
     

        
 

 

 

 

 

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE 
 

 

CORSO DI LAUREA MAGISTRALE IN  

Control Systems Engineering 
 

 

 

 

 

 

“Reinforcement Learning for Robust Quantum State Stabilization” 
 

 

 

 

 

 

        Relatore: Prof. / Dott Francesco Ticozzi 

 

 

 

 

Laureando: Manuel Guatto 

 

  

                 

                 Correlatore: Prof. /Dott Gian Antonio Susto 

 

 

ANNO ACCADEMICO 2022 – 2023 

Data di laurea 21/04/2023 

 

DIPARTIMENTO 

DI INGEGNERIA 

DELL’INFORMAZIONE 

  



 

 



Master Thesis in Control Systems Engineering

Reinforcement Learning for Robust Quantum State
Stabilization

Master Candidate Supervisor

Manuel Guatto Prof. Francesco Ticozzi

Student ID 2022574 University of Padova

Co-supervisor

Prof. Gian Antonio Susto

University of Padova

Academic Year

2022/2023





To everyone who wants to pursue

its passion





Abstract

This thesis work examines the application of state-of-the-art reinforcement learn-

ing algorithms to the quantum state stabilization problem, specifically focusing

on the robustness w.r.t. different types of noise.

In the first part, this work aims to provide the basics of both the quantum

mechanics formalism and the reinforcement learning framework. The second

part of the thesis focuses on the development of three different reinforcement

learning methods with the purpose of stabilizing a target state for a quantum

system via feedback control. The algorithms that follows from these setups are

trained without any noise acting on the system, but their robusteness is then

tested by adding different types of quantum noise to the system dynamics. An

in-depth numerical analysis of the performance of the presented methods for

a significant case study is developed, and the results are compared in order to

identify the approach that is least sensitive to the noise addition.

Our results provide some valuable insights about the robustness of the rein-

forcement learning framework applied to quantum state stabilization and clearly

indicate that model-free approaches as the best candidates for a controlling

quantum systems in uncertain environments. This work also suggests interest-

ing new research directions, including the scalability of the performances when

dealing with quantum systems of increasing size.





Sommario

Questo lavoro di tesi esamina l’applicazione dei più moderni algoritmi di ap-

prendimento per rinforzo al problema della stabilizzazione degli stati quan-

tistici, concentrandosi in particolare sulla robustezza rispetto a diversi tipi di

rumore. Nella prima parte, questo lavoro si propone di fornire le basi sia del

formalismo della meccanica quantistica che della struttura degli algoritmi di

apprendimento per rinforzo. La seconda parte della tesi si concentra sullo

sviluppo di tre diversi metodi di apprendimento con l’obiettivo di stabilizzare

uno stato target per un sistema quantistico attraverso attraverso un controllo

in retroazione. Gli algoritmi che ne derivano sono addestrati senza che alcun

rumore agisca sul sistema. La loro robustezza viene poi testata aggiungendo

diversi tipi di rumore quantistico alla dinamica del sistema. Un’analisi nu-

merica approfondita delle prestazioni dei metodi presentati per un caso studio

significativo, e i risultati, vengono confrontati al fine di identificare l’approccio

meno sensibile all’aggiunta del rumore. I risultati forniscono alcune preziose in-

dicazioni sulla robustezza del sistema di apprendimento per rinforzo applicato

alla stabilizzazione degli stati quantistici e indicano chiaramente che gli approcci

model-free sono i migliori candidati per il controllo dei sistemi sistemi quan-

tistici in ambienti incerti. Questo lavoro suggerisce anche nuove interessanti

direzioni di ricerca, tra cui la scalabilità delle prestazioni quando ci si interfaccia

con sistemi quantistici di dimensioni crescenti.
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1
Introduction

1.1 General Overview

In this thesis, we will explore the use of the reinforcement learning frame-

work in quantum feedback control. The research aims to develop a model free

Reinforcement Learning (RL) framework for the design of a feedback law and

study the robustness of the latter to the presence of quantum noise. In order

to pursue this goal we will develop a simulated (RL) environment in which we

are able to train and test various setups. The study is significant and yields a

novel viewpoint on the subject because, even if many quantum control problems

have already been addressed with reinforcement learning setups in the exist-

ing literature, there are no direct comparisons about the robustness of different

reinforcement setups. This work aims to provide a first contribute in this direc-

tion to the field of the quantum control using reinforcement learning algorithms.

In this introduction, we will provide a brief overview of the background,

significance, and objectives of the study. We will first provide a perspective on

the study of the quantum control and reinforcement learning, highlighting key

milestones and notable findings. Finally, we will present the general structure

of this thesis work.

1



1.2. QUANTUM CONTROL

1.2 Quantum Control

Quantum control refers to the ability to manipulate the behavior of quantum

systems, which are inherently unpredictable and complex. In recent years, re-

searchers have made significant progress in understanding and harnessing the

potential of quantum control to improve technology and advance scientific dis-

covery. The field of quantum control involves the design and implementation of

techniques to manipulate quantum systems, such as atoms, molecules, and pho-

tons, with a high degree of precision and accuracy. It is a multidisciplinary field

that draws on concepts from quantum mechanics, control theory, and informa-

tion science, and has broad applications in areas such as quantum computing,

quantum communication, and quantum sensing. The study of quantum control

is therefore of great importance in the ongoing development of quantum tech-

nologies, and promises to revolutionize the way we process, store, and transmit

information in the coming years.

1.3 Reinforcement Learning

Reinforcement learning is a type of machine learning that focuses on the

interaction between an agent and its environment. In reinforcement learning,

an agent learns to make decisions by receiving feedback from the environment

in the form of rewards or penalties. The goal of reinforcement learning is to

train an agent to make optimal decisions in a given environment by maximizing

the total reward it receives over time.

Reinforcement learning has become increasingly popular in recent years due

to its ability to solve complex problems that are difficult to tackle using tradi-

tional machine learning techniques. It has been successfully applied to a wide

range of domains, including robotics, game playing, natural language process-

ing, and recommendation systems.

One of the key advantages of reinforcement learning is its ability to learn

from experience. As the agent interacts with the environment, it learns which

actions lead to positive outcomes and which lead to negative outcomes. Over

time, the agent becomes better at making decisions, and can even learn to adapt
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to changing environments.

Reinforcement learning is a rapidly evolving field, with new algorithms and

techniques being developed all the time. As the field continues to mature,

it holds great promise for solving some of the most challenging problems in

artificial intelligence and beyond.

1.4 Intersection Area: Quantum control with RL

RL can be used to design control protocols that optimize the performance of

a quantum system based on a specific goal.

In quantum control with RL, the quantum system is modeled as an envi-

ronment, and the control actions are taken by an RL agent. The agent receives

feedback in the form of a reward signal that is computed based on the perfor-

mance of the quantum system. The objective is to learn a control policy that

maximizes the expected reward over time.

This field of study, although not much beaten down, presents important

contributions to the world of quantum control, as examples we can cite some

results in the quantum-state manipulations [8] [14] [21].

1.5 Structure of the thesis

This thesis work presents the following chapters:

1. Introduction

• In this first chapter we will provide a general overview about the re-
search topic and some insights about the main fields: Reinforcement
Learning and Quantum control.

2. Quantum Mechanics

• In this chapter we will present the formalism used to describe the
quantum mechanics from a quantum information and computation
point of view. Moreover we will deal with some types of noises used
in the simulations.

3
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3. Reinforcement Learning

• In this chapter we will present the general RL framework. The chapter
will include the mathematical definition of the environments, some
concepts about the main algorithms and a section related to the Prox-
imal Policy algorithm, the one used in the simulations.

4. Quantum State Stabilization: A discrete-time framework

• In this chapter we will present both the mathematical model and the
simulated one. We will delve deeper into the dynamics of the system
and we will discuss the details about the simulations.

5. Simulations

• In this chapter we will discuss both the train and the tested model.
Moreover we will present and analyze the results of the simulations.

6. Conclusions

• In this chapter we will summarize the work’s results discussing some
limitations and future steps.
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2
Quantum Mechanics

"Quantum mechanics: Real Black

Magic Calculus"

Albert Einstein

2.1 Introduction

Quantum mechanics is a fundamental theory of physics that describes the

behavior of matter and energy at the smallest scales, such as atoms and sub-

atomic particles. It was developed in the early 20th century to explain the strange

and counterintuitive properties of quantum systems, such as superposition, en-

tanglement, and wave-particle duality.

In recent decades, the field of quantum information and computation has

emerged, which studies how these quantum properties can be harnessed to per-

form computational and communication tasks that are beyond the capabilities

of classical computers. This has led to the development of quantum algorithms,

quantum cryptography, and quantum communication protocols, among other

applications.

However, harnessing the power of quantum systems is not without its chal-

lenges, and quantum control has become an increasingly important area of
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research. This involves developing techniques to manipulate and control quan-

tum systems, in order to achieve desired outcomes or mitigate unwanted effects

such as decoherence.

The history of quantum mechanics and its related fields is rich and complex,

involving many pioneering scientists such as Max Planck, Albert Einstein, Niels

Bohr, Werner Heisenberg, Erwin Schrödinger, and Richard Feynman, among

others. Their contributions have led to a profound understanding of the quan-

tum world and opened up a wealth of possibilities for the future of technology

and science.

The main references for this chapter are the followings [13][5].

2.2 Fundamentals concepts of Quantum mechanics

2.2.1 First postulate: State Space

In this section we will present the first postulate of the quantum mechanics

and we will discuss some of its implications.

This postulate will set up the arena in which the quantum mechanics will

take place. Firstly we recall fundamental concept of Hilbert space.

Mathematically, a Hilbert space is defined as a complete, separable inner product

space that is also a vector space over the field of complex numbers. Formally:

Definition 2.2.1 (Hilbert space). A Hilbert spaceℋ is a complete metric space, with

a metric defined by the inner product, that satisfies the following axioms:

• ℋ is a complex vector space, with addition and scalar multiplication defined as
usual.

• ℋ is equipped with an inner product, denoted by ⟨·, ·⟩, which is a complex-valued
function that satisfies:

– ⟨u, v⟩ = ⟨v, u⟩∗, where ∗ denotes the complex conjugate.

– ⟨𝛼u + 𝛽v,w⟩ = 𝛼⟨u,w⟩ + 𝛽⟨v,w⟩, where 𝛼 and 𝛽 are complex numbers.

– ⟨u, u⟩ ≥ 0, with equality if and only if u = 0.

• ℋ is complete, meaning that every Cauchy sequence of vectors inℋ converges to
a unique vector inℋ .
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Now we can define the first postulate.

Postulate 2.2.1 (Postulate 1). Associated to any isolated physical system is a complex

vector space with inner product (Hilbert space) known as state space of the system. The

system is completely described by its state vector, which is a unit vector in the system’s

state space.

Once we have defined the formalism of a general state space, we can define

the simplest quantum mechanical system which is called qubit. The qubit lives

in a two dimensional complex Hilbert space ℋ identified as C2. Without loss

of generality we can define an orthonormal base in order to describe the state

space:

|0⟩ �
(
1

0

)
,

|1⟩ �
(
0

1

)
.

With this setup it is possible to built any vector in the state space:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ,

where 𝛼 and 𝛽 are complex numbers (𝛼, 𝛽 ∈ C) which have to respect the

normalization condition:

|𝛼2 | + |𝛽2 | = 1 .

2.2.2 Second postulate: Evolution

In this section we will present the second postulate of the quantum mechan-

ics, moreover we will discuss its implications trying, at the same time, to clarify

some concepts.

Postulate 2.2.2 (Postulate 2). The evolution of a closed quantum system is described

by a unitary transformation. That is, the state |𝜓⟩ of the system at time 𝑡1is related to

|𝜓′⟩ of the system at time 𝑡2 by a unitary operator𝒰 which depends only on the times

𝑡1 and 𝑡2.

The aim of this postulate is to describe how the quantum states of a closed

quantum system are related. In order to understand as best as possible this
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postulate we want to clarify some terminology, in particular we will focus on

the definition of closed system and on the definition of unitary operator.

Definition 2.2.2 (Closed System). A system is said to be closed when does not inter-

change information (i.e. energy and/or matter) with another system.

Definition 2.2.3 (Unitary Operator). A unitary operator is a bounded linear operator

𝒰 : 𝐻 → 𝐻 on a Hilbert space 𝐻 that satisfies:

• 𝒰†𝒰 = 𝐼,

• 𝒰𝒰† = 𝐼,

where𝒰† is the adjoint of𝒰 , and 𝐼 : 𝐻 → 𝐻 is the identity operator.

In reality all systems interacts at least with another system, except for the

whole universe. Nevertheless there exist some systems which are described by

a unitary evolution with a good approximation. This postulate (Post. 2.2.2) can

be refined in order to describe the evolution of quantum systems in continuous

time.

Postulate 2.2.3 (Postulate 2 (Continuous Time)). The time evolution of the state of a

a closed quantum system is described by the Schrödinger equation:

𝑖ℏ
𝑑 |𝜓⟩
𝑑𝑡

= 𝐻 |𝜓⟩ .

The ℏ is called Planck’s constant whose values has to be determined exper-

imentally, the 𝐻 is a fixed Hermitian operator called Hamiltonian. From this

second version of the Postulate we can clearly argue that if we know the Hamil-

tonian 𝐻 of the system then we can understand its dynamics. Since the Hamil-

tonian is an Hermitian operator it has a spectral decomposition:

𝐻 =

∑
𝐸

𝐸 |𝐸⟩ ⟨𝐸 | ,

with eigenvalues 𝐸 and corresponding normalized eigenvectors |𝐸⟩. The states

|𝐸⟩ are called energy eigenstates and the eigenvalues 𝐸 are called energies. The

lowest energy is called ground state energy and the associated eigenstate is called

ground state.
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To provide a link between the postulate Post 2.2.2 and postulate Post 2.2.3 we

have to write the solution of the Schrödinger equation which is the following:

|𝜓(𝑡2)⟩ = 𝑒
−𝑖𝐻(𝑡2−𝑡1)

ℏ |𝜓(𝑡1)⟩ = 𝑈(𝑡1, 𝑡2) |𝜓(𝑡1)⟩ ,

from this we can define:

𝑒
−𝑖𝐻(𝑡2−𝑡1)

ℏ = 𝑈(𝑡1, 𝑡2) .

2.2.3 Third Postulate: Quantum Generalized Measurements

In this section we will present the third postulate of the quantum mechanics,

it is about the quantum measurements. After having discussed the postulate we

will present some measurement operators.

Postulate 2.2.4 (Postulate 3). Quantum measurements are described by a collection

{𝑀𝑚} of measurement operators. These are operators acting on the state space of the

system being measured. The index 𝑚 refers to the measurement outcome that may occur

in the experiment. If the state of the quantum system is |𝜓⟩ immediately before the

measurement then the probability that result 𝑚 occurs is given by:

𝑝(𝑚) = ⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩ ,

and the state of the system after the measurement is:

𝑀𝑚 |𝜓⟩√
⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩

.

The measurement operators satisfy the completeness equation:

∑
𝑚

𝑀†𝑚𝑀𝑚 = 𝐼

This postulate is fundamental since it describe not just the effect of the mea-

sure on the state but also the constraint that a set of operators must respect in

order to be a set of measurement operators. Pursuing in the understanding of

this constraint we can notice that the completeness equation represents the fact
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that the probabilities sum to one:

1 =

∑
𝑚

𝑝(𝑚) =
∑
𝑚

⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩ .

A simple but important example of a measurement is the measurement of a

qubit in the computational basis. It is a measurement of a qubit with two possible

outcomes defined by the two measurement operators:

𝑀0 = |0⟩ ⟨0| , 𝑀1 = |1⟩ ⟨1| .

We can notice that this type of measurement respects the completeness equation

indeed:

𝑀†0𝑀0 +𝑀†1𝑀1 = 𝑀0 +𝑀1 = 𝐼 .

Another important class of measurements is called Projective Measurements.

Definition 2.2.4 (Projective Measurements). A projective measurement is described

by an observable, 𝑀, a Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition:

𝑀 =

∑
𝑚

𝑚𝑃𝑚 ,

where 𝑃𝑚 is the projector onto the eigenspace of M with eigenvalue 𝑚. The possible

outcomes of the measurement correponds to the eigenvalues, 𝑚, of the observable. Upon

measuring the state |𝜓⟩, the probability of receiving result 𝑚 is given by:

𝑝(𝑚) = ⟨𝜓 | 𝑃𝑚 |𝜓⟩

Given that outcome 𝑚 occured the state of the quantum system immediately after the

measurement becomes:
𝑃𝑚 |𝜓⟩
𝑝(𝑚) .

A key aspect of the projective measurements is that them drive the quantum

state to the collapse in other words the measurement action will destroy the

superposition. Let us consider a state |𝜓⟩ as initial state, from definition Def.

2.2.4 we know that the state after having measured the state and having received

outcome 𝑚 is:

|𝜓𝑚⟩ =
(𝑃𝑚 |𝜓⟩)√
⟨𝜓 | 𝑃𝑚 |𝜓⟩

.
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Applying 𝑃𝑚 to |𝜓𝑚⟩ does not change it, so we have that ⟨𝜓 | 𝑃𝑚 |𝜓⟩ = 1, and we

have proved that by repeating the measurement the outcome will be always 𝑚

each time without changing the state.

For the projective measurements it is easy to compute the expectation of the

measurement:

E(𝑀) =
∑
𝑚

𝑚𝑝(𝑚)

=

∑
𝑚

𝑚 ⟨𝜓 | 𝑃𝑚 |𝜓⟩

= ⟨𝜓 | (
∑
𝑚

𝑚𝑃𝑚) |𝜓⟩

= ⟨𝜓 |𝑀 |𝜓⟩ .

2.2.4 Fourth Postulate: Composite systems

In this section we will present the fourth postulate of the quantum mechanics,

moreover we will discuss its implications trying, at the same time, to clarify some

concepts. Firstly we will define the tensor product, which will be very useful as

we will dealing with this postulate.

Definition 2.2.5 (Tensor Product). Let 𝑉 and 𝑊 be two vector spaces over a field 𝐹.

The tensor product 𝑉 ⊗𝑊 is the vector space generated by the formal symbols 𝑣 ⊗ 𝑤,

where 𝑣 ∈ 𝑉 and 𝑤 ∈𝑊 , subject to the following relations:

(𝑣1 + 𝑣2) ⊗ 𝑤 = 𝑣1 ⊗ 𝑤 + 𝑣2 ⊗ 𝑤

𝑣 ⊗ (𝑤1 + 𝑤2) = 𝑣 ⊗ 𝑤1 + 𝑣 ⊗ 𝑤2

(𝑐𝑣) ⊗ 𝑤 = 𝑣 ⊗ (𝑐𝑤) = 𝑐(𝑣 ⊗ 𝑤)

where 𝑣1, 𝑣2 ∈ 𝑉 , 𝑤1, 𝑤2 ∈𝑊 , and 𝑐 ∈ 𝐹.

Now we introduce the fourth postulate of quantum mechanics.

Postulate 2.2.5 (Postulate 4). The state space of a composite physical system is the

tensor product of the state space of the component physical systems. Moreover, if we

have systems numbered 1 to 𝑛, and system number 𝑖 is prepared in the state |𝜓𝑖⟩, the

the joint state of the total system is |𝜓1⟩ ⊗ |𝜓2⟩ · · · ⊗ |𝜓𝑛⟩.

The aim of this postulate is to describe how the quantum states interacts

to built a composite system. The postulate argue that if we have a composite
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system made up of multiple subsystems, the state space of the composite system

is the tensor product of the state spaces of the individual subsystems. The tensor

product of two state spaces represents all possible combinations of the states of

the two subsystems.

The statement also describes how to find the joint state of the total system if

we know the states of the individual subsystems. If we have 𝑛 systems, each

with its own state |𝜓𝑖⟩, the joint state of the total system is given by the tensor

product of the individual states: |𝜓1⟩ ⊗ |𝜓2⟩ · · · ⊗ |𝜓𝑛⟩. This joint state represents

all possible combinations of the individual states, and it is used to calculate the

probabilities of various measurement outcomes on the composite system.
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2.3 Density operator

2.3.1 Definition

Until now we have considered just a single quantum system, but if we want

to deal with real quantum systems we have to introduce the concept of ensemble

of quantum states and further the concept of density operator.

Let us consider a quantum system that could be in one of 𝑛 possible quantum

states, and let us call these state vectors |𝜓𝑖⟩, where 𝑖 is the index. To every

possible quantum state is associated a real positive number 𝑝𝑖 which represents

the probability that the quantum system is in the state |𝜓𝑖⟩. Clearly all the 𝑝𝑖

has to respect: ∑
𝑖

𝑝𝑖 = 1 .

We call the set of pairs {(𝑝𝑖 , |𝜓𝑖⟩)} an ensemble of quantum states. It is possible

to distinguish three main cases of ensembles:

• Pure State:

– Exist state 𝑖 of the ensemble whose associated probability is:
𝑝𝑖 = 1

• Completely mixed state:

– The probabilities of every state in the ensemble are all equal:
𝑝𝑖 = 𝑝 𝑗 ∀𝑖, 𝑗

• Mixed State:

– Whether the ensemble is not a pure state or a completely mixed state
and the only constraint is that:∑

𝑖 𝑝𝑖 = 1

Now we can define the density operator.

Definition 2.3.1 (Density Operator). The density operator is defined as:

𝜌 =

∑
𝑖

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | .

13
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In the particular case in which the ensemble represents a pure state, we call

it |𝜓⟩, then the density operator could be written as:

𝜌 = |𝜓⟩ ⟨𝜓 | . (2.1)

Going deeper we have to define some proprieties of the density operator:

• The density operator is an Hermitian operator:

𝜌 = 𝜌†

• The density operator is semi-positive:

𝜌 ≥ 0

• The density operator is idempotent if it represents a pure state:

𝜌 = 𝜌2

• The trace of the density operator is sums to 1:

𝑡𝑟(𝜌) = 1

2.3.2 Evolution quantum postulates, density operator

After having defined the density operator we can reformulate the previous

postulate in order to adapt them to the density operator formalism.

In order to rewrite the first postulate we consider the definition of the density

operator and its proprieties.

Postulate 2.3.1. Associated to any isolated physical system is a complex vector space

with inner product (that is, a Hilbert space) known as the state space of the system. The

system is completely described by its density operator, which is semi-positive operator 𝜌

with trace one, acting on the state space of the system. If a quantum system is in the

state 𝜌𝑖 with probability 𝑝𝑖 , then the density operator for the system is
∑

𝑖 𝑝𝑖𝜌𝑖 .

Next, let us consider a system which has initial state |𝜓𝑖⟩ with probability

𝑝𝑖 , then following the Post.2.2.2, the state after the evolution is 𝑈 |𝜓𝑖⟩ with

probability 𝑝𝑖 . Therefore the evolution of the density operator is described by

the following equation:

𝜌 =

∑
𝑖

|𝜓𝑖⟩ ⟨𝜓𝑖 | 𝑝𝑖
U−→

∑
𝑖

𝑝𝑖𝑈 |𝜓𝑖⟩ ⟨𝜓𝑖 |𝑈† = 𝑈𝜌𝑈†

14
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Postulate 2.3.2 (Postulate 2). The evolution of a closed quantum system is described

by a unitary transformation. That is, the state 𝜌 of the system at time 𝑡1 is related to the

state 𝜌 of the system at time 𝑡2 by a unitary operator U which depends only on the times

𝑡1 and 𝑡2,

𝜌′ = 𝑈𝜌𝑈† .

Measurements are also easily described in the density operator language.

Suppose we perform a measurement described by measurement operators 𝑀𝑚

as indicated by the postulate Post.2.2.4. If the initial state was |𝜓𝑖⟩, then the

probability of getting result 𝑚 is:

𝑝(𝑚 |𝑖) = ⟨𝜓𝑖 |𝑀†𝑚𝑀𝑚 |𝜓𝑖⟩ = 𝑡𝑟(𝑀†𝑚𝑀𝑚 |𝜓𝑖⟩ ⟨𝜓𝑖 |) .

In order to compute the probability if the outcome 𝑚, by the law of total proba-

bility, we have to sum over all the possible 𝑖.

𝑝(𝑚) =
∑
𝑖

𝑝(𝑚 |𝑖)𝑝𝑖

=

∑
𝑖

𝑡𝑟(𝑀†𝑚𝑀𝑚 |𝜓𝑖⟩ ⟨𝜓𝑖 |)𝑝𝑖

= 𝑡𝑟(𝑀†𝑚𝑀𝑚𝜌) .

Moreover we suppose to obtain the outcome 𝑚, and as before if the initial state

was |𝜓𝑖⟩ the state after the measurement, according to postulate Post 2.2.4 will

be:

|𝜓𝑚
𝑖 ⟩ =

𝑀𝑚 |𝜓𝑖⟩√
⟨𝜓𝑖 |𝑀†𝑚𝑀𝑚 |𝜓𝑖⟩

Thus, after a measurement which yields the result 𝑚 we have an ensemble

of states |𝜓𝑚
𝑖
⟩ with respective probabilities 𝑝(𝑖 |𝑚). The corresponding density

operator 𝜌𝑚 is therefore:

𝜌𝑚 =

∑
𝑖

𝑝(𝑖 |𝑚) |𝜓𝑚
𝑖 ⟩ ⟨𝑚𝑖 | =

∑
𝑖

𝑝(𝑖 |𝑚)𝑀𝑚 |𝜓𝑖⟩ ⟨𝜓𝑖 |𝑀†𝑚
⟨𝜓𝑖 |𝑀†𝑚𝑀𝑚 |𝜓𝑖⟩

.
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2.3. DENSITY OPERATOR

By elementary probability we obtain that:

𝜌𝑚 =

∑
𝑖

𝑝𝑖
𝑀𝑚 |𝜓𝑖⟩ ⟨𝜓𝑖 |𝑀†𝑚
𝑡𝑟(𝑀†𝑚𝑀𝑚𝜌)

=
𝑀𝑚𝜌𝑚𝑀

†
𝑚

𝑡𝑟(𝑀†𝑚𝑀𝑚𝜌)
.

Putting together this last equation with the postulate Post. 2.2.4 we can define

the measurement postulate for the density operator.

Postulate 2.3.3 (Postulate 3). Quantum measurements are described by a collection

{𝑀𝑚} of measurement operators. These are operators acting on the state space of the

system being measured. The index 𝑚 refers to the measurement outcomes that may

occur in the experiment. If the state of the quantum system is 𝜌 immediately before the

measurement then the probability that result 𝑚 occurs is given by:

𝑝(𝑚) = 𝑡𝑟(𝑀†𝑚𝑀𝑚𝜌) ,

and the state of the system after the measurement is

𝑀𝑚𝜌𝑚𝑀
†
𝑚

𝑡𝑟(𝑀†𝑚𝑀𝑚𝜌)
.

The measurement operators satisfy the completeness equation,

∑
𝑚

𝑀†𝑚𝑀𝑚 = 𝐼

Last but not least we write the equivalent Postulate 2.2.5 for the density

operator.

Postulate 2.3.4 (Postulate 4). The state space of a composite physical system is the

tensor product of the state spaces of the component physical systems. Moreover, if we

have systems numbered 1 through 𝑛, and system number 𝑖 is prepared in the state 𝜌𝑖 ,

then the joint state of the total system is 𝜌1 ⊗ 𝜌2 ⊗ · · · ⊗ 𝜌𝑛 .
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CHAPTER 2. QUANTUM MECHANICS

2.3.3 Bloch Sphere

In this section we want to introduce a "visualization tool" that will be useful

later. Let us consider the basis {𝐼 , 𝜎1, 𝜎2, 𝜎3} where 𝐼 is the Identity matrix and

the others are the Pauli matrices:

𝜎1 =

(
0 1

1 0

)
,

𝜎2 =

(
0 −𝑖
𝑖 0

)
,

𝜎2 =

(
1 0

0 −1

)
.

After this preamble we are able to define the most general density matrix for a

qubit by a linear combination of the previous basis. In particular we recall that

a propriety of the density matrix is the trace condition:

𝑡𝑟(𝜌) = 1 .

In order to respect this condition, since the Pauli matrices have all trace equal to

0:

𝑡𝑟(𝜎𝑖) = 0 ∀𝑖 ∈ {1, 2, 3} ,

it follows that the 𝐼 has to have a coefficient equal to 1
2 . In this way remains only

three degrees of freedom to complete the representation of the density matrix

𝜌, therefore by choosing a real three dimensional vector −→r = 𝑟1, 𝑟2, 𝑟3, we can

rewrite the density matrix in its most general form:

𝜌 =
1

2
(𝐼 + −→r −→𝜎 ) = 1

2

(
1 + 𝑟3 𝑟1 − 𝑖𝑟2

𝑟1 + 𝑖𝑟2 1 − 𝑟3

)
.

The only constraint over the vector −→𝑟 is that | |−→𝑟 | | ≤ 1. This vector is known as

Bloch vector for the state 𝜌.

