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IntroduzioneLo shema di Hilbert Hilb2(P1 � P1) parametrizza i sottoshemi hiusi zerodimensionali di lunghezza due di P1 � P1 e risulta essere lisio, irriduibilee 4-dimensionale. In questa tesi diamo una presentazione espliita della suaCoomologia Quantum Piola. Inoltre elaboriamo un algoritmo (parziale)he i permetta di alolarne anhe la Coomologia Quantum Grande, purnon essendo in grado di darne una presentazione espliita.Entrambe le oomologie quantum sono una deformazione dell'usuale anellodi oomologia H�(Hilb2(P1 � P1);Q). Si ottengono aggiungendo oppor-tune variabili formali e de�nendo un prodotto � he estende il prodotto[ dell'anello di oomologia stesso.Per ottenere i suddetti risultati utilizziamo la teoria degli spazi di modulidi mappe stabili, he sono degli stak nel senso di Deligne-Mumford. Inpartiolare usiamo tenihe tipihe della teoria delle deformazioni oltre healoli di lassi fondamentali virtuali per stak di Deligne-Mumford. Tuttoi�o �e giusti�ato dal fatto he i oeÆienti del prodotto � sono gli invariantidi Gromov-Witten dello shema di Hilbert in esame. In questo aso, essihanno un signi�ato enumerativo, i.e. ontano il numero di urve razionalihe soddisfano erte propriet�a di intersezione, ome ad esempio passare perun �ssato numero di punti. In partiolare mentre la Coomologia QuantumGrande oinvolge gli invarianti orrispondenti ad un numero n � 3 di on-dizioni di inidenza, per quella Piola n = 3.In�ne abbiamo dimostrato ome si possano ontare le urve iperellittihesu P1 � P1, di genere g � 2 e bi-grado (d1; d2) �ssati, he passano perun erto numero di punti per mezzo degli invarianti di Gromov-Wittendi Hilb2(P1 � P1). Quest'ultimo risultato �e un'appliazione dei aloli dioomologia quantum ed estende l'analogo risultato ottenuto da Tom Graberper le urve iperellittihe piane in [Gr℄.Riteniamo he il metodo usato per trovare questi risultati abbia raggiunto ilsuo limite naturale on lo studio di Hilb2(P1�P1). Il tentativo di estenderloallo shema di Hilbert di due punti sul blowup di P2 in un punto o su Pnsi �e rivelato ineÆae a ausa della pi�u ompliata struttura degli spazi dimoduli da prendere in onsiderazione, per i quali non disponiamo di unabuona desrizione geometria.
i
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IntrodutionOver the last deades a great interest in the Quantum Cohomology of amanifold has grown out of the work of physiists (see [W1℄, [W2℄), provid-ing a rih �eld of investigation for mathematiians. In partiular given asmooth omplex projetive variety X (or a sympleti manifold), there aretwo di�erent objets whih an be alled Quantum Cohomology of X; theseare the Big Quantum Cohomology ring and the Small Quantum Cohomologyring.The Big Quantum Cohomology ring is a �-produt struture on V 
 R,where V = H�(X;Q) and R is a power series ring, whih makes V 
R intoa R-algebra and redues to the up produt when putting all the variablesto zero. The Small Quantum Cohomology ring is de�ned by setting equalto zero some of the formal variables, for more details see [F-P℄, [G-P℄.The �-produt is de�ned in terms of the (genus zero) Gromov-Witten in-variants of X, i.e. the virtual number of genus zero m-pointed stable maps� : C ! X with presribed ��[C℄ that meet m general yles on X. Weuse the word \virtual" beause the Gromov-Witten invariants need not haveenumerative signi�ane in general. In the Small Quantum Cohomology ringonly the 3-point Gromov-Witten invariants appear. The quantum produtan be shown to be ommutative, assoiative, with unit. From the asso-iativity relations one gets a system of quadrati equations known as theWDVV-equations (so named after E. Witten, R. Dijkgraaf, H. Verlinde, E.Verlinde by B. Dubrovin). Kontsevih and Manin in [K-M℄ remark that,under good hypotheses on X, the WDVV-system admits a unique solutionone a few starting data are known, and it is in fat very overdetermined.QuantumCohomology an be expliitly omputed using various tools. WhenH�(X;Q) is generated by H2(X;Q) the same authors prove the First Re-onstrution Theorem: it gives an algorithm to �nd reursively all the genuszero Gromov-Witten invariants from the 2-point invariants by means ofthe WDVV-equations. The most famous appliation is due to Kontsevih[Kon℄. He alulates the number of rational urves of degree d in P2 go-ing through 3d � 1 points. He only needs as starting datum the number oflines through two points. Other examples of omputations exploiting theWDVV-equations an also be found in [DF-I℄.There are some examples of varieties for whih the Big and/or the Smalliii
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Quantum Cohomology rings have been omputed, suh as Pn, P1�P1 [F-P℄,the blowup of P2 in r points [G-P℄, Grassmannians [Ber℄, ag varieties [CF℄,rational surfaes [C-M℄, some omplete intersetions [B℄, the moduli spae ofstable bundles over Riemann surfaes [Mu℄, some projetive bundles [Q-R℄and some blowups of projetive bundles [Ma℄.A smooth variety X is alled onvex if H1(P1; f�TX) = 0 for all genus zerostable maps f : P1 ! X. Convexity ensures that the Gromov-Witten in-variants are enumerative. Only few of the varieties mentioned above arenon-onvex.A signi�ant example of a non-onvex variety is represented by the Hilbertsheme Hilbn(X) of n points on a smooth omplex projetive surfae X.It parametrizes the losed 0-dimensional subshemes of X of length n; itis smooth, projetive, 2n-dimensional. For n = 1; 2 it is easy to desribe;Hilb1(X) is X itself and Hilb2(X) is obtained by blowing up X �X alongthe diagonal and then taking the quotient by the obvious lifted ation of theinvolution. The ase where n = 2, X = P2 has been studied by Graber in[Gr℄. The author gives a presentation of the Small Quantum Cohomologyring of the Hilbert sheme by means of quantum deformations of the rela-tions de�ning the Chow ring A�(Hilb2(P2);Q). Moreover he gets enumera-tive results on the hyperellipti plane urves passing through an opportunenumber of points by studying the moduli spae of genus zero stable mapsinto Hilb2(P2).The aim of this thesis is to study the Quantum Cohomology of the Hilbertsheme Hilb2(P1�P1) and to give some enumerative appliations extendingGraber's results to the ase of hyperellipti urves on P1�P1. The strutureof the work is the following.Chapter 1 is devoted to desribing the Hilbert sheme we are working on.In x1.1 we follow the above mentioned onstrution of the Hilbert shemeas a quotient by the ation of an involution and we give the orrespond-ing presentation of its Chow ring whih is isomorphi to the ohomologyring. In x1.2 we prove that Hilb2(P1 � P1) an be seen as a blowup of theGrassmannian of lines in P3 along two lines and also in this ase we give theorresponding presentation of its Chow ring. In partiular it turns out thatthe Chow ring is not generated by the divisor lasses, but we need to add ayle lass in odimension two to get a omplete set of generators. Then westudy the indued ation of the automorphism group of P1�P1. The Hilbertsheme Hilb2(P1 � P1) is not homogeneous but only almost-homogeneous,i.e. it has a �nite number of orbits forming a strati�ation. This propertyis good enough to make enumerative geometry on it, as shown in x1.3. Inparagraph 1.4 we analyse the homogeneous part of degree 1 of the Chow ringof Hilb2(P1�P1). In the following x1.5 we give the generators of the e�etiveone, postponing a detailed desription of some onneted e�etive urves tox1.8. Paragraphs 1.6 and 1.7 are dediated to the desription of two speialdivisors on the Hilbert sheme whih are related to the orbit strati�ation.
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Finally in x1.9 we study the yle whose points are losed subshemes of di-mension zero and length 2 inident to a given point of P1�P1. It representsa yle lass in A2(Hilb2(P1 � P1)) whih will be of ruial importane forappliations in Chapter 4.In Chapter 2 we reall the notion of moduli spae of stable maps (x2.1)with a brief review of deformation theory in x2.2. Paragraph 2.3 olletssome results about the virtual fundamental lass of a moduli spae and inx2.4, x2.5, x2.6 we apply the general theory to some moduli spaes of genuszero stable maps into Hilb2(P1 � P1). The hapter �nishes with the generalde�nition of the Gromov-Witten invariants (x2.7) and the alulation (x2.8)of some invariants on the Hilbert sheme we are interested in. In partiular,we arry out some exess alulations on the moduli spaes mentioned aboveinvolving their obstrution bundles.Chapter 3 ollets some of the main results. We reall the de�nition ofthe Big Quantum Cohomology ring of a non-onvex variety and the teh-niques we want to use in order to obtain a presentation of it for Hilb2(P1�P1)(x3.1). Then after �xing the notations in x3.2, we onstrut the Small Quan-tum Cohomology ring and give a presentation of it in x3.3 and x3.4. Thisis possible only after making some expliit omputation of Gromov-Witteninvariants using both tehniques from lassial enumerative geometry andthe WDVV-equations. We onlude the hapter restriting our attention tothe subalgebra S of the Chow ring generated by the divisors lasses. Thisallows us to write a (partial) algorithm alulating reursively all the genuszero Gromov-Witten invariants of Hilb2(P1 � P1) starting from few initialdata. The idea is to divide the problem into two parts. The invariants withall the arguments in the subring S are known by the First Reonstrutiontheorem, only those involving the generating yle lass in odimension twoare left and for them we use the WDVV-equations.Chapter 4 presents our main result (theorem 4.3.1) whih solves the prob-lem of ounting the hyperellipti urves of given genus and bi-degree onP1 � P1 passing through a ertain number of points whih may also be hy-perelliptial onjugated (theorems 4.3.5, 4.3.10). In partiular in x4.1 weonstrut a spae parametrizing maps from a hyperellipti urve to P1 � P1with good properties. In x4.2 we prove it is anonially isomorphi to thespae of stable maps from irreduible rational urves into Hilb2(P1 � P1)with good intersetion properties with the strati�ation. This means thatwe an redue an enumerative problem in higher genus to a question aboutrational urves. Finally our main theorem is stated and proved in the lastparagraph 4.3. It extends the result obtained by Graber in [Gr℄, Theorem2.7, as well as its appliations to the enumerative problem.The main tehnial di�erenes between P1 � P1 and P2 are related to theproblem of �nding a presentation of the Quantum Cohomology rings, sinethe Chow ring of P1 � P1 is not generated by the divisor lasses. As saidabove, we (partially) sueeded in solving the problem dividing it in two
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parts and using two powerful tools as the First Reonstrution Theoremand the WDVV-equations. Moreover the desription of the e�etive oneof Hilb2(P1 � P1) is more ompliated, and requires to give two geometrialdesriptions of the Hilbert sheme. We also need to onsider more e�etiveurves for the alulation of the initial data of the algorithm omputing(almost) all the Gromov-Witten invariants. This is beause the group ofautomorphism of P1�P1 has more orbits. In partiular we have to be are-ful about intersetion properties of urves with the indued strati�ation(theorem 2.4.5).We think that the tehniques we used in this thesis have reahed their nat-ural limits and they an not be suessfully applied to �nd any enumerativeresult for example in the ase where X = Pn; n � 3, or BlpP2. In fat weonsidered Pn, and found out that problems arise from studying the ompo-nents of exess dimension of the moduli spae of genus zero stable maps intoHilb2(Pn). Instead for the blowup of P2 in a point we were not able to �nda simple geometrial desription of the e�etive one of the orrespondingHilbert sheme. Moreover also in this ase the Chow ring of Hilb2(BlpP2)is not generated by the divisor lasses. Finally the orbits of the induedation of the automorphisms group of BlpP2 give a strati�ation with nogood intersetion properties.Aknowledgements: I would like to thank Professor Barbara Fantehi forhaving introdued me to the topi of this thesis and for the time she spentdisussing with me about it.I am grateful to Professor Angelo Vistoli beause he made possible my visitto the Dipartimento di Matematia at the Universit�a di Bologna. Duringmy staying there I ould learn a lot about the fasinating world of staks.I thank Professor Bruno Chiarellotto, the Co-ordinator of my Ph.D. ourseat the Universit�a di Padova, who gave me the opportunity to visit peoplefrom other universities.In partiular I would like to thank all the friends from SISSA and ICTPwho made the last months of my Ph.D. unforgettable.



Chapter 1
Some properties ofHilb2(P1 � P1)
In this hapter we will �x notations and present some results on the Hilbertsheme H :=Hilb2(P1 � P1) whose points are represented by 0-dimensionallength-2 losed subshemes Z of P1 � P1. There are two possible geometridesriptions of H, as a desingularization of the seond symmetri produtSym2(P1 � P1) (see [Fo℄) and as a blow up of the Grassmannian Grass(2; 4)of lines in P3 (see x1.2). We will give a desription of both onstrutionswith the orresponding Chow rings. Then we will study how some partiulardivisors and e�etive urves on H look like, so that we will have a detailedpiture of the ambient spae we are going to work on.Notations and onventions: we work over C and we identify the varietyP1 � P1 with its image under the Segre embedding P1 � P1 ! P3, i.e. thesmooth quadri Q in P3. We have two rulings on Q, if q1; q2 are the two pro-jetions on P1, then q�11 (p) represents the �rst ruling and q�12 (p) the seondone.We onsider Chow rings with Q-oeÆients. All the varieties under onsid-eration in this hapter have a ellular deomposition, hene their Chow ringsare isomorphi to their even-odimension ohomology rings, [Ful℄ Example19.1.11. In partiular we an identify them.Given a vetor bundleE we denote by P(E) the projetive bundle Proj(SymE)where E is the sheaf of setions of E. Geometrially, points of P(E) orre-spond to hyperplanes in the �bers of E.We indiate a non-redued 0-dimensional subsheme Z of length 2 of Q asa pair (p; v) where p 2 Q is the support of Z and v 2 P(TQ;p) is a diretion.We all it a non-redued point of H. 1



2 CHAPTER 1. SOME PROPERTIES OF HILB2(P1 � P1)
1.1 The Hilbert sheme as a quotientThe following desription of the Hilbert sheme H is valid for all Hilbertshemes of 2 points on a smooth variety [F-G℄.Let U be the produt Q�Q, pr1; pr2 the two projetions, ~U the blowup ofU along the diagonal Æ � U . The group Z2 ats on U �xing Æ, so there isan indued ation on the blowup ~U . The Hilbert sheme H is the quotientsheme ~U=Z2, hene it is smooth, projetive, irreduible and 4-dimensional.We have the following diagram:~Æ j - ~U � - HÆbljÆ ? i - Ubl? pr1 -pr2 - Qwith i; j the natural inlusions, bl the blowup map, � the quotient map and~Æ the exeptional divisor.Remark 1.1.1. Given the quotient map � : ~U ! H = ~U=Z2, we have twoindued homomorphisms:�� : A�(H) - (A�( ~U))Z2 � A�( ~U)�� : A�( ~U) - A�(H)They are suh that ���� = 2 id = ����. More preisely:���� : A�(H) - A�(H) - 2���� : A�( ~U ) - A�( ~U)Z2� - �+ ��(�)where � : ~U ! ~U is the natural involution de�ned by �(� 
 �) = � 
 �. Itfollows that the map ����jA�( ~U)Z2 is the multipliation by 2 homomorphism.Note that �� is an isomorphism of Q-algebras whih does not respet thedegree: A4(H) degH- QA4( ~U)Z2�� ? deg ~U- Q�2?Moreover by projetion formula �� is A4(H)-linear, where A4( ~U ) is madeinto an A4(H)-algebra via ��.



1.1. THE HILBERT SCHEME AS A QUOTIENT 3
First desription of A�(H)As pointed out in (1.1.1), �� indues an isomorphism of A�(H) withA�( ~U )Z2.Then to write down expliitly the Chow ring of H we need to know A�( ~U ).Lemma 1.1.2. Let � be the lass 1(N~Æj ~U) = [~Æ℄j~Æ whih has degree �1 ona �ber of the blowup map over Æ. Then:A�(~Æ) = A�(Æ)[�℄�2 +P2i=1(�1)ii(TQ)�2�i = 0Proof. As ~Æ is the projetivization of the rank-2 vetor bundle NÆ=U wean use [G-H℄ p.606. Moreover by the isomorphism Æ �= Q and the exatsequene: 0! TÆ ! i�TU ! NÆjU ! 0we have i(NÆjU ) = i(TQ).Lemma 1.1.3. Let � be the lass of the exeptional divisor ~Æ in ~U . Set sto be suh that j�(s) = (�1)ss(TQ), for s = 1; 2. Then:A�( ~U ) = A�(Q)
2[�℄(�
 � � � 
 �)� = 0 8�; � 2 A�(Q)�2 +P2s=1 s�2�s = 0 (1.1)In partiular, as a vetor spae A�( ~U) is simply A�(Q)
A�(Q)�A�(Q)�.Proof. The exat sequene (see [Ful℄ p.114-115):0! A�(Æ)! A�(U)�A�(~Æ)! A�( ~U)! 0gives the equality: A�( ~U) = A�(U)�A�(~Æ)A�(Æ) (1.2)By the K�unneth formula, the Chow rings of Æ and U are isomorphi toA�(P1) 
 A�(P1) and A�(Q) 
 A�(Q), respetively. Let h1; h2 be the ylelasses of the two rulings on Q. We write h0 = [Q℄; h1; h2, h3 := h1h2 forthe basis of A�(Q) and hr 
 hs, with 0 � r; s � 3, for the basis of A�(U).Then: A�(Æ) = A�(Q) = Z[h1℄h21 
 Z[h2℄h22By Lemma 1.1.2: A�(~Æ) = A�(Q)[�℄�2 � (2h1 + 2h2)� + 4h1h2 = 0 (1.3)The pullbak of the divisor lass � via the natural embedding j is exatlythe lass � in A1(~Æ). Moreover the quotient (1.2) means that for eah �; �
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in A�(Q) we have to identify the element � 
 � 2 A�(U) pulled bak to Æwith the produt lass �� 2 A�(Q), i.e. (�
 � � � 
 �)� = 0. Then we getthe formula (1.1).Remark 1.1.4. Writing expliitly the seond relation at denominator in(1.1) we get:�2 = (2h1 
 1 + 2h2 
 1)� � (h3 
 1 + 1
 h3 + h1 
 h2 + h2 
 h1)Let [Æ℄ 2 A�(U) be the lass of the diagonal and �hi be the dual basis withrespet to the intersetion pairing on A�(Q). Then:[Æ℄ = 3Xi=0 �hi 
 hiMoreover i�[Æ℄ = 4h3 = 2(TQ), so that we an write �2 + 1� + [Æ℄ = 0.Remark 1.1.5. We an identify ����(hi
1) with the element hi
1+1
hiin A�( ~U), obviously ����(�) = 2� sine it is invariant under involution.Proposition 1.1.6. A basis for A�(H) is given by the elements:hi 
 hj + hj 
 hi; (hi 
 1)�with 0 � i; j;� 3.Proof. A basis is given by all the elements in A�( ~U) whih are invariant forthe Z2-ation.We an write the following table:A0(H) A1(H) A2(H) A3(H) A4(H)S0 = 1 S1 S3 S7 S9S2 S4 S8S10 S5 S13S6S11S12
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The yle lasses are de�ned to be:S0 = [H℄S1 = h1 
 1 + 1
 h1S2 = h2 
 1 + 1
 h2S3 = h3 
 1 + 1
 h3S4 = h1 
 h2 + h2 
 h1S5 = h1 
 h1S6 = h2 
 h2S7 = h1 
 h3 + h3 
 h1S8 = h2 
 h3 + h3 
 h2S9 = h3 
 h3S10 = �S11 = (h1 
 1)�S12 = (h2 
 1)�S13 = (h3 
 1)�Remark 1.1.7. We work with oeÆients in Q so �� : A�(H) ! A�( ~U)Z2is an isomorphism and we an identify the lass Sj 2 A�(H) with the orre-sponding element ��Sj 2 A�( ~U)Z2, being areful about the degrees.Poinar�e Duality on ~U gives:S1 S2 S10S8 2 0 0S7 0 2 0S13 0 0 �1

S3 S4 S5 S6 S11 S12S3 2 0 0 0 0 0S4 0 2 0 0 0 0S5 0 0 0 1 0 0S6 0 0 1 0 0 0S11 0 0 0 0 0 1S12 0 0 0 0 1 0Dividing by 2 the above values we obtain the oeÆients for the intersetionpairing on H.Proposition 1.1.8. As a Q-algebra A�(H) is generated by S1; S2; S3; S10and it is de�ned by the relations:S31 = S32 = S33 = 0 S1S3S10 = S2S3S10 = 0S21S3 = S22S3 = 0 S1S2S3 = S23S21S10 = S22S10 = 0 S1S2S10 = 2S3S10S23S1 = S23S2 = S23S10 = 0 S21S2 = 2S1S3S210 = (S1 + S2)S10 � S1S2 S22S1 = 2S2S3
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Proof. The following equalities hold:S4 = S1S2 � S3S5 = 12S21S6 = 12S22S7 = S1S3S8 = S2S3S9 = 12S23S11 = 12S1S10S12 = 12S2S10S13 = 12S3S10It goes straightforward that the relations in the statement de�ne A�(H) hasa Q-algebra.1.2 The Hilbert sheme as a blow upIn the following we will prove that the Hilbert sheme H an be obtained asa blow up of the smooth projetive 4-dimensional Grassmannian Grass(2; 4)of lines in P3. We use the symbol G to denote suh a Grassmannian.Lemma 1.2.1. There exists a surjetive morphism ' : H ! G de�ned bymapping a point Z 2 H to its assoiated line lZ .Proof. Let Grass(2; 4) be the funtor represented by G and ZH � H�P3 bethe universal family with projetions p1; p2 toH and P3 respetively. Denoteby L the sheaf p�2OP3(1). The natural morphism  : (p1)�L ! (p1)�LjZHis surjetive. Moreover (p1)�L is a trivial bundle sine it is asque ([G-D℄3.2.1), with �ber over Z 2 H anonially isomorphi to H0(P3;OP3(1)).Also (p1)�LjZH is a vetor bundle on H, it has rank 2. Then  is an elementof Grass(2; 4)(H). On the �ber over Z 2 H,  is the surjetion:H0(P3;OP3(1)) - H0(Z;OZ(1))with kernel H0(P3;IZ(1)) the spae of homogeneous linear forms whih van-ish on Z. It orresponds to the surjetive morphism ' : H! G whih mapseah point Z to its assoiated line lZ .There are two speial lines W1;W2 � G whih are disjoint. A point li 2Wirepresents a line on the i-th ruling of Q, i = 1; 2. Denote by W the disjointunion of these speial lines, i.e. W = fl 2 G : l � Qg. Let V be the opensubset G�W .Lemma 1.2.2. The morphism ' is birational.
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Proof. The inverse map '�1 is well de�ned on the open subset V . It isgiven by '�1(r) = r \ Q, for all r 2 V . Sine G is the Hilbert shemeof lines in P3, there is a universal family ZG � G � P3. The morphism� : ZG\ (G�Q)! V is a at family of 0-dimensional length-2 subshemesof Q, then by the universal property of H, there exists a unique morphismV ! H whih has to be '�1. This shows that ' is birational.In partiular 1.2.2 says that there is an isomorphism between H� '�1(W )and G � W . If r 2 W then the inverse image '�1(r) is Sym2(r) �= P2,so that '�1(W ) is a Cartier divisor in H. Hene we have a ommutativediagram: H 9! � //'

