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Abstract

In a corporate context where rapid and accurate information analysis is cru-
cial to improving operational performance and supporting data-driven strategic
decisions, this thesis focuses on the design and implementation of a Business In-
telligence (BI) system and a Data Lake for the company UNOX S.p.A., leveraging
the technologies provided by the Amazon Web Services (AWS) platform.

The BI system developed allows the collection and analysis of data from var-
ious sources, helping to reduce inefficiencies, flag potential issues, identify new
revenue streams, and pinpoint areas for future growth. Through the creation of
a centralized Data Lake and the automation of data integration and analysis pro-
cesses, it became possible to optimize the management of corporate information,
providing a comprehensive and detailed view of business performance.

The system was designed to be easily accessible to various company teams, in-
cluding Research and Development, IT, and other technical departments, thanks
to intuitive tools such as AWS QuickSight. These tools enable a simple and vi-
sual interaction with the data without requiring specific knowledge of DBMS or
query languages. This approach has made data more accessible at all company
levels, promoting greater autonomy in their analysis.

The implementation made use of AWS components such as Amazon S3,
Glue, Athena and QuickSight, ensuring scalable, secure, and fully automated
data management. The final result is an integrated Business Intelligence system
that significantly reduces the time required for analysis and reporting, enhancing
decision-making capabilities and promoting a data-driven corporate culture.





Sommario

In un contesto aziendale in cui l’analisi rapida e precisa delle informazioni è cru-
ciale per migliorare le performance operative e supportare decisioni strategiche
basate sui dati, il presente lavoro di tesi riguarda la progettazione e implemen-
tazione di un sistema di Business Intelligence (BI) e di un Data Lake per l’azienda
UNOX S.p.A, sfruttando le tecnologie messe a disposizione dalla piattaforma
Amazon Web Services (AWS).

Il sistema di BI realizzato consente di raccogliere e analizzare dati proveni-
enti da fonti diverse, contribuendo a ridurre le inefficienze, segnalare eventuali
criticità, individuare nuovi flussi di ricavi e identificare aree di crescita futura.
Attraverso la creazione di un Data Lake centralizzato e l’automazione dei pro-
cessi di integrazione e analisi dei dati, si è reso possibile ottimizzare la gestione
delle informazioni aziendali, garantendo una visione complessiva e dettagliata
delle prestazioni.

Il sistema è stato progettato per essere facilmente accessibile anche da team
aziendali, tra cui Ricerca e Sviluppo, IT e altri reparti tecnici, grazie all’uso
di strumenti intuitivi come AWS QuickSight, che consentono un’interazione
semplice e visiva con i dati, senza necessità di conoscenze specifiche in DBMS
e linguaggi di query. Questo approccio ha permesso di rendere i dati fruibili a
tutti i livelli aziendali, favorendo una maggiore autonomia nella loro analisi.

L’implementazione ha utilizzato componenti AWS quali Amazon S3, Glue,
Athena e QuickSight, garantendo una gestione scalabile, sicura e completamente
automatizzata dei dati. Il risultato finale è un sistema integrato di Business Intel-
ligence che riduce significativamente i tempi di analisi e reporting, migliorando
la capacità decisionale e promuovendo una cultura aziendale data-driven.
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1
Introduction

1.1 The company

This thesis was conducted in collaboration with Unox S.p.A., a leading com-
pany in the professional cooking ovens market. Unox manufactures various oven
series and distributes its products to over 130 countries worldwide. In addition
to its product offerings, the company provides after-sales services, including
cooking training, customer support, and technical assistance.

1.1.1 Company Profile

Unox S.p.A. has been active since 1990, specializing in the production of
professional appliances for the catering and baking industries. As a product-
focused company, its primary emphasis is on manufacturing and customer sup-
port for its ovens, rather than software development. Unox operates in the
Business-to-Business (B2B) sector, serving a diverse range of clients, from small
bakeries to large restaurant chains and catering centers.

Initially, the company capitalized on a market gap by producing ovens pri-
marily for suppliers of frozen croissants in Southern Europe. These products
were mainly provided to small retailers through lease agreements with large
suppliers. Over time, Unox shifted its focus to producing higher-quality prod-
ucts for direct sale to end-users. This strategic change allowed the company to
expand into Northern Europe and laid the groundwork for further growth in
other continents.
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1.1. THE COMPANY

Today, Unox offers a wide range of products, reflecting its evolution over
the years. Recently, the company has increasingly focused on the digital ad-
vancement of its offerings, aiming to provide customers with a more compre-
hensive and satisfying experience. The company’s flagship models now feature
touch-screen panels, voice control, remote operation, data management for large
companies, and other advanced features.

To meet the demands of this digital shift, Unox began developing software
in-house to support these services, expanding its workforce to include software
developers. The company currently has two dedicated software development
teams and a Research and Development (R&D) team.