We can notice that by the use of the vector −→𝑟 it is possible to indicate the point

within the sphere that correspond to a given ensemble of states. We recall that

17



2.3. DENSITY OPERATOR

for the pure state 𝜌 is idempotent, and from this follows that for pure states:

𝑡𝑟(𝜌2) = 1 .

If we rewrite this condition for the general representation of the density matrix

it follows that:

𝑡𝑟(𝜌2) = 1

2
(1 + ||𝑟 | |2) = 1↔ ||−→𝑟 | | = 1

In a sphere this condition is satisfied for all the points of the surface, therefore

to every point in the surface corresponds a pure state.

Figure 2.1: Examples of pure and mixed state in a Bloch Sphere. Left: a pure
state. Center: an arbitrary mixed state. Right: Complitely mixed state

18
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2.4 Quantum operation and noises

2.4.1 Introduction

The term Quantum operations refers to the mathematical operations that are

performed on quantum systems in order to manipulate their state and extract

information. These operations are fundamental to the field of quantum com-

puting, which seeks to harness the unique properties of quantum mechanics to

perform calculations that would be infeasible on classical computers. Quantum

operations are also important in quantum communication and quantum cryp-

tography, where they are used to encode and decode information in a secure

way. Understanding and controlling quantum operations is essential for the de-

velopment of practical quantum technologies, and has been the focus of intense

research in recent years.

2.4.2 Quantum operations and Superoperators

Let us consider a bipartite system: system plus the environment. The system

evolves unitarily, according to postulate 2.3.2. We want to describe the evolution

just of the system, without the environment. Without loss of generality we can

assume that the environment is in a pure state let us say state |0⟩. We describe

the density matrix of the whole system as:

𝜌𝑠+𝑒 = 𝜌𝑠 ⊗ |0⟩𝑒 ⟨0|𝑒 .

The temporal evolution of the total system is related to the unitary operator 𝑈 ,

which drives the system to:

𝜌′𝑠+𝑒 = 𝑈𝜌𝑠+𝑒𝑈
†
= 𝑈(𝜌𝑠 ⊗ |0⟩𝑒 ⟨0|𝑒)𝑈† .

Since we are interested in the density matrix of just the single system without

considering the environment, we have to trace out the environment component:

𝜌′𝑠 = 𝑡𝑟𝑒(𝜌′𝑠+𝑒) = 𝑡𝑟𝑠+𝑒[𝑈(𝜌𝑠 ⊗ |0⟩𝑒 ⟨0|𝑒)𝑈†]
=

∑
𝑘

⟨𝑘 |𝑈 |0⟩𝑒 𝜌𝑠 ⟨0|𝑈† |𝑘⟩𝑒
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2.4. QUANTUM OPERATION AND NOISES

where {|𝑘⟩} is a basis for the Hilbert spaceℋ𝑒 associated with the environment

subsystem and ⟨𝑘 |𝑈 |0⟩𝑒 is an operator acting on the Hilbert spaceℋ𝑠 associated

with the subsystem of interest. If we define Kraus operators:

𝐸𝑘 = ⟨𝑘 |𝑈 |0⟩𝑒 ,

we can also write that the evolution of our system of interest is:

𝜌′ =
∑
𝑘

𝐸𝑘𝜌𝑠𝐸
†
𝑘 . (2.2)

Moreover, since 𝑈 is unitary follows that the kraus operators has to respect the

following constraint: ∑
𝑘

𝐸𝑘𝐸
†
𝑘 = 𝐼 . (2.3)

Since the equation 2.2 defines a linear map between linear operators and linear

operators:

ℰ : 𝜌𝑠 → 𝜌′𝑠 =
∑
𝑘

𝐸𝑘𝜌𝑠𝐸
†
𝑘 ,

and if the completeness relation (Eq. 2.3) is satisfied then the map ℰ is known

as quantum operation or as superoperator. and the equation 2.2 is known as the

Kraus representation of the superoperator ℰ.

The proprieties of a superoperator are the followings:

• Linearity:
ℰ(𝛼𝜌1 + 𝛽𝜌2) = 𝛼ℰ(𝜌1) + 𝛽ℰ(𝜌2)

• Preserve Hermitianity:

ℰ(𝜌)† = ℰ(𝜌†) = ℰ(𝜌)

• Trace Preserving:
𝑡𝑟(ℰ(𝜌)) = 𝑡𝑟(𝜌) = 1

• Completely positive:
𝐼 ⊗ ℰ(𝜌𝐴+𝑒) ≥ 0 .

Two superoperatorsℰ𝐴 andℰ𝐵 can be composed to give a new superoperator:

ℰ = ℰ𝐵ℰ𝐴 ,

defined by ℰ(𝜌1) = ℰ𝐵(ℰ𝐴(𝜌1)) .
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2.4.3 Operation and Noises

In this section we will present some useful noise and operations. We begin

by defining the depolarizing channel.

The depolarizing channel is a type of quantum noise. In order to define its effect

we consider a single qubit and we suppose that with probability 𝑝 the qubit

is depolarized, which means that is substituted with the completely mixed state.

Moreover with probability 1 − 𝑝 the qubit is left untouched. The state of the

system after this noise is:

𝜌′ = ℰ(𝜌) = 𝑝
𝐼

2
+ (1 − 𝑝)𝜌 .

The effect of the depolarization noise is illustrated in the following figure.

Figure 2.2: Effect of the depolarizing channel on the Bloch Sphere, for p = 0.5

Another fundamental type of noise is called Amplitude damping channel.

The amplitude damping channel is a quantum noise model that describes the

loss of energy from a quantum system to its environment. In this model, the

amplitude (or strength) of the quantum state is reduced over time due to the

interaction with the environment. This can be caused by processes such as

photon emission, which causes the quantum state to decay towards the zero

state (or ground state). The amplitude damping channel can be described by a

Kraus operator that maps the initial quantum state to a reduced state with lower

amplitude. It is described by the following quantum operation:

ℰ𝐴𝐷(𝜌) = 𝐸0𝜌𝐸
†
0 + 𝐸1𝜌𝐸

†
1 ,
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where 𝐸𝑘 = ⟨𝑘 | 𝐵 |0⟩ are:

𝐸0 =

(
1 0

0
√

1 − 𝛾

)
,

𝐸1 =

(
0
√
𝛾

0 0

)
.

A very important type of quantum operation is the bit flip channel.

The bit flip quantum operation is a type of quantum gate that acts on a single

qubit (quantum bit). It corresponds to a logical NOT operation in classical

computing, which flips the value of a classical bit from 0 to 1, or vice versa. In

the case of a qubit, the bit flip operation flips the quantum state from the |0⟩ state

to the |1⟩ state, or vice versa, while leaving the relative amplitudes of the two

states unchanged. The kraus representation of this operation is the following:

𝐸0 =
√
𝑝𝐼 =

√
𝑝

(
1 0

0 1

)
, 𝐸1 =

√
1 − 𝑝

(
0 1

1 0

)
.

The effect of the bit flip is illustrated in the following figure.

Figure 2.3: Effect of the bit flip channel on the Bloch Sphere, for p = 0.3
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3
Reinforcement Learning

"Reinforcement learning is like a

child learning to walk: it falls down,

gets back up and tries again,

gradually learning to balance"

Andrew Ng

3.1 Introduction

Reinforcement Learning (RL) is a type of machine learning that focuses on

training agents to make a sequence of decisions in an environment. The agent

learns to behave in an environment by performing certain actions and receiv-

ing rewards or penalties. The ultimate goal of the agent is to maximize the

cumulative reward over time. RL algorithms are used to learn from the inter-

actions between the agent and the environment, in order to improve the agent’s

decision-making abilities.

There are several types of RL algorithms, each with its own unique approach

to solving RL problems. Some popular algorithms include Q-learning, SARSA,

policy gradient and actor-critic methods.

In particular in this chapter we will focus on the policy gradient method. In
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this approach, the agent learns to improve its decision-making by directly ad-

justing its policy, which is a function that maps states to actions. This approach

is particularly useful when the action space is continuous or when the optimal

policy is not easy to represent.

The aim of this chapter is to provide the reader the foundations to under-

stand the environment definition. Moreover, we want to give a basic knowledge

of the main RL algorithms in order to comprehend the PPO algorithm used in

the simulations.

The main reference for this chapter is the Sutton and Burto’s book [20].

3.2 RL framework

The main components of the general reinforcement learning (RL) framework

are:

• Agent: The agent is the entity that interacts with the environment and
takes actions.

• Environment: The environment is the collection of entities the agent inter-
acts with. It can be either a physical or a virtual.

• Reward: The reward is a scalar value that represents the feedback the
agent receives from the environment for its actions. The agent’s goal is to
maximize the cumulative reward over time.

When the agent interacts with the environment some other key concepts

come into play:

• State: The state represents the current situation of the environment. The
agent uses the state to decide on its next action.

• Action: The action is the decision made by the agent based on the current
state of the environment.

• Policy: The policy is the strategy used by the agent to decide on its actions.
It maps states to actions.

It is possible to formalize in a mathematical way these key concepts. In

particular we define 𝒮 the set of all possible states of an environment. 𝒮 can

be either a finite discrete or continuous set. The agent interacts with the en-

vironment by the chosen of actions. We call 𝒜 the set of all possible actions
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that an agent can perform. The agent have to choose an action every time-step

𝑡 where 𝑡 ∈ N. At every time-step 𝑡 an agent receives from the environment a

state 𝑠𝑡 ∈ 𝒮. We define a policy as a conditional distribution:

𝜋(𝑎 |𝑠) = P(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠) ,

which assign a probability 𝜋(𝑎 |𝑠) to the possible actions 𝑎 ∈ 𝒜. The agent

at time-step 𝑡 samples from 𝜋(𝑎 |𝑠) an action 𝑎𝑡 . Depending on the selected

action, the agent receives from the environment the reward 𝑅𝑡+1(𝑠𝑡 , 𝑎𝑡)which is

a measure of the goodness of the action performed. The environment returns

also the next state 𝑠𝑡+1:

𝑠𝑡+1 = E[𝑠𝑡 , 𝑎𝑡] ,

it can be either random or deterministic.

It is possible to compare this framework with the classical control theory frame-

work. In particular we highlight the similarities between the agent and the

controller, the action 𝑎𝑡 chosen at time 𝑡 by the agent can be seen as the control

action 𝑢𝑡 performed by the controller at time 𝑡, the environment can be inter-

preted as the plant to control and last but not least the reward 𝑅 can be seen

as a feedback action. In the following figures we tried to underline both the

reinforcement learning framework and its similarity with control theory one

3.1.

(a) RL Scheme (b) Control Scheme

Figure 3.1: Analogy between RL and Control Scheme
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3.3 Mathematical formalism for the environment

definition

In this section we will dive deep into the mathematical formalism that let us

define a reinforcement learning environment. First we will start by describing

the path that from a Markov Chain leads to the Markov Decision Processes

(MDP) which are the most used framework to describe the fully observable

case. Then we will deal with the Partially Observable MDP which works with

the partially observable case.

3.3.1 Markov Chain

A Markov Chain is a mathematical model for a sequence of events in which

the probability of each event depends only on the state attained in the previous

event. In this framework we define a stochastic process over the collection of

random variables 𝑆𝑡 with 𝑡 ∈ N. This collection of random variables {𝑆𝑡} are

defined over the common alphabet𝒮 with associated probability distribution P.

Definition 3.3.1 (Markov Propriety). A stochastic process defined over the random

variables 𝑆𝑡 ∈ 𝒮 with associate probability distribution P is Markov if:

P[𝑆𝑡+1 |𝑆𝑡] = P[𝑆𝑡+1 |𝑆1, . . . , 𝑆𝑡] .

In a Markov Chain the probability of transitioning from one state to another is

determined by the probability of the current state and the transition probability

between the current state and the next state. In mathematical terms, a Markov

Chain is defined as a pair < 𝒮 ,𝒫 > where 𝒮 is a finite set of states and 𝒫 is

the transition probability matrix, where each element 𝑝𝑖 𝑗 ∈ 𝒫 represents the

probability of transitioning from state 𝑖 to state 𝑗. In conclusion we can define a

Markov Chain as:

Definition 3.3.2 (Markov Chain). A Markov Chain (or Markov Process) is the Markov

Stochastic Process specified by the pair < 𝒮 ,𝒫 > such that:

• 𝒮 is an alphabet

• 𝒫 is a state transition probability matrix with entries:

𝒫𝑠𝑠′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] .
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3.3.2 MRP, State-Value function and Bellman Equation

A Markov Reward Process (MRP) is a variation of a Markov Chain that

incorporates the notion of rewards. In an MRP, each state has an associated

reward, and the goal is to determine the long-term expected reward of being in

a particular state.

Definition 3.3.3 (Markov Reward Processes). A Markov Reward Process is a tuple

< 𝒮 ,𝒫 ,ℛ , 𝛾 > such that:

• 𝒮 is a finite set of Markov States

• 𝒫 is a state transition probability matrix with entries:

𝒫𝑠𝑠′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] .

• ℛ : 𝒮 → R is a reward function that assigns a scalar to each state 𝑠𝑖 :

– We define the random variable 𝑅𝑡+1 = ℛ(𝑠𝑡) and the expected reward as:

ℛ𝑠 = E[𝑅𝑡+1 |𝑆𝑡 = 𝑠]
• 𝛾 ∈ [0, 1] is a discount factor.

Through the use of the discount factor, we are able to represent the relative

importance of future rewards w.r.t. current rewards. In particular when we have

a discount factor 𝛾 = 0 we call that case "myopic", on the other hand if 𝛾 = 1

the case is called "far-sighted". In order to find a solution to the MRP we have to

introduce the concepts of state-value function and the BellMan Equation.

The definition of both the state-value function and the BellMann equation has

as foundation the concept of Return.

Definition 3.3.4 (Return). The Return 𝐺𝑡 is the random variable representing the total

future discounted reward from time-step 𝑡:

𝐺𝑡 � 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · · =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 , (3.1)

where 𝛾 is a discount factor, 𝛾 ∈ [0, 1].

The value function for a state is the expected sum of discounted rewards

starting from that state. More formally, the state-value function𝑉(𝑠) for an MRP

is defined as:
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Definition 3.3.5 (State-Value function ). The state value function 𝑉(𝑠) of a Markov

Reward Process is the expected return starting from state 𝑠:

𝑉(𝑠) = E[𝐺𝑡 |𝑠𝑡 = 𝑠] .

It is possible to highlight that the state-value function can be decomposed

into two main parts:

• The immediate reward 𝑅𝑡+1,

• The discounted value of successor state 𝛾𝑉(𝑆𝑡+1).

Exploiting this concept we get that:

𝐺𝑡 � 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · ·
= 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + · · · )
= 𝑅𝑡+1 + 𝛾𝐺𝑡+1 .

From the previous result and from the law of iterated expectations we can derive

the Bellmann Equation:

𝑉(𝑠) = E[𝐺𝑡 |𝑠𝑡 = 𝑠] = E[𝑅𝑡+1 + 𝛾𝐺𝑡+1 |𝑠𝑡 = 𝑠]
= E[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)] .

(3.2)

3.3.3 MDP, V-function and Q-function

A Markov Decision Process (MDP) is a variation of a Markov Reward Process

that incorporates the notion of actions. To use this framework we suppose to

have the full knowledge of the system, in other words everything is observable.

Figure 3.2: Reinforcement Learning Framework in an observable space [16]

Definition 3.3.6 (Markov Decision Process). A Markov Decision Process is a tuple

< 𝒮 ,𝒜 ,𝒫 ,ℛ , 𝛾 > such that:
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• 𝒮 is a alphabet of a Markov Chain,

• 𝒜 is a finite set of actions,

• 𝒫𝑎 is a state transition probability matrix with entries:

𝒫𝑎
𝑆𝑆′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (3.3)

• ℛ𝑎 : 𝒮 × 𝒜 → R is a reward function that assigns a scalar to each state pair
(𝑠𝑖 , 𝑎 𝑗):

– We define the random variable 𝑅𝑡+1 = ℛ𝑎(𝑠, 𝑎) and the expected reward as:

ℛ𝑎
𝑠 = E[𝑅𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (3.4)

• 𝛾 a discount factor, 𝛾 ∈ [0, 1] .

As we can see the concept of MDP is strictly related to the concept of action.

Indeed at every time 𝑡 the agent chooses an action that will drive it to a new

state. In particular the action performed by the agent is chosen accordingly to a

certain policy 𝜋(·|·).

Definition 3.3.7 (Policy). A policy is a distribution over actions given that we are in

a state:

𝜋(𝑎 |𝑠) = P[𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠] .

A policy fully defines the behaviour of a RL agent. MDP policies depend on

the current state. Given a policy and a MDP we can define the dynamic of the

state transition and the rewards as follows:

• The state sequence 𝑆1, 𝑆2, . . . is a Markov Process < 𝒮 ,𝒫𝜋 > where:

𝒫𝜋
𝒮 ,𝒮′ =

∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)𝒫𝑎
𝒮 ,𝒮′ .

• The state-reward sequence 𝑆1, 𝑅1, 𝑆2, 𝑅2, . . . is, as in Def. 3.3.3, a Markov
Reward Process < 𝑆,𝒫𝜋 ,ℛ𝜋 , 𝛾 > where:

ℛ𝜋
𝒮 =

∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)ℛ𝑎
𝒮 .

Due to the fact that, as we have highlighted, in a MDP both the transition

between states and the reward depend on the policy, we have to provide a

different definition of state-value function.
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Definition 3.3.8 (State-Value Function for MDP). The state-value function 𝑉𝜋(𝑠) of

a MDP is the expected return from state 𝑠 if we follow policy policy 𝜋:

𝑉𝜋(𝑠) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠] .

Moreover using the whole state-action < 𝑠, 𝑎 > pare we can define another

useful function called the Q-Function or action-value function.

Definition 3.3.9 (Action-Value Function). The action-value function 𝑄𝜋(𝑠, 𝑎) of an

MDP is the expected return from state 𝑠 if we take action 𝑎 and then we follow policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] .

As for the MRP is possible to rewrite both the V-function and the Q-function

in an recursive way. Indeed the state-value function can be decomposed into

two main parts:

• The immediate reward 𝑅𝑡+1,

• The discounted value of successor state 𝛾𝑉𝜋(𝑆𝑡+1).

This leads to a new expression for the V-function that is:

𝑉𝜋(𝑠) = E[𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]
=

∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)(ℛ𝑎
𝑠 + 𝛾

∑
𝑠′∈𝒮
𝒫𝑎

𝑠,𝑠′𝑉𝜋(𝑠′)) .

Similarly we can apply the same reasoning for the Q-function and we obtain:

𝑄𝜋(𝑠) = E[𝑅𝑡+1 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
= ℛ𝑎

𝑠 + 𝛾
∑
𝑠′∈𝒮
𝒫𝑎

𝑠𝑠′

∑
𝑎′∈𝒜

𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′) .

To solve a MDP we have to find the optimal policy, which is a mapping from

states to actions that maximizes the long-term expected reward.

The optimal policy is the one that let us know the optimal action-value function 𝑄∗
which is the the maximum action-value function over all policies :

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎) ,
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from the optimal action-value function it is possible to derive the optimal state-

value function:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎) .

3.3.4 POMDP

A Partially Observable Markov Decision Process (POMDP) [7][4] is an ex-

tension of an MDP that takes into account the fact that the agent may not have

full knowledge of the current state of the environment. In a POMDP, the agent

receives an observation at each time step, rather than directly observing the state

of the environment. The observation may not be enough to uniquely identify

the true state, and the agent must use its previous observations and actions to

infer the state.

Figure 3.3: RL Framework in a partially observable space[3]

Definition 3.3.10 (Partially Observable Markov Decision Process). A Partially Ob-

servable Markov Decision Process (POMDP) is defined as a tuple< 𝒮 ,𝒜 ,𝒪 ,𝒯 ,Ω,ℛ , 𝛾, 𝑏0 >

such that:

• 𝒮 is a Markov State Space,

• 𝒜 is a finite set of actions,

• Ω is a set of possible observations,

• 𝒫 is a state transition probability matrix with entries:

𝒫𝑎
𝑠𝑠′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (3.5)

• 𝒪 set of observation probabilities

𝒪𝑎
𝑜𝑠′ = P[𝑂𝑡 = 𝑜 |𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎] (3.6)

– The probability of observing 𝑜 ∈ Ω given that we take action 𝑎 ∈ 𝒜 and end
up in 𝑠′ ∈ 𝒮,
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• ℛ : 𝒮 ×𝒜 → R is a reward function:

ℛ𝑎
𝑠 = E[𝑅𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (3.7)

• 𝛾 a discount factor, 𝛾 ∈ [0, 1],

• 𝑏0 is a probability distribution over all possible states.

In POMDPs, the agent can not tell for sure where it is in the state space, all

it can have are beliefs on that probability distribution over states, this is usually

called belief state 𝑏. It represents an agent’s knowledge or uncertainty about the

state of the system given the observations it has made up to that point. Formally

it can be defined as:

Definition 3.3.11 (Belief State). the belief state at time 𝑡, denoted as 𝑏𝑡 , is a probability

distribution over the set of all possible states, 𝒮:

𝑏𝑡(𝑠) = P[𝑆𝑡 = 𝑠 |𝑜1 : 𝑡] , (3.8)

where 𝑠𝑡 is the true state of the system at time 𝑡, 𝑜1 : 𝑡 is the sequence of observations

made up to time 𝑡, and 𝑃(𝑠𝑡 = 𝑠 |𝑜1 : 𝑡) is the probability that the system is in state 𝑠 at

time 𝑡 given the observations made up to that point.

The belief state is updated at each time step based on the current observation

and the transition dynamics of the system and it is computed via Bayes rule:

𝑏(𝑠𝑖) = 𝑃(𝑠𝑖 |𝑎, 𝑜, 𝑏)

=
𝑃(𝑜 |𝑠𝑖 , 𝑎, 𝑏)𝑃(𝑠𝑖 |𝑎, 𝑏)

𝑃(𝑜 |𝑎, 𝑏)

=
𝑃(𝑜 |𝑠𝑖 , 𝑎, 𝑏)

∑
𝑗 𝑃(𝑠𝑖 |𝑎, 𝑠 𝑗)𝑃(𝑠 |𝑎, 𝑏)

𝑃(𝑜 |𝑎, 𝑏)

=
𝑃(𝑜 |𝑠𝑖 , 𝑎)

∑
𝑗 𝑃(𝑠𝑖 |𝑎, 𝑠 𝑗 , 𝑏)𝑃(𝑠 |𝑎, 𝑏)
𝑃(𝑜 |𝑎, 𝑏)

=
𝒪(𝑜 |𝑠𝑖 , 𝑎)

∑
𝑗 𝑃(𝑠𝑖 |𝑎, 𝑠 𝑗)𝑏(𝑠 𝑗)

𝑃(𝑜 |𝑎, 𝑏) ,

where as 𝑃(𝑜 |𝑎, 𝑏) = ∑
𝑘 𝒪(𝑜 |𝑎, 𝑠𝑘)

∑
𝑗 𝒫(𝑠𝑘 |𝑎, 𝑠 𝑗).
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The expected reward for the agent of taking action a in belief state 𝑏 is:

𝑟(𝑏, 𝑎) =
∑
𝑠∈𝒮

𝑅(𝑠, 𝑎)𝑏(𝑠) .
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3.3.5 QOMDPs

A quantum observable Markov decision process (QOMDP) [4] generalizes

a POMDP by using quantum states rather than belief states. In a QOMDP, an

agent can apply a set of possible operations to a d-dimensional quantum system.

The operations each have 𝒦 possible outcomes. At each time step, the agent

receives an observation corresponding to the outcome of the previous operation

and can choose another operation to apply. The reward the agent receives is the

expected value of some operator in the system’s current quantum state.

A QOMDP is defined as a set < 𝒮 ,Ω,𝒜 ,ℛ , 𝛾, 𝜌0 > such that:

• 𝒮 is a Hilbert space. We allow pure and mixed quantum states so we will
represent states in S as density matrices.

• Ω = {𝑜1, . . . , 𝑜 |Ω|} is a set of possible observations.

• 𝒜 = {𝐴1, . . . , 𝐴|𝒜|} is a set of superoperators. Each superoperator 𝐴𝑎 =

{𝐴𝑎
1 , · · · , 𝐴𝑎

|Ω|} has |Ω| Kraus matrices. Note that each superoperator re-

turns the same set of possible observations; The return of 𝑜𝑖 indicates the
application of the ith-Kraus matrix so taking action 𝑎 in state 𝜌 returns
observation 𝑜𝑖 with probability:

P(𝑜𝑖 |𝜌, 𝑎) = 𝑇𝑟(𝐴𝑎†
𝑖 𝐴𝑎

𝑖 𝜌)
If 𝑜𝑖 is observed after taking action 𝑎 in state 𝜌, the next state is:

𝜌𝑡+1|𝜌,𝑎,𝑜𝑖 =
𝐴𝑎

𝑖
𝜌𝐴𝑎†

𝑖

𝑇𝑟(𝐴𝑎
𝑖
𝜌𝐴𝑎†

𝑖
)

• ℛ = {𝑅1, . . . , 𝑅 |𝒜|} is a set of operators. The reward associated with taking
action 𝑎 in state 𝜌 is the expected value operator 𝑅𝑎 on 𝜌,

𝑅(𝜌, 𝑎) = 𝑇𝑟(𝜌𝑅𝑎)

• 𝛾 ∈ [0, 1) is the discount factor.

• 𝜌0 is the starting state as density operator.

Like an MDP or POMDP, a QOMDP represents a world in which an agent

chooses actions at discrete time steps and receives observations. The world

modeled by the QOMDP is a quantum system that begins in 𝜌0, the starting

state of the QOMDP. At each time step, the agent chooses a superoperator from

the set 𝒜, whereupon the corresponding operation is done on the system and

the agent receives an observation from the set in accordance with the laws of

quantum mechanics. The agent also receives a reward according to the state of

the system after the operation and ℛ.
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3.4 Algorithms

In this section, we will focus on the various RL algorithms that have been

developed. We will begin by discussing the main categories of RL algorithms,

firstly we will delve deeper into the concept of Model Free and Model Based RL.

Then we will focus the reader attention on Model Free RL algorithms highlight-

ing the two main categories:

• Value-Based,

• Policy-Based.

We will explore specific algorithms within each category, such as Q-learning,

Reinforce (Policy Gradient), and actor-critic methods, while providing a detailed

analysis of their strengths and weaknesses. By the end of this section, the reader

will have a comprehensive overview of the different RL algorithms and their

applications.

Figure 3.4: A non-exhaustive taxonomy of algorithms in modern RL. [1]
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3.4.1 Model-Free vs Model-Based RL

A first partition in the Reinforcement Learning algorithms cluster consists in

the definition of the following categories: Model-Free and Model based RL [1].

Model-free RL algorithms gather experience from the environment to learn,

update and improve a value function, such that the V-function or the Q-function,

or a policy 𝜋(·|·) . This process works just taking into account the rewards

that follows from the interaction between the RL agent and the environment

without any knowledge about the underlying environment model. Model-free

RL algorithms are simpler to implement and can be more robust to changes in

the environment, but they may require more data and experience to converge

to a good solution. It is possible to split the algorithms in this category in two

different type:

• Value-Based approach,

– Main algorithms: Q-Learning, Sarsa, TD(𝜆).

• Policy-Based approach.

– Main algorithms: Reinforce, TRPO, PPO.

Model-based RL algorithms involve learning a model of the environment,

which the agent can use to plan and make decisions. In particular as model we

mean anything that an agent can use to predict how the environment will react

to the action performed by the agent. These algorithms typically use dynamic

programming or tree search methods to determine the optimal action to take

in each state. The agent updates its understanding of the environment as it

interacts with it, and uses this information to plan future actions. Model-based

RL algorithms can be very sample efficient, but can become impractical in large

or complex environments.

Figure 3.5: Block Scheme representing Model based and Model Free approaches
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3.4.2 Exploration exploitation dilemma

Before going deeper in the algorithms we have to define a fundamental

reinforcement learning problem called "Exploration exploitation Dilemma". Firstly

we will provide some basic definitions:

• Exploration: is the process of trying out different actions to learn more
about the environment.

• Exploitation: is the process of using the current knowledge of the environ-
ment to select actions that are likely to lead to the highest rewards.

The exploration exploitation dilemma arises when the agent has to decide

whether to explore new actions to increase his knowledge about the environment

or to exploit its current knowledge to receive a higher reward but losing the

opportunity to learn something and even maybe get a better reward. Before

delve deeper int this problem we recall that the action selected at time 𝑡 is

sampled from the current policy, which means:

𝑎𝑡 ∼ 𝜋(𝑎 |𝑠𝑡) ,

therefore to deal with this problem a possible solution is to define particular

policies. This type of approach is very useful in the case in which the environ-

ment has a discrete action space𝒜 and we consider the chosen algorithm belongs

to the value based family. A possible policy to tackle the exploration exploitation

dilemma is the 𝜖-greedy policy. It consists into select with probability 1 − 𝜖 the

action higher Q value and with probability 𝜖 a random action:

𝜋(𝑎 |𝑠𝑡) =



𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎) with probability 1 − 𝜖,

a random action with probability 𝜖
.