##G
GGGGGGGG BlWG�

��Gwhere � is the blowup morphism.Lemma 1.2.3. The morphism � is an isomorphism.Proof. Sine both H and BlWG are smooth, � is an isomorphism if andonly if it is bijetive. It is obviously bijetive on V . To verify bijetivity onthe exeptional lous it is enough to look at the restrition�1 : '�1(W1)! ��1(W1) = P(NW1jG)If r 2 W1, then �1 : Sym2(r) ! P(NW1jG)r is a morphism from P2 intoitself. Then it is de�ned by a triple of homogeneous polynomials of somedegree n without ommon zeros. By expliit alulations it an be veri�edthat n = 1. This implies that the generi �ber of �1 is a point, i.e. �1 is abijetion.Theorem 1.2.4. The Hilbert sheme H is isomorphi to the blow up of theGrassmannian G along W .Proof. It follows from Lemmas 1.2.1, 1.2.2, 1.2.3.This result permits us to write the Chow ring of H by means of A�(G).The Chow ring of the GrassmannianWe reall the desription of A�(G) by Shubert yles [Ful℄ x14.7.Fix a ag in P3: p 2 r � � � P3where p is a point, r a line and � a plane. Then:. A0(G) has basis: �0;0 = fl 2 G : l \ � 6= ;g = [G℄
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. A1(G) has basis: �1;0 = fl 2 G : l \ r 6= ;g. A2(G) has basis: �1;1 = fl 2 G : l � �g, �2;0 = fl 2 G : p 2 lg. A3(G) has basis: �2;1 = fl 2 G : p 2 l � �g. A4(G) has basis: �2;2 = fl 2 G : p 2 l = rg = [pt℄Proposition 1.2.5. A�(G) is generated by �1;0; �2;0, as a Q-algebra. Thering struture is de�ned by the relations:�1;0�2;0 = �1;0�1;1 = �2;1 �21;0 = �1;1 + �2;0�22;0 = �21;1 = �1;0�2;1 = 1 �2;0�1;1 = 0Proof. See [G-H℄ Chap.1 x5.Seond desription of A�(H)In the following we will refer to the diagram:~Wk jk - HWk'k='jWk ? ik - G'?where ' is our blowup map, ik is the inlusion and ~Wk is P(NWkjG), fork = 1; 2. We denote by ~W the exeptional divisor ~W1 t ~W2. As in theprevious setion, to write down A�(H) we use the short exat sequene:0! A�(W )! A�(G)�A�( ~W )! A�(H)! 0So we have to alulate the quotient:A�(H) = A�(G)�A�( ~W )=A�(W )= A�(G)�A�( ~W1)�A�( ~W2)=A�(W1)�A�(W2) (1.4)We need to know the rings A�(Wk); A�( ~Wk). Wk is a projetive line thenA�(Wk) = A�(P1). Denote by lk the pullbak via 'k of the generator of thisChow ring.Lemma 1.2.6. Let �k = 1(N ~WkjH) be suh that its pullbak to a �ber '�1k (r)is represented by a line of degree �1. Let NWkjG be the normal bundle ofWk in G. Then:A�( ~Wk) = A�(Wk)[�k℄�3k +P3i=1(�1)i i(NWkjG) �3�ik = 0= Z[lk; �k℄(l2k; �3k � 6lk�2k) (1.5)
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Proof. As ~Wk is a projetivization of the vetor bundle NWkjG the lemmafollows by applying [G-H℄ p.606.By formula (1.4), we have the following desription of A�(H):A0(H) A1(H) A2(H) A3(H) A4(H)[H℄ = 1 �1;0 �1;1 �2;0 �2;1 �2;2�1 �3 �7�2 �4 �8�5�6The yle lasses are de�ned as:�r;s = '�(�r;s)�1 = j1�(1 ~W1) and j�1�1 = �1�2 = j2�(1 ~W2) and j�2�2 = �2�3 = j1�(l1)�4 = j2�(l2)�5 = j1��1�6 = j2��2�7 = j1�(l1�1)�8 = j2�(l2�2)There are two more yle lasses in odimension 3 whih we are interestedin: �9 = j1��21 and �10 = j2��22 .Remark 1.2.7. Note that the lass �li�i is represented by a line in the�ber of 'i over a point r 2Wi suh that '�i [r℄ = li, for i = 1; 2.Theorem 1.2.8. 1) As a Q-algebra A�(H) is generated by �1;0; �2;0; �1; �2.2) As a A�(G)-algebra A�(H) is equal to the quotient:A�(H) = A�(G)[�1; �2℄Rwhere R is the set of relations:�1 � �2 = 0�1 � �2;0 = �2 � �2;0 = 0�1 � (�21;0 � �2;0) = �2 � (�21;0 � �2;0) = 0�31 = 2�1;0�2;0 + 3�21�1;0�32 = 2�1;0�2;0 + 3�22�1;0
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Proof. The relations among the elements of the basis of A�(G) hold also forthe pulled bak elements in A�(H). Moreover:�3 = 12�1 � �1;0�4 = 12�2 � �1;0�5 = �21�6 = �22�7 = 12�21 � �1;0�8 = 12�22 � �1;0Then the statement 1) is true.Statement 2) follows from previous alulations.Finally the oeÆients for the intersetion pairing on H are:�1;2 �7 �8 �9 �10�1;0 1 0 0 2 2�1 0 1 0 6 0�2 0 0 1 0 6