Despite its growth into a multinational corporation, Unox has remained
family-owned. Production was always mainly based in Italy until a new pro-
duction site was opened in the US in 2022. Since the beginning, international
expansion has been focused on commercial operations, with the company es-
tablishing sales offices worldwide.

Unox employs a high level of vertical integration, producing most of its
components in-house or through subsidiaries.

1.1.2 Software Development at Unox

Despite being a company primarily focused on manufacturing high-quality
professional ovens, software development plays a critical role in Unox’s op-
erations. The digital transformation of its products, combined with the need
for integrated connectivity and advanced functionalities, has made software a
cornerstone of the company’s offerings. Today, Unox ovens are fully digitized
and connected, featuring capabilities such as remote control via mobile appli-
cations, data export for performance analysis, and integration with external
systems through APIs. This shift has led to the formation of specialized soft-
ware development teams that ensure Unox ovens remain at the cutting edge of
technological innovation.

Unox currently operates with four distinct software development teams, each
with a specialized focus:

• IT Team: This team is responsible for the internal infrastructure that
supports Unox’s daily operations. Their work includes managing the
company’s network, ensuring data security, and maintaining the systems
that enable smooth communication and operational efficiency across all
departments.

2



CHAPTER 1. INTRODUCTION

• R&D Team: Unox’s Research and Development team focuses on inno-
vation, developing new technologies for ovens to improve performance,
energy efficiency, and user experience. This team collaborates with various
departments to drive the technical evolution of Unox’s products.

• Software Developer Team: This team is at the heart of the technical
development process and is responsible for creating, maintaining, testing,
and documenting the algorithms that optimize oven performance. Their
tasks include defining technical specifications in collaboration with other
teams, implementing reliable and efficient solutions, and supporting field
technicians to resolve software-related issues. From initial concept to
final release, the Software Developer team ensures that each line of code
contributes to the operation of Unox products.

• Digital Experience Team: As part of the company’s push towards a fully
connected ecosystem, the Digital Experience team focuses on developing
cloud-based applications, both for web and mobile platforms, and man-
aging REST APIs. They are responsible for creating digital interfaces that
allow users to remotely control and monitor ovens, manage data streams
from connected devices globally, and integrate Unox products with other
systems. Additionally, this team designs and maintains the cloud infras-
tructure, ensuring the reliability and scalability of Unox’s digital services.
They collaborate with data scientists to extract valuable insights from the
vast amounts of telemetry data produced by the ovens. They also coor-
dinate closely with the UI/UX team to deliver intuitive user experiences.
This is the team I have been a part of during my internship, where I con-
tributed to the development and enhancement of Unox’s digital services,
helping to bridge the gap between product performance and user interac-
tion.

Each of these teams plays a critical role in ensuring that Unox continues
to lead the market, not only with its physical products but also through its
advanced digital offerings.

1.2 Initial problem

In the modern business environment, the ability to access information quickly
and accurately is a key factor for competitiveness. Strategic decisions rely on
precise analysis, which requires not only access to data but also appropriate
tools for managing and interpreting it. Without the implementation of a struc-
tured BI system, such as the one developed in this project, Unox faces several
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challenges that limit the effectiveness and efficiency of its data extraction and
analysis processes, impacting the entire company structure.

The main issue concerns the way data is requested, processed, and dis-
tributed within the company. Specifically, when an employee from a depart-
ment like Research and Development, IT, or a technical division needs data for
specific analyses, they turn to the Digital Experience team, which is designated
to manage access to the company’s databases and has greater expertise in run-
ning complex queries. While other teams may have some knowledge in this
area, the Digital Experience team is responsible for overseeing and managing
these processes. However, this approach slows down the flow of information
and affects overall company efficiency, creating bottlenecks in decision-making
processes.

The data extraction process involves several labor-intensive stages: the Digi-
tal Experience team must first understand the nature of the problem, identify the
relevant tables and data, envision the final output of the analysis, and then de-
velop a TypeScript script to access the databases, execute queries, and transform
the data into a usable format for analysis. This "ad hoc" approach, while effective
for specific requests, requires a significant amount of time and resources. Each
request for analysis or reporting typically involves hours of work from an expert,
limiting the company’s ability to respond quickly to new market demands or
opportunities.

In some cases, automated scripts are developed to reduce the repetitiveness
of this process, executing periodic extractions and sending the data via email
to relevant stakeholders. However, while this approach is useful, it remains
limited. First, each automated script must be specifically developed for each
case, leading to development and maintenance costs, along with cloud resource
execution costs (such as AWS Lambda used to automate the periodic execution
of these scripts). Additionally, these automations only cover a small portion of
the company’s overall needs and lack the flexibility to quickly respond to more
complex or unexpected analysis requests.

