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A B S T R A C T

Recent advancements in wireless communication and electronics has en-
abled the development of low-cost, low-power, multifunctional sensor nodes
that are small in size and communicate untethered in short distances.
These tiny sensors, which consists of sensing, data processing and com-
municating components, leverage the idea of sensor networks. A sensor
network is composed of a large number of sensors nodes that are densely
deployed either inside the phenomenon or very close to it. Recently, large
scale sensor networks are drawing an ever increasing interest in various
technological fields.

In the near future, sensor networks will grow in size, therefore forthcom-
ing steps in their evolution consist in combining large number of devices
with different functions in order to create a heterogeneous network mov-
ing around the complexity of a standardized interface. Local interactions
between sensor nodes allow them to reach a common goal and to deduce
global conclusions from their data.
While potential benefits of sensor networks are clear, a number of open
problem must be solved in order for wireless sensor network to become
viable in practice. This problems include issues related to deployment, se-
curity, calibration, failure detection and power management.

In the last decade, significant advantages have been made in the field
of service robotics, and robots have become increasingly more feasible in
practical system design. Therefore, we trust that a number of open prob-
lems with wireless sensor networks can be solved or diminished by includ-
ing mobility capabilities in agents composing the network.
The growing possibilities enabled by robotic networks in monitoring nat-
ural phenomena and enhance human capabilities in unknown environ-
ments, convey researchers recent interests to combine flexibility character-
istics typical for distributed sensor networks, together with advantages car-
ried by the mobility features of robotics agents. Teams of robots can often
perform large-scale tasks more efficiently than single robots or static sen-
sors; therefore the combination of mobility with wireless networks greatly
enhanced the application space of both robots and sensor networks.

Some of the application areas for mixed robot and sensor networks are
health, military and home. In military, for instance, the rapid deployment,
self-organization and fault detection characteristics of sensor networks
make them a very promising sensing technique for military command,
control, communications, computing, intelligence, surveillance, reconnais-
sance and targeting systems. In health, sensor nodes can also be deployed
to monitor ill patients and assist disabled patients.
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The focus of this work is to study and propose theoretical approaches
that pair together with the algorithm development regarding four open
problems of both sensor and robot networks. These are:

• Each agent to localize itself;

• The group to set-up a localization infrastructure;

• The group to establish robust spatial patterns for sensing the envi-
ronment;

• The group to perform a global measure for the mission-specific quan-
tity of interest.

The approach we propose in this work to overcome open problems aris-
ing with sensor and robot network consists in exploiting the interaction
between the two systems in order to efficiently perform common goals.
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Part I

O V E RV I E W O N T H E P R O B L E M

This introduction part contains a brief discussion in the topic
of distributed systems, sensor and robot networks: description,
potentiality, research open-problems, and applications of this
kind of systems are resumed. An outline of the work then in-
troduces considered problems and solutions proposed.





1
I N T R O D U C T I O N

Wireless Sensor Networks (WSNs) are large groups of spatially distributed
electronic devices capable of sensing, computation and wireless communi-
cation. This type of networks are becoming very popular as they can offer
access to huge quantity, and accurate quality of information that can revo-
lutionize our ability to control the environment.
The variety of possible applications of WSNs to the real world is practically
unlimited. It is important to underline that the application strongly affects
the choice of the wireless technology to be used. Typical applications in-
clude:

• Habitat monitoring and environmental context: air pollution moni-
toring, forest fire detection, landslide detection, water quality moni-
toring [42];

• Industrial context: car tracking, industrial automation, machine surveil-
lance and preventive maintenance;

• Surveillance and building environmental control in urban context
[25]: traffic control, structural monitoring, video surveillance;

• Domestic context: home automation, domotics;

• Health care context: psychological data monitoring, home health care
or assisted living, facilitation for disabled people, hospital manage-
ment, allergy identification;

• Military context: battlefield surveillance, forces and equipment mon-
itoring, enemy recognition, damages estimation, attack detection.

Recent technological improvements have enabled the deployment of
small, inexpensive, low-power distributed devices which are capable of
local processing and wireless communication. Each sensor node is capable
of only a limited amount of processing, but when coordinated with the
information from a large number of other nodes, they have the ability to
manage even complex tasks.

Traditional large scale systems are usually characterized by a centralized
architecture, while the recent trend is based on a distributed approach.
Even if a centralized structure entails the advantage to be easy to be de-
signed, it requires the employment of very reliable and expensive sensors,
and it involves remarkable communication limitation. The choice of the
distributed model should implicitly accounts for scalabilty and robustness
to failures of both nodes and network. Moreover in large scale applications
low-cost sensors are preferred in order to decrease costs.
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4 introduction

The modern design of robotic and automation systems consider net-
worked vehicles, sensors, actuators and communication devices. These de-
velopments enable researches and engineers to design new robots capable
of performing tasks in a cooperative way. This new technology has been
denominated Multi-Robot Systems (MRS) and includes:

• Physical embodiment: any MRS has to have a group of physical robot
which incorporates hardware and software capabilities;

• Autonomous capabilities: a physical robot must have autonomous
capabilities to be considered as a basic element of a MRS;

• Network-based cooperation: the robots, environment, sensors and
humans must communicate and cooperate through a network;

• Environment sensors and actuators: besides sensing capabilities en-
hanced in robots, the framework must include other sensors, such
as vision cameras, laser range finders, electronic sensors and other
actuators, that often are dispatched by robotic agents ;

• Human-robot interaction: in order to consider a system as MRS, the
system must have a human-robot related activity.

The initial motivation to this work was the implementation and evalua-
tion of a self-configuring Multi-Robot System, able to provide self-adapting
techniques in order to perform complex tasks in unknown mission spaces.

Mobile robots are increasingly used in flexible manufacturing industry
and service environments. The main advantage of these vehicles is that
they can operate autonomously in the workspace. To achieve this automa-
tion, mobile robots must include a localization - or positioning - system
in order to estimate their own pose (positioning and orientation) as accu-
rately as possible [28].
In particular, location-based applications are among the first and most
popular applications for robotic nodes, since they could be employed to
track people in wide outdoor areas or in extending to indoor environments
the GPS approach for locating people and tracking mobile objects in large
buildings (e.g. warehouses).
Positioning is a fundamental issue in mobile robot applications: indeed, a
mobile robot that moves across its environment has to position itself be-
fore it can execute properly every kind of actions. Therefore mobile robots
has to be equipped with some hardware and software, capable to provide
a sensory feedback related to the environment .

Services provided by the system, included localization, can be improved
through the exploitation of described encouraging capabilities of sensor
networks. In this sense, capabilities of robotic and sensor networks are
complementary and can be combined in order to produce a complete and
robust platform.

The flexibility of the system can furthermore be improved through de-
ployment capabilities for mobile agents: this feature ensure flexibility and
adaptive characteristics to the system.



1.1 contribution 5

The performance of this kind of systems in terms of quality of the ser-
vice provided is sensitive to the location of its agents in the mission space.
This leads to the basic problem of deploying sensors and robots in order
to meet the overall system objectives, which is referred to as the coverage
control or active sensing problem [36] [9] [37].

In particular, sensors must be deployed and robot must be moved, so as
to maximize the information extracted from the mission space - or the qual-
ity of service provided - while maintaining acceptable levels of commu-
nication and energy consumption. Coverage control problems have been
studied in various context. In robotics, the principal goal is to move from
one position to another so as to maximize the information gathered from
the environment.

1.1 contribution

The goal of this thesis consists in examining the interaction between Wire-
less Sensor Networks and Multi-Robot systems: first of all introducing
weaknesses of both systems taken separately and then proposing control
strategies that enlarge systems capabilities through interaction.

In particular the problems of Localization, Beacons placement, and Cov-
erage Control are taken into account and novel state-of-art solutions are
proposed. These are mainly based on the mutual interplay between the
robot and sensor networks: features of both infrastructures are joined in
order to perform common tasks.

The work includes a comprehensive methods validation chapter, in which
numerical simulations presents some typical issues arising in practice. Ad-
vantages and peculiar behaviors kept by agents are discussed.

The main contributions of this work are the derivation of a closed-form
expression for estimated location’s variance and the use of an intermittent
Extended Kalman Filter (EKF) capable of combining odometry together
with geometric localization data in order to improve localization quality.
The closed-form expression for uncertainty has enabled a dynamical de-
ployment of beacon nodes to dynamically enlarge infrastructure covered
area, and to improve localization quality in the whole configurations space.
An adaptive method for coverage control in unknown area exploration is
described, capable of dynamically update informativeness and network’s
interests in non-visited areas. Results from simulations motivate coverage
control strategy based on optimization, that enables robust environment
coverage through Voronoi partitioning.

1.2 outline of the work

The remainder of the thesis is organized as follows.

• Chapter 2 presents an overview of robotic networks and WSNs. In
spite of the diverse applications, sensoristic and robotic networks
pose a number of unique technical challenges due to several factors.
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The main troubles arising when both the systems are combined are
introduced;

• Chapter 3 deals with the problem of locating mobile agents in un-
known environments. In the first part, the most popular methods for
robot localization are described and compared in terms of robust-
ness and data required. The Geometric Triangulation method is dis-
cussed in detail and taken into account for its promising capabilities,
and a novel algorithm based on this technique recently presented
in literature is described. Starting from recent papers, an estimate
for the variance of robot position is derived and exploited in order
to combine the internal kinematics model of agents, together with
triangulation data through Kalman filtering;

• Chapter 4 examines in detail the beacons placement problem for lo-
calization. Closed form location variance expressions, derived in pre-
vious chapter, are exploited to deduce optimal pattern and configu-
ration for the sensor network providing localization. A novel method
based on beacons cooperation and estimated location variance is de-
veloped in order to both extend the existing infrastructure, and im-
prove localization quality;

• in Chapter 5 a distributed gradient-based algorithm maximizing the
joint detection probabilities of random events is designed. A model
for events taking place in the mission space is proposed using a den-
sity function representing the frequency of random events taking
place. In the second part of the chapter, several improvements are
proposed in order to provide global knowledge of the mission space
to the network;

• Chapter 6 presents simulation results, which illustrates the effective-
ness of the proposed schemes and compare network performances
in several practical configurations.

• Chapter 7 and 8 concludes the thesis and describes directions for
future works.

• Appendices report some theoretical results that can be developed in
future works.



2
O V E RV I E W

In the recent decades researchers focused their attentions in engineering
systems composed by a large number of devices that can communicate
and cooperate to achieve a common goal. Although complex large-scale
monitoring and control systems are not new, as for example air traffic con-
trol or smart grids applications, a new architectural model is emerging,
mainly thanks to the adoption of smart agents i. e. devices that are capable
of cooperating and of taking autonomous decisions without any supervi-
sory system. In fact, traditional large-scale systems have a centralized or
at best a hierarchical architecture, which has the advantage to be relatively
easy to be designed and has safety guarantees. However, these systems
require reliable sensors and actuators and in generally are very expensive.
Another relevant limitation related with centralized systems is that they
do not scale well, due to communication and computation limitations.

The recent trend, in order to avoid these problems, is to substitute costly
sensors, actuators and communication systems with a larger number of
devices that can autonomously compensate potential failures and compu-
tation limitations through communication and cooperation.

2.1 localization

A common problem in mobile robotics deals with understanding where
mobile agents are located in the 3D space. Localization is the process of
finding both position and orientation of a vehicle in a given referential sys-
tem. Navigation of mobile vehicles indoors and outdoors usually requires
accurate and reliable methods of localization.
Localization is a complicated issue in the real world, as sensors are not
perfect and measured quantities can result distorted by noise. Moreover
environmental models are never fully complete, and robot’s wheels can
slip, causing errors in odometry1 readings.

These limitations can be overcome by referencing the robot’s location to
landmarks whose locations are known. Unfortunately, there are two rel-
evant issues that complicate landmarks-based navigation. First of all, the
robot’s orientation with respect to the world coordinate system is highly
important (an incorrect measure of the robot’s orientation will cause addi-
tional errors in locations as the robot moves), moreover the determination
of robot’s location and orientation is not a trivial issue.
For the reasons explained, a simple two landmark localization scheme is

an insufficient solution. In fact, when navigating on a plane, three distin-
guishable beacons - at least - are required for the robot to localize itself
(Figure 1). This is motivated by the fact that localization on a plane arises

1 Odometry is the use of data from motion sensors to estimate changes in position over time.
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Figure 1: Localization results as the intersection of three distinguishable circles.

as the intersection of three distinguishable circles (each of them passing
through a couple of landmarks and the robot). This is the reason why al-
most three beacons are required in order to localize mobile nodes. Usually,
the use of more than three beacons results in redundancy.
On the other hand, using more than two landmarks for determining robots
positions ( i. e. location and orientation) is not a trivial problem: triangula-
tion with three beacons is called Three object triangulation.

First of all, the solution to the problem can be obtained through a geo-
metrical approach. Unfortunately, the geometry of the problem permits in
general multiple solutions for valid robot locations and the geometry for
computing the solution is in general not straight forward.

Secondly, an approach based on a mathematical derivation can be ex-
ploited. However, the computation of the solution is not a trivial problem.
In particular the angle and distance between the landmarks is not the
only information required to solve the problem; and the proper ordering
of the landmarks is important. The geometric relationship between the
landmarks and the robot must be considered and the uniqueness of the
solution is not guaranteed in general.

2.2 beacon deployment

As sensors are becoming inexpensive, deploying many sensors in a workspace
to provide localization and other services is becoming feasible. Localiza-
tion technologies based on anchor nodes provide a valuable alternative to
on-board localization systems, because of their higher precision and avoid-
ance of the unbounded growth of time integration errors with the distance
traveled by the robot.

Figure 2: Mutual interplay between robot and sensor networks.
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In particular, in scenarios where many specialized robots operate in the
same workspace, it may be cheaper to install several beacon nodes and use
them to localize all of the robots, rather then equipping mobile robots with
extremely accurate odometric sensors. In fact, localization based on exter-
nal beacons is in general robuster than on-board localization, moreover
it could be the only alternative in scenarios where odometric sensors are
not enough reliable. Localization systems based on anchor nodes have two
main advantages over localization systems with no beacons. First, having
beacons spatially distributed throughout the geographical region lets de-
vices to compute their location in a scalable, decentralized manner. Second,
even when the application permits offline centralized position estimation
algorithms, both the coverage and estimation accuracy can be significantly
improved by disposing of external fixed nodes as beacon.

The nature of the environment, such as indoors or outdoors and its
features, temperature, pressure, weather, objects and various sources of in-
terference influences not only the characteristics of sensors used, but also
the magnitude and type of measurement errors. Traditionally, this types
of issues have been addressed through extensive environment-specific cal-
ibration and configuration of the centrally controlled localization system
[4]. This approach is, however, not suited for large scale sensor networks
since the specific calibration does not fit the distributed approach. Recent
studies have focused on self-configuring localization systems, that is, sys-
tems able to autonomously measure and adapt their properties to envi-
ronmental conditions in order to achieve ad-hoc and robust deployment.
The flexibility guaranteed by networks capable of self-deploying agents
to perform tasks, is advantageous compared to pre-allocated systems: it
provides robustness to agent failure, longevity to the entire network and
allows to handle more complex tasks.

There are two major configuration and deployment concerns when bea-
cons are used.

• Beacon configuration: each beacon needs to be configured with its
spatial coordinates during deployment. Automating this process is
important for large scale and highly dense beacon deployment. In
an outdoor setting, it is possible assume that beacons can infer their
position through GPS. However, in order to ensure robustness to the
system, only a few beacons will need to have their positions assigned
manually, the rest can exploit this structure in beacon placement to
infer their coordinates.

• Beacon placement. The issue to understand how many beacons are
need and where should they be placed regard the beacon placement
problem. The beacon density and placement are important in influ-
encing the overall localization quality. Uniformly dense placement is
good and has its benefits, however in many cases it is not adequate.
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2.3 coverage control

Deploying multiple agents to perform tasks is advantageous compared to
the single agent case: it provides robustness to agent failure and allows to
handle more complex tasks. The single, heavily equipped vehicle may re-
quire considerable power to operate its sensor payload, it lacks robustness
to vehicle failure and it cannot adapt its configuration to environmental
changes. A cooperative network of sensors and vehicles equipped with
sensor, has the potential to perform efficiently and reliably tasks in a more
flexible and scalable way than single better-equipped agents. Therefore,
distributed control can be employed by groups of robots to carry out tasks
such as environmental monitoring, automatic surveillance of rooms, build-
ings or towns, search and rescue etc.

The performance of multi-robot and sensor network in distributed area
exploration is sensitive to the location of agents in the mission space. In
particular, sensors must be deployed so as to maximize the information
extracted from the mission space. The goal is therefore to drive the sen-
sors/agents to the position such that a given region is optimally covered
by sensors. This causes the network to spread out over the environment
while aggregating in areas of high sensory interest. Furthermore, robots
do not know beforehand where areas of major interest are located: the
network is required to learn this information online from sensors mea-
surements. In this work, we consider a mobile sensing network composed
of vehicles and static agents, both equipped with sensors to sample the en-
vironment; the problem of deploying agents is referred to as the Coverage
control problem.

Figure 3: Coverage Control: the network spread out over the environment, while
aggregating in areas of high sensory interest.

In particular, the problem of surveying a given arbitrarily-shaped mis-
sion space is addressed. The problem solution require the distribution of
a fixed sensor network and a Multi-robot network in the domain to be
sampled. The problem of optimizing sensor locations in fixed sensor net-
works has been extensively studied in the past, and are still open. In such
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problems, the solution is a Voronoi partition, where the optimal sensor do-
main is a Voronoi cell in the partition and the optimal sensor location is a
centroid of a Voronoi cell in the partition.

The approach proposed in this work is based on a distributed optimiza-
tion that guide mobile agents towards points of maximum informative-
ness. The method is then extended exploiting Voronoi tessellation in order
to keep track of the overall visited areas, this allows improvements in con-
vergence time and in terms of overall knowledge.





Part II

T H E O R E T I C A L R E S U LT S

When sensors are deployed in unknown environments the main
issues arising regards locating the sensor in order to handle
spatial goals, understanding best locations for agents in order
to gather more informative events, and designing locations for
new nodes in order to improve quality of services provided.
These are referred as Localization, Beacon Placement, Cover-
age Control issues for sensor and robot networks. The follow-
ing chapters contain a comprehensive discussion regarding this
topics and solutions for above mentioned problems.





3
L O C A L I Z AT I O N

Localization of mobile targets in structured environments is helped, in
general, by external elements that are called landmarks. Sensors are not
perfect and an environmental model is never fully complete. Moreover
robot’s wheels can slip, causing errors in odometry readings [2] and this let
self-localization to be very unreliable. For these reasons, in order to operate
in unknown environments, robotic agents must be capable to acquire and
to use knowledge, to estimate insides of the setting and to answer in real
time for the situations that can occur.

3.1 objective and motivation

Localization may be defined as the problem of estimating the spatial rela-
tionships among objects. In relative localization, dead-reckoning1 methods
([23] and [7]) which consists of odometry and inertial navigation, are used
to calculate the robot position and orientation from a known initial pose.
Odometry is a widely used localization method because of it is low cost,
shows high updating rate, and is reasonably accurate when used in short
path.

However its unbounded growth of time integration errors with the dis-
tance traveled by the robot is unavoidable and represent a significant in-
convenience [24]. Several approaches have been proposed to cope with
odometric error propagation [46] and [44].

Conversely, absolute localization methods estimate the robot position
and orientation by detecting particular features of a known environment.
This could be particular landmarks accurately located, or pre-existing points
already comprehended in the environment.
Among the methods proposed in literature, geometric triangulation is one
of the most-widely used in the absolute localization thanks to the fact that
it provides a closed-form solution, to the accuracy of solutions provided
and to its ability of determining both position and orientation of the tar-
gets.
The accuracy of triangulation algorithms depends upon both landmarks
arrangement and the position of the mobile robot among them. Localiza-
tion systems using some beacons have two advantages over localization
with no beacons [27].
Firstly, having beacons spatially distributed throughout the geographical
region enables devices to compute their location in a scalable, decentral-

1 Dead-Reckoning is the process of calculating current position by using a previously de-
termined position, and advancing that position based upon known or estimated speeds.
Dead-Reckoning is a particular type of Odometry. A more detailed discussion about dead-
reckoning is conduced in Section 6.1.1

15
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ized manner. Secondly, even when the application permits offline, central-
ized position estimation algorithms, both the convergence and estimation
accuracy can be significantly improved by having some nodes as beacons
[11]. Beacons constitute the underlying infrastructure of the localization
system.

3.1.1 Problem definition

This chapter presents a comprehensive solution to the problem of locating
a mobile target, usually a robot, in a planar mission space, given the loca-
tion of three or more distinguishable landmarks in the environment, and
measured angles between them as viewed from the robot.
Locating, in this context, means determining robot’s location and orienta-
tion uniquely. This situation arises when a mobile robot moves in a mission
space where other localization technologies (such as Global Positioning
System (GPS)) are not available.

Aspects of triangulation to consider in order to achieve optimal results
for the robot pose2 in practical situation are:

1. the sensitivity analysis of the algorithm;

2. the optimal placement of landmarks;

3. the selection of some landmarks among the available ones to com-
pute the robot pose;

4. the knowledge of the true landmark location in the world and the
true location of the angular sensor on the robot.

Having a good sensor that provides precise angle measurements as well
as a good triangulation algorithm is not the only concern to get accurate
positioning results. Indeed, the angle sensor could be subject to non lin-
earities in measuring angle range. Moreover the beacon locations are often
subject to inaccuracies, which directly affect the positioning algorithm.

The main objective of this chapter is to present a three object triangu-
lation algorithm, based on geometric triangulation, capable of working in
the entire mission space (except when beacons and robot are collinear) and
for any beacon ordering. Moreover the number of trigonometric computa-
tion have to be minimized.

The second part of the chapter focuses on providing an accurate expres-
sion for variance of the position estimated by the algorithm. This is an
indispensable requisite that enables to give a statistical description to the
estimated position, in order to perform statistical filtering.

The final part of this chapter deal with combining the estimated position
through geometric triangulation algorithm, with dead-reckoning data. As
it will be shown, this approach guarantees a high-rate, energy-saving and
robust approach to the problem.

In particular Kalman filtering is used as it is a convenient way to fuse
triangulation estimates together with odometry data.

2 pose indicates both the location and orientation of a robot



3.1 objective and motivation 17

3.1.2 Previous work

One of the first comprehensive work on localization has been carried out
by Cohen and Koss. The work classifies the triangulation algorithms into
four groups: Geometric Triangulation, Iterative methods, Geometric circle
intersection, Multiple beacon triangulation.

Several authors have noticed that the second type methods( Geometric
circle intersection) are the most popular in robotics [18] [35]. These methods
compute the intersection of the three circles passing through a couple of
beacons and the robot.

Esteves et al. in [15] extend the algorithm presented by Cohen and Koss
to work for any beacon ordering and to work outside the triangle formed
by the three beacons. In [19] a method, working for every beacon ordering,
is presented. The method divides the whole plane into seven region and
handles two specific configurations of the robot relatively to the beacons.

The most recent works [31] [39] propose novel methods to achieve a
solution to the geometric triangulation relying on the idea of using the
radical axis of circles. The methods still works in the entire plane naively.
Furthermore it only uses basic arithmetic computations and two cot(·)
computation, leading to a drastic reduction in computational complexity.

This work aims at improving performances of triangulation algorithms
by combining the position estimates with odometry data. Similar approaches,
based on EKF, have already been proposed in previous works as in [17] and
[16] but in these cases the filtering was used on the measures of angles be-
tween the robot and the beacons.