�1;1 �2;0 �3 �4 �5 �6�1;1 1 0 0 0 0 0�2;0 0 1 0 0 0 0�3 0 0 0 0 1 0�4 0 0 0 0 0 1�5 0 0 1 0 6 0�6 0 0 0 1 0 6Remark 1.2.9. In 1.4.1 and 1.8.1 we will make expliit the relationshipbetween the two di�erent sets of generators of A�(H) we found.In x3.1 we will hoose the more onvenient basis of the Chow ring of Hin order to make easier alulations in the (Small) Quantum Cohomolgyring. The basis will onsist of elements taken from both the presentationsof A�(H) we gave.1.3 The ation of Aut(Q) on HLet A be the group of automorphisms of Q andM be the group of automor-phisms of P1, i.e. PGL(2). We denote by � = (�1; �2) an element inM�Mand by � : P1 � P1 ! P1 � P1 the involution de�ned by �(p; q) = (q; p). Thegroup A ats on Q and then on U . Blowing up the diagonal, the ation liftsto ~U . Sine H is the quotient of ~U by the involution, we have an induedation of A on it. In this setion we study this indued ation and exploitit to get a transversality result.Proposition 1.3.1. The onneted omponent A0 � A ontaining the iden-tity is exatly M�M.
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Proof. There exists an embedding Q ! P3 given by a multiple of the anti-anonial divisor, i.e. suh that P3 = P(H0(Q;�12KQ)). Any element of Aats on P3 too (sine KQ is anonial). This implies that:A = f� 2 PGL(4) : �(Q) = QgA is smooth beause we work in harateristi zero, and TA is a trivialbundle so dim A0 = dim TA;Id. To prove the statement it is enough to showthat the tangent spae TA;Id is 6-dimensional as well as M�M.If we think of Q as the set fv 2 P3 : tv � v = 0g, an element of PGL(4) in Ahas to satisfy F (A) = tA � A � �Id = 0. Hene an element of the tangentspae TA;Id is of type Id + sB (mod s2) with B 2 M(4 � 4) and it has toful�l: F (Id+ sB) � 0 (mod s2) (1.6)Put ~F (A) = tA �A� Id = 0. We an onsider the following equation whihis equivalent to (1.6), up to salars:~F (Id+ sB) = s( tB +B) = �Id for B 2M(4� 4)In order to have a solution, �must be divisible by s, that is to say there existsa 2 C suh that tB+B = a�Id. Consider the map ' :M(4�4)!M(4�4),de�ned by mapping a matrixB into the sum tB+B. It is easy to see that theinverse image under ' of the subgroup generated by the identity matrix is 7-dimensional. Hene the tangent spae TA;Id is 6-dimensional. We onludethat A0 has the same dimension as M�M, then they oinide.Note that A0 6= A sine � 2 A is not an element of A0. In fat it is easy tosee that the group A has exatly two onneted omponents: A0 and �A0.Desription of the orbits for the A-ationWe give a desription of the orbits with respet to the A-ation on thevarieties under onsideration. We have three orbits on U :�1 = f(p; q)� (a; b) : (p; q) = (a; b)g = Æ�2 = f(p; q)� (a; b) : p = a; q 6= bg [ f(p; q)� (a; b) : p 6= a; q = bg�3 = f(p; q)� (a; b) : p 6= a; q 6= bgwhere p; q; a; b are points on P1.The lifted ation on ~U has the exeptional divisor ~Æ (orresponding to theorbit �1) as invariant lous. Moreover ~Æ is the disjoint union of two orbits:~Æ1 = fZ : Supp Z = p; lZ 2 Qg~Æ2 = fZ : Supp Z = p; lZ =2Wi; i = 1; 2gNote that in turn ~Æ1 is the disjoint union of two losed subsets:~Æi1 = fZ : Supp Z = p; lZ 2Wig; i = 1; 2
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H is the quotient of ~U by the involution so we have four orbits on it:�2 ( ~Æ1) �3 ( ~Æ2) �3 ( �2) �4 ( �3)Here indexes are hoosen equal to the dimensions of the orbits. We an givea desription of them:�4 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ * Qg�3 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ � Qg�3 = fZ 2 H : Supp Z = p; lZ * Qg�2 = fZ 2 H : Supp Z = p; lZ � QgThe losed orbit �2 is the disjoint union of two losed subvarieties �i2,i = 1; 2, orresponding to ~Æi1 in ~U .The losure �3 = �2 t�3 is the subvariety of H of non-redued points, i.e.Z suh that Supp Z is only one point.The orbit �3 is the disjoint union �13 t �23 where�i3 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ 2WigIn partiular the losures �13, �23 are the two exeptional divisors ~W1, ~W2respetively, of the blowup map ' : H! G. Hene the losure �3 is equalto the disjoint union ~W1 t ~W2.Finally the orbit �4 is open and dense in H.These orbits form a strati�ation of H:�2
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||�4where an arrow A! B means A � B.A transversality resultThe ation of A is obviously transitive on eah orbit, but not on H. Wesay that H is an almost-homogeneuos spae sine it has a �nite number oforbits for the A-ation and they form a strati�ation. Note that the ationis transitive on H� (�3 [ �3).A slightly modi�ed version of the Kleiman-Bertini theorem holds for almosthomogeneous spaes and gives us a transversality result.
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Lemma 1.3.2. (Position Lemma) Let A be a smooth, almost-homogeneousspae under the ation of an integral group G, f : B ! A a morphism withB smooth. Let � be a smooth yle on A whih intersets the strati�ationproperly, and �reg be the lous in � where the intersetion with the strati�-ation is transversal. Then:1. for a generi g 2 G, f�1(g�) is of pure dimension equal to the expetedone;2. the open set (possibly empty) f�1(g�reg) is smooth.For a proof of this lemma see [Gr℄ Lemma 2.5.Remark 1.3.3. If in the hypotheses of 1.3.2 we do not ask B smooth butonly pure dimensional we an onsider its desingularization � : ~B ! B.Then by applying the Position Lemma to the omposition map ~f : ~B ! A weget that od ( ~f�1(g�) � ~B) is the expeted one, i.e. equal to od (g� � A).Sine: od ( ~f�1(g�) � ~B) � od (f�1(g�) � B)we have that 1.3.2-1) holds with the inequalityod (f�1(g�) � B) � od (g� � A)Remark 1.3.4. The group A is not integral, so we an not apply the Posi-tion Lemma for anyA-ation. But we an onsider the onneted omponentA0 � A ontaining the identity. Note that it de�nes a strati�ation of Hwith six orbits: �12
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}}�41.4 Divisor lasses of HWe want to desribe the Piard group Pi (H). We need to hoose betweenthe two possible sets of generators of A1(H) we presented in the previoussetions. To do this we introdue some 3-odimensional yle lasses with\good" intersetion properties.
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Geometrial desription of the divisor lassesIn x1.1 we showed that S1; S2; S10 generate A1(H). We know a geometridesription for eah of these divisor lasses:- S1 = [fZ : Supp Z \ l1 6= ;; l1 2W1 �xed lineg℄- S2 = [fZ : Supp Z \ l2 6= ;; l2 2W2 �xed lineg℄- 2S10 = [fZ : Supp Z = ptg℄In x1.2 the generating divisor lasses are �1;0; �1; �2. The �rst lass an berepresented by the irreduible subvariety fZ : lZ \ r 6= ;; r � P3 given lineg.The lasses �i, i = 1; 2 are suh that their restrition to a �ber of the blowupmaps 'i; i = 1; 2, is represented by a line in the plane Sym2(li) for someli 2Wi, with struture sheaf OSym2(li)(�1) (see x1.2 for notations).Note that given a projetive line l, Sym2(l) is the Hilbert sheme Hilb2(l).The hoie of a basis for A1(H) and A3(H)We de�ne three 3-odimensional yle lasses and alulate their intersetionprodut with all of the divisors.Fix a point l1 2 W1 and let C(l1) be a line in the plane Sym2(l1). Wewant to stress that all the points Z of H ontained in C(l1) are suh thatSupp Z � l1. We denote by C1 the orresponding yle lass in A3(H). Wedo the same for the lass C2. Finally �x a point p0 2 Q and onsider theline C(p0) = P(TQ;p0) = fZ : Supp Z = p0g. Let F be the orrespondingyle lass in A3(H). The urves C(l1); C(l2); C(p0) are e�etive in H. Wehave the following intersetion produts:S10 S2 S1 �1;0 �1 �2C1 1 1 0 0 �1 0C2 1 0 1 0 0 �1F �1 0 0 1 1 1From now on we will use the following notations:- generators of A1(H): T1 := S1, T2 := S2, T3 := �1;0- generators of A3(H): C1, C2, FT1 T2 T3C1 0 1 0C2 1 0 0F 0 0 1Throughout this work the symbol (a; b; ) will be intended as a urve in Hof lass aC1 + bC2 + F .
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Remark 1.4.1. From the �rst table we obtain:�1 = T3 � T2; �2 = T3 � T1; S10 = T1 + T2 � T3:Remark 1.4.2. We desribedH as the blowup ofG alongW , so we an usethe formula given in [G-H℄ p.608 to alulate the �rst Chern lass 1(TH):1(TH) = '�1(TG)� (n� k � 1) ~Wwith n =dim G = 4; k =dim W = 1. By 1.4.1 we obtain:1(TH) = 2(T1 + T2)The following proposition gives a omplete desription of the one of e�etiveurves in H.Proposition 1.4.3. An e�etive urve in H is of lass aC1+bC2+F witha; b;  � 0.Proof. The proof onsists of two steps. First we show that the linear sys-tems assoiated to T1; T2; T3 are base-points-free and then we look at theirintersetion produt with the e�etive lasses C1; C2; F .The linear system assoiated to T3 is obviously base-points-free, beause T3is the pullbak of an ample divisor lass of G. Let Dli 2 jTij, i = 1; 2, bethe divisor represented by the setfZ 2 H : Supp Z \ li 6= ;; li 2Wi �xed linegGiven a point Z 2 H, we have two possibilities for its support either itonsists of a single point p or of two distint points p; q. In both ases thereexists a divisor Dli with Z =2 Dli . In fat it is enough to hoose li 2 Wisuh that either p =2 li or li 2 Wi � fli(p); li(q)g, with li(p); li(q) the onlylines in Wi through p and q respetively. This shows that also T1; T2 arebase-points-free divisor lasses.The intersetion produt between an arbitrary e�etive urve and a base-points-free divisor is always non-negative. Sine:C1 � T2 = 1; C2 � T1 = 1; F � T3 = 1and all other possible intersetions give zero, an e�etive urve in H is oflass aC1 + bC2 + F with a; b;  � 0.1.5 The lous � of non-redued points of HIn x1.3 we desribed the losure �3 as the set of non-redued points of H.Sine it is losed and 3-dimensional, it is a divisor. Let us denote it by �.We will use the same notation also for the assoiated yle lass in A1(H)and we will refer to it as to the diagonal of H. In this setion we will givea omplete desription of suh a divisor and of its Chow ring.
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Geometrial desriptionAs a divisor lass in H, the diagonal � is ���, hene by 1.1.1 and 1.4.1:� = 2S10 = 2(T1 + T2 � T3) (1.7)This means that � = ~Æ = P(TQ). In partiular there exists a map s : �! Qwhih is a P1-bundle. It maps a non redued point to its support so we willall it the support map. We dedue that � is irreduible. Obviously it isinvariant for the A-ation.It will be useful for our subjet to know how the intersetion of � with a �berof the blowup morphism ' looks like. Then all D the image of � in G via'. It is a union D0tD1, where D0 = fl 2 G : l\Q = ptg and D1 =W1tW2are disjoint. The inverse image '�1(D0) is the orbit �3 isomorphi to D0while for eah l 2 D1, '�1(l) is the intersetion Sym2(l) \ �. We want todesribe the inlusion map:P1 �= Sym2(l) \� ,! Sym2(l) �= P2Proposition 1.5.1. The diagonal � de�nes a oni in a �ber over the blownup lous.Proof. We an look at Sym2(l) as at the spae of all the quadrati forms onthe 2-dimensional vetor spae V de�ning l up to salars. Then Sym2(l)\�is the spae of linear forms on the same vetor spae V , up to salars. Theinlusion map has to be de�ned by mapping a form f to the square powerf2, i.e. into the sublous of quadrati forms with a unique root. This impliesthat the inlusion maps a point (x : y) 2 P1 to the point (x2 : xy : y2) 2 P2.This de�nes a oni in the plane Sym2(l).Chow ring and e�etive urves in �We will refer to the following ommutative diagram:� j - ~U pr1 -pr2 - Q��id? i - H� ?Note that p1 Æ j = p2 Æ j is the support map.In 1.1 we have already alulated the Chow ring A�(P(TQ)) = A�(�), werefer to that setion for notations. A basis is given by:A0(�) A1(�) A2(�) A3(�)[�℄ h1 h1� h1h2�h2 h2�� h1h2
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The lasses h1�; h2� are the liftings of the two rulings on Q and h1h2 is thelass of a �ber of s, (here we identify hi = s�(hi)). The sets:L1 = fZ = (p; v) : p 2 lZ = l1; l1 2W1 given lineg �= l1L2 = fZ = (p; v) : p 2 lZ = l2; l2 2W2 given lineg �= l2L3 = fZ = (p0; v) : p0 �xed pointg = P(TQ;p0)are e�etive urves in �. Moreover, they are suh that the orrespondinglasses in A1(H) are the Poinar�e dual lasses of 2C1; 2C2; F , sine � de�nesa oni on a �ber Sym2(li); i = 1; 2, and F is the lass [P(TQ;p)℄ for somep 2 Q. In partiular A1(�) is generated by these e�etive lasses.Finally we want to desribe the e�etive urves in H whih are atuallyompletely ontained into �. We need to �nd a relationship between thedivisor lasses in � and the pullbaks i�T1, i�T2, i�T3.Proposition 1.5.2. We an write:Pi(�) = h12T1; 12T2; T3iwhere Tj = i�Tj, by abuse of notation.Proof. Note that by de�nition:h1 = j�p�1(h1) = j�(h1 
 1) = 12j�����(h1 
 1) = 12j�(h1 
 1 + 1
 h1)Aording to our notation h1 
 1 + 1 
 h1 = ��T1 in ~U , so we onludeh1 = 12 i�T1 and by symmetry h2 = 12 i�T2. Then it is easy to verify that theintersetion produt gives: i�T1 i�T2 i�T3L1 0 2 0L2 2 0 0L3 0 0 1The thesis follows.Remark 1.5.3. By the adjuntion formula and 1.4.2 we get:1(T�) = 1(H)j� ��j� = 2T3Proposition 1.5.4. The e�etive urves in H whih are ontained into �are of type (a; b; ) with a; b;  � 0 and a; b even.Proof. Let C � � be an e�etive urve of lass (�; �; ), then i�C is ane�etive urve in H of lass (a; b; ) for some non negative integers a; b; .By the projetion formula, deg�12T1 � C = a2 is an integer number equal to�, hene a is even. The same is true for b, by symmetry.
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1.6 The divisor �In this setion we study the losure of the 3-dimensional orbit �3. We willdenote it by � throughout this work. It is the divisor given by the disjointunion ~W1t ~W2 of the two exeptional divisors of the blowup map ' : H! G,(see x1.3). Eah ~Wi is isomorphi to P2�P1 beause it is the relative Hilbertsheme Hilb2(Q=P1).Chow ring of ~Wi and e�etive urves in �Note that ~W1 and ~W2 are ompletely symmetri, so let us onsider only ~W1.We have a good desription of ~W1 as a divisor in H (see 1.4.1) and of itsChow ring by (1.5). In partiular:~W1 = �1 = T3 � T2Pi( ~W1) = hl1; �1iA1( ~W1) = h�l1�1; �21iProposition 1.6.1. We an write:Pi( ~W1) = hT3 � T2; 12T3iwhere Ti = j�1Ti, by abuse of notation.Proof. By de�nition j�1�1 = �1 and as one an easily hek j�1T3 �(�l1�1) = 0,j�1T3 � �21 = 2.Remark 1.6.2. By the adjuntion formula and 1.4.2, the �rst Chern lasses1(T ~W1); 1(T�) are:1(T ~W1) = 1(TH)j ~W1 � ~W1j ~W1 = 3T2 + T31(T�) = 1(TH)j� � ( ~W1 + ~W2)j� = 3(T1 + T2)� T3As in the previous setion we are interested in the e�etive urves in Hwhih are the pushforward of e�etive urves in �. So we need to know thee�etive one of �, i.e. of ~W1 and ~W2.Proposition 1.6.3. The e�etive one in ~W1 is generated by �l1�1 = (1; 0)and 4(�l1�1) + �21 = (4; 1).Proof. The inlusionmap j1 indues a ring homomorphismA1( ~W1) (j1)�- A1(H).The lasses �(j1)�l1�1; (j1)��21 are suh that:T1 T2 T3�(j1)�l1�1 0 1 0(j1)��21 2 4 2
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It follows that �(j1)�l1�1 = C1 and (j1)��21 = �4C1 + 2C2 + 2F . So thepushforward map is de�ned by:(j1)�(�ah1�1 + b�21) = (a� 4b)C1 + 2bC2 + 2bC3Suppose that �ah1�1 + b�21 is an e�etive urve, sine (j1)� maps e�etiveurves to e�etive urves, it holds:a � 4b; b � 0We already know that a urve of lass �h1�1 = (1; 0) is e�etive, sine it isa line in a �ber of '1 (see 1.2.7). We have to look for a seond generator ofthe e�etive one in ~W1. Let us �x two lines l02; l002 2 W2 and let C be thefollowing urve:fZ : Supp Z = fp; qg; 9 l1 2W1 with p = l1 \ l02; q = l1 \ l002gIt is isomorphi to W1. Write [C℄ = �al1�1 + b�21 , then:(j1)�[C℄ � T3 = 2b = 2) b = 1(j1)�[C℄ � T2 = a� 4b = 0) a = 4(j1)�[C℄ � T1 = 2b = 2The last equality tells us that C intersets a divisor in jT1j in a point withmultipliity. Sine C is e�etive, we �nd that the e�etive one in ~W1 is theset fa(1; 0) + b(4; 1) : a; b � 0g.Proposition 1.6.4. The e�etive urves in H whih are atually e�etiveurves in ~W1 are of lass (a; b; ) with a; b;  � 0; b =  even.Symmetrially, the e�etive urves in H ontained into ~W2 are of lass(a; b; ) with a; b;  � 0; a =  even.These onditions desribe all e�etive urves in H ontained into �.Proof. It is enough to write the homomorphism Aeff1 ( ~W1)! Aeff1 (H):N(1; 0) � N(4; 1) (j1)�- NC1 � NC2 � NF(1; 0) 7! C1(4; 1) 7! 2C2 + 2Fa(1; 0) + b(4; 1) 7! aC1 + 2bC2 + 2bF
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1.7 Desription of some e�etive urvesWe desribe all the e�etive onneted urves in some yle lasses in A1(H).In the following hapters we will make expliit alulations on the modulispaes of stable maps involving suh urves.Notations : if A1; A2; : : : ; An are lasses in A1(H) we will say that an e�e-tive urve has lass A1 [A2 [ : : : [An to mean that these are the lasses ofits irreduible omponents (eventually ounted with multipliity). A linearombination A1+A2+ : : :+An will denote the lass of an irreduible urve.All the oeÆients are understood to be non-negative.If p 2 Q is a point we will denote by li(p) the unique line of the i-ruling onQ going through p.We will use Propositions 1.5.4 and 1.6.4 without expliit referene through-out.Curves of lass (0; 0; )i) Given a point p0 2 Q, the urve C(p0) = P(TQ;p0) is of lass (0; 0; 1),(see x1.4). In partiular it is entirely ontained into �, beause it is a�ber of the support map s : �! Q. Note that eah point Z 2 C(p0)has support Supp Z = p0. Conversely a urve of lass (0; 0; 1) isirreduible and ontained into �. Its pushforward to Q is zero. Heneit is ompletely ontained in a �ber of the support map s, sine it isonneted. This shows that all the urves of suh a lass look likeC(p0) for some p0 in Q. Moreover also a urve of lass (0; 0; ) isontained into �. It is a -over of a C(p0) urve. The intersetionprodut gives: (0; 0; ) �� = �2(0; 0; ) � � = 2Curves of lass (1; 0; ), (0; 1; )Sine the lasses (1; 0; ); (0; 1; ) are symmetri under the involution we ananalyse only one of them. We hoose (1; 0; ).ii) A urve of lass � = (1; 0; 0) is neessarily irreduible.Let ~' : H! BlW1G be the natural map. Then ~'�(1; 0; 0) = 0. Heneif C has lass (1; 0; 0) it must be ontained in a positive dimensional�ber of ~'. Suh a �ber is Hilb2(l1) for some l1 � Q, so C is a linein it. We denote it by C(l1), (see x1.4). All Z 2 C(l1) are suh thatSupp Z � l1. The intersetion produt gives:(1; 0; 0) � ~W1 = �1 (1; 0; 0) � ~W2 = 0
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It is ontained into ~W1. It intersets the diagonal � in at most twopoints, sine � restrited to the �ber of the blowup map ' : H ! Gover l1 is a oni (see x1.5).iii) Fix a point p1 2 Q and a line l1 2 W1 suh that p1 =2 l1. The urveC(p1; l1) = fZ 2 H : Supp Z = (p1; q); q 2 l1g is irreduible of lass� = (1; 0; 1) = C1 + F . It is disjoint from �. Sine:(1; 0; 1) � ~W1 = 0 (1; 0; 1) � ~W2 = 1we onlude that it is disjoint from ~W1 and not ontained into ~W2 (byx1.6). It intersets � in a unique point Z = (p1; l1 \ l2(p1)) 2 ~W2. Itis easy to see that these are all the possible irreduible urves of thislass. In fat let C be an irreduible urve of lass (1; 0; 1). Sine it isdisjoint from � we an onsider the urve ~C de�ned by the artesiandiagram: ~C ,! ~U bl- U = Q�Q�C? ,! H�?Also ~C is disjoint from �, then it is isomorphi to the image urvebl( ~C). We an identify them and work on U .~C has lass h1
h3+h3
h1 on U (see Lemma 1.1.3 for notations). Itis symmetri under the natural involution. If it has two omponentsthen these are of lass h1 
 h3, h3 
 h1 respetively. This implies thatC is a urve C(p1; l1) for some p1 2 Q, l1 2W1, p1 =2 l1.If ~C has only one omponent then there is a morphism ~C ! l1, gener-ially of degree 1, for some l1 2 W1. By symmetry, we onlude thatit is an irreduible urve ontained in l1 � l1 suh that it does notintersets the diagonal. This is impossible.Let (1; 0; 1) be the lass of a reduible urve C. Then C is the unionC(l1) [ C(p) for some l1 2 W1 and p 2 l1 with p 2 C(l1) \�j'�1(l1).It is ontained into � [ �.iv) A urve of lass � = (1; 0; ),  � 2, an be written as a union ofirreduible e�etive omponents. A priori we have three possibilitiesto do that:- C1 + F is the lass of an irreduible urve;- C1 [ 1F [ 2F with 1 + 2 = - (C1 + 1F ) [ 2F with 1 + 2 = The �rst ase implies that a (C1 + F )-urve is ontained into � andthis is impossible beause 1 is odd (see x1.5). So the third one is alsoimpossible beause we know that if 1 = 1, a (C1 + F )-urve does notinterset �. The seond deomposition represents urves with support
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C(l1)[C(p)[C(q) or C(l1)[C(p) for some l1 2W1 and p; q points inC(l1) \�j'�1(l1). We onlude that for  � 2 there are only reduibleurves of lass (1; 0; ) entirely ontained into � [ �.Remark 1.7.1. To have a desription of urves of type (0; 1; ) it is enoughto interhange eah l1 appearing in the above disussion with a line l2. Inpartiular, �xing p2 2 Q and l2 2W2 suh that p2 =2 l2:C(p2; l2) = fZ 2 H : Supp Z = (p2; q); q 2 l2gis an irreduible urve of lass (0; 1; 1) = C2 + F and all suh urves are ofthis kind.Curves of lass (1; 1; )v) Conneted urves of lass (1; 1; 0) do not exist. In fat if the urveis reduible then it is a union C(l1) [ C(l2), but suh urves annotinterset. If it is irreduible, then it is ontained into �, sine(1; 1; 0) � � = �2but this is impossible by what we showed in x1.6.vi) Let C be a reduible urve of type (1; 1; 1). We have three possibledeompositions:- C1 [ C2 [ F is represented by a urve ontained into � [ � of theform C(l1(p)) [ C(l2(p)) [ C(p) with p a point of Q;- (C1 + F ) [ C2 is the lass of a urve C(p; l1) [ C(l2(p)) for a givenline l1 and a given point p 2 Q, with C(l2(p)) a line in Hilb2(l2(p))passing through (p; q); q = l1 \ l2(p);- (C2 + F ) [C1 similarly.If C is irreduible, then it intersets � in two points with multipliityand it is disjoint from �, in fat:(1; 1; 1) �� = 2 (1; 1; 1) � � = 0There are two possible families of irreduible urves of lass (1; 1; 1).In fat let C be irreduible of suh a lass and onsider the blowupmorphism ' : H ! G. The image urve '(C) is isomorphi to Cbeause C is disjoint from �, and we an identify them. It is of lass�2;1, then we know a geometrial desription of it (see x1.2). Fix aplane � � P3 and a generi point q 2 �, q =2 Q. Then the intersetion� \Q is a oni. There are two possibilities: the plane is generi andthe oni is irreduible or � is tangent to Q at a point p and the oniis the union l1(p) [ l2(p). In the �rst ase C orresponds to a line
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in Hilb2(� \ Q) whose points are the losed subshemes Z suh thatSupp Z � (� \Q), q 2 lZ . We will denote it as follows:�(l) = fZ 2 H : Z 2 l; l � Hilb2(� \Q) a linegIn the seond ase we get an irreduible urve determined by hoosinga plane tangent to Q and a point q 2 � suh that q =2 � \ Q. Itspoints are the losed subshemes Z suh that Supp Z \ l1(p) 6= ;,Supp Z \ l2(p) 6= ; and q 2 lZ . Suh a urve has only 4 moduli, whilethe expeted dimension is 5.The lass C1 +C2 + F an be represented by a urve �(l).vii) If a urve of lass (1; 1; 2) is reduible, we have:- C1 [ C2 [ 1F [ 2F with 1 + 2 = 2 is the lass of some urveC(l1(p)) [C(l2(p)) [ 1C(p)[ 2C(q) with q the support of a point inC(li) \�j'�1(li) for i = 1 or 2. Suh a urve is ompletely ontainedinto � [ �;- (C1+F )[ (C2+F ) is either the lass of C(p1; l1(p2))[C(p2; l2(p1)),with p1 6= p2, or C(p; l1) [ C(p; l2) with l1; l2 not passing through p.Note that eah omponent is not ontained into � [ �;- (C1 + F ) [ C2 [ F with C1 + F = [C(p1; l1)℄, C2 the lass of a linein Hilb2(l2(p1)) through (p1; l2(p1)\ l1) and F = [C(q)℄ where q is thesupport of Z 2 C(l2) \�j'�1(l2);- (C2 + F ) [ C1 [ F similarly;- (C1 +C2 + F )[ F is the lass of a urve �(l) [C(p) with p 2 l \�.If a urve of type (1; 1; 2) is irreduible, then it is disjoint from �, andnot ontained into �:(1; 1; 2) �� = 0 (1; 1; 2) � � = 2By onsidering the pushforward to the produt Q�Q, it an be shownthat there are only two possible families of irreduible urves of lass(1; 1; 2). The �rst one is:�(p) = fZ 2 H : p 2 Supp Z;� \Q \ Supp Z 6= ;gwhere p is a �xed point of Q and � � P3 a given generi plane, p =2 �.The seond one is determined by the following data: one �xes twolines l1 2 W1 and l2 2 W2 on Q with p = l1 \ l2 and an isomorphismf : l1 ! l2 suh that f(p) 6= p. The urve is:C(l1; l2; f) = f(q; f(q)) : q 2 l1gIt is isomorphi to P1 and intersets � in (p; f(p)) and (f�1(p); p).viii) For  > 2, irreduible urves of type (1; 1; ) do not exist, beause theyshould be ontained into � being:(1; 1; ) �� = 2� 2 < 0 (1; 1; ) � � = 2� 2
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So they are reduible and beause of onnetedness they an onlydeompose as:- C1 [C2 [ 1F [ 2F [ 3F with 1 + 2 + 3 = ;- (C1 + F ) [C2 [ 1F [ 2F with 1 + 2 = � 1;- (C2 + F ) [C1 [ 1F [ 2F as above;- (C1 + C2 + F ) [ 1F [ 2F with 1 + 2 = � 1.All the urves representing these lasses are not ompletely ontainedinto � [ � but the �rst one.Remark 1.7.2. Note that irreduible urves of lass C1+F , C2+F , C1+C2 + F interset the strati�ation properly.Curves of lass (2; 0; ), (0; 2; )We onlude with the desription of the onneted urves of lass (2; 0; ),(0; 2; ). As before these lasses are symmetri under the natural involution,so we study only the lass (2; 0; ).ix) A urve of lass (2; 0; 0) is always ontained into �. It an be repre-sented by a oni in the plane Hilb2(l1) for some l1 2 W1. So it anbe irreduible or not. The intersetion produt gives:(2; 0; 0) �� = 4 (2; 0; 0) � � = �2x) There are no irreduible urves of lass (2; 0; 1), beause the interse-tion produt with ~W1 gives �1, but suh a urve an not be ontainedinto ~W1 beause 1 6= 0 is odd. We have only one possibility for areduible urve, it is a union of two omponents of lass 2C1 and Frespetively, hene it is ompletely ontained into � [�.xi) If a (2; 0; 2)-urve is reduible we have two possibilities:- 2C1 [ 1F [ 2F with 2C1 the lass of a oni in some Hilb2(l1) and1+2 = 2; the orresponding urve is ompletely ontained into �[�;- (C1+F )[(C1+F ) is the lass of a urve C(p1; l1(p2))[C(p2; l1(p1)),p1 6= p2, by onnetedness. It is disjoint from � and not in �.Sine we have:(2; 0; 2) �� = 0 (2; 0; 2) � � = 2 (2; 0; 2) � ~W1 = 0an irreduible and redued urve of lass 2C1 + 2F is disjoint from~W1 and it an be ontained into �. In fat, denote by F2 the inverseimage of a �xed l1 � Q via the support map s : � ! Q. Then F2is the rational ruled surfae de�ned by the sheaf O � O(�2) on P1.There exist irreduible urves C � F2 of type D1+2D3, with D3 = Fthe lass of a �ber of s and L(D1) �= OF2 (1), [Har℄ Chap.V Cor. 2.18.Moreover we know that 2C1 + 2F = D1 + 2D3 in �.
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We do not know a geometri desription of suh a urve. We an onlysay that if it is not ontained into � then it is disjoint from it.Irreduible non redued urves of lass 2(C1 + F ) are disjoint from �and not ontained into �, their image in H is the same image of theorresponding (C1 + F )-urves.xii) Irreduible urves of lass (2; 0; );  � 3 are all redued and ontainedinto �, in fat:(2; 0; ) �� = 4� 2 < 0 (2; 0; ) � � = 2� 2The reduible ones an be deomposed as:- 2C1[1F [2F [3F [4F withP i = , this is the lass of a urveompletely ontained into � [ �;- (2C1 + 1F ) [ C, where C is the union of an opportune number oflasses iF , i � 2, with Pi�1 i = ; 1 � 2.1.8 Subshemes inident to a given pointWe onlude the hapter with the desription of a 2-odimensional yle onH whih is of great interest for our work.Let �(p) be the set f[Z℄ 2 H : p 2 Supp Z; p 2 Q given pointg. It is theblowup of Q in p, so it is smooth and 2-dimensional. It represents the lassS3 2 A2(H). We �x one for all the following notation T4 := S3 = [�(p)℄.Lemma 1.8.1. Then: T4 = �2;0 � �3 � �4Proof. Consider the restrition ' of the blowup map ' : H! G to �(p):H ' - G[ [�(p) '- �2;0(p)�= P2Let V = �2;0(p)nfl1(p); l2(p)g, where l1(p); l2(p) are the two lines in Qthrough p. We have:- ' : �(p)! �2;0(p) is surjetive- ' : '�1(V )! V is an isomorphism�(p) ontains an open dense subset isomorphi to V via '. For k = 1; 2 theintersetion �(p)\'�1(lk(p)) is the line fZ 2 Sym2(lk(p)) : p 2 Supp Zg. So�(p) is isomorphi to the blowup of the projetive plane in two points. Notethat we have the following sheme-theoretial deomposition in irreduible
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omponents '�1(�2;0(p)) = '�1(V ) [ '�1(l1) [ '�1(l2).Sine ['�1(lk(p))℄ = �k+2, with k = 1; 2, we have:�2;0 = [�(p)℄ + �3 + �4Hene the lemma is proved.Remark 1.8.2. Sine the degree of T 24 in H is half the degree that it hasin ~U (see 1.1.1), we dedue that T 24 2 A4(H) is the lass of a point.Remark 1.8.3. For any p 2 Q the yle �(p) intersets the strati�ationproperly. In fat �(p) \ �4 �= Q � (l1(p) [ l2(p)) is obviously a properintersetion and �(p) \ �2 = f(p; Tl1(p);p); (p; Tl2(p);p)g is 0-dimensional.Sine these intersetions are non-empty, it is also satis�ed �(p) * �3 t�3.We set �reg to be the lous of �(p) where the intersetion with the strati�-ation is transversal.Lemma 1.8.4. Given a point p 2 Q, the lous �reg is the open subset of�(p) of points with redued support.Proof. We �rst prove that �k2 \ �(p), k = 1; 2, is not transversal. �k2 is asurfae in ~Wk, it is the pullbak of the diagonal � via the inlusion mapjk : ~Wk ,! H. Then it is a divisor in ~Wk. By the projetion formula weobtain �k2 = 4lk � 2�k. It is easy to verify that �(p) intersets �k2 only inone point, but the degree of the intersetion produt T4 � (jk)��k2 in H is 2,this means the intersetion is not transversal.We now onsider the intersetion �(p) \ �3. Sine �3 is open in � and� = ~W1t ~W2, we an work with a divisor ~Wk. The quotient map � : ~U ! His an isomorphism between Q � Q � Æ and H � �. The inverse image��1(�(p) � (�(p) \�)) is isomorphi to the disjoint union of two opies ofQ� p. So in order to study the di�erential of the map �(p)! H away from� it is enough to study the di�erential of Q � p ! Q � Q � Æ de�ned byq 7! (p; q). As Q = P1 � P1 we an hoose oordinates on both P1's so thatthe above map beomes:A 2 � f(p1; p2)g - A 4(q1; q2) 7! (p1; p2; q1; q2)where p = (p1; p2). We denote by x1; x2; y1; y2 the oordinates on A 4 . Then��1( ~Wk) is the set f(x1; x2; y1; y2) : xk = ykg in A 4 so that the tangentspae T(p;q) ~Wk is the 3-dimensional aÆne spae de�ned by the equationxk � yk = 0. Besides �(p)�� is the set f(x1; x2; y1; y2) : x1 = p1; x2 = p2g,so it is isomorphi to A 2 and the tangent spae T(p;q)(�(p) � �) is the 2-dimensional aÆne spae de�ned by the equations x1 = 0; x2 = 0. Then foreah (p; q) 2 �(p) \ ~Wk ��, the spae T(p;q)(�(p) ��) is not ontained inT(p;q) ~Wk, that is to say �(p) intersets �3 transversally.
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Finally onsider the losed immersion f : Q ! Q � Q, f(q) = (p; q). By[Har℄, Chap.II Cor. 7.15, there is a unique losed immersion ~f suh that thefollowing diagram is ommutative:BlpQ ~f - ~U � - H	Q? f- Q�Q?where BlpQ = ��1(�(p)). Let y1; : : : ; y4 be loal oordinates in H andx1; : : : ; x4 loal oordinates in ~U suh that the diagonal � is the zero lousfy4 = 0g and ~Æ = fx4 = 0g. Then the quotient map � : ~U ! H is given by�(x1; : : : ; x4) = (x1; x2; x3; x24) and the di�erential d� has matrix:0BB� 1 0 0 00 1 0 00 0 1 00 0 0 2x4 1CCAFor eah (p; v) 2 ��1(�), the image d�p(T(p;v) ~U) is ontained into T�(p;v)�.As ~f is a losed immersion and �3 is open dense in �, it follows that �(p)does not interset �3 transversally.
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Chapter 2Gromov-Witten InvariantsThis hapter is devoted to desribing the more general set-up in whih onean de�ne the Gromov-Witten Invariants. Moreover we present some resultsabout the way of omputing some partiular invariants we will need in thefollowing.2.1 Moduli spae of stable mapsFix a smooth projetive variety X and a lass � 2 A1(X).De�nition 2.1.1. A n-pointed stable map to X of type � onsists of thefollowing data:- a onneted projetive redued urve C with at most ordinary doublesingular points, arithmeti genus g and n � 0 pairwise distint non-singular marked points x1; : : : ; xn;- a map � : C ! X suh that ��[C℄ = �,suh that the tuple (C; x1; l : : : ; xn;�) has only �nitely many automorphisms.There is a Deligne-Mumford stak Mg;n(X;�), alled the moduli spae ofstable maps, whih is a �ne moduli spae parametrizing these maps (see[B-M℄). We will denote its points by [C; x1; : : : ; xn; �℄.Let Mg;n(X;�) be the open substak parametrizing the stable maps fromsmooth irreduible urves, we an think ofMg;n(X;�) as a ompati�ationof this subspae even ifMg;n(X;�) does not need to be dense inMg;n(X;�).The moduli spae of stable maps omes equipped with some natural mor-phism. For eah marked point one an de�ne:evi :Mg;n(X;�)! Xby evi[C; x1; : : : ; xn; �℄ = �(xi). We will denote by:ev = (ev1; ev2; : : : ; evn)29
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the morphism mapping to Xn and all it the evaluation map.The at morphism: � :Mg;n+1(X;�)!Mg;n(X;�)whih forgets the last marked point and eventually stabilizes the urve,realizes Mg;n+1(X;�) as the universal urve over Mg;n(X;�), with evn+1the universal map to X: Mg;n+1(X;�) evn+1- XMg;n(X;�)�?In partiular, for eah subset I of the index set f1; : : : ; ng one an de�ne ananalogous map forgetting only the points labelled by I. It is a omposition ofuniversal families, then it is at of relative dimension equal to the ardinalityof I. We are prinipally interested in the ase I = f1; : : : ; ng and we willdenote suh a map again by �.Finally for n+ 2g � 3 � 0 there is a morphism:Mg;n(X;�)!Mg;nwhih simply forgets the map and stabilizes the urve if neessary. LetMg;nbe the smooth Artin stak parametrizing quasi-stable urves of genus g withn markings. It has dimension equal to 3g�3+n andMg;n is an open densesubset of Mg;n. One de�nes a natural morphism:� :Mg;n(X;�)!Mg;nby forgetting the map to X (without stabilizing).2.2 Deformation theory on M 0;n(H; �)The loal struture of the moduli spae M0;n(H; �) an be studied by de-formation theory. In [L-T℄ Li and Tian proved that to every point m inthe moduli spae one an assoiate two �nite dimensional spaes: a tan-gent spae T and an obstrution spae E. In partiular at a �xed point[C;�℄ 2M0;0(H; �): T = Ext1(��
H ! 
C ;OC)E = Ext2(��
H ! 
C ;OC)
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(see Propositions 1.4-1.5 in [L-T℄). Moreover T and E �t into the exatsequene:0! Ext0(
C ;OC)! H0(C;��TH)! T �- Ext1(
C ;OC)!! H1(C;��TH)! E ! 0 (2.1)whih we all the tangent-obstrution sequene.The spae Ext0(
C ;OC) = H0(C; TC) is the spae of automorphisms of thenodal urve C while Ext1(
C ;OC) is the spae of �rst order deformationsof C [H-M℄, Ch.2 xB.3. H0(C;��TH) is the relative tangent spae andH1(C; ��TH) the relative obstrution spae of M 0;0(H; �) over [C℄ 2M0;0,by [K℄ Thm.II.1.7. They enode the possibility of deforming a map from a�xed nodal urve to H. Note that if H1(C;��TH) = 0 then the deformationis unobstruted, i.e. we an always lift a n-order deformation of the stablemap to a (n+ 1)-order deformation. This vanishing ondition implies thatM0;0(H; �) is smooth at that point, beause E = 0. In a more generalsetting the following result an be proved (see [K℄ Thm.II.1.7):Theorem 2.2.1. If � : C ! H is an n-pointed stable map suh thatH1(C; ��TH) = 0, then the forgetful morphism � : Mg;n(H; �) ! Mg;nis smooth at [C; x1; : : : ; xn; �℄.Remark 2.2.2. A smooth varietyX is alled onvex ifH1(P1; f�TX) = 0 forall genus zero stable maps f : P1 ! X. IfX is onvex then H1(C; f�TX) = 0for all maps f : C ! X, C a genus zero rational urve. Hene the modulispaeM 0;0(X;�) is smooth of dimension equal to the expeted one, [Al℄ I.3.Remark 2.2.3. Consider M0;0(H; (a; b; )), with (a; b; ) 6= 0, and �x apoint [P1; �℄ in it, then: T = H0(P1; N�)E = H1(P1; N�)where N� is de�ned as the okernel of the di�erential map d� : TP1 ! ��TH,[H-M℄ Chap.3 xB p.96. This follows by omparing (2.1) with the long exatsequene in ohomology assoiated to the exat sequene:0! TP1 ! ��TH ! N� ! 0Smoothening the nodesLet C be a prestable urve. The spae Ext1(
C ;OC) of �rst order deforma-tions of the nodal urve C �ts into the exat sequene:0! H1(C; TC )! Ext1(
C ;OC)! H0(Ext1(
C ;OC))! 0 (2.2)where H1(C; TC ) is the spae of �rst order deformations of C whih donot smoothen the nodes. H0(Ext1(
C ;OC)) parametrizes the �rst order
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deformations of the nodes. It is isomorphi to Lp nodeOC;p.Let C be the universal urve over the unpointed moduli spae M0;0(H; �).Let M0 be a smooth open subset of M 0;0(H; �) suh that there exist asetion � : M0 ! C suh that �(m) is a node on the orresponding urveCm and the indued map TM0;m ! Ext1(
Cm ;OCm) has as image the kernelK of the natural projetion h : Ext1(
Cm ;OCm)! Ext1(
Cm ;OCm)�(m).It is easy to see that the following proposition holds:Proposition 2.2.4. Fix a point [C;�℄ 2 M0 and let p = �([C;�℄) be thenode whih an not be smoothened. Consider the tangent-obstrution se-quene (2.1). Then:1. oker � = Ext1(
C ;OC)p;2. there exists an injetive map ' : Ext1(
C ;OC)p ! H1(C;��TH) suhthat oker ' = E.Proof. By de�nition we get an exat sequene:0! K g- Ext1(
C ;OC) h- Ext1(
C ;OC)p ! 0 (2.3)The natural map K ! H1(C;��TH) is identially zero, beause the defor-mations of C inK do not smoothen the node p. Then there is no obstrutionto extend � to a given deformation of C loally trivial near p. There existsan injetive map ' : Ext1(
C ;OC)p ! H1(C;��TH), beause an element ofthe domain spae orresponds in a unique way to an obstrution to extendthe map �, as it is a smoothing of the node. Finally there is a surjetive mapf : T ! H1(C; TC), sine [C;�℄ 2M0 is suh that C an not be smoothenedat p.: : : // T � //f

