Git
repositories. With capabilities such as access control, pull requests, code reviews, and
issue tracking, Bitbucket enhances team collaboration and streamlines the software de-
velopment process. It offers the flexibility of both self-hosted and cloud-based solutions,
enabling teams to choose the deployment option that best fits their needs.

5.2.1.2 ASPICE dashboard repository setup

To prepare the setup for the ASPICE dashboard, we considered these steps for the
configuration of the repository:

» Repository Creation: Creation of a new repository in bitbucket dedicated to the AS-
PICE dashboard scripts. We proceeded with setting up the local Git repository and
establishing the connection between the local repository and the remote Bitbucket
repository.

o Branching strategy: The "main” branch, formerly known as the "master” branch,
is typically reserved for stable and production-ready versions of the codebase. It
represents the latest stable release that is deployed to production environments. To
facilitate ongoing development and collaboration, a common practice is to use a
separate branch called "develop” for active development work. This branch serves
as the primary integration point for ongoing updates and new features. Developers
work on this branch to implement and test changes, ensuring they do not directly
modify the main branch until the changes have been reviewed and validated.

o Folder Structure: The ASPICE dashboard implementation involves utilizing vari-
ous tools such as CI, JIRA, JAMA, and Rectify. For each of these tools, dedicated
Python scripts are developed to fetch data and integrate it into the dashboard. In
the Git repository, separate directories are created to organize these scripts, with
each directory containing the respective code and configuration files. This struc-
ture ensures a clear separation of the scripts and allows for efficient management
and maintenance of the codebase. Developers can easily navigate to the relevant
directory to access, modify, or update the specific scripts related to each tool.

e Documentation and Guidelines: To facilitate the usage and maintenance of the
ASPICE dashboard scripts, thorough documentation has been prepared in the form
of a README file. This README file provides instructions on how to run the
scripts and configure the necessary configuration files. Additionally, the code itself
is extensively commented on, ensuring clarity and comprehensibility for developers.
The comments provide explanations and context for different sections of the code,
making it easier for others to understand and make any necessary modifications
or enhancements. This combined approach of a detailed README file and well-
commented code promotes transparency, collaboration, and ease of use for the entire
development team.

72

Chapter 5. Dashboard development and automation

5.2.2 Continuous Integration and Deployment (CI/CD) of AS-
PICE dashboard

5.2.2.1 What is (CI/CD)?

Continuous Integration (CI) is a software development practice that emphasizes
frequent integration of team members’ work. It involves integrating changes at least
once a day, leading to multiple integrations throughout the day. These integrations are
automatically verified through builds and tests, aiming to quickly detect any integration
errors. By adopting Continuous Integration, teams can experience reduced integration
problems and achieve faster and more cohesive software development [44].

Previously, team developers used to work individually for extended periods, merging
their changes to the master branch only after completing their work. This approach led
to challenges and delays in merging code changes, resulting in a buildup of bugs that
remained unaddressed for a significant period. Consequently, it became more challenging
to deliver timely updates to customers.

The abbreviation "CD” in CI/CD stands for continuous delivery and/or continuous
deployment, two closely related notions that are commonly used simultaneously. They
require the automation of additional steps in the software development pipeline, but they
may also be used separately to demonstrate the level of automation used [45].

Continuous delivery (CD) often entails automatic testing and publishing modifications
made by a developer to a repository, such as Bitbucket. The updates can then be deployed
to a real production environment by the operations team. This strategy tries to solve
difficulties of visibility and communication between development and business teams.
The basic purpose of continuous delivery is to render new code deployment as simple as
feasible.

Continuous deployment corresponds to the automated release of the changes made by
developers from the repository to the production environment. That is where the product
is accessible to consumers. This method addresses the issue of manual procedure, which
slows down application delivery. The continuous deployment automates the stages after
continuous delivery in the pipeline Check Figure 5.3.

CONTINUOUS CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY DEPLOYMENT

AUTOMATICALLY AUTOMATICALLY
MERGE RELEASE TO DEPLQOY TO
REPOSITORY PRODUCTION

Figure 5.3: CI/CD

5.2.2.2 CI/CD tools

CI/CD solutions can assist a team in automating their development, deployment,
and testing processes. Some tools specialize in integration (CI), others in development
and deployment (CD), and still others in continuous testing or related services.