A slightly modified version of this policy is called Decreasing 𝜖-greedy in which

the value of the 𝜖 value decreases over time.

In the following figure we can see the mean reward in a typical RL problem. The

reader can notice that using the greedy policy, which means choosing every time

the action that returns the highest reward without gathering any knowledge of

the environment, the return is lower than the other two cases with exploration.
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Figure 3.6: Typical behaviour of agent with and without exploration techniques

In the case of continuous action space𝒜 the agent does not choose directly any

action but it returns two values in function of the current state 𝑠: 𝜇(𝑠) a mean

value and 𝜎(𝑠) a standard deviation. With these two values the agent builds a

policy that is a gaussian distribution centered in 𝜇 with variance 𝜎2, then the

action is sampled from this policy:

𝑎𝑡 ∼ 𝜋(𝑎 |𝑠) = 𝒩(𝑎 |𝜇(𝑠), 𝜎2(𝑠)) .

With these kinds of policies is not necessary to introduce a rule to increase

the exploration since the policy by itself is stochastic. Nevertheless in some

cases is useful to adopt a strategy in order to avoid too quick variance reduction

which can lead the agent to converge in a policy that is locally optimal, but not

necessary globally optimal. With this focus a typical solution is to introduce a

"entropy bonus" term in the agent cost function [11].

We recall that the entropy is defined as:

𝐻(𝑋) = −
∫ ∞

−∞
𝑝(𝑥) log(𝑝(𝑥))𝑑𝑥 .

Entropy in the Reinforcement Learning framework relates directly to the un-

predictability of the actions which an agent takes in a given policy. Therefore

greater the entropy, the more random the actions an agent takes.
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Figure 3.7: Categorical (left), and Gaussian (Right) distributions. Orange shows
low-entropy distributions, while blue shows high-entropy distributions. [11]
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3.4.3 Value-Based algorithms

The class of value-based algorithms is the class of reinforcement learning

algorithms in which the agent tries to estimate the value of a given state or state-

action pair in a given environment. These algorithms are able to do this using

the concept of value functions, which, as seen before, these are a mathematical

representation of the expected return that an agent will receive if it follows a

particular policy 𝜋(·|·). The value function is then used to guide the agent’s

decision-making process by indicating which actions are likely to lead to the

highest rewards.

We recall that the two main value functions are the V-function and the Q-function

which are defined by the Bellman equations as follows:

𝑉𝜋(𝑠) = E[𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠] ,

𝑄𝜋(𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] .

Every algorithm of the value based family performs at least one of this two key

tasks:

• Policy Evaluation/Prediction: it consists in the derivation of the value
function and the action-value function.

• Policy Improvement/Control: it consists in the research of the best policy.

Before delve deeper into the algorithms for the policy improvement we want

to define an order relationship for the policies.

Definition 3.4.1 (Policy Order). Let us define two policy: 𝜋 and 𝜋′. We say that the

policy 𝜋 is better than the policy 𝜋′ and we write:

𝜋 > 𝜋′ ,

if:

𝑉𝜋(𝑠) > 𝑉𝜋′(𝑠) ∀𝑠 ∈ 𝒮

A first basic approach consists in considering the previous two tasks as sep-

arate, but more advanced approaches as the Generalized Policy Iteration (GPI)

merge these two tasks combining prediction iterations to improvement itera-

tions.

One of the most basic value-based methods is Monte Carlo (MC) method,

which estimates the value of a state or state-action pair by averaging the rewards
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obtained from following the current policy from that state or state-action. The

update rule for the value function 𝑉(·) using MC method is given by the average

of the returns or by the use of incremental updates (it can be proved that the two

approaches are equivalent). The incremental updates approach is more efficient

(in terms of memory) and it consists in the following equation:

𝑉𝜋(𝑠) = 𝑉𝜋(𝑠) + 𝛼[𝐺 −𝑉𝜋(𝑠)],

where G is the return (cumulative reward) obtained from following the current

policy from the state s, and 𝛼 is the stepsize. By the law of large numbers the

sequence of averages of these estimates converges to the expected value of 𝑉𝜋.

The first visit MC algorithm for the estimation of 𝑉𝜋 is the following one.

Algorithm 1 First Visit MC prediction, for estimating 𝑉𝜋

Input a policy 𝜋 to be evaluated

Initialize 𝑉(𝑠) ∈ R arbitrary, for all 𝑠 ∈ 𝒮
Returns(s)← an empty list, for all 𝑠 ∈ 𝒮
for each episode do

Generate an episode following 𝜋: 𝑆0, 𝐴0, 𝑅1, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇

G = 0

for each step of episode, t = T-1, T-2, . . . do

G = 𝛾𝐺 + 𝑅𝑡+1

while Unless 𝑆𝑡 , appears in 𝑆0, 𝑆1, . . . , 𝑆𝑡−1 do

Append G to Returns(𝑆𝑡)

𝑉(𝑠) = average(𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑆𝑡))
end while

end for

end for

With a slightly modification of the previous algorithm is possible to estimate

the Q-function w.r.t. 𝜋 that is 𝑄𝜋. The Monte Carlo estimation algorithm can be

also used for the control goal. In particular it uses the GPI approach. The value

function is iteratively altered to more closely approximate the value function

for the current policy, and the policy is repeatedly improved w.r.t. the current

value function. In order to express these concepts in the MC algorithm, the

key step is perform alternating complete steps of policy evaluation and policy

improvement. The policy evaluation is done accordingly to the adaptation of
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the previous algorithm w.r.t. the Q-function. The policy improvement instead

is done by making the policy greedy w.r.t. the current action-value function that

is:

𝜋(𝑠) � 𝑎𝑟𝑔𝑎𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) . (3.9)

In this case we are defining a deterministic policy. Since we are using an action-

value function we do not need any model to build the greedy policy. In order to

justify the correctness of the algorithm we recall the policy improvement theorem:

Theorem 3.4.1 (Policy Improvement). Let 𝜋 and 𝜋′ be any pair of deterministic

policies such that for all 𝑠 ∈ 𝒮,

𝑄𝜋(𝑠,𝜋′(𝑠)) ≥ 𝑉𝜋(𝑠) .

Then the policy 𝜋′ must be as good as, or better than, 𝜋. That is, it must obtain greater

or equal expected return from all states 𝑠 ∈ 𝒮:

𝑉𝜋′(𝑠) ≥ 𝑉𝜋(𝑠) .

Moreover, if the first inequality is a strict inequality at any state, then the previous

inequality must be a strict inequality too.

Applying this theorem to the idea of selecting a greedy policy we can prove

that the algorithm with an infinite number of steps converges to an optimal

policy. Let us consider the k-th and the 𝑘 + 1-th step in the algorithm and then

according to the greedy policy we build it as 𝜋𝑘+1 = 𝑎𝑟𝑔𝑎𝑚𝑎𝑥𝑎𝑄𝜋𝑘 . Moreover

we consider the quantity𝑄𝜋𝑘 (𝑠,𝜋𝑘+1(𝑠))which represents the Q-value if the next

action is taken by the policy 𝜋𝑘+1 and all the other action are sampled from 𝜋𝑘 .

After this assumptions we can derive that:

𝑄𝜋𝑘 (𝑠,𝜋𝑘+1(𝑠)) = 𝑄𝜋𝑘 (𝑠, 𝑎𝑟𝑔𝑎𝑚𝑎𝑥𝑎𝑄𝜋𝑘 (𝑠, 𝑎))
= 𝑚𝑎𝑥𝑎𝑄𝜋𝑘 (𝑠, 𝑎)
≥ 𝑄𝜋𝑘 (𝑠,𝜋𝑘(𝑠))
≥ 𝑉𝜋𝑘 (𝑠) .

In this way we have proved that since the policy 𝜋𝑘+1 is always better than 𝜋𝑘 ,

or at least is it is equal to 𝜋𝑘 , after an infinite number of episodes the policy will

converge to an optimal one:

𝜋∞ = 𝜋∗ .

42



CHAPTER 3. REINFORCEMENT LEARNING

Algorithm 2 First-Visit Monte Carlo Reinforcement Learning

Initialize Q(s,a) for all s ∈ S and a ∈ A(s)

Initialize 𝜋(𝑠) for all s ∈ S

Initialize Returns(s,a) an empty list for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜
for each episode (forever) do

Generate an episode following 𝜋: 𝑆0, 𝐴0, 𝑅1, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇

for each pair 𝑠, 𝑎 in the episode do

G = G + 𝑅𝑡+1

Append G to the Returns(s,a)

Q(s, a) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑠, 𝑎)
end for

for each 𝑠 in the episode do

𝜋(𝑠) = 𝑎𝑟𝑔𝑎𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)
end for

end for

Another key value based algorithm is the Temporal Difference learning (TD-

Learning). Since it is out of the focus of this thesis describe in deep this family of

algorithms, in this section we will focus on the simplest case of the TD-Learning

family that is the TD(0). The main difference with the Monte Carlo method is that

the TD(0) do not wait until the next episode to update the value function, it just

wait until the next time step. In order to define this concept in a mathematical

way, first we recall that:

𝑉𝜋(𝑠) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠] = E𝜋[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡 + 1)|𝑆𝑡 = 𝑠] .

Now we recall that Monte Carlo methods uses an estimate of E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠] as

target, whereas TD(0) uses exactly the last expression that is E𝜋[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡 +
1)|𝑆𝑡 = 𝑠] as the target, this is called TD-target. Since 𝑉𝜋(𝑆𝑡 + 1) is not known,

to iterate the algorithm we use the best estimate that we have of 𝑉𝜋 which is

𝑉𝑡(𝑆𝑡+1) (the current estimate). One of the most famous TD-learning algorithms

used to approximate the optimal action-value function 𝑄∗ is the Q-learning. The

Q-learning algorithm starts with an arbitrary initial Q-function and repeatedly

updates the Q-function using the current estimate, the observed rewards and

next states. It converges to the optimal Q-function as the number of iterations

increases. The Q-learning uses the concept of Optimal BellMann Equation to build
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Algorithm 3 TD(0) algorithm to estimate 𝑉𝜋

Initialize V(s) for all 𝑠 ∈ 𝒮
Initialize 𝜋(𝑠) for all s ∈ S
for each episode do

Initialize 𝑠0

repeat
𝑎 ∼ 𝜋(𝑎 |𝑠)
Take action a, observe 𝑅𝑡+1 and next state s’
𝑉(𝑠) = 𝑉(𝑠) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑠′) −𝑉(𝑠)]
𝑠 = 𝑠′

until s is final state
end for

the TD-target and therefore the value function update. In particular the Optimal

BelMann equation is defined as follows:

Definition 3.4.2 (Bellmann Optimality Equation). The Bellmann optimality equa-

tion for 𝑄∗ is defined as:

𝑄∗(𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′(𝑄(𝑆𝑡+1, 𝑎
′))|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] .

The Q-function update is defined as:

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎(𝑄(𝑠𝑡+1, 𝑎
′)) −𝑄(𝑠𝑡 , 𝑎𝑡)] .

Algorithm 4 Q-learning

1: Initialize 𝑄(𝑠, 𝑎) arbitrarily for all 𝑠,𝑎

2: repeat

3: Initialize 𝑠

4: repeat

5: Choose 𝑎 from 𝑠 using policy derived from 𝑄 (e.g., 𝜖-greedy)

6: Take action 𝑎, observe 𝑟, 𝑠′

7: 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max𝑎′(𝑄(𝑠′, 𝑎′)) −𝑄(𝑠, 𝑎)]
8: 𝑠 ← 𝑠′

9: until 𝑠 is terminal

10: until convergence

The algorithm we have seen since now can be implemented by constructing

a Q-table which is able to store all the values of every state-action pair (𝑠, 𝑎).
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Nevertheless there exist problems whose state-space and/or action-space are too

large or continuous and therefore them can not be represented in a tabular form.

To deal with these problems one possible solution is to use the universal function

approximator: the neural networks. One popular algorithm for value function

approximation is the Deep Q-Network (DQN) algorithm, which combines Q-

learning with deep neural networks. The DQN algorithm uses a neural network

to approximate the action-value function, denoted as 𝑄(𝑠, 𝑎;𝜃), where 𝜃 are the

parameters of the network. The algorithm updates the network’s parameters by

minimizing the temporal-difference (TD) error between the predicted and target

Q-values.

Algorithm 5 Deep Q-Network (DQN)

1: Initialize replay memory 𝐷 to capacity 𝑁
2: Initialize Q-network with random weights 𝜃
3: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑀 do
4: Initialize state 𝑠1

5: for 𝑡 = 1 to 𝑇 do
6: With probability 𝜖 select a random action 𝑎𝑡 , otherwise select 𝑎𝑡 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎;𝜃)
7: Execute action 𝑎𝑡 in emulator and observe 𝑟𝑡 , 𝑠𝑡+1

8: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷
9: Sample a random minibatch of transitions (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from 𝐷

10: Set 𝑦 𝑗 = 𝑟 𝑗 for terminal 𝑠 𝑗+1

11: 𝑦 𝑗 = 𝑟 𝑗 + 𝛾 max𝑎 𝑄(𝑠 𝑗+1, 𝑎;𝜃𝑡𝑎𝑟𝑔𝑒𝑡) for non-terminal 𝑠 𝑗+1

12: Perform a gradient descent step on (𝑦 𝑗 −𝑄(𝑠 𝑗 , 𝑎 𝑗 ;𝜃))2 with respect to
𝜃

13: Every 𝐶 steps, set 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜃
14: end for
15: end for
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3.4.4 Policy-Based Algorithms

The family of the Policy-Based algorithms is a family of algorithms that finds

its foundation in the idea of directly optimize the policy instead of building a

value function [6] [10]. This approach has several advantages:

• Better convergence properties,

• Effective in high-dimensional or continuous action spaces,

• Can learn stochastic policies.

The main idea on how to improve the policy is to use a set of parameters 𝜽

with the purpose to parameterize the policy 𝜋:

𝜋(𝑎 |𝑠, 𝜽) = P[𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠, 𝜽𝑡 = 𝜽] ,

the next step is to optimize this vector of parameters 𝜽 w.r.t. a cost function 𝐽(𝜽).
In particular the chosen cost function is the following:

𝐽(𝜽) = 𝑉𝜋𝜽
(𝑠0)

where 𝑉𝜋𝜽
is the value function for policy 𝜋𝜽 and 𝑠0 is the starting state.

In order to maximize the cost function 𝐽(𝜽) is used the gradient ascent w.r.t. 𝜽:

∇𝐽(𝜽) = ∇𝑉𝜋𝜽
.

In order to compute this gradient we refer to the fundamental Policy Gradient

Theorem:

Theorem 3.4.2 (Policy Gradient Theorem). The policy gradient theorem for the

episodic case establishes that

∇𝜃𝐽(𝜃) ∝ E𝜏∼𝜋𝜃[
𝑇∑
𝑡=0

∇𝜃 log𝜋𝜃(𝑎𝑡 |𝑠𝑡)𝑄𝜋𝜃(𝑠𝑡 , 𝑎𝑡)] (3.10)

We recall to the reader that:

• ∇𝜃𝐽(𝜃) is the gradient of the expected cumulative reward with respect to
the policy parameters 𝜃

• 𝜋𝜃 is the current policy parameterized by 𝜃

• 𝜏 is a trajectory, which is a sequence of states, actions, and rewards
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• 𝑇 is the length of the trajectory

• 𝑄𝜋𝜃(𝑠𝑡 , 𝑎𝑡) is the expected cumulative reward starting from state 𝑠𝑡 , taking
action 𝑎𝑡 , and following policy 𝜋𝜃 thereafter.

• E𝜏∼𝜋𝜃 denotes the expectation over all possible trajectories generated by
the policy 𝜋𝜃.

From the last theorem (3.4.2) is possible to derive the following quantity:

∇𝜃𝐽(𝜃) ∝ E𝜏∼𝜋𝜃[𝐺𝑡
∇𝜽𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽)
𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽)

] .

Now we can define the rule for the update of the 𝜽 vector:

𝜽𝑡+1 = 𝜽𝑡 + 𝛼𝐺𝑡
∇𝜽𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽)
𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽)

= 𝜽𝑡 + 𝛼𝐺𝑡∇𝜽 𝑙𝑛𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽𝑡)

Now we can define the REINFORCE algorithm that since it uses the complete

return 𝐺 is a Monte Carlo algorithm.

Algorithm 6 REINFORCE : Monte Carlo Policy Gradient

1: Initialize policy parameter 𝜽
2: for each episode do
3: Generate an episode following 𝜋: 𝑆0, 𝐴0, 𝑅1, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇

4: for each step of episode t = 0, . . . , T-1 do
5: 𝐺← return from step 𝑡(𝐺𝑡)
6: 𝜽 = 𝜽𝑡 + 𝛼𝛾𝑡𝐺∇𝜽 𝑙𝑛𝜋(𝐴𝑡 |𝑆𝑡 , 𝜽𝑡)
7: end for
8: end for
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3.4.5 Actor Critic

One problem of the REINFORCE algorithm (Algo.6) is that as all the Monte

Carlo algorithms leads to a high variance. This is due to the fact that trajec-

tories can lead to different returns due to stochasticity of the environment and

stochasticity of the policy, consequently, the same starting state can lead to very

different returns.

A possible solution to this problem relates in the use of the combination of

policy-based and value-based algorithm. This approach is known with the

name of Actor-Critic approach [12].

The main idea under this technique is to use:

• an Actor: it defines and improves the policy𝜋𝜽(𝑠, 𝑎) in order to take actions,

• a Critic: it defines, in function of a set of parameters w, a criterion (for
example a value function) with the purpose to measure how good is the
action taken.

A good criterion in order to both stabilize the learning and provide a good

critic is the Advantage function:

Definition 3.4.3 (Advantage function). The advantage function w.r.t. a policy 𝜋𝜽 is

a measure of the relative value of a particular action compared to the average value of all

actions in a given state:

𝐴𝜋𝜽
(𝑠, 𝑎) = 𝑄𝜋𝜽

(𝑠, 𝑎) −𝑉𝜋𝜽
(𝑠) .

For a true value-function 𝑉𝜋𝜽 the TD-error 𝛿𝜋𝜽
:

𝛿𝜋𝜽
= 𝑅 + 𝛾𝑉𝜋𝜽

(𝑠′) −𝑉𝜋𝜽
(𝑠) ,

is an unbiased estimate of the advantage function:

E[𝛿𝜋𝜽
|𝑠, 𝑎] = E[𝑅 + 𝛾𝑉𝜋𝜽

(𝑠′)|𝑠, 𝑎] −𝑉𝜋𝜽
(𝑠)

= 𝑄𝜋𝜽
(𝑠, 𝑎) −𝑉𝜋𝜽

(𝑠)
= 𝐴𝜋𝜽

(𝑠, 𝑎) ,

so it is possible to use the it to compute the policy gradient:

∇𝜽𝐽(𝜽) = E𝜋[∇𝜃 𝑙𝑛𝜋(𝑎 |𝑠, 𝜽)𝐴𝜋𝜽
] = E𝜋[∇𝜃 𝑙𝑛𝜋(𝑎 |𝑠, 𝜽)𝛿𝜋𝜽

] .
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In practice since we can not know exactly 𝑉𝜋𝜽
, to compute the TD-error we will

use an approximated version of the value function, parameterized by the vector

of parameters w:

𝛿w = 𝑅 + 𝛾�̂�(𝑠′,w) − �̂�(𝑠,w) .

The equation used to update the𝜽 and w vectors of parameters are the following:

𝜽 = 𝜽 + 𝛼𝛿w∇𝜽 𝑙𝑛𝜋(𝑎 |𝑠, 𝜽)
w = w + 𝛼w𝛿w∇w�̂�(𝑠,w)

It is possible to distinguish two main cases: the first one is when the advantage

function is positive, the second one is when the advantage function is negative,

both are analyzed in the following table.

Case Effect

𝐴(𝑠, 𝑎) > 0 The gradient is pushed in its direction

𝐴(𝑠, 𝑎) < 0 The gradient is pushed in its opposite direction

Table 3.1: Effect of the advantage function on the optimization of 𝜽 and v

Algorithm 7 One-Step Actor-Critic (A2C) algorithm

1: Input: a differentiable policy parametrization 𝜋(𝑎 |𝑠, 𝜽)
2: Input: a differentiable state-value function parameterized �̂�(𝑠,w)
3: Parameters: step size 𝛼𝜽, 𝛼w

4: Initialize 𝜽 and w

5: for each episode (forever) do
6: Initialize 𝑆0

7: 𝑆 = 𝑆0

8: I = 1
9: while S is not terminal do

10: 𝐴 ∼ 𝜋(·|𝑆, 𝜽)
11: Take action A, observe S’, R
12: 𝛿 = 𝑅 + 𝛾�̂�(𝑠′,w) − �̂�(𝑠,w)
13: w = w + 𝛼w𝛿w∇w�̂�(𝑠,w)
14: 𝜽 = 𝜽 + 𝛼𝜽𝛿v∇𝜽 𝑙𝑛𝜋(𝑎 |𝑠, 𝜽)
15: 𝐼 = 𝛾𝐼
16: 𝑆 = 𝑆′

17: end while
18: end for
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3.5 Proximal Policy Optimization

3.5.1 Introduction

The Proximal Policy Optimization (PPO) is an algorithm of the policy-based

family. The intuition behind PPO is that we want to improve the training stability

of the policy by limiting the change of the policy at each training epoch, in other

words the purpose is to avoid too large policy updates.

This because of two main reasons:

• smaller policy updates during training are more likely to converge to an
optimal solution,

• a too big step in a policy update can lead to a bad policy from which could
be very hard or even impossible to recover.

In order to avoid large update it is essential to define how much the policy

is changed w.r.t. the former one. To do so a possible way is to use the ratio

between the current and the older policy, then clip it in a range [1 − 𝜖, 1 + 𝜖],
where 𝜖 is a hyperparameter.

3.5.2 Clipped Objective Function

In this subsection we will define the objective function used by the PPO to

build a good policy. To do this in this section we will use a top down approach,

starting by the definition of the objective function and then analyzing every part.

The clipped objective function ([6][17][18][2][10]) is the following:

𝐿𝐶𝐿𝐼𝑃(𝜃) = Ê𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡
ˆ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

ˆ )) .

First of all we define the ratio function that is:

𝑟𝑡(𝜽) =
𝜋𝜃(𝑎𝑡 |𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡 |𝑠𝑡)
.

It represents the "divergence" between the current policy and the former one. In

particular this is a measure of how much is probable to take action 𝑎𝑡 at state 𝑠𝑡

in the current policy w.r.t. the previous one. We highlight two main cases:

• If 𝑟𝑡(𝜽) > 1, means that the action 𝑎𝑡 at state 𝑠𝑡 is more likely in the current
policy than the older policy.
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• If 0 ≤ 𝑟𝑡(𝜽) ≤ 1, means that the action 𝑎𝑡 at state 𝑠𝑡 is less likely for the
current policy than the older one.

Now we take care about the unclipped part of the expectation:

𝐿𝐶𝑃𝐼(𝜽) = Ê[ 𝜋𝜽(𝑎𝑡 |𝑠𝑡)
𝜋𝜽𝑜𝑙𝑑(𝑎𝑡 |𝑠𝑡)

𝐴𝑡] = Ê[𝑟𝑡𝐴𝑡] .

Here we can notice that without a constraint, the maximization of 𝐿𝐶𝑃𝐼 would

lead to an excessively large policy update. Hence we now introduce the second

part of the expectation whose aim is to penalize changes to the policy that move

𝑟𝑡(𝜃) away from 1. Indeed the last part of the clipped objective function is:

𝐿𝐶𝐿 = 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜽), 1 − 𝜖, 1 + 𝜖)𝐴𝑡
ˆ .

This clipped part is a version where 𝑟𝑡(𝜽) is clipped between [1𝜖, 1+ 𝜖]. With the

Clipped Objective function, we have two probability ratios, one non-clipped and

one clipped in a certain range depending on the 𝜖 hyperparameter (by heuristics

𝜖 = 0.2).

Taking the minimum of the clipped and non-clipped objective means we’ll select

either the clipped or the non-clipped objective based on the ratio and advantage

function.

Case 𝑟𝑡(𝜽) > 0 𝐴𝑡 Return Value of 𝑚𝑖𝑛 Objective is clipped Sign of the Objective Gradient

1 𝑟𝑡(𝜽) ∈ [1 − 𝜖, 1 + 𝜖] + 𝑟𝑡(𝜽)𝐴𝑡 no + yes

2 𝑟𝑡(𝜽) ∈ [1 − 𝜖, 1 + 𝜖] - 𝑟𝑡(𝜽)𝐴𝑡 no - yes

3 𝑟𝑡(𝜽) < 1 − 𝜖 + 𝑟𝑡(𝜽)𝐴𝑡 no + yes

4 𝑟𝑡(𝜽) < 1 − 𝜖 - (1 − 𝜖)𝐴𝑡 yes - 0

5 𝑟𝑡(𝜽) > 1 + 𝜖 + (1 + 𝜖)𝐴𝑡 yes + 0

6 𝑟𝑡(𝜽) > 1 + 𝜖 - 𝑟𝑡(𝜽)𝐴𝑡 no - yes

Table 3.2: Behaviour of the clipped objective function

Figure 3.8: 𝐿𝐶𝐿𝐼𝑃 in function of the probability 𝑟𝑡
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Looking to the previous table (Tab. 3.2) we can analyze the behaviour of the

Clipped Objective function. It is possible to split the behaviour in six main cases

divided into three clusters:

• In the first two cases the algorithm does not apply the clipping action since
the ratio is between the range [1 − 𝜖, 1 + 𝜖].

1. Case 1: This case presents 𝐴𝑡 > 0, this implies that the action is
better than the average of all the actions in that state. Therefore the
algorithm should encourage the agent to take that action in that state.
Since 𝑟𝑡(𝜽) ∈ [1 − 𝜖, 1 + 𝜖] the algorithm can increase its policy’s
probability of taking that action at that state.

2. Case 2: This case presents 𝐴𝑡 < 0, this implies that the action is
worse than the average of all the actions in that state. Therefore
the algorithm should discourage the agent to take that action in that
state. Since 𝑟𝑡(𝜽) ∈ [1−𝜖, 1+𝜖] the algorithm can decrease its policy’s
probability of taking that action at that state.

• In the second couple of cases (Case 3 and Case 4) we can notice that the
ratio 𝑟𝑡(𝜽) is out of the range. Specifically the probability ratio is lower
than [1𝜖], this means that the probability of taking that action at that state
is much lower than with the old policy.

3. Case 3: In this case 𝐴𝑡 > 0 then the agent wants to increase the
probability of taking that action at that state.

4. Case 4: In this case 𝐴𝑡 < 0 then the agent does not want to decrease
more the probability of taking that action, therefore the gradient will
be 0. Indeed as we can see by the left plot of fig. 3.8 the function is a
flat line.

• In the last couple of cases (Case 5 and Case 6) we can notice that the ratio
𝑟𝑡(𝜽) is out of bounds either. However in these two cases we see that
𝑟𝑡(𝜽) > 1+ 𝜖 which implies that the probability of taking that action in that
state is much higher in the current policy than in the former one.

5. Case 5: In this case we see that 𝐴𝑡 > 0. This means that the action
selected drives the agent to a higher reward w.r.t. the average one.
Nevertheless we do not want that an agent acts in a too greedy way
since the probability of taking that action in that state is already higher
than the probability in the old policy. To do so the gradient is set to
0 as we can see from the left plot of the figure 3.8.

6. Case 6: In this case we have 𝐴𝑡 < 0 this means that the agent wants to
decrease the probability of taking that action in that state, since the
expected return by taking that action is lower than the average one.
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3.5.3 Cost Function

Since the PPO is implemented as an Actor-Critic method, it is useful to add

to the Clipped Objective function other two cost functions [17]. The first one is

the value loss and it is related to the goodness of the approximation of the target

value function:

𝐿𝑉𝐹(𝜽) = (𝑉𝜋𝜽
−𝑉 𝑡𝑎𝑟𝑔𝑒𝑡)2 .

It is a squared error value loss similar to the one used for the update of the policy

network in the DQN (Algo. 5).The second term added is the "bonus entropy term"

𝑆[𝜋𝜽](𝑠𝑡) that is used to ensure sufficient exploration.

Finally the cost function used to improve the policy is the following:

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆
𝑡 (𝜽) = E𝑡[𝐿𝐶𝐿𝐼𝑃𝑡 (𝜽) − 𝑐1𝐿

𝑉𝐹
𝑡 (𝜽) + 𝑐2𝑆[𝜋𝜽](𝑠𝑡)]

3.5.4 Pseudocode

After this analysis we will exploit the pseudocode of the PPO written in the

actor-critic style [17].

