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Introduction

Hawkes processes were introduced by Alan Hawkes in 1971 (see [13] [14] and [15]) in
order to model earthquakes and their aftershoks. Nowadays they are frequently used in
finance. This is due to the observation of financial time series, where a long memory be-
haviour is registered; Hawkes processes naturally play the role of an autoregressive process.
Moreover the branching structure of a Hawkes process allows to easily encode some well
reported properties of high frequency trading markets, such as the high endogeneity of the
buy and sell orders.

We can consider a one dimensional Hawkes process as a self exciting process (Nt)t≥0,
whose intensity at time t is given by

λt = µ+

∫ t

0
ϕ(t− s) dNs ,

where µ is a positive real number and ϕ is a regression kernel. This simple process is used
in [4] to build a model for a single asset price. In view of the interpretation of Nt as a
branching process given in [15], the norm ‖ϕ‖1 represent the degree of endogeneity of the
market. As a matter of fact one may see µ as the number of orders due to a real economic
reason and interpret ‖ϕ‖1 as the average number of orders triggered by each order. Under
the assumption ‖ϕ‖1 < 1, the average number of orders triggered by a single order is∑

k≥1 ‖ϕ‖k1 = ‖ϕ‖1/(1−‖ϕ‖1), hence the proportion of triggered orders in the hole market
is ‖ϕ‖1/(1− ‖ϕ‖1) divided by 1 + ‖ϕ‖1/(1− ‖ϕ‖1), that is equal to ‖ϕ‖1.

The condition ‖ϕ‖1 < 1 is crucial, not only to give this branching interpretation of the
process, but also to provide other important features. In [3], for example, Bacry, Delattre
and Hoffmann show that this is necessary to obtain some ergodic results on a large scale
observation.

Unfortunately, the condition ‖ϕ‖1 < 1 seems to be too restrictive. As a matter of
fact empirical measurings (see for example [2]) shows that, trying to calibrate this kind of
models on the financial time series, one usually gets values for ‖ϕ‖1 close to unity.

This is the starting point of our study: we are interested in the behaviour of Hawkes
processes when the parameter ‖ϕ‖ is close to one. In order to do that we will introduce an
asymptotic framework and we will study a sequence of Hawkes processes NT

t , indexed by
T , each observed on the interval [0, T ] and such that the norm ‖ϕT ‖1 of the autoregressive
kernel of the intensity tends to 1 as T goes to infinity. We call these processes a sequence
of nearly unstable Hawkes processes.

We will tackle both the one dimensional and the multidimensional problem and we
will make different assumptions that will lead us to different scaling results. Finally we
will come back to our motivation showing a financial application. Our conclusion finds a
strong validation in the latest empirical observations of the rough nature of volatility in
high frequency trading markets.

We briefly present the material contained in this thesis. In Chapter 1 the reader can
find the basic notions about point processes and the results concerning Hawkes processes
satisfying the “stability condition” ‖ϕ‖1 < 1. These results come from [3] and show that,
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iv INTRODUCTION

in the case of a fixed kernel (not depending on T ) with norm strictly smaller than one, it
is possible to obtain a deterministic limit for the properly normalized sequence of Hawkes
processes.

In Chapter 2 we start to study a sequence of nearly unstable Hawkes processes. It will
be assumed that the kernel function ϕ exibits a light tails behaviour through the condition∫∞
0 sϕ(s) ds <∞. First of all it will be shown that there is only one temporal scaling that
allows to find a nondegenerate limit. It will be shown that, choosing a proper rescaling,
it is possible to obtain in the limit a Cox-Ingersoll-Ross dynamics. In this chapter we will
work on the sequence of intensity functions to obtain a limit intensity and we will use some
theorems for stochastic differential equation to get the behaviour of the limit process.

In Chapter 3 we will drop the light tails assumption. A different rescaling in time will
be necessary in order to obtain a nondegenerate limit. The most interesting fact will be
that the heavy tails condition, that can be interpreted as a persistence of the memory of
the process, is the basis to obtain a rough fractional diffusion in the limit behaviour. The
approach to study this case will be different from the previous chapter, since we will work
directly on the process itself rather than on its intensity.

In Chapter 4 we generalize the preceding results to the multidimensional case, where
we have a sequence of multivariate nearly unstable Hawkes processes. The proofs are quite
similar to those contained in Chapters 2 and 3. As a matter of fact, using some hypothesis
on the matrix kernel of the intensity, it will be possible to project the processes along
proper directions in a way that the nondegenerate part concentrate along one direction
and thus we come back to tackle a known problem.

In Chapter 5 we use the preceding result in order to investigate a financial model for a
single asset price. This model, based on a two dimensional Hawkes process, was introduced
in [4] and leads to a stochastic dynamics for the volatility of the price. All the hypothesis
made during the preceding chapters will get a financial meaning and the light or heavy
tails assumption will get the biggest relevance. Under the light tails assumption a Heston
model with leverage effect (negative correlation between the Brownian motion driving the
asset and the one driving the volatility) will arise, while the heavy tails condition will lead
to a rough Heston dynamics for the asset price.

Ringrazio il Professor Paolo Dai Pra per la guida attenta e disponibile. Ho imparato
molto dalla semplicità e chiarezza con cui affronta ogni problema. Ringrazio anche il Pro-
fessor David Barbato, il quale per primo ha risvegliato in me l’interesse per la probabilità.



CHAPTER 1

Hawkes processes and stationary limits

We start giving some notions about point processes and Hawkes processes in particular.
It will be a brief presentation based on the book by Pierre Brémaud [7] and we redirect to
that source for more details. We assume that the reader is already acquainted with basic
theory of stochastic processes.

1. Point processes

A point process over the half line [0,∞) can be viewed in different ways. Here we look
at it through its associated counting process.

1.1. Simple univariate point process. A realization of a point porcess over [0,∞)
can be described by a sequence Tn in [0,∞] such that

T0 = 0,

Tn <∞⇒ Tn < Tn+1 .

This realization is, by definition nonexplosive if and only if

T∞ = lim
n→∞

Tn =∞ .

To each realization corresponds a counting function Nt defined by

Nt =

{
n if t ∈ [Tn, Tn+1), n ≥ 0 ,

+∞ if t ≥ T∞ .

Nt is therefore a right-continuous step function such that N0 = 0 and its jumps are upward
jumps of magnitde 1.

If the above Tn are random variables, defined on some probability space (Ω,F ,P),
one then calls the sequence Tn a point process. Since the random variables (Tn)n and the
counting process (Nt)t carry the same information, with abuse of notation, we call also Nt

a point process. Notice that, using the second point of view, nonexplosivity corresponds
to have Nt <∞ for any t ≥ 0.

1.2. Multivariate point processes. Let Tn be a point process defined on (Ω,F ,P)
and let (Zn, n ≥ 1) be a sequence of {1, . . . , k}-valued random variables, also defined on
(Ω,F ,P). Define for all i, 1 ≤ i ≤ k and all t ≥ 0:

Nt(i) =
∑
n≥1

1{Tn≤t}1{Zn=i} .

Both the k-vector process Nt = (Nt(1), . . . , Nt(k)) and the double sequence (Tn, Zn, n ≥ 1)
are called k-variate point processes. The limit T∞ = limn→∞ Tn is the explosion point of
Nt. Note that the Nt(i) have no common jumps.

1



2 1. HAWKES PROCESSES AND STATIONARY LIMITS

1.3. Stochastic intensity and integration theorem.

Definition 1.1. Let Nt be a point process adapted to some history Ft and let λt be
a nonnegative Ft-progressive process such that for all t ≥ 0∫ t

0
λs ds <∞ P-a.s.

If for al nonnegative Ft-predictable process Ct, the equality

E
[ ∫ ∞

0
Cs dNs

]
= E

[ ∫ ∞
0

Csλs ds
]

is verified, then we say that Nt admits the (P,Ft)-intensity λt.

Remark 1.2. Integrating with respect to dNs has the following meaning:∫ t

0
Cs dNs =

∑
n≥1

CTn1{Tn≤t}

and ∫ ∞
0

Cs dNs =
∑
n≥1

CTn1{Tn<∞} .

Remark 1.3. Note that we didn’t speak about uniqueness of the intensity process.
As a matter of fact one may find different intensity processes, but if “the” intensity is
constrained to be predictable, it is essentially unique. Moreover one can always find such a
predictable version of the intensity. This fact is well detailed in [7, II-4]. For our purpose
it will be enough to know that speaking about “the intensity process” is harmless.

Moreover this fact allows us to characterize a point process through its intensity func-
tion.

We now state, without proof, an integration theorem that is widely used in the next
chapters.

Theorem 1.4 (Integration Theorem). If a point process Nt admits the Ft-intensity λt
(where

∫ t
0 λs ds <∞ P-a.s., t ≥ 0), then Nt is P-nonexplosive and

(i) Mt = Nt −
∫ t
0 λs ds is an Ft-local martingale;

(ii) if Xt is an Ft-predictable process such that E[
∫ t
0 |Xs|λs ds] < ∞, t ≥ 0, then∫ t

0 Xs dMs is an Ft-martingale;
(iii) if Xt is an Ft-predictable process such that

∫ t
0 |Xs|λs ds < ∞ P-a.s., t ≥ 0, then∫ t

0 Xs dMs is an Ft-local martingale.

1.4. A useful isometry. We report here a very important result that will be fre-
quently used in next chapters. It can be found in [7, III-4].

Theorem 1.5 (Fundamental isometry for square-integrable point process martingales).
Let (Nt(1), . . . , Nt(m)) be an m-variate point process defined on (Ω,F ,P), with the (P,Gt)-
intensity (λt(1), . . . , λt(m)), where Gt is the internal history of the point process. Let M2

0

be the Hilbert space of zero-mean square-integrable (P,Gt)-martingales over [0, T ] with the
scalar product

〈M,M ′〉M2
0

= E[MTM
′
T ] .

Let H be the Hilbert space of Gt-predictable processes Ct = (Ct(1), . . . , Ct(m)) such that
m∑
i=1

E
[ ∫ T

0
|Cs(i)|2λs(i) ds

]
<∞



2. HAWKES PROCESSES AND STABLE LIMITS 3

with the scalar product

〈C,C ′〉H =
m∑
i=1

E
[ ∫ T

0
Cs(i)C

′
s(i)λs(i) ds

]
.

ThenM2
0 and H are isometric with respect to the mapping H ϕ→M2

0 defined by

ϕ(C)t =
m∑
i=1

∫ t

0
Cs(i)

(
dNs(i)− λs(i) ds

)
.

2. Hawkes processes and stable limits

2.1. Definition of Hawkes process. As we already saw, the intensity process char-
acterizes a point process. We use this fact to give the following definition.

Definition 1.6 (Hawkes process). A linear Hawkes process on a probability space
(Ω,F ,P) is a multivariate point process N = (N(1), . . . , N(d)) with intensity process

λt = µt +

∫ t

0
Φ(t− s) · dNs ,

where µ : R+ → Rd+ and Φ = (ϕi,j)i,j=1,...,d with ϕi,j positive locally integrable functions
on R+.

Such a construction can be done according to Jacod (see[17]). Note that, if we use
Jn(i) to indicate the n-th jump time of the process N(i), we can rewrite the intensity
process as

λt,i = µt,i +
d∑
j=1

( ∑
0<Jn(j)<t

ϕi,j(t− Jn(j))

)
.

We have a non-esxplosion criterion which is proved in [3].

Lemma 1.7 (Non-explosion criterion). Let (Jn)n be the sequence of jump times for the
Hawkes process (Nt)t≥0. Set J∞ = limn→∞ Jn. Assume that the following holds:∫ t

0
ϕij(s) ds < +∞ ∀i, j and ∀t ≥ 0 .

Then J∞ =∞ almost surely.

2.2. Stability condition and scaling limits. We now report some results borrowed
from [3]. We are not going to prove them, we just want to use them as a motivation for
our study.

Consider a multivariate Hawkes process as in Definition 1.6 specified by the constant
vector

µ = (µ1, . . . , µd) ∈ R+

and the d× d-matrix valued function

Φ = (ϕi,j)1≤i,j≤d .

Furthermore, consider the following assumption.

Assumption 1.1. For all i, j we have
∫∞
0 ϕi,j(t) dt <∞ and the spectral radius S(K)

of the matrix K =
∫∞
0 Φ(t) dt satisfies S(K) < 1.

First we have a law of large numbers in the following sense:
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Theorem 1.8 (A law of large numbers). Under Assumption 1.1, Nt ∈ L2 for all t ≥ 0
and

sup
v∈[0,1]

∥∥∥∥NTv

T
− v(Id−K)−1µ

∥∥∥∥→ 0 as T → +∞

almost surely and in L2.

Next we have a functional central-limit theorem.
Introduce the functions Φ∗k defined on R+ and with values in the set of d×d-matrices

with entries in [0,∞] by

Φ∗1 = Φ , Φ∗(k+1)(t) =

∫ t

0
Φ(t− s)Φ∗k(s) ds , n ≥ 1 .

Under Assumption 1.1 we have
∫∞
0 Φ∗n(t) dt = Kn, hence the series

∑
n≥1 Φ∗n converges

in L1(R). We set

Ψ =
∑
k≥1

Φ∗k .

Theorem 1.9 (A central limit theorem). Under Assumption 1.1,

E[Nt] = tµ+

(∫ t

0
Ψ(t− s)s ds

)
µ.

Moreover, the process
1√
T

(
NTv − E[NTv]

)
, v ∈ [0, 1]

converges in law for the Skorokhod topology to

(Id−K)−1Σ−
1
2Wv, as T →∞,

where
Σii =

(
(Id−K)−1µ

)
i
, Σij = 0 ∀i 6= j

and W is a d-dimensional Brownian motion on [0, 1].

Consider now the following restriction on Φ:

Assumption 1.2. ∫ ∞
0

ϕ(t)t
1
2 dt <∞ componentwise.

Using Theorem 1.8 and Assumption 1.2, we can replace T−1E[NTv] by its limit in
theorem 1.9 and obtain the following corollary.

Corollary 1.10. Under Assumptions 1.1 and 1.2, the process

√
T

(
1

T
NTv − v(Id−K)−1µ

)
, v ∈ [0, 1]

converges in law, for the Skorokhod topology, toward

(Id−K)−1Σ
1
2Wv

as T →∞, where W is a d-dimensional Brownian motion on [0, 1].
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Assumption 1.1 is very often called stability condition because it allows to obtain these
nice properties for a sequence of properly rescaled Hawkes processes. Note that, if we
focus on Theorem 1.8, we are observing a Hawkes process defined on the interval [0, T ]
and rescaled by the length of the interval; the result tells us that, when the length of the
interval approaches intinity, the rescaled process has a deterministic behaviour. At the
same way, in Theorem 1.9 we read that, if we observe this Hawkes process on a large time
scale, after a proper rescaling, it looks like a Brownian diffusion.

In next chapters we will try to get similar results for a Hawkes process that tends to
violate the stability condition, i.e. with spectral radius of the kernel matrix that is almost
one. We will do it introducing an asymptotic framework in which we study a sequence of
Hawkes processes with spectral radius of the kernel matrix tending to one.





CHAPTER 2

Light tailed nearly unstable Hakwes processes

Here we start to study the limit behaviour of a sequence of nearly unstable Hawkes
processes. We will do it in a constructive way, most of our assumptions will be given when
they will be needed.

First of all we need to specify the meaning of nearly unstable Hawkes process and to
define the asymptotic setting.

1. Asymptotic framework

We consider a sequence of Hawkes processes (NT
t )t≥0 indexed by T , where T goes to

infinity. When it will be needed by the context, for example using convergence theorems,
we will actually consider an increasing sequence of times Tn, with T →∞ for n→∞; we
will not need to make this procedure explicit, it will be clear what T → ∞ means. For a
given T , (NT

t ) satisfies NT
0 = 0 and the process is observed on the time interval [0, T ]. We

give a process (λTt )t≥0 defined as follows:

λTt = µ+

∫ t

0
ϕT (t− s) dNT

s ,

where µ ∈ R, µ > 0 and ϕT is a nonegative measurable function on R+ which satisfies
‖ϕT ‖1 <∞. For a given T the process (NT

t ) is defined on a probabilty space (ΩT ,FT ,PT )
equipped with the filtration (FTt )t∈[0,T ], where FTt is the σ-algebra generated by (NT

s )s≤t.
Moreover we assume that for any 0 ≤ a < b ≤ T and A ∈ FTa

E[(NT
b −NT

a )1A] = E
[∫ b

a
λTs 1A ds

]
,

which sets λT as the intensity of NT . This construction can be done as it is explained in
chapter 1 and we also know that, if we denote by (JTn )n≥1 the jump times of (NT

t ), the
process

NT
t∧JTn

−
∫ t∧JTn

0
λTs ds

is a martingale and the law of NT is characterized by λT .
Since it will be widely used in the following, we define the process

MT
t := NT

t −
∫ t

0
λTs ds.

We now give more specific assumptions on the function ϕT . We denote by ‖ · ‖∞ the
L∞ norm on R+.

Assumption 2.1. For t ∈ R+,

ϕT (t) = aTϕ(t),

7



8 2. LIGHT TAILED NEARLY UNSTABLE HAKWES PROCESSES

where (aT )T≤0 is a sequence of positive numbers converging to one, such that for all T ,
aT < 1 and ϕ is a nonnegative measurable function such that∫ +∞

0
ϕ(s) ds = 1 and

∫ +∞

0
sϕ(s) ds = m <∞.

Moreover, ϕ is differentiable with derivative ϕ′ such that ‖ϕ′‖∞ <∞ and ‖ϕ′‖1 <∞.

Remark 2.1. Note that, under Assumption 2.1, ‖ϕ‖∞ is finite, since ∀t ≥ 0

ϕ(t) ≤ ϕ(0) + ‖ϕ′‖1.

In chapter 1 we used to have ‖ϕ‖1 < 1 and this allowed some results on the limit
behaviour of the process N . Here for a given T , ‖ϕT ‖1 = aT < 1, therefore the stability
condition of chapter 1 is in force. Moreover, as remarked in that case, we have almost
surely no explosions (see 1.7).

Since ‖ϕT ‖1 = aT tends to one, this framework is a way to get close to instability.
Hence we call our sequence of processes nearly unstable Hawkes processes. Note that the
form of the function ϕT depends on T so that its shape is fixed, but its L1 norm increases
to 1 with T → ∞. There are of course other ways to make the L1 norm of ϕ converge to
one that the multiplicative manner used here. Finally note that we call our processes light
tailed because of the condition

∫ +∞
0 sϕ(s) ds <∞.

Remark 2.2. Under Assumption 2.1 we have the integrability ofNT thanks to theorem
1.9. This ensures that the process MT is a martingale, since we can take the limit for
n→∞ in the equality

E
[
NT
t∧JTn

−
∫ t∧JTn

0
λTu du

∣∣∣Fs] = NT
s∧JTn

−
∫ s∧JTn

0
λTu du

Moreover we have that MT is a square integrable martingale with quadratic variation
process the process NT . As a matter of fact, using the isometry given by theorem 1.5 we
have

E
[(
MT
t −MT

s

)2∣∣∣Fs] = E
[(∫ t

s
dMT

u

)2∣∣∣Fs] = E
[∫ t

s
λTu du

∣∣∣Fs] = E
[
NT
t −NT

s

∣∣Fs].
2. Observation scales

In our framework, two parameters degenerate to infinity, they are T and (1 − aT )−1.
The relationship between these two sequences will determine the scaling behaviour of the
sequence of Hawkes processes. Keeping in mind the results of chapter 1, we would expect
that, if 1−aT tends slowly to zero, the process reaches the asymptotic regime for a T such
that aT is sufficiently far from unity and hence we get the same limit behaviour. This is
exactly what happens, as it is stated in the next theorem.

Theorem 2.3. Assume T (1− aT )→ +∞. Then, under Assumption 2.1, the sequence
of Hawkes processes defined in section 1 is asymptotically deterministic, in the sense that
the following convergence holds:

sup
v∈[0,1]

1− aT
T

∣∣NT
Tv − E[NT

Tv]
∣∣→ 0 in L2 .

Before giving the proof, we recall a result that we borrow from [3]. In order to un-
derstand this result we introduce a quantity that will play a fundamental role in the
convergence of our processes.
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Let define inductively, for n ∈ N, the functions (ϕT )∗n as follows:

(ϕT )∗1 = ϕT , (ϕT )∗(n+1)(t) =

∫ t

0
ϕT (t− s)(ϕT )∗n(s) ds.

We then set ψT to be the function defined on R+ by

ψT (t) =
∞∑
n=1

(ϕT )∗n(t).

It will be easily shown that

(2.1) ‖ψT ‖1 =
‖ϕT ‖1

1− ‖ϕT ‖1
.

Now we can state the lemma that we borrow from [3]:

Lemma 2.4. For all v ∈ [0, 1] and all T ≥ 0 we have

E[NT
Tv] = µTv + µ

∫ Tv

0
ψT (Tv − s)s ds

and

NTv − E[NT
Tv] = MT

Tv +

∫ Tv

0
ψT (Tv − s)MT

s ds.

Proof of theorem 2.3. Using equation (2.1) and the second equation in lemma 2.4
we deduce

1− ‖ϕT ‖1
T

(
NT
Tv − E[NT

Tv]
)
≤ 1− ‖ϕT ‖1

T
(1 + ‖ψT ‖1) sup

t∈[0,T ]

∣∣MT
t

∣∣ ≤ 1

T
sup
t∈[0,T ]

∣∣MT
t

∣∣ .
Now recall thatMT is a square integrable martingale with quadratic variation process NT .
Thus we can apply Doob’s Lp-inequality to get

E
[(

sup
t∈[0,T ]

MT
t

)2]
≤ 4 sup

t∈[0,T ]
E
[(
MT
t

)2] ≤ 4E
[
NT
T

]
≤ 4µ

T

1− ‖ϕT ‖1
.

Therefore we finally obtain

E

[
sup
v∈[0,1]

(
1− ‖ϕT ‖1

T

(
NT
Tv − E

[
NT
Tv

]))2
]
≤ 4µ

T (1− ‖ϕT ‖1)
,

which gives the result since T (1− ‖ϕT ‖1) = T (1− aT ) tends to infinity. �

We have an opposite situation, when 1− aT tends too rapidly to zero. In this case we
expect that, for a given T , the Hawkes process NT may already be very close to instability
whereas T is not large enough to reach the asymptotic regime. We will see that it will
be quite natural to require that T (1 − aT ) tends to a finite real number in order to get a
nondegenerate scaling limit.

3. Result

In this section we introduce the last quantity that we need in order to state the main
theorem of this chapter and we finally state this theorem. We also start the proof and
give some heuristics about the derivation of this result before we tackle the complete and
formal proof in the next section.
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Definition 2.5. Let %T be the function defined for x ≥ 0 by

(2.2) %T (x) = T
1− aT
aT

ψT (Tx)

We need to set a uniform bound on %T , this is our second assumption:

Assumption 2.2. There exists K% > 0 such that for all x ≥ 0∣∣%T (x)
∣∣ ≤ K%.

We should think if this assumption is too restrictive. Note that, if the function ϕ is
decreasing, then any %T is decreasing and since |%T (0)| is bounded we get a uniform bound.

We now have all the ingredients to state the main theorem of this chapter:

Theorem 2.6 (Convergence of light tailed Hawkes processes). Assume there exists
λ > 0 such that T (1− aT )→ λ for T →∞. Under Assumptions 2.1 and 2.2, the sequence
of renormalized Hawkes intensities (CTt ), defined as

(2.3) CTt := λTtT (1− aT ),

converges in law, for the Skorohod topology, toward the law of the unique strong solution
of the following Cox-Ingersoll-Ross stochastic differential equation on [0, 1]:

Xt =

∫ t

0
(µ−Xs)

λ

m
ds+

√
λ

m

∫ t

0

√
Xs dBs.