3.1.3 Contribution

In the first part of the chapter, arising from [39] we report a comprehen-
sive description of ToTal algorithm proposed by Pierlot and Van Droogen-
broeck. Particular attention is paid both to computational reduction brought
with respect to previous works and to improvements in the robustness of
the solution, introduced thanks to the exploitation of radical axes of circles
employed.

In the second part of the chapter, a novel method capable of combining
triangulation solution together with odometry is proposed.

We underline that more appreciated approaches in published works in-
tegrate a prediction phase, based on the odometric data and the robot kine-
matics, and a correction -or estimation- phase that takes into account ex-
ternal measurements. The approach used in this work is based on Kalman
filtering [48]. In fact, Kalman filtering results as a suitable way to combine
data arising from internal kinematic model together with triangulation
data.

The chapter is completed with an overview on kinematic models for
Wheeled Mobile Robots and Quadrotors.
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3.2 navigation systems : methods classification

Landmark-based navigation of autonomous mobile robots or vehicles has
been widely adopted in industry. In general, the methods for locating mo-
bile robots in the real world are divided into two categories:

1. Relative positioning;

2. Absolute positioning.

In relative positioning, odometry (in particular dead-reckoning) and iner-
tial navigation are commonly used to calculate the robot positions from
a start reference point at a high updating rate. Odometry is one of the
most popular techniques based on internal sensors for position estimation
because of its ease of use in real time. However, a compromising disad-
vantage affects this method: it suffers of an unbounded accumulation of
errors due to inaccuracies of sensors. Therefore, frequent corrections to the
estimated position become necessary.

In contrast, absolute positioning relies on detecting and recognizing dif-
ferent features in the environment, in order for a mobile robot to reach a
destination and implement a specified task. These environment features
are normally divided into two types:

1. Natural landmarks;

2. Artificial landmarks.

Among these, natural landmark navigation is flexible as no explicit artifi-
cial landmarks are needed, however it may not work well when landmarks
are sparse and often the environment must be a priori known. Although
the artificial landmark and active beacon approaches are less flexible, the
ability in finding landmarks is enhanced and the process of map building
is simplified.

To make the use of mobile robots in daily deployment feasible, it is
necessary to reach a trade-off between costs and benefits. Often, this dis-
courages the use of expensive sensors such as vision systems and GPS in
favor of cheaper sensing devices, for example laser or encoders, and calls
for efficient algorithms that can guarantee real-time performance in the
presence of insufficient or conflicting data.

Two scenarios could be hypothesized regarding nodes’ behavior:

1. Anchor-based, in which only landmark (or anchor) nodes know their
absolute position, while robotic nodes exploit landmarks to deter-
mine their absolute position;

2. Anchor-free, in which any node does not know its absolute location,
in this case a relative coordinate reference is used.

The first type of methods enables to know the absolute location of nodes
in an unique way, but this requires anchor nodes to know their absolute lo-
cation (using for example GPS systems) and these should be quite densely
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allocated in the configuration space, as they can not move. The second
type of methods enable a more flexible arrangement of anchor, so nodes
could be placed in a random way. Although anchor-free systems enable
more flexibility in the deployment phase, the absence of anchor nodes pro-
duce an unbounded error propagation in the network.
Both in anchor-based and in anchor-free systems, the position computa-
tion is performed basing on the knowledge of relative distances (or an-
gles) between nodes. Three types of techniques could be used to compute
relative distance of a node with neighbors:

1. Range based;

2. Angle based;

3. Range free.

Range-based techniques make use of Euclidean distances, in fact nodes
are equipped with sensors to estimate relative distances with neighbor
nodes. Algorithm such as Min-Max, Trilateration and Multilateration be-
long to this family of methods [8] .

Angle-based techniques are based on angular distances between nodes,
in fact robots are equipped with sensors capable of estimating relative an-
gles with neighbor nodes. This type of techniques exploit geometric and
trigonometric properties as motivated in [8]. Geometrical triangulation be-
long to this family of methods.

Range-free techniques are based on virtual coordinate references, and
for this reason, they are independent from Euclidean distances.
A range-free method requires no distances or angles measurement among
nodes, so they do not require additional hardware; and instead use prop-
erties of the wireless sensor network to obtain location information.

estimating relative distances for range-based techniques

The estimation of relative distances between nodes is usually referred
as Ranging technique. There are three main types of ranging techniques:

• Time of Arrival (ToA);

• Time Difference of Arrival (TDoA);

• Received Signal Strength (RSS).

In the ToA, the distance estimation is obtained by exploiting the prop-
agation time of signals in radio communication. A simple model for the
time of flight Tf of wireless signals is:

Tf =
d

c
where

{
d is the distance betwen nodes

c is the propagation speed(c = 2, 997 · 105km/s)
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Two methods can be used: One-way ToA, and Two-way ToA.

Figure 4: One-way ToA.

In one-way ToA, node A sends sig-
nal at time t1, the signal arrives to
B at time t2. In this way node B
is able to estimate the relative dis-
tance just exploiting:
Tf = t2 − t1

Figure 5: Two-way ToA.

In two-way ToA, node A sends
signal at time t1 and the same ar-
rives to node B at time t2. Node
B computes the message in td
time and then sends a response
to node A at time t3. The same
arrives at A at time t4. The time
of flight is then calculated us-
ing:
Tf =

(t2−t1)+(t4−t3)
2 .

Figure 6: TDoA.

In the TDoA technique, an estima-
tion for the speed of propagation is
performed in order to avoid errors
linked to obstacles in unknown en-
vironments.
In particular, node A transmits two
types of signals: RF (Radio Fre-
quency signal) and US (Ultrasound
Pulse signal), traveling at different
speeds. A graphical explanation of
signals sent is shown in the fig-
ure on the right. Receiver then esti-
mates relative distances by exploit-
ing the difference of times of ar-
rival of the two signals.

RSS techniques are based on power attenuation during the propagation
of a transmitted signal. Every receiver is thus able to estimate relative dis-
tances by evaluating the strength of the signal received. The estimate of
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a received signal (in dBm) is performed by the Received Signal Strength
Indicator (RSSI). The main advantage of this method is that it does not re-
quire additional hardware, however it guarantees less precision than previ-
ous presented techniques. In fact, signals could be reflected, absorbed and
attenuated by obstacles. This is mainly used in application where energy
consumption is very relevant and no further hardware can be mounted on
agents. In particular, the distance from the transmitter could be evaluated
exploiting Friis equation:

PR = PT
GTGRλ

2

(4π)2dn

where:

• PR, PT : power of received and transmitted signals [Watt];

• GR, GT : receiver and transmitter antennae gain [ ];

• λ = c
f : wavelength [m];

• d: distance [m];

• n: signal propagation constant.

estimating relative angles for angle-based techniques

AoA techniques provides estimations for relative angles between nodes.
Agents exploiting AoA techniques are equipped with directional antennae
in order to estimate the angle of arrival of signals. As explained by Fig-
ure 7, node u measures the angle of arrival of signals thanks to an angu-
lar measurements-system. This types of methods are the mainly used, as
they enable to compute easily both the location and orientation of mobile
robots. Unfortunately some aspects influence performance of these algo-
rithm, such as inaccurate angle measurement, interference, obstacles.

Figure 7: Angle of arrival AoA.

These methods are in general preferred to the other described in robotics
application. This because accuracy of angles estimation does not degrade
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with the increasing of distances between beacons and the target. In fact,
this method results as one of the most reliable as accuracy of angles esti-
mation depends only on the presence or absence of obstacles in the field
of view.

3.2.1 Methods overview

One of the first comprehensive reviewing work has been carried out by
Cohen and Koss [8]. In their paper, triangulation algorithms have been
classified into four groups:

1. Geometric Triangulation;

2. Geometric Circle Intersection;

3. Iterative Methods (Iterative Search, Newton-Raphson, etc.);

4. Multiple Beacons Triangulation.

The first group makes an intensive use of trigonometric functions and
exploits relative angles between landmarks as viewed from the robot. The
solution can be computed in a closed form. The calculus is based on the
geometry of the locations of landmarks and the location of the robot. Prim-
itive types of these algorithms required properly ordered landmarks.

Algorithms of the second group determine parameters (radius and cen-
ter) of the two circles passing through a couple of beacons and the robot.
The robot position is then deduced by computing the intersection between
these two circles and exploiting angles measured by the robot. This type is
the most popular for solving the three object triangulation problem. Many
variations and improvements have been proposed [35] [34] in order to re-
duce limitations of the original method such as working for any beacon
ordering and to work outside the triangle formed by the three beacons.

The third group linearizes the trigonometric relations to converge to
the robot position after some iterations, exploiting the Newton-Raphson
method [50].

Iterative methods, based principally on Iterative search algorithm, which
consists in searching the robot position through the possible space of ori-
entation, and by using a closeness measure of the solution. The fourth
group addresses the more general problem of finding the robot pose from
more than three angle measurements, which is a overdetemined problem.
This solution is preferable in presence of massive measurement noise in
sensors.

In general, if the setup contains three beacons only, or if the robot has
limited on-board processing capabilities, Geometric Triangulation and Geo-
metric circle intersection are the best candidates. Iterative methods and Mul-
tiple Beacons Triangulation are appropriate if the application must handle
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multiple beacons and if it can accommodate a higher computational cost.
The main drawback of Iterative methods is the convergence issue, while
Multiple Beacons Triangulation has the disadvantage of high computational
costs. The drawback of the first and second group are usually a lack of
precision related to: the consistency of the methods when the robot is lo-
cated outside the triangle defined by the three beacons, the strategy to
follow when falling into some particular geometrical cases, the reliability
measure of the computed position. Simple methods of the first and second
groups usually fail to propose a proper answer to all these concerns.

Therefore, the focus of this thesis is on the use of a specific hardware
for localization based on AoA (radio, laser scanner etc.) and artificial land-
marks for the position estimation of a mobile robot. Geometric triangula-
tion is therefore the method preferred for the reasons just explained.

3.3 triangulation

It is difficult to compare all the above mentioned methods, because they
operate in different conditions and have distinct behavior. In practice, the
choice is dictated by the application requirements, and some compromises.

Thanks to the availability and accuracy of angle measurements systems,
geometric triangulation has emerged as a widely used, robust, accurate,
and flexible technique [15]. Furthermore, in geometric triangulation the
robot can compute its orientation in addition to its position, so that the
complete pose of the robot can be found. This feature is proper of geomet-
ric triangulation methods, and in general alternative methods presented
do not guarantee this behavior. For the reasons presented, triangulation
methods are the more suitable for the assumptions done in this work.

Figure 8 illustrates a typical triangulation setup. Here the problem is
referred to a 2-D plane. Angles φ1, φ2 and φ3 may be used by a trian-
gulation algorithm in order to compute the robot position (xR,yR) and
orientation θ.

Figure 8: Triangulation setup in the 2-D plane. R denotes the robot, B1, B2 and
B3 are the beacons. φ1, φ2 and φ3 are the angles for beacons, measured
relatively from the robot orientation frame.
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3.3.1 ToTal algorithm

This section deals with the description of a recently-proposed in literature
algorithm based on geometric triangulation. This algorithm was firstly pre-
sented in [39] and named ToTal. Many are the advantages, with respect to
previous approaches, presented by Pierlot and Van Droogenbroeck in their
algorithm, including:

1. ToTal is independent of beacons ordering;

2. ToTal is independent of the relative position of the robot and the
beacons;

3. the algorithm is faster and simpler with respect to previous pre-
sented in literature;

4. the simplified logic enables to determine a criterion to qualify the
reliability of the computed position.

ToTal algorithm belongs to the family of Geometric Circle Intersection algo-
rithms, and it could be divided into two main phases:

• first the parameters of the three circle passing through the robot and
the three pairs of beacon are computed;

• in the second phase the intersection of these three circles is com-
puted, by using all the three circles parameters.

The main contribution of the method presented, as motivated in the paper,
is a simplification in the mathematical equations involved. Moreover, it is
important to notice that these simplifications lead the algorithm to work
properly in the entire plane.

3.3.1.1 Description of the algorithm

In this part, a detailed description of the equations and assumptions done
in [39] is reported. It is important to notice that most of the considerations
done in the following are common to almost every geometric triangulation
algorithm.

Each mobile node, in order to localize itself exploiting three available
beacons, requires:

• to measure relative angles with the three beacons;

• to be able to distinguish beacons among them;

• that angles measurements from the beacons are taken separately (in
an independent way one from each other) and measured relatively
to a reference angle θ (representing, for instance, the orientation of
the mobile robot with respect to the world coordinate reference).
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We start by determining the locus of the robot position R, that see two
fixed beacons, B1 and B2.

Figure 9: Locus of robot positions given the angle between beacons as seen from
the robot.

Proposition 3.3.1 (Locus of robot positions). Given the angle between B1 and
B2 as seen from the robot, φ12, the locus of possible robot positions is an arc of
the circle passing through B1, B2 and R.

The proposition states that every point lying in the circle passing through
the beacons and the robot is a valid location for the robot, given the an-
gle φ12. Moreover, it is important to notice that both cases φ12 < π and
φ12 > π are acceptable values for the measured angle, as shown in Fig-
ure 10.

Figure 10: φ12 < π and φ12 > π.

Proof. Let us consider the circumference passing through the two beacons
and the robot as shown in Figure 11. Let A be a point lying on this circum-
ference. Then every angle at the circumference ̂B1AB2 has ̂B1OB2 as angle
at the center, for every choice of A.

At this point, to conclude, we just have to exploit the well-known theo-
rem: Angle at the center of circle is twice angle at circumference.
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Figure 11: Angle at the center of circle is twice angle at circumference.

More precisely, this locus is composed of two arcs of circle, which are
the reflection of each other through the line joining B1 and B2 as shown
in Figure 12.

Figure 12: Arcs of circle is not uniquely determined.

This ambiguity may be avoided imposing that the measured angle be-
tween the couple of beacons B1 and B2, denoted as φ12 is computed as
φ12 = φ2 − φ1, natural choice for a Counter Clock Wise (CCW) rotating
sensor. This is consistent with practical measurements and it removes the
ambiguity about the locus; however it requires that beacons are properly
ordered, and the robot must be capable to establish the index of every
beacon.

As a result, the locus is a single circle passing through R, B1 and B2; and,
in addition, the line joining B1 and B2 divides the circle into two parts: one
for φ12 < π and the other for φ12 > π as shown in Figure 10.

The following steps presents the mathematical model for the locus of
the possible positions of the robot.
The method proposed by Pierlot and Van Droogenbroeck makes use of the
complex representation of 2-D points. This consists on expressing angles
as the argument of complex numbers.
In this context, the angle φ12 can be written as:

φ12 = arg

{
B2 − R

B1 − R

}
⇒ φ12 = arg

{
(B2 − R)(B1 − R)

}
(1)
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then, expressing R, B1 and B2 as complex numbers:
R → (x+ jy)

B1 → (x1 + jy1)

B2 → (x2 + jy2)

Equation 1 can be rewritten in the following way

arg
{
(x2 + jy2 − x− jy)(x1 − jy1 − x+ jy) e

−jφ12
}
= 0

that is, extracting the argument to both member of equation:

[(x2 − x)(x1 − x)] sinφ12 + [(y2 − y)(y− y1)] sinφ12+

+ [(x2 − x)(y− y1)] cosφ12 + [(y2 − y)(x1 − x)] cosφ12 = 0 . (2)

As previously introduced, the locus of possible position for the robot has
the general form of a circumference in a plane. That is, it can be expressed
in a implicit manner in the following form:

(x− x12)
2 + (y− y12)

2 = R212

Equation 2 permits to derive the coordinates for the circle center:

x12 =
(x1 + x2) + (y1 − y2) cotφ12

2
(3)

y12 =
(y1 + y2) − (x1 − x2) cotφ12

2
(4)

and the squared radius:

R212 =
(x1 − x2)

2 + (y1 − y2)
2

4 sin2φ12
. (5)

When we consider the generic circle passing through the more general
beacons locations Bi and Bj, Equation 3 and Equation 4 modify as follow:

xij =
(xi + xj) + (yi − yj)Tij

2
(6)

yij =
(yi + yj) − (xi − xj)Tij

2
(7)

where Tij denotes the cot(·) of the bearing angle,

Tij = cot(φij) (8)
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Equation 5 becomes

Rij =
(xi − xj)

2 + (yi − yj)
2

4 sin2φij
. (9)

Equations (6), (7) cij and (9) completely describe the circle Cij with center
cij of coordinates (xij,yij).

Each bearing angle φij between beacons Bi and Bj, constraints the robot
to be on a circle Cij, passing through Bi, Bj and R as shown in Figure 13.
Figure 13 shows a typical geometric triangulation setup in the 2-D plane.

Figure 13: Triangulation setup in the 2-D plane.

It is important to underline that common methods usually are based on
two separated steps:

1. initially only two of the three circles are considered: the first step
consists on computing the intersection between them. The result is a
couple of valid position for the robot;

2. The second step consists in intersecting the derived the couple of
solutions with the the remaining circle in order to obtain a unique
solution.

Unfortunately, this approach is quite expensive from a computational point
of view, as it requires to solve a quadratic system. Moreover the choice of
the two circle is arbitrary and usually fixed, whereas this choice could
affect the accuracy of solutions.

The novel method proposed by Pierlot and Van Droogenbroeck, rather
than classical geometrical triangulation methods, exploits all the three cir-
cles from the beginning, leading to a drastic reduction in the complexity of
the problem involved and reducing the number of degrees of freedom in
the choice of circles ordering. The main idea behind the above-mentioned
method, consists in the notion of radical axes of a couple circles.

It is initially necessary to introduce the power of a point relative to a circle :
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Definition 3.1. The power of a point p relative to a circle C, is defined by:

PC,p = (x− xc)
2 + (y− yc)

2 − R2

When the circles involved are two, the definition can be extended to
radical axes of a couple of circles:

Definition 3.2. The radical axis of a couple of circles C1 and C2 is the locus
of points having the same power with respect to both circles.

Example 3.3.1. Given a couple of circles, possible configurations are twofold:

Figure 14: Radical axis of a couple of circles.

When three circles are considered, radical axes concerning every couple
of them, intersect in a single point, as shown in Figure 15.

Figure 15: Radical axes concerning three circles. Possible arrangements are three.
Red points represent intersections between radical axes.

It is important to underline that their intersection point is the unique
point of the plane having the same power with respect to every single
circle.
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The example motivates the following:

Definition 3.3. The Radical center of three circles is the unique point of the
plane in which the three radical axis, corresponding to each couple of
circles, are concurring.

The central configuration shown in Figure 15 represent the situation in
which the three radical axes intersect in a single point, corresponding ex-
actly to the unique point of intersection between the circles. This case rep-
resent the ideal solution to the triangulation problem, i. e. when no noise
affects measures.
On the other hand, when bearing angles are corrupted by noise, any con-
figuration represented in Figure 15 is in general feasible. The configuration
on the left, represent the circumstance in which circles does not present
any intersection, while the figure on the right shows the case in which
there exist multiple intersection points.

Although in presence of noise circumstances can be multiple, Figure 15

graphically clarify an important aspect: the (single) intersection between
the three radical axis represent the point of minimal distance between the
three circles, even in presence of noise. This property is a straight con-
sequence of Definition 3.2. The observation just explained, motivates the
choice of the intersection between radical axes as the most likely estimated
location for the robot.

This fundamental observation is the reason behind the novel method
proposed in ToTal algorithm. As will be shown, this is the main motivation
that enables a computational reduction in the solution of the problem.

Assuming, as a preliminary hypothesis, absence of noise in measures,
steps described in the following present the way proposed to solve the
triangulation problem. It is important to remind that, according to the as-
sumption just explained, the three circles intersect in a single point. Since
only two of the three bearing angles are independent it is possible to ex-
plicate:

φ31 = φ32 +φ21 .

By intersecting the three radical axes of the (three) couples of circles, we
are able to obtain the radical center of the triplet:

C12∧C23 −→ (x−x12)
2+(y−y12)

2−R212 = (x−x23)
2+(y−y23)

2−R223

C23∧C31 −→ (x−x23)
2+(y−y23)

2−R223 = (x−x31)
2+(y−y31)

2−R231

C31∧C12 −→ (x−x31)
2+(y−y31)

2−R231 = (x−x12)
2+(y−y12)

2−R212

which leads to the following linear system:
(x12 − x23)x+ (y12 − y23)y = k12 − k23

(x23 − x31)x+ (y23 − y31)y = k23 − k31

(x31 − x12)x+ (y31 − y12)y = k31 − k12

(10)
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where the new introduced quantity kij is defined as follows:

kij =
x2ij + y

2
ij − R

2
ij

2
. (11)

As a result, the solution to the geometrical triangulation problem pre-
sented - that was initially described as a geometrical and trigonometrical
issue - has been re-conduced to the solution of a three linear equation-
system. The coordinates of the power center, that is, the estimated robot
position can then be obtained as the solution of the following linear sys-
tem:

Ax = b . (12)

It is important to underline two important characteristics for the prob-
lem:

1. the linear system (12) consists of three equations and two unknowns;

2. any equation that appears in Equation 12 can be obtained as addition
of the others.

It is important to notice that 2. mathematically proves that the three
radical axis concur in an unique point, as previously introduced.

Linear system (12) can be expressed in matrix form, according to (12),
in the following manner:

A =

[
x12 − x23 y12 − y23

x23 − x31 y23 − y31

]
, b =

[
k12 − k23

k23 − k31

]
The computation of the solution through (xR,yR) = A−1b, leads to:

xR =
(k12 − k23)(y23 − y31) − (y12 − y23)(k23 − k31)

det(A)
(13)

yR =
(x12 − x23)(k23 − k31) − (k12 − k23)(x23 − x31)

det(A)
(14)

where we have used:

det(A) = (x12 − x23)(y23 − y31) − (y12 − y23)(x23 − x31)

Therefore, Equation 13 and Equation 14 are the mathematical expres-
sions that enable to compute actual position of the robot, when exploiting
following data:

• the three circles centers coordinates (xij,yij) ∀ i = 1, 2, 3 , j =

1, 2, 3 i 6= j;

• the three beacons locations (xi,yi) ∀ i = 1, 2, 3 ;

• the three bearing angles in order to compute Tij = cot(φij) ∀ i =
1, 2, 3 , j = 1, 2, 3 i 6= j .
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3.3.2 Final version of ToTal algorithm and discussion

It is possible to further simplify equations presented in order to produce
an improved version for the algorithm.
First of all it is possible to replace expression Equation 9 for R2ij in Equa-
tion 11, for kij, obtaining after some simplifications:

kij =
xixk + yiyj + Tij(xjyi − xiyj)

2
.

In addition, a further simplification (often used in many triangulation al-
gorithm) consists in translating coordinates in such a way to locate the
origin of the reference frame in the location of an arbitrarily-chosen bea-
con.
In this case, we arbitrarily choose B2 as the origin, so other beacons coor-
dinates become:

B ′1 = B1 −B2 = {x1 − x2,y1 − y2}

B ′2 = B2 = {0, 0}

B ′3 = B3 −B2 = {x3 − x2,y3 − y2}

(15)

Then, noticing that the factor 12 involved in (6) and (7), as well as in (11),
for kij, cancels when used in robot position parameters, we can introduce
modified circle center coordinates:

x ′ij = 2xij,

y ′ij = 2yij,

and modified parameter kij:

k ′ij = 2kij .