��

Ext1(
C ;OC)  //h ((QQQQQQQQQQQQQ
H1(C;��TH) // E // 00 // K g 99sssssssssss

��

Ext1(
C ;OC)p'OO
// 00 0OOSine (2.3) is exat, the proposition follows.Remark 2.2.5. If we assume that we have n no-smoothenable nodes on C,we get dim oker � = n and E �ts into the exat sequene:0! Mp node Ext1(
C ;OC)p '- H1(C;��TH)! E ! 0We will only use the ase n = 2 in 2.6.10.
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2.3 The virtual fundamental lassThe expeted dimension of a moduli spae may not oinide with the atualone. We may think of this as if the moduli spae is a subspae of someambient spae and it is ut out by a set of equations whose vanishing loi donot meet properly. To de�ne the Gromov-Witten invariants on H we needto work in the right dimension, so that we need the existene of a Chowhomology lass in M0;n(H; �) of the expeted dimension. It is alled thevirtual fundamental lass and denoted by [M 0;n(H; �)℄vir .An algebrai approah to the problem of onstruting suh a lass was de-veloped by Behrend and Fantehi [B-F℄ as well as by Li and Tian [L-T℄. Thebasi idea omes from the exess intersetion theory [Ful℄.Exess intersetion theoryWe reall some results from [Ful℄ Chap.6.Given an algebrai variety X, a losed regular imbedding i : Z ! X ofodimension e and a morphism f : V ! X from a purely k-dimensionalsheme V , it happens that in general the sheme W de�ned by the artesiandiagram: W j - V�Zg ? i - Xf?has not the expeted dimension dim V �od (Z � X). Anyway the pullbakbundle N = g�NZ=X has rank e and it omes with a natural projetionp : N ! W induing an isomorphism p� : Ad(W ) ! Ad�e(N) for alld. In partiular p� as an inverse s�, the Gysin map indued by the zerosetion of N , [Ful℄ Thm.3.3.a)-Def.3.3. There exists a losed imbedding ofC = CWN , the normal one to W in N , as a subone of N . Sine Cis purely k-dimensional, the lass [C℄ is a k-yle on N . The intersetionprodut [Z℄�[V ℄ 2 A�(W ) is de�ned to be the lass obtained by \interseting[C℄ with the zero setion of N":[Z℄ � [V ℄ = s�[C℄In partiular s�[C℄ 2 Ak�e(W ) has the expeted dimension. One de�ness�[C℄ to be the virtual fundamental lass of W .The intrinsi normal oneIn [B-F℄, [L-T℄ the authors de�ne for Deligne-Mumford staks an analogueof the normal one. So on Mn := M0;n(H; �) one an use tehniques sim-ilar to those seen above in order to onstrut the lass [Mn℄vir of the right



34 CHAPTER 2. GROMOV-WITTEN INVARIANTS
dimension.Denote by L� the otangent omplex of Mn (see [Il℄ for its de�nition onshemes and [L-MB℄ for its generalization to algebrai staks). Reall thatgiven a homomorphism d : S0 ! S1 of abelian sheaves on a Deligne-Mumford stak, one may onsider it has a omplex on the stak. One ande�ne the quotient stak: h1=h0(S�) = [S1=S0℄beause S0 ats on S1 via d. If S� is a omplex of abelian sheaves of arbitrarylength, one onsider the two-term ut-o�:�[0;1℄S� = [oker (S�1 ! S0)! ker (S1 ! S2)℄and de�nes h1=h0(S�) := h1=h0(�[0;1℄S�).De�nition 2.3.1. The stak N := h1=h0((L�)_) is the intrinsi normalsheaf of Mn.To onstrut the analogue of the normal one one needs to onsider loalembeddings of Mn.De�nition 2.3.2. A loal embedding of Mn is a diagram:U i- XMnf ?where:- U is an aÆne sheme of �nite type,- f is an �etale morphism,- X is a smooth aÆne sheme of �nite type,- i is a loal immersion.There is a well de�ned normal one CUX of U inX. The tangent spae i�TXats naturally on it by translation. There exists a unique losed subonestak C � N that loally is given by the stak quotients CjU = [CUX=i�TX ℄,[B-F℄ Cor.3.9. Moreover this onstrution is independent of the loal em-beddings. C has pure dimension zero.De�nition 2.3.3. C is the intrinsi normal one of Mn.Let F � be a omplex of OMn -modules onentrated in degrees �1 and 0suh that hi(F �) is oherent for i = �1; 0.
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De�nition 2.3.4. If there is a morphism � : F � ! L� in DbCoh(QohMn)suh that h0(�) is an isomorphism and h�1(�) is surjetive, the map � (orF �) is alled a perfet obstrution theory for Mn.Fix a perfet obstrution theory � : F � ! L�. Let F �_ = [F0 '- F1℄with F0 = F 0_ and F1 = F�1_ . Then � indues a losed immersion [B-F℄Prop.2.6: �_ : N! h1=h0((F �)_)Hene the intrinsi normal one is a losed subone stak of [F1=F0℄. Thisis a vetor bundle stak on Mn. Moreover F1 is a presentation of it andontains a losed subone C(F �) with a map over C smooth of relativedimension rkF0.De�nition 2.3.5. The virtual fundamental lass [Mn℄vir is the intersetionof C(F �) with the zero setion of F1.De�nition 2.3.6. Let F � be a perfet obstrution theory for Mn as above.For eah losed point m 2Mn one de�nes Ker 'm = T and Coker 'm = Eto be the tangent spae and the obstrution spae of Mn at m, respetively.The di�erene rkF0�rkF1 =dim T -dim E is alled the expeted dimensionof Mn.The virtual lass [Mn℄vir has the expeted dimension rkF0 � rkF1, [B-F℄p.76. Proposition 5.10 in [B-F℄ ensures that it behaves well under pullbak:Proposition 2.3.7. If � is the at morphism forgetting the marked points,then: [M0;n(H; �)℄vir = ��[M0;0(H; �)℄virIf the moduli spae is smooth, there is an easier desription of the virtualfundamental lass.Theorem 2.3.8. If the moduli spae Mn is smooth, given a perfet ob-strution theory F � with (F �)_ = [F0 '- F1℄, then the sheaf ohomologyh1(F �_) =Coker(') is loally free and:[Mn℄vir = top(h1(F �_)) � [Mn℄ (2.4)This is Proposition 5.6 in [B-F℄. Note that h1(F �_)m is the obstrutionspae at m 2Mn.De�nition 2.3.9. We will denote h1(F �_) = E and we will all it theobstrution bundle of Mn.Remark 2.3.10. Throughout the paper we will often refer to the obstru-tion bundle by simply naming its �bers. So we will possibly write thetangent-ostrution sequene (2.1) with E instead of E as last term.
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As proved in [Beh℄, sine there is a anonial map � : Mn ! M0;n whihis an open substak of a relative spae of morphisms, there exists a relativeobstrution theory. This onsists of a map � : F � ! L�Mn=M0;n suh thatL�Mn=M0;n is the relative otangent omplex, h0(�) is an isomorphism andh�1(�) is surjetive.Proposition 2.3.11. With respet to the diagram:M0;1(H; �) ev - HM0;0(H; �)� ?F � = (R��(ev�TH))_ is a perfet relative obstrution theory for M 0;0(H; �).Proof. This is Proposition 5 in [Beh℄.The intrinsi normal one onstrution an be extended to the relative ase,so that one an de�ne the virtual fundamental lass [M0;0(H; �)℄vir as theintersetion of the relative intrinsi normal one with the zero setion ofh1=h0(R��(ev�TH)), [Beh℄ p.606. In partiular it has the expeted dimension[Beh℄ p.605. Note that the (relative) obstrution bundle is E = R1��(ev�TH).Remark 2.3.12. The results stated in 2.3.7, 2.3.8 and 2.3.11 imply that inorder to alulate the virtual fundamental lass of M0;n(H; �) it is enoughto study the perfet obstrution theory (R��(ev�TH))_ on the unpointedmoduli spae. Moreover, on the smooth lous of M0;0(H; �) it is enough toalulate the top Chern lass of the obstrution bundle E = R1��(ev�TH).A formula for the expeted dimensionWe denote by edH the expeted dimension of M0;0(H; (a; b; )). Choose apoint [C;�℄ of the moduli spae. Then by the tangent-obstrution sequene(2.1) we know that edH is given by:edH = �(��TH)� (dim Ext0(
C ;OC)� dim Ext1(
C ;OC))We apply Riemann-Roh to alulate the �rst term of the algebrai sum,while the seond one is known to be equal to 3� 3gC . Hene we get:edH = dim H+ Z(a;b;) 1(TH)� 3 = 2a+ 2b+ 1 (2.5)The atual dimension of the unpointed moduli spae will always be denotedby dH.
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Remark 2.3.13. The map M0;n(H; �) ! M0;0(H; �) has relative dimen-sion equal to n beause it is the omposition of n universal families. Thenthe expeted dimension of M0;n(H; �), with � = (a; b; ), is:dim H+ Z� 1(TH)� 3 + n = 2a+ 2b+ 1 + nWe will denote it again by edH, if no onfusion arises.2.4 A smoothness resultH is an almost-homogeneous spae under the ation of A. We an exploitthis ation to get transversality results (as the Position Lemma) and toontrol the smoothness of the moduli spae M 0;n(H; �).Reall that as H is not a onvex spae, in general the moduli spae does nothave the expeted dimension:exp.dim M0;n(H; (a; b; )) = edH = 2a+ 2b+ 1 + nLemma 2.4.1. � is onvex.Proof. Reall that � = ~W1 t ~W2. Sine ~Wk is the relative Hilbert shemeHilb2(Q=P1), it is isomorphi to P2 � P1 and it omes with two naturalprojetions p1; p2. If � : P1 ! ~Wk is a point in M0;n( ~Wk; �), for some �,then f�(T ~Wk) = f�p�1TP2�f�p�2TP1 is a �ber bundle of positive degree on P1and the higher ohomology vanishes. This implies the thesis.Corollary 2.4.2. The moduli spae of n-pointed genus zero stable maps to� is smooth of the expeted dimension whih is equal to:d� = dim �+ Z� 1(T�)� 3 + n = 3(a+ b)� 2+ nfor � = (a; b; ).Proof. It follows from 2.2.2 and 1.6.2.Lemma 2.4.3. � is onvex.Proof. The support map s : �! Q gives the exat sequene:0! T�=Q ! T� ! s�TQ ! 0Let � : P1 ! � be a stable map, then to show that H1(P1; ��T�) = 0 itsuÆes to prove that H1(P1; ��T�=Q) = 0, sine Q is homogeneous. We anthink of � as the exeptional divisor ~Æ in ~U . With notations as in x1.1:~Æ ,! ~U bl- U pr1-pr2- Q



38 CHAPTER 2. GROMOV-WITTEN INVARIANTS
Denote by p the restrition of pr1; pr2 to the diagonal Æ � U . By theadjuntion formula and the exat sequene written above we get:T�=Q = p�K�Q 
 (�2~Æ)j~Æ = 2h1 + 2h2 � 2�The generators of the one of e�etive urves in � are suh that the degreeof T�=Q restrited to eah of them is non-negative, so deg ��T�=Q � 0 andH1(P1; ��T�=Q) = 0. We onlude that � is onvex.Corollary 2.4.4. The moduli spae of n-pointed genus zero stable maps to� is smooth of the expeted dimension whih is equal to:d� = dim �+ Z� 1(T�)� 3 + n = 2+ nfor � = (a; b; ).Proof. As before it follows from 2.2.2 and 1.5.3.Sine the expeted dimension is the lowest possible dimension for a modulispae, whenever d� > edH or d� > edH we should have omponents ofM0;n(H; �) of exess dimension. Those inequalities are equivalent to theonditions � �� < 0 or � � � < 0. Geometrially this means that the exessdimension is due to omponents entirely mapped into � or into �. Thefollowing theorem formalizes suh a statement.Theorem 2.4.5. If � : C ! H is a stable map from a genus 0 urve suhthat no omponent of C is mapped entirely into �[�, then the moduli spaeM0;0(H; �) is smooth at [C;�℄ of the expeted dimension.Proof. H� (�[�) is �4, the open dense orbit for the ation on H induedby A. The ation on �4 is transitive, so we an say that TH is generiallygenerated by global setions on H. Let � : C ! H be as in the hypotesis,then ��TH is generially generated by global setions on C. This means thatH1(C;��TH) = 0 and the moduli spae M0;0(H; �) is smooth at [C;�℄ ofthe expeted dimension by 2.2.1.2.5 The moduli spae M 0;0(H; (0; 0; ))Here and in the following setion we prove some results on the obstrutionbundles of two moduli spaes whih we will use later on to make expliitalulations.For  � 1, a urve of lass (0; 0; ) in H is represented by a -sheeted overof P1 and it is ontained into � whih is onvex. Then the moduli spaeM0;0(H; (0; 0; )) is smooth of dimension 2 bigger than the expeted one,
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edH = 1. The obstrution bundle E = R1��(ev�TH) has rank 2� 1 and by2.3.8 the virtual fundamental lass is:[M 0;0(H; (0; 0; ))℄vir = [M0;0(H; (0; 0; ))℄ � 2�1(E)Proposition 2.5.1. If  = 1 then E = �KQ and we get:[M0;0(H; (0; 0; 1))℄vir = [Q℄ \ 1(�KQ)Proof. For  = 1, (0; 0; 1) is the lass of a �ber of the support map s : �! Q.So we an work on � beause of the diagram:��=M0;1(H; (0; 0; 1)) ev- HQs ? �=M0;0(H; (0; 0; 1))� ?By the onvexity of � and the exat sequenes:0! T� ! THj� ! N�=H ! 00! T�=Q ! T� ! s�TQ ! 0we obtain R1s�(ev�TH) = R1s�(N�=H) = R1s�(O�(�2)). Finally [Har℄Chap.III ex.8.4-) gives:E = R1s�(O�(�2)) = �2TQ = �KQProposition 2.5.2. Let g : M0;0(H; (0; 0; )) ! Q be the map de�ned byg([C;�℄) = Supp �(C). In general it holds:2�1(E) = �g�KQ � 2�2( ~E) (2.6)where ~E is suh that: 2�2( ~Ejg�1(p)) = 13 (2.7)for any point p 2 Q.Proof. In the general ase, E = R1��(ev�TH) has stalk H1(C;��TH) at thepoint [C;�℄ 2M0;0(H; (0; 0; )). We get H1(C;��TH) = H1(C;��OP1(�2)).Let ~ev :M0;1(H; (0; 0; )) ! � be the evaluation map into � suh that theomposition with the inlusion � ,! H is ev : M0;1(H; (0; 0; )) ! H. By[L-Q℄ Lemma 3.2, E sits in the exat sequene:0! g�OQ(�KQ)! E ! R1�� ~ev�(s�TQ 
O�(�1)) = ~E ! 0