Furthermore, the sequence of renormalized Hawkes processes

V T
t :=

1− aT
T

NT
tT

converges in law, for the Skorohod topology, toward the process∫ t

0
Xs ds, t ∈ [0, 1].

Remark 2.7. We see in the formulation of the theorem that we actually study the
convergence of the process λTtT (1−aT ). The temporal scaling is quite natural: we want all
the intensities to be defined on the same interval and we renormalize it to [0, 1]. For the
scaling in space note that in the stationary case, the expectation of λTt is µ/(1− aT ), thus
the order of magnitude of intensity is (1− aT )−1. Thus a multiplcative factor (1− aT ) is
natural and we end up studying

CTt = λTtT (1− aT ).

We will see that the asymptotic behaviour of CTt is closely connected to that of the
function %T . About %T , one can remark that this function is the density of the random
variable

(2.4) HT =
1

T

IT∑
i=1

Hi

where the (Hi)i are i.i.d random variable with density ϕ and IT is a geometric random
variable with parameter 1−aT , indipendent of Hi for any i ∈ N. As a matter of fact recall
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that if H has density f then H/T has density Tf(Tx). Now

P
( IT∑
i=1

Hi ∈ dx
)

= P
( ∞⋃
k=1

{
IT = k,

k∑
i=1

Hi ∈ dx
})

=
∞∑
k=1

(1− aT )ak−1T ϕ∗k(x) =
1− aT
aT

∞∑
k=1

(ϕT )∗k(x)

=
1− aT
aT

ψT (x).

Hence HT has density

T
1− aT
aT

ψT (Tx) = %T (x).

As a corollary from this computation we also get that, since
∫
%T (x) dx = 1 (%T is a

density),
‖ψT ‖1 =

aT
1− aT

.

We now state a proposition that gives the asymptotic behaviour of the sequence of
random variables (HT )T≥0.

Proposition 2.8. Assume there exists λ > 0 such that T (1 − aT ) → λ for T → ∞.
Under Assumption 2.1, the sequence of random variables HT , defined in (2.4), converges
in law toward an exponential random variable with parameter λ/m.

Proof. Let z ∈ R. The characteristic function of the random variable HT , denoted
by %̂T , satisfies

%̂T (z) = E
[
eizH

T ]
= E

[ ∞∑
k=1

eizH
T
1{IT=k}

]
=

∞∑
k=1

P
(
IT = k

)
E
[
ei

z
T

∑k
i=1Hi

]
=

∞∑
k=1

(1− aT )ak−1T

(
E
[
ei

z
T
H1

])k
=

∞∑
k=1

(1− aT )(aT )k−1
(
ϕ̂
( z
T

))k
= (1− aT )ϕ̂

( z
T

) ∞∑
k=1

(
aT ϕ̂

( z
T

))k−1
= (1− aT )ϕ̂

( z
T

) 1

1− aT ϕ̂
(
z
T

)
=

ϕ̂
(
z
T

)
1−aT+aT (1−ϕ̂( zT ))

1−aT

=
ϕ̂
(
z
T

)
1− aT

1−aT

(
ϕ̂
(
z
T

)
− 1
) ,

where ϕ̂ denotes the characteristic function of H1. Since

E[H1] =

∫ +∞

0
sϕ(s) ds = m >∞,

the function ϕ̂ is continuously differentiable with ϕ̂′(0) = im. Therefore using taylor
expansions we have

ϕ̂
( z
T

)
= ϕ̂(0) +

zim

T
+ o

( z
T

)
= 1 +

izm

T
+ o

( z
T

)
and hence

lim
T→+∞

%̂T (z) =
1

1− izm
λ

=
λ/m

(λ/m)− iz
,

that is the characteristic function of an exponential with parameter λ/m. �
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Remark 2.9. Notice that the light tails property was crucial in order to prove the
previous proposition, together with the observation scale

(2.5) T (1− aT )→ λ for T → +∞.

This gives a more rigorous motivation to our assumptions.

Assume from now on that condition (2.5) holds. Set

ut :=
T (1− aT )

λ
,

so that uT → 1 as T → ∞. Proposition 2.8 gives us the asymptotic behaviour of ψT in
this setting. Indeed we have

(2.6) ψT (Tx) = %T (x)
aT
λuT

→ λ

m
e−x

λ
m

1

λ
=

1

m
e−x

λ
m .

In the sequel it will be convenient to work with another form of the intensity process
(λTt )t. The following result holds:

Proposition 2.10. For all t ≥ 0, we have

λTt = µ+

∫ t

0
ψT (t− s)µds+

∫ t

0
ψT (t− s) dMT

s .

Proof. From the definition of λT , using the fact that ϕ is bounded on [0, t], we can
write

(2.7) λTt = µ+

∫ t

0
ϕT (t− s) dMT

s +

∫ t

0
ϕT (t− s)λTs ds

We now recall a classical lemma, that is a version of the renewal equation.

Lemma 2.11. Let h be a Borel and locally bounded function from R+ to R. Then there
exists a unique locally bounded function f : R+ → R, solution to

(2.8) f(t) = h(t) +

∫ t

0
ϕT (t− s)f(s) ds ∀t ≥ 0,

given by

f(t) = h(t) +

∫ t

0
ψT (t− s)h(s) ds.

Proof. Since ψT ∈ L1(R+) and h is locally bounded, the function f is locally bounded.
Let’s show that f satisfies the equation (2.8):∫ t

0
ϕT (t− s)f(s) ds =

∫ t

0
ϕT (t− s)h(s) +

∫ t

0
ϕT (t− s)

(∫ s

0
ψT (s− r)h(r) dr

)
ds

=

∫ t

0
ϕT (t− s)h(s) ds+

∫ t

0
h(r)

(∫ t

r
ϕT (t− s)ψT (s− r) ds

)
dr

=

∫ t

0
ϕT (t− s)h(s) ds+

∫ t

0
h(r)

(∫ t−r

0
ϕT (t− r − u)ψT (u) du

)
dr

=

∫ t

0
ϕT (t− s)h(s) ds+

∫ t

0
h(r)ψT (t− r) dr −

∫ t

0
h(r)ϕT (t− r) dr

=

∫ t

0
ψT (t− r)h(r) dr,
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where we used the following equation∫ t

0
ϕT (t− s)ψt(s) ds =

∞∑
k=1

∫ t

0
ϕT (t− s)(ϕT )∗k(s) ds =

∞∑
k=1

(ϕT )∗(k+1)

= ψT (t)− ϕT (t).

Now let f1 and f2 be both solutions of our equation. We have

f1(t)− f2(t) =

∫ t

0
ϕT (t− s)(f1(s)− f2(s)) ds.

Thus, if g(t) = |f1(t)− f2(t)| , one has

g(t) ≤
∫ t

0
ϕT (t− s)g(s) ds,

which yields ∫ ∞
0

g(t) dt ≤ ‖ϕT ‖1
∫ t

0
g(t) dt.

Since ‖ϕT ‖1 < 1 for all T > 0, it follows that f1 = f2 almost everywhere. Therefore∫ t

0
ϕT (t− s)f1(s) ds =

∫ t

0
ϕT (t− s)f2(s) ds for all t

and thus f1 = f2, since both the functions satisfies the equation (2.8). �

We apply this lemma to the equation (2.7) taking as function h the function

h(t) = µ+

∫ t

0
ϕT (t− s) dMT

s .

We thus obtain

(2.9) λTt = µ+

∫ t

0
ϕT (t− s) dMT

s +

∫ t

0
ψT (t− s)

(
µ+

∫ s

0
ϕT (s− r) dMT

r

)
ds.

Now, using Fubini and the fact that

ψT ∗ ϕT = ψT − ϕT ,

we get∫ t

0
ψT (t− s)

∫ s

0
ϕT (s− r) dMT

r ds =

∫ t

0

∫ t

r
ψT (t− s)ϕT (s− r) ds dMT

r

=

∫ t

0

∫ t−r

0
ψT (t− r − s)ϕT (s) ds dMT

r

=

∫ t

0
ψT ∗ ϕT (t− r) dMT

r

=

∫ t

0
ψT (t− r) dMT

r −
∫ t

0
ϕT (t− r) dMT

r .

Now we just need to rewrite (2.9) using the last equality. �

We now propose a heuristic proof of the theorem, working on the process CT . Note
that, using proposition 2.10, we can rewrite CTt in the following way
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CTt = λTtT (1− aT )

= (1− aT )µ+
uTλ

T

∫ t

0
TψT (Tt− s)µds+

uTλ

T

∫ tT

0
ψT (Tt− s) dMT

s .

The first integral becomes

uTλ

T
µ

∫ t

0
TψT (y) dy = uTλµ

∫ t

0
ψT (Ts)

and, after a change of variable, we rewrite the second integral as follows∫ t

0
T
uTλ

T
ψT (Tt− s) dMT

s =

∫ t

0

√
λψT (T (t− s))

√
CTs dB

T
s ,

where we set

(2.10) BT
t =

1√
T

√
uT

∫ tT

0

dMT
s√
λTs

.

Finally we can write

(2.11) CTt = (1− aT )µ+ µ

∫ t

0
uTλψ

T (Ts) ds+

∫ t

0

√
λψT (T (t− s))

√
CTs dB

T
s .

In the next paragraph we will show that BT is a sequence of martingales converging to a
Brownian motion for T →∞. Hence, heuristically replacing BT by a brownian motion B
and ψT (Tx) by (1/m)e−x(λ/m) in (2.11), we get for T →∞

C∞t = µ

∫ t

0

λ

m
e−(t−s)

λ
m ds+

√
λ

m

∫ t

0
e−(t−s)

λ
m

√
C∞s dBs.

Now note that C∞t = e−t(λ/m)Xt, where Xt is obviously defined. Applying Ito’s formula
we get:

dC∞t = − λ
m
e−t

λ
mXt dt+ e−t

λ
m
dXt

= − λ
m
e−t

λ
mXt dt+ µ

λ

m
dt+

√
λ

m

√
C∞t dBt

=

(
− λ
m
C∞t + µ

λ

m

)
dt+

√
λ

m

√
C∞t dBt.

Hence

C∞t =

∫ t

0
(µ− C∞s )

λ

m
ds+

√
λ

m

∫ t

0

√
C∞s dBs,

which is precisely the stochastic differential equation satisfied by a CIR process.

4. Proof of the main result

In this section we make precise the heuristic statements given at the end of the last
section. We start with some preliminary results about the function ϕ and the function %T
defined in 2.5.
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4.1. Preliminary lemmas.

Lemma 2.12. Let δ > 0. There exists ε > 0 such that

|1− ϕ̂(z)| ≥ ε for any z with |z| ≥ δ.

Moreover there exists a constant c > 0 such that

|ϕ̂(z)| ≤ c

|z|
.

Proof. Since ϕ is bounded, ϕ̂ tends to zero as z tends to infinity, by Riemann-
Lebesgue lemma. Therefore there exists b ≥ δ such that

|ϕ̂(z)| ≤ 1/2 for |z| ≥ b.

If b = δ, we take ε = 1/2 and the proof is concluded. If b > δ, let M denote the supremum
of the real part of ϕ̂ on I = [−b,−δ]∪[δ, b]; since ϕ̂ is continuous, this supremum is achieved
at some point z0 ∈ I. We have M =Re(ϕ̂(z)) = E[cos(z0X)], with X a random variable
with density ϕ. Since ϕ is continuous, X does not belong to 2π/z0Z almost surely. Thus
M = E[cos(z0X)] < ‖ϕ‖1 = 1. Therefore we have

|1− ϕ̂(z)| ≥ |1− Re(ϕ̂(z))| ≥ 1−M for z ∈ I.

We just need to take ε = min{1/2; 1−M} to conclude.
In order to prove the second bound, we integrate by parts and use the Assumption 2.1,

that is ‖ϕ′‖1 <∞:

ϕ̂(z) =

∫ +∞

0
eiszϕs ds =

1

iz
ϕ(s)

∣∣∣s=+∞

s=0
−
∫ +∞

0

eisz

iz
ϕ′(s) ds

− 1

iz

(
ϕ(0) +

∫ +∞

0
eiszϕ′(s) ds

)
,

which gives

|ϕ̂(z)| ≤ 1

|z|

(
ϕ(0) +

∫ +∞

0
|ϕ′(s)| ds

)
.

�

We now want to show the L2 convergence of the function %T toward the density of an
exponential random variable

Lemma 2.13. Let %(x) = λ
me
−xλ/m be the density of the exponential random variable

with parameter λ/m. We have the following convergence:

%T − %→ 0 in L2.

Proof. We first prove that there exists c>0 such that ∀z ∈ R and ∀T > 1,

(2.12) |%̂T (z)| ≤ c
(

1 ∧ 1

|z|

)
.

Note that |%̂T | ≤ 1 because it is the characteristic function of a random variable. Using
the fact that ∫ +∞

0
xϕ(x) dx = m < +∞,

given in Assumption 2.1, we get, for x→ 0,

Im(ϕ̂)(x)

x
=

∫ +∞

0

sin(sx)

x
ϕ(s) ds→

∫ +∞

0
sϕ(s) ds = m,
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where we used dominated convergence. This implies that there exists a δ > 0 such that
|Im(ϕ̂)(x)|
|x|

≥ m

2
∀x with |x| ≤ δ.

Remember that from lemma 2.12 we also have that there exists ε > 0 such that

|1− ϕ̂(x)| ≥ ε ∀x with |x| ≥ δ.
Therefore, using the explicit computation that we gave during the proof of proposition 2.8,
we deduce that, if |z/T | ≤ δ, then

|%̂T (z)| =
∣∣∣∣(1− aT )ϕ̂(z/T )

1− aT ϕ̂T (z/T )

∣∣∣∣ ≤ 1− aT
aT |Im(ϕ̂)(z/T )|

≤ 2(1− aT )T

aTm|z|
.

The last quantity tends to 2λ/(aTm|z|) for T →∞, hence there exists a positive constant
c, such that

|%̂T (z)| ≤ c/|z|.
Moreover, thanks to the second assertion of lemma 2.12, if |z/T | ≥ δ,

|%̂T (z)| ≤ (1− aT )|ϕ̂(z/T )|
|1− ϕ̂(z/T )|

≤ c(1− aT )T

|z|ε
;

With the same argment used before we get, also for |z/T | ≥ δ, that |%̂T (z)| ≤ c/|z|. Thus
the inequality (2.12) is proved.

Now we can focus on the L2-convergence claimed in the statement. Using Fourier
isometry we get

‖%T − %‖2 =
1

2π
‖%̂T − %̂‖2.

Thanks to proposition 2.8, we have that, for z fixed, (%̂T (z) − %̂(z)) → 0. Now, using in-
equality (2.12), we can apply dominated convergence theorem, which gives the convergence
in L2. �

We now show that, for all T ≥ 0, %T is a lipschitz function, with lipschitz constant
dependending proportionally on T .

Lemma 2.14. There exists c > 0 such that for all x ≥ 0, y ≥ 0 and T ≥ 1,

|%T (z)− %T (y)| ≤ cT |x− y|.

Proof. We simply compute the derivative of %T on R+. We have

(ψT )′(x) = (ϕT )′(x) +
∑
k≥2

(
(ϕT )∗k

)′
(x)

= (ϕT )′(x) + (ϕT )′ ∗
(∑
k≥2

(ϕT )∗(k−1)(x)

)
= (ϕT )′(x) + (ϕT )′ ∗ ψT (x).

Hence

(%T )′(x) = T
1− aT
aT

T
(
(ϕT )′(x) + (ϕT )′ ∗ ψT (Tx)

)
= T

(
T (1− aT )ϕ′(x) + ϕ′ ∗ %T (x)

)
.

Since T (1− aT )→ λ, there exists c > 0 such that

|(%T )′(x)| ≤ T (c‖ϕ′‖∞ + ‖ϕ′‖1‖%T ‖∞)

and we can conclude because our assumptions make all the quantities in the last inequality
bounded. �
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Let’s give a definition that will make simplier the future computations.

Definition 2.15. For every T > 0, we define the function fT as

fT (x) =

(
m

λ

aT
uT
%T (x)− e−x

λ
m

)
1{x≥0} .

The next corollary follows directly from the preceding lemmas.

Corollary 2.16. (i) For any T ≥ 1∫
|fT (x)|2 dx→ 0 for T →∞ ;

(ii) There exists c > 0 such that, for any T ≥ 1 and any x ≥ 0,

|fT (x)| ≤ c ;

(iii) There exists c > 0 such that, for any T ≥ 1 and any w ≥ 0,

f̂T (w) ≤ c
(∣∣∣∣ 1

w

∣∣∣∣ ∧ 1

)
;

(iv) There exists c > 0 such that, for any T ≥ 1 and all x, y ≥ 0,

|fT (x)− fT (y)| ≤ cT |x− y| .

We can also give a lemma on the integrated difference associated to the function fT .

Lemma 2.17. For any 0 < ε < 1, there exists cε such that, for all t, s ≥ 0,∫
R

(fT (t− u)− fT (s− u))2 du ≤ cε|t− s|1−ε .

Proof. Let’s define gTt,s(u) := fT (t − u) − fT (s − u). We can write the Fourier
transform of gTt,s as

|ĝTt,s(w)| = |eiwt − eiws||f̂T (−w)| .
Using Fourier isometry and corollary 2.16(iii) we get∫

R
(fT (t− u)− fT (s− u))2 du =

1

2π

∫
R
|ĝTt,s(w)|2 dw

=
1

2π

∫
R
|eiwt − eiws|2|f̂T (−w)|2 dw

≤ 1

2π

∫
R
|eiwt − eiws|1+ε|eiwt − eiws|1−εc

(∣∣∣∣ 1

w

∣∣∣∣2 ∧ 1

)
dw

≤ c

2π

∫
R

21+ε
∣∣∣∣eiwt − eiwsw(t− s)

∣∣∣∣1−ε |w(t− s)|1−ε
(∣∣∣∣ 1

w

∣∣∣∣2 ∧ 1

)
dw

≤ c21+ε

2π
|t− s|1−ε

∫
R

(∣∣∣∣ 1

w

∣∣∣∣1+ε ∧ |w|1−ε)︸ ︷︷ ︸
∈L1

dw

= cε|t− s|1−ε .
�

4.2. Core of the proof. We now begin with the proof of the first assertion in The-
orem 2.6. We split this proof into several step.
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4.2.1. Convenient rewriting of the process CT . Our first goal is to obtain a suitable
expression for the process CT . From now on, set

d0 =
m

λ
.

Recall equation (2.11):

CTt = (1− aT )µ+ µ

∫ t

0
uTλψ

T (Ts) ds+

∫ t

0

√
λψT (T (t− s))

√
CTs dB

T
s .

Keeping in mind the limiting behaviour of the function ψT , given by Proposition 2.8, we
rewrite the last equation as

(2.13) CTt = RTt + µ(1− e−t/d0) +

√
λ

m

∫ t

0
e−(t−s)/d0

√
CTs dB

T
s ,

where the process RTt is simply defined as

RTt = CTt − µ(1− e−t/d0)−
√
λ

m

∫ t

0
e−(t−s)/d0

√
CTs dB

T
s .

Now consider the process XT
t defined as

XT
t =

√
λ

m

∫ t

0
es/d0

√
CTs dB

T
s ,

so that the third summand in equation (2.13) can be written as e−t/d0XT
t . Applying Ito’s

formula to this quantity we get

d(e−t/d0XT
t ) = − 1

d0
e−t/d0XT

t dt+ e−t/d0 dXT
t

= −
√
λ

md0

(∫ t

0
e−(t−s)/d0

√
CTs dB

T
s

)
dt+

λ

m

√
CTt dB

T
t .

Thus we can write

CTt =RTt +
µ

d0

∫ t

0
e−u/d0 du+

√
λ

m

∫ t

0

√
CTu dB

T
u

−
√
λ

md0

∫ t

0

(∫ u

0
e−(u−s)/d0

√
CTs dB

T
s

)
du .

Note that from equation (2.13) we have
√
λ

md0

∫ u

0
e−(u−s)/d0

√
CTs dB

T
s =

1

d0

(
CTu −RTu − µ(1− e−u/d0)

)
.

Hence, if we set

UTt := RTt +
1

d0

∫ t

0
RTs ds,

we finally derive

CTt = RTt +
µ

d0

∫ t

0
e−u/d0 du+

√
λ

m

∫ t

0

√
CTu dB

T
u −

1

d0

∫ t

0

(
CTu −RTu − µ+ µe−u/d0

)
du ,

that is

(2.14) CTt = UTt +
1

d0

∫ t

0
(µ− CTs ) ds+

√
λ

m

∫ t

0

√
CTu dB

T
u .

We will therefore aim to show that the process UTt converges to zero so that expression
(2.14) at the limit almost represents a stochastic differential equation.
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4.2.2. Convergence of the process UT . We want to show that the process (UTt )t∈[0,1]
converges to zero in law, for the Skorohod topology. It is clear that showing the convergence
of (RTt )t∈[0,1] gives also the convergence of UT . Let us tackle RT :

RTt = µ(1− aT ) + µ

∫ t

0
T (1− aT )︸ ︷︷ ︸

=aT /‖ψT ‖1

ψT (Ts) ds+
√
λ

∫ t

0
ψT (T (t− s))

√
CTs dB

T
s

− µ(1− e−t/d0)−
√
λ

m

∫ t

0
e−(t−s)/d0

√
CTs dB

T
s

= µ(1− aT )− µ
(

1− e−t/d0 − aT
∫ t

0
T
ψT (Ts)

‖ψT ‖1
ds

)
+
√
λ

∫ t

0

(
ψT (T (t− s))− e−(t−s)/d0

m

)√
CTs dB

T
s .

Now recalling the definition of BT given by (2.10), we get

RTt = µ(1− aT )− µ
(

1− e−t/d0 −
∫ t

0
aTT

ψT (Ts)

‖ψT ‖1
ds
)

+
1

m
T (1− aT )

∫ t

0

(
mψT (T (t− s))− e−(t−s)/d0

) dMT
sT

T
.

Note that, since aT tends to one, the first term tends to zero. Moreover, for t ∈ [0, 1],
Proposition 2.8 gives the following convergence:

aT

∫ t

0
T

ψT

‖ψT ‖1
(Ts) ds→ e−t/d0 .

Since this convergence is monotone on a compact set and the limit is a continuous function,
Dini’s lemma gives that this convergence is in fact uniform on the interval [0, 1].

Thus, in order to prove the convergence of the process UT to zero, it is enough to show
the convergence of the process

Y T
t :=

∫ t

0

(
mψT (T (t− s))− e−(t−s)/d0

)
dM

T
s ,

where we set MT
s = MT

sT /T . Note that, using definition 2.15, we can rewrite the process
Y T as

Y T
t =

∫ t

0
fT (t− s) dMT

s .

As usual, we will first look for the convergence of the finite dimensional laws for the
sequence of processes (Y T )T≥1 and then for its tightness.

Proposition 2.18. For any (t1, . . . , tn) ∈ [0, 1]n, the following convergence in law
holds:

(Y T
t1 , . . . , Y

T
tn )→ 0 for T →∞ .

Proof. First note that the quadratic variation of MT at time t is given by NT
tT /T

2,
whose predicable compensator process at time t is equal to

1

T 2

∫ tT

0
λTs ds =

1

T

∫ t

0
λTsT ds .
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Hence, using the isometry given by Theorem 1.5, we get

E[(Y T
t )2] = E

[∫ t

0

(
fT (t− s)

)2 λTsT
T

ds

]
=

∫ t

0

(
fT (t− s)

)2 E[λTsT ]

T
ds .

Now note that we can uniformly bound E[λTt ] by cT , with c > 0, since

E[λTt ] = µ+ µ

∫ t

0
ψT (t− s) ds ≤ µ+ µ

aT
1− aT

≤ cT .

Therefore we get

E[(Y T
t )2] ≤ c

∫ t

0

(
fT (t− s)

)2
ds ,

that, thanks to corollary 2.16 (i), leads to

E[(Y T
t )2]→ 0 ,

which gives the result. �

4.2.3. Tightness of the sequence (Y T )T≥1. We now need to prove the tightness of the
sequence (Y T )T≥1 We have the following inequality on the moments of the increments of
Y T , which is a first step in order to prove the tightness of the sequence.