Therefore, robot position (xR,yR) can be computed exploiting:

xR = x2 +
k ′31(y

′
12 − y

′
23)

det(A)
(16)

yR = y2 +
k ′31(x23 − x12)

det(A)
(17)

a complete treatment of mathematical steps and a detailed description of
equations involved can be found in [39].

Observation 1. There are two particular cases that require special treatment:

• infinite values of cot(·) function, in (8);

• cases in which det(A) = 0, in (13) and (14) that lead to invalid robot
estimated position.
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When a bearing angle φij is equal to 0 or π, then the cot(·) function
assumes non-finite values. This is the case when the robot to be localized
stands on the line joining a couple f beacons Bi and Bj.

Typical solutions very often exploited in literature consist on limiting
the cot(·) value to a minimum or maximum value, corresponding to a
small angle that is far below the measurement precision. Typical values
are ±108, which corresponds to an angle of about ±10−8rad.

More accurate solutions to some of these peculiar cases can be found
in literature. For example, Pierlot and Van Droogenbroeck in [39] propose
some adjustments in the algorithms, when one of the two angles measured
is equal to 0 or π, which makes the method reliable.

However, it is important to underline that in such cases in which beacons
and the robot are collinear, geometric triangulation is unable to find any
solution to the problem as not enough parameters are available. In fact,
this is the case in when the solution computed as intersection of the three
circles is not a single point, but a locus. This problem is common to all
geometric triangulation-based methods, nevertheless several solutions can
be exploited as motivated in Observation 1.

In addition orientation of the robot θR may be determined by using bea-
cons locations Bi and its corresponding angle φi, once the robot position
is known, by exploiting:

θR = atan2(yi − yR, xi − xR) −φi (18)

where atan2(x,y) denotes the argument arg(x + jy) of the complex
number x+ jy.

Finally, it is important to underline that:

1. each localization iteration requires each mobile agent to transmit to
every sensing beacon (at least three) a request;

2. each beacon sends a response containing its own position;

3. angles of arrival measurements are then taken by mobile agent;

4. the mobile robot is then able to perform geometric triangulation;

then each triangulation application requires the transmission of (at least)
three data packet, the reception of as much packets, and an angle of arrival
measurement.

Algorithm 1 proposes a detailed description for the algorithm in pseudo-
code.
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Algorithm 1 ToTal algorithm

Given the three beacon coordinates (x1,y1), (x2,y2), (x3,y3), and the
three bearing angles φ1, φ2 and φ3
1) Compute the modified beacon coordinates:
x ′1 = x1 − x2, y ′1 = y1 − y2,
x ′3 = x3 − x2, y ′3 = y2 − y2,

2) Compute the cot(.):
if φ1 == π ∨ φ2 == π then
Tij = −10e8

else if φ1 == 0 ∨ φ2 == 0 then
Tij = 10e8

else
T12 = cot(φ2 −φ1)
T23 = cot(φ3 −φ2)
T31 =

1−T12T23
T12+T23

end if
3) Compute the modified circle center coordinates:
x ′12 = x

′
1 + T12y

′
1, y ′12 = y

′
1 − T12x

′
1,

x ′23 = x
′
3 + T23y

′
3, y ′23 = y

′
3 − T23x

′
3,

x ′31 = (x ′3 + x
′
1) + T31(y

′
3 − y

′
1),

y ′31 = (y ′3 + y
′
1) − T31(x

′
3 − x

′
1)

4) Compute k ′31:
k ′31 = x

′
1x
′
3 + y

′
1y
′
3 + T31(x

′
1y
′
3 − x

′
1)

5) Compute det(A):
det(A) = (x ′12 − x

′
23)(y

′
23 − y

′
31) − (y ′12 − y

′
23)(x

′
23 − x

′
31)

if det(A) == 0 then
Return with an error

end if
6) Compute the robot position (xR,yR)
xR = x2 +

k ′31(y
′
12−y

′
23)

det(A) yR = y2 +
k ′31(x23−x12)

det(A)

3.4 location variance derivation

ToTal Algorithm proposed by Pierlot and Van Droogenbroeck provides a
valuable way to obtain an estimation for robot position and orientation
through a substantial reduction in the computation complexity of equa-
tions involved with respect to previously proposed methods. Exactly be-
cause of computational complexity of equations involved, general solu-
tions to geometric triangulation problem do not allow to compute the ac-
curacy of estimated position. An accurate estimation for the variance of
the computed potion can be very useful in order to design agents and to
understand the precision of estimation performed. Moreover, disposing of
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location uncertain, as a function of beacons positions uncertain and angles
of arrival uncertain, permits to create a statistical description for the model
involved and to enforce statistical filtering to noisy measurements.

In [39] a sensitivity analysis of the computed position with respect to
angles of arrival φ1, φ2 and φ3 is performed. Although this leads an un-
certain analysis of the computed position as function of the (non-linear)
angles of arrival, it does not permit to take into account uncertain linked
to non-exact positions of beacons.

The purpose of this work is to derive a detailed, closed-form expression
for variance of computed position as a function of beacons locations uncer-
tain and of angles of arrival uncertain. In order to accomplish this task, the
propagation of uncertainty law has been exploited. Since functions involved
in geometric triangulation are trigonometric, i. e. non-linear, they have to
be linearized by approximation to a first-order Taylor series expansion.

Example 3.4.1. In general contexts, given the non-linear function:

f(x) : Rn → Rm,

the Taylor expansion would be, assuming that x is concentrated around its
mean M(x):

f(x) ' f(M(x)) +

[
∂f(x)

∂x

]
M(x)

(x−M(x)) .

Since f(M(x)) is constant as function of x, it does not contribute to the
error in f. Therefore, the covariance propagation follows the linear rule:

Covf(x) =

[
∂f(x)

∂x

]
Covx

[
∂f(x)

∂x

]T
= J ·Covx · JT , (19)

where J indicates the Jacobian matrix of f(x):

J =
∂f(x)

∂x

and Covx is the covariance matrix of vector x.

The derivation of a closed-form expression for uncertain, proposed in
this work, makes use of geometric properties of circles employed in the
three object triangulation problem. In the following we motivate our choice
of exploiting the uncertain in the three circles areas to compute uncertain
on estimated robot position.

Figure 16 presents a simple case in which we deal with uncertainty in
the knowledge about position of one of the three beacons employed B1.
The yellow circle represents uncertain on location for node B1, while it is
located exactly in the mean value of its distribution, identified by black
an white dot patterns. It is important to notice that this type of uncertain
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could be associated to both uncertain on the actual position of the node,
and to the uncertain on the measured angle performed by the robot.

Assuming that actual position of the beacon can be modeled as a Gaus-
sian random variable:

(x1,y1) ∼ N((x1,y1), RB1)

it is possible to state that actual beacon location is inside the yellow circle
drawn in Figure 16 and described by:

CB1 = {(x,y) : (x1, x1) − 3RB1 6 (x,y) 6 (x1, x1) + 3RB1}

with probability p = 0.99 (Chebyshev’s inequality).

Figure 16: Triangulation when B1 stands on the mean value of its position distri-
bution.

On the other hand Figure 17 represents the situation in which node B1
does not stand exactly in the mean value of its distribution. In this case,
as can be noticed from the figure, a variation in B1 produces alterations in
triangulation circle (circles passing through B1) both in circle’s center and
in circle’s area.

Furthermore, as shown in the zoom in Figure 17b, the three circles does
not intersect in an unique point anymore. This graphical interpretation
motivates the choice of using circles’ areas as estimates for the uncertain
in the location of the robot. In fact, noisy measurements leads to circles
that do not intersect in an unique point, leading to multiple solutions for
robot position.

In the following, it is reasonable to make following assumptions:

1. absolute orientation of the robot, θR is not affected by noise;

2. angles measurements taken between the robot and the three beacons
are taken separately and relatively to a reference angle θR, i. e. bea-
con coordinates are independent one from the other.

The former can easily be removed, and its purpose is to reduce uncer-
tainty on interpretation of results, while the latter ensures that beacons
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(a) Triangulation when B1 does
not stand on the mean value
of its position distribution.

(b) Zoom of Figure 17a. Note that the
circles does not intersect in a unique
point.

Figure 17: Triangulation when the position of a beacon is not deterministic. Yel-
low filled circle represent uncertain in knowledge of position of B1.
Black circles show the three object triangulation when B1 is located ex-
actly in the mean value of its distribution (same case as Figure 16). Blue
circles shows how new circles alter when actual B1 position change.
Notice that in the second case the three circles does not intersect in an
unique point.

location and their locations, as seen from the robot, are uncorrelated ran-
dom variables , i. e. the joint covariance matrix is:

Covx =



σ2x1 0 0 0 0 0 0 0 0

0 σ2y1 0 0 0 0 0 0 0

0 0 σ2x2 0 0 0 0 0 0

0 0 0 σ2y2 0 0 0 0 0

0 0 0 0 σ2x3 0 0 0 0

0 0 0 0 0 σ2y3 0 0 0

0 0 0 0 0 0 σ2φ1 0 0

0 0 0 0 0 0 0 σ2φ2 0

0 0 0 0 0 0 0 0 σ2φ3


According to these assumptions, modified beacons coordinates’ variance

can be computed exploiting Equation 15:

σ2
x ′1

= σ2x1 + σ
2
x2

σ2
y ′1

= σ2y1 + σ
2
y2

σ2
x ′3

= σ2x3 + σ
2
x2

σ2
y ′3

= σ2y3 + σ
2
y2
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Moreover, the expression for the variance of random variables Tij em-
ployed in the second step of Algorithm 1, can be derived by using Equa-
tion 19:

Var(T12) =
[
∂T12
∂φ2

∂T12
∂φ1

] [σ2φ2 0

0 σ2φ1

]∂T12∂φ2
∂T12
∂φ1


where,

∂T12
∂φ2

=
∂ cot(φ2 −φ1)

∂φ2
= −

1

sin2(φ2 −φ1)

∂T12
∂φ1

=
∂ cot(φ2 −φ1)

∂φ1
=

1

sin2(φ2 −φ1)

that leads to:

Var(T12) =
σ2φ2

sin4(φ2 −φ1)
+

σ2φ1

sin4(φ2 −φ1)
:= σ2T12

In a similar way, we can obtain for T23:

Var(T23) =
σ2φ3

sin4(φ3 −φ2)
+

σ2φ2

sin4(φ3 −φ2)
:= σ2T23 .

Then, computing:

∂T31
∂T12

=
−T23 − (1− T12T23)

(T12 + T23)2
=

−T23(T12 − 1) − 1

(T12 + T23)2

∂T31
∂T23

=
T12 − (1− T12T23)

(T12 + T23)2
=

−T12(T23 − T12) − 1

(T12 + T23)2

we obtain, for T31 :

Var(T31) =
[
∂T31
∂T12

∂T31
∂T23

] [σ2T12 0

0 σ2T23

][
∂T31
∂T12
∂T31
∂T23

]

= σ2T12

[
T23(T12 − 1) − 1

(T12 + T23)2

]
+ σ2T23

[
T12(T23 − T12) − 1

(T12 + T23)2

]
:= σ2T31 .

The third step of ToTal, provides for modified circle center coordinates.
By using (19), it is possible to derive related variances:

σ2x ′12
=
[
1 T12 y ′1

]
σ2
x ′1

0 0

0 σ2
y ′1

0

0 0 σ2T12


 1

T12

y ′1


= σ2x ′1

+ T212σ
2
y ′1

+ y2
′
1 σ

2
T12

,
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σ2y ′12
=
[
1 −T12 −x ′1

]
σ2
y ′1

0 0

0 σ2
x ′1

0

0 0 σ2T12


 1

−T12

−x ′1


= σ2y ′1

+ T212σ
2
x ′1

+ x2
′
1 σ

2
T12

and, in a similar way for σ2
x ′23

, σ2
y ′23

, σ2
x ′31

and σ2
y ′31

:

σ2x ′23
= σ2x ′3

+ T223σ
2
y ′3

+ y ′23 σ
2
T23

σ2y ′23
= σ2y ′3

+ T223σ
2
x ′3

+ x ′23 σ
2
T23

σ2x ′31
= σ2x ′3

+ σ2x ′1
+ T231σ

2
y ′3

+ y ′23 σ
2
T31

+ T231σ
2
y ′1

+ y2
′
1 σ

2
T31

σ2y ′31
= σ2y ′3

+ σ2y ′1
+ T231σ

2
x ′3

+ x ′23 σ
2
T31

+ T231σ
2
x ′1

+ x21σ
2
T31

Then, an expression for the variance of the parameter k ′31 can be com-
puted:

σ2k ′31
= x2

′
1 σ

2
x ′3

+ x2
′
3 σ

2
x ′1

+ y2
′
1 σ

2
y ′3

+ y2
′
3 σ

2
y ′1
+

+ (x ′1y
′
3)
2σ2T31 + (T31y

′
3)
2σ2x ′1

+ (T31x
′
1)
2σ2y ′3

+

+ (x ′3y
′
1)
2σ2T31 + (T31y

′
1)
2σ2x ′3

+ (T31x
′
3)σ

2
y ′1

and an expression for the variance of det(A):

σ2D = x2
′
12σ

2
y ′23

+ y2
′
23σ

2
x ′12

+ x2
′
12σ

2
y ′31

+

+ y ′31σ
2
x ′12

+ x ′23σ
2
y ′23

+ y2
′
23σ

2
x ′23

+

+ x2
′
23σ

2
y ′31

+ y2
′
31σ

2
x ′23

+ y2
′
12σ

2
x ′23

+ x2
′
23σ

2
y ′12

+

+ y2
′
12σ

2
x ′31

+ x2
′
31σ

2
y ′12

+ y2
′
23σ

2
x ′23

+

+ x2
′
23σ

2
y ′23

+ y2
′
23σ

2
x ′31

+ x2
′
31σ

2
y ′23

Finally, the variance of estimated position of the robot (xR,yR) can be
derived. Let us define:

B =
[
1

y ′12−y
′
23

det(A)
k ′31

det(A) −
k ′31

det(A) −
k ′31(y

′
12−y

′
23)

det(A)

]
the variance for x-coordinate estimated position of the robot:

σ2xR = BT



σ2
x ′2

σ2
k ′31

σ2
y ′12

σ2
y ′23

σ2D


B =

= σ2x ′2
+

(
y ′12 − y

′
23

det(A)

)2
σ2k ′31

+ σ2y ′12

(
k ′31

det(A)

)2
+

+ σ2y ′23

(
k ′31

det(A)

)2
+

(
k ′31(y

′
12 − y

′
23)

det(A)

)2
σ2D (20)
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and for y-coordinate:

σ2yR = σ2y ′2
+

(
x ′23 − x

′
12

det(A)

)2
σ2k ′31

+ σ2x ′12

(
k ′31

det(A)

)2
+

+ σ2x ′23

(
k ′31

det(A)

)2
+

(
k ′31(x

′
23 − x

′
12)

det(A)

)2
σ2D (21)

Therefore, equations (20) and (21) provide expressions for variances at-
tempted.

Example 3.4.2. For instance, let us consider three fixed beacons located
in the vertexes of an equilateral triangle. This equilateral formation is to
prefer as occlusions are minimized.
Let beacon positions (xB,i;yB,i), i = 1, 2, 3 be Gaussian random variables
with covariance:

Var

(
(xB,i;yB,i)

)
=

[
σ2B 0

0 σ2B

]
with σ2B = 0.01m2. Figure 18 shows estimated position uncertain (in x and
y directions) as a function of robot position in the whole mission space.
A more detailed discussion can be found in Chapter 6.

Figure 18: Robot position variance in m2, when beacons positions are Gaussian
random variables with variance σ2B = 0.01m2.

Notice that uncertain in the knowledge of all the three beacons positions
coincides with uncertai on the bearing angle measured by the robot.

3.5 kalman filter-based navigation

Geometric triangulation-based algorithm presented in the previous sec-
tions suffers from several hypothesis that in many practical cases are quite
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restrictive. For example, a mobile robot implementing the above-mentioned
method, requires to dispose of (almost) three beacons at any given time.
Unlikely this requirement is quite restrictive for purposes of this work,
as our initial aim was to provide a reliable, high-rate and robust local-
ization technique. Furthermore, each localization application requires the
exchange of almost three data packets, with consequent substantial energy
consumption.

According to energy-saving reasons just exposed, many practical cases
requires the application to localize mobile agents without infra-agents co-
operation. This motivates the use of independent localization algorithms.
Therefore, this requires the robot to be equipped with hardware and soft-
ware capable of providing a sensory feedback related to its environment.

One of the most famous relative positioning technique is the odometry,
which consists of counting the number of wheel revolutions to compute
relative offset to a known initial position. This method results quite ac-
curate for small offset but it is not reliable because of the unbounded
accumulation of errors over the time (due to wheel slippage, imprecision
in wheels circumference, or wheels base). Furthermore odometry needs
an initial position and fails when the robot is reset, since the reference
position is unknown or modified. An absolute positioning system is thus
required to re-calibrate the robot position periodically. These are the main
reasons because odometry is not reliable in practical cases and methods
that employs anchor nodes are usually preferable.

Nevertheless the flexibility and the simplicity of this methods enables
to be employed in such cases in which not-structured environments are
available, as described in the first part of this section.

Advantages described, and the duality that can be deduced between
anchor-based methods and odometry, motivate the study of novel methods
capable of combining the two types of approaches. In particular, initial
motivations were to design and study a novel model:

• capable of working in the entire plane even when beacons rare;

• not affected by unbounded accumulation of error;

• that does not require additional hardware;

• energy consistent.

The innovative approach we propose, consists of combining geometric
triangulation and odometry through through statistical filtering. In par-
ticular, the Kalman filter theory arise as a particularly suitable model for
purposes just explained.
Figure 19 clarifies cooperation between odometry (kinematic model) and
geometric triangulation, here exploited as (noisy measures) for the process
modeled.
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Figure 19: Novel approach proposed consists of combining geometric triangula-
tion and odometry.

This approach has several advantages, such as robot’s displacements are
not required to be small and leads to an improvement in the hybrid use
of the two methods, in particular triangulation could be used in bigger
periods or only when the estimate uncertain overcome a fixed threshold,
in this way obtaining advantages of both methods.

The Extended Kalman filter EKF has been used as it raises as a natural
choice in this context since it provides a convenient way to fuse the data
from multiple sensors i.e. odometry and triangulation. While in general
the theory of Kalman filtering requires the process to be modeled using a
linear dynamic model and a linear output model, the EKF enables the use
of non-linear equations. In this work, the dynamic model representing the
robot’s wheels is nonlinear as better explained in Section 3.5.4.

In the following we propose, as an example, the modeling for a wheeled
mobile robot and for a quadrotor. The model proposed for wheeled robot
will then exploited in Chapter 6 to perform numerical simulations.

3.5.1 Robot kinematic modeling

WMRs provide flexible motion capabilities to robotic systems, in particu-
lar when we deal with reasonably smooth grounds and surfaces. Several
mobility configurations (wheel number and type, their location and actua-
tion, single-body or multi-body vehicle structure) can be chosen according
to specific applications. The most common for single-body robots are differ-
ential drive and synchro drive, tricycle or car-like drive, omnidirectional steering
etc.. Detailed reference on the analytic study of the kinematics of WMRs is
[1].

Quadrotors also have become a widely used platform for many applica-
tions that include both indoor and outdoor. High performance combined
with an increasing availability and reduced prices have led to a growing
interest in using rotor based platforms.

In the following the kinematic models of two different types of widely
used robots are presented. Kinematics is the study of geometry of mo-
tion. In the context of mobile robots, we are interested in determining the
motion of the robot from the geometry of the constraint imposed by the
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motion of the wheels. Kinematics helps the development of a model repre-
senting this types of systems in order to implement the control strategies.

3.5.2 WMRs unicycle

Mobile robots for operation on flat terrain permit several simplifying fea-
tures that make them easier to model. In particular, many robots have two
independently-driven coaxial wheels. The speed difference between both
wheels results in a rotation of the vehicle about the center of the axle while
the wheels act together in order to produce motion in the forward or re-
verse direction. Second, these robots are two-dimensional and lack suspen-
sions. In general, suspensions compensates for vertical motion caused by
the vehicles dynamics at high speeds. Mobile robots operate at relatively
low speeds and, in the following, we assume absence of vertical motion.
In the remaining part of this section, a model for a unicycle (Figure 21) is
presented.

Consider a system with N particles, Pi (i = 1, . . . ,N), and their positions
vector ri in some reference frame. Each vector ri can be written as a set of
components (xi,yi, zi). The 3N components specify the configuration of
the system. The resulting Euclidean space:

C = {X|X ∈ R3N, X = [x1,y1, z1, x2,y2, z2, . . . , xN,yN, zN]}

is called the configuration space.
The 3N scalar numbers are called configuration space variables or co-

ordinates for the system. The trajectories of the system in the configura-
tion space are always continuous. They may however have corners, double
points, or points with multiple intersections. Corners are points at which
the velocity is zero or discontinuous. Note that a velocity is discontinuous
only when it is subject to an impulse.

Considering a system composed of N rigid bodies, Bi (i = 1, . . . ,N),
each rigid body has three coordinates for planar systems, and six for spa-
tial systems. Thus for planar systems, if each rigid body has coordinate
(xi,yi, θi) in some reference frame, the configuration space can be written
as the Cartesian product of the configuration spaces of individual rigid
bodies. Note that θi belongs to a subset of R, as it is an angle and only
takes values in [0, 2π) and sometimes denoted by S1 (One-dimensional
sphere). Thus, the configuration space for a single rigid body in the plane
is called the special Euclidean group in two-dimensions, and denoted by
SE(2):

SE(2) = R×R× S1 .

The configuration space of N planar rigid bodies is:

C = {X|X ∈ SE(2)×SE(2)×· · ·×SE(2),X = [x1,y1, z1, x2,y2, z2, . . . , xN,yN, zN]} .

Consider a system of N planar rigid bodies. We have already seen that
there is a 3N-dimensional configuration space associated with the system.
However, when there are one or more configurations constraints (as in the
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case of planar kinematic chains) not all of the 3N variables describing the
system configuration are independent. The minimum number of variables
to completely specify the configuration (position and orientation of every
particle) of a system is called the number of degrees of freedom for that
system. Thus, if there are m independent configuration constraints, the
number of degrees of freedom is given by:

n = 3N−m .

Constraints on the position of a system of particles are called holonomic con-
straints. The positions of the particles are constrained by holonomic equa-
tions. The system is constrained to move in a subset of the 3N-dimensional
configuration space.

In contrast to holonomic constraints, in which the position of the par-
ticles are constrained, we may have constraints in which the velocities of
the particles are constrained but the positions are not.

A rigid body can be described by the coordinates of a reference point
C that is the single point of contact on the plane (x,y) and the angle (θ)

between the longitudinal axes and the x-axes. If the body cannot slide in
a lateral direction (the speed of the point C in lateral direction (el) must
be zero), the velocity of the point C must be along the longitudinal axis
(vector ef), where el and ef have the meaning explained by Figure 20.

Figure 20: Position of a body in the plane. It is described by three coordinates: x,
y and θ. If there is no slip in lateral direction, its velocity can only be
along the vector ef.

The position and orientation i.e. the pose of the robot is given by a 3× 1
vector:

x =

xy
θ


and differentiating this equation gives us the velocity:

ẋ =

ẋẏ
θ̇


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while the vectors ef and el are defined by:

ef =

[
cos θ

sin θ

]
el =

[
sin θ

− cos θ

]
.

dynamic model

In order to derive a dynamic model for the system, and considering the
reduction to the 2-D plane, the longitudinal component of velocity:

vf = vTcef = ẋ cos θ+ ẏ sin θ (22)

and the lateral component :

vl = vTcel = ẋ sin θ− ẏ cos θ (23)

have to be considered as first. Notice that vectors has been reduced to two
dimension i. e. vc = [ẋ ẏ]T .