The current working model also strongly limits the autonomy of non-technical
teams. Many employees, despite needing data to improve their analyses and
make informed decisions, are unable to directly access the information, as us-
ing advanced query languages or interacting with complex databases is beyond
their expertise. This not only increases the workload for the Digital Experience
team but also slows response times and decision-making, negatively impacting
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overall operational efficiency.
Other motivations behind this project include the need to improve data gov-

ernance and integration between different information silos. In an environment
where data is fragmented across various systems and databases, it becomes dif-
ficult to obtain a unified and coherent view of business performance, identify
inefficiencies, or explore new growth opportunities. Implementing a BI system,
supported by an AWS-based Data Lake, overcomes these barriers, improving the
management of company data and simplifying real-time access to information.

In summary, the main reasons for implementing a new Business Intelligence
system are:

• Simplifying data access for non-technical teams: Creating an interface
and tools that enable employees without advanced technical skills to per-
form analysis and reporting independently.

• Data integration: Overcoming data fragmentation and ensuring a coher-
ent integration of information from various systems, facilitating collabo-
ration and data-driven decision-making.

• Improving operational efficiency: Optimizing the use of the Digital Expe-
rience team’s resources, reducing the workload related to ad hoc requests,
and allowing them to focus on higher-value tasks.

• Reducing data extraction and analysis times: Eliminating bottlenecks and
automating repetitive processes to allow different teams to independently
access relevant information.

• Scalability and flexibility: Adopting a scalable and flexible platform, such
as AWS, to efficiently manage large volumes of data and quickly adapt to
the company’s evolving needs.

With these premises, the project aims to revolutionize the way the company
manages, accesses, and analyzes data, significantly improving the effectiveness
of decision-making processes.

1.3 Objectives

The primary objective of this project is to develop a unified and flexible
system for managing the data generated by industrial ovens, without the need
to create separate workflows for different stages of the process. The solution
must ensure a consistent approach both during the bulk load phase, which
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involves large-scale data imports, and in the subsequent operational phase,
where smaller but more frequent data updates are managed. This requires the
design of a data ingestion infrastructure that can dynamically adapt to different
data volumes, ensuring efficiency and ease of maintenance.

Another key goal is to ensure the efficiency of the system in terms of resource
usage, with a strong focus on cost optimization. Given that the architecture
relies heavily on several managed services from AWS, such as Glue, Lambda,
and Step Functions, it is crucial to minimize resource consumption, reducing
the execution time and memory usage of various tasks. This helps to keep
operational costs in check, as AWS pricing is often directly tied to the resources
utilized.

An additional objective of the project is to provide a system that integrates a
query engine for data analysis and a dashboard for Key Performance Indicator
(KPI) visualization. Queries should be executed using tools like AWS Athena,
which allows for SQL queries to be run directly on data stored in Amazon S3,
leveraging a flexible and scalable system without the need for complex database
setups. The interactive dashboards, created using AWS QuickSight, will allow
users to visualize data intuitively, monitor key metrics, and generate customized
reports.

Furthermore, the system must ensure that the data is kept synchronized with
the production databases, offering up-to-date access to information for reporting
and monitoring purposes. A secondary, yet innovative, optional objective is the
exploration of generative AI techniques to automate the creation of dashboards
in AWS QuickSight, further simplifying the user experience and enhancing the
overall efficiency of the data visualization process.

In summary, the project aims to build a solution that is flexible, efficient, and
capable of supporting data analysis and visualization effectively, with a focus
on automation, resource optimization, and ease of use.

1.4 Proposed Solution

The proposed system is built on a scalable, automated architecture using
AWS cloud technologies, enabling near real-time access to up-to-date informa-
tion for reporting and analysis. The overarching goal is to create a data pipeline
that reliably extracts, transforms, stores, and makes data available for analysis
with minimal human intervention.
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The system is designed to automate the entire data lifecycle, from the extrac-
tion of raw data to its transformation into structured formats, storage in a data
lake, and final usage for analytics. Automation was a critical requirement, as the
high frequency and volume of data generated by the ovens demanded a process
that could run continuously without manual oversight. Additionally, ensuring
that the data is always current and accessible for users was a priority, which
required careful orchestration and scheduling of data extraction and processing
tasks.

Sources Data Lake

Reports

Direct Queries

Data integration

Figure 1.1: System general flow

The primary sources of data include two distinct databases: PostgreSQL,
which stores general operational data about the ovens or users’ management
data, and MongoDB, which holds Internet of Things (IoT) data from sensors,
alarms, and other event-driven information. Since these databases have differ-
ent structures and serve different purposes, the solution had to accommodate
specific workflows for each.