Algorithm 8 PPO Algorithm in Actor Critic style

1: Initialize the actor and critic networks with random weights
2: for iteration = 1 to max_iterations do
3: Collect a batch of N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖 + 1) from the environment
4: Compute the advantage estimates 𝐴𝑖 using the critic network
5: 𝜋𝑜𝑙𝑑 ← actor network’s policy distribution for states 𝑠𝑖
6: for k = 1 to K do
7: 𝜋← actor network’s policy distribution for states 𝑠𝑖
8: Ratio← 𝜋(𝑎𝑖)/𝜋𝑜𝑙𝑑(𝑎𝑖)
9: Loss← -min(𝑅𝑎𝑡𝑖𝑜 ∗ 𝐴𝑖 , 𝑐𝑙𝑖𝑝(𝑅𝑎𝑡𝑖𝑜, 1 − 𝜖, 1 + 𝜖) ∗ 𝐴𝑖)

10: Update the actor network using the loss
11: end for
12: Update the critic network using the Mean Squared Error loss between

the estimated V-values and the actual V-values
13: end for

53





4
Quantum State Stabilization:

A discrete-time framework

4.1 Introduction

In this chapter we will present the model that we are going to use in order to

both train and subsequently test the reinforcement learning agent. We will start

the first section describing the mathematical model that underlines the system

we are going to use. After the formal description in the same section we will

try to extrapolate from the model the main elements to build the reinforcement

learning framework.

The second section will describe the simulated system, highlighting the physical

proprieties, and the matrices which are going to represent the more abstract

concepts introduced in the previous section. In particular in this section we will

put our focus: to the the quantum noises adopted in the simulations, to the

definition of the control Hamiltonian and last but not least to the definition of

the measurement operators.
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4.2 Mathematical Model

In this simulation we consider a quantum system associated with finite

dimension complex Hilbert space. We define 𝜌(𝑡), density operator, as the

state of the system at time 𝑡. In order to describe our model we define the

following notation.

Notation

Name Variable Type Name Variable Type

State of the system at time t 𝜌𝑡 Density Operator Observation of outcome l at time t 𝑜𝑙 ,𝑡 Real Number

Noise 𝒩 Superoperator Control Operation 𝒰𝛽 Superoperator

Noise Kraus matrix 𝑁𝑘 Matrix Unitary matrix 𝑈𝛽 Matrix

Control parameter 𝛽 Complex Number Measurement operator at time t with outcome l 𝑀 𝑙
𝑜𝑙 ,𝑡

Matrix

Quantum operation ℰ𝛽 Superoperator Set of actions 𝐴
𝑙 ,𝛽
𝑜 Seto of Superoperators

Table 4.1: Notation

The following block scheme describes the starting idea of the model.

Figure 4.1: First idea of the model

We can notice that the model is composed by two main parts:

• Quantum operations ℰ𝛽

• Quantum Measurements 𝑀

Regarding the quantum operation, this is the part that leads the state of our

system from 𝜌𝑡 to 𝜌′𝑡 . We can express this relationship via the following Kraus

representation:

𝜌′𝑡 =
∑
𝑘

𝐸
𝛽

𝑘
𝜌𝑡𝐸

𝛽†

𝑘
.

The next step is to design the set of matrices which define the quantum super-

operator: ℰ𝛽 = {𝐸𝛽

1 , . . . , 𝐸
𝛽
𝑛}.

The idea is to define the quantum operation as a combination of two actions: the

noise and the control action. We define𝒩 as the noise and𝒰𝛽 the superoperator

which describes the evolution of the quantum system in function of the control

parameter 𝛽. The noise𝒩 is a superoperator defined by the Kraus operators 𝑁𝑘 :
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𝒩 = {𝑁1, . . . , 𝑁𝑛}.
The unitary matrix𝑈𝛽 = 𝑒−𝑖𝐻𝑐(𝛽), where𝐻𝑐(𝛽) is the control Hamiltonian, defines

the unitary superoperator𝒰𝛽 which is:

𝒰𝛽(𝜌) = 𝑈𝛽𝜌𝑈
†
𝛽 .

Under this considerations we can define the whole quantum operation as fol-

lows:

ℰ𝛽 =𝒰𝛽 ◦ 𝒩 .

From this we get that:

ℰ𝛽 =⇒ {𝐸𝛽

𝑘
= 𝑈𝛽𝑁𝑘 , ∀𝛽, 𝑘} .

If we assume that 𝒰 is independent from the noise 𝒩 we can reinterpret the

previous block scheme splitting the quantum operation block into two different

blocks which are the noise𝒩 and the control𝒰𝛽.

Figure 4.2: Model with split blocks

We define the quantum measurement 𝑀 as the collection {𝑀 𝑙} of measure-

ment operators. Regarding the measurement block, it has two outputs:

• 𝜌𝑡+1, that is the state at time 𝑡 + 1,

• 𝑜𝑙 ,𝑡 , which is the observation outcome 𝑙 measured at time 𝑡.

Both quantities can be obtained by the quantum mechanics postulates. In

particular we know that the observation outcome is ruled by the following result:

𝑝(𝑙)𝑡 = 𝑡𝑟(𝑀†𝑜𝑙,𝑡𝑀𝑜𝑙 ,𝑡𝜌
′
𝑡) .

Once we have the outcome result we can condition the state after the measure-
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ment according to the measurement postulate (post. 2.3.3) which is:

𝜌𝑡+1|𝑜𝑙,𝑡 =
𝑀𝑜𝑙,𝑡𝜌

′
𝑡𝑀
†
𝑜𝑙 ,𝑡

𝑡𝑟(𝑀†𝑜𝑙 ,𝑡𝑀𝑜𝑙,𝑡𝜌
′
𝑡)

.

In the following table we will have a summary of all the main parts of the whole

system.

System

System Part I/O Variable Name of the variable

Input 𝜌𝑡 State of the system at time t
Noise𝒩

Output 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝜌𝑡 |𝒩 State of the system after the noise
Control 𝑈𝛽

Output 𝜌′𝑡 State of the system after the control

Input 𝜌′𝑡 State of the system after the control

Output 𝜌𝑡+1 State of the system at time t+1Measurement 𝑀 𝑙
𝑜𝑙,𝑡

Output 𝑜𝑙 ,𝑡 Outcome l of observation at time t

Table 4.2: System Input/Output Table

Putting together all the three blocks we can compute directly 𝜌𝑡+1, the state

of the system at time 𝑡 + 1.

𝜌𝑡+1 =
𝑀 𝑙

𝑜𝑙,𝑡
𝜌′𝑡𝑀

𝑙†
𝑜𝑙,𝑡

𝑇𝑟(·) =

𝑀 𝑙
𝑜 𝑙,𝑡𝑈𝛽𝒩(𝜌𝑡)𝑈†𝛽𝑀 𝑙†

𝑜𝑙,𝑡

𝑇𝑟(·) .

From this we can define a set of actions that is:

𝒜 𝑙 ,𝛽
= {𝐴𝑙,𝛽

𝑜 = 𝑀 𝑙
𝑜𝑈𝛽} ,

with this last observation we can update our block scheme.

Figure 4.3: Final block scheme

As we can see, putting together the measure and the control blocks, we have
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defined a set of actions. Now since the reward function ℛ(𝑠, 𝑎) is a map from

ℛ : 𝒮 ×𝒜 → R, it is possible to derive from this setup a starting point to define

the reinforcement learning framework.
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4.3 Simulated System

First of all we start by defining the vector space in which our system lives.

In this simulation we consider quantum system that is described inℋ = C3. In

particular we define:

|0⟩ =
©«
1

0

0

ª®®¬
, |1⟩ =

©«
0

1

0

ª®®¬
, |2⟩ =

©«
0

0

1

ª®®¬
,

as the spanning vectors. We defined 𝜌(𝑡), density operator, as the state of the

system at time 𝑡, with 𝑡 ∈ N. The simulated system definition can be split in

three main sub-problems: Noise Definition, Unitary evolution definition and

Definition of the Measurement operators.

4.3.1 Noise Definition

In this section we will define the quantum noises for the qutrit system used

in the simulations. In particular the type of noises adopted are the following:

• Depolarizing Channel

• Damping Channel

• Random Qutrit flip Channel

We start by analyzing the depolarizing channel. As for the qubit case treated in

the section 2.4.3, it consists in replacing, with probability 𝛼 the state 𝜌𝑡 with the

completely mixed state and instead with probability 1 − 𝛼 𝜌𝑡 is left untouched.

The state of the quantum system after this noise is:

𝒩(𝜌) = 𝛼
𝐼

3
+ (1 − 𝛼)𝜌 .

From this notation is easy to see that the 𝛼 parameter is used as an indicator

about the effect of the noise on the evolution of the system.

The second noise we are going to describe is the amplitude damping channel for

a qutrit system. As in explained in section 2.4.3 the amplitude damping channel

reduces the energy of the system due to an interaction with the environment.
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The amplitude damping channel is described by the Kraus representation w.r.t.

the computational basis {|0⟩ , |1⟩ , |2⟩} by the following matrices [9]:

𝑁0 =
©«
1 0 0

0
√

1 − 𝛾1 0

0 0
√

1 − 𝛾2 − 𝛾3

ª®®¬
, 𝑁01 =

©«
0
√
𝛾1 0

0 0 0

0 0 0

ª®®¬
𝑁12 =

©«
0 0 0

0 0
√
𝛾2

0 0 0

ª®®¬
, 𝑁03 =

©«
0 0

√
𝛾3

0 0 0

0 0 0

ª®®¬
,

with the following constraint:




0 ≤ 𝛾𝑖 ≤ 1 ∀𝑖 ∈ {1, 2, 3}
𝛾2 + 𝛾3 ≤ 1

.

It is possible to visualize the effect of this quantum noise in the following figure.

Figure 4.4: Schematic representation of the Amplitude Damping Channel for a
qutrit system

In particular in the simulated model we will choose the 𝛾𝑖 parameters as

follows: 


𝛾1 = 0

𝛾2 + 𝛾3 = 𝛼

𝛾2 = 𝛾3

.

This choice will lead to the definition of the Kraus representation for the noise

superoperator:

𝑁0 =
©«
1 0 0

0 1 0

0 0
√

1 − 𝛼

ª®®¬
, 𝑁12 =

©«
0 0 0

0 0
√

𝛼
2

0 0 0

ª®®¬
, 𝑁03 =

©«
0 0

√
𝛼
2

0 0 0

0 0 0

ª®®¬
,
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Also in this case we can see as the 𝛼 parameter plays an important role in the

simulated system, indeed it represents as before an index regarding the effect of

the noise on the system dynamics.

The third type of noise that we have considered is the random qutrit flip

channel. This type of quantum noise consists into exchange the energy of the

states. In order to describe it for a qutrit system we will use a set of permutation

matrices. In particular we write:

𝑁0 =

√
1 − 2𝛼

3
𝐼 , 𝑁1 =

√
𝛼

3

©«
0 0 1

1 0 0

0 1 0

ª®®¬
, 𝑁2 =

√
𝛼

3

©«
0 1 0

0 0 1

1 0 0

ª®®¬
In this case the parameter 𝛼 as in the depolarizing channel noise defines the

probability of the qutrit system being flipped.

4.3.2 Unitary Evolution

For what concern the control, we choose to implement a impulse control,

with which the evolution of the quantum system is only related to the controlled

Hamiltonian 𝐻𝑐 . In particular we define as unitary evolution matrix:

𝑈𝛽(𝑡) = 𝑒−𝑖𝐻𝑐(𝛽(𝑡)) with 𝛽(𝑡) the control parameter.

Now we define the control Hamiltonian 𝐻𝑐 as:

𝐻𝑐 = 𝑖[𝛽(𝑡)𝑎 − 𝛽(𝑡)∗𝑎†] with 𝛽 : 𝑡 → C and

𝑎 =
©«
0 1 0

0 0 1

0 0 0

ª®®¬
.

At this point we are able to define the unitary superoperator𝒰𝛽(𝜌)which is:

𝒰𝛽(𝜌) = 𝑈𝛽𝜌𝑈
†
𝛽 .
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4.3.3 Definition of the quantum measurement

The measurement operator is defined as a set of matrices that respect the

behaviour of a Kraus operator. The set of matrices is {𝑀0, 𝑀1, 𝑀2} and has to

fulfill the following constraint:

𝐼 =
∑
𝑖=0

𝑀†𝑖 𝑀𝑖

In particular in the simulated system we take into account an "imprecise" version

of the projective measurements [14] presented in the definition 2.2.4. The level

of inaccuracy w.r.t. a projective measurement is represented by the parameter 𝜖.

This type of measurement provides some useful but uncertain information with

the advantage of avoiding the state collapse. In order to represent this concept

we define the following Kraus representation of the quantum measurement:

𝑀†0𝑀0 =
©«
1 − 2𝜖 0 0

0 𝜖 0

0 0 𝜖

ª®®¬
, 𝑀†1𝑀1 =

©«
𝜖 0 0

0 1 − 2𝜖 0

0 0 𝜖

ª®®¬
𝑀†2𝑀2 =

©«
𝜖 0 0

0 𝜖 0

0 0 1 − 2𝜖

ª®®¬
,

from this we can define the set {𝑀0, 𝑀1, 𝑀2} as:

𝑀0 =
©«

√
1 − 2𝜖 0 0

0
√
𝜖 0

0 0
√
𝜖

ª®®¬
, 𝑀1 =

©«

√
𝜖 0 0

0
√

1 − 2𝜖 0

0 0
√
𝜖

ª®®¬
, 𝑀2 =

©«

√
𝜖 0 0

0
√
𝜖 0

0 0
√

1 − 2𝜖

ª®®¬
.

4.4 Control Task

The control problem we want to address consists in find a feedback law based

on the measurements so that 𝛽, the control parameter, can be defined from the

outcomes of the measurements in order to maximize the probability of reaching

the target state |2⟩.

A trivial solution to this problem can be defined in the special case in which

we impose 𝜖 = 0 and 𝛼 = 0. It consists in iterating a projective measurement

and, if the outcome is not the expected one, a control action which is able to

drive the target state probability far from zero. After a certain time it is possible

to prove that this algorithm will converge to the target solution.
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In order to find a policy for more complex problems we try to use the rein-

forcement learning framework.
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5
Simulations

5.1 Introduction

In this chapter, we present the simulation results of a series of experiments

aimed at addressing a complex control problem. The chapter is divided into

three main subsections, each focusing on a different aspect of the experimental

process. In the first subsection, we introduce the control problem at hand,

highlighting its intricacies and the challenges it poses. We discuss the various

approaches that have been taken to address it. In the second subsection, we

present the training results, detailing the steps taken to prepare our models and

the performance metrics used to evaluate them. We describe the various training

algorithms used and the techniques employed to optimize model parameters.

Finally, in the third subsection, we introduce the test results, which provide

an evaluation of our models’ performance under real-world conditions. We

analyze the results and draw conclusions on the efficacy of our approach in

solving the control problem. Overall, this chapter provides a resume of our

experimental process and the results obtained, which can be useful in informing

future research in this area.
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5.2 Simulation Models and Training Results

5.2.1 Introduction to the problem

We introduce the control problem in the following way. Let us define 𝜌0 as

the density matrix at the beginning, time 𝑡 = 0, and 𝜌𝑔𝑜𝑎𝑙 as the target density

matrix that we want to reach. We define 𝑇 as the maximum time in which we

have to reach our target. We define two cases of control problem, which will

influence the initial setup:

• State Transfer

– 𝜌0 Known or Estimated (for example 𝜌0 = 1
𝑁 𝐼)

• Stabilization

– 𝜌0 unknown

The purpose for both cases is to start from 𝜌0 and try to reach the target state

𝜌𝑔𝑜𝑎𝑙 in a maximum of 𝑇 timesteps using the control action 𝛽 which affects the

system dynamics. In all the simulations we will consider as starting density

matrix and target density matrix the following density operators:

𝜌0 =
©«
1 0 0

0 0 0

0 0 0

ª®®¬
, 𝜌𝑔𝑜𝑎𝑙 =

©«
0 0 0

0 0 0

0 0 1

ª®®¬
.

In order to choose the control action 𝛽 we will work with the reinforcement

learning framework. In particular we will develop three main setups:

• MDP

– In this setup we treat the quantum control problem as if it were
a classical reinforcement learning problem. The agent is provided
at each time-step with the state of the environment as if it was fully
observable and a reward computed in function of the state. While this
setup is not physically realizable it provides a reference benchmark
for the model.

• POMDP
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– In this setup we begin to remove some "quantum knowledge" from the
information provided to the agent. In particular we provide to the
agent a new type of state that is different from the natural one, it
receives just the action performed at the previous time-step and the
previous outcome of the measurement. This model is not yet totally
model free since during the training the agent receives a reward that
is computed in function of the state of the environment (in function
of the density operator) and therefore also in this case we need to
exploit some knowledge about the quantum system. Moreover we
want to specify that also in this case due to the reward, also this setup
is not physically implementable.

• QOMDP

– This is the model free setup in which we provide to the agent just
classical information without any knowledge about the dynamic of
the quantum system. Also in this case the state is built as in the
POMDP setup: outcome of the measurement and previous control
action. Further the reward is not computed in function of the state of
the system. We want to highlight that this is the only setup that can
be physically realized.

The main idea is to study and compare the behaviour of these three setups

in order to understand the differences in performance, starting by providing all

the possible information about the system and going further by reducing the

quantity of quantum information about the system until we reach a completely

Model Free framework. At the same time we will delve deeper into the interplay

between the 𝜖 parameter which weights the measurement imprecision and the

𝛼 parameter which corresponds to the amount of noise that affects the system

dynamics.
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5.2.2 Models and Train Results

Training MDP model

First of all we define the block scheme of the simulated model.

Figure 5.1: System Block Scheme

The main blocks of the entire simulated model are summarized in the fol-

lowing table.

System

System Part I/O Variable Name of the variable

Depolarized Channel
Input 𝜌𝑡 State of the system at time t

Output 𝜌𝑡 |𝒩 State of the system after the noise

Reinforcement Learning Agent (PPO)
Input 𝜌𝑡 State of the system at time t

Output 𝛽 Control Action

Unitary Evolution

Input 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝛽 Control Action

Output 𝜌′𝑡 State of the system after the control

Measurement 𝑀 𝑙
𝑜𝑙,𝑡

Input 𝜌′𝑡 State of the system after the control

Output 𝜌𝑡+1 State of the system at time t+1

Output 𝑜𝑙 ,𝑡 Outcome l of observation at time t

Table 5.1: Entire System: Input/Output Table

It is possible to see from both the block scheme (Fig. 5.1) and from the below

table (Table 5.1) that the agent is not aware of the noise, indeed the input fed
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to the agent is "captured" before the noise block. We have chosen to train a

different agent for every value of the parameter 𝜖 which describes how far is the

measurement from a projective measurement. Moreover all the different agents

are trained without the noise. In particular we recall that the noise is weight

by the parameter 𝛼. During all the training session we will fix 𝛼 = 0. Another

key point to set is the definition of the reward function. In this case we will

consider the fidelity. The reward is equal to 0 if the agent has not reached the

target fidelity or the maximum number of timesteps. Whenever one of this two

condition is met the the agent will receive as reward the fidelity. This concept is

better formalized in the following equations:

𝐹(𝜌, 𝜎) = (𝑡𝑟[
√√

𝜌𝜎
√
𝜌])2 .

In particular the reward function is described by the following function:

𝑅(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙 , 𝑑𝑜𝑛𝑒) =



0, if 𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙) ≤ 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 or if not reached maximum timesteps,

𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙), if 𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙) > 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 or if reached maximum timesteps
.

The 𝜖 and 𝛼 values used in the training are summarized in the following table.

Training Parameters Values

𝜖 0.1 0.15 0.175 0.2 0.25 0.3

𝛼 0

Table 5.2: Training Parameters

Regarding the control parameter, we can define the following constraint:

𝛽 ∈ [−1, 1].
The steps in the training are the following:

1. The state 𝜌(𝑡) is fed both to the Reinforcement Learning agent;

2. The agent outputs the control action 𝛽 ;

3. The state evolves according to the unitary operator represented by the
evolution block;

4. We measure the state;

5. We compute the reward accordingly to the fidelity;

6. We compute the loss through the fidelity;
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7. We compute the state at time 𝑡 + 1: 𝜌(𝑡 + 1);

The parameters with which the agent is set up are summarized in the fol-

lowing table.

Parameter Learning Rate Batch Size N_steps Value_func_coeff Entropy_Coeff

Values 1𝑒−4 512 512 0.5 0

Table 5.3: Default PPO hyperparameters

We let the agent learn for timesteps = 50000. In the following plots we can

understand the evolution of the agent’s knowledge.

Figure 5.2: Loss evolution during training
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Figure 5.3: Timesteps evolution in training

We can see from all of the plots that the algorithm is converging or can con-

verge. In the figure (5.3) we can notice that the number of timesteps to reach the

target fidelity is decreasing during the whole training for all the agents, even if

the agent has still reached the target fidelity. This means that the agents want

to find not only the policy that leads the state to the target, but the policy that is

able to reach the target in the fewest steps possible.

In figure (5.2) we can see that during the training all the agents’ loss are decreas-

ing. Just after the training of each agent, we test its behaviour on the training

environment for 100 episodes. For each environment we are going to store the

mean fidelity reached, the fidelity standard deviation, the mean timesteps and

its standard deviation.

All these results are summarized in the following table (5.4).
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Parameters Results

𝜖 𝛼 Fidelity Fidelity Std Timesteps Timesteps Std

0.1 0 0.98 0.01 3.45 1.69

0.15 0 0.97 0.012 5.4 6.65

0.175 0 0.96 0.009 6.05 6.52

0.2 0 0.97 0.014 5.7 6.5

0.25 0 0.97 0.01 36.25 41.65

0.3 0 0.97 0.004 17.95 1.9

Table 5.4: Training Results

As we can see from the above table, in the training environment the various

agents are reaching the fidelity target. Moreover as expected we can see that as

far as the 𝜖 parameter grows, also the timesteps to reach the target grow too.

Training POMDP model

First of all we define the block scheme of the simulated model.

Figure 5.4: System Block Scheme

The main blocks of the entire simulated model are summarized in the fol-

lowing table.
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System

System Part I/O Variable Name of the variable

Input 𝜌𝑡 State of the system at time t
Depolarized Channel

Output 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝛽𝑡−1 Control action at time 𝑡 − 1

Input 𝑜𝑡−1 Observation outcome at time 𝑡 − 1Reinforcement Learning Agent (PPO)

Output 𝛽 Control Action

Input 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝛽 Control ActionUnitary Evolution

Output 𝜌′𝑡 State of the system after the control

Input 𝜌′𝑡 State of the system after the control

Output 𝜌𝑡+1 State of the system at time t+1Measurement 𝑀 𝑙
𝑜𝑙,𝑡

Output 𝑜𝑙 ,𝑡 Outcome l of observation at time t

Table 5.5: Entire System: Input/Output Table

It is possible to see from both the block scheme (Fig. 5.4) and from the below

table (Table 5.5) that the input that we are going to fed to the agent is composed

by the outcome of the measurement at time t (𝑜𝑡) and by the control action

performed at time t (𝛽𝑡). At time 𝑡 = 0 we perform no action 𝛽 = 0, this leads to

have a unitary evolution equal to the identity 𝑈(0) = 𝐼𝑛×𝑛 , then we perform the

measurement. In this way the first state fed to the agent will be always [0, 𝑜𝑡=0]𝑇 .

In this setup, except for the computation of the reward we will never use the

density operator 𝜌. The reward, as for the MDP case is computed accordingly

to the fidelity between 𝜌 and the target state 𝜌𝑔𝑜𝑎𝑙 :

𝐹(𝜌, 𝜎) = (𝑡𝑟[
√√

𝜌𝜎
√
𝜌])2 .

In particular the reward function is described by the following function:

𝑅(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙 , 𝑑𝑜𝑛𝑒) =



0, if 𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙) ≤ 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 or if not reached maximum timesteps,

𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙), if 𝐹(𝜌𝑡 , 𝜌𝑔𝑜𝑎𝑙) > 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 or if reached maximum timesteps
.

As for the MDP case we will train a different agent for every value of the 𝜖

parameter. Moreover all the different agents are trained without the noise. In

particular we recall that the noise is weighted by the parameter 𝛼, so during all

the training session we will fix 𝛼 = 0. The 𝜖 and 𝛼 values used in the training

are summarized in the following table.
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Training Parameters Values

𝜖 0.1 0.15 0.175 0.2 0.25 0.3

𝛼 0

Table 5.6: Training Parameters

Regarding the control parameter, we can define the following constraint:

𝛽 ∈ [−1, 1].
The steps at a generic time t (𝑡 ≠ 0) of the training procedure are the following:

1. The observation performed at time 𝑡 − 1 and the previous control action
𝛽𝑡−1 are fed to the Reinforcement Learning agent

2. The agent outputs the time t control action 𝛽𝑡

3. The state 𝜌𝑡 evolves according to the unitary operator which depends on
𝛽𝑡

4. We measure the state and we get the outcome 𝑜𝑡

5. If the episode is ended we compute the reward accordingly to the fidelity
on the other hand the reward is 0.

6. We compute the loss through the reward obtained

7. We compute the state at time 𝑡 + 1: 𝜌(𝑡 + 1)

The parameters with which the agent is set up are summarized in the fol-

lowing table.

Parameter Learning Rate Batch Size N_steps Value_func_coeff Entropy_Coeff

Values 1𝑒−4 512 512 0.5 0

Table 5.7: Recurrent PPO hyperparameters

We let the agent learn for timesteps = 30000. In the following plots we can

understand the evolution of the agent’s knowledge.
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Figure 5.5: Loss evolution during training

Figure 5.6: Timesteps evolution in training

We can see from all of the plots that the algorithm is converging for most of

the agents. In the figure (5.6) we can notice that the number of timesteps to reach

the target fidelity is decreasing during the whole training for all the agents, even

if the agent has still reached the target fidelity as we can see in table 5.8. This

means that the agents want to find not only the policy that leads the state to the
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target, but the policy that is able to reach the target in the fewest steps possible.

In figure (5.5) we can see that during the training all the agents’ loss are decreas-

ing. Just after the training of each agent, we test its behaviour on the training

environment for 100 episodes. For each environment we are going to store the

mean fidelity reached, the fidelity standard deviation, the mean timesteps and

its standard deviation.

All these results are summarized in the following table (5.8).

Parameters Results

𝜖 𝛼 Fidelity Fidelity Std Timesteps Timesteps Std

0.1 0 0.97 0.01 12.05 12.02

0.15 0 0.97 0.01 9.35 9.24

0.175 0 0.97 0.01 7.40 8.07

0.2 0 0.97 0.01 10.55 4.07

0.25 0 0.97 0.01 16.55 5.73

0.3 0 0.96 0.01 60.15 10.71

Table 5.8: Training Results POMDP setup

As we can see from the above table, we can see that in the training environ-

ment the various agents are reaching the fidelity target.

Train QOMDP agent setup [19][14]

First of all we define the block scheme of the simulated model.

Figure 5.7: System Block Scheme
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The main blocks of the entire simulated model are summarized in the fol-

lowing table.

System

System Part I/O Variable Meaning

Input 𝜌𝑡 State of the system at time t
Depolarized Channel

Output 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝜌𝑡 State of the system at time t

Output 𝛽 Control ActionReinforcement Learning Agent (PPO)

Output Stop Ends the Episode

Input 𝜌𝑡 |𝒩 State of the system after the noise

Input 𝛽 Control ActionUnitary Evolution

Output 𝜌′𝑡 State of the system after the control

Input 𝜌′𝑡 State of the system after the control

Input Stop Perform the last measurement of the episode

Output 𝜌𝑡+1 State of the system at time t+1
Measurement 𝑀 𝑙

𝑜𝑙,𝑡

Output 𝑜𝑙 ,𝑡 Outcome l of observation at time t

Table 5.9: QOMDP: Input/Output Table

It is possible to see from both the block scheme (Fig. 5.7) and from the above

table (Table 5.9) that the input that we are going to fed to the agent is composed

by the outcome of the measurement at time t (𝑜𝑡) and by the control action

performed at time t (𝛽𝑡). At time 𝑡 = 0 we perform no action 𝛽 = 0, 𝑠𝑡𝑜𝑝 = 0,

this leads to have a unitary evolution equal to the identity 𝑈(0) = 𝐼𝑛×𝑛 , then we

perform the measurement. In this way the first state fed to the agent will be

always [0, 𝑜𝑡=0]𝑇 . With the aim of describing this setup for a time 𝑡 ≠ 0 we have

first to introduce a new set of measurement operator. We will call last observation

(𝑜𝑙𝑎𝑠𝑡) the observation that is measured from the set of projective measurements

{𝑀𝑒𝑛𝑑
0 , 𝑀𝑒𝑛𝑑

1 , 𝑀𝑒𝑛𝑑
2 }:

𝑀𝑒𝑛𝑑
0 =


1 0 0

0 0 0

0 0 0


𝑀𝑒𝑛𝑑

1 =


0 0 0

0 1 0

0 0 0


𝑀𝑒𝑛𝑑

2 =


0 0 0

0 0 0

0 0 1


.