73

Chapter 5. Dashboard development and automation

The Jenkins automation server is one of the most well-known open-source CI/CD
technologies. Jenkins is built to handle everything from a simple CI server to a full
CD hub. It offers a framework for automating numerous operations such as software
development, testing, and deployment. Jenkins enables developers to seamlessly merge
code changes into a common repository and trigger tests and builds to assure the quality
of the code. It integrates with several version control systems, testing frameworks, and
deployment tools, allowing for greater adaptability and customization of CI/CD pipelines.
Jenkins is well-known for its robust plugin environment, which allows users to enhance
its capabilities and link it with a wide range of services and tools.

5.2.2.3 ASPICE dashboard integration

The primary objective of this section is to integrate the data fetching scripts into a
Jenkins pipeline to ensure their execution every week, following the completion of all tests.
This is crucial because the dashboard data is updated once a week. By incorporating the
scripts into the Jenkins pipeline, we can automate the process and ensure that the latest
data is fetched and incorporated into the dashboard on a regular and scheduled basis. This
integration helps streamline the workflow, improve efficiency, and maintain the accuracy
and timeliness of the dashboard information. The steps for the integration are:

o Set up the Jenkins pipeline: We already have existing Jenkins pipelines set up for
each project (Check Figure 5.4). To integrate the dashboard functionality, we need
to incorporate an additional stage in the Jenkinsfile for each project’s pipeline. This
new stage will be responsible for executing the data-fetching scripts and updating
the dashboard after the testing part. Adding this stage to the Jenkinsfile ensures
that the dashboard update process is seamlessly integrated into the existing project
pipelines. This approach allows us to leverage the infrastructure and automation
already in place, making it easier to maintain and manage the dashboard updates
alongside the project development and testing processes.

Misra & Code Docum
Start Clean & Checkout Env Setup Build Binary metrics check

Tag & Deploy
SWIT - Tessy SWT - Camino EA report Regtify Artifactory End

/3 ©—o

P
L4 &)

Figure 5.4: Project’s Jenkins Pipeline

o Install necessary plugins: We took the necessary steps to ensure the smooth execu-
tion of the Python scripts by installing all the required libraries and dependencies
and updating the environment. Instead of creating a new environment from scratch,
we added the necessary dependencies to the existing environment. This approach
allowed us to leverage the existing setup and avoid duplicating efforts. By updat-
ing the environment, we made sure that all the required libraries were installed

74

Chapter 5. Dashboard development and automation

and accessible, enabling smooth execution of the Python scripts within the Jenkins
pipeline.

o Create a stage for data fetching: Within the Jenkins pipeline, we defined a stage
specifically for fetching data using Python scripts. This stage will be executed after
the tests have been completed.

o Define the script execution step: Within the data fetching stage, use a Jenkins step
(such as ”sh” for shell execution) to execute the Python script. Provide the path to
the Python script and any required arguments.

o Schedule the pipeline: Configure the Jenkins pipeline to run every week, specifying
the desired day and time for execution. This can be done using Jenkins’ built-in
scheduling capabilities or with the help of plugins like the "Pipeline Utility Steps”
plugin.

o Test and monitor the pipeline: Validate the pipeline by running test builds and
verifying that the Python scripts are executed correctly. Monitor the pipeline’s
execution to ensure it runs reliably on a weekly basis.

5.3 ASPICE Dashboard Presentation

The development and deployment of the dashboard have been successfully com-
pleted, making it readily available for use. The user interface is designed to be intuitive
and user-friendly, ensuring a seamless experience for all users. The graphs and visualiza-
tions within the dashboard are carefully crafted to be easily understood and interpreted,
providing valuable insights at a glance. In the next Figures, we will present a selection of
these graphs, highlighting key metrics and trends to further enhance our understanding
of the data.