Lemma 2.19. For any ε > 0, there exists cε > 0 such that for all T ≥ 1, 0 ≤ t, s ≤ 1,

(2.15) E[(Y T
t − Y T

s )4] ≤ cε
(
|t− s|

3
2
−ε +

1

T 2
|t− s|1−ε

)
.

Proof. Using Lemma A.3 and A.17 in [19] we have

E[(Y T
t − Y T

s )4] ≤ c

T 3

∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣4 du
+

c

T 3

∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣3 du
×
∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣ du
+

c

T 2

∫ T

0

∣∣∣∣fT (
(
t− u

T

)
− fT

(
s− u

T

)∣∣∣∣2 du
×
∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣2 du
+

c

T 3

(∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣ du)2

×
∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣2 du .
Now using Cauchy-Schwarz inequality and Lemma 2.17, we get∫ T

0

∣∣∣∣fT(t− u

T

)
− fT (s− u

T

)∣∣∣∣ du ≤ cεT√|t− s|1−ε
and for p = 2, 3, 4, using also Corollary 2.16(ii),∫ T

0

∣∣∣∣fT(t− u

T

)
− fT

(
s− u

T

)∣∣∣∣p du ≤ cεT |t− s|1−ε .
Applying these inequalities allows us to conclude the proof. �
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We will now use a linear interpolation of Y T , namely Ỹ T , such that the difference
between Y T and Ỹ T converges uniformly to zero in probability (u.c.p.). After that, we
will just need to prove the tightness of Ỹ T to conclude.

Definition 2.20. Let Ỹ T the linear interpolation of Y T with mesh 1/T 4, defined by

Ỹ T
t = Y T

btT 4c/T 4 + (tT 4 − btT 4c)(Y T
(btT 4c+1)/T 4 − Y T

btT 4c/T 4) .

We immediately show the convergence of the difference between the process Y T and
its linear interpolation.

Lemma 2.21. We have the following convergence in probability:

sup
|t−s|≤1/T 4

|Y T
t − Y T

s | → 0 .

Proof. Ho modificato questa dimostrazione, la trova corretta?
Recall that for 0 ≤ s ≤ t ≤ 1, since Y T

t =
∫ t
0 f

T (t− u) dM
T
u ,

|Y T
t − Y T

s | =
∣∣∣∣∫ s

0
fT (t− u)− fT (s− u) dM

T
u +

∫ t

s
fT (t− u) dM

T
u

∣∣∣∣ .
Thus we have

|Y T
t − Y T

s | ≤
∫ sT

0
|fT (t− u/T )− fT (s− u/T )|(dNT

u + λu du)
1

T

+

∫ tT

sT
|fT (t− u/T )|(dNT

u + λu du)
1

T
.

Using Corollary 2.16 (ii) and (iv) we get

|Y T
t − Y T

s | ≤ c|t− s|
(
NT
T +

∫ T

0
λTu du

)
+ c

(
NT
tT −NT

sT +

∫ tT

sT
λTu du

)
1

T
.

Taking now t > s such that |t− s| ≤ 1/T 4, this gives

(2.16) |Y T
t − Y T

s | ≤ c
1

T 4

(
NT
T +

∫ T

0
λTu du

)
+ c max

|t−s|≤1/T 4

(
NT
tT −NT

sT +

∫ tT

sT
λTu du

)
1

T

From lemma 2.4 we easily deduce that there exists a constant k1 > 0 such that

E
[
NT
T +

∫ T

0
λTu du

]
≤ k1T 2 ,

in fact we have

E
[
NT
T +

∫ T

0
λTu du

]
= 2E[NT

T ] = 2
(
µT + µ

∫ T

0
ψT (T − s)s ds

)
≤ 2µT + 2µT

(∫ T

0
ψT (T − s) ds

)
≤ 2µT

(
1 +

aT
1− aT

)
= 2µT

( 1

1− aT

)
= 2µT

T

T (1− aT )
≤ k1T 2 ,

where, for the last inequality, we used that T (1− aT ) is convergent, hence bounded.
Thus, using Markov inequality, for every ε > 0 we get

P
(
c

1

T 4

(
NT
T +

∫ T

0
λTu du

)
≥ ε
)
≤ ck1
εT 2

,
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which gives the convergence in probability of the first term in the right-hand side of equation
(2.16). In the same way, note that there exists k2 > 0, such that

E
[
NT
tT −NT

sT +

∫ tT

sT
λTu du

]
≤ 2k2T

2(t− s) ≤ 2k2
T 2

, .

Again using Markov inequality, for every ε > 0 we get

P
(
c

1

T
max

|t−s|≤1/T 4

(
NT
tT −NT

sT +

∫ tT

sT
λTu du

)
> ε

)
≤ 2ck2
εT 3

,

which gives the convergence in probability of the second term in (2.16) and completes the
proof. �

Applying this lemma to definition 2.20, we immediately get the following corollary:

Corollary 2.22. The following convergence in probability holds:

sup
t∈[0,1]

|Ỹ T
t − Y T

t | → 0 for T →∞ .

The last step in order to prove the convergence u.c.p. of Y T to zero is the tightness of
the sequence Ỹ T .

Lemma 2.23. The sequence (Ỹ T ) is tight.

Proof. Our idea is to use the Kolmogorov criterion for tightness, that is to show that
there exists γ > 1 and c > 0 such that for any 0 ≤ s ≤ t ≤ 1,

E[|Ỹ T
t − Ỹ T

s |4] ≤ c|t− s|γ .
Let nTt = btT 4c and nTs = bsT 4c. Let ε and ε′ two constant such that 0 < ε, ε′ < 1/4 and
let T ≥ 1. There are three cases:

(1) nTt = nTs . Using Lemma 2.19 we get

E[(Ỹ T
t − Ỹ T

s )4] = |t− s|4T 16E[(Y T
(nTt +1)/T 4 − Y T

nTt /T
4)4]

≤ cε
2

T 4(3/2−ε)T
16|t− s|4 .

Now, since

|t− s|4 = |t− s|1+ε′ |t− s|3−ε′ ≤ |t− s|1+ε′ 1

T 4(3−ε′) ,

we have

E[(Ỹ T
t − Ỹ T

s )4] ≤ cε
2

T 4(3/2−ε)T
16|t− s|1+ε′ 1

T 4(3−ε′) ≤ cε|t− s|
1+ε′ .

(2) nTt = nTs + 1. There exists a constant c > 0 such that

E[(Ỹ T
t − Ỹ T

s )4] ≤ cE[(Ỹ T
t − Ỹ T

nTt /T
4)4] + cE[(Ỹ T

nTt /T
4 − Ỹ T

s )4] ≤ cε|t− s|1+ε
′
.

(3) nTt ≥ nTs + 2. We use Lemma 2.19 again to get

E[(Ỹ T
t − Ỹ T

s )4] ≤ cE[(Ỹ T
t − Ỹ T

nTt /T
4)4] + cE[(Ỹ T

(nTs +1)/T 4 − Ỹ T
s )4]

+ cE[(Ỹ T
nTt /T

4 − Ỹ T
(nTs +1)T 4)4]

≤ cε
( 1

T 4

)1+ε′
+ cε

∣∣∣nTt
T 4
− nTs + 1

T 4

∣∣∣3/2−ε
≤ cε|t− s|min(3/2−ε,1+ε′) .

Therefore the Kolmogorov criterion holds. �
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Finally we can state the convergence of the sequence of processes (Y T ).

Proposition 2.24. The process Y T converges u.c.p. to 0 on [0, 1].

Proof. We have

sup
t∈[0,1]

|Y T
t | ≤ sup

t∈[0,1]
|Ỹ T
t |+ sup

t∈[0,1]
|Ỹ T
t − Y T

t | .

From Proposition 2.18 and Lemma 2.23 we have that Ỹ T tends to zero in law for the
Skorohod topology. This implies that the random variable supt∈[0,1] |Ỹ T

t | tends to zero in
law and hence in probability. Applying Corrollary 2.22 to the second summand in the
right-hand side of the equation we get the result. �

4.2.4. Convergence of the intensity process CT . Here we complete the proof using the
results illustrated in Appendix A. Recall that, thanks to equation (2.14), we can write the
process CT almost in the form of a SDE:

CTt = UTt +
1

d0

∫ t

0
(µ− CTs ) ds+

√
λ

m

∫ t

0

√
CTu dB

T
u ,

where

BT
t =

1√
T

√
uT

∫ tT

0

dMT
s√
λTs

.

We want to apply Theorem A.1. First of all we study the convergence of BT . Note that it
is a sequence of martingales with jumps uniformly bounded by c/√µ, since 1/λTs is trivially
bounded by 1/µ for any s ∈ [0, 1]. We now study its quadratic variation. Thanks to the
isometry 1.5, for t ∈ [0, 1],

〈BT 〉t =
uT
T

∫ tT

0

dNT
s

λTs
=
uT
T

(∫ tT

0

(
ds+

dMT
s

λTs

))
= uT

(
t+

∫ tT

0

dMT
s

TλTs

)
.

Now note that

E
[(∫ tT

0

dMT
s

TλTs

)2]
= E

[∫ tT

0

1

T 2λTs
ds

]
≤ E

[∫ T

0

1

T 2λTs
ds

]
≤ c/(Tµ) .

Hence, thanks to Markov inequality, for any ε > 0, we get for T → +∞

P
(∫ tT

0

dMT
s

TλTs
≥ ε
)
≤ 1

ε2
E
[(∫ tT

0

dMT
s

TλTs

)2]
≤ c

Tε2µ
→ 0 .

We then have that the quadratic variation of the process BT at time t converges to t in
probability for any t ≥ 0. Therefore, applying Theorem A.3 in Appendix A we get that
BT converges in law for the Skrohod topology toward a Brownian motion.

Since UT converges to a deterministic limit, using Theorem 4.4 in Billingsley [6, pag.
27], we get the convergence in law, for the product topology, of the couple (UTt , B

T
t ) to the

couple (0, Bt) for any t ∈ [0, 1], where B is a Brownian motion. Now, since the components
of (0, Bt)t are continuous, by Proposition VI.2.2 in [18], the convergence also takes place
for the Skorohod topology on the product space. It is easy to see that condition C1 of
Theorem A.1 is satisfied by the sequence of processes BT , as well as conditions C2 (i) and
(ii) are satisfied by the square root function. Finally, according to [8], the CIR equation

(2.17) Xt =

∫
0
t(µ−Xs)

1

d0
ds+

√
λ

m

∫ t

0

√
Xs dBs

admits a unique strong solution on [0, 1]. Therefore all the hypotesis of theorem A.1 are
satisfied and we get the convergence in law for the Skorohod topology of the process CT
toward the unique solution of the preceding CIR stochastic differential equation.
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4.3. Convergence of the process (V T
t )t. We need to prove the second part of

Theorem 2.6, that is the convergence of the renormalized Hawkes processes

V T
t =

1− aT
T

NT
tT .

We can rewrite V T
t in the following way:

V T
t =

1− aT
T

NT
tT +

∫ T

0
(1− aT )λTsT ds−

∫ tT

0

1− aT
T

λTs ds .

Hence, defining the martingale

M̂T
t =

1− aT
T

(
NT
tT −

∫ tT

0
λTs ds

)
,

we have

V T
t =

∫ t

0
CTs ds+ M̂T

t

Using Doob’s inequality, we obtain

E
[(

sup
t∈[0,1]

M̂T
t

)2]
≤ 4E[(M̂T

1 )2] = 4

(
1− aT
T

)2

E[(MT
T )2]

= 4

(
1− aT
T

)2

E[NT
T ] ≤ 4c(1− aT )2

T
.

Last inequality shows the convergence of M̂T to zero u.c.p. Now note that (CT , t) converges
in law for the Skorohod topology to (C, t), where C is the unique strong solution of the
CIR equation (2.17). We see that the hypotesis of theorem A.5 are trivially satisfied taking
Xn
t ≡ t. Hence the sequence of stochastic integrals converges in law and Lemma VI.3.31

in [18] allows to conclude that

V T
t

D−→
∫ t

0
Cs ds .

4.4. Focus on the assumptions. Let’s meditate a little bit about the importance
of our assumptions.

First of all, Assumption 2.1 gives us a very treatable way to define the nearly unstability
condition for the sequence of Hawkes processes. As we already remarked, that is not the
only possible choice, but it seems reasonable to determine a dependance on a scalar constant
rather than to change the shape of the intensity kernels ϕT at each T .

The very crucial part is the light tails condition
∫∞
0 sϕ(s) ds < ∞. As a matter of

fact, this was necessary to prove the covergence of the sequence ψT to an exponential
in Proposition 2.8 (see equation (2.6)) and also to prove the boundedness of the Fourier
transform of %T in Lemma 2.13. Hence, assuming that ϕ(s) ∼ sα−1 with α ∈ (0, 1), is the
basis of the main resut. In the next chapter we will see that, dropping this hypotesis and
assuming that ϕ(s) ∼ s−(1+α), we will be forced to change approach and we will get a very
different result.

Differentiability of the function ϕ allowed us some integrations by parts and to use Tay-
lor expansion for ϕ in Proposition 2.8. The same Proposition also shows us the importance
of the limit of the real sequence T (1− aT ), beyond the result of Theorem 2.3. As already
remarked there, Theorem 2.3 gives a motivation to the choice of a proper observation scale.

Finally, Assumption 2.2 appears to be a rather technical assumption and it was used
in proof of Lemma 2.14 to bound the derivative of %. Nevertheless, that result is crucial to
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prove the convergence to zero of the process Y T , which gives the possibility to write the
rescaled intensity in the form of SDE.





CHAPTER 3

Heavy tailed nearly unstable Hawkes processes

As we remarked at the end of Chapter 2, the condition∫ +∞

0
sϕ(s) ds <∞

was crucial in order to obtain the limiting behaviour of a CIR dynamics for the intensity
process. We now want to inspect what happens if this condition is violated. We will then
suppose that

ϕ(x) ∼
x→+∞

K

x1+α
,

where α ∈ (0, 1) and K is a positive constant. We will address to this condition as the
heavy tailed condition.

The main result of this chapter will be that, for α ∈ (1/2, 1), the law of a nearly
unstable heavy tailed Hawkes process, properly rescaled, converges to that of a process
which can be interpreted as an integrated fractional diffusion. We will closely follow the
approach of Jaisson and Rosenbaum [20].

1. Setting and assumptions

The setting for this chapter is very similar to what was introduced in Section 1 of
Chapter 2.

We still have a sequence of Hawkes processes (NT
t )t≥0, indexed by T and we study

its behaviour for T that goes to infinity. When it will be required by the context (e.g.
using convergence theorems) we will consider an increasing sequence of indeces (Tn)n∈N
such that Tn →∞ for n→∞.

For a given T , (NT
t ) is defined on the interval [0, T ], NT

0 = 0 and the associated
intensity process is given by

λTt = µT +

∫ t

0
ϕT (t− s) dNT

s , for t ≥ 0 ,

where µT is a sequence of positive real numbers and ϕT is a non-negative measurable
function on R+ which satisfies ‖ϕT ‖1 < +∞. The process (NT

t ) again is defined on a
probability space (ΩT ,FT ,PT ), equipped by the filtration (FTt )t∈[0,T ], where FTt is the
σ-algebra generated by (NT

s )s≤t. We will usually omit the index T in PT , writing P, unless
it is specifically required by the context.

We continue to call MT
t the compensated process, that is

MT
t = NT

t −
∫ t

0
λTs ds .

Recall that MT
t is a local martingale since, if the process (JTn )n≥1 represents the jump

times of (NT
T ), then

NT
t∧JTn

−
∫ t∧JTn

0
λTs ds

27
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is a martingale for every n.
This was the general setting, we now start giving some more specific assumptions.

Assumption 3.1. For t ∈ R+,

ϕT (t) = aTϕ(t) ,

where (aT )T≥0 is a sequence of positive real numbers converging to 1 such that for all T ,
aT < 1 and ϕ is a non-negative measurable function such that ‖ϕ‖1 = 1. Moreover we
assume there exist α ∈ (0, 1) and K > 0 such that

lim
x→+∞

αxα(1−G(x)) = K ,

where G(x) =
∫ x
0 ϕ(s) ds.

Remark 3.1. Note that Assumption 3.1 is a way to violate the condition∫ +∞

0
sϕ(s) ds < +∞

given in Assumption 2.1. As a matter of fact, dividing by x we get

αxα−1(1−G(x)) ∼
x→∞

K/x .

Hence the integral of the preceding function above over [0,+∞) diverges. Integrating by
parts we get∫ +∞

0
αxα−1

∫ +∞

x
ϕ(s) ds dx =

[
xα
∫ +∞

x
ϕ(s) ds

]x=+∞

x=0

+

∫ +∞

0
xαϕ(x) dx

=
K

α
+

∫ +∞

0
xαϕ(x) dx =∞

and this implies
∫∞
0 sϕ(s) ds =∞.

Note that we continue to have almost surely no explosion, thanks to Lemma 1.7 in
Chapter 1. Moreover Remark 2.2 holds also under Assumption 3.1, therefore the process
(MT

t ) is a square integrable martingale with quadratic variation process the process (NT
t ).

The second assumption is related to the observation scale:

Assumption 3.2. There are two positive constant λ and µ∗ such that

lim
T→+∞

Tα(1− aT ) = λδ

and
lim

T→+∞
T 1−αµT = µ∗δ−1 ,

where we set

δ = K
Γ(1− α)

α
,

with Γ the usual gamma function, Γ(z) =
∫∞
0 xz−1e−x dx.

Finally, keeping the same notation of Chapter 2, we define ψT : R+ → R+ as

ψT (t) =

∞∑
k=1

(ϕT )∗k(t) .
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2. Heuristics

In this section we prepare the main results giving some heuristic computation. We
follow the ideas given in Section 3 of Chapter 2.

As it was proven in Proposition 2.10, we can write the intensity process in the following
alternative way:

λTt = µT +

∫ t

0
ψT (t− s)µT ds+

∫ t

0
ψT (t− s) dMT

s .

Hence we get the same rescaled intensity on the interval [0, 1], that is

λTtT = µT +

∫ tT

0
ψT (Tt− s)µT ds+

∫ tT

0
ψT (Tt− s) dMT

s .

For the rescaling in space, recall from Theorem 1.9 that in the stationary case the expec-
tation of λTt is µT /(1−‖ϕT ‖1), hence a natural rescaling factor is (1− aT )/µT . Therefore
we define the sequence of rescaled intensity

CTt =
1− aT
µT

λTtT .

From the preceding alternative form of the intensity, after a change of variable, we get

(3.1) CTt = (1−aT )+

∫ t

0
T (1−aT )ψT (Ts) ds+

√
T (1− aT )

µT

∫ t

0
ψT (T (t−s))

√
CTs dB

T
s ,

with

BT
t =

1√
T

∫ tT

0

dMT
s√
λTs

.

The process (BT
t ) is chosen in such a way that its quadratic variation tends to t as T tends

to infinity; we will see this in detail in the following.
As we already remarked in Chapter 2, the asymptotic behaviour of (CTt ) is closely

related to that of function ψT (T ·). We then study the rescaling

%T (x) = T
ψT (Tx)

‖ψT ‖1
.

Borrowing the computations from Chapter 2 we note that %T is the density of the random
variable

HT =
1

T

IT∑
i=1

Hi ,

where the (Hi)i are i.i.d. random variable with density ϕ and IT is a geometric random
variable with success probability 1 − aT , independent from Hi for every i. The Laplace
transform of the random variable HT is then the Laplace transform of function %T , that is

%̂T (z) = E
[
e−zH

T
]

=
∞∑
k=1

(1− aT )(aT )k−1E
[
e−

z
T

∑k
i=1Hi

]
=
∞∑
k=1

(1− aT )(aT )k−1(ϕ̂(z/T ))k = (1− aT )ϕ̂(z/T )
∞∑
k=1

(aT ϕ̂(z/T ))k−1

= (1− aT )ϕ̂(z/T )
1

1− aT ϕ̂(z/T )
=

ϕ̂(z/T )

1− aT
1−aT (ϕ̂(z/T )− 1)

,
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where ϕ̂ is the Laplace transform of function ϕ. In Chapter 2 we used a Taylor expansion
for ϕ thanks to the differentiability condition given by Assumption 2.1. Here we cannot
use the same argument. However, integrating by parts, we can rewrite ϕ̂.

ϕ̂(z) =

∫ +∞

0
e−zxϕ(x) dx =

[
e−zx

∫ x

0
ϕ(s) ds

]x=+∞

x=0
+ z

∫ +∞

0
e−zx

∫ x

0
ϕ(s) ds dx

= z

∫ +∞

0
e−zxG(x) dx .

Now, note that z
∫ +∞
0 e−zx dx = 1. Hence we get

ϕ̂(z) = 1− z
∫ +∞

0
e−zx(1−G(x)) dx = 1− z

∫ +∞

0
e−zx

∫ +∞

x
ϕ(s) ds dx

= 1−
∫ +∞

0
e−u

∫ +∞

u/z
ϕ(s) ds du = 1− zα

∫ +∞

0

(u
z

)α ∫ +∞

u/z
ϕ(s) ds u−αe−u du .

Using Assumption 3.1, taking the limit for z → 0, we get

ϕ̂(z) ∼
z→0

1− zαK
α

∫ +∞

0
u−αe−u du = 1− zαKΓ(1− α)

α
,

where the passage to the limit under the integral was justified by dominated convergence
theorem and the fact that ‖ϕ‖1 = 1. Finally, using the notation in Assumption 3.1, we get
for |z| small enough

ϕ̂(z) = 1− zαδ + o(z) .

Setting vT = δ−1Tα(1− aT ), we get for T that goes to infinity

%̂T (z) =
1− δ

(
z
T

)α
+ o

(
z
T

)
1− aT

1−aT

(
−δ
(
z
T

)α
+ o

(
z
T

)) =
1− v−1T (1− aT )zα + o

(
z
T

)
1 + aT v

−1
T zα − aT

1−aT o
(
z
T

)
∼ 1

1 + v−1T α
=

vT
vT + zα

.

From [12, equation (19.4) page 32] we see that the function whose Laplace transform is
vT /(vT + zα) is

vTx
α−1Eα,α(−vTxα) ,

with Eα,β the Mittlag-Leffler function, with parameter α and β, given by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
.

We then know that, taking the limit for T that goes to infinity, we get

%T (x)→ vTxα−1Eα,α(−vTxα) ,

hence

ψT (Ts)→ ‖ψ
T ‖1
T

vT s
α−1Eα,α(−vT sα) .

Substituting heuristically this limit in equation (3.1), recalling that ‖ψT ‖1 = aT
1−aT , we get

CTt ∼ vT
∫ t

0
sα−1Eα,α(−vT sα) ds+ γT vT

∫ t

0
(t− s)α−1Eα,α(−vT (t− s)α)

√
CTs dB

T
s ,

where we put

γT =
1√

µTT (1− aT )
.
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Using the fact that the maximum jump of the process BT tends to zero and its quadratic
variation tends to t, it will be shown that the process BT converges in law toward a
brownian motion B. Now note that, thanks to Assumption 3.2, we have for T →∞

vT → λ and γT vT →

√
λ

µ∗
.

Hence, substituting in a non rigorous way we get

C∞t ∼ λ
∫ t

0
sα−1Eα,α(−λsα) ds+

√
λ

µ∗

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)

√
C∞s dBs .

We got a non deterministic behaviour for the limiting law of the rescaled intensity.
This form of the intensity reminds us of the fractional Brownian motion (BH

t ), with Hurst
parameter H, that is the process

BH
t =

1

Γ(H + 1/2)

(∫ t

0
(t− s)H−1/2 dWs +

∫ 0

−∞
(t− s)H−1/2 − (−s)H−1/2 dWs

)
,

where (Wt)t is a standard Brownian motion. This is why we say that the limiting intensity
process has the form of an integrated fractional diffusion.