For the PostgreSQL database, AWS Glue was selected as the main Extract-
Transform-Load (ETL) service. Glue is a fully managed, serverless ETL tool that
simplifies data preparation by running Python or Scala scripts without the need
for managing servers. In this context, Glue is responsible for connecting to the
PostgreSQL database, extracting the necessary tables, transforming the data into
a columnar file format, and loading it into Amazon S3 for long-term storage. One
of the key challenges was ensuring that the system did not reprocess previously
extracted data during subsequent extractions. This issue was addressed using
Glue’s Bookmarks feature, which tracks the progress of each job by recording
the last data row processed. When the ETL job runs again, it starts from where
the last job left off, ensuring only new data is ingested.

For the MongoDB database, which stores unstructured IoT data, the extrac-
tion process required a custom approach, as Glue’s Bookmarks feature does
not support MongoDB. To address this, the system leverages AWS Lambda, a
serverless computing service that runs code in response to specific events. A
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master Lambda function orchestrates multiple worker Lambdas, each of which
processes data from a specific set of devices (ovens). This system distributes the
workload efficiently, allowing for a scalable and flexible data extraction pipeline.
Each worker Lambda extracts, filters, and transforms the data, then formats it in
Parquet and stores it in Amazon S3. By employing this distributed architecture,
the system ensures that even large volumes of IoT data are processed efficiently
and in parallel.

The extracted data is stored in a data lake on Amazon S3, organized into
three distinct layers:

• raw,

• curated,

• and analytics.

These layers reflect the level of transformation and aggregation applied to
the data [9, 16]. In the raw layer, data is stored in its original form, directly after
extraction, without any significant transformations. The curated layer includes
data that has undergone partitioning, formatting, and compression to optimize
performance for querying. Finally, in the analytics layer, data is pre-aggregated
to facilitate specific use cases, such as recurring reports or complex queries,
improving the efficiency of downstream analytics.

To streamline the management of this multi-stage process, AWS Step Func-
tions are used to orchestrate the entire workflow. Step Functions allow the
system to define and automate the execution of each task in the pipeline, ensur-
ing that each job runs in the correct sequence and avoiding conflicts between
components. Additionally, the frequency of execution can be easily configured,
allowing for flexible scheduling of data extraction and processing based on
business requirements.

Once the data is processed and stored in S3, it is cataloged using the AWS
Data Catalog. The Data Catalog consolidates metadata for all the tables and files
stored in S3, making it easier for other AWS services to reference and query the
data. This unified metadata management system allows users to interact with
the data seamlessly, without needing to define the underlying storage paths or
configurations manually.

For querying and analyzing the data, the solution integrates two key tools:
AWS Athena and AWS Quicksight. AWS Athena is an interactive query service
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that enables users to run SQL queries directly on the data stored in Amazon S3,
leveraging the metadata defined in the Data Catalog. This provides a powerful
tool for on-demand analysis without requiring the setup of additional databases
or data warehouses. AWS Quicksight, on the other hand, is a BI tool that
allows users to create interactive dashboards, visualizations, and reports. By
integrating Quicksight, the system enables non-technical users to explore the
data, generate insights, and produce business reports with an intuitive interface.

In conclusion, the proposed solution offers a fully automated, scalable, and
flexible architecture for managing and analyzing the data generated by industrial
ovens. It leverages advanced cloud services to ensure that data is continually
updated, efficiently processed, and readily available for users, while minimizing
the need for manual intervention. This approach not only improves the overall
efficiency of data management but also enhances the ability to derive meaningful
insights from large volumes of industrial data.

1.5 Outcomes

The results of the project were highly positive, with the implemented system
proving to function effectively and reliably. During the testing phase, a snap-
shot of the production database was used, allowing the entire data ingestion
pipeline to be validated and the system’s performance to be tested in a realistic
environment. Specifically, the initial ingestion of IoT data was completed using
a snapshot of the production database up to September 2, 2024, ensuring that
all historical data was successfully loaded into the data lake. Once ready for
use with the live production databases, the transition can be easily achieved by
running a pre-configured script that adapts the custom bookmarks, updates the
database credentials and connection settings, and activates the scheduler that
automates the regular execution of the system.

One of the key advantages of the implemented solution is the significant
reduction in on-demand query times, with an estimated improvement of X%
compared to the previous approach. Thanks to the architecture based on Ama-
zon S3, Athena, and AWS Quicksight, queries are now much faster and more
efficient, making the data readily available for analysis without substantial de-
lays.

Another significant benefit is the simplification of access to the query plat-
forms. Before the implementation, anyone outside the Digital Experience team
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had to either obtain access to a specific database or install a GUI client and have
the necessary credentials for each database. With the new system, data access is
managed directly through the AWS console, provided the user has an account
with the necessary permissions to use query or reporting tools. If an employee
does not have an AWS account, it can be quickly created by one of the company’s
software teams.