75

Chapter 5. Dashboard development and automation

Total Defects Open CRs/PRs No. of SWRQ SWA Coverage
= m--
S & .l
’ TTHHUE
2022 2023 o l I . Sum Sumo Sum Sum

28feb 22 27feb 23 VAL SAL AR AAE VKD VAL ARL AR WAL MM "
M Closed D.. M Wp Defec.. Hs fR. WS A of No. fTrac ofS of
P B wpCr B wp Pr um of um o < ST M k.. SR

MISRA Binary Size (% used) Code Unit Test Spec Coverage

Complian 12.19.026./3..|7..14.21.29 Jag. 1., Coverage (UTCov)
ce 200 100,00. 1

b g, =1L
& o Inadndsdndduadnillndie oo B £ L1 II o
M Unjustified.. * M Dram M Rom » Su. Su. SU. M NeOfSWUD ~ Ratio
Sl B-SWHP traced test—Y-

SW Test Spec Coverage Unit Test Result Int. Test Result

(SWcCov) oK m 40,

155
30,

10.

100 ll 5
syl >
1ic

I'II'IﬂIII |"

3,wk 5wk 7,wk 9,wk OKII”I

o gl 0,0.. . | ||J|| - 1 (0 0 L |
JWK S,WK 7,WK 9, 0,0 1,wk 3wk 5wk 7,wk 9wk
0,0..
B No.OFSWRQ # Sumof..[] B Pass A SuM(Percent.. —"L"‘*l“‘“u“-l

SWUD SWDI
Coverage Coverage

200.
i_.~inm

SWU..SWU..
Sum Sum Sum Sum %
of.. of.. of.. of.. ISWUDTotaI

Int. Test Spec Coverage
(ITCoverage)

M No OF SWA : Ratio

SW Test Result

.....

10.

50%

0%

e Pass 2 ~ %Pass.. [l
B SWROtrace ¥ 8¢ B Run — | - g‘aﬁ‘s percentage W Run2 v 01
Figure 5.5: Primary KPIs visualization
[—— 1|
Traced VD Assigned Not Analysed CR/PR Cyclometric Complexity
Requirement Requirement B Avom
200
300 2. o
200 s K 100
100 1. 2K 0
g . oK 336 [<=5[[6-10] [11-15] [>15]
Number Number 14mar 22 13mar 23
Hsumof.. » B sumof.. ~ Wp Posteeb No.. #
ESsumof.. ¥ W Sumof.. ¥ W Bracch Nt ¥
No. Of SWUD No. Of SWA 5
Polyspace Unit Test Report Coverage/
.. -] - .
0 --- s MEmEmEE compliance Int. Report Coverage/ SW

10
O-I

Grey Vi.. Orange .. Red Viol..

1= =
40
; I II
O I
g 2 T L 2L 2
Wi W -

o))
W., W, W, W, Wo, W, W, W, =

=
B SumofR. MSum 4) W sumofR. HSumofA. ES ¢) W Justified &

W | ininct

W10}

Figure 5.6: Secondary KPIs visualization

Conclusion

Test Report Coverage

Sum of SWVS - Tatal Sum of SWVS - Trac

Throughout this chapter, we have explored the successful development and deploy-
ment of the ASPICE dashboard. This powerful tool offers valuable insights and essential
metrics for efficient project monitoring and informed decision-making. We have showcased
a curated collection of insightful graphs that demonstrate the dashboard’s ability to pro-
vide clear and actionable information. With its user-friendly interface, the dashboard

76

Chapter 5. Dashboard development and automation

ensures effortless data interpretation and empowers users to unlock the full potential of
their project data.

7

General Conclusion

78

General Conclusion

General Conclusion

This report outlines the work completed during a six-month graduation internship
project titled ”Automated Environment for the Analysis of ASPICE Compliance for Au-
tomotive FW” at Infineon Technologies Padova Italy. The report begins with a project
description, presenting the hosting organization, the problem statement, and the main
ideas proposed for the solution.

A comprehensive exploration of ASPICE and its associated aspects is then under-
taken. It starts with an introduction to ASPICE, emphasizing its significance in software
development and quality assurance. The report proceeds to discuss the various processes
and activities involved in ASPICE compliance, including requirements engineering, soft-
ware testing, and configuration management.

Furthermore, the report examines the tools and techniques used to support data
fetching, covering topics such as APIs, web scraping, and query analysis. Notably, the
database design component of this thesis plays a vital role in effectively managing and
organizing ASPICE-related data. Through meticulous entity-relationship modeling, a ro-
bust and scalable database schema is developed, providing a solid foundation for data
storage, retrieval, and analysis. This thoughtful approach to database design significantly
contributes to the overall success and value of the ASPICE implementation.