If there is no slip in lateral direction, they satisfy:

vl = vTcel = ẋ sin θ− ẏ cos θ = 0 .

Figure 21: Differential drive robot composed of two fixed wheels plus a castor
[SuperMARIO, MagellanPro]. The castor serve to support the weight
of the vehicle and under ideal conditions do not affect the kinematics
of the robot.

Referring to Figure 21, let us denote the centers of the wheels by C1 and
C2 respectively and let their radius be r. Let the axis width (i. e. the length
of the vector

−−−→
C1C2) be l. Let (xi,yi, zi) denote the position of center Ci and

let ωi denote the wheel speed of the i-th wheel. And let the component
of velocity in the longitudinal direction, generated by the i-th wheel, be
given by vf,i. According to the definition of angular velocity, we have:

vf,i = rωi

while for the lateral speed:
vl,i = 0 .
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From Equation 22 and Equation 23, we have:

vf,i = ẋi cos θ+ ẏi sin θ

0 = ẋi sin θ− ẏi cos θ .

In order to derive the expression of the velocities of the center of mass of
the robot, in function of the measured velocities of wheels, it is necessary
to consider the coordinates of the point C = (x,y) which is clearly half
way between C1 and C2:

x =
x1 + x2
2

y =
y1 + y2
2

thus, the velocity of point C, in the plane, is given by:

vC =

[
ẋ

ẏ

]
=

[
ẋ1+ẋ2
2

ẏ1+ẏ2
2

]
.

The forward speed or the velocity component in the longitudinal direction
can be obtained by projecting along el:

vf = eTf vC = ẋ cos θ+ ẏ sin θ

=
ẋ1 cos θ+ ẏ1 sin θ

2
+
ẋ2 cos θ+ ẏ2 sin θ

2

=
vf,1 + vf,2

2

=
rω1 + rω2

2

(24)

Now if we consider the two points C1 and C2 which are rigidly attached
to the axis of the mobile robot, the velocities of these two points are related
by:

vC2 = vC1 + θ̇k̂×
−−−→
C1C2

where

vC1 = vf,1ef vC2 = vf,2ef (25)

Substituting l for |
−−−→
C1C2| we get:

−rω2ef = −rω1ef + θ̇k̂× lel

and writing this, in the component along e:

rω2 = −rω1 + lθ̇ ⇒ θ̇ =
rω1 − rω2

l
. (26)

Thus, Equation 24 and Equation 26 provide the relative velocity of the
mobile robot center of mass in function of the velocity of the wheels.
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kinematic model

In Figure 21, it is shown the schematics for the design of differential
drive robot. The kinematics of the system is determined by the axle and
the wheel radii.

In order to obtain a model which relates angular measured speeds with
the Cartesian coordinates of the point representing the robot, Equation 24

and Equation 26 have to be translated via the usual transformation from
Polar to Cartesian coordinate and we obtain:

ẋẏ
θ̇

 =


r cosθ
2

r cosθ
2

r sinθ
2

r sinθ
2

r/l −r/l


[
ω1

ω2

]
(27)

3.5.3 Quadrotor modeling

The quadrotor is a Vertical Take-Off and Landing (VTOL) aircraft [33]. It
consists of four propellers arranged on x-shape or +-shape. Every arm
holds a propeller on its end that enables the system to fly. Several advan-
tages distinguish the quadrotor from other aircraft, such as lower payload,
simplicity of control and a great maneuvering attitude which can help in
going into several areas that could not be accessed by traditional airplanes
nor helicopters.

Figure 22: Quadrotor.

The symmetry of the quadrotor body gives simplicity to the controller
design as it can be controlled through varying the speed of the propellers.
Directional control is produced by individually altering the speed of the
four motors Each two opposite propellers rotate in the same direction as

Figure 23: Quadrotor operation.

shown in Figure 23. A quadrotor consists of two fixed pitch clockwise
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spinning propellers and two counter-clockwise spinning rotors which di-
agonally oppose each others. This results that the reactive force of each
propeller being effectively canceled out by the diagonally opposite pro-
peller’s reactive component.

Quadrotor craft has further efficiency and mechanical advantages. Hav-
ing small propellers reduces the torque on the system which means that
the blades can be driven at higher velocities without producing additional
mechanical vibrations and also increases motor efficiency.

The quadrotor aircraft is a highly non-linear, Multi-input Multi-output
(MIMO) and strongly coupled system. In order to derive a suitable model
for this system, it is necessary state some assumption to simplify the dy-
namics of the complex system. These assumptions are as follows:

• the quadrotor structure is rigid and symmetric;

• propellers are rigid;

• ground effect is neglected.

The Newtonian method is the most popular choice for modeling rigid
bodies in six degrees of freedom and it enables to derive a consistent
model for quadrotors.

Let consider Figure 24 in which is represented the force distribution
on the quadrotor. Let fi forces generated by propellers, ωi the rotational

Figure 24: Force distribution.

speed of the propeller and τR,i the reaction torque of the system on the
propeller. The physical laws that combines forces and torques with rota-
tional speeds of propellers are:

fi = bω
2
i

τR,i = dω
2
i

where b is the thrust factor and d the drag factor (both depending on the
rotor geometry and profile, its disk area and radius and on air density).

Let (x,y, z) be the position of the reference frame SRB jointly liable to
the quadrotor with respect to a universe reference frame O and (φ, θ,ψ)
the angles of SRB with respect to the universe reference frame as shown
in Figure 25.

Let T be the resulting force:

T = f1 + f2 + f3 + f4 ,
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Figure 25: Universe and SRB reference frame.

and
τφ = l(f2 − f4)

τθ = l(f1 − f3)

and τψ the resulting torque on the x− y plane:

τψ = −τR,1 + τR,2 − τR,3 + τR,4 .

Therefore, the dynamics of the system is that of a rigid body with mass
m subject to external forces applied to the center of mass according to
Newton-Euler formula:

∑
Fi =

 0

0

mg

+ f


 00
−T


+ FA + FD

for the translational dynamics, where f(·) is a function of the actuation
control, FA is the aerodynamics force and FD models disturbances. For the
rotational dynamics:

∑
MB =

LφLθ
Lψ

+

τφτθ
τψ

+ τA + τD

where

LφLθ
Lψ

 models the gyroscopic effects,

τφτθ
τψ

 is the actuation control,

τA are the aerodynamic effects and τD model disturbances.
A mathematical model of the system can be build. In particular, consid-

ering the (non-linear) state-space model representation:

ẋ = f(x) + g(x)u ,

x =
[
x y z vx vy vz φ θ ψ p q r

]T
u =

[
T τφ τθ τψ

]T
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the model: 

ẋ = vx

ẏ = vy

ż = vz

v̇x = FA,x − (cosψ sin θ cosφ+ sinψ sinφ) Tm

v̇y = FA,y − (sinψ sin θ cosφ+ sinφ cosψ) Tm

v̇z = FA,x + g− cos θ cosφ Tm

φ̇ = p+ sinφ tan θq+ cosφ tan θr

θ̇ = cosφq− sinφr

ψ̇ = sinφ sec θq+ cosφ sec θr

ṗ = τA,x +
Ir
Ix
qΩr +

Iy−Iz
Ix

qr+
τφ
Ix

q̇ = τA,y +
Ir
Iy
pΩr +

Iz−Ix
Iy

pr+ τθ
Iy

ṙ = τA,z +
Ix−Iy
Iz

pq+
τψ
Iz

where have been used Ir for the blades inertia and Ωr for the average
blades rotation velocity.

3.5.4 The Extended Kalman Filter

In order to combine the data from odometry readings together with trian-
gulation results, a kinematic model for the robot is necessary.

In the following, the model for a unicycle has been chosen for instance,
but any other model for mobile robots (e. g. quadrotor) is suitable for the
algorithm with no others complications, as in general all these models are
non-linear. The model in state space representation for the process is:x(k+ 1) = f(x(k), u(k)) + w(k)

y(k) = h(x(k)) + v(k)
(28)

where f(x(k), u(k)) is the nonlinear state transition function of the robot.
In general w(k) ∼ N(0,Rw) is a Gaussian noise with zero mean and covari-
ance Rw independent from k. h(x(k)) is the nonlinear observation model
and v(k) is a Gaussian noise with zero mean and covariance Rv(k). It is
important to notice that the model noise w(k) has covariance matrix in-
dependent from the current step k. In fact, while the model noise is in
general a stationary random process, the measure noise v(k) has covari-
ance function that depends on the position of the robot with respect to
beacons position. For this reason, it is necessary to consider a covariance
in function of the time step k.

Our approach consists in considering:

• odometry follows the kinematic model, that is the function f(·) in
(28);
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• the position for the robot estimated through geometric triangulation
provide measures y(k).

Input vector to the model is composed of the two rotational velocities
measured by encoders mounted on wheels, respectively the right and left
one as motivated in Equation 27.

The state transition function of the robot is, according to Equation 27,
for a unicycle:

~f(x(k), u(k)) =

x(k) + vf cos θ

y(k) + vf sin θ

θ(k) +∆θ

 (29)

where the initial presented model has been discretized, i. e. vf represents
the mean speed of the robot in the time-step and ∆θ represent the mean
rotational speed in the time-step. The observational model is:

H =

cx 0 0

0 cy 0

0 0 cθ


i. e. it is a linear model, in which cx, cy and cθ are parameters of the
encoders installed on the robot.

Since the model (29) is nonlinear, the EKF must be used here to integrate
the laser measurements and readings from optical encoders.

Note that the EKF is recursively implemented as follows:

step 1 - prediction : predict the next position of the robot using
odometry.

x̂(k+ 1|k) = f(x(k), u(k))

P(k+ 1|k) = ∇f P(k|k)∇fT + Rw

where ∇f indicates the Jacobean matrix of the transition function, and is
obtained by linearization:

∇f =

1 0 −vf(k) sin θ(k)

0 1 vf(k) cos θ(k)

0 0 1


step 2 - observation : actual measurement are made.

y(k) = H x(k)

step 3 - update : compare triangulation measurements with odometry
prediction:

• Innovation:
ỹk+1 = yk −Hx̂(k+ 1|k)
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• Innovation covariance:

Sk+1 = HP(k+ 1|k)HT + Rv(k+ 1)

• Kalman gain:
K = P(k+ 1|k)HS−1

k+1

• Updated state estimate:

x̂(k+ 1|k+ 1) = x̂(k+ 1|k) +Kỹk+1

• Updated estimate covariance:

P(k+ 1|k+ 1) = (I−KH)P(k+ 1|k)

The algorithm hides some very useful features: it produce the estimate
of the current robot position at each cycle by integrating odometry data
with only one angle measurement from the bearing sensor. Recursively, it
combines every new measurement with measurements made in the past
to estimate the robot position.

3.5.5 Kalman Filtering with Intermittent Observations

Previous equations clarify how triangulation results can be combined with
odometry data in order to produce a robust position prediction and to
improve localization performances. Nevertheless, it is easy to imagine that
in some particular situations, triangulation estimate could not be available
and, as consequence, observation y(k) are not provided. These are, for
instance:

• when less than three beacons are available to the robot;

• when occlusions occur;

• when data losses occur due to the unreliability of the network links;

• when beacons are not active due to energy constraints.

We can moreover decide to do not use triangulation results when their
variance overcome a certain threshold as it could affect results. This leads
to some troubles in the normal operation of the filter, since measures y(·)
are not available.

In such cases, the robot could not exploit triangulation results and it
needs to proceed using only odometry until anchor-based localization will
be available again.

A similar problem has been approached in [40]: in particular Sinopoli
et al. studied the asymptotic behavior of the filter in these situations. Al-
though absence of observations, actually, corresponds to the limiting case
in which the output noise has infinite variance, in the paper the approach
is to derive Kalman filtering equations using a "dummy " observation with
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a given variance when real observation does not arrive, and then take the
limit as variance tents to infinity.

Defining the arrival of the observation at time k as a binary random vari-
able γk, with probability distribution pγk(k) = λ and with γk independent
of γs if k 6= s, the Kalman filter equations are modified as follows:

• the first step of prediction remains unchanged;

• the second step of observation is not performed as measures are not
available;

• in the third step, the equations of the updated state estimate modify
as follow:

1.
x̂(k+ 1|k+ 1) = x̂(k+ 1|k) + γk+1Kỹk+1

2.
P(k+ 1|k+ 1) = (I− γk+1KH)P(k+ 1|k)

that is, the Kalman filter equation for intermittent observation corresponds
exactly to propagating the previous state when the observation is not avail-
able at time k.

Thanks to the new formulation, derived from [40], the filtering phase
x̂(k+ 1|k+ 1) can be easily performed even when there is no observation
update available at time k+ 1.





4
B E A C O N D E P L O Y M E N T F O R L O C A L I Z AT I O N

Multiple are the advantages introduced thanks to the interplay between
fixed and mobile agents: for instance, as introduced in previous section,
static sensors can provide localization services, while at the same time
robotic nodes deal with sensing the environment. Although many works
in literature treat pre-configured networks of fixed nodes, because of pre-
existing infrastructures or constraints due to physical issues, there exist
some practical cases that envisage the network to automatically adapt to
environments, a-priori unknown.
The beacon deployment process regards the problem of optimally deploying
beacons, in order to provide mutual services to the robotic network.

Beacon displacement strongly affects quality of localization and many
other services provided by the network. For instance, when considering
the simple triangulation problem described in Chapter 3: the number of
visible beacons and their placement geometry is crucial in order to reach
reliable results. Each node in fact requires almost three beacons to be able
to localize itself.

This chapter aims to study approaches to sensor node localization that
uses sequentially deployed beacons in order to localize mobile agents.

4.1 objective and motivation

In this section the main motivations to the work are introduced and the ob-
jective are described in detail. Moreover the key contributions are resumed.
A detailed previous-work description concludes the section.

4.1.1 Problem definition

In this chapter the motivation, design, implementation and evaluation of
a sequentially self-deployment system based on triangulation is presented.
The main purposes of this work are threefold:

• to formalize the sensor placement problem;

• to address beacon deployment issues, following the idea of the novel
concept of self-configuring beacon network;

• to propose a novel method capable of determining locations for new
beacons to be deployed in an optimal way, by exploiting results
presented in Chapter 3 regarding geometric triangulation variance
derivation;

55
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4.1.2 Previous work

Much of the research conduced thus far has mainly focused on localization
techniques, while beacon placement issues have not been rather explored.
Typical approaches taken in literature deal with pre-existing beacons dis-
placement, thus focusing on optimal selection between available beacons.
An adaptive beacon placement algorithm has been proposed in [3], where
beacons are deployed sequentially basing on empirically data of the per-
ceived localization error. The perceived error is obtained by observations
among neighboring beacons. When beacons are densely deployed over an
area, the perceived localization error among them should reflect the error
characteristics of the terrain or environment, which can then be applied to
estimate the localization error of the actual sensor nodes.
Further work in [3] by Bulusu et al. provides a framework to realize the
adaptive algorithm in the real world by proposing a distributed algorithm
to disseminate the perceived localization error into a centralized location.
Isler describe a beacon deployment strategy with a different objective: min-
imizing the number of deployed beacons to localize mobile objects. The
problem approached deals with finding the minimum number and the
placement of cameras so that the error in localization is less then an error
threshold at every point in the workspace.
In [41] the problem of controlling the configuration of a sensor team which
employ triangulation for estimation is studied. Authors present a particle
filter. The approach provide the optimal move at each time step by com-
puting numerically an n-dimensional gradient. This work solves a local
placement problem for a small number of robots at each time step.
In [32], the problem of relocating a sensor team whose members are re-
stricted to lie on a circle and charged with jointly estimating the location
of the target was studied. Efrat et al. in [14] study the problem of placing
cameras in a polygonal workspace in such a way that for each point of
interest, there are two cameras which can view the point at an acceptable
angle. The work in [22] studies the problem of assigning disjoint pairs of
sensors to targets.
In the work proposed by Tekdas and Isler, a solution framework based
on integer linear programming is proposed. The work [22] proposes more-
over an approximation algorithm with a constant factor performance guar-
antee, while the main focus addressed is the minimization of the number
of sensors employed.

4.1.3 Contributions

The key contributions of this work consists in introducing optimal beacon
deployment criteria and algorithms for geometric triangulation.
In the first part of this section, we propose a sequentially self-deployment
system capable of optimally locate new beacons that provides localization
services for robotic networks.
First of all, we introduce the problem by describing how a-priori designed
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patterns can optimally cover the mission space by minimizing the number
of beacons involved.
Subsequently, according to robustness and autonomy constraints, we pro-
ceed in developing mechanism that make the network capable of comput-
ing locations for new beacons to be deployed in an accurate manner.

Our method is based on cooperation between pre-existing beacons: thanks
to local exchange of information, candidates location for new beacons are
computed through local optimization. Computed positions are then trans-
mitted to robotic agents for deployment.

4.1.4 Problem formulation

In this section, the sensor placement problem for triangulation-based lo-
calization is formulated.
Given a workspace Ω, which consists of all possible locations for the tar-
get, let s be a k-tuple representing related sensor parameters which can
include, for example, location and orientation of agents. Let Q be the do-
main of s. Q represents the set of all possible placements of a single sensor
in Ω.

Let us consider a function U:

U : Q×Q×Q×Ω → R

U(si, sj, sk,ω) returns the uncertainty in localizing a target positioned at
ω (ω ∈ Ω) exploiting three sensors located and orientated as described by
si, sj and sk respectively.
It is easy to deduce that the function U is specific to particular environ-
ment and sensing models. For example, U(si, sj, sk,ω) can be infinite if
the environment causes an occlusion between ω and either si or sj or sk.

Let S = {s1, . . . , sn} ⊆ Qn be a placement of sensors where the ith

sensor has parameters si. The quality of a placement in a workspace is
determined as follows:

U(S,Ω) = max
ω∈Ω

min
si,sj,sk∈S

U(si, sj, sk,ω) (30)

Equation 30 explains how, to establish the quality of services provided by
a given beacons arrangement, the largest uncertain value over the entire
workspace is taken.

The optimal sensor placement problem can be formulated as follow:

Definition 4.1. Given a workspaceΩ, candidate sensor locations Q and an
uncertain function U, find a placement S with minimum cardinality such
that minimize U, i. e. :

min
S⊆Qn

U(S,Ω)

The definition clarify the twofold objectives:

• raising a placement that minimize the number of sensors employed;

• minimizing the uncertain in estimated position.
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In addition, we underline that at low and medium beacon densities, the
quality of localization suffers due to poor placement of beacons; while at
high densities collisions in communications compromises the scalability of
performances. Hereafter we present an example that clarify this seeming
counter-sense.

4.1.5 Sensor placement problem for triangulation-based localization is NP-Complete

Unfortunately optimal solution to (30), i. e. optimal beacons displacement
that both minimizes sensors employed and guarantee minimal localization
uncertain is not trivial. It is furthermore possible to state that this kind of
problems are NP-Complete1.

This fact is usually demonstrated in literature [43] by establishing its
relation to the well-known k-center problem, which is NP-Complete.

In the k-center problem, we are given a set of locations for centers and a
set of targets along with a distance function d(i, j) between the centers and
the targets. The objective is to minimize the maximum distance between
any target and the center closest to it. The converse problem, where the
maximum distance from each vertex to its center is given and the number
of centers is to be minimized, is also NP-Complete. Hence, the sensor
placement problem is, at least, as hard as the converse k-center problem.

4.2 introduction on adaptive beacon placement

Intuitively, approaches such as uniform and very dense beacon placement
are suitable for many practical approaches. However there exist some dis-
advantages that compromise their effectiveness.
First of all, uniform placement results as a good strategy in many cases in
which we do not dispose of any detailed information about the work to ac-
complish or the environment to study. However, this model is insufficient
due to the following reasons:

• Beacons may be perturbed during deployment. Consider for exam-
ple, a terrain comprising hilltops. Air dropped beacon will roll over
the hill compromising the overall network characteristics.

• Even when beacon placement is uniform, noise may affect the visi-
bility of beacons that should be in range: in fact, uneven terrains and
obstacles bring additional uncertainty.

Very dense placement may not be a viable solution too. This because of
several reasons:

• Signals interference.

1 A decision problem is NP-Complete when it is both in NP and NP-Hard. The most notable
characteristic of NP-Complete problems is that no fast solution to them is known. That is,
the time required to solve the problem using any currently known algorithm increases
very quickly as the size of the problem grows.
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• Cost and power: cost of the beacons may preclude very dense place-
ment. Power considerations may require that only a restricted sub-
sets of the beacon network can be active at any given time.

• The environmental or terrain conditions may be such that even in-
creasing the density uniformly will not overcome the problem. For
instance, if the number of dropped beacons were doubled, the same
situation would persist. Also, the terrain can already have a very
high density of beacons and hence the new beacons deployed must
be added in particular places to cope with noise.

• At very high densities, the phenomenon of self-interference emerges.
In fact, the probability of collisions among signals transmitted by the
beacons increases.

The fundamental limitation of the two proposed approaches is that they
are basically fixed strategies, that do not take into account environmental
conditions that cannot be known a-priori. It is practically impossible to
pre-configure to such terrain and propagation uncertainties and compute
an ideal beacon placement that uniformly achieves a desired quality of
localization across the region.
Beacon placement needs to adapt to the noisy and unpredictable environ-
mental conditions. Thus, recent studies addresses the problem of Adaptive
beacon placement. The problem deals with understanding how should ad-
ditional beacons be placed, given an existing field of beacons, in order to
reach best localization performances.

Bulusu et al. in [3] has formalized two simple algorithms for adaptive
beacon placement. The procedures differ in the amount of global knowl-
edge and processing used to take decisions.

4.2.0.1 Random

The simplest algorithm for beacon deployment provide nodes to do not
pay attention to the quality of localization at different areas of the mission
space and simply selects a random point in the region as a candidate for
adding a new beacon. The algorithm is structured as proposed in Algo-
rithm 2.

Algorithm 2 Random beacon deployment algorithm

1) Select a random point (x∗,y∗)
2) Add a new beacon at (x∗,y∗)

The presented model is extremely simple, however it is usually taken
into account as it is similar in character to uncontrolled airdrop of addi-
tional nodes. Its complexity is O(1).

4.2.0.2 Max

The Max algorithm is described in Algorithm 3
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Algorithm 3 Max algorithm

Let the terrain be a a square of s meters and each robot take measures
in ρ meters.
1) Divide the terrain into ρ× ρ squares.
2) Measure localization error at each point in the terrain that corre-
sponds to a square.
3) Add a new beacon at the point (x∗,y∗) that has the highest measured
localization error among all points.

This algorithm is based on the assumption that points with high local-
ization error are spatially correlated. The advantage of this algorithm is
that it can be computed in a very straightforward way; however it may be
influenced by random noise or propagation effects.
The complexity of the Max algorithm is linear in the number of square of
the discretization.

Algorithm proposed beforehand, have been reported in order to provide
an overview on fixed strategies. For a comprehensive discussion about
uniform and very dense placements, please refer to [3].