From a cost perspective, the monthly operational cost of the system has been
estimated at around 400$, with fluctuations based on actual usage. The initial
ingestion of all historical data, going back to 2015, incurred a one-time cost of
approximately 3000$, primarily due to AWS Lambda and AWS Glue services,
which were essential for populating the data lake.

While the overall results are highly satisfactory, there is still room for im-
provement, particularly in optimizing the efficiency of AWS Lambda functions.
Reducing the execution times and memory usage of the Lambda functions could
significantly lower both the computation costs and the query response times.
This would enhance the overall system efficiency and further reduce the data
ingestion costs.

1.6 Outline

The subsequent chapters are structured to explore the necessary backgrounds,
describe the entire system from a technical point of view, prove the application
functionalities through a main use case, perform other experiments and evaluate
the system’s performance.

In particular, the second chapter provides an overview of the fundamental
technologies and concepts needed to comprehend the project. It delves into the
tools used for data management, file formats, and the cloud services employed
during development.

The third chapter focuses on the detailed design and implementation of the
system architecture, explaining the role and interactions of each component.
Special attention is given to the methodologies used for data ingestion, trans-
formation, and storage, with an emphasis on the scalability and automation
features facilitated by the selected AWS technologies.

The fourth chapter validates the functionality and performance of the system
through real-world use cases, experiments, and benchmarking activities. Key
aspects such as cost efficiency, data partitioning strategies, and the optimization
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of query execution times are analyzed in depth.
Finally, the fifth chapter concludes the thesis by summarizing the results

achieved, discussing the limitations of the implemented solution, and suggesting
potential directions for future research and system enhancement. Together,
these chapters provide a structured exploration of the design, implementation,
and evaluation of a cloud-based data management and business intelligence
solution.
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2
Background

2.1 Data Management

2.1.1 PostgreSQL

PostgreSQL, often called Postgres, is a robust open-source Relational Database
Management System (RDBMS) known for its flexibility, stability, and full com-
pliance with SQL standards. It supports a wide range of advanced features,
such as complex queries, foreign keys, views, triggers, and stored procedures.
One of its distinguishing characteristics is its support for both structured and
semi-structured data, including JavaScript Object Notation (JSON), making it
suitable for modern applications that need to manage different data formats.
PostgreSQL also offers powerful indexing techniques (e.g., B-tree, GIN, GiST)
to optimize query performance, as well as Multi-Version Concurrency Con-
trol (MVCC), which enables high transaction throughput without locking issues,
allowing multiple users to interact with the database simultaneously.

In the project developed at UNOX S.p.A., PostgreSQL is used to manage key
operational data related to industrial ovens. This includes information about
companies, devices (ovens), recipes, and device groupings. These datasets are
critical for the Data Driven Cooking (DDC) platform, which leverages the stored
information to enhance oven performance, improve operational processes, and
provide customers with detailed insights.

PostgreSQL is considered a popular choice for many organizations since
is open-source, has extensive community support, and is involved in continu-
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ous development. It offers a highly customizable solution for both small-scale
applications and large enterprise systems.

2.1.2 MongoDB

MongoDB is an open-source NoSQL database designed to handle large
volumes of unstructured and semi-structured data. Unlike traditional rela-
tional databases like PostgreSQL, described in the previous section 2.1.1, which
store data in structured tables with fixed schemas, MongoDB uses a flexible,
document-based model. Data is stored in JSON-like BSON (Binary JSON) for-
mat, allowing for dynamic, schema-less storage where each document can have
a different structure. This makes MongoDB ideal for use cases where data is
heterogeneous or rapidly changing, as it does not require predefined schemas
or rigid structures like a relational database.

In contrast to PostgreSQL, which excels at managing structured, relational
data with well-defined relationships, MongoDB is optimized for handling data
that doesn’t fit into regular table structures, such as hierarchical or nested data.
Additionally, MongoDB offers easy horizontal scaling, distributing data across
multiple servers to handle high write loads, making it well-suited for applica-
tions that generate large amounts of real-time data.

At UNOX, MongoDB is used to store IoT data generated by the industrial
ovens. This includes sensor readings like temperature, humidity, alarms, and
detailed records of cooking processes. The flexible schema in MongoDB allows
the system to efficiently capture and store a wide variety of data points, which
may differ from oven to oven, or even from one cooking session to another.
This dynamic approach enables real-time monitoring and analysis of oven per-
formance, helping to ensure that the ovens operate efficiently and providing
actionable insights based on the data collected.

2.1.3 TablePlus

TablePlus is a versatile database management tool designed to simplify work-
ing with relational databases. It supports a wide range of databases like Post-
greSQL, MySQL, and SQLite, making it a go-to solution for developers who
need to manage different database systems through a single interface. The most
appreciated feature of TablePlus is its intuitive, streamlined interface, which en-
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ables users to easily run queries, edit data, and manage tables without needing
to rely heavily on complex command-line tools.