40 CHAPTER 2. GROMOV-WITTEN INVARIANTS
Hene we get: 2�1(E) = �g�KQ � 2�2( ~E)Note that the inverse image g�1(p); p 2 Q, is isomorphi to M0;0(P1; ),with P1 �=M2(p) the puntual Hilbert sheme of points on Q at p.With respet to the diagram:M0;1(P1; ) ev1 - P1M0;0(P1; )f ?the restrition ~Ejg�1(p) is isomorphi to R1f�ev�1(OP1(�1)�OP1(�1)) [L-Q℄Rmk.3.1. By Theorem 3.2 in [Man℄:2�2(R1f�ev�1(OP1(�1)�OP1(�1))) = 13This onludes the proof.2.6 The moduli spae M 0;0(H; (1; 0; ))The moduli spae M0;0(H; (1; 0; )) has expeted dimension edH = 3. Inpartiular if  = 0, then M0;0(H; (1; 0; 0)) is smooth of the expeted dimen-sion, beause (1; 0; 0) is the lass of a urve ontained into � whih is onvexandM0;0(�; (1; 0; 0)) has the same expeted dimension (see 2.4.1 and 2.4.2).Remark 2.6.1. In x1.5 we showed that � de�nes a oni on a �ber overthe blown up lous of the map ' : H! G. A urve of lass (1; 0; 0) an berepresented by a line in the projetive plane Hilb2(l1) for a �xed line l1 2W1(see x1.4), so that it intersets � in at most two points.If  � 1, the exess dimension omes from the omponents of the modulispae whih parametrize stable maps with reduible domain. We know thatthe only irreduible urves are of type (1; 0; 1) and disjoint from � (see x1.7iii)).Lemma 2.6.2. The moduli spae M 0;0(H; (1; 0; 1)) is the disjoint union oftwo omponents both of the expeted dimension.Proof. We have two possibilities for the soure urves of a stable map inM0;0(H; (1; 0; 1)). The urve an be irreduible or not. Hene we have twoomponents of the moduli spae. One parametrizes stable maps from theirreduible urves and it is smooth of the expeted dimension. The seondone parametrizes stable maps with reduible domain and has the expeteddimension. These two omponents are obviously disjoint.
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We need to study only the ase  � 2. A urve of lass (1; 0; ) with  � 2is always reduible. We onsider the morphism:� :M0;0(H; (1; 0; )) - M0;0(H; (1; 0; 0))It is de�ned by forgetting the omponents mapping to �.The ation indued by A0 (see x1.3) on M0;0(H; (1; 0; 0)) has two orbitsorresponding to the geometry of the soure urve for a stable map in thatmoduli spae. By 2.6.1 the open dense orbit parametrizes the stable maps[C; f ℄ suh that f(C) is a line interseting in two distint points the onide�ned by � on the orresponding �ber of the blowup map. The losedorbit parametrizes the stable maps from urves representing a line tangentto the oni de�ned by � sine � is A0-equivariant. The morphism � is atover the open orbit.De�nition 2.6.3. Let [C; f ℄ be a point in the open orbit ofM0;0(H; (1; 0; 0)).We denote by M the �ber ��1([C; f ℄).De�nition 2.6.4. We denote by M(),  � 1, the spae parametrizing thedata of a degree  stable map to P1 with a marked point mapping to theorigin. It is the �ber of the evaluation map M0;1(P1; )! P1 over the originand it is smooth of dimension 2� 2. Let M(0) be a point.Lemma 2.6.5. There is an isomorphism:M �= a1+2=i�0 M(1)�M(2)In partiular � is smooth over the open dense orbit.Proof. Let M be the �ber over [C; f ℄ 2M0;0(H; (1; 0; 0)) as in 2.6.3. Withnotations as in x1.4, let C(l1) be the urve f(C) of lass (1; 0; 0) suh thatit intersets �\Hilb2(l1) in two points p1 6= p2. Let C(pi) = P(TQ;pi), fori = 1; 2, be ontained into �. It is of lass (0; 0; 1). A point [D;�℄ 2 M isa stable map from a nodal urve D = D0 [D1 [D2 with D \Di = qi suhthat: � : D0 �=- C(l1)� : Di i:1- C(pi)�(qi) = piSine C(l1) is �xed as well as its intersetion points with the diagonal, theonly moduli omes from the hoie of the sheeted overs of the (0; 0; 1)-urves. In partiular for i = 1; 2, the urve [Di; �jDi ℄ is a point of M(i)with qi mapping to the origin pi of C(pi).
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Remark 2.6.6. The omposition of the inlusion:M(1)�M(2)!M !M 0;0(H; (1; 0; ))with the forgetful map M0;0(H; (1; 0; )) ! M0;0 is smooth on its imagewhih onsists of:- the divisor parametrizing urves with a node in p1 if 2 = 0 or in p2 if1 = 0;- the (smooth) lous of odimension 2 parametrizing urves with twonodes p1; p2 if 1; 2 > 0.Remark 2.6.7. The spae M() is smooth of dimension 2� 2.Then M(0)�M() has dimension 2� 2 and M(1)�M(2) has dimension2� 4.Remark 2.6.8. Sine M0;0(H; (1; 0; )) has expeted dimension edH = 3and � is smooth on the open dense orbit, a �berM has expeted dimensionequal to zero. Sine M is the disjoint union of the omponents M(1) �M(2), its virtual fundamental lass [M℄vir := [M 0;0(H; (1; 0; ))℄vir��[C; f ℄is equal to the sum of the virtual fundamental lasses of all omponents.Moreover eah of them must have expeted dimension equal to zero.To alulate the virtual fundamental lass of M we an use the formula(2.4). Then we need to know the obstrution bundle E at a point [D;�℄in M. The following lemma gives a desription of the spae H1(D;��TH)whih will permit us to express E as the okernel of an injetion (see 2.6.10).Let [D;�℄ 2M be as in the proof of 2.6.5:� : D0 �=- C(l1)� : Di i:1- C(pi)�(qi) = pi 2 C(l1) \ C(pi)Lemma 2.6.9. Let Li be the invertible sheaf ��OC(pi)(�2) of degree �2i,i = 1; 2. Then: H1(D;��TH) �= H1(D1;L1)�H1(D2;L2)Proof. We tensor by �
OD ��TH the following exat sequene:0! OD ! OD0 �OD1 �OD2 ! Oq1 �Oq2 ! 0We onsider the long exat sequene in ohomology::::! H0(Tq1 � Tq2)! H1(D;��TH)! Li=1;2H1(Di; ��THjDi)! 0
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where we use the onvexity of � to dedue H1(D0; ��THjD0) = 0.Analogously, � is onvex so H1(Di; ��T�jDi) = 0, i = 1; 2. The supportmap s : �! Q is a P1-bundle, so the tangent sheaf T� restrited to a �berl of s is T�jl = Ol(2)�O�2l . The usual exat sequene:0! T� ! THj� ! N�=H ! 0restreted to the �ber l gives N�=Hjl = Ol(�2). Hene we get:H1(Di; ��THjDi) = H1(Di; ��OC(pi)(�2))Let Li, i = 1; 2 be as in the hypothesis, then H1(Di;Li) has dimension2i � 1 and the above sequene beomes:0! Tq1 � Tq2 ! H1(D;��TH) #- Mi=1;2H1(Di;Li)! 0Then # is a surjetive morphism between two vetor spaes of the samedimension, i.e. it is an isomorphism.Proposition 2.6.10. Let Li, i = 1; 2, be the line bundle orresponding tothe deformation whih resolves the i-th node. Then the obstrution bundleE �ts in the exat sequene:0! Mi=1;2Li ! Mi=1;2H1(Di;Li)! E ! 0 (2.8)In partiular it has rank P2i=1(2i � 2).Proof. We an not smoothen all the nodes ofD (see x2.2), then we know thatthe map � : T ! Ext1(
D;OD) in the tangent-obstrution sequene (2.1)has a 2-dimensional okernel and it fators through a surjetive morphismf as in the diagram: Tf

��

� // Ext1(
D;OD)H1(D;TD) g 77nnnnnnnnnnnnThe map g sits in the exat sequene de�ning the spae of �rst order defor-mations of the nodal urve D (2.2):0! H1(D;TD) g- Ext1(
D;OD) h- H0(Ext1(
D;OD))! 0where H0(Ext1(
D;OD)) = Li=1;2 Li, Li �= OD;qi . By remark 2.2.5,oker � = L1 � L2 and by 2.6.9 the sequene (2.8) is exat.
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For eah i, let Ei be the okernel of the injetion Li ! H1(Di;Li). It is avetor bundle of rank 2i � 2 on M(i). It is the one we �nd when we haveonly one node on D. Sine E1 �E2 and E �t into the same exat sequene,it holds top(E) = top(�Ei).In [Gr℄, Graber onstruts a variety X by blowing up P2 in a point andthen blowing up a point on the exeptional divisor. He gets two exeptionaldivisors meeting in a node. Let A be the (-1)-urve, B the (-2)-urve and� = A+ B. Then he shows that the moduli spae M0;0(X;�) is smoothof expeted dimension zero and isomorphi to M(). Besides its virtualfundamental lass an be realized as the top Chern lass of a vetor bundle~E whih sits in the same exat sequene de�ning the bundle E. Thentop(E) = top( ~E).Proposition 2.6.11. (Graber) For all  � 2, top( ~E) = 0.Proof. This is Proposition 3.5 in [Gr℄.Remark 2.6.12. Let M�() be the �ber over (0;1) of the evaluation mapev = (ev1; ev2) :M0;2(P1; )! P1�P1. Denote by E� the obstrution bundleof M�(). The following diagram is ommutative:M�() f - M()M0;2(P1; )? g- M0;1(P1; )?where g and f forget the point mapping to 1.Lemma 2.6.13. With notations as in 2.6.12, E� is the pullbak bundle f�Eof the obstrution bundle of M(). In partiular top(E� ) = 0 for  � 2.Proof. We will prove that H1(C;��TH) and H1(C 0; (�0)�TH) are anoniallyisomorphi. It is enough to study what happens for a stable map [C;�℄ inM0;2(P1; ) suh that C has a omponent ontrated by f . We an writeC = D[D1 [D2 with D the ontrated omponent, �(D) = x, p = D1 \Dand q = D2\D two nodes. Let [C 0 = D1[D2; �0℄ be the image under f , i.e.�0 Æ f = �. There exists a morphism � : (�0)�TH ! f�f�(�0)�TH = f���TH,[Har℄ Chap.II ex.1.18.a) If � is an isomorphism then H1(C 0; (�0)�TH) �= H1(C 0; f���TH).b) If Rif�(��TH) = 0 for all i > 0, H1(C 0; f���TH) �= H1(C;��TH) by[Har℄ Chap.III ex.8.1To prove our laim it is enough to verify the hypothesis of a), b). We anwork in a small neighbourhood and assume D1;D2 aÆne, i.e. C 0 aÆne.The exat sequene:0! OD1(�p)! OC ! OD[D2 ! 0
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gives H1(C;��TH) = H1(D [D2; ��THjD[D2), beause D1 is aÆne. Sine�(D) is a point, the sheaf ��THjD is trivial: H0(D;��THjD) = H0(q; (��TH)q).The exat sequene:0! OD[D2 ! OD2 �OD ! Oq ! 0indues an isomorphismH0(D[D2; ��THjD[D2) �= H0(D2; ��THjD2). Then:H1(D [D2; ��THjD[D2) �= H1(D2; ��THjD2)�H1(D;��THjD)We onlude that H1(C;��TH) = 0, beause D2 is aÆne and ��THjD istrivial. Then R1f���TH = 0 by [Har℄ Chap.III Prop. 8.5.To verify a), we tensor by �
 (�0)�TH the following exat sequene:0! OD1(�x)! OC0 ! OD2 ! 0and we get:0! H0(D1; (�0)�THjD1 
OD1(�x))! H0(C 0; (�0)�TH)!! H0(D2; (�0)�THjD2)! 0Sine the �rst vetor spae is isomorphi to H0(D1; ��THjD1
OD1(�p)) andthe third one to H0(D2; ��THjD2), we get H0(C;��TH) �= H0(C 0; (�0)�TH).Then ��TH and f�(�0)�TH have the same setions, i.e. � is an isomorphism.The laim is proved.Theorem 2.6.14. The virtual fundamental lass of a omponent of a �berM of � is given by:[M(1)�M(2)℄vir = [M(1)�M(2)℄ if 0 � 1; 2 � 1[M(1)�M(2)℄vir = 0 otherwiseProof. If 1; 2 are 0 or 1 then M(1) �M(2) is smooth of the expeteddimension equal to zero and the virtual fundamental lass oinide with theusual fundamental lass. If 1 or 2 is bigger than or equal to 2 then by2.6.11 the top Chern lass of the obstrution bundle vanishes.Corollary 2.6.15. If  � 2, then the virtual fundamental lass of M isgiven by: [M2℄vir = [M(1)�M(1)℄[M℄vir = 0 if  � 3Proof. It follows from 2.6.8 and 2.6.14.
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2.7 Gromov-Witten InvariantsWe reall the de�nition and some properties of the Gromov-Witten (GW)invariants on a d-dimensional smooth omplex projetive variety X.Let � 2 A1(X) be the lass of an e�etive urve and onsider the modulispae Mg;n(X;�) of genus g, n-pointed stable maps into X, g; n � 0 andn+ 2g � 3 � 0. It has expeted dimension equal to:edX = (dim X � 3)(1 � g) + Z� 1(TX) + nNow we �x n yle lasses 1; : : : ; n 2 A�(X) and onsider the ohomologylass ev�(1� : : :�n), where ev :Mg;n(X;�)! Xn is the usual evaluationmap. We all GW invariant the number:h1 � : : : � ni� := Z[Mg;n(X;�)℄vir ev�(1 � : : : � n)This is the \virtual" number of urves of genus g and lass � inX intersetingthe homology yles �i, where the Poinar�e dual of �i is i, for all i =1; : : : ; n. If g = 0; n � 3 we speak about genus zero GW invariants.If no onfusion arises, we will omit the symbol \ � " among the argumentsi of the invariant.The GW invariants have some nie properties suh as to be invariant underdeformation. Moreover they are zero if the following equality is not satis�ed:Xi od i = edXLet n = 1X 2 A0(X) be the fundamental lass, then:h1 � : : : � ni� = � RX 1 [ 2 if � = 0; n = 30 otherwiseFinally we will often use the so alled divisor axiom. Let 1 2 A1(X) and� 6= 0, then: h1 � : : : � ni� = (Z� 1) � h2 � : : : � ni�For an exhaustive treatment of the invariants and their properties see [K-M℄.In this general setting Proposition 5.6 in [B-F℄ (see 2.3.8) implies:Theorem 2.7.1. Let � : Mg;n(X;�) ! Mg;0(X;�) be the usual map for-getting the markings and ev = (ev1; : : : ; evn) be the evaluation map. LetE be the obstrution sheaf on Mg;0(X;�). Choose yles �1; : : : ;�n in Xrepresenting the ohomology lasses 1; : : : ; n suh that ev�1i (�i) interset
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generially transversally. Then if A = ��(\iev�1i (�i)) is a yle in thesmooth lous of Mg;0(X;�):h1 � : : : � ni� = Z[Mg;n(X;�)℄ ev�(1 � : : :� n) � ��top(E) (2.9)Remark 2.7.2. The above integral is equal to the degree of the top Chernlass of the obstrution sheaf restrited to the yle A:h1 � : : : � ni� = ZA top(E)2.8 Some invariantsWe prove some vanishing results for the GW invariants whih are related tothe partiular geometry of the e�etive urves involved.Let S3 = [�(p)℄; S4; S5; S6; S11; S12 be the yle lasses forming a basis forA2(H) whih we found in x1.1.Proposition 2.8.1. For k = 3; 4; 5; 6, hSki(0;0;) = 0.Proof. Suppose  = 1. A urve (0; 0; 1) is inident to the yle �(p) if it isthe urve of non-redued subshemes supported on p, i.e. if it is the �berover p of the support map s:� �=M0;1(H; (0; 0; 1)) s- M0;0(H; (0; 0; 1)) �= QLet ev be the evaluation map M0;1(H; (0; 0; 1)) ! H.Sine s is at, s�(p) = s�1(p) and it is of odimension 2 inM0;1(H; (0; 0; 1)).As a set ev�1(�(p)) = s�1(p), so ev�(S3) = �s�(p) has odimension 2.hS3i(0;0;1) = Z[M0;1(H;(0;0;1))℄vir ev�(S3) = �Z[M0;1(H;(0;0;1))℄ s�[p � top(E)℄ = 0where E is the obstrution bundle on M0;0(H; (0; 0; 1)) and it has rankdim M0;0(H; (0; 0; 1)) � 1 = 1, so that p � top(E) = 0 on M0;0(H; (0; 0; 1)).Curves of type (0; 0; ) interseting �(p) are multiple overs of (0; 0; 1), sohS3i(0;0;) = 0.The yle lass S4 an be represented by the set of subshemes whose sup-port is inident to two lines l1; l2 with lk 2 Wk, k = 1; 2. A urve (0; 0; 1)an meet suh a yle only if it is the urve supported on the inident pointl1 \ l2. The previous argument works and hS4i(0;0;) = 0.The yle lasses S5; S6 are represented by the sets of subshemes with sup-port inident to two lines in the same ruling, so a urve (0; 0; 1) an nevermeet these yles. This onludes the proof.
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Let T8 be the yle lass S21 +S1S2�2S11 and T9 = S22 +S1S2�2S12. Theyare symmetri. We onsider only T8.Lemma 2.8.2. For eah  � 1, hT8i(0;0;) = 42Proof. Consider the diagram:M0;1(H; (0; 0; )) ~ev //�

��

� i //s
��

HM0;0(H; (0; 0; )) g // Qwhere g([C;�℄) = Supp �(C). Set ev to be the omposition map i Æ ~ev.We know that 2�1(E) = �g�KQ � 2�2( ~E), where E is the obstrutionsheaf on M0;0(H; (0; 0; )) and ~E is the sheaf de�ned in 2.5.2. So we have toalulate:hT8i(0;0;) = Z[M0;1(H;(0;0;))℄ ev�T8 � ��(g�(�KQ) � 2�2( ~E))Note that a point [C; x; �℄ 2 M0;1(H; (0; 0; )) is suh that the support of�(C) = �(x) = Z is a point p 2 Q, beause a urve of lass (0; 0; ) is amultiple over of a �ber of s.The above diagram is ommutative, let f be the omposition g Æ � = s Æ ~ev.It is easy to verify that i�T8 = 2 � s�h1 � � (with notations as in (1.3)). Thenwe have to alulate the degree:Z[M0;1(H;(0;0;))℄ 2f�(�KQ � h1) � ~ev�� � ��(2�2( ~E))Sine �KQ � h1 = 2h3 where h3 is the point-lass in A2(Q), we get:f�(�KQ � h1) � ~ev�� = 2 ~ev�(� � s�h3)Let x 2 � be a point, we denote byM1 the inverse image ~ev�1(x) and byM0its image �(M1) = g�1(s(x)) in M 0;0(H; (0; 0; )). The restrited morphism~� :M1 !M0 has degree . In partiular:~��[M1℄ = [M0℄ =  � g�[s(x)℄Sine � � s�h3 = [x℄ is the point-lass in �, by the projetion formula andwhat we said in x2.5, our invariant is:hT8i(0;0;) = Z[M0;1(H;(0;0;))℄ 4 ~ev�(� � s�h3) � ��2�2( ~E)= Z[M1℄ 4~��2�2( ~E) = Z[M0℄ 4 � 2�2( ~E)= 4 � 2�2( ~Ejg�1(s(x))) = 42
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The study of the obstrution bundle in setion 2.6 gives us the tools forproving another vanishing result.Remark 2.8.3. With notations as in x2.6, let M� be the losed subset ofM0;0(H; (1; 0; )),  � 2, of stable maps � : D ! H where the domain urveis reduible and �(D0) = C(l1) is tangent to the oni de�ned by � inHilb2(l1), (see 2.6.1). Consider the following maps:M0;3(H; (1; 0; )) �- M 0;0(H; (1; 0; )) �- M0;0(H; (1; 0; 0))The map � forgets the marked points and (eventually) stabilizes the urve.The map � is de�ned by restriting the stable map to the (1; 0; 0) omponent.In partiular it is surjetive. If we denote by U1;2 the open subset ofM0;0(H; (1; 0; )) of points [D;�℄ suh that:�(D0) is not tangent to �[�(D1)℄ = 1 � (0; 0; 1)[�(D2)℄ = 2 � (0; 0; 1)thenM0;0(H; (1; 0; )) is the union over all 1 � 2, 1+2 =  of the losuresU 1;2 . Fix U 1;2 then the restrited map � : U 1;2 ! M0;0(H; (1; 0; 0)) issurjetive with �bers:if 1; 2 > 0 � M(1)�M(2) qM(2)�M(1) generi �berM(1)�M(2) �ber over M�if 2 = 0 � M() qM() generi �berM() �ber over M�� is onvex and a urve of lass (1; 0; 0) is ontained into it, then the modulispae M0;0(H; (1; 0; 0)) is smooth of the expeted dimension dH = 3. More-over it is a P2-bundle over P1 �=W1, with �bers the Hilbert sheme Hilb2(l1)over a point l1 2W1. Then it is irreduible. Also U 1;2 is irreduible, thenall the �bers of � are 3-odimensional.Proposition 2.8.4. If  > 2 then all GW invariants h123i� for urvesof type (1; 0; ); (0; 1; ) vanish.Proof. The two ases are symmetri. We onsider only (1; 0; ).We have seen that suh a urve is reduible. It has a omponent of lass(1; 0; 0) not ontained into � and it deomposes as:(1; 0; ) = (0; 0; 1) + (0; 0; 2) + (1; 0; 0)with 1; 2 � 0; 1 + 2 = .We are free to hoose a basis of A�(H) suh that every yle lass an be
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represented by yles interseting the strati�ation properly. It is enoughto prove that GW invariants involving suh lasses vanish. Choose threeof them 1; 2; 3 satisfying P od i = 6. This ondition means we arelooking at three possible 3-uples of elements whose odimensions, up to apermutation of indexes, are:(1; 1; 4); (1; 2; 3); (2; 2; 2)Consider the diagram: A - 1 � 2 � 3M0;3(H; (1; 0; ))? ev - H3?where A = ev�(1�2�3). By the Position Lemma od A � 6 (see 1.3.3).Let � be the at map forgetting pointsM0;3(H; (1; 0; )) !M0;0(H; (1; 0; ))and B = �(A). Then od B � 3: If od B > 3, the GW invariants vanishesfor dimensional reasons, so we an assume od B = 3.Let � : M 0;0(H; (1; 0; )) ! M0;0(H; (1; 0; 0)) be the map de�ned in 2.8.3.If the lass of a map [f ℄ is in B, then all the points in ��1(�([f ℄)) are inB, beause they di�er only by the hoie of a multiple over of (0; 0; 1) andthis does not a�et inidene onditions. The odimension of a �ber of � isalready equal to 3, so B is a union of �nitely many omponents of �bers of� . With notations as in x2.6 the set B is:B = a1+2=i�0 M(1)�M(2)where M(0) is a point. If  > 2 then there exists i suh that i > 1. By2.6.14: h1; 2; 3i(1;0;) = 0