Remark 3.2. We could have derived the preceding heuristic computation without
stating Assumption 3.2. In that case we would have obtained the following limit for C∞t :

C∞t ∼ v∞
∫ t

0
sα−1Eα,α(−v∞sα) ds+ γ∞v∞

∫ t

0
(t− s)α−1Eα,α(−v∞(t− s)α)

√
C∞s dBs .

Then it is clear that we want both v∞ and γ∞ to be strictly positive constant in order to
get a non deterministic limiting behaviour. This is the reason for choosing the observation
scale given by Assumption 3.2.

3. Convergence

We now tackle the problem of convergence for our sequence of heavy tailed nearly un-
stable Hawkes process. Let us start giving some notations. We will study the renormalized
Hawkes process

XT
t =

1− aT
Tαµ∗δ−1

NT
tT , t ∈ [0, 1]

and its integrated intensity

ΛTt =
1− aT
Tαµ∗δ−1

∫ tT

0
λTs ds , t ∈ [0, 1] .

We already remarked that this normalization is chosen in a way that the process has
expectation of order one. We define also the following martingale:

ZTt =

√
Tαµ∗δ−1

1− aT
(XT

t − ΛTt ) , t ∈ [0, 1] .

Next result is essential in order to obtain a representation of the limiting Hawkes process
and it concernes the convergence in distribution of the sequence of processes (ZT , XT ).

Proposition 3.3. Under Assumptions 3.1 and 3.2, the sequence (ZT , XT ) is tight.
Furthermore, if (Z,X) is a limit point of (ZT , XT ), then Z is a continous martingale with
quadratic variation process the process X.
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Proof. We will use many convergence results borrowed from [18] to prove the propo-
sition. As firts step in this proof, we prove that the two sequences XT and ΛT are C-tight,
that means that they are tight and every limit point is a continuous process. Thanks to
Lemma 2.4 we have

E[NT
t ] = µT t+ µT

∫ t

0
ψT (t− s)s ds ≤ tµT (1 + ‖ψT ‖1) .

Therefore, since ‖ψT ‖1 = aT /(1−aT ), we get that there exists a constant c > 0, such that
uniformly in T we have

E[ΛT1 ] = E[XT
1 ] = E

[
1− aT
Tαµ∗δ−1

NT
T

]
≤ 1− aT
Tαµ∗δ−1

TµT
1− aT

=
T 1−αµT
µ∗δ−1

≤ c .

Since both XT and ΛT are increasing processes, their total variation on [0, 1] is simply
given by XT

1 and ΛT1 respectively, whose expected value is uniformly bounded. Hence,
applying Corollary 9 in [23], both the processes are tight.

Moreover, since (1−aT )/Tα tends to zero, the maximum jump size of XT tends to zero
as T goes to infinity, while the process ΛT is already continuous. Thanks to Proposition
VI.3.26 in [18], this implies the C-tightness of the sequences XT and ΛT .

Let us now study the sequence (ZT , XT ). Notice that

E[(ZTt )2] =
1− aT
Tαµ∗δ−1

E[(MT
tT )2] =

1− aT
Tαµ∗δ−1

E[NT
tT ] .

Hence 〈ZT 〉 = XT . We can then apply Theorem VI.4.13 in [18] and use that the sequence
of quadratic variation of the process ZT is C-tight to deduce that ZT is tight. Finally,
using corollary VI.3.33 in [18], we get the joint tightness of the sequence (ZT , XT ).

We now focus on the second part of the proposition. Consider a convergent subsequence
(ZTn , XTn) with limit the process (Z,X). Proposition VI.6.26 in [18], together with the
fact that the quadratic variation of the process ZTn is XTn , gives us that 〈Z〉 = X.
Now we just need to know that Z is a continuous martingale. It is continuous because√

(1− aT )/Tα tends to zero as T tends to infinity and this implies that the maximum
jump size of ZTn tends to zero; therefore the sequence ZTn is C-tight and the limit Z is
continuous. Now, since the maximum jump size of ZTn is bounded uniformly in n, because
it converges to zero, Corollary IX.1.19 in [18] gives us that Z is a local martingale. Moreover
its quadratic variation, that is X, has finite expected value, hence Z is a martingale. �

Having the tightness of the sequence of processes (ZT , XT ), we can now take a pair of
processes (Z,X), defined on some probability space (Ω,A,P), with law being one of the
possible limit points of the sequence of distributions associated to the sequence (ZT , XT ).
We have the following results, giving an explicit expression for the pair (Z,X):

Theorem 3.4. There exists a Brownian motion B on (Ω,A,P), such that for t ∈ [0, 1],
Zt = BXt and for any ε > 0, X is Hölder continuous with Hölder exponent (1∧ 2α)− ε on
[0, 1] and it can be written as

(3.2) Xt =

∫ t

0
sfα,λ(t− s) ds+

1√
µ∗λ

∫ t

0
fα,λ(t− s)BXs ds ,

where we define

fα,λ(x) = λxα−1Eα,α(−λxα) .
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3.1. Proof of theorem 3.4. We devote this section to prove the preceding theorem.
We will need many step to reach the result.

We start with some preliminaries about the function fα,λ and its fractional integrals
and derivatives (see Appendix B for the basic definitions). We do not provide any proof
of the next Proposition, we just recall that all the results are easily obtained applying the
results of [12, Section 11] to the function fα,λ.

Proposition 3.5. The function fα,λ is C∞ on (0, 1] and

fα,λ(x) ∼
x→0+

λ

Γ(α)
xα−1 ,

(fα,λ)′(x) ∼
x→0+

λ(α− 1)

Γ(α)
xα−2 .

Furthermore, fα,λ(x)x1−α has Hölder regularity α on (0, 1].
For ν < α, fα,λ is ν fractionally differentiable and

Dνfα,λ(x) = λxα−1−νEα,α−ν(−λxα) .

Therefore we have

Dνfα,λ(x) ∼
x→0+

λ

Γ(α− ν)

1

x1−α+ν
,

(Dνfα,λ)′(x) ∼
x→0+

λ(α− 1− ν)

Γ(α− ν)

1

x2−α+ν
.

For ν ′ > 0, fα,λ is ν ′ fractionally integrable and

Iν
′
fα,λ(x) = λ

1

x1−α−ν′
Eα,α+ν′(−λxα) .

Therefore we have

Iν
′
fα,λ(x) ∼

x→0+

λ

Γ(α+ ν ′)

1

x1−α−ν′

and, for α+ ν ′ 6= 1,

(Iν
′
fα,λ)′(x) ∼

x→0+

λ(α− 1 + ν ′)

Γ(α+ ν ′)

1

x2−α−ν′
.

Finally, the following relation holds:

I1−αfα,λ(x) = λ
(
1− Fα,λ(x)

)
.

3.1.1. Proof of equation (3.2). We now start to investigate the limiting expression of
the process XT . Next Lemma tells us that we can actually study the behaviour of the
process ΛT rather than the behaviour of the process XT .

Lemma 3.6. The sequence of martingales XT − ΛT tends to zero in probability, uni-
formly on [0, 1].

Proof. We have
XT
t − ΛTt =

1− aT
Tαµ∗δ−1

MT
tT .

Applying Doob’s inequality to the martingale MT we get

E
[

sup
t∈[0,1]

{(XT
t − ΛTt )2}

]
≤ c
(

1− aT
Tα

)2

E
[
(MT

T )2
]
,
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where c is a positive constant. Now, since the quadratic variation of the martingale MT is
given by the process NT and

E
[
NT
T

]
≤ TµT (1 + ‖ψT ‖1) = TµT

(
1

1− aT

)
,

we deduce

E
[

sup
t∈[0,1]

{(XT
t − ΛTt )2}

]
≤ c

(
1− aT
Tα

)2

E
[
NT
T

]
≤ c

(
1− aT
Tα

)2

T
µT

1− aT

= c µTT
1−α︸ ︷︷ ︸

→µ∗δ−1

1− aT
Tα

.

Hence, using Markov inequality, for any ε > 0,

P
(

sup
t∈[0,1]

{(XT
t − ΛTt )2} > ε

)
≤ 1

ε
E
[

sup
t∈[0,1]

{(XT
t − ΛTt )2}

]
≤ c′

ε

1− aT
Tα

.

The last quantity goes to zero for T that goes to infinity, giving the convergence u.c.p of
the sequence of martingales XT − ΛT . �

We now state a Lemma whose proof is already contained in Section 2. In particular
it was showed there that the Laplace transform of the measure with density %T (x) con-
verges towards the Laplace transform of the measure with density λxα−1Eα,α(−λxα). As
a consequence we get the following:

Lemma 3.7. Let %T defined as in Section 2, that is

%T (x) = T
ψT (Tx)

‖ψT ‖1
.

Then the sequence of measures with density %T converges weakly towards the measure with
density λxα−1Eα,α(−λxα). In particular, for t ∈ [0, 1], the function

F T (t) =

∫ t

0
%T (x) dx

converges uniformly towards

Fα,λ(t) =

∫ t

0
fα,λ(x) dx .

We focus now on equation (3.2). Let us consider a converging subsequence (ZTn , XTn)
and write (Z,X) for its limit. By abuse of notation we continue to write (ZT , XT ) instead
of (ZTn , XTn). Thanks to Skorohod’s representation theorem, there exists a probability
space on which one can define copies in law of the couple (ZT , XT ) converging almost surely
for the Skorohod topology to a random variable with the same law as (Z,X). We now
work with this sequence of variables converging almost surely and their limit. Recall that
the process Z and X are continuous and that the Skorohod topology, relativized to C (the
space of continuous functions on [0, 1]), coincides with the uniform topology. Therefore we
have

(3.3) sup
t∈[0,1]

|XT
t −Xt| → 0 , sup

t∈[0,1]
|ZTt − Zt| → 0 .
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We work on a more suitable expression for the cumulated intensity.∫ t

0
λTs ds =

∫ t

0

{
µT +

∫ s

0
ϕT (s− u)

(
dMT

u + λTu du
)}
ds

= tµT +

∫ t

0

∫ s

0
ϕT (s− u) dMT

u ds+

∫ t

0

∫ s

0
ϕT (s− u)λTu du ds

For the first integral, applying Fubini theorem, we get∫ t

0

∫ s

0
ϕT (s− u) dMT

u ds =

∫ t

0

∫ t

u
ϕT (s− u) ds dMu

=

∫ t

0

∫ t

u
ϕT (t− z) dz dMT

u =

∫ t

0

(∫ z

0
dMT

u

)
ϕT (t− z) dz

=

∫ t

0
MT
z ϕ

T (t− z) dz .

For the second one we get∫ t

0

∫ s

0
ϕT (s− u)λTu du ds =

∫ t

0

(∫ t

u
ϕT (s− u) ds

)
λTu du

=

∫ t

0

(∫ t

u
ϕT (t− z) dz

)
λTu du

=

∫ t

0

(∫ z

0
λTu du

)
ϕT (t− z) dz .

Hence we have the following expression:∫ t

0
λTs ds = tµT +

∫ t

0
ϕT (t− s)MT

s ds+

∫ t

0
ϕT (t− s)

(∫ s

0
λTu du

)
ds .

Now using Lemma 2.11 we get∫ t

0
λTs ds = tµT +

∫ t

0
ϕT (t− s)MT

s ds+

∫ t

0
ψT (t− s)

(
sµT +

∫ s

0
ϕT (s− u)MT

u du

)
ds

= tµT +

∫ t

0
ϕT (t− s)Ms ds+

∫ t

0
sµTψ

T (t− s) ds

+

∫ t

0
ψT (t− s)

∫ s

0
ϕT (s− u)MT

u du ds

We can rewrite the last summand using the fact that ψT ∗ ϕT = ψT − ϕT :∫ t

0
ψT (t− s)

∫ s

0
ϕT (s− u)MT

u du ds =

∫ t

0

∫ t

u
ψT (t− s)ϕT (s− u) dsMT

u du

=

∫ t

0

∫ t−u

0
ψT (t− u− s)ϕT (s) dsMT

u du

=

∫ t

0
ψT ∗ ϕT (t− u)MT

u du

=

∫ t

0
ψT (t− u)MT

u du−
∫ t

0
ϕT (t− u)MT

u du

Hence, using this in the previous equation for the cumulated intensity, we get

(3.4)
∫ t

0
λTs ds = tµT +

∫ t

0
ψT (t− s)sµT ds+

∫ t

0
ψT (t− s)MT

s ds .
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In order to get ΛT we just need to replace t by tT and multiply by (1 − aT )/(Tαµ∗δ−1).
Moreover we define the quantity

uT =
µT

µ∗δ−1Tα−1
,

that goes to 1 as T goes to infinity and will make our expression simplier. We then have

ΛTt = (1− aT )tuT + T (1− aT )uT

∫ t

0
ψT (T (t− s))s ds

+ T 1−α/2
√

1− aT
µ∗δ−1

∫ t

0
ψT (T (t− s))ZTs ds .

(3.5)

Since uT goes to one, the first summand converges to zero as T goes to infinity. For the
second summand we can rewrite and integrate by parts, getting

T (1− aT )uT

∫ t

0
ψT (T (t− s))s ds = aTuT

∫ t

0
%T (t− s)s ds = aTuT

∫ t

0
%T (u)(t− u) du

= aTuT

[
tF T (t)−

∫ t

0
%T (u)u du

]
= aTuT

[
tF T (t)− tF T (t) +

∫ t

0
F T (u) du

]
= atut

∫ t

0
F T (t− s) ds

Now, thanks Lemma 3.7, the last quantity tends uniformly to

aTuT

∫ t

0
Fα,λ(t− s) ds = aTuT

([
Fα,λ(t− s)s

]s=t
s=0

+

∫ t

0
fα,λ(t− s)s ds

)
= aTuT

∫ t

0
fα,λ(t− s)s ds .

We now turn to the last summand in (3.5), that can be rewritten as

aT√
Tα(1− aT )µ∗δ−1

∫ t

0
%T (t− s)ZTs ds .

We would like to show that for any t ∈ [0, 1]∫ t

0
%T (t− s)ZTs ds→

∫ t

0
fα,λ(t− s)Zs ds .

Using integration by parts for Lebesgue-Stiltjes integrals, we have∫ t

0
%T (t− s)ZTs ds =

[(∫ s

0
%T (t− u) du

)
ZTs

]s=t
s=0

−
∫ t

0

∫ s

0
%T (t− u) du dZTs

=

∫ t

0
%t(t− u) duZTt −

∫ t

0

∫ t

t−s
%T (z) dz dZTs

= F T (t)ZTt −
∫ t

0

(
F T (t)− F T (t− s)

)
dZTs

=

∫ t

0
F T (t− s) dZTs .
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With the same computations we get also∫ t

0
fα,λ(t− s)ZTs ds =

∫ t

0
Fα,λ(t− s) dZTs .

Then we have∣∣∣∣ ∫ t

0
%T (t− s)ZTs ds−

∫ t

0
fα,λ(t− s)Zs ds

∣∣∣∣ =

∣∣∣∣ ∫ t

0
F T (t− s) dZTs −

∫ t

0
fα,λ(t− s)ZTs ds

+

∫ t

0
fα,λ(t− s)ZTs ds−

∫ t

0
fα,λ(t− s)Zs ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

(
F T (t− s)− Fα,λ(t− s)

)
dZTs

∣∣∣∣+

∫ t

0
fα,λ(t− s)

∣∣ZTs − Zs∣∣ ds .
The first integral goes to zero since

E
[(∫ t

0

(
Fα,λ(t− s)− F T (t− s)

)
dZTs

)2]
=

∫ t

0

(
Fα,λ(t− s)− F T (t− s)

)2E[XT
s ] ds

≤ c
∫ t

0

(
Fα,λ(t− s)− F T (t− s)

)2
ds

and the last quantity tends to zero thanks to Lemma 3.7. For the second integral, use
equation (3.3) and again we have convergence to zero. Hence we finally obtain that the
third summand in equation (3.5) converges, for any t ∈ [0, 1], to

1√
µ∗λ

∫ t

0
fα,λ(t− s)Zs ds .

In order to conclude the proof of equation (3.2) in Theorem 3.4, we need to show that
Zt = BXt with B a Brownian motion on (Ω,A,P). This is given by Dambis-Dubin-
Schwarz theorem (Theorem A.6), noticing that Z is a continuous martingale with quadratic
variation the process X. See [25, V.1.6] for details on this theorem.

Putting all together the previous computations, we got the pointwise limit for the
process ΛT , that is exactly what we were looking for:

ΛTt →
T→∞

∫ t

0
sfα,λ(t− s) ds+

1√
µ∗λ

∫ t

0
fα,λ(t− s)BXs ds .

Now we conclude using Lemma 3.6 and writing the process XT as

XT
t = ΛTt +XT

t − ΛTt .

3.1.2. Proof of the Hölder property for X. After proving equation (3.2), we now de-
vote our attention to prove the Hölder property for X in Theorem 3.4. We will use a
contradiction argument based on the following technical Lemma.

Lemma 3.8. Let B be a Brownian motion and X a solution of (3.2) associated to B.
Let H ∈ [0, 1]. If X has Hölder regularity H on [0, 1], then for any ε > 0, X has also
Hölder regularity ((α+H/2) ∧ 1)− ε on [0, 1].

Before giving the proof of this Lemma, we need a technical result about the smoothness
of the convolution of a power type function with a continuous function. This result will be
widely used in the following.
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Proposition 3.9. Let f be a differentiable function on (0, 1] such that, for someK > 0,
0 < β < 1 and any x in (0, 1],

|f(x)| ≤ K

xβ
and |f ′(x)| ≤ K

xβ+1
,

and g a continuous function [0, 1]. Then the convolution

f ∗ g(t) =

∫ t

0
f(t− s)g(s) ds

is Hölder regular with exponent 1− β.

Proof. Let G = supx∈[0,1] |g(x)|. We can split f ∗ g(t+ h)− f ∗ g(t) as follows:

f ∗ g(t+ h)− f ∗ g(t) =

∫ t+h

0
f(t+ h− s)g(s) ds−

∫ t

0
f(t− s)g(s) ds

=

∫ t−h

0

(
f(t+ h− s)− f(t− s)

)
g(s) ds

+

∫ t

t−h

(
f(t+ h− s)− f(t− s)

)
g(s) ds

+

∫ t+h

t
f(t+ h− s)g(s) ds .

We bound the three terms separately. For the first one we have∫ t−h

0

(
f(t+ h− s)− f(t− s)

)
g(s) ds ≤

∫ t−h

0

∣∣f(t+ h− s)− f(t− s)
∣∣Gds

≤ G
∫ t−h

0

K

(t− s)β+1
h ds ≤ GKh

β

[
1

(t− s)β+1

]s=t−h
s=0

=
GK

β
h
( 1

hβ
− 1

tβ

)
≤ GK

β
h1−β .

For the second one we use the bound on the modulus of f :∫ t

t−h

(
f(t+ h− s)− f(t− s)

)
g(s) ds ≤ G

∫ t

t−h
|f(t+ h− s)− f(t− s)| ds

≤ G
(∫ t

t−h

K

(t+ h− s)β
ds+

∫ t

t−h

K

(t− s)β
ds

)
GK

1

1− β

[(
(2h)1−β − h1−β + h1−beta

)
=

GK

1− β
21−βh1−β .

Finally we easily bound the third term:∫ t+h

t
f(t+ h− s)g(s) ds ≤

∫ t+h

t
|f(t+ h− s)|Gds

≤ GK
∫ t+h

t

1

(t+ h− s)β
ds = −GK 1

1− β

[
(t+ h− s)1−β

]s=t+h
s=t

=
GK

1− β
h1−β .

Therefore we have

f ∗ g(t+ h)− f ∗ g(t) ≤ GK max

{
21−β

1− β
;

1

β

}
h1−β ,
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that gives the Hölder exponent for f ∗ g.
�

Proof of Lemma 3.8. Let ε > 0 and Zt = BXt . Since the function

t 7→
∫ t

0
sfα,λ(t− s) ds

is C1, it is enough to show that the function

t 7→
∫ t

0
fα,λ(t− s)Zs ds

has the required Hölder regularity. Recalling that the Brownian motion has Hölder regu-
larity 1/2− ε′ for every ε′ > 0, we easily get that, for any ε′ > 0, Z has Hölder regularity
(H/2− ε′). Therefore, by Proposition B.7, it is fractionally differentiable and DH/2−εZ is
continuous. Since fα,λ is in L1([0, 1]), it is fractionally integrable and, by Corollary B.9,
we get ∫ t

0
fα,λ(t− s)Zs ds =

∫ t

0
IH/2−εfα,λ(t− s)DH/2−εZs ds .

Finally, since Proposition 3.5 gives us that

IH/2−εfα,λ(x) ∼ K/x1−α−H/2+ε

and
(IH/2−εfα,λ)′(x) ∼ K/x2−α−H/2+ε ,

we have that, if α+H/2− ε < 1, we can apply Proposition 3.9 and get the result. �

Now let B be a Brownian motion and X a solution of (3.2) associated to B. We show
that for any ε > 0, almost surely, the process X has Hölder regularity (1∧2α)−ε on [0, 1].

Let M be the supremum of Hölder exponents of X. The estimates on fα,λ given by
Proposition 3.5, together with the continuity of the Brownian motion, allow us to apply
Proposition 3.9 to the second integral in the definition of X and conclude that M ≥ α.

Let us now assume thatM < (1∧2α). Then we can find some H < M and some ε > 0
such that

M <
(
(α+H/2) ∧ 1

)
− ε .

But, since H < M , X has Hölder regularity with exponent H and hence, by Lemma 3.8,
has also Hölder regularity with exponent

(
(α + H/2) ∧ 1

)
− ε, which is a contradiction.

Therefore we must have M ≥ (1 ∧ 2α).

4. Derivative of process X

In this section we will find, under suitable conditions, an explicit expression for the
derivative of the process X defined by (3.2). This expression, already obtained with the
heuristic computations of section 2, gives us an interpretation of the process X as an
integrated fractional diffusion.

The key point is that if the tail of the function ϕ is not too heavy, X is differentiable.
The following resut indeed holds. We keep all the notations introduced during this chapter.

Theorem 3.10. Let (Xt)t∈[0,1] a process satisfying equation (3.2) and assume that
α ∈ (1/2, 1). Then the process X is differentiable on [0, 1] and its derivative Y satisfies

(3.6) Yt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
fα,λ(t− s)

√
Ys dB

1
s ,
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where B1 is a Brownian motion. Furthermore, for any ε > 0, Y has Hölder regularity
α− 1/2− ε.

Proof. We start with a simple Lemma, giving us the Hölder regularity of process Z.

Lemma 3.11. Let B be a Brownian motion, X a solution of (3.2) associated to B
and Zt = BXt. Then, for any ε > 0, almost surely, the process Z has Hölder regularity
(1/2 ∧ α)− ε on [0, 1].