The tool also emphasizes security, providing secure connections via SSH and
SSL, which is crucial when dealing with sensitive data. It is lightweight and
fast, ideal for those who require quick access to data and the ability to make
changes efficiently. Other features that distinguish Table Plus among database
professionals are the ability to preview and revert changes, multi-step undo,
and export options enhance productivity, and reduce the risk of errors, making
TablePlus a popular choice among database professionals.

2.1.4 Studio 3T

Studio 3T is a dedicated tool for managing MongoDB databases, offering a
range of features designed to make interacting with NoSQL data easier. Unlike
general database tools, Studio 3T is optimized for MongoDB’s document-based
structure. It provides a visual interface for building and executing queries,
which is especially useful for those who prefer not to write complex MongoDB
queries by hand.

Key features include the ability to migrate data, visualize aggregation pipelines,
and easily manage indexes and collections. Studio 3T also allows users to trans-
late SQL queries into MongoDB’s query language, making the transition for
those familiar with SQL-based databases smoother. It is a powerful tool for
handling MongoDB-specific tasks, enabling developers and administrators to
efficiently manage large datasets in a more user-friendly environment.

2.1.5 Apache Spark and Hadoop

Apache Spark and Hadoop are prominent frameworks for distributed data
processing, widely adopted in big data environments to handle large datasets
efficiently. Apache Hadoop provides the foundational infrastructure for storing
and processing big data across clusters of computers. At its core, Hadoop
consists of the Hadoop Distributed File System (HDFS) and the MapReduce
programming model. HDFS breaks files into blocks and distributes them across
multiple servers, providing fault tolerance and redundancy.

Apache Spark builds on Hadoop’s capabilities with in-memory processing,
which enhances speed, especially for iterative tasks. Spark includes several spe-
cialized libraries, including Spark SQL for SQL-based data processing, Spark
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Streaming for real-time analytics, and MLlib for machine learning. Unlike
Hadoop’s batch-oriented processing, Spark’s in-memory architecture enables
faster data processing and is suited to a broader range of tasks, including ma-
chine learning and stream processing. While Spark was originally designed for
Java, it also supports a Python API known as PySpark.

In combination, Hadoop and Spark offer a robust ecosystem for big data
management, with Hadoop handling data storage and Spark providing the
advanced computational framework needed for modern analytics. Thus, Spark
is ideal for tasks requiring fast data processing and interactive querying, as it
offers flexibility and high performance, while Hadoop remains foundational in
organizing and storing large-scale data.

2.1.6 Prisma

Prisma is an open-source Object-Relational Mapper (ORM) tool that sim-
plifies database management for JavaScript and TypeScript applications. By
abstracting SQL complexities, Prisma provides a high-level Application pro-
gramming interface (API) to interact with popular databases like PostgreSQL,
MySQL, and SQLite. Developers define data models using a schema file, from
which Prisma generates optimized SQL queries, ensuring type safety and en-
hancing code reliability.

Prisma also includes tools to manage database schema migrations, which
simplify the process of updating or versioning database structures. This schema-
driven approach not only reduces manual intervention in query generation but
also ensures that database interactions are type-safe, minimizing runtime er-
rors. Prisma is particularly advantageous for applications that handle complex
data relationships and require frequent database interactions, as it enables more
efficient and intuitive database management, improving overall developer pro-
ductivity.

2.2 Amazon Web Services

Amazon Web Services (AWS) is a cloud computing platform that provides
a broad set of services, including computing power, storage, and networking,
through the internet. Businesses and developers use AWS to build and run a
wide variety of applications, from simple websites to complex enterprise sys-
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tems. One of its key benefits is the ability to scale resources up or down based
on demand, which eliminates the need for managing physical hardware and
allows for greater flexibility. AWS operates on a global network of data centers,
offering services that ensure high availability and reliability for users across
different regions. AWS enables companies to access the resources they need
with minimal upfront investment, through its modular services, such as EC2
for virtual servers and Simple Storage Service (S3) for data storage. AWS also
promotes a pay-as-you-go pricing model, where users only pay for the resources
they use, making it affordable for both small startups and large enterprises. Its
extensive suite of tools allows users to implement everything from basic hosting
solutions to advanced analytics and AI models.

Below, some of the AWS tools used to build the system’s architecture will be
presented.

2.2.1 Identity and Access Management (IAM)

AWS Identity and Access Management (IAM) allows you to securely manage
access and permissions to AWS resources. With IAM, you can create and control
users, groups and roles, assigning detailed permissions to specify who can access
what resources and with what privileges. For example, you can grant a user
access to certain AWS services or specific actions on a database, while restricting
other operations.