Chapter 3Quantum CohomologyQuantum Cohomology is a deformation of the up produt of A�(H) involv-ing the genus zero GW invariants. Moreover from the assoiativity law wean get some formulas for omputing these invariants reursively. In thishapter we reall how to de�ne the new produt (see e.g. [G-P℄) and we givea desription of the ring we obtain.Notations: the up produt in A�(H) will be denoted by � [ �. We willuse the symbol hT ni� to denote the GW invariant hT � : : : � T| {z }n i�.3.1 The Big Quantum Cohomology RingLet T0 = 1; T1; : : : ; T13 be a homogeneous Q-basis for A�(H) suh thatT1; T2; T3 generate A1(H). We denote by (gij) the matrix (RH Ti [ Tj) andby (gij) its inverse. We introdue formal variables fy0; q1; q2; q3; y4; : : : ; y13gwhih we will abbreviate as q; y. For � an e�etive lass in A1(H), thefollowing expression de�nes a power series in the ring Q [[q; y℄℄:�(q; y) := Xn4+���+n13�0X� 6=0hT n44 � : : : � T n13m i� � qR� T11 qR� T22 qR� T33 mYi=4 yniini!In the ase of a homogeneous spae, substituting qi = eyi we get the quan-tum part of the potential funtion of [K-M℄ modulo some relation in the yi.The symbol �i will denote qi ��qi if i = 1; 2; 3, the partial derivative ��yi oth-erwise. If f 2 Q [[q; y℄℄ then we set fijk = �i�j�kf .Consider the free Q [[q; y℄℄-module A�(H)
QQ [[q; y℄℄ generated by T0; : : : ; T13.We de�ne a Q [[q; y℄℄-linear produt on it, alled the �-produt :Ti � Tj = Ti [ Tj + 13Xe;f=0�ijegefTfIt yields a Q [[q; y℄℄-algebra struture.51
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De�nition 3.1.1. The Big Quantum Cohomology ring of H is the ring:QH�(H) = (A�(H)
Q Q [[q; y℄℄; �)Remark 3.1.2. By formal alulation, using the divisor axiom and thelinearity of the GW invariants, we obtain:�ijk =Xn�0X� 6=0 1n!hnTiTjTki� � qR� T11 qR� T22 qR� T33where  = y4T4 + � � �+ y13T13. Note that if one of the indexes i; j; k is zero,then the expression vanishes, beause of the ondition � 6= 0.De�nition 3.1.3. The symbol �ijk is de�ned as the sum hTiTjTki0 +�ijk.In the homogeneous ase, it orresponds to the 3-partial derivative of thepotential funtion of [K-M℄.We an write the �-produt in a more ompat way:Ti � Tj = 13Xe;f=0�ijegefTfSine the partial derivatives are symmetri in the subsripts and GW invari-ants are invariant under a permutation of the arguments, it is evident thatthe �-produt is ommutative. Moreover it has T0 = 1 as unit element:T0 � Tj = 13Xe;f=0�0jegefTf = 13Xe;f=0 gjegefTf = TjThe quantum produt is also assoiative. A proof an be found in [K-M℄or, in the homogeneous ase, in [F-P℄. Assoiativity is equivalent to thefollowing equality: 13Xe;f=0�ijegef�fkl = 13Xe;f=0�ikegef�fjlWriting down expliitly what it means in terms of GW invariants and usingthe splitting priniple (see [K-M℄), it turns out that this equality holds sineit translates the ondition of linear equivalene between pairs of points onP1. For further porposes, it seems useful to write expliitly the generalassoiativity equation in terms of the GW invariants.Let 1; : : : ; n be ohomology lasses on H, � 2 A1(H) the lass of ane�etive urve and A;B sets of indexes. Then the assoiativity reads:XhTi � Tj � Te �Ya2A ai�1 gef hTk � Tl � Tf �Yb2B bi�2 ==XhTi � Tk � Te �Ya2A ai�1 gef hTj � Tl � Tf �Yb2B bi�2 (3.1)
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where the sum is over all the possible partitions A [ B = [n℄ of n indexes,all possible sums �1 + �2 = � with �i e�etive and over e; f = 0; : : : ; 13.On the left hand side, the terms orresponding to �1 or �2 equal to zero sumup to: hTi � Tj � Tk [ Tl � nY1 si� + hTk � Tl � Ti [ Tj � nY1 si� (3.2)An analogous expression gives the �i = 0 terms for the right hand sideof the equality. By means of these equations and of the divisor axiom, in[K-M℄ Kontsevih and Manin proved the First Reonstrution Theorem: ona variety whose ohomology is generated by the divisor lasses all the genuszero GW invariants an be uniquely reonstruted starting from the 2-pointinvariants h1 � 2i� .If the ohomology ring is not generated by divisors, we an restrit ourattention to the subring S these lasses generate. Then the ited theoremholds anyway and we an reonstrut all the GW invariants involving lassesin S from the 2-point invariants. To know the omplete tree level GW-systemwe have to alulate the invariants inluding the lasses we disregarded. Thisis the tehnique we are going to explain in x3.5.3.2 A good Q -basis for A�(H)We hoose one for all the following Q-basis for the Chow ring A�(H):A0(H) A1(H) A2(H) A3(H) A4(H)T0 T1 T4 T10 T13T2 T5 T11T3 T6 T12T7T8T9The yles lasses are de�ned by:T0 = 1 T7 = S22T1 = S1 T8 = S1�1;0T2 = S2 T9 = S2�1;0T3 = �1;0 T10 = S2S3T4 = S3 T11 = S1S3T5 = S1S2 T12 = S3�1;0T6 = S21 T13 = S23By 1.1.8 and 1.4.1, we know that A�(H) is the Q-algebra:Q [T1 ; T2; T3; T4℄(fi)i=1;:::;17
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where the relations are:1) T 23 � (T1 + T2)T3 � T1T2 = 02) T 31 = 03) T 32 = 04) T 21 T2 � 2T1T4 = 05) T 21 T3 � 2T1T4 = 06) T 22 T1 � 2T2T4 = 07) T 22 T3 � 2T2T4 = 08) T1T2T3 � 2T3T4 = 09) T 34 = 010) T 24 T1 = 011) T 24 T2 = 012) T 24 T3 = 013) T 21 T4 = 014) T 22 T4 = 015) T1T2T4 � T 24 = 016) T1T3T4 � T 24 = 017) T2T3T4 � T 24 = 0In partiular A�(H) is not generated by the divisor lasses.The matrix (gij) is the inverse of (gij) = (RH Ti [ Tj):(gij) = 0BBBB� 1ABA1

1CCCCAwhere 1 = RH T0 [ T13, A and B are the matries indued by the Poinar�eduality A1(H)�A3(H) and A2(H)�A2(H) respetively.A = 0� 0 �1 1�1 0 11 1 �1 1AB = 0BBBBBB� 2 �1 0 0 0 0�1 0 �12 �12 12 120 �12 0 0 0 120 �12 0 0 12 00 12 0 12 0 �120 12 12 0 �12 0
1CCCCCCAThroughout the paper, we will understand that the sum in Ti � Tj is overe; f = 0; : : : ; 13 and we will use the onvention:q� = qR� T11 qR� T22 qR� T33
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Remark 3.2.1. We note that all the lasses Ti an be generated by ylesinterseting the strati�ation properly.Remark 3.2.2. There are some symmetri yle lasses: T1 and T2, T6 andT7, T8 and T9, T10 and T11. This is beause they depend on the hoie ofone of the two rulings on Q.Remark 3.2.3. The lasses T10, T11, T12 are the lasses C2 + F , C1 + F ,C1+C2+F respetively. They an be represented by the irreduible urvesC(p2; l2), C(p1; l1), �(l) respetively (see x1.7)3.3 The Small Quantum Cohomology RingThe Small Quantum Cohomology ring QH�s (H) of H inorporates only thegenus zero 3-point GW invariants in its produt and it is de�ned by settingto zero all the formal variables exept those orresponding to the divisorlasses. This means that we onsider (A�(H) 
Q Q [[q1 ; q2; q3℄℄; �) with theprodut given by: Ti � Tj = 13Xe;f=0�ijegefTfwhere: �ijk = RH Ti [ Tj [ Tk + �ijk�ijk = P� 6=0hTiTjTki� � qR� T11 qR� T22 qR� T33The last equality is a onsequene of putting yi = 0 in �ijk (see 3.1.2).The produt yields a ommutative, assoiative graded Q [[q1 ; q2; q3℄℄-algebrastruture with T0 as unit. The variables qi; Tj are graded by the followingdegrees: deg qi = R�i 1(TH)deg Tj = od Tjwhere �i is the dual lass to Ti for i = 1; 2; 3, i.e. C2; C1; F , respetively. Inpartiular q1; q2 have degree 2, while deg q3 = 0.Lemma 3.3.1. Sine q1; q2 have positive degree, we have:Ti � Tj 2 A�(H)
Q Q [q1 ; q2℄[[q3℄℄ � A�(H)
Q Q [[q1 ; q2; q3℄℄Proof. In the produt Ti � Tj , for a �xed e the invariant hTiTjTei� is zerounless the sum of the odimensions is equal to �� �KH+4. For � = (a; b; )e�etive, the ondition implies that �� �KH = 2a + 2b is a �xed number.Then there are only �nitely many possible values for a; b whih are theexponents of the variables q2; q1, respetively. The only exponent having nobound is that of q3.
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De�nition 3.3.2. We de�ne the Small Quantum Cohomology ring of H tobe: QH�s (H) = (A�(H)
Q Q [q1 ; q2℄[[q3℄℄; �)It is a deformation of A�(H) in the usual sense, in fat we an reover theChow ring of H by setting all the qi equal to zero.Let Q [Z℄ = Q [Z1 ; : : : ; Z4℄ and letA�(H) = Q [Z℄(f1; : : : ; fs)be a presentation with arbitrary homogeneous generators f1; : : : ; fs for theideal of relations. Finally let Q(q; Z) = Q [q1 ; q2; Z1; : : : ; Z4℄[[q3℄℄. The fol-lowing proposition is a slightly modi�ed version of [F-P℄ x10 Prop.11.Proposition 3.3.3. Let f 01; : : : ; f 0s be any homogeneous elements in Q(q; Z)suh that:(i) f 0i (0; 0; 0; Z1 ; : : : ; Z4) = fi(Z1; : : : ; Z4) in Q(q; Z),(ii) f 0i (q1; q2; q3; Z1; : : : ; Z4) = 0 in QH�s (H).Then the anonial map Q(q; Z)(f 01; : : : ; f 0s) '- QH�s (H)is an isomorphism.Proof. As in [F-P℄ we an use a Nakayama-type indution. First we observethat given a homogeneous map  : M ! N between two �nitely generatedQ(q; Z)-modules suh that the indued map:M=(q3)(q1; q2)  1;2- N=(q3)(q1; q2)is surjetive, then  3 : M=(q3) ! N=(q3) is surjetive, beause q1; q2 havepositive degree. Sine the ideal (q3) is ontained into the radial of Jaobsonof Q(q; Z) and N =  (M) + (q3)N , by surjetivity of  3, it follows that is surjetive ([A-M℄ Cor. 2.7). Hene by hypothesis (i) our map ' issurjetive. If ~Ti, i = 0; : : : ; 13 are homogeneous lifts to Q [q1 ; q2℄[[q3℄℄ of abasis of A�(H), exatly the same argument of passing to the quotients showsthat their images in Q(q; Z)=(f 01 ; : : : ; f 0s) generates this Q [q1 ; q2℄[[q3℄℄-module.But QH�s (H) is free over Q of rank 14, so ' is an isomorphism.
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3.4 A presentation of QH�s (H)Aording to Proposition 3.3.3, to have a presentation of the Small QuantumCohomology ring of H we need to �nd some equations lifting the relationsde�ning A�(H) and vanishing in QH�s (H). Let ffigi=1;:::;17 be the relationslisted at the end of x3.1 and denote by f�i the ith-relation alulated usingthe �-produt. We will show that the f�i 's are the equations we are lookingfor.We alulate all the monomials arising from the �-produt of two generatorsof A�(H), disregarding T4 � T4 for the moment.We distinguish di�erent ases.T3 � T3 = T3 [ T3 +X�1 2 f2T5 + T6 + T7 � T8 � T9g q3 ++X�0 2 �hT13i(1;0;)q2q3 + hT13i(0;1;)q1q3	T0where we use 2.8.1, 2.8.2 and 3.2.2.If Ti is a divisor lass with i 6= 3:Ti � T3 = Ti [ T3 +X�0 hT13i� � T0 � q� with � = (1; 0; ) or (0; 1; )If Ti; Tj are divisor lasses with i; j 6= 3:Ti � Tj = Ti [ Tj +X�0hTiTjT13i� � T0 � q� with � = (1; 0; ) or (0; 1; )If Ti is a divisor lass with i 6= 3:Ti � T4 = Ti [ T4 + Xod Te=3�0 hTiT4Tei�gefTf � q� with � = (1; 0; ) or (0; 1; )Finally:T3 � T4 = T3 [T4+ Xod Te=3�0 hT4Tei�gefTf � q� with � = (1; 0; ) and (0; 1; )where we use 2.8.1 again.This list points out that we need to know the value of some GW invari-ants involving T4; T13 in order to write down the f�i 's. By the vanish-ing result 2.8.4 it is enought to alulate hT13i� and hT4; od 3i� with� = (1; 0; ); (0; 1; ); 0 �  � 2.We will use the same notation �xed in x1.7.
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The invariant hT13i(1;0;)If E is the rank dH � 3 obstrution bundle on M0;0(H; (1; 0; )), we have toompute: hT13i(1;0;) = Z[M0;1(H;(1;0;))℄ ev�T13 � ��dH�3(E)= Zev�1(Z) ��dH�3(E)where Z is a generi point of H representing the lass T13 and � is the mapforgetting a point and stabilizing.If  = 0, we know thatM 0;0(H; (1; 0; 0)) is smooth of the expeted dimensiondH = 3, sine eah urve of lass (1; 0; 0) is ontained into �. In partiularthe top Chern lass of E gives 1. We an hoose a representative Z of thelass T13 suh that lZ =2 W1, then the �ber ev�1(Z) is empty and the GWinvariant vanishes.If  = 1, by 2.6.2 we have to analyse separately what happens on thetwo omponents of the moduli spae. We an hoose Z =2 � [ �, withSupp Z = fp0; q0g, so that reduible urves of type C1 [ F give no on-tribution to the invariant. Let us onsider a stable map with image anirreduible urve of lass C1 + F . It is a smooth point for the modulispae M0;1(H; (1; 0; 1)) whih is 4-dimensional in it. Denote by M irr theirreduible omponent parametrizing suh maps, then ev(M irr) = H. Therestrited map ev :M irr ! H has degree two, beause an irreduible urveC of lass (1; 0; 1) is ompletely determined by hoosing a line l1 2W1 anda point p1 =2 l1 and all its points are redued. The �ber over Z ontainstwo points: the isomorphism lasses [P1; x; �℄ where P1 �= C(p0; l1(q0)) orP1 �= C(q0; l1(p0)). In the �rst ase, �(t) = (p0; f(t)), with f : P1 ! Q aparametrization of l1(q0) suh that f(x) = q0. Similarly for the other map.Then we have a ontribution equal to 2 to the GW invariant.If  = 2, all the urves of lass (1; 0; 2) are reduible ontained into � [ �,hoosing Z =2 � [� the �ber ev�1(Z) is empty and the GW invariant van-ishes.By symmetry the same results hold for hT13i(0;1;).The invariant hT4Tii(1;0;)We want to alulate:hT4Tii(1;0;) = Z[M0;2(H;(1;0;))℄ ev�(T4 � Ti) � ��dH�3(E)
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where Ti lives in odimension 3, � has relative dimension equal to 2 andev = (ev1; ev2) is the evaluation map with image in H �H. By linearityof the GW invariants we an onsider only the generators T10; T11; T12 ofA3(H). Choose one for all a representative �(p) for the lass T4, withp 2 Q a generi point.If  = 0, as before top(E) = 1. Let C(p1; l1) represent T11 suh that p 6= p1and p =2 l1 (see 3.2.3). Sine all the points of a urve of lass (1; 0; 0) havethe same assoiated line, it never intersets a urve of lass T11. The GWinvariant for maps � : C ! H with ��[C℄ = (1; 0; 0) vanishes. The sameholds for the invariant involving T10, beause for a generi representativeC(p2; l2) of that lass p 6= p2 and p =2 l2. Finally, if �(l) represents T12, thenit is disjoint from � and also this invariant is zero.Let  = 1 and onsider the omponent of the moduli spae parametrizingmaps from irreduible urves. An irreduible urve of lass (1; 0; 1) neverintersets both a �(p) and a C(p1; l1) yle generially hosen. The ontri-bution to the invariant hT4T11i(1;0;1) is zero.If C(p2; l2) represents T10, then ev�(T4 � T10) is a unique redued point,the lass of the stable map [P1; x1; x2; �℄ determined by P1 �= C(p2; l1(p)),�(t) = (p2; f(t)) with f : P1 ! Q a parametrization of l1(p) suh thatf(x1) = p; f(x2) = l1(p) \ l2.Let �(l) represent T12, then for a general plane p =2 �. Moreover the linel1(p) intersets the hyperplane setion � \Q exatly in a point q1. The setfZ 2 Hilb2(� \Q) : Supp Z 3 q1g is a line in Hilb2(� \Q) tangent to theoni de�ned by � on that Hilbert sheme. It intersets l in a point (q1; q2)with q1 6= q2, beause we hose l generi. Hene the urve P1 �= C(q2; l1(p))intersets �(p) in Z = (q2; p) and �(l) in Z = (q2; q1). We onlude thatthere is exatly one lass [P1; x1; x2; �℄ satisfying the inidene onditions.The stable map � is de�ned by �(t) = (q2; f(t)) where f : P1 ! Q is aparametrization of l1(p) suh that f(x1) = p, f(x2) = q1.Now we have to ount the ontribution oming from the reduible urves oflass (1; 0; 1). All these are ontained into � [ �. Let D = C(l) [ C(q) beone of them. We want to interset it with a yle �(p) and a yle C(p1; l1).Intersetion points an not lie all on one omponent, beause everything isgeneri. The only possibility is that the intersetion with �(p) is on theF -omponent and the other one on the C1-omponent. Then q = p andl = l1(p). The seond equality prevents any other point of C(l) from inter-seting the yle C(p1; l1), sine in general p1 =2 l1(p). Then there are noreduible urves satisfying these inidene onditions, i.e. the ontributionto the GW invariant is zero.The same holds for the invariant involving T10.Finally, the yle �(l) representing T12 is suh that the generi plane � doesnot ontain any line of Q. Then there does not exist any point Z on the C1-