Proof. Using the Hölder regularity of the Brownian motion and that of the process
X we get almost surely, for any ε, ε′ > 0,

|Zt − Zs| = |BXt −BXs | ≤ k1|Xt −Xs|1/2−ε ≤ k2
(
|t− s|(1∧2α)−ε′

)1/2−ε
,

where k1, k2 are positive constant. �

Now let α > 1/2, therefore let Z be Hölder continuous with exponent 1/2 − ε, for
any ε > 0. From Proposition 3.5 we have that the functon x 7→ fα,λ(x)x1−α is Hölder
continuous with Hölder exponent α. Then Corollary B.10 implies that Dνfα,λ exists for
any ν ∈ (0, α) and we can rewrite the second integral in equation (3.2) to get

Xt =

∫ t

0
sfα,λ(t− s) ds+

1√
µ∗λ

∫ t

0
Dνfα,λ(t− s)IνZs ds .

Note that, integrating by parts in the first integral, we get

Xt =

∫ t

0
Fα,λ(s) ds+

1√
µ∗λ

∫ t

0
Dνfα,λ(t− s)IνZs ds .

Now, taking ν > 1/2, since Z is 1 − ν Hölder continuous, Z is also 1 − ν fractionally
differentiable and we have

Zs = I1−νD1−νZs ,

that gives, using the semigroup property of the fractional integral operator,

IνZs = ID1−νZs =

∫ s

0
D1−νZu du .

We use this expression in the formula for X and apply Fubini’s theorem:∫ t

0
Dνfα,λ(t− s)IνZs ds =

∫ t

0

∫ s

0
Dνfα,λ(t− s)D1−νZu du ds

=

∫ t

0

∫ t

u
Dνfα,λ(t− s)D1−νZu ds du

=

∫ t

0

∫ t

u
Dνfα,λ(s− u)D1−νZu ds du

=

∫ t

0

∫ s

0
Dνfα,λ(s− u)D1−νZu du ds .

Hence we got

Xt =

∫ t

0
Ys ds ,

where
Ys = Fα,λ(s) +

1√
µ∗λ

∫ s

0
Dνfα,λ(s− u)D1−νZu du .

Applying again Proposition 3.9 together with the properties ofDνfα,λ given by Proposition
3.5, we get that Y has Hölder regularity with exponent (α−ν). Thus, taking ν close enough
to 1/2 (we can do that), we get that for any ε > 0, Y has Hölder regularity (α− 1/2− ε).
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Since α > 1/2, this implies that Y is continuous and hence the derivative of X is defined
for any t ∈ [0, 1].

We now need to find the right expression for Y . Since Z is a continuous martingale
with bracket X, the condition to apply stochastic Fubini theorem are easily verified (see
[27]). Hence we can obtain

D1−νZs =
1

Γ(ν)

d

ds

∫ s

0

Zs
(s− v)1−ν

dv =
1

Γ(ν)

d

ds

∫ s

0

∫ v

0

1

(s− v)1−ν
dZu dv

=
1

Γ(ν)

d

ds

∫ s

0

∫ s

u

1

(s− v)1−ν
dv dZu =

1

Γ(ν + 1)

d

ds

∫ s

0
(s− u)ν dZu

Therefore we can write

Yt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
Dνfα,λ(t− s) 1

Γ(ν + 1)

d

ds

∫ s

0
(s− u)ν dZu ds .

Now note that, for any two differentiable fuctions f and g on R+,

(f ∗ g)′(t) =
d

dt

∫ +∞

0
g(t− s)f(s) ds =

∫ +∞

0
g′(t− s)f(s) ds

so that f ∗ (g′) = (f ∗ g)′. Using this fact together with Fubini’s theorem we get

Yt = Fα,λ(t) +
1√
µ∗λ

d

dt

∫ t

0

1

Γ(ν + 1)

∫ t

u
Dνfα,λ(t− s)(s− u)ν ds dZu

= Fα,λ(t) +
1√
µ∗λ

d

dt

∫ t

0
Iν+1Dνfα,λ(t− u) dZu

= Fα,λ(t) +
1√
µ∗λ

d

dt

∫ t

0

∫ t−u

0
IνDνfα,λ(s) ds dZu

= Fα,λ(t) +
1√
µ∗λ

d

dt

∫ t

0

∫ t

u
IνDνfα,λ(v − u) dv dZu

= Fα,λ(t) +
1√
µ∗λ

d

dt

∫ t

0

∫ v

0
IνDνfα,λ(v − u) dZu dv

= Fα,λ(t) +
1√
µ∗λ

∫ t

0
fα,λ(t− u) dZu .

Using the representation result given by Theorem A.7, since d〈Z,Z〉t = Yt dt, we have that
there exists a Brownian motion B1 such that

Zt =

∫ t

0

√
Ys dB

1
s .

Let’s consider the process (Ỹt)t defined by

Ỹt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
fα,λ(t− u)

√
Ys dB

1
s .

going backward in the previous computations, substituting
√
Yu dB

1
u to dZu, we get that

Ỹt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
Dνfα,λ(t− s) 1

Γ(ν + 1)

d

ds

∫ s

0
(s− u)ν

√
Yu dB

1
u ds
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and
1

Γ(ν + 1)

d

ds

∫ s

0
(s− u)ν

√
Yu dB

1
u =

1

Γ(ν)

d

ds

∫ s

0

(s− u)ν

ν

√
Yu dB

1
u

=
1

Γ(ν)

d

ds

∫ s

0

(∫ s−u

0
xν−1 dx

)√
Yu dB

1
u

=
1

Γ(ν)

d

ds

∫ s

0

(∫ s

u
(s− v)ν−1 dv

)√
Yu dB

1
u

=
1

Γ(ν)

d

ds

∫ s

0
(s− v)ν−1

(∫ v

0

√
Yu dB

1
u

)
dv

=
1

Γ(ν)

d

ds

∫ s

0

Zv
(s− v)1−ν

dv

= D1−νZs .

This implies

Ỹt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
Dνfα,λ(t− s)D1−νZs ds = Yt

and we can conclude that

Yt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
fα,λ(t− u)

√
Ys dB

1
s ,

which is the desired result. �

We eventually provide here an alternative form for equation (3.6), that shows that
the process Y solves a Volterra-type stochastic differential equation, a sort of rough CIR
equation. This result connects with the light tails case, where the limiting intensity process
was solution of a CIR stochastic differential equation, showing that the heavy tails condition
is the basis of the rough behaviour in our limiting process.

We state a general proposition, that will be useful in the following too.

Proposition 3.12. Let λ, ν, ϑ be positive constants, α ∈ (1/2, 1) and B a Brownian
motion. The process V is solution of the rough stochastic differential equation

(3.7) Vt = ϑFα,λ(t) + ν

∫ t

0
fα,λ(t− s)

√
Vs dBs

if and only if it is solution of

(3.8) Vt =
1

Γ(α)

∫ t

0

1

(t− s)1−α
λ(ϑ− Vs) ds+

λν

Γ(α)

∫ t

0

1

(t− s)1−α
√
Vs dBs .

Furthermore, both equation admit a unique strong solution.

Proof. We already proved the existence of a solution for (3.7) deriving equation (3.6).
Let V be a solution to (3.7) and write

K = I1−αV .

Using stochastic Fubini theorem we get

Kt = ϑ

∫ t

0
I1−αfα,λ(u) du+ ν

∫ t

0
I1−αfα,λ(t− u)

√
Vu dBu .
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Moreover, we know from Proposition 3.5 that I1−αfα,λ = λ
(
1 − Fα,λ(t)

)
. Hence, using

stochastic Fubini theorem again, we obtain

Kt = ϑ

∫ t

0
λ
(
1− Fα,λ(u)

)
du+ νλ

∫ t

0

√
Vu dBu − λν

∫ t

0
Fα,λ(t− u)

√
Vu dBu

= ϑ

∫ t

0
λ
(
1− Fα,λ(u)

)
du+ νλ

∫ t

0

√
Vu dBu − λν

∫ t

0

∫ t−u

0
fα,λ(s) ds

√
Vu dBu

= ϑ

∫ t

0
λ
(
1− Fα,λ(u)

)
du+ νλ

∫ t

0

√
Vu dBu − λν

∫ t

0

∫ t

u
fα,λ(s− u) ds

√
Vu dBu

= ϑ

∫ t

0
λ
(
1− Fα,λ(u)

)
du+ νλ

∫ t

0

√
Vu dBu − λ

∫ t

0
ν

∫ s

0
fα,λ(s− u)

√
Vu dBu ds

= ϑ

∫ t

0
λ
(
1− Fα,λ(u)

)
du+ νλ

∫ t

0

√
Vu dBu − λ

∫ t

0

(
Vs − ϑFα,λ(s)

)
ds

= λ

∫ t

0
(ϑ− Vu) du+ λν

∫ t

0

√
Vu dBu .

Recalling that we have Vt = D1−αKt, we get

Vt =
1

Γ(α)
λ
d

dt

∫ t

0

1

(t− s)1−α

∫ s

0
(ϑ− Vu) du ds

+
1

Γ(α)

d

dt

∫ t

0
λν

1

(t− s)1−α

∫ s

0

√
Vu dBu ds .

We study each summand separately. For the first one we get∫ t

0

1

(t− s)1−α

∫ s

0
(ϑ− Vu) du ds =

∫ t

0

∫ t

u

1

(t− s)1−α
(ϑ− Vu) ds du

=

∫ t

0

∫ t

u

1

(s− u)1−α
(ϑ− Vu) ds du

=

∫ t

0

∫ s

0

1

(s− u)1−α
(ϑ− Vu) du ds .

With the same method we get for the second one∫ t

0

1

(t− s)1−α

∫ s

0

√
Vu dBu ds =

∫ t

0

∫ t

u

1

(t− s)1−α
√
Vu ds dBu

=

∫ t

0

∫ t

u

1

(s− u)1−α

√
Vu ds dBu

=

∫ t

0

∫ s

0

1

(s− u)1−α

√
Vu dBu ds .

Therefore we got

Vt =
1

Γ(α)

d

dt

∫ t

0
λ

∫ s

0

1

(s− u)1−α
(ϑ− Vu) du ds

+
1

Γ(α)

d

dt

∫ t

0
λν

∫ s

0

1

(s− u)1−α

√
Vu dBuds ,

which gives

Vt =
1

Γ(α)
λ

∫ t

0

1

(t− u)1−α
(ϑ− Vu) du+

1

Γ(α)
λν

∫ t

0

1

(t− u)1−α

√
Vu dBu .
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Hence V is solution of (3.8). The uniqueness of such a solution is given by Theorem 2.5
in [24]. �

Now, a straightforward application of the last proposition gives us the following corol-
lary:

Corollary 3.13. The derivative Y of a process (Xt)t∈[0,1] satisfying equation (3.2),
when it exists, satisfies the following rough CIR stochastic differential equation:

Yt =
1

Γ(α)

∫ t

0

1

(t− s)1−α
λ(1− Ys) ds+

1

Γ(α)

√
λ

µ∗

∫ t

0

1

(t− s)1−α
√
Ys dWs ,

where W is a Brownian motion on [0, 1].



CHAPTER 4

Multidimensional limit theorems

In this chapter we aim to extend the limit theorems obtained in the previous chapters
to the multidimensional case. We will still have a separate approach for the light tails case
and the heavy tails case.

1. General setting

We study the convergence of a sequence of nearly unstable d-dimensional Hawkes pro-
cesses defined on [0, T ], with T tending to infinity. We need to define what nearly unstable
means in a multidimensional context.

We keep the notation NT for our d-dimensional Hawkes process whose intensity process
λT is defined by

λTt = µT1 +

∫ t

0
ΦT (t− s) · dNT

s ,

where µT > 0 and ΦT = aTΦ, with aT an increasing sequence of positive numbers con-
verging to 1, and the matrix Φ : R+ →Md(R+) has positive and integrable components.
We use ϕi,j for the components of the matrix Φ. If S is the spectral radius operator, we
impose

S
(∫ ∞

0
Φ(s) ds

)
= 1 .

Hence the nearly unstability condition is given by the limit S
(∫∞

0 ΦT (s) ds
)
→ 1 as T →

∞. We assume that for any t ≥ 0, Φ(t) is diagonalizable on R. We write λ1(t) ≥ · · · ≥ λd(t)
for the eigenvalues of Φ∗ and v1, . . . , vd for the corresponding eigenvectors.1 We assume
that these eigenvectors do not depend on t. Note that, from Perron-Frobenius theorem, for
i ≥ 2, |λi(t)| < λ1(t) = S (Φ(t)) and v1 can be taken in Rd+ (that is with positive entries).
Moreover we choose an orthonormal basis (e1, . . . , ed) of Rd such that e∗1 · v1 > 0 and

span(e2, . . . , ed) = span(v2, . . . , vd)

and set

v′ = e1 −
1

e∗1 · v1
v1 .

Note that v′ ∈ span(v2, . . . , vd) since e∗1 · v′ = 0.
As usual we write MT for the martingale process associated to NT :

MT
t = NT

t −
∫ t

0
λTs ds .

1Here the symbol ∗ represents the transpose operator. Moreover the dot · represents the usual matrix
product.
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2. Light tails case

We now make more specific assumptions, focusing on the light tails case. It is clear
the connection with the assumptions of Chapter 2.

Assumption 4.1. There exist positive parameters λ and µ such that

T (1− aT ) →
T→∞

λ, µT = µ

and ∫ ∞
0

xϕi,j(x) dx <∞ for any i, j ∈ {1, . . . , d} .

We set m :=
∫∞
0 xλ1(x) dx.

Now, as in the previous chapter, but with an obvious multidimensional meaning, let

ΨT =
∑
k≥1

(ΦT )∗k ,

where (ΦT )∗1 = ΦT and for k > 1,

(ΦT )∗k(t) =

∫ t

0
ΦT (s) · (ΦT )∗(k−1)(t− s) ds .

We then need the following technical assumption:

Assumption 4.2. The function ΨT is uniformly bounded and Φ is differentiable such
that each component ϕij satisfies ‖ϕ′ij‖∞ <∞ and ‖ϕ′ij‖1 <∞.

Remark 4.1. Assumption 4.2 in particular implies that, for any i ∈ {1, . . . , d},
lim
x→∞

λi(x) = 0 .

2.1. Heuristics and theorem. We can provide some intuitions and heuristic com-
putations to understand the general behaviour of a sequence of nearly unstable light tailed
Hawkes processes. The ideas are very similar to the heuristics of chapter 2, but it is inter-
esting to observe how the multidimensional case reduces to the one dimensional approach.

First of all, note that as we did in Chapter 2 we can rewrite the intensity process as

λTt = µT1 +

∫ t

0
ΦT (t− s) · dMT

t +

∫ t

0
ΦT (t− s) · λTs ds .

Now, using a straightforward multidimensional generalization of Lemma 2.11 and repro-
ducing the proof of Proposition 2.10, we get

(4.1) λTt = µT1 + µT

∫ t

0
ΨT (t− s) ds · 1 +

∫ t

0
ΨT (t− s) · dMT

s .

Therefore

E[λTt ] = µT1 + µT

∫ t

0
ΨT (t− s) ds · 1 ,

which gives

E[λTtT ] = µT1 + µT

∫ t

0
ΨT (T (t− s))T ds · 1 .

Since the function ΨT is uniformly bounded and µT ≡ µ, we get that λTtT is of order T .
Thus, it is natural to consider the following rescaling for t ∈ [0, 1]:

CTt =
1

T
λTtT .
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From equation (4.1) we get for CTt

CTt =
µ

T
1 + µ

∫ t

0
ΨT (T (t− s)) ds · 1 +

∫ t

0
ΨT (T (t− s)) · dMT

s ,

where MT
t = MT

tT /T . Note that

〈MT ,MT 〉t = diag
(∫ t

0
λTs ds

)
.

Hence we get that

E[〈MT
,M

T 〉t] =
1

T 2
E
[
diag

(∫ tT

0
λTs ds

)]
= diag

(∫ t

0
E[CTs ] ds

)
is bounded. By an easy induction we can show that, for any k ≥ 1, v∗i ·Φ∗k = λ∗ki (t)v∗i .
Consequently, defining

ψTi =
∑
k≥1

akTλ
∗k
i , for i ∈ {1, . . . , d} ,

we have
v∗i ·ΨT = ψTi v

∗
i .

This allows us to rewrite the dynamics of v∗i · CTt in the following way

(4.2) v∗i · CTt =
µ

T
(v∗i · 1) + µ(v∗i · 1)

∫ t

0
ψTi (T (t− s)) ds+

∫ t

0
ψTi (T (t− s))(v∗i · dM

T
s ) .

We can observe that the functions ψi play here the role that the function ψ played in chapter
2. We need to study these functions in order to understand the asymptotic behaviour of
v∗i ·CT as T goes to infinity. As we already did before, we compute the Fourier transform
of ψTj (T ·) for each j ∈ {1, . . . , d}. Since λ̂∗ki = (λ̂i)

k, it is

ψ̂Tj (T ·)(z) =

∫
x∈R+

ψTj (Tx)eixz dx =
1

T

∑
k≥1

akT (λ̂j(z/T ))k =
aT λ̂j(z/T )

T
(
1− aT λ̂j(z/T )

) .
Thanks to dominated convergence theorem we have that

lim
T→∞

λ̂j(z/T ) = ‖λj‖1

and, since ‖λj‖1 < 1 for j ≥ 2, this tells us that ψTj (T ·) vanishes asymptotically. This
implies that also v∗j · CT vanishes asymptoticaly for j ≥ 2.

For j = 1 we get, using Taylor expansion for λ̂1(z/T ) and Assumption 4.1,

lim
T→∞

T (λ̂1(z/T )− 1) = iz

∫ ∞
0

xλ1(x) dx = izm .

Therefore we have

ψ̂T1 (T ·)(z) =
aT λ̂1(z/T )

T (1− aT )− aTT (λ̂1(z/T )− 1)
→

T→∞

1

λ− izm
,

which is (in analogy to Chapter 2) the Fourier transform of

x 7→ 1

m
e−

λ
m
x , x ∈ R+ .

This gives us the covergence of ψ1(Tx) to 1
me
− λ
m
x.
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We use this information to deduce the dynamics of v∗1 · CT . From (4.2) we get that

(4.3) v∗1 ·CTt =
µ

T
(v∗1 ·1)+µ(v∗1 ·1)

∫ t

0
ψT1
(
T (t−s)

)
ds+

∫ t

0
ψT1
(
T (t−s)

)√
(v21)∗ · CTs dBT

s ,

where v21 = (v21,i)1≤i≤d and

BT
t =

∫ tT

0

v∗1 · dMT
s√

T (v21)∗ · λTs
.

It is clear at this stage that the sequence of processes BT has been chosen in a way that
the associated sequence of quadratic variations converges to identity. Thus the limit of BT

is a Brownian motion. We will make this statement precise in the following.

Now, decomposing v21 in the basis (e1, . . . , ed), we get

(v21)∗ · CTt =
e∗1 · v21
e∗1 · v1

(v∗1 · CTt ) + (e∗1 · v21)
(
(v′)∗ · CTt

)
+
∑

2≤i≤d
(e∗i · v21)(e∗i · CTt ) .

Thus, using that v∗ · CTt converges to zero for any v ∈ span(v2, . . . , vd), we deduce that
(v21)∗ · CTt behaves asymptotically as

(v21)∗ · CTt =
e∗1 · v21
e∗1 · v1

(v∗1 · CTt ) .

Therefore, letting T go to infinity in (4.3), we heuristically deduce that v∗1 ·CTt is solution
of the following stochastic differential equation:

Xt =
µ

m
(v∗1 · 1)

∫ t

0
e−

λ
m
(t−s) ds+

1

m

√
e∗1 · v21
e∗1 · v1

∫ t

0
e−

λ
m
(t−s)

√
Xs dBs .

Now, note that we can write
Xt = Wt e

− λ
m
t ,

where

Wt =
µ

m
(v∗1 · 1)

∫ t

0
e
λ
m
s ds+

1

m

√
e∗1 · v21
e∗1 · v1

∫ t

0
e
λ
m
s
√
Xs dBs .

Hence, applying Ito’s formula, we get

dXt = dWte
− λ
m
t − λ

m
Wte

− λ
m
t dt

=
λ

m
(v∗1 · 1) dt+

1

m

√
e∗1 · v21
e∗1 · v1

√
Xt dBt −

λ

m
Xt dt

=
λ

m

(µ
λ

(v∗1 · 1)−Xt

)
dt+

1

m

√
e∗1 · v21
e∗1 · v1

√
Xt dBt .

Thus the process Xt satisfies a Cox-Ingersoll-Ross dynamics.
We now decompone CTt in the basis (e1, . . . , ed)

CTt =
1

e∗1 · v1
(v∗1 · CTt )e1 +

(
(v′)∗ · cTt

)
e1 +

∑
2≤i≤d

(e∗i · CTt )ei

and recall that v∗i ·CTt asymptoticaly vanishes for i ≥ 2, to get the asymptotical behaviour
of CT .

Next theorem is the result of the heuristical computations provided in this section:
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Theorem 4.2. In the setting described by Section 1, under the Assumptions 4.1 and
4.2, the multidimensional process (CTt , B

T
t )t∈[0,1] converges in law for the Skorohod topol-

ogy to
(

1
e∗1·v1

Xe1, B
)
, where B is a Brownian motion and X satisfies the following Cox-

Ingersoll-Ross dynamics:

dXt =
λ

m

(µ
λ

(v∗1 · 1)−Xt

)
dt+

1

m

√
e∗1 · v21
e∗1 · v1

√
Xt dBt , X0 = 0 .

2.2. Proof of Theorem 4.2. As it is suggested by the heuristic computations in last
section, the proof of the theorem will be quite similar to the one dimensional case proof.
The key point will be showing that v∗i ·CTt actually converges to zero for any i ≥ 2. Then
we will reproduce the arguments used in the one dimensional setting.

2.2.1. A basic Lemma. We start with a basic Lemma, that was crucial in Chapter 2
and we extend it to the multidimensional case.

Lemma 4.3. Let fT : R+ → R be a sequence of measurable functions such that for
some c > 0

(a) fT ∈ L1(R+) ∩ L2(R+) and
∫
R+
|fT (x)|2 dx →

T→∞
0;

(b) |fT (x)| ≤ c for any x ≥ 0;
(c) |f̂T (x)| ≤ c

(
1 ∧ 1

|x|
)
for any x ∈ R;

(d) |fT (x)− fT (y)| ≤ cT |x− y| for any x, y ≥ 0.
Then, under Assumptions 4.1 and 4.2, the process(∫ t

0
fT (t− s) dMT

s

)
t∈[0,1]

converges to zero in probability as T goes to infinity, uniformly over compact sets.

Proof. This result has already been proved in dimension one in Chapter 2. The
tightness of the process

Y T
t =

∫ t

0
fT (t− s) dMT

s

holds in the same way that in chapter 2, working componentwise. Hence we just need to
show the finite dimensional convergence of Y T to zero.

Using that

〈MT ,MT 〉t = diag
(∫ t

0
λTs ds

)
together with isometry 1.5, we get

E
[
‖Y T

t ‖2
]

= E

[
d∑
i=1

(Y T
t )2i

]
=

1

T 2
E
[∫ tT

0

(
fT (t− s/T )

)2 d∑
i=1

λTs,i ds

]

=
1

T 2

∫ tT

0

(
fT (t− s/T )

)2 d∑
i=1

E[λTs,i] ds .

We look for an upper bound for E[λTs,i]. Using equation (4.1) and the fact that v∗i ·ΨT =

ψTi v
∗
i , we obtain for any i ∈ {1, . . . , d}

E[v∗i · λTs ] = µ(v∗i · 1)

(
1 +

∫ s

0
ψTi (u) du

)
.
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Thus

|E[v∗i · λTs ]| ≤ µ|v∗i · 1|
(

1 +
∑
k≥1

∫ ∞
0

akT |λi|∗k(u) du

)
≤ µ|v∗i · 1|

1

1− aT ‖λi‖1
≤ µ|v∗i · 1|

T

T (1− aT )

≤ cT

for some c > 0. Hence, decomposing the i-th vector of the canonical basis in the basis
(v1, . . . , vd), we get E[λTs,i] ≤ c′T , for any i ∈ {1, . . . , d} and a constant c′ > 0. Therefore

E
[
‖Y T

t ‖22
]
≤ 1

T 2

∫ tT

0

(
fT (t− s/T )

)2
c′T ds = c

∫ t

0

(
fT (t− s)

)2
ds ≤ c′

∫ ∞
0

(
fT (s)

)2
and last quantity tends to zero as T goes to infinity thanks to property (a). Now, applying
Markov inequality, we get that Y T

t tends to zero in probability, giving the finite dimensional
convergence of the process. �

2.2.2. Convergence of v∗i · CT for i ∈ {2, . . . , d}. We now come to the convergence of
the process CT on the vector space span(v2, . . . , vd).