IAM uses the concept of "least privilege", allowing you to configure very
precise accesses and monitor activities via logs. It is a fundamental tool for
ensuring security and control in the AWS infrastructure.

2.2.2 Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud (EC2) is a main AWS service that allows to
launch and manage virtual servers in the cloud, called instances. EC2 offers a
range of instance types to meet different computational needs, allowing users
to select the optimal balance of Central Power Unit (CPU), memory, and storage
for their workloads. Therefore, when you create an instance it is possible to
choose the specific hardware configurations that best suit their specific require-
ments, offering flexibility in performance and cost management. EC2 enables
on-demand access to computing power, with the ability to deploy and manage
instances without the need for physical servers.
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EC2 also integrates well with other AWS services, allowing to build reli-
able and scalable cloud-based systems. It supports multiple operating systems,
such as Linux and Windows, and offers both temporary and persistent storage
options, depending on the type of application.

For instance, in this project, an EC2 instance was used to host a snapshot of
the production database, allowing safe testing and development with real data
without affecting the live environment. This demonstrates how EC2 can help
isolate and manage testing or development environments effectively.

2.2.3 Relational Database Service (RDS)

Amazon RDS is an easy-to-manage relational database service optimized
for total cost of ownership. It is easy to configure, use and scale according to
demand. Amazon RDS automates several database management tasks such
as provisioning, configuration, backups and patching. Amazon RDS allows
customers to create a new database in some minutes and offers the flexibility to
customize databases to their needs by choosing from 8 engines and 2 deployment
options. Customers can optimize performance with features such as Multi-AZ
with two readable standbys, optimized writes and reads, and AWS Graviton3-
based instances, with a choice of pricing options to manage costs effectively.

You have the option to enable automated backups or create manual backup
snapshots as needed. These backups can be used to restore your database
efficiently and reliably using Amazon RDS’s restoration process.

Beyond the security features included in your database package, you can
manage access by utilizing AWS IAM to assign user roles and permissions.
You can also enhance database protection by placing them within a Virtual
Private Cloud (VPC). Moreover, security groups can be used to control what IP
addresses or Amazon EC2 instances can connect to your databases.

Table 2.1 compares the database management models between Amazon EC2
and Amazon RDS, highlighting customer and AWS responsibilities for various
features.

2.2.4 Lambda

AWS Lambda is a serverless computing service that allows code to be exe-
cuted without having to manage servers or infrastructure directly. Launched
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Feature EC2 management RDS management
Application optimization Customer Customer
Scaling Customer AWS
High availability Customer AWS
Database backups Customer AWS
Database software patching Customer AWS
Database software install Customer AWS
Operating system (OS) patching Customer AWS
OS installation Customer AWS
Server maintenance AWS AWS
Hardware lifecycle AWS AWS
Power, network, and cooling AWS AWS

Table 2.1: Comparison of Amazon EC2 and Amazon RDS database management
models

in 2014, Lambda allows developers to execute functions in response to specific
events, such as changes to a database, HTTP requests, or file updates in an
Amazon S3 bucket.

The serverless model eliminates the need for manual provisioning, manage-
ment, or scaling of resources, as Lambda takes care of these tasks automatically.
Users only pay for the code execution time, measured in milliseconds, and the
number of requests, making it a highly cost-efficient option for many applica-
tions. The service supports several programming languages, including Python,
Node.js, Java, Go, and C#, making it flexible for a wide range of use cases, such as
real-time data processing, application monitoring, and automation of repetitive
tasks.

To generate a lambda, first, you create your function by uploading your code
and choosing the memory, timeout period, and AWS IAM role. Then, you specify
the AWS resource to trigger the function, which can be a particular Amazon
S3 bucket, Amazon DynamoDB table, or Amazon Kinesis stream. When the
resource changes, Lambda will run your function, launching and managing the
compute resources as needed to keep up with incoming requests.

2.2.5 Glue

AWS Glue is a fully managed extraction, transformation and loading service,
designed to facilitate the preparation and integration of data for analysis. AWS
Glue automates the processes of data discovery, cataloguing, cleaning, transfor-
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mation and movement between different sources such as data lakes, relational
databases and other storage resources. The service is designed to simplify the
work of preparing data for analysis and modeling by eliminating the need to
configure and manage servers. The three main features offered by Glue are:

Jobs ETL

ETL Jobs in AWS Glue are the main operating units that perform the ex-
traction, transformation and loading processes. An ETL job reads data from
a source, transforms it as required (such as cleaning, merging or format con-
version) and loads it into a destination, such as a data warehouse or data lake.
AWS Glue automatically generates Scala or Python code to perform these oper-
ations, but also offers the possibility of customising scripts. These jobs can be
executed on demand or scheduled at regular intervals, integrating with other
AWS resources.