60 CHAPTER 3. QUANTUM COHOMOLOGY
omponent of D lying in Hilb2(�\Q). The interseiton with �(l) must be apoint on the F -omponent. �(l) intersets � in at most 2 points Zi with sup-port qi. Suppose q = q1, then C(l) is a line in Hilb2(l1(q1)). Sine p =2 l1(q1),for general points, we onlude that there are no urves D satisfying boththe inident onditions. The ontribution to the GW invariant is again zero.If  = 2, all the urves are of type C1[1F [2F , with 1+2 = 2. As beforethe intersetion points do not lie on the same omponent. In partiular theintersetion with �(p) is a point on a F -omponent. Besides the intersetionwith C(p1; l1), C(p2; l2) or �(l) has to be on the C1-omponent, beause �does not ontain any line in Q and all Z 2 C(pi; li), i = 1; 2, are redued.Then as for the reduible urve in the ase  = 1, all the GW invariantsvanish.We an summarize our results in a table: = 0  = 1  = 2  > 2hT13i(1;0;) 0 2 0 0hT4T10i(1;0;) 0 1 0 0hT4T11i(1;0;) 0 0 0 0hT4T12i(1;0;) 0 1 0 0Remark 3.4.1. For � = (0; 1; ) we have the same table, interhanging thevalues obtained for the invariants involving T10; T11.We �nd the following expressions:T3 � T3 = T 23 + 2(q1 + q2)q3T0 + P�1 2f2T5 + T6 + T7 � T8 � T9gq3T1 � T1 = T 21 + 2q1q3T0T1 � T2 = T1T2T1 � T3 = T1T3 + 2q1q3T0T2 � T2 = T 22 + 2q2q3T0T2 � T3 = T2T3 + 2q2q3T0T1 � T4 = T1T4 + q1q3T2T2 � T4 = T2T4 + q2q3T1T3 � T4 = T3T4 + q2q3T1 + q1q3T2Applying assoiativity to the f�i equations of x3.2 will permit us to alulatealmost all the GW invariants we need to write them expliitly. For example
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the identity (T1 � T1) � T2 = T1 � (T1 � T2) gives:2q1q3T2 + Xod Te=3�0 hT6Tei(1;0;)gefTf � q2q3 = Xod Te=3�0 hT5Tei(0;1;)gefTf � q1q3
By omparing the oeÆients of the variables and by 2.8.4 we �nd: = 0 hT5Tei(0;1;0) = 0 hT6Tei(1;0;0) = 0 for all Te 2 A3(H) = 1 hT5T10i(0;1;1) = 0hT5T11i(0;1;1) = 2hT5T12i(0;1;1) = 2 hT6Tei(1;0;1) = 0 for all Te 2 A3(H) � 2 hT5Tei(0;1;) = 0 hT6Tei(1;0;) = 0 for all Te 2 A3(H)By symmetry we have: = 0 hT5Tei(1;0;0) = 0 hT7Tei(0;1;0) = 0 for all Te 2 A3(H) = 1 hT5T10i(1;0;1) = 2hT5T11i(1;0;1) = 0hT5T12i(1;0;1) = 2 hT7Tei(0;1;1) = 0 for all Te 2 A3(H) � 2 hT5Tei(1;0;) = 0 hT7Tei(0;1;) = 0 for all Te 2 A3(H)The values in the seond table arise also from the assoiativity applied toT2 � T2 � T1.
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The only neessary invariants we an not ompute with this tehnique are:1) hT8i(0;0;)  � 12) hT11T6i(0;1;) hT10T7i(1;0;) 2 �  � 03) hT4 od 3i(0;1;) hT4 od 3i(1;0;) 2 �  � 04) hT13i(1;0;) hT13i(0;1;) 2 �  � 05) hT13T10i(2;0;) hT13T11i(0;2;)  � 06) hT13T10i(0;2;) hT13T11i(2;0;)  � 07) hT13 od 3i(1;1;1)8) hT13T10i(1;1;) hT13T11i(1;1;)  � 29) hT4T4T4i(1;0;) hT4T4T4i(0;1;) 2 �  � 010) hT13T4T4i(1;1;)  � 111) hT13T4T4i(2;0;) hT13T4T4i(0;2;)  � 112) hT13T13T4i� � = (3; 0; ); (0; 3; ); (2; 1; ); (1; 2; )  � 0By symmetry, to alulate all the above invariants it is enough to onsideronly those on the left side of the list, in partiular for the last one we have tostudy only the ases with � = (3; 0; ); (2; 1; ). Note that we already knowthe values of the GW invariants 1), 3), 4) by previous alulations.The last four values an be alulated using the assoiativity equation (3.1),(see x3.5). Sine they are not so diÆult, here we work them out by hand.Lemma 3.4.2. All the invariants number 12) are zero.Proof. We an hoose generi representatives Z0, Z 00 for the two point-lasses. None of the (3; 0; 0)-urve an interset both of them. Moreoverthere are only reduible urves of lass (3; 0; ) for  = 1; 2 and they areof type 3C1 [ F , 3C1 [ 1F [ 2F , 1 + 2 = 2, respetively. Then for thesame hoie of generi Z0; Z 00 none of them interset suh yles. If  = 3we hoose Z0 generi and Z 00 2 �. Reduible urves of lass (3; 0; 3) aredisjoint from � or they live in the wrong dimension. Finally irreduibleurves are disjoint from �. Then also in this ase the invariant is zero. For � 4 all the urves are reduible of type 3C1 [ C, where C is a union ofan appropriate number of iF -urves. Then for a generi representative we
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have no ontribution to the GW invariant. An analogous argument showsthat also for stable maps of lass (2; 1; ),  � 0, everything vanishes.Remark 3.4.3. Sine in the proof we do not make use of the yles repre-senting T4, we proved something more, preisely:hT13T13 od 2i� = 0for � = (3; 0; ); (2; 1; ) .A similar argument yields:hT13T4 od 2i(2;0;) = 0for all 2-odimensional lasses and  � 0. In partiular hT13T4T4i(2;0;) = 0,for all  � 1.By means of 2.8.4 and generiity assumptions it is very easy to see that forall  � 0: hT4T4T4i(1;0;) = 0Finally the invariant hT13T4T4i(1;1;) gives 2 for  = 2 and zero otherwise [P℄.The invariant hT11T6i(0;1;)We want to alulate:hT11T6i(0;1;) = Z[M0;2(H;(0;1;))℄ ev�1(C(p1; l1)) � ev�2() � ��(dH�3(E))where  = fZ 2 H : Supp Z \ l01 6= ;;Supp Z \ l001 6= ;g is a yle repre-senting T6, for �xed lines l01; l001 2 W1, and E is the obstrution bundle onM0;0(H; (0; 1; )). Both representatives of T6 and T11 an be hoosen generi.It is very easy to see that for  = 0 the invariant gives 1, beause of thegeometry of a urve of lass (0; 1; 0).If  = 1 we do not have any ontribution from the irreduible urves bythe generiity assumptions. Let C be a reduible urve of lass (0; 1; 1). Ithas to be a union C(l2) [ C(p) for some p 2 Q and l2 2 W2. Sine allthe points on C(p1; l1) and  are redued, C an intersets them only alongC(l2). The line l2 = l2(p1) is then determined. The urve C(l2) is the linein Hilb2(l2(p1)) through (p1; l2 \ l1) and (l2 \ l01; l2 \ l001 ). Moreover there aretwo possible points for attahing C(p). This gives a ontribution 2 to theinvariant.
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If  = 2 we know that eah stable map � has a reduible domain urveD, in partiular �(D) is a urve of lass C2 [ 1F [ 2F with 1 + 2 = 2.The F -omponents are points of M(1) and M(2) respetively. As beforethe intersetion points with C(p1; l1) and  lie on the C2-omponent whihis ompletely determined. It intersets � in at most two points Zi, withSupp Zi = qi. Then by proposition 2.8.4 there is only a point satisfying allthe inident onditions [D;x1; x2; �℄ 2M0;2(H; (0; 1; 2)):D = D0 [D1 [D2 yi = D0 \Di; i = 1; 2��[D0℄ = C2 ��[Di℄ = [C(qi)℄; i = 1; 2�(x1) = (p1; l2(p1) \ l1) �(x2) = (l2(p1) \ l01; l2(p1) \ l001 )�(yi) = qi; i = 1; 2It is a redued point so it ounts with multipliity one.We summarize our results in the following table: = 0  = 1  = 2hT11T6i(0;1;) 1 2 1The invariants hT13T10i(2;0;) and hT13T11i(2;0;)To alulate hT13T10i(2;0;) and hT13T11i(2;0;) for  � 0 is equivalent to solveproblems 5) and 6).If  = 0, �xing a generi Z0 representing T13, there are no stable maps oftype (2; 0; 0) satisfying all the inident onditions in both ases. Then theGW invariants vanish.If  = 1, urves of lass (2; 0; 1) are all reduible. Fix Z0 as above, then nourves of type 2C1 [ F an interset it. Also in this ase our invariants arezero.Let  = 2 and Z0 be a non-redued point with support p0. Note that thepoints on the urve C(p1; l1) are all redued as well as those of C(p2; l2).In order to alulate the GW invariants we have to add the ontributionsgiven by maps of type 2C1 [ 1F [ 2F , (C1+F )[ (C1+F ), 2(C1+F ) and2C1 + 2F . If a reduible urve 2C1 [ a1F [ a2F intersets Z0, then its sup-port is ompletely determined by l1(p0) and it does not interset C(p1; l1)or C(p2; l2).Curves of type (C1+F )[ (C1+F ) are disjoint from � as well as 2(C1+F ),so they do not give any ontribution.Finally, if a urve 2C1 + 2F is in � it does not intersets C(li; pi), i = 1; 2,
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otherwise it does not pass through Z0.If  > 2, we an hoose Z0 in �. Then we have to analyze only the ontribu-tions given by maps from irreduible urves of type 2C1+ F ontained into� and from reduible ones of type 2C1 [ a1F [ a2F [ a3F [ a4F , P ai = .By the same argument used above, the GW invariants vanish.hT13T10i(2;0;) = 0 8  � 0hT13T11i(2;0;) = 0 8  � 0The invariant hT13; od 3i(1;1;1)Choosing generi representatives for the lasses T10, T11, T12, T13, sta-ble maps from reduible urves of lass (1; 1; 1) give no ontribution be-ause the expeted dimension ofM0;2(H; (1; 1; 1)) is 7 while reduible urveshave less moduli. Then we restrit to study what happens on the ompo-nentM0;2(H; (1; 1; 1))irr parametrizing maps from irreduible urves of lass(1; 1; 1), whih is smooth of the expeted dimension. Fix a generi point Z0of H representing T13 with Supp Z0 = fp0; q0g.Lemma 3.4.4. If (ev1; ev2) :M0;2(H; (1; 1; 1))irr ! H�H is the evaluationmap and A = fZ 2 H : lZ \ lZ0 6= ;g. Then [A℄ = (ev2)�ev�1 [Z0℄.Proof. Let (C; x1; x2; �) 2 ev�11 (Z0) with Z0 = �(x1) and Z1 = �(x2). Themap � is an isomorphism with the image urve �(l), whih is a line l inHilb2(� \Q) for � generi plane in P3. Sine both Z0 and Z1 are in �\Q,lZ1 \ lZ0 6= ;, beause they lie on the same plane, then ev2(ev�11 Z0) � A.The set ev�11 (Z0) is 3-dimensional as well as A, in partiular [A℄ = T3. Themap ev2 has degree 1 over A, in fat given a generi point Z 2 A, the lineslZ0 ; lZ generate a unique plane �. It uts a setion �\Q on Q and there is aunique line l �Hilb2(�\Q) through Z0; Z. A urve �(l) with two markingsis uniquely determined. Hene the �ber over Z onsists of a unique point[P1; x1; x2; �℄ where � : P1 ! H is an isomorphism with �(l) suh that��1(Z0) = x1, ��1(Z) = x2. Then ev2(ev�11 (Z0)) is 3-dimensional. Thisproves the lemma.Corollary 3.4.5. For all Te 2 A3(H):hT13Tei(1;1;1) = ZH T3 � TeProof. It follows from 3.4.4 and 2.7.1.The invariant hT13T10i(1;1;) for  � 2We an �x generi representatives for the lasses T13; T10, in partiularZ0 = fp0; q0g, C(p2; l2) with p0 =2 l2 and p0; q0 6= p2.
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If  = 2, all reduible urves of lassC1 [C2 [ 1F [ 2F with 1 + 2 = 2(C1 + F ) [ (C2 + F )(C1 + F ) [C2 [ F(C2 + F ) [C1 [ Fan not interset Z0; C(p2; l2) sine they have less moduli then the expeteddimension. Instead reduible urves of type (C1+C2+F )[F give a ontri-bution equal to 2. In fat both the markings have to lie on the C1+C2+F -omponent and the previous alulation showed there is exatly one stablemap of suh a lass ful�lling the inident onditions. Moreover we have twopossible hoies for adding the F -omponent. Instead irreduible urves�(p) of type C1 + C2 + 2F give ontribution zero beause the intersetionwith Z0 �xes p = p0 and q0 2 � \ Q while the seond evaluation map im-poses p0 2 l2. This is impossible beause of the hypothesis of generiity. Asimilar argument shows that also irreduible urves C(l1; l2; f) do not giveany ontribution to the invariant.A urve of type (1; 1; ) with  � 3 is neessarily reduible. There an bea ontribution only from those not ompletely ontained into � [ �, fordimensional reasons. By means of the vanishing result 2.8.4, it is easy tosee that the GW invariant is equal to 1 for  = 3 and vanishes otherwise.We have the following table:  = 2  = 3  � 4hT13T10i(1;1;) 2 1 0Relations de�ning QH�s (H)The relations f�i de�ning QH�s (H) are:T3 �T3� (T1+T2)�T3+T1 �T2�P�1 2q3(2T1T2+T 21 +T 22 �T1T3�T2T3) = 0T1 � T1 � T1 � q1(T3 � T1) + 2q1q3(2T1 + T2) + q1q23(T1 + 2T2 � T3) = 0T2 � T2 � T2 � q2(T3 � T2) + 2q2q3(T1 + 2T2) + q2q23(2T1 + T1 � T3) = 0T1 � T1 � T2 � 2T1 � T4 = 0T1 � T1 � T3 � 2T1 � T4 � 2q1q3(T1 + T3)� 2q1q23(T1 + 2T2 � T3) = 0
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T2 � T2 � T1 � 2T2 � T4 = 0T2 � T2 � T3 � 2T2 � T4 � 2q2q3(T2 + T3)� 2q2q23(2T1 + T2 � T3) = 0T1 � T2 � T3 � 2T3 � T4 = 0T4 � T4 � T4 � 2q1q2q23T4 = 0T4 � T4 � T1 � 2q1q3T2T4 � q1q2q3T3 + 2q1q2q23(2T1 + T2)+�q1q2q33(2T1 + 2T2 � T3) = 0T4 � T4 � T2 � 2q2q3T1T4 � q1q2q3T3 + 2q1q2q23(T1 + 2T2)+�q1q2q33(2T1 + 2T2 � T3) = 0T4 � T4 � T3� 2(q1q3T2T4+ q2q3T1T4)� q1q2q3T3� 2q1q2q23(2T1 +2T2� T3)+�3q1q2q33(2T1 + 2T2 � T3) = 0T1�T1�T4� 12q1(T2T3�T1T2)�q1q3(2T1T2+T 22 )� 12q1q23(T1T2+2T 22 �T2T3)+�q1q2q3(1 + 2q3)T0 = 0T2�T2�T4� 12q2(T1T3�T1T2)�q2q3(2T1T2+T 21 )� 12q2q23(T1T2+2T 21 �T1T3)+�q1q2q3(1 + 2q3)T0 = 0T1 � T2 � T4 � T4 � T4 � q1q3T 22 � q2q3T 21 � q1q2q3(1 + 2q3)T0 = 0T1�T3�T4�T4�T4�q1q3(T1T2+T 22+T2T3)�q2q3T 21�q1q23(T1T2+2T 22�T2T3)+�q1q2q3(1 + 4q3 + 3q23)T0 = 0T2�T3�T4�T4�T4�q2q3(T1T2+T 21+T1T3)�q1q3T 22�q2q23(T1T2+2T 22�T1T3)+�q1q2q3(1 + 4q3 + 3q23)T0 = 0In fat they satisfy the hypothesis of 3.3.3. In partiular we an write:QH�s (H) = Q [q1 ; q2; T1; T2; T3; T4℄[[q3℄℄(f�i )i=1;��� ;17Remark 3.4.6. In the ring QH�s (H) the identity T 24 = T13 orresponds to:T4 � T4 = T13 + 2q1q2q23T03.5 The subring generated by the divisor lassesWe apply the First Reonstrution Theorem (FRT) to the subalgebra of theChow ring of H generated by the divisor lasses. So we an alulate all the
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tree level GW invariants whih do not have T4 among the arguments. Thenwe present a (partial) algorithm whih permit us to ompute (almost) allthe genus zero GW invariants for H.Let S denote the subalgebra of A�(H) generated by T1; T2; T3. All the lassesin the �xed basis of A�(H) an be written as some produt of the divisorlasses exept T4. Then T4 is not in S.We an onsider the assoiated subring QS in QH�(H) and apply FRT toit. It says we an ompute all the genus zero GW invariants with argumentsin S by knowing few initial values. These are determined as follows. Letev : M0;2(H; �) ! H2 be the usual evaluation map For 1; 2 2 S we haveto alulate: Z[M0;2(H;�)℄vir ev�(1 � 2)Sine od ev�(1 � 2) has to be equal to 2a + 2b + 3 and od i � 4 fori = 1; 2, we �nd the upper-bound a + b � 2. So we have to onsider onlythe following ases:� (0; 0; ) (1; 0; ) (0; 1; ) (1; 1; ) (2; 0; ) (0; 2; )(od 1; od 2) (1; 2) (1; 4) (1; 4) (3; 4) (3; 4) (3; 4)(2; 3) (2; 3)In x2.7 and x3.3 we alulated some of these invariants. The left ones areobtained by means of the assoiativity applied to the equations f�i . Then weknow all of them. This implies that we an alulate all the GW invariantson H without T4 among the arguments.An algorithm for the tree level GW invariantsTo have a omplete knowledge of the genus zero GW-system on H we needan algorithm omputing invariants of type hTm4 1 � : : : � ni�, with i 2 Ssuh that 4 � deg 1 � : : : � deg n � 2.We use equation (3.1) and by indution we suppose to know all the invari-ants: hT r4 1 � : : : � ni� with r < mhT r4 1 � : : : � si� with r + s < m+ nhTm4 ~1 � : : : � ~ni� with deg ~n < deg nhTm4 1 � : : : � ni�0 with � � �0 > 0 e�etiveIf m = 0, there is no problem beause eah i is in S.If m = 1 and n = 0, then we know hT4i(0;0;) = 0, for all  � 1.
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If m = 1 and n = 1, then 1 lives neessarily in odimension 3 and we havealready alulated all the invariants in x3.3.If m = 1 and n � 2, we use (3.1):XhTi � Tj � Te �Ya2A ai�1 gef hTk � Tl � Tf �Yb2B bi�2 ==XhTi � Tk � Te �Ya2A ai�1 gef hTj � Tl � Tf �Yb2B bi�2By indution, we know all the invariants with �i 6= 0, i = 1; 2. We look onlyto the terms with either �1 or �2 equal to zero, i.e. on the left-hand side:hTi � Tj � Tk [ Tl � nY1 si�| {z }I1 + hTi [ Tj � Tk � Tl � nY1 si�| {z }I2on the right-hand side:hTi � Tk � Tj [ Tl � nY1 si�| {z }I3 + hTi [ Tk � Tj � Tl � nY1 si�| {z }I4Sine i 2 S, there exists a deomposition n = � [ �1 with �1 2 A1(H)and deg � = deg n � 1. We hoose:Ti = T4; Tj = 1; Tk = �; Tl = �1; R = 2 � : : : � n�1Then I1 is the value hT41 � : : : � ni� we want to know (this will alwaysbe the ase). Up to a salar (possibly zero) I2 is hT4 [ 1 � � � Ri�, all itsarguments are in S. Analogously I4 is proportional to the known invarianthT4 [ � � 1 � Ri�. Finally in I3 = hT4 � � � 1 [ �1 � Ri� the minimal degreedereased by one. Then we an write I1 as a ombination of lower degreeterms. After a �nite number of steps we an redue our problem to theprevious ase with n = 1.Ifm � 2 and n = 1, then we have three possibilities for od 1. If od 1 = 4,we an suppose 1 = T13. We hoose:Tk; Tl 2 A2(H) \ S with Tk [ Tl = T13Ti = Tj = T4R = Tm�24We obtain that in I2 = hTm�24 T13TkTli� we have a lower number of T4's aswell as in I3 and I4, sine T4 [ Tk, T4 [ Tl are in S. We an redue theproblem to �nd hT4T13i� , with  2 A2(H) \ S, i.e. m = 1.
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If od 1 = 3, then we an deompose it as 1 = � [ �1, with �1 2 A1(H)as above. Fixing:Ti = T4; Tj = T4; Tk = �; Tl = �1; R = Tm�24we get I2 proportional to hTm�24 T13�i� , and we know it by indution. Theinvariant I3 = hTm�14 � �T4[�1i� has less T4-lasses and the minimal degreeis lower. Finally I4 is proportional to hTm�14 T13i� , then it is known.If od 1 = 2, we use the same trik with:Ti = T4; Tj = T4; Tk = �1; Tl = �2; R = Tm�24where �1; �2 are two divisors suh that �1 [ �2 = 1. Also in this ase wean redue our problem to the ase m = 1.If m � 2 and n � 2, then we write n = �[�1, �1 2 A1(H) and we hoose:Ti = T4; Tj = 1; Tk = �; Tl = �1; R = Tm�14 2 � : : : � n�1Then I2; I4 are invariants with less T4's and in I3 the minimal degree isdeg � = deg n � 1. By indution we redue to the ase n = 1 or m = 1.To omplete the algorithm we need to �nd the invariants with m � 2 andn = 0. For dimensional reasons m has to be odd. At the moment we arenot able to give a reursion formula to evaluate these invariants.