4.3 adaptive beacon deployment based on triangulation vari-
ance map

It is possible to state that many of the techniques proposed in literature
for landmarks positioning are specific of the localization method exploited,
Moreover, as previously demonstrated, the problem of optimal beacon de-
ployment for triangulation is NP-Complete.
These reasons have directed researchers to develop models that make use
of pre-existing beacon networks, and directing their attentions on selecting
the more appropriate tern of beacon to perform the triangulation, when
mobile agents are capable of sensing more than three beacons.
This approach is based on a strong assumption: the beacon network is
located in an off-line manner, and there is redundancy in beacons deploy-
ment. However we can deduce that this perspective is not suitable for
such cases in which we cannot dispose a priori of information regarding
the mission space. In such cases mobile agents are required to provide
an adapting structure the the sensor network, through deploying beacons
basing on sensed environment.

This chapter presents a novel approach for beacon deployment based on
triangulation variance estimation described in previous Chapter 3.
In particular the uncertain about self actual location of new deployed bea-
cons will provide a suitable and robust criteria for the iterative design of
their locations.

In the following, two main assumption are done:

• triangulation is used as localization method. As previously intro-
duced, the beacons deployment problem is specific for the localiza-
tion methods used, and this assumption specify the framework.
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• The main purpose is to localize every target located in the internal
area formed by the three localization beacons.

The second assumption is motivated by considerations described in Chap-
ter 6 and by the observation that triangulation algorithms perform better
when the target is located in the internal polygon determined by the three
beacons as vertexes.

Finally it is important to underline that the method we propose, al-
though in this work is described as specific for geometric triangulation,
could be extended to other methods capable of describing uncertain through
numerical variance maps.

4.3.1 High-uncertain areas of triangulation

As motivated in Chapter 3, at least three beacons have to be available for
the robot in order to to localize itself in a plane. All areas of a plane with
less than three visible beacons are unsuitable for robot localization based
on anchor nodes.

On the other and, when at least three beacons are available, the mobile
node is capable of self-localizing in the entire plane except in two singular
cases:

• when the robot and the beacons all lie in the same circumference;

• when the robot see an occlusion or a couple of beacons are collinear.

Targets cannot be localized when they are located on the circumference
joining the three beacons because the intersection between the three cir-
cles of triangulation is an arc, not a single point.
Furthermore, triangulation cannot be performed when a couple of beacon
is collinear, as two (of the three) circles of the algorithm coincides. Fig-
ure 26 explains graphically areas where the triangulation does not work.

Figure 26: Regions of the plane where triangulation algorithms cannot localize
targets.

Although ToTal algorithm proposed in previous section introduces sev-
eral advantages with respect to previous proposed, among which the ex-
tension of geometric triangulation to entire mission space, it is important
to underline that there still exist some confined areas of the plane where
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triangulation is not capable of computing the position of the target. As
motivated above, this region is composed by the three lines and the circle
joining the beacons.
This singular behavior has to be taken into account during the infrastruc-
ture design phase: in particular beacons should be deployed in patterns
that minimize this areas.

4.3.2 Self-configuring minimal uncertain deployment

When beacons for localization have to be deployed, an important parame-
ter to take into account is the maximum distance at which a couple of them
can be placed. This threshold arises as a consequence of signals attenua-
tion and degradation as distances increase. Let dMAX be this maximum
distance. dMAX represents, for example, the maximum distance at which
bearing sensors mounted on mobile agents can detect beacons in a reliable
manner.

Beacon deployment density ρ, describes the number of beacons per unit
area:

ρ =
N

S
,

where S denotes the surface area of interest and N is the number of bea-
con located in the same area and respecting the dMAX constraint. This
index characterizes the fundamental aspect of understanding how dense
are the nodes in a specific region, and helps in understanding whether
new beacons are needed to improve triangulation.

When a new beacon have to be deployed, both the beacon deployment
density ρ and enhancements in localization performances have to be taken
into account. In fact, one of the main objectives to meet when a new beacon
has to be deployed is to maximize the portion of mission space covered;
while, on the other hand, new beacon deployed have to guarantee high
precision in localization.
It is easy to deduce that the two purposes are conflicting. In fact, on one
hand a low-density deployment guarantee the maximum surface covered,
while on the other hand to reach optimal performances in terms of quality
of localization, nodes have to deployed in a high-density pattern.

Example 4.3.1. In order to deploy beacons through maximizing the por-
tion of mission space covered, the better pattern to employ is those repre-
sented in Figure 27.

In fact,

• every couple of nodes (Bi,Bj) satisfy dist(Bi,Bj) = dMAX;

• every node in the tern is equally faraway from all its neighbors.

Therefore, the equilateral triangle-shape represents the optimal pattern for
beacons disposal when the aim is to minimize beacon deployment density
ρ.
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Figure 27: Equilateral triangle minimize the beacon deployment density.

The purpose of this chapter is to propose a novel method for localization
beacon deployment, capable of meeting the following goals:

1. locations for new beacons have to be computed in a distributed man-
ner, i. e. through exploitation of information gathered through local
data exchange only;

2. the localization system has to self-deploy itself without any a pri-
ori knowledge. This mean that the network have to be capable of
both computing candidates location and deploying sensors through
information gathered during explorations only, since no a priori in-
formation is available;

3. new beacons located are required to compute their actual position
by exploiting the pre-existing infrastructure;

4. basing on considerations presented Section 4.1.4, beacons have to be
deployed is such a manner to minimize localization uncertain over
the entire configurations space.

Requiring to novel beacons the ability of self-locating through the ex-
ploitation of the pre-existing infrastructure, lead strong robustness capa-
bilities to the system.
Indeed, thanks to this feature, the system is capable of working in com-
plete autonomy without the requirement of more restrictive assumptions,
such as the support of GPS systems.
Therefore, since new-deployed beacons have to be capable of computing
their actual position with lower uncertain, as a consequence of 3.4.2 they
cannot be located in high-uncertain regions. That is, areas described in
Section 4.3.1.

Example 4.3.2. Figure 28 shows (black, magenta and white dot patterns)
three beacons composing a triplet for localization. This is referred as the
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pre-existing localization infrastructure. The red dot represent the candi-
date position for the new beacon in order to build an equilateral-triangle
shape. The equilateral triangle show, in its internal, the variance map com-
puted by the tern of pre-existing beacons.

Figure 28: The problem of locating a new beacon can be stated as a constrained
optimization issue.

Therefore, in order to meet the overall objective, that is both minimizing
beacons density ρ and minimizing beacons location uncertain, a trade-off
between the minimal-density and the minimal uncertain patterns have to
be chosen.
The problem of locating a new beacon can then be formulated as a con-
strained optimization of the variance map in areas of the plane that satisfy
the dMAX constraint.

The novel method we propose is based on local cooperation between
neighbor nodes, since each node requires only absolute positions of imme-
diate neighbor.
Each node can compute candidate positions for a new beacons according
to following steps:

1. Exploiting locations of two neighbors and its relative uncertain, com-
pute the variance map V(x,y) for the triplet of beacons;

2. Compute area of acceptable locations for the new node Ω, that is, lo-
cation both respecting the dMAX constraint and avoiding beforehand
taken location. Notice that Ω ⊆ Ω;

3. Compute ultimate candidate locations for new nodes solving the fol-
lowing constrained optimization problem:

min
Ω
V(x,y) .
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According to motivations just explained, in our algorithm we can iden-
tify two main phases that lead to the design of the ultimate location for
new beacons:

1. design a candidate point according to density criteria;

2. adjust candidate location, reaching a trade-off, in order to obtain
higher accuracy.

Figure 29 explains the deployment process performed by a tern of pre-
existing nodes.

Figure 29: Each beacon is responsible for the deployment of a couple of new
nodes.

The figure emphasize the fact that each beacon is responsible for the
deployment of a couple of new nodes. Therefore each tern of pre-existing
nodes can deploy three new beacons.

Another important aspect to underline, referring for instance to deploy-
ment of node D, is that the design of its position is performed by both
node A and node B. In absence of noise, designed locations coincides.
However, in practical applications, this process can affected by some unat-
tended aspects, among which:

• nodes belief about self location can be altered by noise;

• triangles formed by beacons can present shapes different form equi-
lateral;

• communications can be ruined by noise;

• obstacles or errors during the deployment phase can alter the actual
position from the desired one.

This problem can be overcome through the introduction of a procedure
based on average consensus, operated by each node together immediate
neighbor, in order to design location for beacons in common.
Figure 30 schematizes the interaction, that produces ultimate location for
the beacon.
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Figure 30: Node A and B design ultimate location for new node D through aver-
age consensus.

The final version for the algorithm we propose is reported in 4.
The procedure of new beacons deployment concludes with the transmis-

Algorithm 4 Iterative deployment algorithm

1) Send request to neighbors for their positions;
2) Compute acceptable positions Ω respecting the dMAX constraint;
3) Compute the variance map;
4) Solve the constrained optimization minΩ V(x,y);
5) Compute ultimate candidate position through average consensus
with immediate neighbor;

sion of the computed candidate location to robot network, that operates
for the effective deployment of the sensor.

Once the new beacon has been deployed, it is requested to compute
its actual position through geometric triangulation (Chapter 3) and the
exploitation of three of its neighbors beacons.

The procedure is then repeated for all the beacons in the network, lead-
ing to a self-configuring deployment that extends to the whole mission
space.

Figure 31 shows the optimal beacon deployment process performed by
the infrastructure presented in Example 4.3.2.
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Figure 31: A couple of cooperating agents design a candidate location for a new
beacon.

In particular, the cooperating agents are represented in magenta and
black dot pattern. These are responsible for the computation of the subset
overlineΩ, for the derivation of the Variance map and then for the design
of the candidate point represented in green and white dot patterns.
The proposed procedure terminates with the deployment operated by the
robot network.





5
C O V E R A G E C O N T R O L

In a sensor network, sensing devices can coordinate their actions through
wireless communication and aim at performing tasks in a shared manner.
Indeed, capabilities of sensor networks are strictly linked to the coopera-
tion between their nodes, in opposition with the approach used for cen-
tralized controlled systems.
The performance of a sensor network, in terms of its specific tasks, is sensi-
tive to the location of its nodes in the mission space. This leads to the basic
problem of deploying sensors in order to meet the overall systems objec-
tives, which is referred to as the coverage control or active sensing problem
[5] [9].

In particular, sensors must be deployed so as to maximize the informa-
tion extracted from the configurations space while maintaining acceptable
levels of communication and energy consumption. As the number of sen-
sors deployed in the target area increase, then a more complex and effec-
tive coverage method must be devised.

The static version of the solution to this problem involves positioning
sensors without any further mobility; optimal location can be determined
by an off-line scheme which is akin to the widely studied facility location
problem.
The dynamic version allows the coordinated movement of sensors, which
may adapt to changing conditions in the mission space, typically deploy-
ing them into geographical areas with the highest information density.

Advantages characterizing the two methods can be combined via mixed
sensor and robot networks, i. e. a network composed of both mobile and
fixed agents. In fact services provided by the two types of cooperating
systems are often complementary. This allow the cooperation to provide
noticeable results in many fields of employment.

5.1 an overview on coverage control

Thanks to mobility capabilities provided by robotic agents, the dynamic
coverage control problem is in general managed by robots. However, it is
important to underline that dynamic coverage control emerges as a result
of the cooperation between robot and sensor networks. In fact, while the
actual dynamic coverage control is performed by robots, fixed sensors still
provide anchor-based localization services. Moreover fixed beacons, where
needed, can be employed in order to improve coverage performances. This
leads to a mixed dynamic and static version for coverage control.

When we deal with unknown mission spaces, i. e. when we do not dis-
pose of any information a priori, the initial requirement for agents is to op-
erate in order to provide an initial model for the mission space. To achieve

69
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this goal, each robot needs to compute a path which allows itself to sense
the most dynamic areas as first, then to perform a comprehensive estima-
tion for the remaining part. Such a path is referred to as an informative
path.

The key insight is to use a parameter function representing the rate
of change of each point in the environment, while moving along a set
of waypoints to optimize a cost function related to the informativeness
of the path. The cost function attempts to place the path way-points at
the centroids of their Voronoi cells, while also making sure the waypoints
are not too far from one other. The robot moves along the path, marking
the areas it observes as dynamic or static, and learning the environment
model.

The collection of the desired information is, in many cases, constrained
by the cost associated with obtaining it [26]. The cost of taking a measure-
ment can be formulated in various manners. For many networks the most
significant may be the energy wasting for reaching the interested area of
the mission space.

The objective is to determine an optimal control strategy to take the
set of measurement, while simultaneously trying to minimize the cost of
taking those measurement, and this task must be fulfilled in a distributed
way, that is, determining the optimal subdivision of explorations between
the team of robots.

5.1.1 Problem definition

The goal of guaranteeing full awareness coverage of the mission space
emerges in many practical applications, where some regions are of much
more importance with respect to the other regions in the mission domain.
Consequently, one needs to discriminate these two classes of regions. For
example, in an application where a mobile sensor network is employed to
survey a nuclear power plant persistently, nuclear reactors must be cov-
ered with full awareness while the the regions of less importance only
need to be revisited frequently. Coverage control can generally be classi-
fied into:

• Static coverage control;

• Dynamic coverage control.

In static coverage control, the goal is to optimize the locations of fixed
sensors in order to optimize the service provided by the entire network
[10] [29]. Usually the static coverage problem can be referred as finding the
minimum number of circles (circles represents the sensing area of agents)
of radius R so that to completely cover the mission domain Ω. Usually this
types of problems can be solved offline in a static manner.

When the mission space cannot be fully covered by any static configura-
tion of the network, the problem of dynamic coverage arises; in this, each
point in the configuration domain is sampled by the mobile sensors until
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a prescribed coverage level is achieved [47] [51]. The movement of sensors
not only impacts sensing performance, but it also influences other quality-
of-service aspects in a sensor network, especially those related to wireless
communication.
Because of limited on-board power and computational capacity of agents,
a sensor network is not only required to sense but also to collect and trans-
mit data as well in a reliable and optimal way. Particular attention has to
be given to the path that agents plans to get from a location to another, as
energy consumption constraints cold be limiting in many practical cases

For this reason, both sensing quality, communication performances and
energy-wasting need to be jointly considered when controlling the deploy-
ment of sensors.

5.1.2 Previous work

The problem of optimizing sensor locations and sensor domains in fixed
sensor networks has been extensively studied in the past: it can be consid-
ered as an optimization problem [38], the solution is a Voronoi partitioning
[12], where the optimal sensor domain is a Voronoi cell and the optimal
sensor location is a centroid of a Voronoi cell.

On the other hand, mobile sensor coverage is relatively new in literature
and in [6] a survey of the most recent activities in control and design of
robot static and dynamic sensor is presented. In [29], Li and Cassandras
consider a probabilistic network model and a density function to repre-
sent the frequency of random events taking place. The authors develop
an optimization problem that aims at maximizing coverage using sensor
with limited ranges, while minimizing communication cost. Starting with
initial sensor positions, authors developed a gradient-based algorithm to
coverage to a (local) solution to the optimization problem.

A similar goal is the focus in [52], where the notion of virtual forces is
used to enhance the coverage of a sensor network given an arbitrary initial
deployment.

In [9] Cortes et al. address the same question, but in this case the trajec-
tory converges to the centroid of a cell in a Voronoi partition of the search
domain.

In [5] a coverage control scheme is developed which aims at the max-
imization of target exposure in some surveillance applications, while in
[52] a heuristic algorithm is applied to enhance the coverage of a sensor
network. Much of the active sensing literature [37] also concentrates on the
problem of tracking specific targets using mobile sensors and the Kalman
filter is extensively used to process observations and generate estimates.

5.1.3 Contribution

In this chapter, a distributed dynamic coverage control approach for coop-
erative sensing devices is developed and presented. Motivated by Li and
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Cassandras in [29], the mission space has been modeled using a density
function representing the frequency that events take place.

We assume that a mobile sensor has a limited range which is defined by
a probabilistic model. A deployment algorithm is applied at each mobile
node and it maximizes the joint detection probabilities of random events.
We assume that the event density function is fixed and given. The exten-
sion to density function time-variant does not require any modification
to the described approach as the adaptive relocation behavior naturally
follows from the optimal coverage formulation.

In the work [29] presented by Li and Cassandras a novel method based
on an optimization that aims to converge to a local solution to the opti-
mization problem is considered. The model proposed has been extended
in this work, in order to guarantee the obtainment of global optimal solu-
tions.

The main contribution of this chapter is the development of a solution
for the dynamic coverage control problem, through the maximization of
a cost functional. In particular the problem have been formulated by ex-
ploiting optimal control theory. Moreover the proposed solution results
suitable both for unknown environments and for common coverage con-
trol problems, where the mission space is a priori known. The method
appears particularly interesting in order to perform an initial estimate of
the state of the mission space.

Our approach is based on a distributed algorithm where each robot
autonomously computes a Voronoi partitioning for its relative portion of
mission space. Each Voronoi cell is then exploited for estimating infor-
mation enclosed in each partition. This type of partitioning helps in both
determining not yet visited areas and in defining their informativeness.
The control scheme for mobile nodes, is then based on an optimization
strategy, which aims to maximize information gathered.

5.1.4 Optimal coverage formulation

Let Ω ⊆ R2 models the mission space, over which there exists an event
density function

R(x), x ∈ Ω (31)

that models the frequency or density that a specific random event takes
place. Being a density function, R(x) satisfies:

• R(x) > 0 ∀x ∈ Ω;

•
∫
Ω R(x) = 1.

R(x) can, for instance, model the frequency that a certain type of event
appears at x, or it could be the probability that a certain measured value
exceeds a specific threshold at x.

In the mission space Ω, there are N mobile sensors located at s =

{s1, . . . , sN}, si ∈ R2 i = 1, . . . ,N .
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When an event occurs at point x, it emits a signal and this is observed
by a sensor at location si. The received signal strength generally decays
with ||x − si||, i. e. the distance between the source and the sensor. This
degradation can be modeled by a monotonically decreasing diffentiable
function pi(x), which expresses the probability that sensor i detects the
event occurring at x.

For instance, a sensor model with a simply form may be:

pi(x) = p0ie
−λi||x−si||

that expresses the idea that the detection probability declines exponen-
tially with distance.
p0i and λi are determined by physical characteristics of the sensor. The
optimal coverage problem can be formulated as maximizing the proba-
bility that events are detected. When an event takes place at x, and it is
observed by the sensors, the joint probability that this event is detected
can be expressed by:

P(x, s) = 1−
N∏
i=1

[1− pi(x)] (32)

where we have assumed that sensors take observations independently.

Definition 5.1. The optimal coverage problem can be formulated as an op-
timization problem that maximizes the expected event detection frequency
by the sensors, over the entire mission space Ω:

max
s

∫
Ω

R(x)P(x, s)dx := max F(s) (33)

In (33) controllable variables are the locations of mobile sensors s. The re-
sult of optimization (33), computed with respect to si, gives new positions
for mobile robots si, i = 1, . . . ,N that maximize the number of detected
events.

In general, this kind of problem can be solved by applying a non-linear
optimizer with an algorithm which can evaluate integrals numerically: in
such a case, a centralized controller with intensive computational capacity
is required.

5.2 distributed solution to the optimal coverage problem

While in general terms, the solution to the optimal coverage problem is
provided through centralized systems due to both the requirement of
global knowledge of robots positions and the computational complexity
required, this section proposes a distributed method to solve the optimal
coverage problem.

Taking partial derivatives with respect to si, i = 1, . . . ,N, in order to
solve Equation 33, we have:

∂F(s)

∂si
=

∫
Ω

R(x)
∂P(x, s)
∂si

dx . (34)
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Using Equation 32, the partial derivative (34) can be rewritten as:

∂F(s)

∂si
=

∫
Ω

R(x)

N∏
k=1,k6=i

[1− pk(x)]
dpi(x)

dsi(x)
dx . (35)

In general, (35) cannot be computed directly by mobile sensors, since
it requires global information such as the value of R(x) over the whole
mission space and the exact location of all other sensors in the network. In
addition, the evaluation of integrals remains a significant task for cheapest
sensors.

If partial derivative might be evaluated locally by each mobile sensor,
then a gradient method could be applied which directs agents towards
locations that maximize F(s).

In order to render distributed the optimal coverage problem, mobile
nodes must be capable of computing the optimization (33) with the avail-
ability of local knowledge only. This mean that only local exchange of
information between neighbor nodes, is needed.

Basing on the physical observation that when di(x) >> 1, pi(x) ' 0, we
assume:

pi(x) = 0, ∀x s.t. ||x− si|| > D (36)

where D denotes the sensing radius. Thus ||x− si|| defines the region of
coverage of sensor i. Since pi(x) = 0 for all x 6∈ Ωi, Ω can be replaced by
Ωi in Equation 35, where Ωi = {x : ||x− si|| < D}.
Moreover, indexes taken by variable k in the product can be limited in
such a way to consider only nodes in the neighboring Bi, i. e. nodes that
have their detectable area in common with the detect area of node i: Bi =
{k : ||si − sk|| < 2D,k = 1, . . . ,N,k 6= i}.
Thus, Equation 35 can be rewritten as:

∂F(s)

∂si
=

∫
Ωi

R(x)
∏
k∈Bi

[1− pk(x)]
dpi(x)

dsi(x)
dx . (37)

In conclusion we have obtained a useful and simply way to solve in a
distributed manner the problem of the optimal coverage by introducing a
simply simplification that takes into account the reduced sensing capaci-
ties of real sensors.

As a consequence of the local knowledge only required to solve the max-
imization, in general Equation 37 provides solutions for local maximum
for the function R(x).

In order to reduce computation costs in making Equation 37, the integral
evaluation can be discretized [29]. This type of solution is often taken into
account in many practical cases and could be evaluated in future works.

Example 5.2.1. Figure 32 shows simulation results about a network com-
posed of a couple of mobile agents exploiting a control strategy according
to Equation 37. Events density R(x) has been modeled with three peaks
located in (0.4, 0.5), (0.8, 0.2) and (0.8, 0.8).
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As displayed by the figure, the control strategy leads agent to move
along the gradient direction until a local minimum is reached. Moreover it
is important to underline that Robot1, according to control law, described
by Equation 33, when enters in the sensing area of Robot2, modify its local
view using its neighbors location. This modify its trajectory, that instead
of moving along the gradient direction get the node to leave in a different
direction.

Figure 32: Area-discovering process by a team composed of a couple of robots.

5.3 configurations space partitioning

Voronoi partitioning is one of the most attractive techniques that has been
used to solve the problem of partitioning environments by a set of robot,
so that each robot performs its operations in the region within the corre-
sponding cell.

For a successful distributed implementation of the Voronoi partitioning
problem, each robot should be able to compute the corresponding Voronoi
cell autonomously. Usually, to calculate the Voronoi cell, each robot first
uses the positions of all other robots in the environment to compute the
entire Voronoi partition, and then, extracts its Voronoi cell. Computing the
entire Voronoi partition is not very efficient as each robot unnecessarily
calculates Voronoi cell for every other robot. In most practical situations,
robots may not have information about the positions of all other robots
in the environment, e. g. , when subsets of robots are outside each others’
communication range. In such a situation, it is not possible to compute
the exact Voronoi calls in a distributed manner. Therefore, it makes sens
to study the problem of distributed Voronoi partitioning in a sensor range
constrained scenario.
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5.3.1 Problem formulation

Considering a team of robotic agents, the problem of partitioning the con-
figurations space consists in dividing it into a number of regions, each
of them could then be assigned to single agents. The approach exploited
could be static or dynamic.
When a static approach is used, the partitioning is static through time and
both sizes and locations of the partitions are in general fixed. This perspec-
tive is easier to implement as it can be studied during the setup phase of
the network.
On the other hand, when a dynamic approach is exploited, partitions are
periodically re-updated in terms of their sizes and locations, following the
updates recorded by measuring and needs of the entire network.