In addition to these aspects, this thesis encompasses the development and implemen-
tation of a robust ASPICE dashboard. This dashboard serves as a centralized platform
for monitoring project performance and visualizing key performance indicators. Data
fetching scripts are integrated, leveraging powerful visualization tools like Tableau, and
harnessing the capabilities of Jenkins for seamless automation.

The findings and insights derived from this research contribute to a broader under-
standing of ASPICE and its practical implementation in software development organi-
zations. By embracing ASPICE principles, organizations can enhance their development
processes, improve product quality, and deliver software solutions that meet or exceed
customer expectations.

Overall, this thesis emphasizes the importance of adopting industry standards and
best practices, such as ASPICE, to drive excellence in software development. By adhering
to established frameworks, organizations can foster a culture of continuous improvement
and deliver high-quality software products that align with customer needs and market
demands. Throughout this internship, I have had the valuable opportunity to work and
familiarize myself with the ASPICE standard, while also gaining insights into the fields of
data extraction, database design, and continuous integration. I am grateful for the support
of both my supervisors and university mentors, enabling me to apply the knowledge gained
during my studies in a flourishing and real-world work environment.

79

References

[13]

[14]

Timothy J Sturgeon et al. “Globalisation of the automotive industry: main features
and trends.” In: International Journal of Technological Learning, Innovation and
Development 2.1-2 (2009), pp. 7-24.

Helmut K Berg, Prakash Rao, and Bruce D Shriver. “Firmware quality assurance.”
In: Proceedings of the June 7-10, 1982, National Computer Conference. 1982, pp. 3—
10.

The Automotive SPICE: Simple Guide to Get Started. URL: https://www.tagueri.
com/en/the-automotive-spice-simple-guide-to-get-started/ (visited on
01/27/2023).

Infineon Technologies. URL: https://www.infineon.com/ (visited on 01/16/2023).

Edward Kit and Susannah Finzi. Software Testing in the Real World: Improving the
Process. ACM Press/Addison-Wesley Publishing Co., 1995.

PK Ragunath et al. “Evolving a new model (SDLC Model-2010) for software de-
velopment life cycle (SDLC).” In: International Journal of Computer Science and
Network Security 10.1 (2010), pp. 112-119.

Automotive SIG: Automotive SPICE, Process Assessment Model (PAM). URL: https:
//www.automotivespice.com/ (visited on 01/27/2023).

A Guide to Automotive SPICE. URL: https://spyro-soft.com/aspice-101-a-
guide-to-automotive-spice (visited on 02/03/2023).

Key Performance Indicators. URL: https://www.investopedia.com/terms/k/
kpi.asp (visited on 02/15/2023).

Automotive SPICE as part of VDA Scope. URL: https://www.kuglermaag.com/
automotive-spice/ (visited on 02/15/2023).

Bhaskar Vanamali. “Software requirements analysis - SWE.1 in Automotive SPICE.”
In: KUGLER MAAG CIE GmbH (2020).

The essential guide to requirements management and traceability. URL: https :
/ /www . jamasoftware . com/ requirements - management - guide / measuring -
requirements/status-requests-changes (visited on 02/25/2023).

Kevin Brennan et al. A Guide to the Business Analysis Body of Knowledge. IIBA,
2009.

Pieter Hooimeijer and Westley Weimer. “Modeling bug report quality.” In: Pro-
ceedings of the twenty-second IEEE/ACM international conference on Automated
Software Engineering. 2007, pp. 34-43.

80

References

[15] Bhaskar Vanamali. “SOFTWARE ARCHITECTURAL DESIGN — SWE.2 in Au-
tomotive SPICE.” In: KUGLER MAAG CIE GmbH (2020).

[16] Bhaskar Vanamali. “SOFTWARE DETAILED DESIGN AND UNIT CONSTRUC-
TION — SWE.3 in Automotive SPICE.” In: KUGLER MAAG CIE GmbH (2020).

[17] Christof Ebert et al. “Cyclomatic complexity.” In: IEEE Software 33.6 (2016),
pp- 27-29.