Clearly this set of matrices respects the identity condition. The main idea is

that when the agent decide to stop the episode, we perform one last measure-

ment. This last measurement is indeed performed accordingly to the projective
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measurement just described. This leads to a new idea of reward:

𝑅(𝑠𝑡𝑜𝑝, 𝑜𝑙𝑎𝑠𝑡 , 𝑑𝑜𝑛𝑒) =




0, if 𝑠𝑡𝑜𝑝 = 0 and done = False

−1, if 𝑠𝑡𝑜𝑝 = 0 and done = True

𝑟 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑜𝑙𝑎𝑠𝑡), if 𝑠𝑡𝑜𝑝 = 1

,

where for 𝑟 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 we mean the following function:

𝑟 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 : Ω→ {−1,+1}

𝑟 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =



+1, if 𝑜𝑙𝑎𝑠𝑡 correspond to the target state outcome

−1, whatever else

We recall that the probability of the outcome (𝑚) of 𝑜𝑙𝑎𝑠𝑡 is defined by:

𝑝(𝑚) = 𝑇𝑟(𝑀𝑒𝑛𝑑†
𝑚𝑀

𝑒𝑛𝑑
𝑚 𝜌𝑡) with 𝜌𝑡 density operator.

For analysis purposes we will compute and take in memory also the fidelity

(in particular the fidelity with which we will compare the results is computed

when the stop action is performed but before the projective measurement), but

as we can see the agent does not know the state of the quantum system and

moreover the density operator is neither used to compute the reward. Acting in

this way we have built a system that works using the QOMDP formalism. As

for two previous cases we will train a different agent for every value of the 𝜖

parameter. Moreover all the different agents are trained without the noise. In

particular we recall that the noise depends on the parameter 𝛼 , so during all

the training session we will fix 𝛼 = 0. The 𝜖 and 𝛼 values used in the training

are summarized in the following table.

Training Parameters Values

𝜖 0.1 0.15 0.175 0.2 0.25 0.3

𝛼 0

Table 5.10: Training Parameters

Regarding the control parameter, we can define the following constraint:

𝛽 ∈ [−1, 1].
To describe the main steps at a generic time t (𝑡 ≠ 0) of the training procedure
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we have to distinguish two cases:

1. In the timestep 𝑡 − 1 that we are considering the flag 𝑠𝑡𝑜𝑝 = 0

(a) The observation performed at time 𝑡 − 1 and the previous control
action 𝛽𝑡−1 are fed to the Reinforcement Learning agent

(b) The agent outputs the time t control action 𝛽𝑡 and the 𝑠𝑡𝑜𝑝 signal

• if 𝑠𝑡𝑜𝑝 = 1 then we do not perform the action and the following
measurement (we pass directly to the 2nd case of the list)

• if 𝑠𝑡𝑜𝑝 = 0 then we can continue to perform the action

(c) The state 𝜌𝑡 evolves according to the unitary operator which depends
on 𝛽𝑡

(d) We measure the state and we get the outcome 𝑜𝑡

(e) If the episode has not reached the maximum number of timesteps we
return 𝑟𝑒𝑤𝑎𝑟𝑑 = 0

(f) We compute the loss through the reward obtained

(g) We compute the state at time 𝑡 + 1: 𝜌(𝑡 + 1)

2. In the timestep 𝑡 − 1 that we are considering the flag 𝑠𝑡𝑜𝑝 = 1

(a) The last observation 𝑜𝑙𝑎𝑠𝑡 is performed accordingly to the set of ma-

trices {𝑀𝑒𝑛𝑑
0 , 𝑀𝑒𝑛𝑑

1 , 𝑀𝑒𝑛𝑑
2 }

(b) The final reward is computed accordingly to the previous functions.

The parameters with which the agent is set up are summarized in the fol-

lowing table.

Parameter Learning Rate Batch Size N_steps Value_func_coeff Entropy_Coeff

Values 1𝑒−4 512 512 0.5 0

Table 5.11: Recurrent PPO hyperparameters

We let the agent learn for timesteps = 200000. In the following plots we can

understand the evolution of the agent’s knowledge.
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Figure 5.8: Reward evolution in training
Figure 5.9: Timesteps evolution in train-
ing

Figure 5.10: Loss evolution during training

We can see from almost all of the plots that the RL agents are converging in

the reward, timesteps and also in loss. In particular in figure (5.8) we see that all

the agents are converging to a neighbourhood of 1. We recall that in this setup

the reward does not correspond to the fidelity. However from this plot we can

see that the slope of almost all the curves is still a little bit positive, this means

that probably the agents to converge to the optimal or sub-optimal policy could

need some more training steps.

In the figure (5.9) we can notice that the number of timesteps to reach the target

fidelity is not decreasing during the whole training. Instead we can observe that

during the first 30k-40k of training steps the number of timesteps per episode

is increasing, this is a clear sign of exploration. After the 40k of trianing steps

we can see that for almost all the agents the number of timesteps per episode is

decreasing or is stable.
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In figure (5.10) we can see that during the training all the agents’ loss are de-

creasing. For what concern the loss training data for the agent 𝜖 = 0.25, we

can observe that its data ended at training step 120k. This is probably due to

an error of tensorboard, the platform managed to store the data. Just after the

training of each agent, we test its behaviour on the training environment for 100

episodes. For each environment we are going to store the mean fidelity reached,

the fidelity standard deviation, the mean timesteps and its standard deviation.

All these results are summarized in the following table (5.12).

Parameters Results

𝜖 𝛼 Reward Reward Std Timesteps Timesteps Std Fidelity Fidelity Std

0.1 0 1.00 0.00 2.50 1.02 0.97 0.01

0.15 0 1.00 0.00 3.10 1.81 0.96 0.08

0.175 0 1.00 0.00 4.70 3.61 0.96 0.04

0.2 0 1.00 0.00 3.70 2.93 0.93 0.13

0.25 0 1.00 0.00 5.70 2.61 0.95 0.05

0.3 0 1.00 0.00 2.00 0.00 0.96 0.00

Table 5.12: Training Results
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5.3 Test setup

5.3.1 Simulation parameter

First we define the test environment. We recall that during the training the 𝛼

parameter that defines the probability of having noise in the environment was

fixed to zero. During the test the 𝛼 parameter will assume different values, in

this way we will be able to compare the various results in order to identify how

robust are the agents w.r.t. the noise. The 𝛼 and 𝜖 parameters with which the

various agents are tested are the resumed in the following table 5.13.

𝛼

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

𝜖

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 5.13: Test parameters

5.3.2 MDP Test Setup

Figure 5.11: System Block Scheme (MDP)
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As depicted in the table above (table 5.13) we will test the agents for every 𝜖

all and for all the 𝛼 values. In particular for every combination of 𝜖 and 𝛼 we are

going to run 100 simulation. At the end of every simulation we will keep track

of the fidelity/reward value achieved by the agent, another parameter which we

will be stored and analyzed is the number of timesteps to reach the target state.

In this setup we can interpret it as an index of how complex is for the agent solve

the test environment (figure 5.11).

The main difference with the train procedure is that in the test the agent do

not have to compute the reward to calculate the loss. The main steps in the test

are the following:

1. The state 𝜌(𝑡) is fed both to:

• Noise Block,

• Reinforcement Learning agent;

2. At the same time:

• The noise can either change or not the state;

• The agent outputs the control action 𝛽 ;

3. The state evolves according to the unitary operator represented by the
evolution block;

4. We measure the state;

5. We compute the state at time 𝑡 + 1: 𝜌(𝑡 + 1);
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5.3.3 POMDP Test Setup

Figure 5.12: System Block Scheme (POMDP)

As depicted in the table above (table 5.13) we will test for every 𝜖 all the 𝛼

values. In particular for every combination of 𝜖 and 𝛼 we are going to run 100

simulation. At the end of every simulation we will keep track of the fidelity/re-

ward value achieved by the agent, another parameter which we will be stored

and analyzed is the number of timesteps to reach the target state. In this setup

we can interpret it as an index of how complex is for the agent solve the test

environment (figure 5.12).

The main difference with the train procedure is that in the test the agent do

not have to compute the reward to calculate the loss. The main steps (for 𝑡 ≠ 0)

in the test setting are the following:

1. At the same time:

• The observation measured at time 𝑡 − 1 and the control action per-
formed at time 𝑡 − 1, 𝛽𝑡−1, are fed to the Reinforcement Learning
agent;

• The state of the system represented by the density operator 𝜌𝑡 enters
in the noise block;

2. The evolution block receives in input the state of the system 𝜌𝑡 |𝑁𝑜𝑖𝑠𝑒 and
the control action 𝛽𝑡 given in output by the RL agent;
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3. The state 𝜌𝑡 is measured and the observation 𝑜𝑡 is obtained;

4. We obtain the state at time 𝑡 + 1 represented by the density operator 𝜌𝑡+1;

5.3.4 QOMDP Test Setup

Figure 5.13: System Block Scheme (QOMDP)

As depicted in the table above (table 5.13) we will test for every 𝜖 all the 𝛼

values. In particular for every combination of 𝜖 and 𝛼 we are going to run 100

simulation. At the end of every simulation we will keep track of the fidelity, the

reward values achieved by the agent, another parameter which we will be stored

and analyzed is the number of timesteps that the agent chooses to play. In this

setup we can interpret it as an index of how complex is for the agent solve the

test environment (figure 5.13).

The main difference with the train procedure is that in the test the agent do

not have to compute the reward to calculate the loss. The main steps (for 𝑡 ≠ 0)

in the test setting are the following:

1. In the time-step 𝑡 − 1 that we are considering the flag 𝑠𝑡𝑜𝑝 = 0

(a) The observation performed at time 𝑡 − 1 and the previous control
action 𝛽𝑡−1 are fed to the Reinforcement Learning agent;

(b) The agent outputs the time t control action 𝛽𝑡 and the 𝑠𝑡𝑜𝑝 signal;
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• if 𝑠𝑡𝑜𝑝 = 1 then we do not perform the action and the following
measurement (we pass directly to the 2nd case of the list);

• if 𝑠𝑡𝑜𝑝 = 0 then we can continue to perform the action;

(c) The state 𝜌𝑡 evolves according to the unitary operator which depends
on 𝛽𝑡 ;

(d) We measure the state and we get the outcome 𝑜𝑡 ;

(e) We compute the state at time 𝑡 + 1: 𝜌(𝑡 + 1);

2. In the time-step 𝑡 − 1 that we are considering the flag 𝑠𝑡𝑜𝑝 = 1;

(a) The last observation 𝑜𝑙𝑎𝑠𝑡 is performed accordingly to the set of ma-

trices {𝑀𝑒𝑛𝑑
0 , 𝑀𝑒𝑛𝑑

1 , 𝑀𝑒𝑛𝑑
2 } ;

(b) We keep track of the fidelity w.r.t. 𝜌𝑡−1;
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5.4 Simulation Results

5.4.1 Mean Effect of Depolarizing Channel

MDP setup results

In the following plots (Figure 5.14) we can see the reward/fidelity distribu-

tion of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.14: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼 (MDP)

We can notice that as far as the 𝜖 parameter grows, the distribution of the
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fidelity get worst when we test the agent for high 𝛼. Moreover as 𝜖 grows

the minimum 𝛼 with which our agent is able to reach 95% of fidelity decreases.

Another key observation is that for high values of 𝜖 we can notice that the

variance of the fidelity in the worst cases is reduced w.r.t. the same 𝛼 value but

with a less 𝜖. In the following plots (Figure 5.15) we can see the distribution

of the number of timesteps that each agent takes to solve the environment. We

will plot the time-step distribution of every trained agent subject to a certain

quantity of noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.15: Timesteps distribution of different 𝜖 over the noise 𝛼 (MDP)

Looking in general (for almost all 𝛼) to the plot trends we can notice that

to small values of 𝜖 corresponds a fewer number of timesteps. On the other
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hand to high values of 𝜖 correspond a higher number of timesteps. In particular

in the figure (5.15a), where we look to the behaviour of the agent trained with

𝜖 = 0.1 we see that the distribution of the timesteps is very thin and the number

is particularly low for all values of 𝛼 except that for 𝛼 = 1. Taking a look to

figure (5.15c), and comparing this one with the (5.15a) we can clearly see that

the behaviour of the agent for high values of 𝛼 is getting worst, but the variance

of the number of timesteps is high. Looking to the case 𝜖 = 0.3 we can see that

the number of timesteps is still high, but in this case the variance is very low and

for all the values of 𝛼 except for 𝛼 = 0.1 the agent converges to 500 timesteps,

this means that it is not able to solve the environment at any time.

Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Timetseps Heatmap

Figure 5.16: Mean fidelity and timesteps plots (MDP)

Looking to the previous plots we can clearly see how the various agents

behave with the addition of the noise. In particular the heatmaps seem to be

split along the diagonal, indeed in the up-diagonal we find the highest fidelity
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and the lowest number of timesteps. On the other hand in the lowest part of the

heatmaps we find poor fidelities with an high number of timesteps. From figures

(5.16a, 5.16b) we can clearly see that the agent trained with 𝜖 = 0.1 is very robust

to the noise. This robustness tends to decrease as the 𝜖 parameter increases its

value. We can identify the breaking point in terms of noise robustness in the

agent trained with 𝜖 = 0.175, 𝜖 = 0.2. In fact these two agents have very similar

behaviour and are robust to noise until 𝛼 = 0.3. After these two agents we

can clearly see that the performances of the other two are losing in quality in a

significant way.
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POMDP Setup results

In the following plots (Figure 5.17) we can see the reward/fidelity distribu-

tion of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.17: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼
(POMDP)

Exactly as expected the general trend consists in decreasing the performances

by increasing both the 𝜖 and the 𝛼 parameters. Indeed we can notice this

behaviour by comparing figure (5.17a) with figure (5.17d). Looking to the two

plots we can clearly see that for the plot with 𝜖 = 0.1 the fidelity for the values
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of 𝛼 ≤ 0.8 is greater or equal to the target one, but for the other values we can

notice that the performances decrease but the fidelity however a part for 𝛼 = 1,

the performances are still good. Looking to the one with 𝜖 = 0.2 we can see that

the values of 𝛼, for which the fidelity is higher than the fidelity target, are fewer

w.r.t. the ones in 𝜖 = 0.1. Moreover in 𝜖 = 0.2 we can notice that the distribution

of the fidelity for high 𝛼 is more concentrated away from the target fidelity. This

means that increasing the value of 𝜖, for high values of 𝛼, the probability of

having a good fidelity decreases.

In the following plots (Figure 5.18) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

timestep distribution of every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.18: Timesteps distribution of different 𝜖 over the noise 𝛼 (POMDP)
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Looking in general (for almost all 𝛼) to the plot trends we can notice that to

small values of 𝜖 corresponds a fewer number of timesteps on the other hand

to high values of 𝜖 correspond a higher number of timesteps. In particular in

the figure (5.18a), where we look to the behaviour of the agent trained with

𝜖 = 0.1 we see that the distribution of the timesteps is very thin and the number

is particularly low for all values of 𝛼 ≤ 0.8. Taking a look to figure (5.18c), and

comparing this one with the (5.15a) we can clearly see that the behaviour of the

agent for high values of 𝛼 is getting worst, but the variance of the number of

timesteps is higher. Looking to the case 𝜖 = 0.3 we can see that the number of

timesteps is still high, but in this case the variance is very low and for all the

values of 𝛼 except for 𝛼 = 0 the agent converges to 501 timesteps, this means

that it is not able to solve the environment at any time.

Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Timetseps Heatmap

Figure 5.19: Mean fidelity and timesteps plots (POMDP)

Looking to the previous plots we can clearly see how the various agents
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behave with the addition of the noise. In particular the heatmaps seem to be

split along the diagonal, indeed in the up-diagonal we find the highest fidelity

and the lowest number of timesteps. On the other hand in the lowest part of

the heatmaps we find poor fidelities with an high number of timesteps. From

figures (5.19a, 5.19b) we can clearly see that the agent trained with 𝜖 = 0.1 is

robust to the noise. This robustness tends to decrease as the 𝜖 parameter increase

its value. We can identify the breaking point in terms of noise robustness in the

agent trained with 𝜖 = 0.175, 𝜖 = 0.2. In fact these two agents have very similar

behaviour and are robust to noise until 𝛼 = 0.4. After these two agents we

can clearly see that the performances of the other two are losing in quality in a

significant way.
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QOMDP setup

In the following plots (Figure 5.20) we can see the Fidelity distribution of

every agent for different (𝛼) noise parameters.

(a) Fidelity distribution with 𝜖 = 0.1 (b) Fidelity distribution with 𝜖 = 0.15

(c) Fidelity distribution with 𝜖 = 0.175 (d) Fidelity distribution with 𝜖 = 0.2

(e) Fidelity distribution with 𝜖 = 0.25 (f) Fidelity distribution with 𝜖 = 0.3

Figure 5.20: Fidelity distribution of different 𝜖 over the noise 𝛼 (QOMDP)

From the plots in the previous Figure (5.20) we can see that every agent have

a pretty different behaviour when deals with the noise. We start considering the

first plot (Figure 5.20a). In this plot we can notice that the for 𝛼 ∈ {0, 0.1, 0.2, 0.3}
the agent can handle the noise, if we increase more the value of alpha the fidelity

slightly decreases. This result can be justified by the fact that in spite of the noise

the measurement performed with 𝜖 = 0.1 is still a meaningful information,

therefore the agent can handle also the noise. Looking to the Figure (5.20f) we
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can notice that the a high fidelity is mantained only for 𝛼 ∈ {0, 0.1, 0.2} but

even in this cases we can see some episode to which the agent has achieved

a very low fidelity. Moreover if we increase the noise the performances get

worst in a very fast way. This is probably due to the fact that the measure is

not much informative and with the addition of the noise, the system becomes

uncontrollable.

In the following plots (Figure 5.21) we will see the effect of 𝛼 on the reward

distribution for the various agents.

(a) Reward distribution with 𝜖 = 0.1 (b) Reward distribution with 𝜖 = 0.15

(c) Reward distribution with 𝜖 = 0.175 (d) Reward distribution with 𝜖 = 0.2

(e) Reward distribution with 𝜖 = 0.25 (f) Reward distribution with 𝜖 = 0.3

Figure 5.21: Reward distribution of different 𝜖 over the noise 𝛼

In this plots (Figure 5.21) we can clearly see the joint effect of the noise and

the less informative measurements. We start by looking at the plot (Figure 5.21a)
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where we can see that we have for all values of 𝛼, except for the last one, the

reward distribution in +1. Going on, increasing the 𝜖 value we can see that the

values of 𝛼 for which the reward distribution is in +1, decreases. This is clearly an

effect of the impact of the quality of the information carried out by the outcome

measurement. Indeed when we deal with more informative measurements we

have better results also when we deal with the noise, instead when we have less

informative measurements also the noise management gets worst.

In the following plots (Figure 5.22) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

timesteps distribution of every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.22: Timesteps distribution of different 𝜖 over the noise 𝛼 (QOMDP)
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Looking in general (for almost all 𝛼) to the plot trends we can notice that to

small values of 𝜖 corresponds a fewer number of timesteps on the other hand

to high values of 𝜖 correspond a higher number of timesteps. In particular in

the figure (5.22a), where we look to the behaviour of the agent trained with

𝜖 = 0.1 we see that the distribution of the timesteps is very thin and the number

is particularly low for all values of 𝛼 and starts to grow for 𝛼 ∈ {0.7, 0.8, 0.9, 1}.
Taking a look to the other box plots we can confirm this trend of increasing the

number of timesteps for higher values of 𝛼. For 𝜖 = 0.25, 𝜖 = 0.3 we can notice

a strange behaviour: the number of timesteps is 2 for every. This is probably

due to the fact that the agent is not able to generalize and has developed a

deterministic policy.

Last but not least after we are going to analyze the mean values of fidelity, reward

and number of timesteps. In particular we will use two different points of view

to study these values: plots and heatmaps.
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(a) Fidelity w.r.t. noise (b) Fidelity Heatmap

(c) Timestep w.r.t. noise (d) Timetseps Heatmap

(e) Reward w.r.t. noise (f) Reward Heatmap

Figure 5.23: Mean fidelity and timesteps plots (QOMDP)

Looking to the previous plots (Figure 5.23) we can clearly see how the various

agents behave with the addition of the noise. In particular for the fidelity

heatmap (Figure 5.23b) we can localize more light squares on the top left corner,

this highlights that for 𝜖 ∈ {0.1, 0.15, 0.175} and for values of 𝛼 ≤ 0.3 the agents

are able to maintain a good fidelity. Going down in the diagonal from the top

left corner to the right bottom corner we can see that the fidelity decreases a

lot. From figures (5.23a, 5.23e) we can see that the agent trained with 𝜖 = 0.1

is to one more robust to the noise. This robustness tends to decrease as the 𝜖

parameter increase its value.Looking to the behaviour of the agents trained with

high values of 𝜖 (𝜖 = 0.25, 0.3) we can see that them are not able to generalize.
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In the following table we can see compare the different behaviour of the various

agents (for a more complete comparison consult B).

epsilon alpha
MDP POMDP QOMDP

fidelity std fidelity std fidelity std

0.1 0.1 0.98 0.01 0.97 0.01 0.98 0.05

0.1 0.5 0.97 0.01 0.96 0.01 0.91 0.09

0.1 1 0.33 0.33 0.39 0.35 0.8 0.01

0.175 0.1 0.97 0.01 0.97 0.01 0.92 0.09

0.175 0.5 0.85 0.27 0.94 0.13 0.81 0.14

0.175 1 0.30 0.21 0.32 0.22 0.65 0.01

0.3 0.1 0.51 0.27 0.37 0.18 0.90 0.22

0.3 0.5 0.33 0.05 0.32 0.05 0.66 0.33

0.3 1 0.33 0.05 0.33 0.05 0.33 0.04

Table 5.14: Classical version of depolarizing noise comparison Table

As we can see from the previous table it seems with the classical version

of the depolarizing channel the QOMDP setup performs better only when the

noise is very high or we have a big inaccuracy in the measurements. In all

the other cases the MDP or the POMDP setup outclass the Model Free one. In

the next section we will compare these results with the quantum version of the

depolarizing channel in order to see if the behaviour is the same.
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5.4.2 Test with Depolarizing Channel

MDP setup results

In this first section we will present the results for the MDP setup, as explained

in the section 5.3.1, this is the setup where we provide to the maximum amount

of information about the system. In the following plots (Figure 5.24) we can see

the reward/fidelity distribution of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.24: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼 (MDP)

Comparing the previous plots we can see that as long as we increase the
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values of 𝜖 the fidelity get worst and worst. Further starting with small values of

𝜖 we can see that the fidelity values are higher but as long as we increase 𝛼, the

fidelity points become more scattered. Increasing the values of 𝜖 (𝜖 = 0.25, 0.3)

the fidelity points present very low values with a very thin range of variation.

This is an empirical evidence of the fact that increasing the values of 𝜖 and 𝛼 the

problem becomes harder and harder to handle for the agent.

In the following plots (Figure 5.25) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

time-step distribution of every trained agent subject to a certain quantity of noise

𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.25: Timesteps distribution of different 𝜖 over the noise 𝛼 (MDP)
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Looking in general to the plot trends we can notice that the value of 𝛼 with

which the agents reach the time-step saturation gets smaller and smaller. In

particular we can notice that for 𝜖 = 0.1 (figure 5.25a) the saturation of the

time-steps is reached with 𝛼 = 0.4. In the cases of 𝜖 = 0.15, 0.175 (figures 5.25a,

5.25c) we can see that the 𝛼 value with which the agents reach the saturation

corresponds to 𝛼 = 0.2. It is possible to see the transition between the agents

that are able to control a system with some noise that affects the dynamics and

the agent that is not able to control the system with a bit of noise that affects the

dynamics in the figure 5.25d, in which we can see that for 𝜖 = 0.1 the number of

time-steps is distributed between 14 and the saturation (500 time-steps). In the

other two cases i.e. 𝜖 = 0.25, 0.3, we can see that the agents do not saturate only

for 𝛼 = 0, so only in the environment that is not affected by any noise.

Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Time-steps Heatmap

Figure 5.26: Mean fidelity and timesteps plots (MDP)

Looking to the previous plots we can clearly see how the various agents
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behave with the addition of the noise. We start by analyzing the two heatmaps:

figure 5.26c, 5.26d. Comparing these two heatmaps we can see that them are

very similar. In particular to a low number of time-steps corresponds higher

fidelities, on the other hand to high number of time-steps corresponds lower

fidelities. From this we can argue that every time the agents reach the time-

steps saturation, they are not more able to control the system.

Looking to figure 5.24 we see what we expect, indeed the agents that work with

higher values of 𝜖, increasing the amount of noise in the system, behave in a

worst way w.r.t. the agents that work with the same amount of noise but with a

lower 𝜖.

Last but not least we can notice that already with this approach the behaviour

of the agents w.r.t. the one in which we have the effect of the classical version

of depolarizing channel is different, therefore we will not continue to simulate

classical version of quantum noise in order to train the agents.
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POMDP Setup results

In this section we will present the results of the POMDP setup with the

system affected by a depolarizing channel, as explained in the section 5.3.1,in

this setup we start reducing the amount of "quantum information" that we provide

to the agent. In the following plots (Figure 5.27) we can see the reward/fidelity

distribution of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.27: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼
(POMDP)

Comparing the general trend of the previous plots we can see that the trend
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in which the fidelities get worst and worst by increasing 𝜖 and 𝛼 is confirmed. In

this setup w.r.t. the previous one we can see that the fidelities are more scattered.

In particular comparing the plot 5.24a with figure 5.27a it is possible to observe

that the behaviour is similar, but in this setup we have good fidelity with an

acceptable variance just for 𝛼 = 0 and 𝛼 = 0.1. As expected increasing the value

of 𝜖 we can see also in this setup that the performances of the agent get worse

and the range of variation of the fidelity points gets progressively narrower.

In the following plots (Figure 5.28) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

time-step distribution of every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.28: Timesteps distribution of different 𝜖 over the noise 𝛼 (POMDP)
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Looking to the previous plots we can see that these are much like to the ones

in the figure 5.25. In particular we see that the behaviour is very similar, indeed

the only difference is that the 𝛼 value for which the time-steps saturate is lower

with this setup. We notice that the number of time-steps used by the agent with

𝜖 parameter equal to 𝜖 = 0.1 saturates for 𝛼 = 0.2. In this plot we can notice

that for both the non-saturated 𝛼 values and also for the saturated values, we

have a very thin variance. In figure 5.28b we find the turnaround point, indeed

we can see that for 𝛼 = 0.1 we see that the variance has grown, and the time-

step values are distributed from a few time-steps to the saturation value of 500.

Concerning all the other "𝜖-agents" we see that they saturate for every 𝛼 value

different from 0, this means that the agents are not able to reach the target fidelity.

Last but not least after we are going to analyze the mean values of both

the fidelity and the number of timesteps. In particular we will use two different

points of view to study these values: plot of the fidelity in function of 𝛼 parameter

and heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Timetseps Heatmap

Figure 5.29: Mean fidelity and timesteps plots (POMDP)

We start the analysis focusing on the heatmaps (figure 5.29c, 5.29d). From
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these latter is clear that even in this case there is a correspondence between

number of timesteps used and fidelity achieved. In particular we notice that to

a high fidelity corresponds a low number of time-steps and vice versa to a low

fidelity corresponds a high number of time-steps.

From figure 5.29a we can see that when the system is not affected by the noise

every agent is able to achieve a fidelity greater that 95%, instead just the agent

with 𝜖 = 0.1 is able to maintain a good fidelity also for 𝛼 = 0.1. We can clearly

see that for 𝛼 ≥ 0.2 no agent is able to control the system.
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QOMDP setup

In this section we will present the results of the QOMDP setup with the

system affected by a depolarizing channel, as explained in the section 5.3.1, this

is the setup in which we built the Model-Free framework, indeed we recall that

the state of the agent is represented by the previous control action and by the

last observation and the reward is computed in function of the last observation.

In the following plots (Figure 5.30) we can see the Fidelity distribution of every

agent for different (𝛼) noise parameters.

(a) Fidelity distribution with 𝜖 = 0.1 (b) Fidelity distribution with 𝜖 = 0.15

(c) Fidelity distribution with 𝜖 = 0.175 (d) Fidelity distribution with 𝜖 = 0.2

(e) Fidelity distribution with 𝜖 = 0.25 (f) Fidelity distribution with 𝜖 = 0.3

Figure 5.30: Fidelity distribution of different 𝜖 over the noise 𝛼 (QOMDP)

From the plots in the previous Figure (5.30) we can see also in this setup

that as long as we increase the 𝜖 parameter we get worse results as expected,
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indeed since the state depends on the measurement outcomes, increasing the

inaccuracy on the measure will lead to worse fidelities. Comparing the plots

5.30 with the same plot in the previous setup (figures 5.24, 5.27) we can note

that the variance for the higher values of 𝛼 is lower in this setup, moreover even

the fidelity values are higher too. This can be interpreted as an index of higher

robustness to the depolarizing noise of this type of setup w.r.t. the previous

ones.