Assuming to dispose of an initial sets of points, representing the sets of
"centers" of the partitions involved we can proceed as follow. Let Ω be an
open convex set representing the mission space, Ω ∈ R2, and let Ω the
internal set of Ω; we can define:

Definition 5.2. The set {Vi}Ni=1 is called a tessellation of Ω if:

• Vi ∩ Vj =6 0 fori 6= j;

• ∪Ni=1Vi = Ω

Definition 5.3. Given a set of points {zi}Ni1 , belonging to Ω, the Voronoi
region Vi corresponding to the point zi is defined by:

Vi = {x ∈ Ω : ||x − zi|| < ||x − zj|| for j = 1, . . . ,N, j 6= i} (38)

where || · || denotes the Euclidean norm on R2

The points {zi}Ni=1 are called generators.
The set {Vi}Ni=1 is a Voronoi tessellation or Voronoi diagram of Ω, and each Vi
is referred to as the Voronoi region corresponding to zi.

Given a region Vi ∈ R2 and a density function ρ defined in Vi, the mass
centroids z∗ of Vi is defined by:

z∗ =
∫
Vi
xρ(x)dx∫

Vi
ρ(x)dx

(39)

Let f be an increasing function of distances between elements of Ω
f : R+ → R+ and let φ be a weight function φ : Ω→ R+ that gives a dis-
tinct priority to various areas of the mission space. Function f(·), could for
example represent the energy consumption of the mobile node in moving
in the mission space, while the function φ(·) can be chosen proportional
to the objective function, in such case a greater number of sensors would
be deployed in regions of major interests.

The optimal partitioning problem, that minimizes distances between ac-
tual locations of every nodes and considering the weight function Φ can
be solved by minimizing the function:

H :=

N∑
i=1

∫
Vi

f(||si − x||)φ(s)ds (40)
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Figure 33: On the left, the Voronoi regions corresponding to 10 randomly selected
points in a square, using a uniform density function. The dots are the
Voronoi generators (38) and the circles are the centroids (39) of the
corresponding Voronoi regions . On the right, a 10 point centroidal
Voronoi tessellation. In this case, the dots are simultaneously the gen-
erators for the Voronoi tessellation and the centroids of the Voronoi
regions.

where x ∈ Ω.

5.3.2 Voronoi partitioning

Proposition 5.3.1. Optimal regions, obtained by minimizing Equation 40 cor-
responds to the Voronoi regions, weighted by the cost function φ(s) and are
defined as follow:

Vi := {s ∈ Ω : ||q − si|| 6 ||q − si||,∀i 6= j}

in particular, the weight function assumes the minimum value:

HVOR =

∫
Ω

min
i∈{1,...,N}

f(||si − q||)φ(q)dq

In the following, we assume the specific form for the function f(·):

f(||si − q||) := ||si − q||2 .

GivenN points zi, i = 1, . . . ,N ,representing the Voronoi generators (38),
we can define their associated Voronoi regions Vi, i = 1, . . . ,N. Further-
more, given the regions Vi, i = . . . ,N, we can define their mass centroids
z∗i , i = 1, . . . ,N using Equation 39.

On the other hand, we can consider the following problem: given a re-
gion Ω ⊆ R2, a positive integer N and a density function ρ defined for
every x in Ω; find N points zi ∈ Ω and N regions Vi that tessellate Ω,
such that for each i, Vi is the Voronoi region for zi and zi is the mass
centroid of Vi.

The described problem, corresponds to many practical cases in which
robots are initially located in the same initial positions, or when we are
interested in finding an optimal tessellation of the configurations space Ω
without considering the initial positions of mobile nodes.
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In the context described, we are interested in situations where:

zi = z∗i , i = 1, . . . ,N

i. e. the positions zi that serve as generators for the Voronoi regions Vi are
themselves the mass centroids of those regions. We call such a tessellation
a Centroidal Voronoi tessellation.

Example 5.3.1. The solution to this problem is in general not unique. For
example, consider the case of N = 2, Ω ⊆ R2 a square, and ρ ≡ 1.

Figure 34: Two Voronoi tessellation of a square.

Two solutions to the problem described are showed in Figure 34, others
may be obtained through rotations.

It is important to notice that uniform choice for generators {zi}Ni=1 is an
optimal choice only for squared mission space.

5.3.3 Deterministic approach for determining centroidal Voronoi tessellations

In this section, we discuss a deterministic approach for the determination
of centroidal Voronoi tessellations of a given mission space. We refer to
[12] for a comprehensive discussion and references on algorithms.

Given a discrete, finite-dimensional set of points W = {xl}ml=1 belonging
to Ω ⊆ R2, an integer k > 1 and an initial set of cluster centers {zi}Ni1 , then
for each x ∈W,

1. find the zi that is closest to x; denote the index if that zi by i∗;

2. assign x to the cluster corresponding to zi∗ ;

3. recompute the cluster center zi∗ to be the mean of the points belong-
ing to the corresponding cluster.

The three steps above presented and performed for each x ∈ W permit to
determine a centroidal Voronoi tessellation.

If no particular constraints have to be observed, the initial set of cluster
centers {zi}Ni=1 can be chosen randomly.

Other deterministic approaches for determining Voronoi tessellations
are presented in [45] [49] . For a comprehensive description of the deter-
ministic and the approaches for the determination of centroidal Voronoi
tessellation see [12].
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5.3.4 Extension to Voronoi partitioning in discretized environments

During the whole previous discussions, the restricting assumption that
the set Ω has to be a convex set were done. A set Ω is said convex if, all
couples of points within the set, every points located in the straight line
segment that join the pair of points is also within Ω. This assumption can
be quite limiting in many practical cases, for example if we refer to indoors
rooms or to presence of mountains and hills in outdoor explorations. In
such cases the proposed methods cannot be applied. Figure 35 report an
example of an environment composed of 5 rooms, representing a non-
convex set.

Figure 35: Example of an indoor environment that cannot be modeled as a convex
set.

In [13], Durham et al. introduce a method capable of extending the so-
lution to non-convex configurations space Ω. This is based on a discretiza-
tion of the mission space. Ω has been divided according to a uniform grid
and to each cell has been assigned a value representing the presence or
not of obstacles.
Figure 36 shows the discretization of the environment presented in Fig-
ure 35.

Figure 36: Discretized environment of Figure 35. Note that colored squares model
the presence of obstacles while white squares represent the walkable
environment after discretization.

The definitions regarding Voronoi partitioning for continuous environ-
ments, needs now to be extended to discretized ones. First of all, it is
necessary to extend the definition of function f(||si − x||) for discretized
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environments. This can be done through the definition of the distance be-
tween a couple of cells d(h,k).
In typical applications where the size of the cells tends to zero and in ab-
sence of further constraints, it is reasonable to define the distance d(h,k)
as the Euclidean distance between the centers of the squared cells.

In this terms, the cost function Equation 40 for discretized environments,
assumes the form:

HD :=

N∑
i=1

∑
k∈Vi

d(h(i),k)φ(k)

where we have supposed that agent i is initially located at h(i).

5.4 distributed coverage control improved by partitioning

As shown in Figure 32, representing a simulation framework, some trou-
bles arises when Equation 33 is employed in unknown environments.
In particular, it is easy to deduce that the proposed solution based on op-
timization provides acceptable results only in cases where the considered
function R(x) presents a single maximum, i. e. maximum is absolute.
In fact, the proposed approach plans to move along the gradient direc-
tion of R(x) until reaching the closest maximum for the considered events
function.

This leads mobile agents to converge in minimum number of steps to
the location of major probability of events taking place. However, this ap-
proach leads to a non-optimal examination of the configurations space. In
fact, since agents has no a-priori knowledge about R(x), that is their knowl-
edge about the mission space is local and restricted to the portion they are
actually observing, then the optimization they perform could be merely
local. Therefore a local optimization for Equation 33 lead to sub-optimal
solutions to the problem.

So motivated by circumstances just explained it emerges the need to
provide a global (instead of a local) estimate for the function R(x). In total
absence of a global knowledge about R(x), then mobile agents have to
employ in order to provide an initial estimate for the function describing
events taking place.

The main idea behind the method we propose, relies on giving a global
(instead of a local) knowledge of R(x) to each single agent. In order to
guarantee a global view of the area to monitor in absence of information a
priori, agents have to be imposed to perform a complete inspection of the
whole mission space.

The main contributions in this approach are threefold:

• agents are controlled to perform an initial inspection of the whole
mission space. This produce a global estimation for the function R(x);

• a partitioning for the entire mission space is introduced, this pro-
vides a suitable method in order to approximate R(x) in areas not
visited yet;
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• interest in non-visited partitions is updated over time.

Moreover, the following assumptions are considered:

• although an accurate model for the mission space requires the func-
tion R(x) changing over time, i. e. R(x) = R(x, t), it reasonable to
assume function R(x, t) slowly changing over time; this justify the
following:

• when a partition get visited at time t∗ by one agent of the network,
then the agent has a detailed knowledge of that area, Hence in R(x, t)
the dependence on t disappear.

Let us denote by Pv(x, t− k) the probability that point x have been vis-
ited by almost one agent of the network during last (t− k) steps. Let the
set {Vi}Ni=1 be a tessellation of Ω.

The optimal coverage problem presented in Section 5.1.4 can be ex-
tended, leading agents to build a global knowledge of the function R(x, t)
for each agent, by enhancing the weight function F(s) in Equation 33 as
described by the following:

F1(s) =

∫
Ωi

R(x)Pi(x, s)dx+
N∑
i=1

∫
Vi

(1− Pv(x, t− k))dx . (41)

Notice that (1− Pv(x, t− k)) represents the probability that x has not been
visited during last t− k steps by any agent of the network.
The additional term introduced, with respect to Equation 33, induces an
increment in the function F(s) in correspondence of partitions that have
a lower probability of being already visited by any agent. The relative
increase of F(s) in correspondence of these points, can be interpreted as an
enhancement in the interest that the network has in visiting this points, as
they have never been visited before.

It is important to underline that the tessellation {Vi}
N
i=1 has to be shared

among all the agents composing the network.
In order to insert dynamics induced by non-visited areas, Equation 41

can be improved introducing the grows in interest in non-visited partitions:

F2(s, t) =
∫
Ωi

R(x)Pi(x, s)dx+
N∑
i=1

∫
Vi

[1−Pv(x, t− k)]ρ(x, t− k)dx . (42)

where ρ(x, t− k) is a monotonic increasing function of time t.
The function [1−Pv(x, t−k)]ρ(x, t−k) indicates the probability that x have
not been visited during the last (t− k) steps, and this should a monotonic
increasing function over time t to produce growth in interest in non-visited
cells.

Example 5.4.1. For instance, typical models for the probability Pv(x) in
regular (squared) mission spaces are:

Pv(x) ∼ N(µ,σ) .



82 coverage control

In fact, we can suppose that central points of the mission space are exam-
ined more frequently, while peripheral areas are less frequently visited.

In addition, more sophisticated agents, can be equipped with memo-
ries containing previously visited partitions. In this type of systems, the
function Pv(x) degenerates to the deterministic case.

This kind of approach is implemented and described in detail simula-
tion results in Chapter 6

Proposition 5.4.1. Given a robot network operating in Ω, comprehending one
robotic agent implementing weight function described by (47).
Let R(x) be the probability density function describing frequencies at which events
takes place in Ω and let ρ(t) be a monotonic increasing function of t in [0, t].
Let the set {Vi}Ni=1 be a tessellation of Ω.

Then the whole mission space is being visited in a time t∗ such that:

ρ(t∗) = N · R|Ω|

|Vi|
. (43)

where R = maxx R(x) and | · | denotes the area of the polygon described by its
argument.

Proof. In order to fix ideas, let us set k = 0, i. e. we consider the entire time
frame [0, t]. The proposition can be demonstrated, by showing that holds:∫

Ωi

R(x)Pi(x, s)dx <
∫
Vi

[1− Pv(x, t)]ρ(x, t)dx·

where Vi represent the most interesting partition of the mission space.
Since R(x) is a probability density function,∫

Ω

R(x)dx = 1

then it is also a limited function i. e.

∃R R(x) < R .

Since P(x, s) represents a probability, i. e. P(x, s) ∈ [0, 1] we can consider
the following inclusions:∫

Ωi

R(x)Pi(x, s)dx 6 R
∫
Ωi

1dx 6 R|Ω| (44)

where |Ω| represent the area of the polygon described by Ω.
Let ρ(x, t) be a constant function over the entire partition Vi, i. e. :

ρ(x, t) = ρ(t)
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In a similar manner, for all the partitions Vj that have not been visited yet,
we can write:∫

Vi

[1− Pv(x, t)]ρ(x, t)dx >
∫
Vi

1dx · ρ(t)· (45)

since:

• 1− Pv(x, t) = 1, since partition i have not been visited;

• the function ρ(t) can be brought outside the sign of integral as it
does not depend on x.

Denoting
∫
Vi
1dx as |Vi|, and combining Equation 44 and Equation 45,

together with Equation 47 we obtain:

R|Ω| < |Vi| · ρ(t)·

Assuming ρ(t) be a monotonic increasing function of t, we can state that
partition Vi will surely be visited when

ρ(t) >
R|Ω|

|Vi|
(46)

In addition, it is important to underline that condition (43) guarantees
the visit of partition i as ρ(t) is a monotonic increasing function.

Starting from this assumption, each mobile agent can then move to other
partitions in order to create a global estimate of the whole space.

5.4.1 Adding distances cost

Although Equation 42 arises as a robust and effective technique, capable of
exploring the whole configurations space in a upper-bounded time, some
improvements can be introduced in order to improve energy consumption.
In fact, motivated by simulations results proposed in Chapter 6, it is easy
to imagine that trajectories performed by the agents are not optimal, since
the weight function considers only informativeness of partitions, while
energy consumption needed to reach the partition is neglected.

More efficient results in terms of distance traveled by agents, can be
obtained by weighting the additional term proposed in Equation 42 with
the distance that the agent needs to travel in order to reach the partition of
interest. In particular, the Euclidean distance ||zi− zj|| between the centroid
of the actual Voronoi cell and the centroid of the partition of interest is
used.

Therefore, the weight function considered is:

F3(s, t) =
∫
Ωi

R(x)Pi(x, s)dx+

+

N∑
i=1

∫
Vi

[1− Pv(x, t− k)]ρ(x, t− k)dx · ||zi − zj||−1i 6=j (47)
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where zj denotes the centroid of the currently partition in which the agent
resides, and zi indicates the generic centroid of partition i.

5.4.2 Iterative update of mission space model

Control strategies proposed in previous sections provide suitable and ef-
fective method in order to

• perform an initial estimation for the function R(x), when configura-
tions spaces are unknown;

• perform optimal coverage control, when R(x) is exactly known.

Indeed, once an initial estimation for R(x) is made, then control strategy
defined by (33) provides a robust solution to the coverage control problem.

Therefore we deal with two different control strategies, both based on
optimization, the former capable of estimating R(x) while the other capa-
ble of performing optimal coverage control. Our purpose for this section,
is to study and present how these two methods can be combined in order
to provide a system able to self-update and to provide optimal coverage
control in time-variant mission spaces.

When the actual function R0(x) = R0(x, t) i. e. the function that describe
actual frequency of events taking place is variable over time, we are in-
terested in providing a strategy that continuously update our estimated
model R(x, t), in order to get an updated model describing the mission
space.
It is important to underline that in this process of initialization for R(x, t),
areas rapidly changing over time i. e. areas described by peaks for R(x, t)
requires to be visited more frequently.

In the following, we propose an iterative method capable of fulfilling
control objectives just explained, through combining optimal control de-
scribed weight functions (33) and (42). Our method, is based on an iterative
application of the two control laws, as described in detail by the following
flux diagram:
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Figure 37: Iterative update of mission space.

As explained by the figure, the approach we propose is based on an
alternation of the two phases:

1. mission space model update;

2. coverage control exploiting the global knowledge acquired during
the previous phase.

The frequency at which the control can require global updates for R(x, t)
can depend on:

• average updating rare for R0(x, t), that is, mission space slower chang-
ing over time can be updated with lower rates;

• accuracy required for the estimation R(x, t);

• fixed sensors dislocation and tightness.

5.4.3 Maps merging

When single agents are included in networks composed of a variety of
sensors, they needs to be equipped with control policies that enable coop-
eration. This problem is referred as the cooperative coverage control.

Although in previous sections we have already overcome the problem of
redundancy of areas monitored, as described by Equation 32, we are now
interested in extending cooperation policies even during mission space
initialization.
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In fact, according to control policies described in previous sections, agents
perform initial estimation R(x) according to Equation 42 in an autonomous
manner, that is, without exploiting cooperation with neighbors.

In this context, cooperation policies forces agents to combine their knowl-
edge about the environment that has been acquired during the initializa-
tion process, whenever an encounter occur.

This approach can be explained with the aid of the following figure:

Figure 38: Single agents knowledge are combined, whenever an encounter occur.

where, as a consequence of the meeting between Robot1 and Robot2,
their local map have been combined in order to build an overall knowledge
for the environment. Subsequently both agent dispose of the combined
knowledge of the configurations space.

5.5 beacon placement for coverage control

In dynamic coverage control, agents are capable of moving in order to in-
crease the area covered with time, until every point in the given area has
been covered with some prescribed coverage level. Thanks to mobility of
agents employed, the network can adapt for changing conditions in the
mission space, and enable the network to monitor widely extended areas,
even when employing a reduced number of sensors.

On the other hand, the static approach to coverage control involves po-
sitioning sensors without any further mobility. Thus, Static coverage control
deals with achieving an arrangement for agent that minimizes the proba-
bility of undetected events. The sensors or agents determine optimal posi-
tions based on gradient climbing methods, until the optimal configuration
is reached. The optimal configuration maximize the collective reward func-
tion.
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Advantages introduced by Static coverage control, athwart dynamic ap-
proach are twofold:

• persistent sensing of interested areas;

• higher coverage levels;

These aspect cannot be in general guaranteed by the dynamic version,
since nodes are required to travel across the configurations space in order
to cover larger extension areas. On the other hand, in such cases in which
R(x, t) is highly changing over time, fixed sensors become unnecessary
since their position cannot be determined in optimal manner.

Motivations just explained, justify a mixed coverage control, that is, the
exploitation of both fixed and robotic sensor in order to perform a robust
and reliable coverage control when R(x, t) ≈ R(x).

In the following, our purposes are twofold:

• providing a given covered threshold for areas with the highest infor-
mation density;

• maintaining complete covering of the remaining areas of the mission
space.

5.5.1 Static sensor coverage model

Assume the network is a squared sensor field Ω and k sensors have to be
deployed. Each sensor has a detection range rs, and sensor si is deployed
at (xi,yi). For any point P at (x,y), we denote the Euclidean distance
between si and P as:

d(si,P) = (xi − x)
2(yi − y)

2 . (48)

A typical sensor model expresses the coverage Cxy(si) of the sensor si
as:

Cxy(si) =

1 if d(si,p) < rs

0 otherwise
(49)

for all P ∈ Ω. It assumes that sensor readings have no associated uncer-
tainty in reality, and sensor detection are imprecise.

When the coverage Cxy(si) needs to be expressed in probabilistic terms,
hence a precise detection model is introduced:

Cxy(si) =


0 if d(si,P) > r+ rl

e−λα
β

if r− rl < d(si,P) < r+ rl

1 if d(si,P) 6 r− rl

(50)

where α = d(si,P) − (r− rl) and rl (rl < r) is a measure of uncertainty
in the sensor detection, α and β are parameters that measure detection
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probability when a target is at distance greater than rl but within maxi-
mum from the sensor. This model reflects the behavior of range sensing
devices such as infrared and ultrasound sensors. Typical values for param-
eters involved are: r = 10, rl = 5, β = 0.5 and λ = 0.5.

Figure 39: Optimal hexagon-based sensor distribution.

The choice for parameter rl lead to two different behaviors:

• when rl ' 0 i. e. rl can be neglected, we are using the binary sensor
detection model, attempting to prevent the detection region of two
sensors from overlapping. This optimal distribution of sensor nodes
is illustrated in Figure 39.

• if rl > 0 the probabilistic sensor detection is used. Due to uncertainty
in sensor detection responses, grid points are not uniformly covered
with the same probability. Some grid points will have lower coverage
rate if they are covered only by one sensor and far from other sensors.
In this case, it is necessary to overlap the sensor detection area to
compensate for the low detection probability.

The probability of the point (x,y) being covered by a couple of sensors
si, sj is denoted as,

Cxy(si, sj) = 1− (1−Cxy(si))(1−Cxy(sj)) .

Definition 5.4. Let Cth be the desired coverage threshold for all grid
points. The problem of maintaining a given covered threshold can be for-
mulated as finding locations for sensing devices si, sj such that, for all
points (x,y) in the mission space:

min
x,y

{Cxy(si, sj)} > Cth . (51)

It can also be extended to a region which is overlapped by a set of k
sensors. That is {s1, s2, . . . , sk}. The coverage in this case is given by:

Cxy(k) = 1−
∏

j=1,...,k

(1−Cxy(sj)) (52)
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5.5.2 Coverage control through mixed robot and sensor networks

The method we propose is based on a mixed network, i. e. on a group com-
posed of both fixed and robotic agents. In particular, our control scheme
involves:

• fixed sensors for monitoring areas with the highest information den-
sity;

• robotic agents for monitoring remaining areas of the mission space.

Thanks to the cooperation between the dynamic and Static coverage
control schemes, our method is able to guarantee a persistent sensing in
highly informative areas, while the remaining areas of mission space con-
tinue in being completely covered thanks to mobile agents. Let RMIN be
a threshold that discriminates between highly an lower informative areas,
that is:

• if R(x) > RMIN ⇒ x is considered a highly-informative point

• if R(x) < RMIN ⇒ x is considered a lower-informative point

and let
R̂(x) := {x : R(x) > RMIN}

the region containing highly-informative points.
In the following, it is reasonable to assume the following:

1. robotic nodes are capable of deploying fixed sensors in the mission
space.

It is moreover important to recall the previously-stated assumption
R(x, t) ≈ R(x). This enables to state that function R(x), and in particular its
peaks, are almost not varying over time. This assumption is fundamental
in order to compute fixed sensors optimal locations; in fact this kind of
agents are capable of guaranteeing higher coverage levels but their do not
provide flexibility in terms of mobility.

Exploiting global knowledge of the mission space own by robotic agent,
the design of candidate location for fixed sensors can be performed as a
global optimization problem. Therefore mobile agents can compute loca-
tions for fixed sensors nodes through:

si = {x|max
x
R̂(x)}

mobile agents are then capable of deploying fixed sensors directly thanks
to assumption (2).

This approach arises as a suitable method capable of monitoring with a
high update rate areas where events takes place frequently, while the re-
maining parts of the configurations space continues to maintain acceptable
levels of coverage thanks to mobile agents.

For a detailed description on persistent coverage control, please refer to
[9] and [20].





Part III

S I M U L AT I O N R E S U LT S

Simulations results allow to assess novel solutions proposed
in the theoretical previous chapters. Methods described in pre-
vious chapters to improve network task quality through inter-
play between sensor and robotic network are validated and dis-
cussed through Matlab simulation software.





6
S I M U L AT I O N R E S U LT S I N M AT L A B

This chapter presents numerical simulations performed in order to vali-
date theoretical approaches described in previous chapters. The simula-
tion setup comprises a unit square mission space (1m x 1m), with three
fixed beacons employed to perform localization. Robotic agents are repre-
sented with colored triangles. Triangular-shape displays both position and
orientation of the agent. Beacons are in general represented by black and
white dot patterns.