[18] What is Cyclomatic Complexity? URL: https : / /www . tutorialspoint . com/
software_testing_dictionary/cyclomatic_complexity.htm (visited on 02/28/2023).

[19] Christian GuB. “How to prove that your C/C++ code is safe and secure.” In: Journal
Name Volume.Number (Year), Pages.

[20] What Is MISRA? An Overview of MISRA Coding Guidelines and Compliance. URL:
https://www.perforce.com/resources/qac/what-misra-overview-misra-

standard (visited on 03/03/2023).

[21] Bhaskar Vanamali. “SOFTWARE UNIT VERIFICATION — SWE.4 in Automotive
SPICE.” In: KUGLER MAAG CIE GmbH (2020).

[22] Marko Ivankovié et al. “Code coverage at Google.” In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2019, pp. 955-963.

[23] Difference between statement and branch coverage. URL: https://programmerbay .
com/distinguish-between-statement-coverage-and-branch-coverage/ (vis-
ited on 03/25/2023).

[24] Klaus Hoermann. “SOFTWARE INTEGRATION AND INTEGRATION TEST —
SWE.5 in Automotive SPICE.” In: KUGLER MAAG CIE GmbH (2022).

[25] Unit test Vs Integration test. URL: https://circleci.com/blog/unit-testing-
vs-integration-testing/ (visited on 04/12/2021).

[26] Bo Zhao. “Web scraping.” In: Encyclopedia of big data (2017), pp. 1-3.

[27] Parse HTML files. URL: https://www.kodeco.com/2899-how-to-parse-html-
on-ios (visited on 04/05/2023).

[28] Joshua Ofoeda, Richard Boateng, and John Effah. “Application programming in-
terface (API) research: A review of the past to inform the future.” In: International
Journal of Enterprise Information Systems (IJEIS) 15.3 (2019), pp. 76-95.

[29] What is an API? URL: https://www.postman.com/what-is-an-api/ (visited on
04/11,/2023).

[30] Mark Masse. REST API design rulebook: designing consistent RESTful web service
interfaces. 7 O’Reilly Media, Inc.”, 2011.

[31] REST Vs SOAP APIs. URL: https://www.g2.com/articles/what-is-an-api
(visited on 04/05/2023).

[32] What is a database? URL: https ://www . oracle . com/ database / what - is -
database/ (visited on 03/06/2021).

[33] Database management systems. URL: https://www .appdynamics . com/topics/
database-management-systems#~1-what-is-dbms (visited on 04/15/2021).

81

References

[34]
[35]
[36]

[37]

3]
[39]

[40]

[41]

Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-
Cummings Publishing Co., Inc., 1993.

Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. “NoSQL databases.”
In: Lecture Notes, Stuttgart Media University 20.24 (2011), p. 79.

Elisa Bertino and Lorenzo Martino. “Object-oriented database management sys-
tems: concepts and issues.” In: Computer 24.4 (1991), pp. 33-47.

Konstantinos Domdouzis, Peter Lake, and Paul Crowther. “Hierarchical Databases.”
In: Concise Guide to Databases: A Practical Introduction. Springer, 2021, pp. 205—
212.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new opportunities
for connected data. 7 O'Reilly Media, Inc.”, 2015.

How does a SQL works? URL: https://www.spiceworks.com/tech/artificial-
intelligence/articles/what-is-sql/ (visited on 06/01/2021).

John Miles Smith and Diane CP Smith. “Principles of database conceptual design.”
In: Data Base Design Techniques I: Requirements and Logical Structures NYU Sym-
posium, New York, May 1978. Springer. 1982, pp. 114-146.

Sikha Bagui and Richard Earp. Database design using entity-relationship diagrams.
Crc Press, 2011.

Tableaw Vs Power BIl. URL: https://www.simplilearn.com/tutorials/power-
bi-tutorial/power-bi-vs-tableau#what_is_tableau (visited on 04/25/2021).

Data pivoting in Tableau. URL: https://help.tableau. com/current/prep/en-
us/prep_pivot.htm (visited on 03/05/2021).

Martin Fowler and Matthew Foemmel. Continuous integration. 2006.

Data pivoting in Tableau. URL: https://www.redhat.com/en/topics/devops/
what-is-ci-cd (visited on 05/10/2021).

82