In the following plots (Figure 5.31) we will see the effect of 𝛼 on the reward

distribution for the various agents.

(a) Reward distribution with 𝜖 = 0.1 (b) Reward distribution with 𝜖 = 0.15

(c) Reward distribution with 𝜖 = 0.175 (d) Reward distribution with 𝜖 = 0.2

(e) Reward distribution with 𝜖 = 0.25 (f) Reward distribution with 𝜖 = 0.3

Figure 5.31: Reward distribution of different 𝜖 over the noise 𝛼

In this plots (Figure 5.31) we can clearly see the joint effect of the noise and
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the less informative measurements. We start by looking at the plot (Figure 5.31a)

where we can see that we have for all values of 𝛼, except for the last one, the

reward distribution is +1. Going on, increasing the 𝜖 value we can see that the

values of 𝛼 for which the reward distribution is in +1, decreases. This is clearly an

effect of the impact of the quality of the information carried out by the outcome

measurement. Indeed when we deal with more informative measurements we

have better results also when we increase the noise, instead when we have less

informative measurements also the noise management gets worse.

In the following plots (Figure 5.32) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

timesteps distribution of every trained agent subject to a certain noise 𝛼. We

recall that in this setup it is the agent itself that has to decide when stop the

control action.
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(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.32: Timesteps distribution of different 𝜖 over the noise 𝛼 (QOMDP)

Comparing these plots to the ones of the previous setups we can clearly note

that the number of control actions performed by this type of agents are very

lower w.r.t. the agents derived from the other setups. A key aspect of this figure

is that if we look carefully at the plots we can see that the number of the control

actions taken as well as its range of variation tend to increase as long as we

increase the 𝛼 parameter (this result is valid for 𝛼 ∈ {0.1, 0.15, 0.175, 0.2}). This

can be seen as an index of the fact that the agent recognize that by increasing

the 𝛼 parameter the problem becomes more complex. For the case related to

the values of 𝛼 = 0.25, 0.3 we can conclude that during the training the agents

were not able to find an adaptive policy and therefore they have chosen a semi-

stochastic one with only two time-steps.
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Last but not least after we are going to analyze the mean values of fidelity, reward

and number of timesteps. In particular we will use two different points of view

to study these values: plots and heatmaps.

(a) Fidelity w.r.t. noise (b) Fidelity Heatmap

(c) Time-step w.r.t. noise (d) Time-steps Heatmap

(e) Reward w.r.t. noise (f) Reward Heatmap

Figure 5.33: Mean fidelity and timesteps plots (QOMDP)

We start the analysis by looking to the fidelity plot and heatmap (figures 5.33a,

5.33b). From these plots we can argue that the behaviour of the fidelity seems

linear and the slope increases as long as the 𝜖 parameter increases. Looking to

the heatmap it is clear that the worst fidelity is on the bottom right corner of

the map instead the best one is on the top left corner, and this result represent

our expectation indeed the performances of the agents get worst as long as we

increase the quantity of noise in the system and increasing the inaccuracy on the
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measurements. In the following table we can find a comparison between some

results of this setup and the previous ones.

epsilon alpha
MDP POMDP QOMDP

fidelity std fidelity std fidelity std

0.1 0.1 0.96 0.01 0.95 0.05 0.94 0.1

0.1 0.5 0.43 0.35 0.35 0.33 0.91 0.01

0.1 1 0.35 0.33 0.39 0.34 0.8 1.37E-16

0.175 0.1 0.95 0.05 0.42 0.34 0.95 0.05

0.175 0.5 0.39 0.24 0.37 0.23 0.84 0.04

0.175 1 0.35 0.22 0.31 0.21 0.65 1.37E-16

0.3 0.1 0.36 0.08 0.32 0.06 0.92 0.01

0.3 0.5 0.33 0.05 0.33 0.04 0.67 0.04

0.3 1 0.32 0.04 0.33 0.04 0.35 0.05

Table 5.15: Depolarizing channel results comparison

From the table 5.15 we can argue that regarding the depolarizing noise the

MDP setup with less noise and for higher values of 𝜖 behaves better than the

other setup, but increasing the value of 𝜖 and adding some noise to affect the

system dynamics, we notice that the best results are always obtained by this last

setup.

By this result and looking also to the trend of the comparison plots of the

various setups present in the Appendix A we can argue that for this type of

noise the QOMDP setup is the more robust setup.

Looking to the time-steps plot we can see that as increasing 𝛼 the number

of timesteps increases too, this behaviour confirms the fact that the agent is

aware about the higher complexity of the problem and tries to deal with it by

increasing the number of control actions.

Regarding the rewards, we can see as expected that by increasing the noise

and the inaccuracy in the measurements the agents obtain always less rewards.
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5.4.3 Test with Damping Channel

MDP setup results

In this first section we will present the results for the MDP setup, as explained

in the section 5.3.1, this is the setup where we provide to the maximum amount

of information about the system.

In the following plots (Figure 5.34) we can see the reward/fidelity distribution

of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.34: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼 (MDP)
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In figure 5.34 we can clearly note that the interplay between the 𝜖 and the 𝛼

parameter is key for the control. Indeed as we can see in the plot 5.34a, where

we have 𝜖 = 0.1 even if by increasing the 𝛼 value the fidelity goes down, the

total decrease is still over the target fidelity of 95%. Nevertheless we note that

with this type of quantum noise as long as we increase 𝜖, the fidelity decreases

for smaller and smaller alpha, moreover the values of the fidelity becomes more

scattered. In the case of the plots 5.34e, 5.34f we can see index of the fact that the

problem becomes very hard to handle since the fidelity is very low, but moreover

also the fidelity points are more concentrated, this means that the agents are not

more able to achieve the target result (95% fidelity) or some result near the target.

In the following plots (Figure 5.35) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

time-step distribution of every trained agent subject to a certain noise 𝛼.
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(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.35: Timesteps distribution of different 𝜖 over the noise 𝛼 (MDP)

In figure 5.35 we can clearly see the effect of the interaction between the 𝜖 and

𝛼 parameters, indeed, as expected, we can notice that increasing the inaccuracy

in the measurement and also the quantity of noise, the total number of time-

steps to achieve the target results grows. Analyzing the plot we can note that the

first big step in which the agents start to perform worse is in the plot 5.35b. In

this plot we can see that the agents start saturating from 𝛼 = 0.8, instead in the

previous plot (5.35a) we can clearly see that the agent is still able to control the

system without saturate the number of available time-steps. From the second

plot onwards the agents start to saturate every time earlier until we reach the

value of 𝜖 = 0.3 in which the agent is able to control the system only without

noise.

117



5.4. SIMULATION RESULTS

Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Time-steps Heatmap

Figure 5.36: Mean fidelity and timesteps plots (MDP)

Looking to the previous plots we can clearly see how the various agents

behave with the addition of the noise. Starting from the heatmaps (figures

5.36c, 5.36d) we can notice that also in this case there is a relationship between

the fidelity and the number of time-steps, indeed in general to a high fidelity

corresponds a low number of time-steps. Looking to the fidelity plot (fig 5.36a)

we can see as expected that the more robust case is the one with the smaller 𝜖,

even if with few quantity of noise (𝛼 ≤ 0.5) we have good results also with the

agents trained with 𝜖 = 0.15, 0.175. Regarding the number of timesteps, we can

see also in this case that as long as the problem becomes more complicated the

number of control action taken in order to achieve the goal increases.
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POMDP Setup results

In this section we will present the results of the POMDP setup with the

system affected by a damping channel, as explained in the section 5.3.1,in this

setup we start reducing the amount of "quantum information" that we provide

to the agent. In the following plots (Figure 5.37) we can see the reward/fidelity

distribution of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.37: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼
(POMDP)

We can see in figure 5.34 that the interaction of the 𝜖 and 𝛼 parameters is
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crucial for the control. In fact, as we can see in the figure 5.37a where we have

𝜖 = 0.1, even if the fidelity decreases as the value of 𝛼 increases, the overall drop

is still greater than the desired fidelity of 95%. Yet, we observe that the fidelity

declines for ever-smaller 𝛼 with this kind of quantum noise as we increase 𝜖,

and the fidelity values also get more dispersed. Due to an extremely low fidelity

and to the concentration of the fidelity points in the plots 5.37e and 5.37f , it is

possible to argue that, as expected, with 𝜖 = 0.25, 0.3 the problem becomes very

hard to solve. In the following plots (Figure 5.38) we can see the distribution of

the number of timesteps that each agent takes to solve the environment. We will

plot the time-steps distribution of every trained agent subject to a certain noise

𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.38: Timesteps distribution of different 𝜖 over the noise 𝛼 (POMDP)
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In figure 5.35 we can clearly see the effect of the interaction between the 𝜖 and

𝛼 parameters, indeed, as expected, we can notice that increasing the inaccuracy

in the measurement and also the quantity of noise, the total number of time-

steps to achieve the target result grows. Analyzing the plot we can note that the

first step in which the agents start to perform worse is in the plot 5.35b. Indeed

in this plot d we can see that the agents start saturating from 𝛼 = 0.7, instead

in the previous plot (5.35a) we can see that the agent is still able to control the

system without saturate the number of available time-steps. We recall that in the

MDP setup the saturation point was at 𝜖 = 0.15, 𝛼 = 0.8. From the second plot

onwards the agents start to saturate every time earlier until we reach the value

of 𝜖 = 0.3 in which the agent is able to control the system only for 𝛼 = 0, 0.1. In

this case we find an improvement w.r.t. the MDP setup in which with 𝜖 = 0.3

was able to control only the system without noise. Last but not least after we

are going to analyze the mean values of both the fidelity and the number of

timesteps. In particular we will use two different points of view to study these

values: plot of the fidelity in function of 𝛼 parameter and heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Timetseps Heatmap

Figure 5.39: Mean fidelity and timesteps plots (POMDP)

Looking to the previous plots we can clearly see how the various agents
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behave with the addition of the noise. In particular the heatmaps seem to be

split along the diagonal, indeed in the up-diagonal we find the highest fidelity

and the lowest number of timesteps. On the other hand in the lowest part of

the heatmaps we find poor fidelities with an high number of timesteps. From

figures (5.39a, 5.39b) we can clearly see that the agent trained with 𝜖 = 0.1 is

robust to the noise. This robustness tends to decrease as the 𝜖 parameter increase

its value. In this plot we can find a very similar behaviour w.r.t. the MDP one

(figure 5.36a), but in this case comparing the various curves we can note that

this setup is more robust to the noise (Appendix A, Damping channel).
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QOMDP setup

In this section we will present the results of the QOMDP setup with the

system affected by a damping channel, as explained in the section 5.3.1, this is

the setup in which we built the Model-Free framework, indeed we recall that the

state of the agent is represented by the previous control action and by the last

observation and the reward is computed in function of the last observation. In

the following plots (Figure 5.40) we can see the Fidelity distribution of every

agent for different (𝛼) noise parameters.

(a) Fidelity distribution with 𝜖 = 0.1 (b) Fidelity distribution with 𝜖 = 0.15

(c) Fidelity distribution with 𝜖 = 0.175 (d) Fidelity distribution with 𝜖 = 0.2

(e) Fidelity distribution with 𝜖 = 0.25 (f) Fidelity distribution with 𝜖 = 0.3

Figure 5.40: Fidelity distribution of different 𝜖 over the noise 𝛼 (QOMDP)

From the plots in the previous Figure (5.40) we can see the evolution of the

agents’ behaviour due to the interaction of different 𝛼 and 𝜖 parameters. Firstly
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we note that as far as the 𝜖 parameter increases the fidelity points becomes

more distributed and also reach lower fidelities. In particular we can see that in

the first plot, the fidelity is greater than 95% and as long as we increase 𝜖, the

fidelity starts to get slightly worse. Then in the plots 5.40e, 5.40f, we notice that

for 𝜖 = 0.25 and 𝜖 = 0.3 the fidelity goes down in a faster way than in all the

other plots. In the following plots (Figure 5.41) we will see the effect of 𝛼 on the

reward distribution for the various agents.

(a) Reward distribution with 𝜖 = 0.1 (b) Reward distribution with 𝜖 = 0.15

(c) Reward distribution with 𝜖 = 0.175 (d) Reward distribution with 𝜖 = 0.2

(e) Reward distribution with 𝜖 = 0.25 (f) Reward distribution with 𝜖 = 0.3

Figure 5.41: Reward distribution of different 𝜖 over the noise 𝛼

In this plots (Figure 5.41) we can observe the joint effect of the noise and the

less informative measurements. In all the plots seems that the increase of the

noise does not affect a lot the reward gathered from the agent, indeed as shown
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the median is always +1.

In the following plots (Figure 5.42) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

timesteps distribution of every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.42: Timesteps distribution of different 𝜖 over the noise 𝛼 (QOMDP)

Looking to the previous plots we can try to understand the relationship

between the number of time-steps and the complexity of the problem. We

start by looking at the first two plots ( figure 5.42a, 5.42b) in which we find a

very similar behaviour with a lot of cases in which the number of time-steps is

between 2 and 4. Focusing on the third plot (figure 5.42c) we can observe as the

number of time-steps starts to grow, probably since the agent starts to recognize
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the increasing of difficulty in reaching the target. In the last three plots we can

notice that the number of time-steps is almost fixed to 3. In the last two cases

this result is probably due to the training in which the agent probably have

converged in a semi-stochastic policy with a fixed number of time-steps. In the

case of 𝜖 = 0.2 we suppose that due to the noise the agent finds the state in a

very improbable configuration and tries to tackle this problem with a quasi-fixed

number of timesteps.

Last but not least after we are going to analyze the mean values of fidelity, reward

and number of timesteps. In particular we will use two different points of view

to study these values: plots and heatmaps.

(a) Fidelity w.r.t. noise (b) Fidelity Heatmap

(c) Timestep w.r.t. noise (d) Timetseps Heatmap

(e) Reward w.r.t. noise (f) Reward Heatmap

Figure 5.43: Mean fidelity and timesteps plots (QOMDP)
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We start the analysis by looking to the fidelity plot and heatmap (figures

5.43a, 5.43b). From the plots we can argue that the behaviour of the fidelity seems

linear and the slope increases as long as the 𝜖 parameter increases. Looking to

the heatmap it is clear that the worst fidelity is on the bottom right corner of

the map instead the best one is on the top left corner, and this result represent

our expectation indeed the performances of the agents get worst as long as we

increase the quantity of noise in the system and increasing the inaccuracy on the

measurements. In the following table we can find a comparison between some

results of this setup and the previous ones.

epsilon alpha
MDP POMDP QOMDP

fidelity std fidelity std fidelity std

0.1 0.1 0.98 0.01 0.97 0.01 0.95 0.04

0.1 0.5 0.97 0.01 0.97 0.01 0.93 0.06

0.1 1 0.96 0.10 0.96 0.01 0.93 0.04

0.175 0.1 0.97 0.01 0.97 0.01 0.93 0.07

0.175 0.5 0.60 0.24 0.80 0.30 0.9 0.07

0.175 1 0.45 0.22 0.36 0.26 0.88 0.08

0.3 0.1 0.30 0.08 0.56 0.36 0.93 0.02

0.3 0.5 0.21 0.05 0.30 0.09 0.90 0.03

0.3 1 0.13 0.04 0.33 0.07 0.83 0.03

Table 5.16: Damping channel results comparison

From the table 5.16 we can argue that regarding the damping channel noise

the MDP and the POMDP setup with less noise and for higher values of 𝜖 be-

haves better than the other setup, but increasing the value of 𝜖 and adding some

noise to affect the system dynamics, we notice that the best results are always

obtained by this last setup.

Looking to the time-steps plot we can see that as increasing 𝛼 the number

of timesteps increases too, this behaviour confirms the fact that the agent is

aware about the higher complexity of the problem and tries to deal with it by

increasing the number of control actions.

127



5.4. SIMULATION RESULTS

By this result and looking also to the trend of the comparison plots of the

various setups present in the Appendix A we can argue that for this type of

noise and for 𝜖 > 0.1 the QOMDP setup is more robust. Instead, as shown in the

comparison plots in the Appendix A, Damping Channel, we can argue that only

for 𝜖 = 0.1 the MDP and the POMDP setups are more robust even if without a

big difference in the fidelity achieved by the QOMDP.
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5.4.4 Test with Random Flip Channel

MDP setup results

In this first section we will present the results for the MDP setup, as explained

in the section 5.3.1, this is the setup where we provide to the maximum amount

of information about the system.

In the following plots (Figure 5.44) we can see the reward/fidelity distribution

of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.44: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼 (MDP)
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Comparing the previous plots we can see that as long as we increase the

values of 𝜖 the fidelity gets worst and worst. We start the analysis from the

first plot (figure 5.44a) in which we can note that the agent is able to achieve

a fidelity greater than 95% with a very thin distribution for 𝛼 ∈ 0, 0.1, 0.2, 0.3.

We observe than that increasing the value of 𝛼 the fidelity points become more

scattered, reaching also low fidelities. We note that in the other plots, as long as

we increase the 𝜖 parameter, the fidelity points present a lower value. In the last

plot (figures 5.44f) we can see that the fidelity points are stacked around a value

of 0.3 with a narrowed range of variation.

In the following plots (Figure 5.45) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

time-step distribution of every trained agent subject to a certain noise 𝛼.
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(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.45: Timesteps distribution of different 𝜖 over the noise 𝛼 (MDP)

Looking to the general trend of all the plots, as expected, we find that as

long as we increase 𝛼, for every 𝜖, the number of time-steps increases too, as

an index of the fact that the problem becomes harder to handle. Starting from

the first plot we can see that we have a very low number of time-steps until the

agent reaches the value of 𝛼 = 0.3. Then we see that for all the other 𝛼 the agent

saturates the number of available time-steps, this can be interpreted as a sign

of the fact that the agent is no more able to reach the target fidelity. As long

as we increase the 𝜖 parameter we note that the value of 𝛼 for which the agent

saturates the number of time-steps becomes smaller and smaller until we reach

the cases defined by 𝜖 = 0.25 and 𝜖 = 0.3 in which the agents can control the

system only without the presence of the noise.
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Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Timesteps Heatmap

Figure 5.46: Mean fidelity and timesteps plots (MDP)

Looking to the previous plots we can clearly see how the various agents

behave with the addition of the noise. In particular also in this case we can

find in the heatmaps an index of the possible connection that there is between

the number of time-steps and the fidelity that the agent is able to achieve. In

particular we see that when the agent achieve high fidelities it never saturates

the available number of time-steps. From figures (5.46a, 5.46b) we can clearly

see that the agent trained with 𝜖 = 0.1 is more robust to the noise w.r.t. the

others, but also that agent it is not able to maintain a good performance for all

the values of 𝛼.
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POMDP Setup results

In this section we will present the results of the POMDP setup with the

system affected by a random flip channel noise, as explained in the section

5.3.1,in this setup we start reducing the amount of "quantum information" that

we provide to the agent. In the following plots (Figure 5.47) we can see the

reward/fidelity distribution of every agent for different (𝛼) noise parameters.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Reward/Fidelity distribution with 𝜖 =

0.175
(d) Reward/Fidelity distribution with 𝜖 =

0.2

(e) Reward/Fidelity distribution with 𝜖 =

0.25
(f) Reward/Fidelity distribution with 𝜖 =

0.3

Figure 5.47: Reward/Fidelity distribution of different 𝜖 over the noise 𝛼
(POMDP)

Exactly as expected, the general trend consists in decreasing the perfor-
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mances by increasing both the 𝜖 and the 𝛼 parameters. Starting from figure

5.37a we can notice that the fidelity points present a high value and are close

only for 𝛼 ≤ 0.1. For all the other values of 𝛼 the results present a points that

becomes more scattered. Looking to the others 𝜖-plots we can notice that the

fidelity goes down and also the points become more concentrated. With 𝜖 = 0.3

in figure 5.47f we can see that the range of variation for all the 𝛼 ≠ 0 is very thin

moreover the fidelity points present a very low fidelity. In the following plots

(Figure 5.48) we can see the distribution of the number of timesteps that each

agent takes to solve the environment. We will plot the time-step distribution of

every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.48: Timesteps distribution of different 𝜖 over the noise 𝛼 (POMDP)
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Looking to the general trend we can clearly see that for higher values of

𝜖 the value of 𝛼 for which the various agents saturate the available timesteps

decreases. In particular we observe the first plot (figure 5.48a) in which the

saturation of the time-steps happens only for 𝛼 = 0.3, but already for 𝜖 = 0.15

we see that the saturation is reached for 𝛼 = 0.2. In the last two cases (figures

5.48e 5.48f) we see that the agents are not able to reach the target for any value

of 𝛼 ≠ 0. Moreover comparing this figure (5.48) with the MDP-one (figure 5.45)

we can identify a very similar behaviour.

Last but not least after we are going to analyze the mean values of both the fidelity

and the number of timesteps. In particular we will use two different points of

view to study these values: plot of the fidelity in function of 𝛼 parameter and

heatmaps.

(a) Reward/Fidelity distribution with 𝜖 =

0.1
(b) Reward/Fidelity distribution with 𝜖 =

0.15

(c) Fidelity Heatmap (d) Time-steps Heatmap

Figure 5.49: Mean fidelity and timesteps plots (POMDP)

We start the analysis focusing on the heatmaps (figure 5.49c, 5.49d). From

these latter is clear that even in this case there is a correspondence between

number of timesteps used and fidelity achieved. Also we notice that to a high

fidelity corresponds a low number of time-steps and vice versa to a low fidelity

corresponds a high number of time-steps.
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From figure 5.49a we can see that when the system is not affected by the noise

every agent is able to achieve a fidelity greater that 95%, instead only the agents

trained with 𝜖 = 0.1 and 𝜖 = 0.15 are able to maintain a good fidelity also for

𝛼 = 0.1. We can clearly see that for 𝛼 ≥ 0.3 no agent is able to control the system.

In summary we can argue that this setup is less robust to the noise w.r.t. the

MDP-one.
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QOMDP setup

In this section we will present the results of the QOMDP setup with the

system affected by a random flip channel, as explained in the section 5.3.1, this

is the setup in which we built the Model-Free framework, indeed we recall that

the state of the agent is represented by the previous control action and by the

last observation and the reward is computed in function of the last observation.

In the following plots (Figure 5.50) we can see the Fidelity distribution of every

agent for different (𝛼) noise parameters.

(a) Fidelity distribution with 𝜖 = 0.1 (b) Fidelity distribution with 𝜖 = 0.15

(c) Fidelity distribution with 𝜖 = 0.175 (d) Fidelity distribution with 𝜖 = 0.2

(e) Fidelity distribution with 𝜖 = 0.25 (f) Fidelity distribution with 𝜖 = 0.3

Figure 5.50: Fidelity distribution of different 𝜖 over the noise 𝛼 (QOMDP)

From the previous figure 5.50 we can observe the effect of the interaction

between the quantity of noise 𝛼 and the inaccuracy in the measurement 𝜖. In
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particular we notice that in the first plot the overall variation of the fidelity

points is lower than the overall variation of the fidelity points in all the other

two setups. As long as we increase the 𝜖 parameter, as expected, it is possible

to notice that the fidelity points for larger 𝛼 tend to decrease. In the following

plots (Figure 5.51) we will see the effect of 𝛼 on the reward distribution for the

various agents.

(a) Reward distribution with 𝜖 = 0.1 (b) Reward distribution with 𝜖 = 0.15

(c) Reward distribution with 𝜖 = 0.175 (d) Reward distribution with 𝜖 = 0.2

(e) Reward distribution with 𝜖 = 0.25 (f) Reward distribution with 𝜖 = 0.3

Figure 5.51: Reward distribution of different 𝜖 over the noise 𝛼

In this plots (Figure 5.51) we can clearly see the joint effect of the noise

and the less informative measurements on the reward dynamics. We start by

looking at the plot (Figure 5.51a) where we can see that for all the values of 𝛼,

the median of the reward distribution is in +1. Going on, increasing the 𝜖 value
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we can see that the values of 𝛼 for which the reward distribution is concentrated

in +1, decreases, in fact the variation starts to grow. This is clearly an effect

of the impact of the quality of the information carried out by the outcome

measurement. Indeed when we deal with more informative measurements we

have better results even under a higher amount of noise, instead when we have

less informative measurements and we add some noise, the reward values get

worse.

In the following plots (Figure 5.52) we can see the distribution of the number

of timesteps that each agent takes to solve the environment. We will plot the

timesteps distribution of every trained agent subject to a certain noise 𝛼.

(a) Timesteps distribution with 𝜖 = 0.1 (b) Timesteps distribution with 𝜖 = 0.15

(c) Timesteps distribution with 𝜖 = 0.175 (d) Timesteps distribution with 𝜖 = 0.2

(e) Timesteps distribution with 𝜖 = 0.25 (f) Timesteps distribution with 𝜖 = 0.3

Figure 5.52: Timesteps distribution of different 𝜖 over the noise 𝛼 (QOMDP)
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Looking to the plots in the figures 5.52a, 5.52b, 5.22c, we can observe that as

in the previous setups we find a higher number of time-steps for high values of

𝛼. This can be seen as an index of the fact that the agent is able to recognize

the increased difficulty in the control problem and moreover is able to adapt

its policy in order to deal with this further difficulty. Another key aspect of

this setup is that w.r.t. the previous ones we can see that the total number of

time-steps used by the agent to solve the problem is lower.

Last but not least after we are going to analyze the mean values of fidelity, reward

and number of timesteps. In particular we will use two different points of view

to study these values: plots and heatmaps.

(a) Fidelity w.r.t. noise (b) Fidelity Heatmap

(c) Time-steps w.r.t. noise (d) Time-steps Heatmap

(e) Reward w.r.t. noise (f) Reward Heatmap

Figure 5.53: Mean fidelity and timesteps plots (QOMDP)
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We start the analysis by looking to the fidelity plot and heatmap (figures

5.53a, 5.53b). From the plots we can argue that the behaviour of the fidelity seems

linear and the slope increases as long as the 𝜖 parameter increases. Looking to

the heatmap it is clear that the worst fidelity is on the bottom right corner of

the map instead the best one is on the top left corner, and this result represent

our expectation indeed the performances of the agents get worst as long as we

increase the quantity of noise in the system and increasing the inaccuracy on the

measurements. In the following table we can find a comparison between some

results of this setup and the previous ones.

epsilon alpha
MDP POMDP QOMDP

fidelity std fidelity std fidelity std

0.1 0.1 0.97 0.01 0.96 0.01 0.92 0.10

0.1 0.5 0.53 0.35 0.35 0.34 0.87 0.05

0.1 1 0.31 0.32 0.32 0.32 0.79 0.07

0.175 0.1 0.96 0.01 0.58 0.38 0.87 0.14

0.175 0.5 0.40 0.26 0.32 0.20 0.76 0.012

0.175 1 0.34 0.23 0.33 0.22 0.60 0.15

0.3 0.1 0.35 0.1 0.34 0.09 0.88 0.02

0.3 0.5 0.34 0.05 0.33 0.08 0.63 0.04

0.3 1 0.34 0.05 0.34 0.05 0.34 0.04

Table 5.17: Random Flip channel results comparison

From the table 5.17 we can argue that regarding the depolarizing noise the

MDP and the POMDP setup with less noise and for higher values of 𝜖 behaves

better than the other setup, but increasing the value of 𝜖 and adding some noise

to affect the system dynamics, we notice that the best results are always obtained

by this last setup.

By this result and looking also to the trend of the comparison plots of the

various setups present in the Appendix A section Random Flip Channel we can

argue that for this type of noise the QOMDP setup is the more robust setup.
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Looking to the time-steps plot we can see that as increasing 𝛼 the number

of timesteps increases too, this behaviour confirms the fact that the agent is

aware about the higher complexity of the problem and tries to deal with it by

increasing the number of control actions.
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Conclusions and Future Works

6.1 Conclusions

This thesis work aimed to build and study a model-free reinforcement learn-

ing framework for robust quantum feedback stabilization problems, using a

prototypical three-level system as a testbed system.

The central questions for this research were as follows:

1. Is it possible to devise a model-free reinforcement learning method for
quantum stabilization when the parameters of the model or the dynamics
are not accurately known?

2. How does the interplay between the inaccuracy grade in the measurements
(parameterized by 𝜖) and the amount of noise in the system (parameterized
by 𝛼) affect the performance of the agents?

3. Among the available RL approaches, which one is more robust? How
much the knowledge of the specific quantum dynamics affect the overall
performance?

4. Is there a relationship between the number of control-horizon timesteps
and the control accuracy?

With this purpose in mind we adapt to our setting three methods (MDP,

POMDP, QOMDP) that rely on different levels knowledge of the underlying

dynamics, in order to compare the performance and robustness between the

behaviour of an agent that have access to complete "quantum information" (i.e.
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has access to the full quantum state) and an agent that relies only on the (clas-

sical) measurement output. More in detail, in the first setup (MDP) the agent

is provided at each time-step with the density operator of the system and with

the actual fidelity as reward. In the second setup (POMDP) we provide to the

agent only the outcome of the measurement and the previous control action,

but we keep the reward as for the MDP case. We want to remark that these

methods would be very hard to realize in a realistic physical setup, as they need

precise information about the model parameters and the state to compute (at

least) the current reward, and as such they are used mainly as benchmark for

the QOMDP approach. In opposition, the third setup (QOMDP) is defined us-

ing only the measurement outcomes and the previous control action as the RL

agent’s input, and a reward function based on some measurement’s outcomes.