Proposition 4.4. Let 2 ≤ i ≤ d. Under Assumptions 4.1 and 4.2, the process v∗i ·CT
converges u.c.p. to zero as T goes to infinity.

Proof. Recall equation (4.2):

v∗i · CTt =
µ

T
(v∗i · 1) + µ(v∗i · 1)

∫ t

0
ψTi (T (t− s)) ds+

∫ t

0
ψTi (T (t− s))(v∗i · dM

T
s )

and note that it can be rewritten as

v∗i · CTt =
µ

T
(v∗i · 1) + µ(v∗i · 1)

1

T

∫ tT

0
ψTi (Tt− s)) ds+

∫ t

0
ψTi (T (t− s))(v∗i · dM

T
s ) .

Since ‖ψTi ‖1 <∞, we have that the first and the second summand goes to zero as T goes
to infinity. For the third one it is enough to show that the family of functons

(
ψTi (T ·)

)
T>0

satisfies the hypotesis of Lemma 4.3. Point (b) easily comes from the fact that v∗i ·ΨT =
ψTi · v∗i and the uniform boundedness of ΨT , in fact

|ψTi (Tt)| = |ψTi (Tt)(v∗i · vi)| = |v∗i ·ΨT (Tt) · vi| ≤ ‖ΨT (Tt)‖Md(R+) ≤ c .

Now, as we saw in Remark 4.1, λi(x) tends to zero as x goes to infinity. Then using
integration by parts on the Fourier transform of λi together with Assumption 4.2, we get

λ̂i(w) =

∫ ∞
0

λi(x)eiwx dx

=
1

iw

[
eiwxλi(x)

]x=∞
x=0

− 1

w

∫ ∞
0

λ′i(x)eiwx dx

− 1

iw

(
λi(0) +

∫ ∞
0

λ′i(x)eiwx dx

)
and hence

|λ̂i(w)| ≤
(

1

w

(
|λi(0)|+

∫ ∞
0
|λ′i(x)| dx

))
∧ ‖λi‖1 .
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We have |λ̂∗ki (w)| = |λ̂i(w)|k ≤ |λ̂i(w)|. Point (c) then follows since

|ψ̂Ti (T ·)(w)| =
∣∣∣∣ ∫ ∞

0
ψTi (Tx)eiwx dx

∣∣∣∣ =
1

T

∣∣∣∣ ∫ ∞
0

∑
k≥1

aT λ̂∗ki (x)ei
w
T
x dx

∣∣∣∣
≤ 1

T

∑
k≥1

akT
∣∣λ̂∗ki (w/T )

∣∣ ≤ 1

T

∑
k≥1

akT |λ̂i(w/T )|

=
|aT λ̂i(w/T )|

|T
(
1− aT λ̂i(w/T )

)
|
≤ |aT λ̂i(w/T )|
T (1− ‖λi‖1)

≤ c
(

1 ∧ 1

|w|

)
.

This inequality also gives us that ψ̂Ti (T ·) is square integrable and thus ψTi (T ·) is square
integrable too. Moreover by Fourier isometry we have∫

R+

|ψTi (Tx)|2 dx =
1

2π

∫
w∈R
|ψ̂Ti (T ·)(w)|2 dw ≤ c

∫
w∈R

|λ̂i(w/T )|2

T 2(1− ‖λi‖1)2
dw

≤ c

T

∫
z∈R
|λ̂i(z)|2 dz →

T→∞
0 .

Thus (a) is obtained. Finally, in order to show (d), we use the relation

ψTi =
∑
k≥1

akTλ
∗k
i = aTλi +

∑
k≥2

akTλ
∗k
i

= aTλi +
∑
k≥1

ak+1
T λ

∗(k+1)
i = aTλi + aTλi ∗

(∑
k≥1

akTλ
∗k
i

)
= aTλi + aTλi ∗ ψTi .

In fact, noticing that
d

dx
(λi ∗ ψTi )(x) =

d

dx

(∫ ∞
0

λi(z)ψ
T
i (x− z) dz

)
=

∫ x

0
λi(z)

(
ψTi
)′

(x− z) dz

= −
[
λi(z)ψ

T
i (x− z)

]z=x
z=0

+

∫ x

0
λ′i(z)ψ

T
i (x− z) dz

= −λi(0)ψTi (x) + λ′i ∗ ψTi (x) ,

we can write
|(ψTi )′(Tx)| = T |aTλ′i(Tx)− aTλi(0)ψTi (Tx) + λ′i ∗ ψTi (Tx)|

≤ T (‖λ′i‖∞ + |λi(0)|‖ψTi ‖∞ + ‖λ′i‖1‖ψTi ‖∞) .

Thanks to Assumption 4.2 all the quantities in the last inequality are bounded and we can
conclude, getting (d). �

2.2.3. Convergence of the process v∗1 ·CT . We now treat the term v∗1 ·CT . We observe
that a different behaviour will arise because of the fact that ‖λ1‖1 = 1, while the condition
‖λi‖i < 1 for i ∈ {2, . . . , d} was essential to get convergence in the last Proposition, because
it allowed the convergence of power series.

Proposition 4.5. Under Assumptions 4.1 and 4.2, the process (v∗1 · CTt , BT
t )t∈[0,1]

converges in law for the Skorohod topology to (X,B), where B is a Brownian motion and
X satisfies the following Cox-Ingersoll-Ross dynamic:

dXt =
λ

m

(µ
λ

(v∗1 · 1)−Xt

)
dt+

1

m

√
e∗1 · v21
e∗1 · v1

√
Xt dBt , X0 = 0 .
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Proof. We start rewriting the process v∗1 ·CT in a more suitable way. Recalling that
v′ = e1 − 1

e∗1·v1
v1, let ST the process defined by

STt =

d∑
i=2

(
e∗i · CTt

)
(e∗i · v21) +

(
(v′)∗ · CTt

)
(e∗1 · v21) .

From Proposition 4.4 we get that STt tends u.c.p. to zero. Decomposing v21 in the basis
(ei)i we get

(v21)∗ · CTt =
(
(v′)∗ · CTt

)(
e∗1 · v21

)
+

d∑
i=2

(
e∗i · CTt

)(
e∗i · v21

)
+
e∗1 · v21
e∗1 · v1

(
v∗1 · CTt

)
= STt +

e∗1 · v21
e∗1 · v1

(
v∗1 · CTt

)
,

which, together with (4.3) gives

v∗1 · CTt =
µ

T
(v∗1 · 1) + µ(v∗1 · 1)

∫ t

0
ψT1
(
Ts
)
ds

+

∫ t

0
ψT1
(
T (t− s)

)√
STs +

e∗1 · v21
e∗1 · v1

(
v∗1 · CTs

)
dBT

s .

We then focus on the convergence of the function ψT1 (T ·). Let’s define, for x ≥ 0, the
function

fT (x) = ψT1 (Tx)− 1

m
e−

λ
m
x .

In Section 2.1 we have studied the Fourier transform of ψT1 (T ·) and as a result we get that
fT converges to zero as T goes to infinity. Moreover, with the same arguments used in
Chapter 2, Section 4, we can prove the following proposition:

Proposition 4.6. Under Assumptions 4.1 and 4.2, the function fT satisfies all the
hypotesis of Lemma 4.3.

We can hence rewrite the dynamics of v∗1 · CT as

(4.4) v∗1 · CTt = RTt +
µ

m
(v∗1 · 1)

∫ t

0
e−

λ
m
s ds+

1

m

√
e∗1 · v21
e∗1 · v1

∫ t

0
e−

λ
m
(t−s)

√
v∗1 · CTs dB

T
s ,

where the process RT is defined by

RTt =
µ

T
(v∗1 · 1) + µ(v∗1 · 1)

∫ t

0
fT (s) ds+

∫ t

0
fT (t− s)(v∗1 · dM

T
s )

+
1

m

∫ t

0
e−

λ
m
(t−s)

(√
STs +

e∗1 · v21
e∗1 · v1

(
v∗1 · CTs

)
−

√
e∗1 · v21
e∗1 · v1

(v∗1 · CTs )

)
dBT

s .

(4.5)
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Now, using integration by parts for Lebesgue-Stieltjes integrals, we get∫ t

0
e−

λ
m
(t−s)

√
v∗1 · CTs dB

T
s =

=

∫ t

0

√
v∗1 · CTs dB

T
s −

∫ t

0

(∫ s

0

√
v∗1 · CTu dB

T
u

)
λ

m
e−

λ
m
(t−s) ds

=

∫ t

0

√
v∗1 · CTs dB

T
s −

λ

m

∫ t

0

∫ t

u
e−

λ
m
(t−s)

√
v∗1 · CTu ds dB

T
u

=

∫ t

0

√
v∗1 · CTs dB

T
s −

λ

m

∫ t

0

∫ t

u
e−

λ
m
(s−u)

√
v∗1 · CTu ds dB

T
u

=

∫ t

0

√
v∗1 · CTs dB

T
s −

λ

m

∫ t

0

∫ s

0
e−

λ
m
(s−u)

√
v∗1 · CTu dB

T
u ds .

From (4.4), we can rewrite last quantity as∫ t

0

√
v∗1 · CTs dB

T
s − λ

√
e∗1 · v1
e∗1 · v21

∫ t

0

{
v∗1 · CTs −RTs −

µ

λ
(v∗1 · 1)

(
1− e−

λ
m
s
)}
ds .

Therefore we get

v∗1 · CTt = RTt +
µ

m
(v∗1 · 1)

∫ t

0
e−

λ
m
s ds+

1

m

√
e∗1 · v21
e∗1 · v1

∫ t

0

√
v∗1 · CTs dB

T
s

− λ

m

∫ t

0

{
v∗1 · CTs −RTs −

µ

λ
(v∗1 · 1) +

µ

λ
(v∗1 · 1)e−

λ
m
s
}
ds

= UTt +

∫ t

0

λ

m

(µ
λ

(v∗1 · 1)− v∗1 · CTs
)
ds+

1

m

√
e∗1 · v21
e∗1 · v1

∫ t

0

√
v∗1 · CTs dB

T
s ,

(4.6)

where we set

UTt = RTt +
λ

m

∫ t

0
RTs ds .

We now see that, in order to conclude, it is sufficient to prove the convergence to zero
of the process UT . We will show that indeed this process converges u.c.p. to zero. This
vanishing behaviour is given by that of the funtion fT and the process ST . We actually
just need to show the convergence to zero of the process RT .

From Proposition 4.6 and Lemma 4.3 we get the convergence to zero for the first three
summand in equation (4.5). We then tackle the last summand.

First, notice that, for any β ∈ Rd+,∣∣∣√STs + βv∗1 · CTs −
√
βv∗1 · CTs

∣∣∣ ≤√|STs | ,
which tends to zero as T goes to infinity, as remarked before.

Now, BT is a sequence of martingales with uniformly bounded jumps, whose quadratic
variation is given by

[BT , BT ]t =

∫ tT

0

(v12)∗ · dNT
s

T
(
(v21)∗ · λTs

) =

∫ tT

0

(v21)∗ · (λTs ds+ dMT
s )

T
(
(v21)∗ · λTs

)
=

∫ tT

0

{
ds

T
+

(v21)∗ · dMT
s

T
(
(v21)∗ · λTs

)} = t+

∫ tT

0

(v21)∗ · dMT
s

T
(
(v21)∗ · λTs

) .
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From the trivial inequality λT ≥ µ1 and recalling that 〈MT ,MT 〉t = diag
( ∫ t

0 λ
T
s ds

)
, we

have

E

[(∫ tT

0

(v21)∗ · dMT
s

T (v21)∗ · λTs

)2
]

= E

[∫ tT

0

(v41)∗ · λTs ds
T 2
(
(v21)∗ · λTs

)2
]
≤ E

[∫ tT

0

(v41)∗ · λTs ds
T 2µ

(
(v41)∗ · λTs

)] .
Last quantity is bounded by c/T for some c > 0 and hence tends to zero as T goes to
infinity. Therefore, applying Markov inequality, we have that the quadratic variation of
BT converges in probability to the identity. Thus, using Theorem A.3, we get that BT

converges in law towards a Brownian motion B for the Skorohod topology. Finally from
Theorem A.5 we get the convergence to zero in law, for the Skorohod topology, of the third
summand in equation (4.5).

Now, looking at equation (4.6) and using that (BT , UT ) converges in law for the Sko-
rohod topology to (B, 0), we can apply theorem A.1 to get Proposition 4.5. �

This allows us to conclude the proof of the theorem just decomposing CT in the basis
(e1, . . . , ed). As a matter of fact the following holds

CTt =

d∑
i=2

(
e∗i · CTt

)
ei +

(
(v′)∗ · CTt

)
e1 +

1

e∗1 · v1
(
v∗1 · CTt

)
e1

and we just need to apply Propositions 4.4 and 4.5.

3. Heavy tails case

We now turn to the heavy tails case. The argument will be similar to that used in
the light tails case, we will find that the non-degenerating behaviour in the scale limit
concetrates on the direction of v1.

3.1. Assumption and theorem. Keeping the same setting introduced in Section 1,
we want to replace Assumptions 4.1 and 4.2 in order to get a sowly decreasing behaviour
for the kernel matrix ΦT . This will imply a modification of the asymptotic setting in order
to get a non-degenerate scaling limit.

We then introduce a new assumption.

Assumption 4.3. There exist α ∈ (1/2, 1) and C > 0 such that

αxα
∫ ∞
x

λ1(s) ds →
x→∞

C .

Moreover, for some λ > 0 and µ > 0,

Tα(1− aT ) →
T→∞

λ > 0 , T 1−αµT →
T→∞

µ .2

Assumption 4.3 introduces a different temporal scaling and, as a consequence, we need
to adjust the scaling factors for our nearly unstable Hawkes processes. We will hence
consider the following renormalizations for t ∈ [0, 1]:

XT
t =

1− aT
Tαµ

NT
tT , ΛTt =

1− at
Tαµ

∫ tT

0
λTs ds , ZTt =

√
Tαµ

1− aT
(
XT
t − ΛTt

)
.

The following theorem holds.

2A comparison with Assumption 3.2 shows that λ replaced λδ. This will not affect the results, but it
will require small adjustments in the asymptotic setting.
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Theorem 4.7. Under Assumption 4.3, the process
(
ΛTt , X

T
t , Z

T
t

)
t∈[0,1] converges in law

for the Skorohod topology to
(
Λ, X, Z

)
, where

ΛTt = XT
t =

1

e∗1 · v1

(∫ t

0
Ys ds

)
e1

and for 1 ≤ i ≤ d,

Zit =

∫ t

0

√
e1,i
e∗1 · v1

√
Ys dB

i
s ,

where (B1, . . . , Bd) is a d-dimensional Brownian motion and Y is the unique solution of
the following rough stochastic differential equation:

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ(v∗1 · 1− Ys) ds+

1

Γ(α)

∫ t

0
(t− s)α−1 λ√

µλ

√
e∗1 · v21
e∗1 · v1

√
Ys dBs ,

with

B =
1√
e∗1 · v21

d∑
i=1

√
e1,iv21,iB

i .

Furthermore, Y has Hölder regularity α− 1
2 − ε for any ε > 0.

3.2. Proof of Theorem 4.7. This proof is quite similar to proof of Theorems 3.4
and 3.10.

3.2.1. Tightness. We begin showing the tightness of the sequence of renormalized
nearly unstable Hawkes processes.

Proposition 4.8. Under Assumption 4.3, the sequence (ΛT , XT , ZT ) is C-tight. Fur-
thermore, if (X,Z) is a limit point of (XT , ZT ), then Z is a continous martingale with
quadratic variation process the process X.

Proof. Recall equation (4.1):

λTt = µT1 + µT

∫ t

0
ΨT (t− s) ds · 1 +

∫ t

0
ΨT (t− s) · dMT

s .

This allows us to write

E
[
NT
T

]
= E

[ ∫ T

0
λTs ds

]
= E

[
TµT1 + µT

∫ T

0

∫ s

0
ΨT (s− u) du · 1 ds+

∫ T

0

∫ s

0
ΨT (s− u) dMT

u ds

]
= TµT1 + µT

∫ T

0

∫ s

0
ΨT (s− u) du · 1 ds

= TµT1 + µT

∫ T

0

∫ s

0
ΨT (u) du · 1 ds

= TµT1 +

[
µT

∫ s

0
ΨT (u)s

]s=T
s=0

· 1− µT
∫ T

0
ΨT (s) ds · 1

= TµT · 1 + µT

(∫ T

0
(T − s)ΨT (s) ds

)
· 1

= TµT1 + µT

(∫ T

0
ΨT (T − s)s ds

)
· 1 .
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Consequently,

1∗ · E
[
NT
T

]
= TµTd+ µT1∗ ·

(∫ T

0
sΨT (T − s) ds

)
· 1

and therefore there exists a constant c > 0 such that

1∗ · E
[
NT
T

]
≤ cTµT

(
1 + S

(∫ ∞
0

ΨT (s) ds
))
≤ cTµT

(
1 +

aT
1− aT

)
= c

TµT
1− aT

= c
T 1−αµT

Tα(1− aT )
T 2α ≤ c′T 2α .

Thus we obtain
E
[
XT

1

]
=

1− aT
Tαµ

E
[
NT
T

]
≤ c′ (1− aT )Tα

µ
Hence there exists c > 0 such that

E
[
ΛT1
]

= E
[
XT

1

]
≤ c .

Since each component of XT and ΛT is increasing, we deduce the tightness of each com-
ponent of XT ,ΛT using Corollary 9 in [23]. Moreover, the maximum jump size of XT and
ΛT is (1− aT )/Tαµ, which goes to zero as T goes to infinity. Hence, applying Proposition
VI.3.26 in [18], we get the C-tightness of (XT ,ΛT ).

Now, for ZT we use that

E
[
(ZTt,i)

2
]

=
1− aT
Tαµ

E
[
(MT

tT,i)
2
]

=
1− aT
Tαµ

E
[ ∫ tT

0
λTs ds

]
= ΛTt,i

to get that
〈ZT , ZT 〉t = diag(ΛTt ) ,

which is C-tight. Thus, from theorem VI.4.13 in [18], we obtain the tightness of ZT . The
maximum jump size of ZT vanishes as T goes to infinity, hence, as before, we conclude
that ZT is C-tight.

Now, let (X,Z) be a possible limit point of (XT , ZT ). We know (X,Z) is continuous,
therefore Corollary IX.1.19 of [18] gives us that Z is a local martingale. Moreover, using
Theorem VI.6.26 in [18], together with the fact that

[ZT , ZT ] = diag(XT ) ,

we get that [Z,Z] is the limit of [ZT , ZT ] and [Z,Z] = diag(X). Finally, by Fatou’s lemma,
the expectation of [Z,Z] is finite and hence Z is a martingale. �

We now provide a lemma that shows that we can actually work on the sequence ΛT

rather than on the sequence XT .

Lemma 4.9. Under Assumption 4.3, the following convergence holds:

sup
t∈[0,1]

‖ΛTt −XT
t ‖ →

T→∞
0 in probability,

where ‖ · ‖ is the standard euclidean norm in Rd.

Proof. We have
XT
t − ΛTt =

1− aT
Tαµ

MT
tT .

Applying Doob’s Lp-inequality, we get for each component

E
[

sup
t∈[0,1]

|ΛTt,i −XT
t,i|2
]
≤ cT−4αE

[
(MT

T,i)
2
]
.
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Since [MT ,MT ] = diag(NT ), recalling from the proof of the preceding Proposition that
E
[
NT
T,i

]
≤ cT 2α, we deduce

E
[

sup
t∈[0,1]

|ΛTt,i −XT
t,i|2
]
≤ cT−4αE

[
(MT

T,i)
2
]

= cT−4αE
[
NT
T,i

]
≤ c′T−2α .

Hence, applying Markov inequality, we get the uniform convergence in probability:

P
(

sup
t∈[0,1]

|ΛTt,i −XT
t,i|2 > ε

)
≤ 1

ε
E
[

sup
t∈[0,1]

|ΛTt,i −XT
t,i|2
]
≤ c′T−2α →

T→∞
0 ,

for any ε > 0. �

3.2.2. Convergence of the process v∗i ·XT for i ≥ 2. Also in the heavy tails context we
observe a vanishing behaviour in the direction of the eigenvectors vi for i ≥ 2.

Proposition 4.10. Under Assumption 4.3, if X is a possible limit point of XT , then
for i ≥ 2 we have v∗i ·X = 0.

Proof. With the same method used in Chapter 3 to get equation (3.4), we can rewrite
the cumulated intensity as∫ t

0
λTs ds = tµT1 + µT

∫ t

0
sΨT (t− s) ds · 1 +

∫ t

0
ΨT (t− s) ·MT

s ds .

Therefore, for t ∈ [0, 1], we have the following decomposition:

(4.7) ΛTt = A1(t) +A2(t) +A3(t) ,

with
A1(t) = (1− aT )tuT1 ,

A2(t) = T (1− aT )uT

∫ t

0
sΨT

(
T (t− s)

)
ds · 1 ,

A3(t) = T 1−α/2
√

1− aT
µ

∫ t

0
ΨT
(
T (t− s)

)
· ZTs ds ,

where we set uT = µT /(µT
α−1). Note that uT tends to one as T goes to infinity.

Now recall that for 1 ≤ i ≤ d,

ψTi =
∑
k≥1

akTλ
∗k
i

and let %Ti : R+ → R be defined by

%Ti = T (1− aT )ψTi (T ·) .

Moreover define

F Ti (t) =

∫ t

0
%Ti (s) ds .
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We want to bound |F Ti (t)|. Note that it is easy to prove by induction that ‖λ∗ki ‖1 ≤ ‖λi‖k1.
Hence we can write, for i ≥ 2

|F Ti (t)| ≤
∫ t

0
T (1− aT )|ψTi (Ts)| ds ≤ (1− aT )

∫ ∞
0
|ψTi (s)|, ds

≤ (1− aT )
∑
k≥1

akT ‖λ∗ki ‖1 ≤ (1− aT )
∑
k≥1
‖λi‖k1 = (1− aT )

aT ‖λi‖1
1− aT ‖λi‖1

≤ (1− aT )
‖λi‖1

1− ‖λi‖1
.

This gives us the uniform convergence to zero of F Ti . Thanks to this we deduce the
convergence to zero of v∗i ·A2, since

v∗i ·A2(t) = T (1− aT )uT

∫ t

0
sv∗i ·ΨT

(
T (t− s)

)
ds · 1

= T (1− aT )uT

∫ t

0
sψTi

(
T (t− s)

)
ds(v∗i · 1)

= uT (v∗i · 1)

∫ t

0
s%Ti (t− s) ds

= uT (v∗i · 1)
[
sF Ti (t− s)

]s=0

s=t
+ uT (v∗i · 1)

∫ t

0
F Ti (t− s) ds

= uT (v∗i · 1)

∫ t

0
F Ti (s) ds .

For v∗i · A3 we apply the same integration bt parts, this time for Lebesgue-Stieltjes
integrals:

v∗i ·A3(t) = T 1−α/2
√

1− aT
µ

∫ t

0
v∗i ·ΨT

(
T (t− s)

)
· ZTs ds

= T 1−α/2
√

1− aT
µ

∫ t

0
ψTi
(
T (t− s)

)
(v∗i · ZTs ) ds

=
1√

µ(1− aT )Tα

∫ t

0
%Ti (t− s)(v∗i · ZTs ) ds

=
1√

µ(1− aT )Tα

([
F Ti (t− s)(v∗i · ZTs )

]s=0

s=t
+

∫ t

0
F Ti (t− s)(v∗i · dZTs )

)
=

1√
µ(1− aT )Tα

∫ t

0
F Ti (t− s)(v∗i · dZTs ) .

Since the quadratic variation of ZT is ΛT , whose expectation is uniformly bounded, we
have

E
[
(v∗i ·A3(t))

2
]
≤ c

µ(1− aT )Tα

∫ t

0

(
F Ti (s)

)2
ds .