Simulations are organized in sections, each of them comprehend results
regarding previous chapters; in particular:

• Section 6.1 presents simulations results regarding Chapter 3;

• Section 6.2 presents simulations results regarding Chapter 4;

• Section 6.3 presents simulations results regarding Chapter 5;

6.1 localization

In the former part of this Section, odometric techniques are described and
analyzed in terms of quality of target estimated position, when noise af-
fects sensors readings.
In the second part, closed-form expressions for variance of computed lo-
cations are exploited in order to graphically derive the uncertain behavior
as function of target’s location; results obtained are then discussed and
compared in terms of both localization error and variance of estimated
position. The part moreover introduce a comparison between methods in
typical agent trajectories.
The third part of the Section concludes describing performances of statisti-
cal filtering in simulation results. The implementation of the Kalman filter
is discussed in detail and design choices are motivated and discussed.

6.1.1 Dead reckoning

Dead-reckoning is the most widely odometry-based method employed for
determining position and orientation of a specific target. In many practical
applications dead-reckoning provides easily and accessible real-time posi-
tioning information. In general, the frequency at which the measurements
and the algorithm have to be performed depends to a large degree on the
requested accuracy for the system.

Dead-reckoning is a relative positioning method, and it consists of evalu-
ating the position of a mobile robot by using velocity and angles measured
by encoders attached to the robot’s wheels. This method estimates relative
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position of the target by exploiting information about its initial location
and then integrating measured gathered by sensors. The main advantages
are that it is simple, low-cost and has an easier time in estimating the po-
sition in real time, compared to absolute positioning methods.
However, since it is based on the odometric information arising from
wheels, this kind of methods are subject to major accumulation of errors
caused by wheel slippage, mechanical tolerances and surfaces roughness
that could let the robot fail to keep track of its true location over long
distances.

When measuring dead-reckoning errors, one must distinguish between:

• SYSTEMATIC ERRORS, which are caused by kinematic imperfec-
tions of the mobile robot e. g. unequal wheel diameters;

• CASUAL ERRORS, which can not be removed; in some cases these
can be caused by wheel-slippage or irregularities of the floor.

In general, systematic errors are a consequence of errors in the model of
the robot itself, and they lead to drifting issues; on the other hand non-
systematic errors are in general function of the characteristics of the floor
and in general cannot be recognized or removed. In the following, we
assume absence of systematic errors. This can be achieved, for instance,
through adequate sensors calibration.
In order to discuss troubles arising when targets are located through odometry-
based methods, some preliminary simulations have been conduced and
discussed.

In Figure 40a is presented an example of robot trajectory in the mission
space. The robot position is represented by a colored dot, while its orienta-
tion is explicated by the adjacent triangle. This path will be considered in
following a typical trajectory performed by the robot in order to perform
a specific task. The path shown can be described as follow:

• the robot initially perform a rectilinear path (for the first 10 steps) in
each of them the average speed is vf = 0.8m/s;

• the second part of the trajectory resembles a circular path: each step
is characterized by a variation of phase of ∆θ = 0.25rad and an
average speed of vf = 1m/s;

and the trajectory contains a total amount of 30 steps. Note that initially
the robot is located in (x0,y0) = (0, 0)m and its orientation is θ0 = 0rad.

Figure 40b displays the dead-reckoning localization error corresponding
to the path described. Notice that errors in the two directions x and y, have
been computed as difference between the exact position of the robot and
the estimated one.
Simulation has been conduced introducing additive Gaussian noise of vari-
ance Rw = 0.01m2 for modeling casual errors generated by sensors.

Figure 40b highlights the increasing trend for localization error caused
by the continuous integration of casual errors, as previously introduced.



6.1 localization 95

Effects of errors integration can moreover be noticed in the graphical tra-
jectories plot (Figure 40a): the result is an always increasing deviation be-
tween actual and estimated trajectories.
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(a) Graphical representation of the trajec-
tory of the robot in the mission space.
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(b) Error evolution along x and y direc-
tion.

Figure 40: Robot behavior when performing dead reckoning, in presence of ca-
sual errors with variance Rw = 0.01m2 .

Figure 41 shows typical errors caused when wheels slippage occurs. In
particular the wheel slippage has been simulated at iterations t = 23 and
t = 24. This behavior is representative of typical practical cases in which
robots travel across different types of terrains, and the wheels grip is not
always guaranteed. The graphical representation of error as function of
the time clarify how the estimated location drastically get worse when
this type of situations occur.
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(a) Graphical representation of the trajectory
of the robot in the mission space.
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(b) Error evolution along x and y direction.

Figure 41: Robot behavior when performing dead reckoning, in presence of ca-
sual errors with variance Rw = 0.01m2 and wheel slippage at iteration
t = 23 and t = 24 .
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6.1.2 Geometric triangulation: Variance map

Advantages introduced by anchor-based localization methods enable to
overcome problems previously introduced regarding odometric techniques.
Moreover, thanks to this kind of cooperation between nodes, anchor-based
methods enable to obtain an estimation for reliability of estimated position.
Variance estimate, as discussed in Section 3.4, depends both on disposition
of beacons and on the relative position of the robot with respect to them.
In order to derive and discuss the behavior of uncertain, this section pro-
poses some graphical plot regarding variance estimation as a function of
robot position in the mission space.

The simulation setup comprises three beacons disposed in a static con-
figuration: beacons are equally distributed on a circle of radius r = 0.3m
and 120◦ out of phase. The three beacons form an equilateral triangle,
whose vertices are located in positions reported in Table 1.
The configurations space has been discretized for numerical purposes

x [m] y [m]

Beacon 1 0.5+ 0.3 cos(π/3) 0.5+ 0.3 sin(π/3)

Beacon 2 0.5+ 0.3 cos(−π/3) 0.5+ 0.3 sin(−π/3)

Beacon 3 0.5+ 0.3 cos(π) 0.5+ 0.3 sin(π)

Table 1: Location of beacons for the first configuration.

into a matrix composed of unit squares of length l = 0.001m. Each of
this squares represent a (discretized) possible position for the robot. The
orientation is arbitrarily set to 0◦.

Simulations have been conduced through considering two types of un-
certainty affecting localization:

• uncertain on beacons positions;

• uncertain on measured bearing angles.

The former models uncertain on actual position of beacons; while the latter
is in general caused by sensors inaccuracies.

6.1.2.1 Uncertain on beacons positions

In many practical cases, in particular when adopting very unreliable sen-
sors or in such cases when GPS is not available or its estimate is not reliable,
the absolute position of anchor nodes is not exactly known, i. e. it has to be
modeled through a random variable. Effects of this kind of uncertain have
to be taken into account to compute variance of final estimated location of
the robot.
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(a) Variance map when location of B1 (Red) is a random variable with variance σ2B =

0.01m2.

(b) Variance map when location of B2 (Red) is a random variable with variance σ2B =

0.01m2.

(c) Variance map when location of B3 (Red) is a random variable with variance σ2B =

0.01m2.

Figure 42: Robot position triangulation variance in m2, when beacons positions
are Gaussian random variables with standard deviation σ2B = 0.01m2.
Notice that the function has been saturated to 1m2 for graphical rea-
son.
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Formally, beacons positions (xi,yi) i = 1, 2, 3, are assumed to be random
variables, with Gaussian distribution characterized by zero mean and vari-
ance σ2B ∈ R2. It is reasonable to state that this formulation models casual
errors due to uncertain on the knowledge of exact position of beacons.
Figure 42 presents variance behavior as a function of robots positions in
the mission space. In the following, this kind of graphical representation is
referred as Variance Map. The beacons’ locations are represented by black
and white or red dot patterns. We underline that the comparison proposed
in Figure 42 helps in evaluating effects of uncertain in locations of the three
beacons, however it does not represent a realistic scenario since in general
locations of all three beacons are modeled as random variables.
As a preliminary observation, it can be noticed by the figure that the vari-
ance of estimated position is flat and close to zero almost everywhere;
except for areas corresponding to lines joining the three beacons and the
region corresponding to the circle joining the three beacons. Indeed, as
previously motivated in Section 4.3.1, these regions arises as areas where
geometric triangulation cannot determine the solution. Effectively,

• when the robot and beacons all lie in the same circumference, the
three circles of triangulation coincide;

• when a couple of beacons are collinear, two of the three triangulation
circles coincides, therefore estimation cannot be performed.

The figure induces another important observation: uncertain of 0.01m2

in actual beacons positions leads to variances of the same order of mag-
nitude in targets localization, as shown by the colorbar in the figure. This
is true for the largest parts of areas of the configurations space; while
in correspondence of above-cited critic regions, variance rapidly diverges
overcoming the unacceptable value of 1m2.
This is an important observation concerning the reliability of the system:
errors in actual positions of beacons arise in errors of the same order of
magnitude in targets estimated locations for the largest part of regions
composing the configurations space.

Moreover, the figure highlights the symmetrical features of the variance
function. Considering, for instance Figure 42a(left), it is possible to observe
that the equilateral-triangle presents one of its symmetrical axes parallel
to x-axis. The result is a perfectly-symmetric shape for the variance func-
tion with respect to the horizontal line described by y = 0.5m. This is an
important observation and ensures that the uncertain of the estimate de-
pends only on the relative positions of beacons respectively to the robot,
and this estimate is independent from robot’s orientation.
However, it can be noticed that Figure 42a(right) does not exhibit the same
symmetry: this behavior is reasonable since the equilateral triangle consid-
ered does not hold any symmetry axis parallel to the y-axis.

Another important aspect that can be noticed from Figure 42c, is that
the triangulation algorithm proposed, thanks to arrangements included
and described in in Chapter 3, is capable of locating targets situated in
the lines joining couples of beacons. However, as can be noticed from the
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comparison between Figure 42c left and right, this computation exhibits
different behaviors. Indeed, it is important to notice that in the left-figure,
targets can be accurately located when situated in the vertical line joining
B1 and B2; on the other hand this accuracy is not guaranteed in Figure 42b.
This aspect is a consequence of the beacons disposal: indeed, when the
target is located in the considered line bearing measured angles φ1 = 0,
φ2 = 0, while φ3 6= 0. As a consequence, the target is located in the line
joining B1 and B2 therefore the x-coordinate can be computed with low
uncertain. On the other hand, the same argumentation does not hold for
y-coordinate as the computed solution strongly depend on B3.

From the comparison between Figure 42 (a) (b) and (c), it is possible to
discuss effects of errors related to inaccuracies in the knowledge of actual
locations of beacons.

It is preliminary possible to establish the similarity between Figure 42a
and Figure 42c that show the variance map when B1 and B3 respectively
are random variables of variance σ2B = 0.01m2. On the other hand Fig-
ure 42b shows greater uncertainty levels with respect to above-mentioned
figures.

This fact can be motivated through analytically analysis of the function
describing the variance. Recalling equations Equation 20 and Equation 21,
that express uncertain function:
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+
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Let us initially motivate Figure 42a. Indeed, when B1 is a random vari-
able, while locations of other beacons are deterministic, Equation 53 and
Equation 54 can be rewritten as follow:
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as motivated by following observations:

• σ2
x ′2

= 0 and σ2
y ′2

= 0 since the location of B2 is deterministic;
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•
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Equations highlight the strict dependence of estimate position from vari-
ances of two of the three triangulation circles centers: (σ2

x ′12
; σ2
y ′12

) and

(σ2
x ′23

; σ2
y ′23

). Figure 43 explains circles involved in the solution of the trian-
gulation problem.

Figure 43: Circle centers of only two triangulation circles are involved in Equa-
tion 53 and Equation 54.

As can be noticed by the figure, uncertain on the knowledge on position
of B1 lead to uncertain in the circle C12 center only, since C13 is not in-
volved in Equation 53 and Equation 54. Analogous considerations can be
conduced for Figure 42c.

On the other hand, when we consider Figure 42b, it is easy to notice
that uncertainty in the knowledge of location of the node B2 leads un-
certain in the knowledge of both C12 and C23 circles centers coordinated.
Moreover in this case, additional terms σ2

x ′12
and σ2

y ′12
in Equation 53 and

Equation 54 cannot be neglected. This observation motivates the greater
uncertain levels in Figure 42b.

Finally it is important to underline the key role played by beacon B2
that differs from other beacons. This is a consequence of the choice of
translating the reference frame in the coordinates of B2. Therefore, a good
project choice is to locate fundamental reference frame on the more precise
beacon. That is, B2 has to be chosen the more precise node.

6.1.2.2 Uncertain on bearing angles

In practical applications for localization we have to deal with non-ideal
measured bearing angles between the robot and beacons. This behavior
can be caused, for instance, by finite resolution of bearing sensors mounted
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on mobile agents.
Formally, bearing angles φij measured by the robot could be affected by
random Gaussian noise with variance σ2A, that models casual measures
errors .
Figure 44 presents variance behavior as a function of target position in the
entire mission space when φi ∼ N(0,σ2A), i = 1, 2, 3, σ

2
A = 0.01rad2.

Figure 44: Variance behavior as a function of robot position when φi ∼ N(0,σ2A),
i = 1, 2, 3, σ2A = 0.01rad2. Notice that the function has been saturated
to 1m2 for graphical reasons.

An important observation arise from the comparison with Figure 42:

• high uncertain regions increase in size;

• remaining parts of the configuration space manifest in general higher
variances.

This worsening in localization quality can be motivated by the fact that
uncertain on bearing measured angle can be interpreted as uncertain on
the knowledge of the exact location of both the three beacons. Thus is rea-
sonable that the whole mission space present degraded values of variance.

bearing angles with variance σ2A = 0 .001rad2

One could be interested in understanding improvements arising when
using more accurate bearing sensors to measure angles. In Figure 45 is
shown the Variance map when σ2A = 0 .001rad2 .

From the comparison with Figure 44 it is possible to observe that right
uncertainty regions are still present; however their size is reduced with
respect to Figure 44.
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Figure 45: Variance behavior as a function of robot position when φi ∼

N(0, 0.001m2), i = 1, 2, 3.

The result is better quality of localization in the entire mission space.
Therefore the comparison suggested that more precise bearing sensors
lead to higher precision in location estimations and more precise sensors
are preferred when available.

6.1.2.3 Uncertain and triangulation error on a typical trajectory

In this section the localization error and related estimated variance have
been examined when the robot perform a typical trajectory in the mission
space. The path followed by target is the same described in Section 6.1.1.
Beacons have been located in positions described in Table 2. In the follow-
ing we have assumed uncertain on bearing angles σ2A = 0.001rad2 since it
models realistic scenarios.

x [m] y [m]

Beacon 1 0.5+ 0.3 cos(π/3) 0.5+ 0.5 sin(π/3)

Beacon 2 0.5+ 0.3 cos(−π/3) 0.5+ 0.5 sin(−π/3)

Beacon 3 0.5+ 0.3 cos(π) 0.5+ 0.5 sin(π)

Table 2: Location of beacons for the second configuration.

Figure 46 shows the behavior of the actual and estimated through ToTal
algorithm trajectories. Preliminarily it is important to observe that thanks
to the exploitation of anchor nodes, geometric triangulation overcomes
typical issue previously observed for dead-reckoning. These are, for in-
stance, the increasing trend over time for the localization error and errors
caused by wheels slippage.
In this terms, advantages introduced by geometric triangulation are con-
sistent: indeed localization error does not depend on the number of itera-
tions steps performed, but only on the relative position of the robot with
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respect to anchor nodes. The localization error is shown in Figure 47a and
its related variance in Figure 47a.

(a) Variance map and actual trajectory. (b) Actual and estimated robot trajectories.

Figure 46: Actual and estimated trajectories through ToTal, when measured bear-
ing angles are affected by Gaussian white noise with variance σ2A =

0.001rad2.

During the initial linear path of the navigation phase, the mobile agent
crosses the high-uncertain area determined by the circle passing through
the three beacons. During this crossing phase, the estimated location is
characterized by both high localization error and high variance as shown
in Figure 47 at steps 3− 6. As can be noticed in Figure 46, in this phase the
estimated location for the mobile target is definitely unreliable.

In the second phase of the navigation path, the mobile agent performs
a circular trajectory internal to the circle above-mentioned. As highlighted
by Figure 46, the mobile target repeatedly crosses lines connecting the
beacons. As a consequence, these regions arise high uncertain in the esti-
mated position, as can be noticed in Figure 47b at steps 17− 20 and 25− 27.
However, as shown in Figure 47a, although the uncertain in estimated po-
sition increase, localization error remains low. This is a consequence of
the adaptation of the algorithm for collinear beacons described in Chap-
ter 3. Although the algorithm provides a feasible way in order to compute
robot’s position even when beacons are collinear through an approxima-
tion of cot(·) functions, this estimation is characterized by high variance.
Another important aspect to notice is the growth of estimation error at iter-
ation 13− 14. As can be noticed by Figure 46, these iterations corresponds
to regions close to the circle passing through the three beacons.

Finally, according to previous-given interpretations of error and vari-
ance, it is possible to resume simulation results in the following manner:

• the region of the mission space corresponding to the circle joining the
three beacons leads both to high localization error and high variance
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(a) Behavior of triangulation error
(Euclidean distance between ac-
tual and estimated position).
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(b) Behavior of triangulation variance in
function of steps.

Figure 47: Triangulation error and variance when measured bearing angles are
affected by Gaussian white noise with variance σ2A = 0.001rad2.

values; therefore these results as unreliable regions for geometric tri-
angulation;

• regions of the mission space corresponding to lines joining couple
of beacons provide lower values for uncertain error thanks to correc-
tions introduced in ToTal algorithm; however the reliability of esti-
mated position is lower.

Observations just conduced introduces the sensitivity of geometric tri-
angulation technique on specific areas of the mission space, and motivates
the study of mixed triangulation approaches (Section 3.5).

6.1.3 Kalman filtering

In the following, theoretical approach described in Section 3.5 and based
on Kalman filtering is discussed. In particular, localization errors and vari-
ances are compared among methods; moreover our approach based on
mixed triangulation and dead reckoning is described and project choices
are motivated. As introduced in Section 3.5, Kalman Filter equations pro-
vide, in this context, a suitable way to combine data originated by on-
board sensors together with geometric triangulation estimated position
for the robot. Simulations have been conduced modeling on-board sensors
imprecision with addictive Gaussian white noise of variance Rw = 0.01m2;
triangulation is then affected by noisy angles measurement, modeled by
white Gaussian noise of variance σ2A = 0.001rad2 as described in Section
6.1.2.3.

Figure 48 shows the behavior of localization error when mobile agent
performs the typical path, graphically displayed in Figure 49.The plot com-
pares errors when dead-reckoning, ToTal algorithm and Kalman filtering-
based navigation methods are employed.

Notice that vertical magenta lines define steps in which the Kalman fil-
ter takes measures i. e. filtered position arise as a combination between
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Figure 48: Behavior of triangulation error (Euclidean distance from actual posi-
tion of the robot). Comparison between Dead-reckoning, ToTal triangu-
lation algorithm estimation and Kalman-filtered estimated position. Pa-
rameters employed: Rw = 0.01m2, σ2A = 0.001rad2, threshold = 0.02.

dead-reckoning and geometric triangulation. On the other hand, in steps
not marked with magenta lines, the filter produces estimated location bas-
ing on kinematic model only; i. e. follows odometric state-space model
re-initialized last iteration at which measures were available.

It can be noticed by Figure 48 that error behavior for dead-reckoning and
triangulation corresponds to previously-motivated trends (Section 6.1.1
and 6.1.2.3 respectively).

As introduced in Section 3.5.5, the Kalman filter dispose for intermittent
observations. This assumption has been done in order to render more ro-
bust the algorithm. Indeed it is reasonable to assume that in many practical
cases (because of occlusions, limited-range wireless capabilities, errors in
communications etc. ), mobile agents does not dispose for three available
beacons at any given time. Furthermore this assumption enable to over-
come issues related to high-uncertain areas of the mission space described
in Section 4.3.1. On the other hand, one of the main purposes of this work
was to provide a high-rate localization system, capable of working in the
entire mission space and overcoming triangulation unreliable regions. The
combination between a high-rate location system such as odometry, to-
gether with reliable properties of geometric triangulation, lead to a system
capable of combining both characteristics.

The approach we propose, envisage to:

• exploit dead-reckoning to provide high-rate estimated location;

• when perceived localization error overcome a given threshold, trian-
gulation is used in order to improve estimated location.

Simulations have been conduced assuming the given threshold equal to
threshold = 0.02m.
It is important to underline that in practical situations, agents in general
do not dispose of perceived localization error, (on which the considered
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threshold is based). Further works can improve this approach, for instance,
by exploiting dead-reckoning variance.

By examining Figure 48, it is possible to notice that up to 7th step,
Kalman-estimated location coincides exactly with actual position computed
through dead-reckoning, when initialized with initial robot location. The
magenta vertical line shown at step 7 highlight the measure-update per-
formed by the filter. This mean that location computed through geometric
triangulation is exploited in Kalman filter equations. As shown by the fig-
ure, this leads to a reduction in the localization error of filtered location.

In following steps(8-23), Kalman estimation follows internal model only,
thus filtered-position error trend resemble the dead-reckoning one. Notice
that the two behavior are the same, except the fact that Kalman estimate
has been re-initialized at the 7-th step thanks to measure availability. Anal-
ogous considerations can be conduced for succeeding steps. Indeed at iter-
ation 24 and 29 novel measure are available, and the result is a reduction
in localization error analogous to iteration 7.
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Figure 49: Actual and estimated trajectories. Comparison between Dead-
reckoning, ToTal triangulation algorithm and Kalman estimate to
merge the two estimate. Parameters employed: Rw = 0.01m2, σ2A =

0.001rad2, threshold = 0.02m2.

Figure 49 shows graphically the path performed by robot. It is important
to underline agent’s behavior at iteration 7: the robot is indeed located in
the region corresponding to the circle joining the three beacons: estimated
location through triangulation is therefore inaccurate and dead-reckoning
is preferred.

Finally, some observations arise as conclusion of this section:
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• geometric triangulation provide accuracy in estimated positions and
does not suffer of integration-over-time drifts;

• although geometric triangulation provides reliable estimated loca-
tions in much regions of the configuration space, there exist some
confined regions where this method is unacceptable;

• dead-reckoning provides simple and high-rate update locations esti-
mates, however this method suffers from unbounded error integra-
tion that confer unreliability to estimated location;

• the approach we propose is capable of combining advantages of both
methods, through apposite combination of both model and geomet-
ric triangulation.
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6.2 beacon deployment for localization

In the former part of this section are discussed advantages introduced by
Variance map in deriving the quality of localization when we deal with
a pre-existing beacon disposal in the configurations space. In particular,
triangular patterns are described in detail and troubles arising when the
number of beacons scales are discussed. Through simulations results is
then presented the capability of the network in deploying new beacons
according to equilateral triangle shapes . During the second part of the
section, Self-configuring minimal uncertain deployment algorithm described
in Section 4.3.2 is discussed and simulation results are presented. It is im-
portant to highlight that Variance maps plots considered in the following,
represent the average variance between x-axis and y-axis.

6.2.1 Variance map with equilateral-triangle grid

Closed-form expressions for estimated locations uncertain provide a use-
ful tool in order to understand quality of localization in various regions of
the mission space. This kind of analysis is actually helped through Vari-
ance map graphical representations, that enable to graphically visualize
the quality of localization when we deal with pre-existing beacons pat-
terns. Indeed, thanks to Variance map, regions characterized by poor lo-
calization quality can easily be individuated and beacon disposal could
then be improved.