Since it only employs the classical information extracted from the system to be

controlled, this setup is always realizable and does not need precise knowledge

of the system’s density operator. The last approach was inspired by the one used

in [19], with a key modification: the addition of the stop action which lets the

agent decide when stop the control action in order to evaluate the result via a

dedicated measurement. We trained all the agents without noise and we tested

the performance of the learned controllers with the addition of the noise. In

particular we considered four types of noise: classical version of depolarizing

channel, depolarizing channel, damping channel, random flip channel.

Before having access to the simulation results, we expected that a model

free RL framework (as the QOMDP above) could address the desired task, but

leveraging less information about the system, it would also have significantly

worse performance than the other setups, at least when a good model of the

dynamics was available.

Based on the numerical analysis, the comparison of the three strategy high-

lights a very similar behaviour irrespective of the specific noise model. In fact we

can notice that the MDP and the POMDP approaches perform marginally better

then the QOMDP for small noise perturbation, i.e. low values of 𝛼, but the per-

formances get dramatically worse when we increase such parameter beyond a

given threshold (around 𝛼 ∼ 0.3−0.4). On the other hand the QOMDP method,

while it is slightly outperformed for small values of 𝛼, it achieves significantly

higher fidelities than the other two for larger values of the noise parameter. This
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is clearly shown in the plots in Appendix A, and summarized in the following

heatmaps (figure 6.1). This shows that the model-free QOMDP setup is more

robust to the noise w.r.t. the MDP and POMDP ones. Moreover the addition of

the stop action to the QOMDP setup lets the QOMDP-agents converge quicker

than the agents built with the other two setups, allowing for the learning algo-

rithm to adapt the simulation and control horizon to the intrinsic difficulty of

the problem.
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(a) Depolarizing Channel

(b) Damping Channel

(c) Random Flip Channel

Figure 6.1: Difference between QOMDP and MDP Fidelity Heatmaps
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6.2 Future Work

Although this study has provided some valuable insights into the robustness

associated with the use of reinforcement learning algorithms in order to stabi-

lize a quantum system, there are several limitations that need to be addressed

in future research. Firstly, in this work we only consider a small system. Fu-

ture studies could explore the effect of dimensionality by considering a scalable

system and studying the performance in terms of both robustness and number

of time-steps as functions opf the overall dimension. Secondly, in this research

we only considered PPO-based algorithms in the learning phase. Different re-

inforcement learning algorithms might behave differently, and studying and

comparing the performances of other RL approaches, as well as current state-

of-the-art optimal control algorithms.

In addition to the points above, future research could also explore new di-

rections based on the findings of this study. For instance, it could be interesting

to apply similar RL setups to problems like the one treated in the SOMA [15]

paper. This could lead to new and more efficient methods with respect to exist-

ing open-loop optimal control approaches.

In conclusion, this study has provided some valuable insights about the ro-

bustness of model-free RL methods in the design of feedback control laws for

quantum systems, opening the possibility for significant new developments.

Related research directions, including the ones suggested above, could con-

tribute to a deeper understanding of robust control for quantum systems, and

ultimately, have important implications for the quantum control field in general.
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A
Comparison Plots

A.1 Classical Version of Depolarizing Channel

Figure A.1: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.1
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Figure A.2: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.15

Figure A.3: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.175

Figure A.4: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.2
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Figure A.5: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.25

Figure A.6: MDP. POMDP, QOMDP Classical Depolarizing Noise Comparison
with 𝜖 = 0.30
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A.2 Depolarizing Channel Noise

Figure A.7: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.1

Figure A.8: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.15
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Figure A.9: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.175

Figure A.10: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.2

Figure A.11: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.25
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Figure A.12: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.30
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A.3 Damping Channel Noise

Figure A.13: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 = 0.1

Figure A.14: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 = 0.15

Figure A.15: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 =

0.175
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A.3. DAMPING CHANNEL NOISE

Figure A.16: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 = 0.2

Figure A.17: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 = 0.25

Figure A.18: MDP. POMDP, QOMDP Damping Noise Comparison with 𝜖 = 0.30
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A.4 Random Flip Channel Noise

Figure A.19: MDP. POMDP, QOMDP Random Flip Channel Noise Comparison
with 𝜖 = 0.1

Figure A.20: MDP. POMDP, QOMDP Random Flip Channel Noise Comparison
with 𝜖 = 0.15
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Figure A.21: MDP. POMDP, QOMDP Depolarizing Channel Noise Comparison
with 𝜖 = 0.175

Figure A.22: MDP. POMDP, QOMDP Random Flip Channel Noise Comparison
with 𝜖 = 0.2

Figure A.23: MDP. POMDP, QOMDP Random Flip Channel Noise Comparison
with 𝜖 = 0.25
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Figure A.24: MDP. POMDP, QOMDP Random Flip Channel Noise Comparison
with 𝜖 = 0.30
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B
Results Tables

B.1 Classical Depolarizing Channel

MDP Classic Depolarizing Channel

epsilon alpha reward reward_std timesteps timesteps_std

0,1 0 0,98 0,01 3,76 2,68

0,1 0,1 0,98 0,01 4,34 3,99

0,1 0,2 0,97 0,01 5,26 4,23

0,1 0,3 0,97 0,01 5,17 4,07

0,1 0,4 0,97 0,01 6,87 5,25

0,1 0,5 0,97 0,01 10,15 9,11

0,1 0,6 0,97 0,01 10,12 8,85

0,1 0,7 0,97 0,01 16,07 15,36

0,1 0,8 0,97 0,01 22,68 21,27

0,1 0,9 0,97 0,00 42,66 37,75

0,1 1 0,33 0,33 501,00 0,00

0,15 0 0,97 0,01 4,37 3,73

0,15 0,1 0,97 0,01 8,28 9,53

0,15 0,2 0,97 0,01 12,68 14,44

0,15 0,3 0,97 0,01 18,84 21,18

0,15 0,4 0,96 0,01 34,26 36,24

0,15 0,5 0,96 0,01 62,02 74,80
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Table B.1 continued from previous page

0,15 0,6 0,96 0,01 97,56 92,22

0,15 0,7 0,89 0,20 229,79 173,77

0,15 0,8 0,59 0,37 389,93 164,27

0,15 0,9 0,35 0,28 489,25 63,84

0,15 1 0,28 0,23 501,00 0,00

0,175 0 0,97 0,01 5,07 4,51

0,175 0,1 0,97 0,01 9,72 12,98

0,175 0,2 0,97 0,01 25,65 34,40

0,175 0,3 0,97 0,01 50,31 66,89

0,175 0,4 0,97 0,01 101,08 110,30

0,175 0,5 0,85 0,27 214,20 196,84

0,175 0,6 0,67 0,34 359,44 174,68

0,175 0,7 0,47 0,32 442,06 136,26

0,175 0,8 0,40 0,28 485,13 82,84

0,175 0,9 0,33 0,23 501,00 0,00

0,175 1 0,30 0,21 501,00 0,00

0,2 0 0,98 0,01 5,72 5,78

0,2 0,1 0,98 0,01 15,53 23,21

0,2 0,2 0,97 0,01 39,83 53,19

0,2 0,3 0,97 0,01 80,43 93,08

0,2 0,4 0,92 0,17 165,88 159,89

0,2 0,5 0,76 0,31 279,06 196,60

0,2 0,6 0,58 0,33 392,80 173,41

0,2 0,7 0,42 0,30 454,25 135,95

0,2 0,8 0,39 0,23 485,58 78,47

0,2 0,9 0,34 0,21 501,00 0,00

0,2 1 0,34 0,19 501,00 0,00

0,25 0 0,97 0,01 22,73 30,44

0,25 0,1 0,85 0,23 164,69 216,80

0,25 0,2 0,63 0,29 334,21 229,07

0,25 0,3 0,56 0,31 350,05 227,84

0,25 0,4 0,47 0,27 406,21 195,72

0,25 0,5 0,49 0,27 401,26 199,48

0,25 0,6 0,39 0,19 481,04 97,78
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Table B.1 continued from previous page

0,25 0,7 0,40 0,19 476,07 108,67

0,25 0,8 0,35 0,14 496,01 49,65

0,25 0,9 0,36 0,15 491,02 69,86

0,25 1 0,34 0,12 501,00 0,00

0,3 0 0,96 0,01 17,77 4,93

0,3 0,1 0,52 0,28 391,61 196,82

0,3 0,2 0,36 0,10 496,21 47,66

0,3 0,3 0,34 0,07 501,00 0,00

0,3 0,4 0,34 0,08 501,00 0,00

0,3 0,5 0,33 0,06 501,00 0,00

0,3 0,6 0,34 0,06 501,00 0,00

0,3 0,7 0,33 0,05 501,00 0,00

0,3 0,8 0,34 0,05 501,00 0,00

0,3 0,9 0,34 0,05 501,00 0,00

0,3 1 0,33 0,05 501,00 0,00

Table B.1: MDP Classical version of Depolarizing Channel

POMDP Classical Depolarizing Channel

epsilon alpha reward reward_std timesteps timesteps_std

0,1 0 0,97 0,01 9,30 11,66

0,1 0,1 0,97 0,01 12,79 15,30

0,1 0,2 0,97 0,01 17,69 17,67

0,1 0,3 0,96 0,01 24,66 32,09

0,1 0,4 0,96 0,01 29,06 33,94

0,1 0,5 0,96 0,01 38,35 36,77

0,1 0,6 0,96 0,01 77,20 82,81

0,1 0,7 0,95 0,01 106,13 101,29

0,1 0,8 0,87 0,24 211,39 173,50

0,1 0,9 0,50 0,40 418,26 143,60

0,1 1 0,39 0,35 501,00 0,00

0,15 0 0,97 0,01 10,17 10,09

0,15 0,1 0,97 0,01 11,54 12,05

0,15 0,2 0,97 0,01 19,44 21,67
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Table B.2 continued from previous page

0,15 0,3 0,96 0,01 30,21 31,13

0,15 0,4 0,96 0,01 47,66 52,89

0,15 0,5 0,96 0,01 83,24 67,51

0,15 0,6 0,95 0,08 125,03 122,58

0,15 0,7 0,81 0,30 278,58 176,19

0,15 0,8 0,57 0,37 401,98 159,78

0,15 0,9 0,40 0,31 475,15 85,26

0,15 1 0,33 0,26 501,00 0,00

0,175 0 0,97 0,01 8,46 10,55

0,175 0,1 0,97 0,01 15,11 17,98

0,175 0,2 0,97 0,01 26,62 33,40

0,175 0,3 0,97 0,01 48,52 59,12

0,175 0,4 0,96 0,02 86,98 99,14

0,175 0,5 0,94 0,13 143,44 143,34

0,175 0,6 0,82 0,28 271,16 188,67

0,175 0,7 0,59 0,35 392,48 168,31

0,175 0,8 0,47 0,31 452,72 117,56

0,175 0,9 0,31 0,24 494,20 42,72

0,175 1 0,32 0,22 501,00 0,00

0,2 0 0,98 0,01 10,75 5,01

0,2 0,1 0,97 0,01 21,93 18,46

0,2 0,2 0,97 0,01 40,66 37,55

0,2 0,3 0,97 0,01 67,70 48,33

0,2 0,4 0,95 0,12 145,44 131,19

0,2 0,5 0,88 0,22 198,40 164,46

0,2 0,6 0,73 0,34 313,33 187,24

0,2 0,7 0,58 0,35 399,94 152,67

0,2 0,8 0,46 0,32 441,03 132,11

0,2 0,9 0,32 0,19 500,96 0,40

0,2 1 0,32 0,18 501,00 0,00

0,25 0 0,97 0,01 16,67 11,77

0,25 0,1 0,95 0,11 121,79 122,46

0,25 0,2 0,72 0,31 319,68 182,26

0,25 0,3 0,50 0,31 440,33 122,81
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Table B.2 continued from previous page

0,25 0,4 0,41 0,23 477,18 89,71

0,25 0,5 0,35 0,18 490,72 60,25

0,25 0,6 0,36 0,16 497,75 32,34

0,25 0,7 0,36 0,14 501,00 0,00

0,25 0,8 0,33 0,13 501,00 0,00

0,25 0,9 0,32 0,11 501,00 0,00

0,25 1 0,34 0,12 501,00 0,00

0,3 0 0,96 0,01 67,55 44,47

0,3 0,1 0,37 0,18 496,33 46,27

0,3 0,2 0,33 0,10 501,00 0,00

0,3 0,3 0,35 0,09 501,00 0,00

0,3 0,4 0,33 0,07 501,00 0,00

0,3 0,5 0,32 0,05 501,00 0,00

0,3 0,6 0,33 0,06 501,00 0,00

0,3 0,7 0,34 0,06 501,00 0,00

0,3 0,8 0,33 0,05 501,00 0,00

0,3 0,9 0,33 0,05 501,00 0,00

0,3 1 0,33 0,05 501,00 0,00

Table B.2: POMDP Classical Depolarizing Channel

QOMDP Classical Depolarizing Channel

epsilon alpha reward reward_std timesteps timesteps_std fidelity fidelity_std

0,1 0 0,90 0,44 2,39 0,96 0,96 0,13

0,1 0,1 0,92 0,39 2,41 0,97 0,98 0,05

0,1 0,2 0,90 0,44 2,97 1,65 0,94 0,08

0,1 0,3 0,92 0,39 3,02 1,94 0,94 0,10

0,1 0,4 0,88 0,47 2,82 1,40 0,91 0,12

0,1 0,5 0,84 0,54 2,96 1,59 0,92 0,09

0,1 0,6 0,68 0,73 3,43 1,86 0,88 0,12

0,1 0,7 0,72 0,69 3,17 1,70 0,86 0,11

0,1 0,8 0,80 0,60 3,28 1,84 0,86 0,08

0,1 0,9 0,56 0,83 3,83 2,11 0,83 0,07

0,1 1 0,58 0,81 4,24 2,78 0,80 0,00
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Table B.3 continued from previous page

0,15 0 0,94 0,34 3,21 2,43 0,97 0,10

0,15 0,1 0,86 0,51 3,66 3,31 0,93 0,11

0,15 0,2 0,80 0,60 3,11 2,36 0,92 0,12

0,15 0,3 0,82 0,57 4,17 3,74 0,90 0,12

0,15 0,4 0,82 0,57 4,34 4,21 0,88 0,13

0,15 0,5 0,74 0,67 5,42 6,19 0,83 0,14

0,15 0,6 0,56 0,83 4,64 4,07 0,83 0,13

0,15 0,7 0,40 0,92 6,33 5,82 0,76 0,11

0,15 0,8 0,46 0,89 6,03 5,78 0,76 0,11

0,15 0,9 0,48 0,88 7,01 6,39 0,72 0,07

0,15 1 0,42 0,91 7,51 6,76 0,70 0,00

0,175 0 1,00 0,00 4,38 4,29 0,97 0,04

0,175 0,1 0,92 0,39 3,76 3,52 0,95 0,10

0,175 0,2 0,90 0,44 4,01 3,42 0,93 0,11

0,175 0,3 0,76 0,65 5,50 6,39 0,90 0,13

0,175 0,4 0,70 0,71 6,31 7,28 0,84 0,16

0,175 0,5 0,76 0,65 6,81 8,13 0,82 0,16

0,175 0,6 0,60 0,80 6,41 6,64 0,77 0,16

0,175 0,7 0,56 0,83 7,83 8,57 0,76 0,15

0,175 0,8 0,26 0,97 8,51 8,05 0,71 0,11

0,175 0,9 0,36 0,93 9,88 9,33 0,70 0,11

0,175 1 0,10 0,99 9,30 9,65 0,65 0,00

0,2 0 0,76 0,65 3,53 2,95 0,92 0,10

0,2 0,1 0,82 0,57 3,48 2,92 0,91 0,13

0,2 0,2 0,64 0,77 3,69 3,45 0,84 0,18

0,2 0,3 0,64 0,77 3,45 2,67 0,79 0,21

0,2 0,4 0,44 0,90 3,96 3,33 0,77 0,20

0,2 0,5 0,56 0,83 4,52 3,82 0,74 0,20

0,2 0,6 0,22 0,98 5,76 4,87 0,66 0,17

0,2 0,7 0,20 0,98 4,58 3,80 0,67 0,15

0,2 0,8 0,32 0,95 4,84 4,54 0,63 0,18

0,2 0,9 0,28 0,96 5,24 4,70 0,60 0,14

0,2 1 0,24 0,97 6,29 5,43 0,57 0,10

0,25 0 0,94 0,34 2,00 0,00 0,98 0,01
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0,25 0,1 0,86 0,51 2,00 0,00 0,91 0,22

0,25 0,2 0,66 0,75 2,00 0,00 0,86 0,25

0,25 0,3 0,58 0,81 2,00 0,00 0,78 0,31

0,25 0,4 0,46 0,89 2,00 0,00 0,72 0,34

0,25 0,5 0,32 0,95 2,00 0,00 0,67 0,33

0,25 0,6 0,20 0,98 2,00 0,00 0,60 0,34

0,25 0,7 0,18 0,98 2,00 0,00 0,54 0,33

0,25 0,8 -0,12 0,99 2,00 0,00 0,43 0,26

0,25 0,9 -0,26 0,97 2,00 0,00 0,41 0,23

0,25 1 -0,28 0,96 2,00 0,00 0,35 0,12

0,3 0 0,98 0,20 2,00 0,00 0,99 0,00

0,3 0,1 0,80 0,60 2,00 0,00 0,90 0,22

0,3 0,2 0,78 0,63 2,00 0,00 0,87 0,25

0,3 0,3 0,64 0,77 2,00 0,00 0,81 0,29

0,3 0,4 0,30 0,95 2,00 0,00 0,66 0,33

0,3 0,5 0,38 0,92 2,00 0,00 0,66 0,33

0,3 0,6 0,34 0,94 2,00 0,00 0,66 0,33

0,3 0,7 -0,12 0,99 2,00 0,00 0,47 0,27

0,3 0,8 -0,02 1,00 2,00 0,00 0,45 0,25

0,3 0,9 -0,10 0,99 2,00 0,00 0,42 0,23

0,3 1 -0,44 0,90 2,00 0,00 0,33 0,04

Table B.3: QOMDP Classical version of Depolarizing Channel

B.2 Depolarizing Channel

MDP Depolarizing Channel

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,98 0,01 4,02 3,21

0,1 0,1 0,96 0,01 5,63 5,25

0,1 0,2 0,97 0,01 12,78 11,10

0,1 0,3 0,96 0,00 22,46 21,25

0,1 0,4 0,41 0,36 501,00 0,00

0,1 0,5 0,43 0,36 501,00 0,00
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Table B.4 continued from previous page

0,1 0,6 0,36 0,34 501,00 0,00

0,1 0,7 0,34 0,33 501,00 0,00

0,1 0,8 0,34 0,33 501,00 0,00

0,1 0,9 0,40 0,35 501,00 0,00

0,1 1 0,35 0,34 501,00 0,00

0,15 0 0,98 0,01 4,23 4,51

0,15 0,1 0,96 0,01 31,86 29,63

0,15 0,2 0,52 0,34 477,14 95,30

0,15 0,3 0,45 0,30 501,00 0,00

0,15 0,4 0,47 0,29 501,00 0,00

0,15 0,5 0,39 0,28 501,00 0,00

0,15 0,6 0,41 0,28 501,00 0,00

0,15 0,7 0,37 0,28 501,00 0,00

0,15 0,8 0,39 0,27 501,00 0,00

0,15 0,9 0,35 0,26 501,00 0,00

0,15 1 0,32 0,25 501,00 0,00

0,175 0 0,97 0,01 5,24 4,40

0,175 0,1 0,96 0,01 27,68 36,35

0,175 0,2 0,44 0,28 501,00 0,00

0,175 0,3 0,40 0,26 501,00 0,00

0,175 0,4 0,38 0,25 501,00 0,00

0,175 0,5 0,39 0,24 501,00 0,00

0,175 0,6 0,33 0,23 501,00 0,00

0,175 0,7 0,30 0,21 501,00 0,00

0,175 0,8 0,36 0,23 501,00 0,00

0,175 0,9 0,31 0,21 501,00 0,00

0,175 1 0,35 0,23 501,00 0,00

0,2 0 0,98 0,02 6,98 10,04

0,2 0,1 0,81 0,27 291,93 180,88

0,2 0,2 0,46 0,25 501,00 0,00

0,2 0,3 0,42 0,24 501,00 0,00

0,2 0,4 0,44 0,22 501,00 0,00

0,2 0,5 0,41 0,22 501,00 0,00

0,2 0,6 0,37 0,21 501,00 0,00
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0,2 0,7 0,34 0,19 501,00 0,00

0,2 0,8 0,35 0,20 501,00 0,00

0,2 0,9 0,35 0,19 501,00 0,00

0,2 1 0,31 0,18 501,00 0,00

0,25 0 0,98 0,01 4,36 9,11

0,25 0,1 0,41 0,20 501,00 0,00

0,25 0,2 0,37 0,16 501,00 0,00

0,25 0,3 0,35 0,14 501,00 0,00

0,25 0,4 0,36 0,13 501,00 0,00

0,25 0,5 0,33 0,12 501,00 0,00

0,25 0,6 0,35 0,12 501,00 0,00

0,25 0,7 0,34 0,12 501,00 0,00

0,25 0,8 0,33 0,12 501,00 0,00

0,25 0,9 0,34 0,12 501,00 0,00

0,25 1 0,34 0,12 501,00 0,00

0,3 0 0,97 0,01 3,36 1,98

0,3 0,1 0,36 0,09 501,00 0,00

0,3 0,2 0,34 0,06 501,00 0,00

0,3 0,3 0,34 0,05 501,00 0,00

0,3 0,4 0,33 0,05 501,00 0,00

0,3 0,5 0,33 0,05 501,00 0,00

0,3 0,6 0,33 0,05 501,00 0,00

0,3 0,7 0,34 0,05 501,00 0,00

0,3 0,8 0,33 0,05 501,00 0,00

0,3 0,9 0,34 0,05 501,00 0,00

0,3 1 0,33 0,04 501,00 0,00

Table B.4: MDP Depolarizing Channel

POMDP Depolarizing Channel

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,98 0,01 6,64 7,54

0,1 0,1 0,96 0,01 19,52 27,01

0,1 0,2 0,35 0,34 501,00 0,00
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Table B.5 continued from previous page

0,1 0,3 0,36 0,35 501,00 0,00

0,1 0,4 0,29 0,31 501,00 0,00

0,1 0,5 0,35 0,34 501,00 0,00

0,1 0,6 0,29 0,32 501,00 0,00

0,1 0,7 0,31 0,32 501,00 0,00

0,1 0,8 0,33 0,33 501,00 0,00

0,1 0,9 0,36 0,34 501,00 0,00

0,1 1 0,39 0,34 501,00 0,00

0,15 0 0,97 0,01 8,62 11,62

0,15 0,1 0,81 0,30 244,99 198,78

0,15 0,2 0,38 0,30 501,00 0,00

0,15 0,3 0,33 0,26 501,00 0,00

0,15 0,4 0,33 0,26 501,00 0,00

0,15 0,5 0,37 0,27 501,00 0,00

0,15 0,6 0,34 0,27 501,00 0,00

0,15 0,7 0,32 0,25 501,00 0,00

0,15 0,8 0,33 0,26 501,00 0,00

0,15 0,9 0,35 0,27 501,00 0,00

0,15 1 0,36 0,27 501,00 0,00

0,175 0 0,97 0,01 10,99 14,08

0,175 0,1 0,43 0,34 426,15 178,18

0,175 0,2 0,33 0,24 501,00 0,00

0,175 0,3 0,38 0,26 501,00 0,00

0,175 0,4 0,33 0,23 501,00 0,00

0,175 0,5 0,37 0,24 501,00 0,00

0,175 0,6 0,36 0,24 501,00 0,00

0,175 0,7 0,33 0,23 501,00 0,00

0,175 0,8 0,35 0,23 501,00 0,00

0,175 0,9 0,39 0,24 501,00 0,00

0,175 1 0,31 0,22 501,00 0,00

0,2 0 0,98 0,01 15,79 24,38

0,2 0,1 0,37 0,26 501,00 0,00

0,2 0,2 0,32 0,21 501,00 0,00

0,2 0,3 0,30 0,19 501,00 0,00
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0,2 0,4 0,32 0,19 501,00 0,00

0,2 0,5 0,36 0,20 501,00 0,00

0,2 0,6 0,35 0,19 501,00 0,00

0,2 0,7 0,34 0,20 501,00 0,00

0,2 0,8 0,35 0,19 501,00 0,00

0,2 0,9 0,33 0,19 501,00 0,00

0,2 1 0,30 0,18 501,00 0,00

0,25 0 0,98 0,01 15,52 32,83

0,25 0,1 0,31 0,16 501,00 0,00

0,25 0,2 0,33 0,14 501,00 0,00

0,25 0,3 0,34 0,13 501,00 0,00

0,25 0,4 0,34 0,13 501,00 0,00

0,25 0,5 0,32 0,12 501,00 0,00

0,25 0,6 0,34 0,12 501,00 0,00

0,25 0,7 0,33 0,12 501,00 0,00

0,25 0,8 0,34 0,12 501,00 0,00

0,25 0,9 0,33 0,12 501,00 0,00

0,25 1 0,34 0,12 501,00 0,00

0,3 0 0,97 0,01 6,66 6,23

0,3 0,1 0,33 0,06 501,00 0,00

0,3 0,2 0,34 0,06 501,00 0,00

0,3 0,3 0,34 0,06 501,00 0,00

0,3 0,4 0,33 0,05 501,00 0,00

0,3 0,5 0,33 0,05 501,00 0,00

0,3 0,6 0,34 0,05 501,00 0,00

0,3 0,7 0,35 0,05 501,00 0,00

0,3 0,8 0,34 0,05 501,00 0,00

0,3 0,9 0,33 0,05 501,00 0,00

0,3 1 0,33 0,05 501,00 0,00

Table B.5: POMDP Depolarizing Channel

QOMDP Depolarizing Channel

epsilon alpha reward reward_std timesteps timesteps_std fidelity fidelity_std
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Table B.6 continued from previous page

0,1 0 0,73 0,68 2,53 0,81 0,91 0,15

0,1 0,1 0,87 0,50 2,73 2,24 0,92 0,10

0,1 0,2 0,60 0,80 5,00 5,39 0,92 0,07

0,1 0,3 0,73 0,68 3,67 3,05 0,91 0,06

0,1 0,4 0,60 0,80 5,53 8,06 0,89 0,07

0,1 0,5 0,33 0,94 5,67 6,13 0,91 0,01

0,1 0,6 0,87 0,50 5,47 4,51 0,88 0,03

0,1 0,7 0,60 0,80 5,60 4,87 0,87 0,01

0,1 0,8 0,60 0,80 5,00 4,63 0,85 0,01

0,1 0,9 0,87 0,50 9,13 10,03 0,82 0,01

0,1 1 0,33 0,94 9,40 12,45 0,80 0,00

0,15 0 1,00 0,00 4,73 4,91 0,98 0,03

0,15 0,1 0,87 0,50 3,27 2,89 0,97 0,04

0,15 0,2 0,73 0,68 2,67 1,19 0,91 0,10

0,15 0,3 0,73 0,68 5,33 6,11 0,89 0,09

0,15 0,4 0,73 0,68 3,73 2,52 0,87 0,08

0,15 0,5 0,60 0,80 6,67 4,63 0,83 0,07

0,15 0,6 1,00 0,00 3,40 2,30 0,84 0,04

0,15 0,7 0,47 0,88 4,27 4,01 0,81 0,05

0,15 0,8 0,73 0,68 3,93 3,36 0,77 0,04

0,15 0,9 0,33 0,94 5,67 4,01 0,73 0,02

0,15 1 0,33 0,94 5,40 4,53 0,70 0,00

0,175 0 1,00 0,00 2,47 0,88 0,99 0,03

0,175 0,1 0,87 0,50 4,60 4,05 0,95 0,04

0,175 0,2 0,87 0,50 7,47 10,39 0,92 0,04

0,175 0,3 0,60 0,80 3,60 3,72 0,91 0,05

0,175 0,4 1,00 0,00 3,67 2,98 0,88 0,04

0,175 0,5 0,73 0,68 7,93 7,55 0,84 0,04

0,175 0,6 0,73 0,68 9,07 11,99 0,80 0,04

0,175 0,7 0,33 0,94 13,40 11,35 0,76 0,03

0,175 0,8 0,60 0,80 7,13 9,35 0,74 0,03

0,175 0,9 0,73 0,68 9,27 10,07 0,69 0,02

0,175 1 0,47 0,88 3,47 3,03 0,65 0,00

0,2 0 0,87 0,50 2,67 1,49 0,94 0,07
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0,2 0,1 1,00 0,00 3,80 3,67 0,89 0,09