Then the uniform convergence to zero of F Ti gives the convergence to zero of v∗i · A3.
Finally, Lemma 4.9 tells us that if X is a limit point of XT , then X is also a limit point
of ΛT . Therefore, we obtain v∗i ·X = 0. �

3.2.3. Convergence of the process v∗1 · XT . We use the decomposition (4.7) and the
same ideas used in Chapter 3. We start with a preliminary lemma about the convergence
of function %T1 .
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Lemma 4.11. Consider the function %T1 , defined by

%T1 (x) = T (1− aT )ψT1 (Tx) .

Then, under Assumption 4.3, the sequence of measures with density %T1 converges weakly
towards the measure with density fα,λ = λxα−1Eα,α(−λxα). In particular, for t ∈ [0, 1],
the function

F T1 (t) =

∫ t

0
%T1 (x) dx

converges uniformly towards

Fα,λ(t) =

∫ t

0
fα,λ(x) dx .

Proof. Following the approach of Chapter 3, we show that the Laplace transform of
%T1 converges pointwise to the Laplace transform of fα,λ.

%̂T1 (z) =

∫ ∞
0

%T1 (x)e−zx dx = (1− aT )ψ̂T1 (z/T ) = (1− aT )
aT λ̂1(z/T )

1− aT λ̂1(z/T )
.

Last equality is due to the fact that λ̂∗k1 = (λ̂1)
k. Now integrating by parts and using that

‖λ1‖1 = 1 we get

λ̂1(z) =

∫ ∞
0

λ1(x)e−zx dx = 1− z
∫ ∞
0

(∫ ∞
x

λ1(u) du

)
e−zx dx .

= 1− zα
∫ ∞
0

(x
z

)α(∫ ∞
x/z

λ1(u) du

)
x−αe−x dx .

Using Assumption 4.3, together with dominated convergence theorem, we get

λ̂1(z) = 1− C

α
Γ(1− α)zα + o

z→0
(z)

From this, we deduce that for z > 0,

%̂T1 (z) →
T→∞

λ

λ+ zα
,

which is the Laplace transform of the function fα,λ, as it is shown in [12]. �

We now have all the ingredients to imitate the computations performed in Section 3.1.1
of Chapter 3. We then obtain for the terms in decomposition (4.7)

v∗1 ·A2(t) →
T→∞

(v∗1 · 1)

∫ t

0
sfα,λ(t− s) ds

and

v∗1 ·A3(t) →
T→∞

1√
λµ

∫ t

0
fα,λ(t− s)(v+1 · Zs) ds .

Taking the limit for T →∞ in decomposition (4.7) we get the following proposition.

Proposition 4.12. Under Assumption 4.3, if (X,Z) is a possible limit point of (XT , ZT ),
then the process v∗1 ·X satisfies the following equation:

v∗1 ·Xt = (v∗1 · 1)

∫ t

0
sfα,λ(t− s) ds+

1√
λµ

∫ t

0
fα,λ(t− s)(v∗1 · Zs) ds .
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3.2.4. End of the proof. Let (X,Z) be a possible limit point of (XT , ZT ). We can
apply the same method used in Theorem 3.10 to show that

v∗1 ·Xt =

∫ t

0
Ys ds

where Y satisfies

Yt = (v∗1 · 1)Fα,λ(t) +
1√
λµ

∫ t

0
fα,λ(t− s)(v∗1 · dZs) .

We decompone Xt in the orthonormal basis (ei)i:

Xt =
d∑
i=2

(e∗i ·Xt)ei +
(
(v′)∗ ·Xt

)
e1 +

1

e∗1 · v1
(v∗1 ·Xt)e1

and using Proposition 4.10 we get

Xt =
1

e∗1 · v1
(v∗1 ·Xt)e1 =

1

e∗1 · v1

(∫ t

0
Ys ds

)
e1 .

From Proposition 4.8 we know that

[Z,Z] = diag(X) =
1

e∗1 · v1

(∫ t

0
Ys ds

)
diag(e1) .

Hence we can use Theorems A.7 and A.8 to get the existence of a d-dimensional Brownian
motion (B1, . . . , Bd) such that, for i ∈ {1, . . . , d},

Zit =
1√
e∗1 · v1

√
e1,i

∫ t

0

√
Ys dB

i
s .

Finally, in the same way as in the proof of Theorem 3.10, we get that Y satisfies the
stochastic differential equation

(4.8) Yt = (v∗1 · 1)Fα,λ(t) +

√
e∗1 · v21

λµ(e∗1 · v1)

∫ t

0
fα,λ(t− s)

√
Ys dBs ,

where B is a Brownian motion defined by

B =
1√
e∗1 · v21

d∑
i=1

√
e1,iv1,iB

i

and that Y has Hölder regularity α− 1/2− ε, for any ε > 0.

Now, equation (4.8) can be transformed into the rough stochastic differential equation
written in Theorem 4.7 thanks to Proposition 3.12. This Proposition also gives the strong
uniqueness of the solution.



CHAPTER 5

A microscopic model for single asset price

In this chapter we discuss a financial model for single asset price based on the preceding
results about nearly unstable Hawkes processes. This kind of model was introduced in [4]
as a partecipants based model for high frequency trading markets. We will see that this
model, even if it is not built ad hoc, produces in the long run a leverage effect for the asset
price dynamics. Moreover, under certain assumptions, we will get a rough dynamics for
the volatility of the asset price and this fact agrees with the recent empirical results about
high frequency trading markets (see [11]).

1. The basic model

We consider a tick-by-tick price model based on a bidimensional Hawkes process Nt =
(N+

t , N
−
t ), with intensity λt = (λ+t , λ

−
t ) defined by(

λ+t
λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t− s) ϕ3(t− s)
ϕ2(t− s) ϕ4(t− s)

)
·
(
dN+

s

dN−s

)
,

where µ+ and µ− are positive constant and

Φ =

(
ϕ1 ϕ3

ϕ2 ϕ4

)
: R+ →M2(R+)

is a kernel matrix whose components ϕi are positive and locally integrable.
We then consider the price process Pt that is simply given by

Pt = N+
t −N

−
t .

We then interpret N+
t as the number of upward jumps of one tick of the asset price in the

time interval [0, t] and, at the same way, N−t as the number of downward jumps.
The use of a self exciting point process helps modelling the fact that in modern high

frequency trading markets the number of endogenous orders is much larger than the number
of exogenous orders. We can see this interpreting the intensity process λ+t (analogous
considerations hold for λ−t ). We can look at λ+t dt as the probability at time t to get a new
one-tick upward jump between times t and t + dt. This quantity can be split into three
terms:

• µ+ dt, which corresponds to the probability that the price goes up because of some
exogenous reason;
•
( ∫ t

0 ϕ1(t − s) dN+
s

)
dt, which is the probability of upward jump induced by past

upward jumps;
•
( ∫ t

0 ϕ3(t − s) dN−s
)
dt, which is the probability of upward jump induced by past

downward jumps.
This shows that, working on the shape of the functions ϕi, we can reproduce many effects.
For example the bid-ask bounce effect is given imposing a high probability of upward (resp.
downward) jump right after a downward (resp. upward) jump.

We are actually interested in encoding in the model three features, we will then add a
fourth feature in Section 3. Here are the three features we focus on at this stage:

61
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(i) Markets are highly endogenous, meaning that most of the orders are sent in reac-
tion to other orders, rather than being motivated by economical reason;

(ii) There’s a kind of absence of arbitrage opportunity at high frequency scale, that
is building strategies which are on average profitable is almost impossible.

(iii) Buying and selling are not symmetric actions: the ask side is more liquid than
the bid side.

We start providing a specific structure on the intensity process so that properties (ii)
and (iii) are satisfied. In a high frequency setting, the no arbitrage condition amounts to
say that on average there should be as many upward as downward jumps on any given
time-period. Noting that

E[N+
t ] =

∫ t

0
E[λ+s ] ds , E[N−t ] =

∫ t

0
E[λ−s ] ds

and

E[λ+t ] = µ+ +

∫ t

0
ϕ1(t− s)E[λ+s ] ds+

∫ t

0
ϕ3(t− s)E[λ−s ] ds

E[λ−t ] = µ− +

∫ t

0
ϕ2(t− s)E[λ+s ] ds+

∫ t

0
ϕ4(t− s)E[λ−s ] ds ,

we choose to impose E[λ+t ] = E[λ−t ] by setting

µ+ = µ− and ϕ1 + ϕ3 = ϕ2 + ϕ4 .

Property (iii) can be restated as follows: the conditional probability to observe an
upward jump right after an upward jump is smaller than the conditional probability to
observe a downward jump right after a downward jump. In our framework this corresponds
to have ϕ1(x) < ϕ4(x), that is the same of ϕ3(x) > ϕ2(x), when x is close to zero. We
actually make a more restrictive assumption, setting, for some β > 1,

ϕ3 = βϕ2 .

Therefore we assume the following structure for the intensity process:

(5.1)
(
λ+t
λ−t

)
= µ ·

(
1
1

)
+

∫ t

0
Φ(t− s) ·

(
dN+

s

dN−s

)
,

where

Φ =

(
ϕ1 βϕ2

ϕ2 ϕ1 + (β − 1)ϕ2

)
,

and µ > 0, β ≥ 1.
We now come to property (i). In [15] a one dimensional Hawkes process Ñt, with

intensity λ̃t = µ̃+
∫ t
0 ϕ̃(t− s) dÑs, is seen as a population process where we have a number

of migrants and each migrant gives birth to descendants according to an inhomogeneous
Poisson process with intensity the kernel function ϕ̃. It is shown there that the L1 norm
‖ϕ̃‖1 represents the average number of children of each migrant. Hence a migrant has on
average ∑

k≥1
‖ϕ̃‖k1 =

‖ϕ̃‖1
1− ‖ϕ̃‖1

descendants and the proportion of descendant in the whole population is simply given by
‖ϕ̃‖1. Coming back to our financial model, migrants corresponds to exogenous orders,
given by real economic reasons, while descendants can be seen as endogenous orders, given
by algorithmical reactions. Thus, in order to represent the fact that modern markets are
strongly endogenous, we want ‖ϕ̃‖1 to be strictly smaller than but close to unity.
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In our two dimensional process, with intensity given by (5.2), at the same way as in
the one dimensional case, we can define the degree of endogeneity as the spectral radius of
the kernel matrix integral:

S
(∫ ∞

0
Φ(s) ds

)
= ‖ϕ1‖1 + β‖ϕ2‖1 .

In order to assume that this spectral radius is smaller but close to unity we introduce an
asymptotic framework and, in the spirit of the preceding chapters, we work with a sequence
of nearly unstable two dimensional Hawkes processes. Therefore we work on a sequence
of probability spaces (ΩT ,FT ,PT ), indexed by T > 0, where we have a Hawkes process
NT = (NT,+, NT,−) defined on [0, T ], with intensity

(5.2) λTt =

(
λT,+t

λT,−t

)
= µT ·

(
1
1

)
+

∫ t

0
ΦT (t− s) · dNT

s .

We then study this sequence of processes, properly rescaled, for T that goes to infinity.
We state an assumption that translate the discussion about properies (ii) and (iii) in

the nearly unstable framework:

Assumption 5.1. We have µT > 0 and ΦT = aTΦ, with

Φ =

(
ϕ1 βϕ2

ϕ2 ϕ1 + (β − 1)ϕ2

)
,

where β ≥ 1, ϕ1 and ϕ2 are two positive measurable functions such that

S
(∫ ∞

0
Φ(s) ds

)
= ‖ϕ1‖1 + β‖ϕ2‖1 = 1

and aT is an increasing sequence of positive numbers converging to one.

From now on, we consider the microscopic price

P Tt = NT,+
t −NT,−

t .

Remark that, under Assumption 5.1, we are working in the nearly unstable case since

S
(∫ ∞

0
ΦT (s) ds

)
= aT .

We now focus on the asymptotic behaviour of P T .

2. Framework leading to leverage effect

In this section we will see the convergence of the rescaled microscopic price towards
a Heston model with leverage effect. We need to recall Assumptions 4.1 and 4.2, that
will allow us to use the convergence results we got for light tailed nearly unstable Hawkes
processes.

Assumption 5.2. There exist positive constants λ, µ and m such that

T (1− aT ) →
T→∞

λ , µT = µ

and

S
(∫ ∞

0
xΦ(x) dx

)
= m <∞ .
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Now, defining as usual
ΨT =

∑
k≥1

(ΦT )∗k ,

where (ΦT )∗k = ΦT and, for k ≥ 1, (ΦT )∗k(t) =
∫ t
0 ΦT (s)(ΦT )∗(k−1)(t− s) ds, we have

Assumption 5.3. The function ΨT is uniformly bounded and Φ is differentiable such
that each component ϕij satisfies ‖ϕ′ij‖∞ <∞ and ‖ϕ′ij‖1 <∞.

In agreement with the renormalization of Chapter 4, we will study the following rescal-
ing:

1

T
P TtT =

NT,+
tT −NT,−

tT

T
.

Moreover we keep the same notations of Chapter 4 and we have

CTt =
1

T
λTt

and

BT
t =

∫ tT

0

v∗1 · dMT
s√

T (v21)∗ · λTs
.

Finally, we state an immediate corollary of Theorem 4.2 that will lead us to the long term
limit of our microscopic price model.

Corollary 5.1. Under Assumption 5.1, 5.2 and 5.3, the process (CT,+t , CT,−t , BT
t )t∈[0,1]

converges in law for the Skorohod topology to ( 1
β+1X,

1
β+1X,B), where B is a Brownian

motion and X satisfies the following Cox-Ingersoll-Ross dynamics:

(5.3) dXt =
λ

m

(µ
λ

(β + 1)−Xt

)
dt+

1

m

√
1 + β2

1 + β

√
Xt dBt X0 = 0 .

Proof. Keeping the notations from last chapter, we have that the two eigenvalues of
Φ∗ are

λ1 = ϕ1 + βϕ2, λ2 = ϕ1 − ϕ2

and the associated eigenvectors are

v1 =

(
1
β

)
, v2 =

(
1
−1

)
.

We then apply these data to Theorem 4.2. �

We now state the main theorem of this section, concerning the limiting law of the
rescaled microscopic price.

Theorem 5.2. Under Assumptions 5.1, 5.2 and 5.3, as T tends to infinity, the rescaled
microscopic price

1

T
P TtT =

NT,+
tT −NT,−

tT

T
, t ∈ [0, 1] ,

converges in law for the Skorohod topology to the following Heston model:

Pt =
1

1− (‖ϕ1‖1 − ‖ϕ2‖1)

√
2

1 + β

∫ t

0

√
Xs dWs

where

dXt =
λ

m

(µ
λ

(β + 1)−Xt

)
dt+

1

m

√
1 + β2

1 + β

√
Xt dBt X0 = 0 .
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and (W,B) is a correlated bidimensional Brownian motion with

d〈W,B〉t =
1− β√

2(1 + β2)
dt .

Remark 5.3. Notice that, putting together properties (i),(ii) and (iii) we obtain in
a natural way a stochastic volatility with leverage effect. Indeed the assumption β > 1,
coming from the asymmetry in the liquidity of the bid and ask side, generates a negative
correlation between the Brownian motion driving the asset price and the one driving the
volatility. Property (i), that in our model is given by the nearly unstable framework, is
essential to get a stochastic volatility and the failure of property (ii) would intuitively lead
to a drift process.

Proof. We now state the proof of the theorem, splitting it into several step.

Convenient rewriting of the process P T . We want write in a more suitable way the
rescaled price P TtT /T .

1

T
P TtT =

NT,+
tT −NT,−

tT

T
=

∫ tT

0

dMT,+
s − dMT,−

s√
T (λT,+s + λT,−s )

√
λT,+s + λT,−s

T
+

∫ tT

0

λT,+s − λT,−s
T

ds .

Furthermore

λT,+t − λT,−t =

∫ t

0
aT
(
ϕ1(t− s)− ϕ2(t− s)

)(
dNT,+

s − dNT,−
s

)
=

∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
+

∫ t

0
λ2(t− s)

(
λT,+s − λT,−s

)
ds .

Thus, applying Lemma 2.11 and repeating the computations we are now used to, we get

λT,+t − λT,−t =

∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
+

∫ t

0
ψT2 (t− s)

{∫ s

0
aTλ2(s− u)

(
dMT,+

u − dMT,−
u

)}
ds

=

∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
+

∫ t

0

(∫ t

u
ψT2 (t− s)aTλ2(s− u) ds

)(
dMT,+

u − dMT,−
u

)
=

∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
+

∫ t

0
ψT2 ∗ aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
=

∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
+

∫ t

0
ψT2 (t− s)

(
dMT,+

s − dMT,−
s

)
−
∫ t

0
aTλ2(t− s)

(
dMT,+

s − dMT,−
s

)
=

∫ t

0
ψT2 (t− s)

(
dMT,+

s − dMT,−
s

)
.

Then, using Fubini theorem, we get∫ t

0

(
λT,+s − λT,−s

)
ds =

∫ t

0

(∫ t−s

0
ψT2 (u) du

)(
dMT,+

s − dMT,−
s

)
.
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Hence, the rescaled price process P TtT /T can be finally written as∫ t

0

√
CT,+s + CT,−s dW T

s −
∫ t

0

∫ ∞
T (t−s)

ψT2 (u) du
(
dM

T,+
s − dMT,−

s

)
+

∫ ∞
0

ψT2 (u) du
(
M

T,+
t −MT,−

t

)
,

where

W T
t =

∫ tT

0

dMT,+
s − dMT,−

s√
T (λT,+s + λT,−s )

and recall that MT
s = MT

sT /T .
Now, note that by induction it is easy to prove that∫ ∞

0
ψT2 (u) du =

aT (‖ϕ1‖1 − ‖ϕ2‖1)
1− aT (‖ϕ1‖1 − ‖ϕ2‖1)

.

Moreover

M
T,+
t −MT,−

t =
MT,+
tT −MT,−

tT

T
=

∫ tT

0

dMT,+
s − dMT,−

s

T

=

∫ tT

0

dMT,+
s − dMT,−

s√
T (λT,+s + λT,−s )

√
λT,+s + λT,−s

T
=

∫ t

0

√
CT,+s + CT,−s dW T

s .

Therefore

(5.4)
1

T
P TtT =

1

1− aT (‖ϕ1‖1 − ‖ϕ2‖1)

∫ t

0

√
CT,+s + CT,−s dW T

s −RTt ,

with

RTt =

∫ t

0

∫ ∞
T (t−s)

ψT2 (u) du
(
dM

T,+
s − dMT,−

s

)
.

Convergence of the process RT . We show here that , under Assumptions 5.1, 5.2 and
5.3, the process RT tends u.c.p. to zero.

It is enough to show that the sequence of functions gT , defined by

gT (x) =

∫ ∞
Tx

ψT2 (u) du ,

satisfies the hypotesis of Lemma 4.3. Point (b) is easy to be proven, since, recalling that
‖λ∗k2 ‖1 ≤ ‖λ2‖k1,

|gT (z)| ≤
∫ ∞
0
|ψT2 (x)| dx =

∫ ∞
0

∣∣∑
k≥1

akTλ
∗k
2 (x)

∣∣ dx
≤
∑
k≥1

akT ‖λ∗k2 ‖1 ≤
‖λ2‖1

1− ‖λ2‖1
.

Then we compute the Fourier transform of gT :

ĝT (z) =

∫ ∞
0

(∫ ∞
Tw

ψT2 (u) du

)
eizw dw =

∫ ∞
0

(∫ u/T

0
ψT2 (u)eizw dw

)
du

=

∫ ∞
0

ψT2 (u)
eizu/T − 1

iz
du .
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Hence point (c) is satisfied since

|ĝT (z)| ≤
∫ ∞
0

∣∣ψT2 (u)
∣∣ 2

|z|
du ≤ c

|z|
.

Property (d) comes from the differentiability of g and the fact that

|(gT )′(x)| = T |ψT2 (Tx)| ≤ cT .

Finally, in order to show that property (b) holds, we use Fubin theorem to write∫ ∞
0
|gT (x)|2 dx =

∫
x≥0;y,z≥Tx

ψT2 (y)ψT2 (z) dy dz dx =

∫
y,z≥0

∫
[0, y∧z

T
)
ψT2 (y)ψT2 (z) dx dy dz

=
1

T

∫
y,z≥0

(y ∧ z)ψT2 (y)ψT2 (z) .

Hence∫
x≥0
|gT (x)|2 dx ≤ 1

T

∫
y≥0

y|ψT2 (y)| dy
∫
z≥0
|ψT2 (z)| ≤ c

T

∑
k≥1

∫
y≥0

y|λ∗k2 (y)| dy .

We now use a recursion to compute, for k ≥ 1,∫ ∞
0

y|λ∗k2 (y)| dy =

∫ ∞
0

y
∣∣∣ ∫ y

0
λ2(s)λ

∗(k−1)
2 (y − s) ds

∣∣∣ dy
≤
∫ ∞
0

∫ y

0
y|λ2(s)λ∗(k−1)2 (y − s)| ds dy

=

∫ ∞
0
|λ2(s)|

∫ ∞
s

y|λ∗(k−1)2 (x− s)| dy ds

=

∫ ∞
0
|λ2(s)| ds

∫ ∞
0

t|λ∗(k−1)2 (t)| dt+

∫ ∞
0

s|λ2(s)| ds
∫ ∞
0
|λ∗(k−1)2 (t)| dt

≤ ‖λ2‖1
∫ ∞
0

t|λ∗(k−1)2 (t)| dt+ ‖λ2‖k−1
∫ ∞
0

s|λ2(s)| ds

≤ ‖λ2‖1
(
‖λ2‖1

∫ ∞
0

s|λ∗(k−2)2 (s)| ds+ ‖λ2‖k−2
∫ ∞
0

s|λ2(s)| ds
)

+ ‖λ2‖k−1
∫ ∞
0

s|λ2(s)| ds

= ‖λ2‖21
∫ ∞
0

s|λ∗(k−2)2 (s)| ds+ 2‖λ2‖k−11

∫ ∞
0

s|λ2(s)| ds

≤ · · · ≤ k‖λ2‖k−11

∫ ∞
0

s|λ2(s)| ds .

Since, thanks to Assumption 5.2, the integral
∫∞
0 s|λ2(s)| ds is a finite quantity, we can

bound the sum with∑
k≥1

∫
y≥0

y|λ∗k2 (y)| dy ≤
(∫ ∞

0
s|λ2(s)| ds

)∑
k≥1

k‖λ2‖k−11

and conclude that it is finite using the root test. Hence∫ ∞
0
|gT (x)|2 dx ≤ c

T

and property (a) easily follows.
Then, we can apply Lemma 4.3 to state that the process RT tends u.c.p. to zero.
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Convergence of the process (W T , BT ). As we did for the quadratic variation of the
process BT in the proof of Theorem 4.2, we get the following covergences in probability:

[W T ,W T ]t →
T→∞

t , [BT , BT ]t →
T→∞

t .

We now show that, under Assumptions 5.1, 5.2 and 5.3,

[W T , BT ]t →
T→∞

1− β√
2(1 + β2)

t in probability.

Using the fact that [MT ,MT ] = diag(NT ), we can write

[W T , BT ]t =

∫ tT

0

dNT,+
s − βdNT,−

s

T
√
λt,+S + λT,−s

√
λT,+s + β2λT,−s

=

∫ t

0

CT,+s − βCT,−s√
CT,+s + CT,−s

√
CT,+s + β2CT,−s

+ εTt ,

where

εTt =

∫ tT

0

dMT,+
s − βdMT,−

s

T

√
λt,+s + λT,−s

√
λT,+s + β2λT,−s

.

Now, using that 〈MT ,MT 〉t = diag(
∫ t
0 λ

T ) and that λT ≥ µ1, we get

E[(εTt )2] = E
[ ∫ tT

0

1

T 2(λT,+s + λT,−s )

]
≤ 1

2µT
→

T→∞
0 .