Chapter 4Enumerative appliationsWe use the results on the Small Quantum Cohomology obtained in theprevious hapter to ount how many hyperellipti urves on Q of given genusand bi-degree pass through a �xed number of generi points. Basially weredue a question in higher genus to a question about rational urves onthe Hilbert sheme H, as in [Gr℄. To do this we need to �nd a relationshipbetween our hyperellipti urves and some rational urves on H.With the word hyperellipti we will mean an irreduible urve with a hoieof hyperellipti involution.4.1 The moduli spae of hyperellipti urves map-ping to QWe start with two lemmas, a proof of the �rst one an be found in [Gr℄.Lemma 4.1.1. If f : C ! Pr is a morphism from a hyperellipti urvesuh that it does not fator through the hyperellipti map � : C ! P1 thenHi(C; f�O(1)) = 0 for all i > 0.A similar result holds for maps to Q.Lemma 4.1.2. Let pi : Q ! P1 be the two projetions and � : C ! Qbe a morphism from a hyperellipti urve suh that �i := pi Æ � : C ! P1,i = 1; 2, does not fator through the hyperellipti map.Then Hi(C;��TQ) = 0 for all i > 0.Proof. Consider the Euler sequene:0! O ! O(1)�2 ! TP1 ! 0Sine TQ = p�1(TP1)� p�2(TP1), a surjetion is de�ned:H1(C;��p�1O�2(1) � ��p�2O�2(1))! H1(C;��TQ)! 0By hypothesis Hj(C;��p�iO�2(1)) = 0 for j > 0, so Hj(C;��TQ) = 0.71
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LetMg;0(Q; (d1; d2)) be the moduli spae of maps � : C ! Q from a smoothirreduible projetive urve C of genus g suh that ��[C℄ = (d1; d2). Let Mgbe the moduli spae of semistable projetive urves of genus g. We denoteby Hg the sub-lous parametrizing hyperellipti urves. If C is hyperelliptithen the yli group of order 2 ats on the spae of universal deformationsU of C. It an be proved that the �xed lous V � U is the universaldeformation spae of C as a hyperellipti urve and it is obviously smooth.It follows that Hg �Mg is a smooth substak. The artesian diagram:~Hg(Q; (d1; d2)) - HgMg(Q; (d1; d2))? - Mg?de�nes the spae ~Hg(Q; (d1; d2)) parametrizing maps � : C ! Q from ahyperellipti urve C of genus g with ��[C℄ = (d1; d2). We are interested inthe open subset Hg(Q; (d1; d2)) of maps � suh that the omposition maps�i = pi Æ � : C ! P1; i = 1; 2 do not fator through the hyperellipti map.Theorem 4.1.3. The natural morphism � : Hg(Q; (d1; d2))! Hg is smooth.Proof. It follows from the vanishing result 4.1.2; for eah � : C ! Q inHg(Q; (d1; d2)), we have H1(C;��TQ) = 0. Then by theorem 2.2.1, the for-getful morphismMg;0(Q; (d1; d2))!Mg is smooth in [�℄. Sine smoothnessis a loal property, the theorem follows.Corollary 4.1.4. Hg(Q; d) is smooth and irreduible.Proof. Smoothness is a diret onsequene of the theorem, sine both Hgand � are smooth.Sine Hg is irreduible, it is enough to prove the �bers of � are irreduibleof onstant dimension. A �ber ��1(C) is the set of all � : C ! Q of bi-degree (d1; d2) suh that both �1; �2 do not fator through the hyperelliptimap. They are two morphisms to the projetive line, so they orrespondto two line bundles on C of degree d1; d2 respetively. We get a morphismf = (f1; f2) : ��1(C) ! Pid1(C)�Pid2(C). By Lemma 4.1.1 Im(fi) is asubset of fLi : Li is spanned; h1(Li) = 0g. Conversely, for i = 1; 2, let Wibe the subset of Pidi(C) of sheaves Li suh that Li is spanned, h1(Li) = 0and Li is not a multiple of g12 . Then eah Li 2 Wi is in the image Im(fi).Wi is open and dense (if not empty), beause Pidi(C) is irreduible. HeneIm(fi) ontains the open subset Wi and therefore it is irreduible (beauseWi is). It follows that Im(f) is irreduible of dimension 2g. Eah �berf�1(L1;L2), Li 2 Wi, is a produt V1 � V2, where Vi is the open set ofpairs of global setions (s1i ; s2i ) of Li without ommon zeros, modulo salars.
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Hene these �bers are irreduible and they have the same dimension equalto 2(d1 + d2) � 2g, beause the �rst ohomology of Li vanishes. Therefore��1(C) is irreduible of dimension 2(d1 + d2).4.2 The basi orrespondeneAn element in Hg(Q; (d1; d2)) is a diagram:C � - QP1� 2:1?where � is the hyperellipti map and ��[C℄ has bi-degree (d1; d2) on Q.De�ne � : C ! P1 �Q by �(p) = (�(p); �(p)). Then Z = Im(�) is losedbeause � is proper and it is irreduible beause � is regular. It omes witha natural map pr1 : Z ! P1 whih is a at morphism, by [Har℄ Chap. IIIProp. 9.7. The generial �ber of pr1 is a set with two distint points, that isto say pr1 is a at family over P1 with �bers subshemes of Q of dimensionzero and length two. By the universal property of H there exists a uniquemorphism g making the following diagram artesian:Z //pr1

��

Uu
��

// QP1 g // Hwhere U is the universal family over H.So we assoiate to � a morphism g : P1 ! H anonially. This is wellde�ned for eah point [C;�℄ 2 Hg(Q; (d1; d2)).Conversely, given a map g : P1 ! H we an pull it bak via u:C //�
��

�
++Uu2:1

��

// QP1 g // Hwhere C = U �H P1 and � is a 2 : 1 at morphism. Then we get a diagram:C � - QP1� 2:1?
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If g(P1) � �, then C is not a hyperellipti urve beause it would not beredued. If g(P1) meets � transversally, then C is a smooth hyperelliptiurve. Intersetion points g(P1) \ � orrespond to branh points for thehyperellipti map � : C ! P1, beause � is the branh lous of u.The genus of C is given by the Hurwitz formula:2gC � 2 = deg � � (2gP1 � 2) + [g(P1)℄ ��Let g(P1) be a urve of lass (a; b; ), then gC = a+ b� � 1.Remark 4.2.1. Sine the genus is non-negative, a+ b > .Finally we alulate the bi-degree of �(C). It is given by the intersetionof �(C) with the generi oni (1; 0) + (0; 1) on Q. It orresponds to theintersetion produt of the yle lass (a; b; ) with the two divisors T1; T2 ofH: d1 = (a; b; ) � T1 = bd2 = (a; b; ) � T2 = aRemark 4.2.2. Sine [g(P1)℄ � � = 2(gC + 1) > 0 there is rami�ation forthe map � and C is onneted.Then a hyperellipti urve C on Q of genus g and bi-degree (d1; d2) is rep-resented by a rational urve in H of lass (d2; d1; d1 + d2 � g � 1). We willmake this sentene more rigorous after �xing some more notation.Let us onsider partiular rational urves, those parametrized by the opensubset M tr0;0(H; �) � M0;0(H; �) of maps from irreduible rational urvesful�lling:i. they interset � transversallyii. they are not ontained in �iii. they are disjoint from �2Let Htrg (Q; d) � Hg(Q; d) be the open subset parametrizing maps � suhthat:a) C is a smooth hyperellipti urve (! i.)b) both �i do not fator through � (! ii.)) both di�erentials d�i are injetive on rami�ation points of � (! iii.).Remark 4.2.3. Conditions de�ning Htrg (Q; d) are equivalent to say that� : C ! P1�Q is an embedding, i.e. Z is losed, redued and irreduible.Theorem 4.2.4. There is a anonial isomorphism:Htrg (Q; (d1; d2)) �=M tr0;0(H; (d2; d1; d1 + d2 � g � 1))Proof. The proof of theorem 2.4 in [Gr℄ never makes use of the fat that theurves are in P2, then it works also for hyperrellipti urves on Q.



4.3. THE MAIN THEOREM 75
4.3 The main theoremBy what we have showed so far, to ount hyperellipti urves on Q of bi-degree (d1; d2) and genus g passing through r = 2d1+2d2+1 general points isequivalent to ount irreduible rational urves of type (d2; d1; d1+d2�g�1)inH whih are transversal to � and meet r general translates of �(p), p 2 Q.So we might expet a relationship between the number we want to ountand the Gromov-Witten invariants hT r4 i�. In general, the moduli spaeM0;r(H; (d2; d1; d1 + d2 � g � 1)) an have some omponents whose generalelement orresponds to a reduible urve, moreover these omponents anhave dimension as large or larger than the expeted one. Then there anbe undesired ontributions to the number we want to �nd. The followingtheorem gives us a piture of the urves in H we are ounting.Theorem 4.3.1. Fix an e�etive lass � = (a; b; ) 2 A1(H), a + b � 1,and r general points p1; : : : ; pr on Q with:r = 2a+ 2b+ 1Then:1. there exists at most a �nite number of irreduible rational urves oflass � inident to all the yles �(pi);2. all suh urves interset � [ � in points disjoint from the �(pi);3. given any arbitrary stable map � : C ! H of lass � inident to allthe yles �(pi), then C has a unique irreduible omponent whih isnot entirely mapped into �[�, suh a omponent is of lass (a; b; 0),where 0 � .Consequenes : the theorem tells us that given a stable map � : C ! Hsatisfying all inident onditions, aside from the distinguished omponentof C of lass (a; b; 0), all other omponents are of type (0; 0; 0) and theyare entirely mapped into �. So they are multiple overs of P1. Moreover,adding a omponent of type (0; 0; 0) to a stable map an never ause it tobe inident to any extra �(q), sine it would fore another omponent of theurve to meet the orresponding yle. Finally, di�erent (0; 0; 0) omponentsare disjoint, sine they are di�erent �bers of the support map s, then theymust be inident to the distinguished omponent, C been onneted.We onlude that the soure urve looks like a omb, with the omponentof lass (a; b; 0) as the handle and the omponents of lass (0; 0; 0) as theteeth. We get exatly the same piture obtained in [Gr℄.There is a �nite number of suh urves. Infat, if C is irreduible, thenthe theorem on�rms our assertion. If C is reduible, we have only a �nitenumber of possibilities for the multiple overs of a (0; 0; 1)-urve and only a
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�nite number of points of intersetion of the distinguished omponent with�. So there are only �nitely many potential image urves for stable mapsinident to all of the yles. In partiular, if we denote by A the lous inM0;0(H; (a; b; )) de�ned by �(ev�11 �(p1)\ : : :\ ev�1r �(pr)) , where � is theusual map forgetting the markings (and stabilizing) and ev = (ev1; : : : ; evr)is the evaluation map onHr, then A is a union of �nitely many omponents.In fat the theorem says that the only moduli in the hoie of a stable mapmeeting all the �(pi) omes from the hoie of multiple overs of the (0; 0; 1)urve. Then as a set, eah omponent of A deomposes as a produt:M(1)�M(2)� : : : �M(m)with 1 + : : : + m =  and M(i) as in x2.6. In pariular A is ontained inthe smooth lous of M0;0(H; (a; b; )).Before going on with the proof of the theorem we need a lemma.Lemma 4.3.2. With notations as in the theorem, let C be an irreduible ra-tional urve meeting all the yles �(pi) and the orbit �4. Then it intersets� [ � in points disjoint from all the �(pi).Proof. Let r = 2a + 2b + 1 and M � M0;r(H; (a; b; )) be the open subsetof points [C;�; xj ℄j=1;:::;r suh that C �= P1, �(C) \ �4 6= ;. It is smooth ofdimension 2r. The map M !M0;0(H; (a; b; )) whih forgets the markingsand stabilizes fators through:M �i- M0;1(H; (a; b; )) - M0;0(H; (a; b; ))where �i is the map forgetting all the markings but xi and stabilizing. It issurjetive onto its image Im(�i) = U1 whih is the universal urve over thesmooth lous U0 of M0;0(H; (a; b; )). Then �i : M ! U1 is at of relativedimension r�1. The set N = f[C;�; x℄ : �(x) 2 �[�g is a losed subset ofU1, as it is the inverse image ev�1(�[�). Its omplementary U1nN is openand intersets all the 1-dimensional �bers of U1 ! U0, then it is dense. Thisimplies that N is a proper losed subset, equivalently it has dimension lowerthan r + 1. Moreover the inverse image Mi = ��1i (N) has dimension dimMi < dim M = 2r beause also the restrited map �i : Mi ! N is at ofrelative dimension r � 1. Let ~Mi be the resolution of singularities of Mi. Ithas the same dimension as Mi. Set � =Qri=1 �(pi), for generi �xed pointsp1; : : : ; pr 2 Q and onsider the inverse image of � in ~Mi via the evaluationmap, i.e. the omposition:evi : ~Mi �Mi ev- HrWe apply the Position Lemma to evi with the group A0, the onnetedomponent of A ontaining the identity, ating on H. Then ev�1i (�) haspure dimension equal to dim Mi � od(� � Hr) < 0, that is to say it isempty. In partiular ev�1(�) \Mi = ;.
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Remark 4.3.3. Note that Hr is almost homogeneous beause there is agroup ating on eah fator and globally we have a �nite number of orbits.Proof of the Main Theorem and appliationsWe are ready to give a proof of the theorem. We will use indution on thenumber of omponents of the soure urve C and we will apply the PositionLemma with respet to the ation of A0 on H.Proof. STEP 1. Let C be a rational, irreduible urve with r markings andlet � : C ! H be a stable map of lass � = (a; b; ) suh that �(C) * �[�.Set � = Qri=1 �(pi). Note that the moduli spae M0;r(H; �) is smooth in[C;�℄ of the expeted dimension. Then we an onsider the restrition ofthe evaluation map to the smooth open subset:M = f[C;�; xj ℄ : C �= P1; �(C) * � [ �g �M0;r(H; �)We an apply the Position Lemma:ev�1(�) - �M? ev - Hr?It follows that dim ev�1(�) = 0 sine M is of the expeted dimension 2r.STEP 2. Suppose that C is irreduible and �(C) � �, then in � we have��[C℄ = ~� = (a2 ; b2 ; ) by what we showed in x1.5. Let a0 = a2 ; b0 = b2 . Wehave a urve D of lass a0[L1℄ + b0[L2℄ + [L3℄ in � and we an onsiderits projetion to Q. The image B is a urve of genus zero and of bi-degree(a0; b0) on Q. In fat Li maps to li for i = 1; 2 and L3 maps to a point. Theyles �(pi) restrited to � have odimension 2 and the urve D is inidentto all of them if and only if the image urve B goes through all the points pi.A rational urve on Q of bi-degree (a0; b0) passes through at most s generialpoints of Q, where:2s = dim Q+ Z(a0;b0) 1(TQ)� 3 + s) s = 2a0 + 2b0 � 1 = a+ b� 1We have s < r = 2a + 2b + 1, so the irreduible urves �(C) � � give noontribution to our alulations.If C is reduible and �(C) � � then we an write C = C1 [ : : :[Ck. Everyirreduible omponent Cj is suh that �(Cj) meets at most sj = aj + bj � 1yles �(pi), where P ai = a;P bi = b. This means that �(C) intersets atmost P si = a + b � k < r points. Also these urves give no ontributionsto our alulations.
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STEP 3. Now we analyse the ontribution from irreduible rational urvesC suh that �(C) � �. Sine � is the disjoint union ~W1t ~W2 and �(C) is irre-duible, it is enough to onsider the ase �(C) � ~W1. The pushforward lass��[C℄ in ~W1 is (a; b2 ) with b even. Denote by 'r1 the map ~W r1 '1�:::�'1- W r1indued by the blowup H! G. Then we have a omposition map:M0;r( ~W1; (a; b=2)) ev- ~W r1 'r1- W r1 � GrIf a urve of lass (a; b=2) intersets all the yles �(pi) then its image via'1 is of lass ('1)�(a; b=2) = b2 [W1℄ = b[�2;1℄ beause W1 is a quadri in G,and it goes through all the points l1(pi) 2 G. Suh a urve passes throughat most s �xed points in G, with s given by the formula:4s = dim G+ Zb[�2;1℄ 1(TG)� 3 + s) s = 1 + 4b3Sine s < r we verify that irreduible urves mapped into � give no ontri-bution to our omputation.Suppose that C is the union of k irreduible omponents and �(C) � �.Sine ~W1; ~W2 are disjoint, if an irreduible omponent is mapped into ~Withen all the omponents are atually mapped into the same divisor ~Wi, byonnetedness. We an assume �(C) � ~W1. The number k of omponents isbounded. In fat ��[C℄ = (a; b; b) in H, with b even, then k is at most equalto a + b2 . This implies that �(C) goes through at most s = k+4b3 � 2a+9b6yles. We get s < r also in this ase.Lemma 4.3.2 onlude the proof of 1.-2.STEP 4. Suppose C is reduible and �(C) � � [ �. In partiular assumethat C has k irreduible omponents Ci suh that:Ci � �3 for 1 � i � k1Ci � ~W1 for k1 + 1 � i � k2Ci � ~W2 for k2 + 1 � i � kWe �x the notations:D1 = Sk1i=1 Ci is of lass (a1; b1; 1)D2 = Sk2i=k1+1Ci is of lass (a2; b2; 2)D3 = Ski=k2+1Ci is of lass (a3; b3; 3)The onditionsP aj = a; P bj = b; P j =  hold. The image urve �(Dj)intersets rj yles. By the previous results we know that rj � 2aj +2bj forall j then r1 + r2 + r3 � 2a + 2b < r. The urve C does not intersets allthe yles �(pi).
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STEP 5. Note that a point [C;�; xj ℄ suh that C = SCi and eah Ciintersets the dense orbit �4 lives in the smooth lous of M0;r(H; (a; b; )).The subset R parametrizing all suh stable maps is a proper losed subsetof the smooth lous, then it has dimension lower than 2r. Then for generipoints pi the intersetion R \ ev�1(�) is empty.We have to analyse only the ontribution from stable maps � : C ! H withrational reduible domain and �(C) * � [ � but suh that there is exessat the point [C;�; xi℄, i.e. there exists at least one omponent of C mappedinto �[�. We an write C = C0 [C1 with C0 \C1 = fpg a point mappedin �[�. Set [�(Ci)℄ = (ai; bi; i) in H, withP ai = a; P bi = b; P i = .Suppose (ai; bi) 6= (0; 0) for i = 0; 1 and let �(C) be inident to all the yles�(pi). We know that �(Ci) intersets ri = 2ai + 2bi + 1 � ki yles, withk0 + k1 � 1. We an assume r0 = 2a0 + 2b0 + 1 and r1 = 2a1 + 2b1. Byindution, C0 has a unique irreduible omponent of lass (a0; b0; �0), with�0 � 0, not entirely mapped into � [ � and interseting all the yles. Allthe other omponents are of lass (0; 0; j). There is only a �nite numberof possible values for �0 then there are �nitely many possible images of C0.In partiular �(C0) \ (� [ �) an be ontained in a �nite number of ylesof the form �(qj) with qj =2 fp1; : : : ; prg, by statement 2. The urve �(C1)meets at least one of the �(qj), beause �(p) 2 �[�. So it intersets r1+1yles and a point of intersetion is in � [ �. This is impossible. Thena1 = b1 = 0.We an write expliitly the relationship between Gromov-Witten invariantson H and enumerative geometry of hyperellipti urves on Q.De�nition 4.3.4. Let E((d1; d2); g) be the number of hyperellipti urvesof genus g and bi-degree (d1; d2) on Q passing through 2d1 + 2d2 + 1 = rgeneral points, ounted with multipliity.Theorem 4.3.5. With � = (d2; d1; d1 + d2 � g � 1) and r as above, theenumerative numbers E((d1; d2); g) satisfy the equation:hT r4 i� =Xh�g�2h+ 2h� g �E((d1; d2); h) (4.1)Proof. We write � = (a; b; ) where a = d2; b = d1;  = d1 + d2 � g � 1.Fixed r general points p1; : : : ; pr the invariant hT r4 i� is given by the degreedeg(ev�1(Q�(pi)) where ev�1(Q�(pi)) is a �nite set of points by 4.3.1.Eah of them orresponds to a hyperellipti urve whih then omes witha multipliity. By the results of setion 2.6, the only ontribution to theinvariant omes from the zero dimensional omponent of the moduli spaeM0;r(H; �) orresponding to stable maps from urves whih look like ombs.These are the union of an irreduible (a; b; 0)-urve, 0 � , inident to allthe yles �(pi) with  � 0 rational urves mapping isomorphially onto a
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(0; 0; 1)-urve. Hene the number of stable maps is equal to the number ofpossible irreduible urves of lass (a; b; 0) times the number of hoies forthe attahment points of the (0; 0; 1)-urves. We have to hoose �0 pointsamong the 2(a + b � 0) ones in the intersetion (a; b; 0) � �. The formulathen follows from the relationship between (a; b; ) and (d1; d2; g).Remark 4.3.6. We expet that for generi data the hyperellipti urves ofgiven genus and bi-degree passing through r points have always multipliityequal to one. This is equivalent to the ondition that a general irreduiblerational urve in H intersets the strati�ation trasversally. At the momentwe an only partially prove suh a statement. Roughly speaking the ideais that given a stable map � : C ! H suh that �(C) is as in the hypoth-esis, the sheaf ��(TH) is generated by global setions. We an move theurve away from any 2-dimensional losed orbit �i2 and make it intersettransversally any 3-dimensional orbit. So let M be the smooth open subsetofM0;0(H; (a; b; )) of the expeted dimension r = 2a+2b+1, parametrizingthe stable maps � : C ! H suh that C �= P1 and �(C) \ �4 6= ;. We de-note by Ni the losed subsets of M de�ned by the ondition �(C)\�i2 6= ;,i = 1; 2. We need to prove that eah Ni has dimension lower than r, i.e.given a point in Ni there exists a deformation of it whih is not in Ni. Eahmap � 2M is a free morphism in the sense of [K℄, (Chap. II, Def. 3.1) andeah orbit �i2 is of odimension 2 in H, then we an apply [K℄ PropositionII.3.7 and onlude that Ni is a losed proper subset. Transversality for theintersetion with the orbits �3 and �3 is more subtle (see [P℄).Remark 4.3.7. We note that the sum in 4.3.5 is �nite, in fat the valuesof h are equal to d1 + d2 � 0 � 1 with 0 � . We an reover the valuesE((d1; d2); g) by knowledge of all the GW invariants hT r4 i(d2;d1;d1+d2�g�1).Remark 4.3.8. At the moment we do not know how to ompute all theinvariants hT r4 i(d2;d1;d1+d2�g�1), (see x3.5).Remark 4.3.9. The numbers E((d1; d2); g) are zero for small values ofd1; d2; g. In fat E((d1; d2); g) is less then or equal to S((d1; d1); g), thenumber of smooth urves of bi-degree (d1; d2) of genus g passing through rpoints. S((d1; d1); g) is zero if d1d2�d1�d2�1 < 0. Then the �rst possiblynonzero GW invariants are hT 114 i(3;2;2) and hT 114 i(2;3;2).We an also extend [Gr℄ Theorem 3.7 to our ase, as follows. Fix k generalpoints pi on Q and l general pairs of points qj; q0j with k + 3l = r, r as inthe previous theorem. We want to ount how many hyperellipti urves onQ of genus g and bi-degree (d1; d2) pass through all the points and satisfyalso the ondition that for some hoie of the hyperellipti involution qi ishyperelliptially onjugate to q0i for all i. Let El((d1; d2); g) be the solutionof this problem. A hyperellipti urve on Q will meet hyperelliptially on-jugated points q; q0 if and only if the orresponding rational urve on H will
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meet the point Z with support fq; q0g. Choosing a representative of thepoint lass T13 outside � [ �, urves moving in exess dimension annotsatisfy this ondition, so theorem 4.3.1 is true also for yles representingT13. The same argument used in the proof of [Gr℄ Thm.3.7. will hold forthe Gromov-Witten invariants involving the point yle lass. In partiular:Theorem 4.3.10. With notations as in theorem 4.3.5:hT l13 � T r�3l4 i� =Xh�g�2h+ 2h� g �El((d1; d2); h) (4.2)Remark 4.3.11. Also in this ase the sum over h is �nite. By what weshowed in x3.5 if l � 1 then we an ompute all the invariants hT l13 �T r�3l4 i�.Therefore we an invert the formula (4.2) to get the numbers El((d1; d2); h).
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