0,2 0,2 0,87 0,50 3,87 3,26 0,85 0,11

0,2 0,3 0,73 0,68 3,27 2,11 0,84 0,11

0,2 0,4 0,47 0,88 7,13 8,79 0,74 0,09

0,2 0,5 0,73 0,68 3,20 1,87 0,74 0,13

0,2 0,6 0,47 0,88 6,73 7,75 0,70 0,12

0,2 0,7 0,20 0,98 5,60 5,25 0,60 0,12

0,2 0,8 0,07 1,00 4,93 3,59 0,65 0,06

0,2 0,9 0,07 1,00 3,87 2,55 0,53 0,14

0,2 1 -0,20 0,98 3,87 3,16 0,55 0,14

0,25 0 1,00 0,00 2,00 0,00 0,99 0,01

0,25 0,1 1,00 0,00 2,00 0,00 0,93 0,04

0,25 0,2 0,47 0,88 2,00 0,00 0,83 0,06

0,25 0,3 0,47 0,88 2,00 0,00 0,80 0,08

0,25 0,4 0,33 0,94 2,00 0,00 0,73 0,10

0,25 0,5 -0,20 0,98 2,00 0,00 0,65 0,11

0,25 0,6 -0,20 0,98 2,00 0,00 0,61 0,13

0,25 0,7 0,07 1,00 2,00 0,00 0,55 0,13

0,25 0,8 -0,20 0,98 2,00 0,00 0,45 0,13

0,25 0,9 0,07 1,00 2,00 0,00 0,38 0,12

0,25 1 -0,47 0,88 2,00 0,00 0,33 0,12

0,3 0 1,00 0,00 2,00 0,00 0,99 0,00

0,3 0,1 0,87 0,50 2,00 0,00 0,92 0,01

0,3 0,2 0,33 0,94 2,00 0,00 0,86 0,02

0,3 0,3 0,47 0,88 2,00 0,00 0,81 0,03

0,3 0,4 0,33 0,94 2,00 0,00 0,72 0,03

0,3 0,5 0,07 1,00 2,00 0,00 0,66 0,05

0,3 0,6 0,47 0,88 2,00 0,00 0,60 0,05

0,3 0,7 -0,20 0,98 2,00 0,00 0,52 0,05

0,3 0,8 -0,07 1,00 2,00 0,00 0,47 0,05

0,3 0,9 -0,20 0,98 2,00 0,00 0,40 0,05

0,3 1 -0,33 0,94 2,00 0,00 0,35 0,05

Table B.6: QOMDP Depolarizing Channel
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B.3. DAMPING CHANNEL

B.3 Damping Channel

MDP Damping

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,98 0,01 3,25 2,74

0,1 0,1 0,98 0,01 3,61 2,98

0,1 0,2 0,97 0,01 4,62 4,44

0,1 0,3 0,97 0,01 5,77 6,50

0,1 0,4 0,97 0,01 5,45 6,33

0,1 0,5 0,96 0,01 15,06 24,46

0,1 0,6 0,96 0,01 16,13 27,29

0,1 0,7 0,96 0,01 19,98 32,97

0,1 0,8 0,96 0,01 29,03 47,27

0,1 0,9 0,96 0,01 58,47 97,39

0,1 1 0,96 0,00 51,63 75,67

0,15 0 0,97 0,01 5,30 4,93

0,15 0,1 0,97 0,01 8,01 8,69

0,15 0,2 0,97 0,01 15,94 25,35

0,15 0,3 0,93 0,16 105,03 156,97

0,15 0,4 0,89 0,23 167,82 200,03

0,15 0,5 0,72 0,33 240,40 238,58

0,15 0,6 0,70 0,34 279,28 246,62

0,15 0,7 0,70 0,33 266,52 249,00

0,15 0,8 0,57 0,35 376,29 216,00

0,15 0,9 0,59 0,33 411,18 191,71

0,15 1 0,45 0,30 501,00 0,00

0,175 0 0,98 0,01 5,92 5,92

0,175 0,1 0,97 0,01 13,13 21,73

0,175 0,2 0,95 0,11 67,51 114,69

0,175 0,3 0,72 0,29 315,45 236,80

0,175 0,4 0,73 0,30 250,12 248,35

0,175 0,5 0,69 0,32 286,48 246,99

0,175 0,6 0,70 0,33 231,54 248,70

0,175 0,7 0,50 0,32 421,16 182,94
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0,175 0,8 0,48 0,31 421,16 182,94

0,175 0,9 0,52 0,31 421,16 182,94

0,175 1 0,49 0,27 501,00 0,00

0,2 0 0,98 0,01 6,05 7,34

0,2 0,1 0,96 0,01 36,52 56,27

0,2 0,2 0,78 0,28 241,75 238,76

0,2 0,3 0,65 0,33 295,89 240,37

0,2 0,4 0,61 0,32 326,35 238,01

0,2 0,5 0,46 0,27 441,12 162,16

0,2 0,6 0,47 0,30 426,15 178,18

0,2 0,7 0,45 0,27 436,13 167,82

0,2 0,8 0,51 0,30 411,18 191,71

0,2 0,9 0,34 0,24 501,00 0,00

0,2 1 0,35 0,22 501,00 0,00

0,25 0 0,97 0,01 18,86 49,58

0,25 0,1 0,60 0,34 286,43 247,04

0,25 0,2 0,54 0,35 316,37 240,92

0,25 0,3 0,53 0,36 311,38 242,21

0,25 0,4 0,35 0,25 441,12 162,16

0,25 0,5 0,36 0,29 421,16 182,94

0,25 0,6 0,26 0,14 501,00 0,00

0,25 0,7 0,26 0,14 501,00 0,00

0,25 0,8 0,20 0,12 501,00 0,00

0,25 0,9 0,23 0,14 501,00 0,00

0,25 1 0,24 0,15 501,00 0,00

0,3 0 0,96 0,01 28,82 49,88

0,3 0,1 0,28 0,14 501,00 0,00

0,3 0,2 0,25 0,09 501,00 0,00

0,3 0,3 0,24 0,09 501,00 0,00

0,3 0,4 0,23 0,08 501,00 0,00

0,3 0,5 0,21 0,08 501,00 0,00

0,3 0,6 0,18 0,06 501,00 0,00

0,3 0,7 0,18 0,05 501,00 0,00

0,3 0,8 0,15 0,05 501,00 0,00
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Table B.7 continued from previous page

0,3 0,9 0,13 0,04 501,00 0,00

0,3 1 0,12 0,04 501,00 0,00

Table B.7: MDP Damping Channel

POMDP Damping

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,97 0,01 7,50 8,43

0,1 0,1 0,97 0,01 7,76 9,56

0,1 0,2 0,97 0,01 8,76 10,98

0,1 0,3 0,97 0,01 7,70 10,96

0,1 0,4 0,97 0,01 9,10 11,03

0,1 0,5 0,97 0,01 8,29 12,86

0,1 0,6 0,97 0,01 13,26 20,48

0,1 0,7 0,96 0,01 18,17 28,02

0,1 0,8 0,96 0,01 15,71 28,14

0,1 0,9 0,96 0,00 16,94 22,12

0,1 1 0,96 0,00 21,82 35,37

0,15 0 0,98 0,01 12,15 18,26

0,15 0,1 0,97 0,01 15,93 21,63

0,15 0,2 0,97 0,01 14,20 20,14

0,15 0,3 0,97 0,01 18,06 30,07

0,15 0,4 0,97 0,01 41,23 60,93

0,15 0,5 0,96 0,01 49,12 78,70

0,15 0,6 0,95 0,08 63,56 101,91

0,15 0,7 0,85 0,26 164,38 202,35

0,15 0,8 0,51 0,37 401,26 199,48

0,15 0,9 0,49 0,36 406,19 195,76

0,15 1 0,35 0,30 501,00 0,00

0,175 0 0,97 0,01 10,59 14,00

0,175 0,1 0,97 0,01 17,89 30,05

0,175 0,2 0,96 0,01 26,41 43,29

0,175 0,3 0,96 0,09 51,46 99,88

0,175 0,4 0,94 0,11 107,43 152,13
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Table B.8 continued from previous page

0,175 0,5 0,81 0,30 186,10 217,66

0,175 0,6 0,60 0,36 311,38 242,21

0,175 0,7 0,45 0,34 416,17 187,44

0,175 0,8 0,44 0,32 426,15 178,18

0,175 0,9 0,43 0,33 411,18 191,71

0,175 1 0,36 0,26 501,00 0,00

0,2 0 0,98 0,01 12,72 20,79

0,2 0,1 0,97 0,01 35,15 57,46

0,2 0,2 0,95 0,09 79,37 124,15

0,2 0,3 0,83 0,29 194,24 212,57

0,2 0,4 0,63 0,36 287,23 239,12

0,2 0,5 0,45 0,33 411,18 191,71

0,2 0,6 0,47 0,34 401,20 199,60

0,2 0,7 0,45 0,34 391,22 206,71

0,2 0,8 0,45 0,33 411,18 191,71

0,2 0,9 0,38 0,26 501,00 0,00

0,2 1 0,35 0,22 501,00 0,00

0,25 0 0,98 0,01 16,35 31,42

0,25 0,1 0,83 0,30 184,57 214,06

0,25 0,2 0,58 0,37 294,34 244,45

0,25 0,3 0,52 0,36 336,33 234,64

0,25 0,4 0,40 0,29 426,15 178,18

0,25 0,5 0,36 0,25 456,09 142,80

0,25 0,6 0,38 0,25 451,10 149,70

0,25 0,7 0,33 0,16 501,00 0,00

0,25 0,8 0,33 0,16 501,00 0,00

0,25 0,9 0,32 0,16 501,00 0,00

0,25 1 0,34 0,16 501,00 0,00

0,3 0 0,97 0,01 8,16 12,13

0,3 0,1 0,56 0,36 291,42 246,29

0,3 0,2 0,41 0,30 391,22 206,71

0,3 0,3 0,38 0,26 426,15 178,18

0,3 0,4 0,30 0,08 501,00 0,00

0,3 0,5 0,30 0,09 501,00 0,00
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Table B.8 continued from previous page

0,3 0,6 0,31 0,07 501,00 0,00

0,3 0,7 0,31 0,07 501,00 0,00

0,3 0,8 0,32 0,07 501,00 0,00

0,3 0,9 0,33 0,06 501,00 0,00

0,3 1 0,33 0,07 501,00 0,00

Table B.8: POMDP Damping Channel

QOMDP Damping Channel

epsilon alpha reward reward_std timesteps timesteps_std fidelity fidelity_std

0,1 0 0,96 0,28 3,57 1,15 0,95 0,04

0,1 0,1 0,86 0,51 3,79 1,32 0,93 0,06

0,1 0,2 0,92 0,39 3,93 1,51 0,94 0,05

0,1 0,3 0,82 0,57 3,77 1,15 0,93 0,07

0,1 0,4 0,92 0,39 3,81 1,45 0,94 0,05

0,1 0,5 0,88 0,47 3,81 1,49 0,93 0,06

0,1 0,6 0,92 0,39 4,02 1,66 0,93 0,06

0,1 0,7 0,78 0,63 3,87 1,67 0,92 0,07

0,1 0,8 0,84 0,54 3,76 1,62 0,92 0,06

0,1 0,9 0,92 0,39 3,90 1,73 0,93 0,05

0,1 1 0,82 0,57 3,70 1,10 0,91 0,07

0,15 0 0,82 0,57 4,09 2,12 0,90 0,12

0,15 0,1 0,78 0,63 3,80 1,86 0,92 0,10

0,15 0,2 0,80 0,60 4,40 2,40 0,90 0,10

0,15 0,3 0,84 0,54 3,79 1,72 0,90 0,08

0,15 0,4 0,86 0,51 3,82 1,97 0,93 0,07

0,15 0,5 0,78 0,63 3,71 1,57 0,90 0,10

0,15 0,6 0,88 0,47 4,06 2,08 0,87 0,14

0,15 0,7 0,88 0,47 3,81 1,90 0,90 0,09

0,15 0,8 0,84 0,54 3,77 1,95 0,90 0,09

0,15 0,9 0,78 0,63 3,90 2,09 0,89 0,09

0,15 1 0,78 0,63 3,93 1,65 0,89 0,08

0,175 0 0,76 0,65 4,45 2,94 0,92 0,10

0,175 0,1 0,86 0,51 4,84 4,18 0,93 0,07
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0,175 0,2 0,62 0,78 5,32 4,31 0,91 0,08

0,175 0,3 0,82 0,57 5,25 3,75 0,90 0,10

0,175 0,4 0,76 0,65 6,04 4,76 0,89 0,09

0,175 0,5 0,78 0,63 5,76 4,48 0,89 0,08

0,175 0,6 0,74 0,67 5,17 4,21 0,90 0,09

0,175 0,7 0,80 0,60 5,41 4,30 0,88 0,11

0,175 0,8 0,80 0,60 4,71 3,35 0,88 0,08

0,175 0,9 0,78 0,63 5,44 4,06 0,88 0,08

0,175 1 0,68 0,73 4,89 3,39 0,88 0,07

0,2 0 0,84 0,54 3,21 0,60 0,92 0,09

0,2 0,1 0,80 0,60 3,35 0,95 0,91 0,11

0,2 0,2 0,78 0,63 3,23 0,56 0,88 0,12

0,2 0,3 0,82 0,57 3,18 0,88 0,89 0,08

0,2 0,4 0,86 0,51 3,18 0,57 0,88 0,11

0,2 0,5 0,78 0,63 3,12 0,41 0,89 0,09

0,2 0,6 0,72 0,69 3,29 0,62 0,85 0,13

0,2 0,7 0,64 0,77 3,30 0,91 0,85 0,12

0,2 0,8 0,72 0,69 3,19 0,64 0,84 0,14

0,2 0,9 0,60 0,80 3,19 0,50 0,83 0,12

0,2 1 0,76 0,65 3,29 0,62 0,82 0,13

0,25 0 0,84 0,54 3,00 0,00 0,93 0,06

0,25 0,1 0,86 0,51 3,00 0,00 0,92 0,06

0,25 0,2 0,80 0,60 3,00 0,00 0,91 0,06

0,25 0,3 0,70 0,71 3,00 0,00 0,90 0,06

0,25 0,4 0,74 0,67 3,00 0,00 0,90 0,06

0,25 0,5 0,76 0,65 3,00 0,00 0,90 0,06

0,25 0,6 0,62 0,78 3,00 0,00 0,86 0,08

0,25 0,7 0,72 0,69 3,00 0,00 0,86 0,08

0,25 0,8 0,68 0,73 3,00 0,00 0,86 0,07

0,25 0,9 0,68 0,73 3,00 0,00 0,83 0,09

0,25 1 0,68 0,73 3,00 0,00 0,82 0,08

0,3 0 0,84 0,54 3,00 0,00 0,95 0,02

0,3 0,1 0,90 0,44 3,00 0,00 0,94 0,02

0,3 0,2 0,96 0,28 3,00 0,00 0,93 0,02
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Table B.9 continued from previous page

0,3 0,3 0,84 0,54 3,00 0,00 0,92 0,02

0,3 0,4 0,86 0,51 3,00 0,00 0,92 0,02

0,3 0,5 0,82 0,57 3,00 0,00 0,90 0,03

0,3 0,6 0,86 0,51 3,00 0,00 0,89 0,03

0,3 0,7 0,76 0,65 3,00 0,00 0,88 0,03

0,3 0,8 0,72 0,69 3,00 0,00 0,86 0,03

0,3 0,9 0,70 0,71 3,00 0,00 0,85 0,03

0,3 1 0,66 0,75 3,00 0,00 0,83 0,03

Table B.9: QOMDP Damping Channel
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B.4 Random Flip Channel

MDP Random Flip Channel

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,98 0,01 3,80 3,22

0,1 0,1 0,97 0,01 4,49 3,74

0,1 0,2 0,96 0,01 5,10 4,18

0,1 0,3 0,95 0,00 13,88 14,21

0,1 0,4 0,46 0,35 501,00 0,00

0,1 0,5 0,54 0,36 501,00 0,00

0,1 0,6 0,37 0,34 501,00 0,00

0,1 0,7 0,45 0,35 501,00 0,00

0,1 0,8 0,38 0,35 501,00 0,00

0,1 0,9 0,36 0,34 501,00 0,00

0,1 1 0,32 0,32 501,00 0,00

0,15 0 0,97 0,01 4,89 4,22

0,15 0,1 0,96 0,01 10,07 13,93

0,15 0,2 0,49 0,32 501,00 0,00

0,15 0,3 0,52 0,29 501,00 0,00

0,15 0,4 0,45 0,29 501,00 0,00

0,15 0,5 0,39 0,27 501,00 0,00

0,15 0,6 0,44 0,29 501,00 0,00

0,15 0,7 0,43 0,28 501,00 0,00

0,15 0,8 0,33 0,25 501,00 0,00

0,15 0,9 0,34 0,26 501,00 0,00

0,15 1 0,32 0,25 501,00 0,00

0,175 0 0,98 0,01 5,04 4,48

0,175 0,1 0,96 0,01 32,08 44,61

0,175 0,2 0,51 0,27 501,00 0,00

0,175 0,3 0,43 0,25 501,00 0,00

0,175 0,4 0,41 0,26 501,00 0,00

0,175 0,5 0,40 0,25 501,00 0,00

0,175 0,6 0,44 0,24 501,00 0,00

0,175 0,7 0,42 0,24 501,00 0,00
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Table B.10 continued from previous page

0,175 0,8 0,41 0,25 501,00 0,00

0,175 0,9 0,36 0,23 501,00 0,00

0,175 1 0,34 0,23 501,00 0,00

0,2 0 0,98 0,01 5,10 5,79

0,2 0,1 0,95 0,03 112,26 113,83

0,2 0,2 0,46 0,23 501,00 0,00

0,2 0,3 0,43 0,22 501,00 0,00

0,2 0,4 0,46 0,22 501,00 0,00

0,2 0,5 0,42 0,21 501,00 0,00

0,2 0,6 0,40 0,20 501,00 0,00

0,2 0,7 0,38 0,20 501,00 0,00

0,2 0,8 0,37 0,20 501,00 0,00

0,2 0,9 0,31 0,18 501,00 0,00

0,2 1 0,35 0,19 501,00 0,00

0,25 0 0,97 0,01 23,26 57,76

0,25 0,1 0,44 0,14 501,00 0,00

0,25 0,2 0,45 0,17 501,00 0,00

0,25 0,3 0,40 0,12 501,00 0,00

0,25 0,4 0,39 0,14 501,00 0,00

0,25 0,5 0,39 0,14 501,00 0,00

0,25 0,6 0,37 0,12 501,00 0,00

0,25 0,7 0,36 0,13 501,00 0,00

0,25 0,8 0,36 0,12 501,00 0,00

0,25 0,9 0,33 0,12 501,00 0,00

0,25 1 0,33 0,12 501,00 0,00

0,3 0 0,96 0,01 26,14 43,20

0,3 0,1 0,34 0,10 501,00 0,00

0,3 0,2 0,33 0,07 501,00 0,00

0,3 0,3 0,33 0,06 501,00 0,00

0,3 0,4 0,34 0,06 501,00 0,00

0,3 0,5 0,34 0,05 501,00 0,00

0,3 0,6 0,33 0,05 501,00 0,00

0,3 0,7 0,33 0,05 501,00 0,00

0,3 0,8 0,33 0,05 501,00 0,00
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Table B.10 continued from previous page

0,3 0,9 0,33 0,05 501,00 0,00

0,3 1 0,34 0,05 501,00 0,00

Table B.10: MDP Random Flip Channel

POMDP Random Flip Channel

epsilon alpha fidelity fidelity_std timesteps timesteps_std

0,1 0 0,97 0,01 8,58 11,16

0,1 0,1 0,96 0,01 13,65 17,52

0,1 0,2 0,66 0,39 390,92 152,68

0,1 0,3 0,31 0,33 501,00 0,00

0,1 0,4 0,29 0,32 501,00 0,00

0,1 0,5 0,35 0,34 501,00 0,00

0,1 0,6 0,36 0,34 501,00 0,00

0,1 0,7 0,37 0,34 501,00 0,00

0,1 0,8 0,32 0,33 501,00 0,00

0,1 0,9 0,35 0,33 501,00 0,00

0,1 1 0,32 0,32 501,00 0,00

0,15 0 0,98 0,01 9,61 10,63

0,15 0,1 0,96 0,01 38,47 54,50

0,15 0,2 0,35 0,31 501,00 0,00

0,15 0,3 0,27 0,27 501,00 0,00

0,15 0,4 0,34 0,28 501,00 0,00

0,15 0,5 0,33 0,26 501,00 0,00

0,15 0,6 0,33 0,26 501,00 0,00

0,15 0,7 0,28 0,24 501,00 0,00

0,15 0,8 0,34 0,26 501,00 0,00

0,15 0,9 0,34 0,26 501,00 0,00

0,15 1 0,32 0,25 501,00 0,00

0,175 0 0,97 0,01 11,96 16,55

0,175 0,1 0,58 0,38 362,58 194,25

0,175 0,2 0,37 0,25 501,00 0,00

0,175 0,3 0,33 0,24 501,00 0,00

0,175 0,4 0,33 0,23 501,00 0,00
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0,175 0,5 0,32 0,22 501,00 0,00

0,175 0,6 0,33 0,23 501,00 0,00

0,175 0,7 0,31 0,22 501,00 0,00

0,175 0,8 0,37 0,23 501,00 0,00

0,175 0,9 0,31 0,22 501,00 0,00

0,175 1 0,33 0,22 501,00 0,00

0,2 0 0,98 0,01 9,71 15,21

0,2 0,1 0,60 0,37 316,46 218,12

0,2 0,2 0,32 0,23 501,00 0,00

0,2 0,3 0,31 0,21 501,00 0,00

0,2 0,4 0,33 0,22 501,00 0,00

0,2 0,5 0,34 0,20 501,00 0,00

0,2 0,6 0,33 0,20 501,00 0,00

0,2 0,7 0,31 0,18 501,00 0,00

0,2 0,8 0,31 0,18 501,00 0,00

0,2 0,9 0,36 0,20 501,00 0,00

0,2 1 0,38 0,20 501,00 0,00

0,25 0 0,98 0,01 14,34 29,52

0,25 0,1 0,45 0,28 421,16 182,94

0,25 0,2 0,34 0,15 501,00 0,00

0,25 0,3 0,34 0,16 501,00 0,00

0,25 0,4 0,35 0,13 501,00 0,00

0,25 0,5 0,35 0,14 501,00 0,00

0,25 0,6 0,32 0,12 501,00 0,00

0,25 0,7 0,34 0,13 501,00 0,00

0,25 0,8 0,33 0,12 501,00 0,00

0,25 0,9 0,32 0,11 501,00 0,00

0,25 1 0,34 0,12 501,00 0,00

0,3 0 0,97 0,01 7,96 7,92

0,3 0,1 0,34 0,10 501,00 0,00

0,3 0,2 0,34 0,07 501,00 0,00

0,3 0,3 0,32 0,06 501,00 0,00

0,3 0,4 0,32 0,06 501,00 0,00

0,3 0,5 0,33 0,05 501,00 0,00
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0,3 0,6 0,33 0,05 501,00 0,00

0,3 0,7 0,33 0,05 501,00 0,00

0,3 0,8 0,33 0,04 501,00 0,00

0,3 0,9 0,33 0,05 501,00 0,00

0,3 1 0,34 0,05 501,00 0,00

Table B.11: POMDP Random Flip Channel

QOMDP Random Flip Channel

epsilon alpha reward reward_std timesteps timesteps_std fidelity fidelity_std

0,1 0 0,90 0,44 3,71 1,43 0,94 0,10

0,1 0,1 0,88 0,47 4,15 1,96 0,92 0,11

0,1 0,2 0,92 0,39 4,31 1,74 0,91 0,07

0,1 0,3 0,78 0,63 4,61 2,20 0,89 0,07

0,1 0,4 0,66 0,75 4,27 2,00 0,87 0,09

0,1 0,5 0,70 0,71 4,39 2,57 0,87 0,06

0,1 0,6 0,62 0,78 4,25 1,59 0,85 0,07

0,1 0,7 0,66 0,75 4,64 2,28 0,85 0,04

0,1 0,8 0,66 0,75 4,33 2,03 0,83 0,03

0,1 0,9 0,70 0,71 4,95 2,32 0,81 0,07

0,1 1 0,58 0,81 4,85 2,21 0,79 0,07

0,15 0 0,72 0,69 3,83 1,90 0,90 0,14

0,15 0,1 0,76 0,65 4,59 3,07 0,87 0,15

0,15 0,2 0,70 0,71 3,96 2,17 0,84 0,17

0,15 0,3 0,58 0,81 4,36 2,88 0,81 0,16

0,15 0,4 0,54 0,84 4,54 3,29 0,74 0,20

0,15 0,5 0,50 0,87 4,38 2,71 0,74 0,21

0,15 0,6 0,06 1,00 4,52 2,53 0,67 0,23

0,15 0,7 0,44 0,90 4,13 2,10 0,70 0,19

0,15 0,8 0,32 0,95 4,21 2,76 0,63 0,24

0,15 0,9 0,26 0,97 4,56 3,04 0,58 0,24

0,15 1 0,34 0,94 5,17 2,98 0,62 0,19

0,175 0 0,76 0,65 5,25 3,85 0,86 0,22

0,175 0,1 0,76 0,65 5,16 3,90 0,87 0,15
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0,175 0,2 0,74 0,67 5,64 4,06 0,86 0,10

0,175 0,3 0,70 0,71 5,13 4,39 0,84 0,10

0,175 0,4 0,72 0,69 6,44 5,15 0,79 0,12

0,175 0,5 0,46 0,89 6,26 4,75 0,76 0,12

0,175 0,6 0,58 0,81 5,41 3,77 0,74 0,12

0,175 0,7 0,28 0,96 6,30 5,31 0,72 0,13

0,175 0,8 0,36 0,93 7,03 6,91 0,69 0,10

0,175 0,9 0,26 0,97 6,98 5,23 0,64 0,14

0,175 1 0,22 0,98 7,22 6,11 0,60 0,15

0,2 0 0,74 0,67 3,35 1,01 0,91 0,11

0,2 0,1 0,64 0,77 3,27 0,63 0,85 0,13

0,2 0,2 0,44 0,90 3,27 0,85 0,79 0,13

0,2 0,3 0,42 0,91 3,28 0,72 0,74 0,16

0,2 0,4 0,40 0,92 3,31 0,74 0,71 0,18

0,2 0,5 0,34 0,94 3,42 0,80 0,62 0,20

0,2 0,6 0,36 0,93 3,32 0,84 0,56 0,20

0,2 0,7 -0,08 1,00 3,40 0,99 0,53 0,21

0,2 0,8 -0,16 0,99 3,33 0,98 0,46 0,20

0,2 0,9 -0,32 0,95 3,32 0,96 0,38 0,20

0,2 1 -0,24 0,97 3,43 0,96 0,36 0,20

0,25 0 0,86 0,51 3,00 0,00 0,92 0,07

0,25 0,1 0,74 0,67 3,00 0,00 0,87 0,07

0,25 0,2 0,60 0,80 3,00 0,00 0,80 0,08

0,25 0,3 0,32 0,95 3,00 0,00 0,73 0,10

0,25 0,4 0,34 0,94 3,00 0,00 0,68 0,11

0,25 0,5 0,46 0,89 3,00 0,00 0,62 0,12

0,25 0,6 0,20 0,98 3,00 0,00 0,56 0,12

0,25 0,7 0,06 1,00 3,00 0,00 0,48 0,12

0,25 0,8 -0,26 0,97 3,00 0,00 0,45 0,13

0,25 0,9 -0,16 0,99 3,00 0,00 0,39 0,12

0,25 1 -0,42 0,91 3,00 0,00 0,32 0,11

0,3 0 0,92 0,39 3,00 0,00 0,95 0,02

0,3 0,1 0,88 0,47 3,00 0,00 0,88 0,03

0,3 0,2 0,66 0,75 3,00 0,00 0,82 0,03
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Table B.12 continued from previous page

0,3 0,3 0,46 0,89 3,00 0,00 0,76 0,04

0,3 0,4 0,36 0,93 3,00 0,00 0,70 0,05

0,3 0,5 0,50 0,87 3,00 0,00 0,63 0,05

0,3 0,6 0,24 0,97 3,00 0,00 0,58 0,05

0,3 0,7 -0,14 0,99 3,00 0,00 0,52 0,05

0,3 0,8 -0,18 0,98 3,00 0,00 0,45 0,05

0,3 0,9 0,00 1,00 3,00 0,00 0,41 0,05

0,3 1 -0,30 0,95 3,00 0,00 0,34 0,05

Table B.12: QOMDP Random Flip Channel
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