As introduced in 4.3.1, triangle disposal for terns of beacon represent the
optimal pattern when the aim consists in minimizing beacons deployment
density ρ. Figure 50 presents numerically computed variance map when
beacons are equally separated in x-axis and in y-axis of dmax = 0.25m.

Figure 50: Variance map for triangle-shapes. The Variance map shown is the av-
erage between x-axis and y-axis.
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Notice this beacons pattern does not contain redundancy, since each
mobile agent is capable of sensing at least (and no more then) three bea-
cons at any given time (i. e. because of sensing radius related constraints).
As shown by the figure, the variance of estimated location remains lower
than the threshold of 0.1m2 for most regions of the configurations space,
except for locations corresponding to lines joining beacons. First of all it is
interesting to notice that high-uncertain regions corresponding to circles
joining terns of beacons do not appear in the presented map. This is a con-
sequence of the fact that each target is always located inside the triangle
formed by the beacons. Therefore, in absence of obstacles, Figure 50 repre-
sent both the minimal-uncertain and minimal-density beacons pattern.

However, in presence of obstacles or when the mission space cannot be
considered of infinite size, beacons disposal presents redundancy and a
beacon selection criteria has to be designed. This requirement arise since
mobile agent could deal with more than three sensed beacons. Typical
selection criteria often employed consist in choosing the three closest bea-
cons to compute location.

Figure 51 show a triangle-pattern when the configurations space is lim-
ited in size, that is, when beacons are required to satisfy the dMAX con-
straint at any given point of the mission space. Comparing Figure 50 with
Figure 51 it can be noticed that the dMAX constraints requires additional
beacons at borders.

Figure 51: Variance map for triangle-shapes and borders effects. Variance in m2.

As a consequence of redundancy at borders combined with sub-optimal
selection criteria, the Variance map exhibit peculiar behavior in regions
close to borders. As highlighted by the figure, new asymmetric peaks ap-
pears inside triangles and variance in lines joining couple of beacons in-
crease.



110 simulation results in matlab

In conclusion, observations conduced lead to infer that in presence of
beacons redundancy, beacons-selection criteria plays a fundamental role
in variance behavior.

6.2.2 Self-configuring beacon deployment for equilateral-triangle grid

In Section 4.3.2 has been described the self-configuring beacon deploy-
ment algorithm, capable of deploying new beacons in an adapting manner
and following triangular patterns. The purpose of this section is to clarify,
through simulations, how couples of beacons can cooperate in order to set
up a complete localization beacons grid.

In Section 4.3.2 we have already noticed that each candidate location
arise from the cooperation of a couple of neighbor nodes. Figure 52 clarify
how the computation of a candidate location requires a couple of existing
beacons to cooperate for its design. In particular in the simulation exhib-
ited, nodes 1 and 3 cooperate to design the location for a new agent in
such a manner to form an exact equilateral triangle.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Candidate location 
  for a new beacon

x [m]

y
 [
m

]

New beacon deployment

Figure 52: Candidate location for a new beacon arise from cooperation between a
couple of pre-existing nodes.

The beacon deployment process begins from couples of pre-existing
nodes, as shown in Figure 53. In particular, the figure clarify the process
of deployment for the entire beacons networks in such a manner to cover
the whole mission space. The resulting deployment correspond exactly to
equilateral-triangle shape presented in Section 6.2.1.

Finally is important to underline that the new beacon deployment pro-
cess concludes with the transmission of the new designed location to
robotic network for the effective deployment.
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Figure 53: Beacons deployment process. Magenta colored beacons represents coop-
erating agents that compute novel beacon location. New candidate loca-
tion is represented in blue.
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6.2.3 Self-configuring minimal uncertain deployment

When the final objective consists in both minimizing beacons density ρ
and minimizing beacons locations uncertain, triangle shapes have to be
modified and the computed candidate location arise as the solution of
an optimization problem. In this section, we propose simulations results
when implementing Algorithm 4.
Figure 54 proposes a typical situation in which locating new beacons
in correspondence of the vertex of the equilateral triangle gives rise to
unacceptable uncertain in new beacon’s location. Indeed, candidate loca-
tion corresponding to vertex of equilateral triangle, correspond to a high-
uncertain region since it lies on a line joining a couple of beacons.

Figure 54: Minimal uncertain deployment. Ultimate candidate location is repre-
sented in green colour.

As highlighted by the figure, the optimization process enable to avoid
this undesired behavior by modifying candidate location.

Figure 55 show the minimal uncertain deployment process when nodes
employ Algorithm 4.
In order to lead the network to maintain a certain triangle-like structure,
the optimization was performed weighing distances between candidate
location and actual triplet. That is, following the algorithm:

Algorithm 5 Iterative deployment algorithm weighted on distances

1) Send request to neighbors for their positions;
2) Compute acceptable positions Ω respecting the dMAX constraint;
3) Compute the variance map;
4) Solve the constrained optimization:

minΩ V(x,y) · dist{(x,y), (x∗,y∗)}−1;
5) Compute ultimate candidate position through average consensus

with immediate neighbor.

where (x∗,y∗) represent current beacon position.
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Figure 55: Optimal beacon deployment process. Notice that variance map plotted
represents the average variance in x and y directions.
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As can be noticed by the figure, when Variance map exhibit unaccept-
able variance values (recognizable by lighter colors), such as in Step 3, Step
6 and Step 7 the algorithm proposes a candidate location that is closer to
cooperative nodes in order to improve localization quality. Finally it is
important to underline that candidate location arise as solution of an opti-
mization problem and then is modified through a consensus procedure.
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6.3 coverage control

The deployment algorithms described in Chapter 5 has been implemented
in a simulation environment based on Matlab. The behavior of mobile
agent located in the mission space will be analyzed in detail when the
control strategies described in Chapter 5 are implemented.

Figure 56: Graphical representation of the density function describing events.

As shown in Figure 56, a unit (meter) square mission space has been con-
sidered i. e.Ω = {[0, 1]x[0, 1]}m. Recalling that the density function R(x), de-
scribed by Equation 31 models the frequency that specific random events
takes place at x, in this context has been assumed:

R(x) =
R1(x) + R2(x) + R3(x)

3
, (55)

where

R1(x) ∼ N(

0.8
0.8

 ,

0.02 0

0 0.02

)
R2(x) ∼ N(

0.4
0.5

 ,

0.025 0

0 0.025

)
R3(x) ∼ N(

0.8
0.2

 ,

0.03 0

0 0.03

)
(56)

i. e. events to monitor takes place as modeled by the sum of three Gaus-
sian density functions located at P1 := (0.8; 0.8), P2 := (0.4; 0.5) and P3 :=

(0.8; 0.2).
Notice that in general cases the density function R(x) can be time-variant:
R(x) = R(t, x). In such cases Equation 55 models events taking place for a
fixed time step (i. e. t = t∗). In the following, it is reasonable to assume that
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R(x, t) be slowing changing over time with respect to dynamics of mobile
nodes.

Each mobile node is equipped with a sensor whose detection probability
is modeled by:

pi(x) = p0ie
−λi||x−si|| (57)

where p0i = 1, λi = 1 · 10−4 for all agents considered.

6.3.1 Simulation results on the distributed solution to the optimal coverage prob-
lem

In the following, theoretical results presented in Section 5.2 will be simu-
lated in a Matlab-based environment. Our purpose it to understand cover-
age quality and node behavior when agents dispose for local information
only.

The sensing radius (36) considered for simulations is D = 0.2 m, as il-
lustrated by dashed circles in Figure 57.
Figure 57 presents behavior of a couple of agents during the area-discovering
process.

Figure 57: Area-discovering process by a team composed of a couple of robots.

It has been assumed that agents have no a priori knowledge about the
function R(x). Therefore, as discussed in Section 5.2, Equation 37 can be
computed in a distributed manner, by exploiting local knowledge gathered
through on-board sensors and the knowledge of neighbor sensing model
density function (32).

Figure 58a-d presents several snapshots taken during the area-discovering
process of Figure 57, representing local knowledge of nodes regarding the
events density function F(x) (defined in Equation 33) gathered through
on-board sensors.



6.3 coverage control 117

Moreover, Figure 58a-d describes how the estimated function R(x) gets
altered by the algorithm to compute the cost function F(s) necessary to
deduce optimal moving direction.

As can be observed by Figure 58a, 58b and 58c, during the initial phase
of the area-discovering process, since relative distances between robots is
over the sensing radius, R(x) is not altered to compute F(x). Therefore,
since local R(x) is monotonic the solution to the optimization problem
conduces the mobile agent along the direction of maximum growth of the
function

∫
Ω R(x) · p0ie

−λi||x−si||dx .
On the other hand, as shown in Figure 57d and 57e, when distance be-

tween the couple of nodes is below the sensing radius, estimated R(x) get
attenuated in order to model neighbor effective sensing. In mathematical
terms this leads to an abatement in the amplitude of the initial peak of
R(x) (located at (0.4, 0.5)) that turns into a minimum for the informative
function F(x). Therefore agent 1 gets guided towards other peaks of R(x).

Considerations just explained leads to a further and more general in-
terpretation for F(x): this function can be interpreted as an information
function (defined in the whole configuration space) that models the infor-
mativeness that locations of the plane can lead whether visited.

In general terms we can state that informative locations i. e. maximum
for the function R(x) become minimum for F(x) whether other agents of
the network are located in correspondence of this maximum.
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(a) Step 1.

(b) Step 2.

(c) Step 3.
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(d) Step 4. R(x) has been reduced to produce F(x) as an effect of nodes proximity.

(e) Step 5. R(x) has been reduced to produce F(x) as an effect of nodes proximity.

(f) Step 6.

Figure 56: Local knowledge R(x) of Robot1, and local weight function computed F(x).
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6.3.2 Distributed coverage and partitioning

The comparison proposed in Figure 57 shows the strong dependence of
nodes trajectories and convergence location from the initial positions of
robotic agents. Indeed, as can be noticed from the figure, different initial
locations for the couple of robots, lead to different convergence points al-
though the mission space model remains unchanged. This aspect arises
as a consequence of the exploitation of local information only; indeed the
local knowledge of R(x) possessed by agents does not permit the compu-
tation of global maximum, but solutions computed in general are local.

Figure 57a explains in detail this sub-optimal solution to the problem:
both agents converges to a local maximum for the function F(s) while the
absolute maximum located at P1 is neglected1. It is important to underline
that this undesired behavior arise as a consequence of the lack in knowl-
edge of the entire mission space.
Moreover, Figure 57b show the change in convergence points when initial
locations are varied.

(a) Agents behavior when initial conditions
are (x,y0)R1 = (0, 0)m and (x,y0)R2 =

(0, 1)m. (Same as Figure 57)

(b) Agents behavior when initial conditions
are (x,y0)R1 = (1, 0)m and (x,y0)R2 =

(1, 1)m.

Figure 57: Agents trajectories are different when initial conditions are different.

Problems just explained motivated the work presented in Section 5.3.4:
which main purpose consists in proposing improvements in the cost func-
tion Equation 33in order to provide a global knowledge of R(x) to robotic
network.
In this section, improvements introduced by the exploitation of the cost
function Equation 42 are presented and discussed through simulations re-

1 P1 = (0.8; 0.8)m
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sults. For further completeness, we report Equation 42 in the following :

F2(s, t) =
∫
Ω

R(x)P(x, s)dx+
N∑
i=1

∫
Vi

(1− Pv(x))ρ(t)dx . (58)

that is, the cost function to be maximized. It is important to mention pa-
rameters signification:

• {Vi}
N
i=1 is a Voronoi tessellation of the whole mission space, satisfy-

ing
max{dim(Vi)} < dim(Bi) ∀ i = 1, 2, ..N

i. e. each Voronoi partition can be completely measured by on-board
sensors when agents is located on its centroid;

• Pv(x) =

1 if x has been visited in the last k iterations

0 otherwise

• ρ(t) = t− k .

The modified cost function taking into account distances weight is

F3(s, t) =
∫
Ωi

R(x)Pi(x, s)dx+

+

N∑
i=1

∫
Vi

[1− Pv(x, t− k)]ρ(x, t− k)dx · ||zi − zj||−1i 6=j (59)

Moreover, in order to dynamically vary the value of the variable k, it
has been chose to update k every time the agents begin visiting a new
partition.

It is important to notice that a Voronoi tessellation has been used in this
context, rather then an uniform discretization of the configurations space
since it provides a suitable and robust manner to discretize non-regular
environments.
Moreover the tessellation enables the network to dynamically update par-
titions whether new areas are discovered by agents. Another very impor-
tant advantage introduced by Voronoi’s technique is that centroids can be
dynamically updated during the life of the network, optimizing shapes
of the tessellation in such a manner to adapt their size according to the
informativeness of the associated part of mission space.
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(b)

Figure 58: (a) Single robot implementing Equation 58 and performing 1000 itera-
tions. Notice that every Voronoi location have been visited almost once
and that more rapidly changing locations have been visited more often
than other areas. (b) Related graph.

In Figure 58 is shown the behavior of a single robot when implementing
Equation 59. Notice that Equation 59 takes into account distances between
centroids. The plot representing robot’s paths in the mission space is en-
hanced by a graph representing frequency at which Voronoi cells are being
visited; nodes represent Voronoi centroids while edges models sequences
in visits. The mission space model is the same in (56).
Figure 58a clarifies the fact that the algorithm leads the robot to visit the
whole mission space, through imposing the visit of every Voronoi cell. This
leads the robot to build-up a comprehensive knowledge of the configura-
tion space and in particular of its model R(x).
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The graph in Figure 58a graphically show the behavior just explained.
Indeed, nodes and edges corresponding to regions with peaks in R(x) re-
sults more frequently visited than remaining centroids of the configura-
tions space. As a consequence, disposing of a complete knowledge about

(a) (b)

(c) (d)

(e)

Figure 59: Visited partition when exploiting Equation 59.

the mission space, mobile agents are capable of detecting and reaching
global maximum for R(x). Another important aspect to notice is that high
informative locations are visited more often than border regions. This be-
havior is motivated observing that once the robot moves to visit a new
partition, then it moves climbing informativeness gradient so reaching
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the closest maximum. Therefore we can state that high-informativeness
regions are being monitored with higher frequencies.

Figure 59 show visited partitions over time by the robot when perform-
ing paths shown in Figure 58. It can be noticed by the figure that the
control strategy in about 100 iterations leads the robot to visit almost all
given partitions.

In order to validate effects introduced by weighting the cost function
with distances that agents are required to travel in order to reach next
Voronoi cell, the purpose is then to compare (58) and Equation 59.
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(a) Considering distances costs.
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(b) Neglecting distances costs.

Figure 60: Graph comparison.

The comparison proposed by Figure 60 highlights advantages in ex-
ploiting distances costs in weight function. First of all, it can be noticed
that graph exploiting (58) is highly connected: this is a consequence of
the higher distances traveled by agents to reach far away locations in the
mission space. Furthermore the comparison between colors of nodes high-
lights how Equation 59 enable the agent to visit more frequently high
informativeness regions.

In Figure 61 evolution of visited partitions over time is compared when
using Equation 59 and (58). From the comparison it is possible to notice
that when exploiting (58), the robot is requested to travel longer distances
in order to initially visit more interesting partitions. However, although
more interesting partitions get visited earlier, the visiting procedure re-
quires longer times to converge, since there exist a wasting in time to
travel these distances.
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(a) Covered regions at iteration 50 when
using (59).

(b) Covered regions at iteration 50 when
using (58).

(c) Covered regions at iteration 100 when
using (59).

(d) Covered regions at iteration 100 when us-
ing (58).

Figure 61: Comparison between (58) and (59) .





Part IV

C O N C L U S I O N S A N D A P P E N D I X

The following chapters summarize the conclusions of the the-
sis an future works. Appendixes containing connected open-
problems conclude the part.





7
C O N C L U S I O N S

Sensor networks are considered a key technology for the future. Their use
has enlarged rapidly in last decade in view of a future that is increas-
ingly automated. Scientific efforts are above all focusing on the develop-
ment of smart agent networks, i. e. networks composed by devices able to
autonomously sense environment and adapt network features upon mea-
sured quantities.

Multi-Robot systems are considered as a promising technology in envi-
ronmental monitoring, since they permit to enhance capabilities of sensor
networks by introducing mobility features to sensors employed. However,
to achieve this automation, mobile robots must include a localization sys-
tem. The growing possibilities enabled by robotic networks in the monitor-
ing of natural phenomena, combined with flexibility features typical for
distribute sensor networks, enable a number of potential improvements in
quality of service provided in distributed area exploration. This work has
aimed at exploring the fields of work of both sensor and robot networks
through combining complementary features of these two systems.

This thesis addresses first the problem of locating mobile agents in un-
known environments. In this kinds of frameworks, odometric techniques
are the mainly used because of their low cost, high-update rate and accu-
racy in short paths. Unlikely, this methods resulted unacceptable in long
paths because of an unbounded growth of time integration error with the
traveled distance. Solutions based on anchor nodes, such as Geometric
Triangulation, provides a promising way in order to improve localization
quality in longer paths. However, since no a priori knowledge regarding
the environment is possessed by the network and anchors cannot be lo-
cated offline, agents are required to be equipped with mechanisms capable
of deploying beacons that can serve for localization. In this terms, we have
designed a localization system capable of self-deploying the static infras-
tructure composed by beacons. Characteristics of Geometric triangulation
have been described in detail, and the method has been taken into account
since it provides a promising method in anchor-based localization. Our
contribution leads to derive a closed-form expression for the variance of
estimated target location.
Considering the variance of target estimated location as a function of rela-
tive position of the target with respect to beacons, the mission space could
be divided into disjoint regions where the variance is almost zero and
regions where the variance presents a divergent behavior. In order to pro-
vide a robust, high precision, and high-updating rate system, we proposed
an hybrid localization system based on Kalman filter in order to combine
odometric readings together with estimated location through geometric
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triangulation. Through simulation results we have probed the robustness
of the method, even in typical noisy trajectories.

Deploying capabilities held by mobile agents give rise to the problem of
understanding the optimal locations for new beacons in order to extend
existing infrastructure together with improving the quality of the service
provided. This problem has resulted to be NP-Hard. The distributed self-
deployment algorithm proposed, is based on local cooperation between
only two beacons nodes to design new candidate locations. The main fea-
ture of the system is the robustness guaranteed by the capability in com-
puting actual location of the novel deployed beacon. This lead the system
to work both in indoor and outdoor environments, since no global posi-
tioning systems are required.

The performance of sensor and robot systems in terms of quality of the
service provided is sensitive to locations of agents in the mission space.
In particular sensors are required to spread over the covered area and
to aggregate in high-informativeness regions. This requirement, in context
where the mission space model is changing over time, involve a dynamical
deployment for senors. This feature can be met through the exploitation
of mobile vehicles in areas rapidly changing over time, while fixed sensors
can be employed in static areas. This kind of coverage control problems are
usually solved through the exploitation of a parametric function modeling
frequencies of events taking place in the configurations space. A novel dis-
tributed approach based on local optimization of cost function is proposed
for coverage the control problem. Simulations motivate the introduction
of a novel weigh function, capable of providing a global knowledge of the
configurations space through an initialization process. Simulations results
and a mathematical rigorous approach demonstrated the capability of the
cost function in accurately modeling unknown areas of the mission space
ad in leading agents to visit the entire mission space without requiring
accurate path planning.
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F U T U R E W O R K

The application suggests a number of interesting directions for further
work. First of all, it would be interesting to analyze the performances of
Geometric Triangulation in presence of obstacles, occlusions, or in pres-
ence of further sources of noise in measured bearing angles. In this sense,
the derivation of a Variance map can be extended in presence of obstacles
and occlusions. In order to overcome this kind of problems, we suggest to
derive a closed form expression for uncertain of estimated position as a
function of the power or the integrity of measured signals.

In Section 6.1.3 the Kalman filter with intermittent observations was
implemented in order to improve localization quality. However, we have
supposed to exploit observation whenever the perceived localization error
overcomes a fixed threshold. It would be interesting to analyze in detail
this problem; in particular to derive a mathematical model for the per-
ceived localization error and propose alternative conditions.
One relevant assumption done in Chapter 3 was the absence of noise in es-
timated robot orientation. Motivated by many practical approaches where
robot’s orientation is corrupted by noise, future works would require to
overcome this assumption. Another relevant issue to threat in localization
would be the the extension of proposed algorithm in order to exploit re-
dundancy in available beacons. The direction for future works we propose
is based on an iterative application of Geometric Triangulation algorithm
that exploits all combination without repetitions of terns of available bea-
cons.

In the beacon deployment process, future works could involve an anal-
ysis of the quality of service provided as a function of beacons density ρ.
Moreover, alternative beacons patterns could be considered, in comparison
with the equilateral-triangle one proposed in this work.

The distributed coverage control problem was analyzed through the ex-
ploitation of a Voronoi tessellation in order to provide a global knowledge
about the environment to the network. It would be interesting to analyze
the problem through a dynamical tessellation of the mission space. In par-
ticular centroids can be located, and regions can be adapted in size so
as to consider R(x, t) as a key factor in the tessellation process. Moreover,
further works motivated by practical applications could involve mission
spaces model R(x) rapidly changing over time: typical applications are,
for instance, the tracking of mobile targets.
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A P P E N D I X

a.1 communications costs

Besides sensing and collecting data from the mission space Ω, another im-
portant issue of a sensor network is to forward fields data to a basestation
b, in order to provide real-time responsiveness of the network for external
users. Most current sensor networks assume a two-layer structure [30], in
which all sensor nodes form the first layer, and the second layer consists
of a unique basestation, which is the common destination for all data.

In order to ensure reliable data forwarding, a wireless link must pre-
serve a certain channel quality, which is measured by its Signal to Noise
Ratio (SNR). To preserve a given SNR, the power of the transmitter have to
be taken into account, that is a monotonically increasing function of the
length of the current link. For example, for a single hop wireless link, the
energy needed to transmit (Etx) and receive (Erx) a bit follows:

Etx = γ+βdn

Erx = η

where a 1
dn path loss has been assumed and γ is the energy/bit consumed

by the transmitter electronics, β accounts for energy dissipated in the trans-
mit op-amp and η is the energy/bit consumed by a node to receive the bit.
In this terms, a relay that receives a bit and then transmits it a distance d
is:

e(d) = γ+βdn + η = (γ+ η) +βdn +α+βdn .

Typical parameters for current radio transmission are γ = 180nJ/bit, β =

10pJ/bit/m2 n = 2.
Considering a mobile sensor network with N sensors, each located at si,

i = 1, . . . ,N, and a single basestation b located at s0 ∈ R2. Let ri(si) be
the data rate originated by the i-th sensor. Note that ri is a function of si
because the amount of data forwarded at i is determined by the number
of events detected, that is on the sensor location. It is reasonable to assume
that ri(si) is proportional to the frequency at which events are detected,
i. e. :

ri(si) = k

∫
Ω

R(x)pi(x)dx

where k [bit/detection] is the average amount of data forwarded when the
sensor detects an event. Data originated at each sensor have to be finally
delivered to the basestation. Let ci(s) be the total power consumed by the
network in order to deliver a bit of data from sensor i to the basestation b.
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In this terms, the optimal coverage problem can be revised by combining
sensing coverage and communication costs:

max
s

{
ω1

∫
Ω

R(x)P(x, s)dx−ω2
N∑
i=1

ri(si)ci(s)

}
where ω1, ω2 are weighting factors. Denoting the communication cost by

G(s) =

N∑
i=1

ri(si)ci(s),

the overall objective function can be rewritten as:

J(s) = ω1F(s) −ω2G(s) .
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