This implies convergence u.c.p. of εT to zero. Moreover, we know from Corollary 5.1
that (CT,+, CT,−) converges in law for the Skorohod topology to ( 1

1+βX,
1

1+βX), where X
satisfies stochastic differential equation (5.3). Since the set of zeros of a Cox-Ingersoll-Ross
process on a finite interval has Lebesgue measure zero, we deduce that

CT,+s − βCT,−s√
CT,+s + CT,−s

√
CT,+s + β2CT,−s

tends u.c.p. to
1− β√

2(1 + β2)
.

Thus we got the following convergence in probability

[W T , BT ]t →
T→∞

1− β√
2(1 + β2)

t .

Last step. We now consider equation (5.4). We already know that RT tends u.c.p.
to zero. Furthermore, applying Theorem VIII.3.11 in [18] together with the results of
the preceding step, we get that the process (W T , BT ) converges in law for the Skorohod
topology to a correlated bi-dimensional Brownian motion (W,B) such that

〈W,B〉t =
1− β√

2(1 + β2)
t .

From Corollary 5.1 we get that (
√
CT,+ + CT,−, BT ) converges in law for the Skorohod

topology to (
√

2
β+1X,B), where X satisfies equation (5.3). Then Theorem A.5 gives us
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that ∫ t

0

√
CT,+s + CT,−s dW T

s

converges in law for the Skorohod topology to∫ t

0

√
2Xs

1 + β
dWs

and the proof is concluded. �

3. Framework leading to rough volatility

As we did in our study of nearly unstable Hawkes processes, we now want to drop
the light tails assumption to tackle a more general situation. This actually encodes an
economical aspect that we want to include in our model. This is the fourth property we
spoke about in last section and can be described as follows:

(iv) Many transactions are due to large orders, called metaorders, which are not exe-
cuted at once but split in time by trading algorithms.

This fact is well explained in [1] and [22]. We translate this property in our Hawkes
framework by considering the model defined by Assumption 5.1, but under the condition
that the kernel matrix exhibits a heavy tail. This is also observed in practise with empirical
estimations, see for example [5].

Therefore, instead of Assumptions 5.2 and 5.3, we consider the next one:

Assumption 5.4. There exist α ∈ (1/2, 1) and C > 0 such that

αxα
∫ ∞
x

λ1(s) ds →
x→∞

C .

Moreover, for some λ∗ > 0 and µ > 0,

Tα(1− aT ) →
T→∞

λ∗ , T 1−αµT →
T→∞

µ .

As it happened in chapter 4, we need to change the scale in the asymptotic setting in
order to get a nondegenerate scaling limit. We keep the notiations from last chapter and
recall that we studied the following processes:

XT
t =

1− aT
Tαµ

NT
tT , ΛTt =

1− at
Tαµ

∫ tT

0
λTs ds , ZTt =

√
Tαµ

1− aT
(
XT
t − ΛTt

)
.

From now on let λ = αλ∗/
(
CΓ(1 − α)

)
. Reducing Theorem 4.7 to the two dimensional

case and noticing that we have the eigenvalues and eigenvector of Φ as in the proof of
Corollary 5.1, we state the following result.

Corollary 5.4. Under Assumptions 5.1 and 5.4, the process (ΛTt , X
T
t , Z

T
t )t∈[0,1] con-

verges in law for the Skorohod topology to (X,X,Z), with

Xt =
1

β + 1

∫ t

0
Ys ds1 , Zt =

∫ t

0

√
1

β + 1
Ys

(
dB1

s

dB2
s

)
,

where (B1, B2) is a bidimensional Brownian motion and Y is the unique solution of the
following rough stochastic differential equation:

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ

(
(1 + β)− Ys

)
ds+

1

Γ(α)

∫ t

0
(t− s)α−1λ

√
1 + β2

λ∗µ(1 + β)

√
Ys dBs ,
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with

B =
B1 + βB2√

1 + β2
.

We can now state the main result about the convergence of the rescaled microscopic
price in the heavy tails setting.

Theorem 5.5. Under Assumptions 5.1 and 5.4, as T tends to infinity, the rescaled
microscopic price √

1− aT
µTα

P TtT , t ∈ [0, 1]

converges in the sense of finite dimensional laws to the following rough Heston model:

Pt =
1

1− (‖ϕ1‖1 − ‖ϕ2‖1)

√
2

β + 1

∫ t

0

√
Ys dWs ,

with Y the unique solution of

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ

(
(1 + β)− Ys

)
ds+

1

Γ(α)

∫ t

0
(t− s)α−1λ

√
1 + β2

λ∗µ(1 + β)

√
Ys dBs ,

where (W,B) is a correlated bidimensional Brownian motion with

d〈W,B〉t =
1− β√

2(1 + β2)
dt .

Furthermore, the process Yt has Hölder regularity α− 1/2− ε for any ε > 0.

Proof. As we did in the proof of Theorem 5.2 to get equation (5.4) we can get a more
suitabe expression for the rescaled price. As a matter of fact, recalling that∫ t

0

(
λT,+s − λT,−s

)
ds =

∫ t

0

(∫ t−s

0
ψT2 (u) du

)(
dMT,+

s − dMT,−
s

)
and ∫ ∞

0
ψT2 (u) du =

aT (‖ϕ1‖1 − ‖ϕ2‖1)
1− aT (‖ϕ1‖1 − ‖ϕ2‖1)

,

we can compute√
1− aT
Tαµ

P TtT =

√
1− aT
Tαµ

(
NT,+
tT −NT,−

tT

)
=

√
1− aT
Tαµ

(
MT,+
tT −MT,−

tT +

∫ tT

0

(
λT,+s − λT,−s

)
ds
)

=

√
1− aT
Tαµ

(
MT,+
tT −MT,−

tT +

∫ tT

0

∫ Tt−s

0
ψT2 (u) du(dMT,+

s − dMT,−
s )

)
= ZT,+t − ZT,−t +

∫ t

0

∫ T (t−s)

0
ψT2 (u) du(dZT,+s − dZT,−s )

= ZT,+t − ZT,−t +

∫ t

0

(∫ ∞
0

ψT2 (u) du
)

(dZT,+s − dZT,−s )

−
∫ t

0

∫ ∞
T (t−s)

ψT2 (u) du(dZT,+s − dZT,−s )

=
1

1− aT (‖ψ1‖1 − ‖ψ2‖1)
(ZT,+t − ZT,−t )−RTt ,
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where

RTt =

∫ t

0

∫ ∞
T (t−s)

ψT2 (u) du(dZT,+s − dZT,−s ) .

Using Corollary 5.4 we have that

1

1− aT (‖ψ1‖1 − ‖ψ2‖1)
(ZT,+t − ZT,−t )

converges in law for the Skorohod topology to P , where P is defined by the rough Heston
dynamics stated in the theorem.

We now prove the convergence of RT to zero in the sense of finite dimensional laws.
Recalling from the proof of Proposition 4.8 that 〈ZT , ZT 〉t = diag(ΛTt ) and that there
exists a c > 0 such that E[ΛTt ] ≤ c for any t ∈ [0, 1], we have

E[(RTt )2] ≤ c
∫ t

0

(∫ ∞
Ts

ψT2 (u) du
)2
ds .

Let G be the function defined by

G(t) =
∑
k≥1
|ϕ1(t)− ϕ2(t)|∗k .

Note that G is integrable since
∫∞
0 |ϕ1 − ϕ2| < 1. Hence

E[(RTt )2] ≤ c
∫ t

0

(∫ ∞
Ts

G(u) du
)2
ds ≤ c

T

∫ T

0

(∫ ∞
s

G(u) du
)2
ds

=
c

T

[
T

1
2

(∫ ∞
0

G(u) du
)2

+
(
T − T

1
2
)( ∫ ∞

T
1
2

G(u) du
)2]

≤ c
(
T−

1
2

(∫ ∞
0

G
)2

+
(∫ ∞

T
1
2

G
)2)

.

which vanishes as T tends to infinity. This gives us the result. �

Remark 5.6. (a) Last theorem only proved the convergence of the microscopic
price in the sense of finite dimensional laws. We notice that if we had ϕ1 = ϕ2,
that is if we give up to property (iii) of our model, we would have RTt ≡ 0 and
hence we would have the convergence in law for the Skorohod topology of the
rescaled price to the process P .

(b) Note that, as we did in the end of the proof of Theorem 5.5, we get

sup
t∈[0,1]

∣∣∣∣ ∫ t

0

∫ ∞
Ts

ψT2 (u) du ds

∣∣∣∣ ≤ c(T− 1
2

∫ ∞
0

G(u) du+

∫ ∞
T

1
2

G(u) du
)
,

which vanishes as T goes to infinity. Then, using Fubini theorem, we get that∫ t

0
RTs ds =

∫ t

0

∫ s

0

(∫ ∞
T (s−u)

ψT2

)
(dZT,+u − dZT,−u ) ds

=

∫ t

0

∫ t

u

(∞
T (s−u)

ψT2

)
ds(dZT,+u − dZT,−u )

=

∫ t

0

∫ t−u

0

(∫ ∞
Ts

ψT2

)
ds(dZT,+u − dZT,−u )



72 5. A MICROSCOPIC MODEL FOR SINGLE ASSET PRICE

converges to zero u.c.p. Therefore the integrated rescaled price converges in law
for the Skorohod topology to ∫ t

0
Ps ds .



APPENDIX A

Technical results

1. Some useful limit theorems

In this appendix we report some limit theorems that are used in the proofs contained
in Chapters 2 and 4.

1.1. Limit of a sequence of SDEs. We start with a result by Kurtz and Protter (see
[21]) about the convergence of a sequence of SDEs. The meaning of this theorem is that
if the functions and the processes defining the SDEs satisfy some convergence properties,
then the laws of the solutions of the SDEs converge to the law of the solution of the limiting
SDE. Let’s state the setting for this theorem.

Let’s (Xn
t )t≥0 be adapted to the filtration (Fnt )t≥0 and suppose it satisfies

(A.1) Xn
t = Unt +

∫ t

0
Fns−(Xn) dY n

s

where Fn : DRk [0,∞)→ DMkm [0,∞) and

Un ∈ DRk [0,∞) , Y n ∈ DRm [0,∞) ,

both adapted to (Fnt ). Suppose Y n is a semimartingale and Fn is non anticipating, that
is Fnt (x) = Fnt (xt) for all t ≥ 0 and x ∈ DRk [0,∞), where we set xt(·) := x(· ∧ t).

We now give a condition on Y n. Define, for δ > 0, the function hδ : [0,∞) =→ [0,∞),
such that hδ(r) = (1− δ/r)+. Then we can define the functional Jδ in the following way:

Jδ(x)(t) =
∑
s≤t

hδ(|x(s)− x(s−)|)(x(s)− x(s−)) .

The functional Jδ measures the sum jumps of the function x up to time t giving a weight
depending on the amplitude of each jump. Since Y n is a semimartingale, we know that
it can be decomposed as Y n = Mn + An, where Mn is a local martingale and An is a
process with bounded variation on bounded intervals. It can be proved that also (Y n)δ :=
Y n − Jδ(Y n) is a semimartingale, with decomposition (Y n)δ = (Mn)δ + (An)δ. The next
condition on Y n is expressed in term of the decomposition of (Y n)δ).

C1 For each α > 0, there exist a sequence of stopping times (ταn ) such that
P(ταn ≤ α) ≤ 1/α and supn E

[
(Mn)δt∧ταn + V0,t∧ταn ((An)δ)

]
<∞.

Recall that Va,b(f) is the total variation of the function f in the interval [a, b], that is
Va,b = sup

∑
|f(ti+1) − f(ti)|, where the supremum is taken over all the subdivision a =

t1, t2, . . . , tk = b of the interval [a, b].
Call F : DRk [0,∞)→ DMkm [0,∞) the function that will play the role of Fn in the lim-

iting SDE and that is non anticipating itself. We then need assumptions on the properties
of the functions Fn and F under transformations of the time scale. Let T1[0,∞) denote
the collection of nondecreasing mappings λ : [0,∞)→ [0,∞) (in particular, λ(0) = 0) such
that λ(t+h)−λ(h) ≤ h for all t, h ≥ 0. Let id denote the identity map id(s) = s. We will
assume that there exist mappings Gn, G : DRk [0,∞) × T1[0,∞) → DMkm [0,∞) such that

73
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Fn(x) ◦λ = Gn(x ◦λ, λ) and F (x) ◦λ = G(x ◦λ, λ) for (x, λ) ∈ DRk [0,∞)×T1[0,∞). The
second condition is then

C2(i) For each compact subset H ⊂ DRk [0,∞)× T1[0,∞) and t > 0,
sup(x,λ)∈H sups≤t |Gns (x, λ)−Gs(x, λ)| → 0.

C2(ii) For {(xn, λn)} ∈ DRk [0,∞)×T1[0,∞), sups≤t |xn(s)−x(s)| → 0 and sups≤t |λn(s)−
λ(s)| → 0 for each t > 0 implies sups≤t |Gs(xn, λn)−Gs(x, λ)| → 0.

For our purpose we can simply note that any Ft(x) = g(x(t), t) with g : Rk×[0,∞)→Mkm

continuous, has a representation in therm of a G satisfying C2(ii).
We now state a simplified version of Theorem 5.4 in [21], suitable for our purposes.

Theorem A.1. Suppose that (Un, Xn, Y n) satisfies (A.1), (Un, Y n) ⇒ (U, Y ) in the
Skorohod topology and that Y n satisfies C1 for some 0 < δ ≤ ∞. Assume that (Fn) and F
have representations in term of (Gn) and G satisfying C2. If there exists a global solution
X of

(A.2) Xt = Ut +

∫ t

0
Fs−(X) dYs

and weak local uniqueness holds, then (Un, Xn, Y n)⇒ (U,X, Y ).

Remark A.2. What does weak local uniqueness mean? We say that (X, τ) is a local
solution of SDE (A.2) if there exists a filtration (Ft)t to which X,U and Y are adapted,
Y is an (Ft)-semimartingale, τ is an (Ft)-stopping time and

(A.3) Xt∧τ = Ut∧τ +

∫ t∧τ

0
Fs−(X) dYs.

We say that strong local uniqueness holds for (A.2) if any two local solutions (X(1), τ (1)),
(X(2), τ (2)) satisfy X(1)

t = X
(2)
t , t ≤ τ (1)∧τ (2), a.s. To define a notion of weak local unique-

ness, that is uniqueness in distributions, we need to require the stopping time associated
with the solution to be a meaurable function of the solution. We say that (Û , Ŷ , X̂, τ̂)

is a weak local solution of (A.2) if (Û , Ŷ ) is a version of (U, Y ) and (A.3) holds with
(U, Y,X, τ) replaced by (Û , Ŷ , X̂, τ̂). We say that weak local uniqueness holds for (A.2)
if for any two weak local solutions (U (1), Y (1), X(1), τ (1)) and (U (2), Y (2), X(2), τ (2)) with
τ (1) = h(1)(X(1)) and τ (2) = h(2)(X(2)) for measurable functions h(1), h(2) on DRk [0,∞),
(X(1), h(1) ∧ h(2)(X(1))) and (X(2), h(1) ∧ h(2)(X(2))) have the same distribution.

1.2. A condition for the convergence to a Brownian motion. We state a result
that is an immediate corollary of Theorem VIII.3.11 in [18].

Theorem A.3. Assume Bn is a sequence of local martingales with |∆Bn| ≤ K iden-
tically (i.e. with jumps uniformly bounded) and B is a one dimensional Brownian motion.
If D is a dense subset of R+ the following are equivalent:

(i) Bn D→ B;
(ii) The quadratic variation of Bn at point t converges in probability to t for each

t ∈ D: 〈Bn〉t
P→ t.

1.3. Convergence of a sequence of stochastic integrals. We state a result bor-
rowed from [16] that gives sufficient condition for the convergence in law, for the Skorohod
topology, of a sequence of stochastic integrals.
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Recall that, given a filtered probabilty space Bn = (Ωn,Fn, (Fnt )t,Pn), we denote by
Hn the set of all predictable processes Hn on Bn having the form

Hn = Y n
0 10 +

k∑
i=1

Y n
i 1(si,si+1](t) ,

where k ∈ N, 0 = s0 < . . . , < sk+1, and Y n
i is Fnsi-measurable with |Y n

i | ≤ 1.
If Xn is any 1-dimensional process on Bn and if Hn ∈ Hn is as above, we define the

elementary stochastic integral process Hn •Xn by

Hn •Xn
t =

k∑
i=1

Y n
i (Xn

t∧si+1
−Xn

t∧si) .

We need the following definition.

Definition A.4 (UT processes). A sequence (Xn) of adapted cádlág processes, each
Xn on Bn, is said UT (for Uniformly Tight) if for every t > 0 the family of random
variables {Hn •Xn

t : n ∈ N, Hn ∈ Hn} is tight in R, that is
lim
a→∞

sup
Hn∈Hn,n∈N

Pn(|Hn •Xn
t | > a) = 0 .

Finally we have the theorem by Jakubowski, Mémin, Pages:

Theorem A.5. For any n, let Xn be a semimartingale on the space (Ωn,Fn, (Fnt )t,Pn)
and Kn be a cadlag process on the same filtered space, both real valued, with (Xn) satisfying
the UT condition.

Then the convergence (Kn, Xn)
D→ (K,X) implies the following convergences in law,

for the Skorohod topology:
Kn •Xn → K •Xn → K •X and

(Kn •Xn,Kn, Xn)→ (K •X,K,X)

2. Brownian motion and continuous martingales

In this section we gather some results about Brownian motion and continuous martin-
gales. They represent a very important amount of background material that is hidden in
the proofs of chapter 3, but that is essential in order to work on nearly unstable Hawkes
processes in the heavy tails case. All these results come from [25], where they are proven
in detail.

We always work on a filtered probability space (Ω,F , (Ft)t,P).

Theorem A.6 (Dambis, Dubin-Schwarz). Let M be a (Ft)-continuous local martingale
vanishing at 0 and such that 〈M,M〉∞ =∞. If we set

Tt = inf{s : 〈M,M〉s > t} ,
then Bt = MTt is a (F)t-Brownian motion and Mt = B〈M,M〉t .

Next theorem partially answer the question “which martingales can be written as a
stochastic integral with respect to a Brownian motion?”.

Theorem A.7. If M is a continuous local martingale such that the measure d〈M,M〉t
is a.s. equivalent to the Lebesgue measure, there exists an (Ft)M -predictable process ft
which is strictly positive dt⊗ dP-a.s. and an (FMt )-Brownian motion B such that

d〈M,M〉t = ft dt and Mt = M0 +

∫ t

0
f1/2s dBs .
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Proof. By Lebesgue’s derivation theorem, the process

ft = lim
n→∞

n
(
〈M,M〉t − 〈M,M〉t−1/n

)
satisfies the requirements in the statement. Moreover, (ft)

−1/2 is clearly in L2
loc(M) and

the process

Bt =

∫ t

0
f
−1/2
t dMs

is a continuous local martingale with increasing process t, hence a Brownian motion. �

We finally state a multidimensional version of the preceding result.

Theorem A.8. Let M = (M1, . . . ,Md) be a continuous vector local martingale such
that d〈M i,M i〉t � dt for every i. Then there exist, possibly on an enlargement of the
probability space, a d-dimensional Brownian motion B and a d×d matrix-valued predictable
process α in L2

loc(B) such that

Mt = M0 +

∫ t

0
αs dBs .



APPENDIX B

Fractional integrals and derivatives

1. Fractional integral and differential operators

For an n-fold integral next formula, proved by induction, holds∫ x

0
dt

∫ x

0
dt· · ·

∫ x

0
ϕ(t) dt =

1

(n− 1)!

∫ x

0
(x− t)n−1ϕ(t) dt .

Writing (n−1)! = Γ(n) we observe that the right-hand side of the preceding equation may
have a meaning for non-integer values of n. So it is natural to define the integration of a
non-integer order as follows.

Definition B.1 (Fractional integral). Let ϕ ∈ L1(0,∞). The left-sided fractional
integral of ϕ of order α > 0 is

Iαf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt , x > 0 .

Proposition B.2 (Semigroup property). The fractional integration has the semigroup
property

(B.1) IαIβϕ = Iα+βϕ , α > 0, β > 0 .

Proof. This property can be proved directly:

IαIβϕ =
1

Γ(α)Γ(β)

∫ x

0

dt

(x− t)1−α

∫ t

0

ϕ(τ) dτ

(t− τ)1−β

and, using Fubini theorem and setting t = τ + s(x− τ), we have

IαIβϕ =
B(α, β)

Γ(α)Γ(β)

∫ x

0

ϕ(τ) dτ

(x− τ)1−α−β
,

where B(α, β) =
∫ 1
0 x

α−1(1 − x)β−1 dx is the usual beta function. The proof is concluded
recalling the relation

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

�

Now it comes natural to introduce an inverse operation to fractional integration. This
is given by fractional differentiation.

Definition B.3 (Fractional derivative). For a function f given in the interval [0,∞),the
left-sided fractional derivative of f of order α, for 0 < α < 1, is

Dαf(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(t)

(x− t)α
dt , x > 0 .

77
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In [26] it is shown that a simple and sufficient condition for the existence a.e. of the
fractional derivative of f is that f ∈ AC([0,∞)).

We now clarify how the fractional integration and differentiation ar inverse operations.
We need a definition.

Definition B.4. Let 0 < α < 1. We denote by Iα(Lp) the space of functions f
represented by the left-sided fractional integral of order α of a summable function: f = Iαϕ,
ϕ ∈ Lp([0,∞)), 1 ≤ p <∞.

We then have

Theorem B.5. Let 0 < α < 1. Then the equality

DαIαϕ(x) = ϕ(x)

is valid for any summable function ϕ, while

IαDαf(x) = f(x)

is satisfied for f ∈ Iα(L1).

Remark B.6. (i) We defined fractional integrals and derivatives in a simplified
way, suitable to our applications. We could define them for functions f defined on
an interval [a, b]. Moreover the term left-sided appears in contrast with the right-
sided fractional integral and derivatives. As an example we report the definition
of right-sided fractional integral of a function f defined on the interval [a, b]:

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)

(t− x)1−α
dt , x < b .

All the properties we stated about left-sided fractional operators are valid for
right-sided fractional operators too.

(ii) We defined the fractional derivative of order α for 0 < α < 1. It is actually easy
to extend this definition to α > 0. We simply consider α = bαc + {α}, then we
define

Dαf =
( d
dx

)bαc
D{α}f =

( d
dx

)bαc+1
I1−{α}f .

(iii) Finally, it is possible to extend the former definitions to any complex order α ∈ C
with Re(α) > 0, but this is beyond our aim.

2. Some properties for fractional operators

We now report some results borrowed from [26]. The first one gives us a relation be-
tween the Hölder exponent of a function and the Hölder exponent of its fractional deriva-
tives.

Proposition B.7. If f ∈ Hλ and f(0) = 0, then for any α < λ, f admits a fractional
derivative of order α and Dαf ∈ Hλ−α.

A fractional integration by parts formula follows:

Proposition B.8. If ϕ ∈ Lp and ψ ∈ Lq with 1/p+ 1/q ≤ 1 + α, then ϕ and ψ have
a fractional integral of order α and∫ t

0
ϕ(t− s)Iαψ(s) ds =

∫ t

0
Iαϕ(t− s)ψ(s) ds .

As corollaries one gets the followings.
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Corollary B.9. Let ϕ ∈ Lr, with r > 1 and ψ ∈ Hβ. Then, for any α < β, Dαψ
exists, belongs to Hβ−α and∫ t

0
ϕ(t− s)ψ(s) ds =

∫ t

0
Iαϕ(t− s)Dαψ(s) ds .

Corollary B.10. Let ϕ be continuous and ψ such that xµψ(x) ∈ Hλ for some µ > 0.
Then, for any α < min{1− µ;λ}, Dαψ exists, belongs to Lr for some r > 1 and∫ t

0
ϕ(t− s)ψ(s) ds =

∫ t

0
Iαϕ(t− s)Dαψ(s) ds .
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