Data Catalog

The AWS Glue Data Catalogue is a centralised metadata repository that or-
ganises and manages information on datasets from different sources. It stores
data schemas, formats and partitions, facilitating access and queries via tools
such as Amazon Athena and Amazon Redshift, without requiring manual con-
figuration.

Crawler

AWS Glue Crawlers automate data discovery and cataloguing by analysing
sources to automatically identify schemas and partitions. They update or create
tables in the data catalogue, reducing manual work and simplifying metadata
management.

In summary, AWS Glue, through the use of Jobs ETL, Data Catalogue and
Crawler, provides a powerful and scalable platform for large-scale data man-
agement, optimising workflows and ensuring easy integration with other AWS
services.
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2.2.6 Athena

Amazon Athena is an interactive query service that allows data analysis
directly on files stored in Amazon S3 using standard SQL. Athena is a serverless
solution, which means that it does not require the management of infrastructure
or servers: users only pay for the queries executed, based on the volume of data
processed.

The service is optimised to work with large datasets and common data for-
mats such as CSV, JSON, Parquet and Apache ORC1, Apache Iceberg2 allowing
structured and semi-structured information to be analysed efficiently. Thanks
to the AWS Glue Data Catalogue described in section 2.2.5, Athena can easily
access previously defined metadata and schemas, reducing the time needed for
data preparation.

Athena lends itself well to ad-hoc data lake analysis, reporting and data
monitoring scenarios, without having to load data into a traditional database.
Its features make it ideal for big data analytics environments, where speed of
execution and ease of use are crucial, and it integrates well with other AWS
services, such as Amazon QuickSight for data visualisation.

2.2.7 Simple Storage Service (S3)

Amazon S3 is an object-based storage solution specifically designed for han-
dling large volumes of data with high durability and availability. It stores data
as objects in "buckets" and allows users to define access controls and lifecycle
policies for efficient data management. S3 includes several storage classes, such
as Standard, Intelligent-Tiering, and Glacier, which are suited to different ac-
cess patterns and cost needs. For instance, it’s possible to archive infrequently
accessed data to lower-cost storage classes over time, allowing organizations to
optimize their storage expenses. It supports direct querying through Amazon
Athena and enables efficient ETL processes via AWS Glue.

Data is automatically scaled and protected, with robust security measures
including encryption options and access management through IAM. Therefore,
S3 enables real-time data analysis and is widely used as the foundation of data
lakes.

1https://orc.apache.org/
2https://iceberg.apache.org/
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2.2.8 QuickSight

Amazon QuickSight is a cloud-based BI service from AWS, designed to
create dashboards, interactive visualisations and reports from large volumes of
data. QuickSight empowers users to analyse data in a simple and intuitive way,
providing tools to create charts, tables and advanced visualisations that help
make data-driven decisions. The tool supports two modes of data access:

• SPICE (Super-fast, Parallel, In-memory Calculation Engine) mode, which
uses an in-memory engine for fast analysis performance and is available
for a fee,

• and Direct Query mode, which is free but generally slower, as it queries
directly on data sources.

QuickSight allows dashboards to be shared with other users and offers sup-
port for access from mobile devices, making it a flexible tool for real-time data
analysis and visualisation.

Finally, one of QuickSight’s most innovative features is its integration with
generative artificial intelligence, which allows analyses to be built quickly via
natural language prompts. Users can enter simple questions or queries in natural
language and get automatically generated charts, tables and insights. This
makes the analysis of datasets more accessible even for those without technical
expertise, speeding up the decision-making process.

2.2.9 Step Functions

AWS Step Functions is a fully managed workflow orchestration service that
allows different AWS services to be coordinated in sequential or parallel work-
flows. Using AWS Step Functions, complex processes can be defined as states,
with each step in the workflow representing an activity, such as executing a
job, waiting for an event or calling the API of any AWS service, such as AWS
Lambda, Amazon S3 or AWS Glue.

The service uses a visual representation based on a state machine model,
allowing users to build and monitor workflows intuitively. Alternatively, work-
flows can be defined via Amazon States Language (ASL), a JSON language that
allows the user to specify the behavior of each state, conditions for passing
between states, and error and exception handling criteria.
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AWS Step Functions is ideal for automating distributed processes such as
data pipelines, application management and microservice orchestration. It also
enables workflows with error handling, retries and conditional operations, en-
suring process reliability and resilience. Its extensive support for long-running
tasks makes it a powerful tool for coordinating the execution of complex tasks
in a secure manner.

2.2.10 Event Bridge

AWS EventBridge is a fully managed event routing service, designed to
connect applications using real-time event streams. It enables the creation of
event-based architectures, where various services or applications automatically
react to events generated by other AWS applications or services. Each event rep-
resents an action or change of state, such as changes in a database or updates in
an S3 bucket, and is routed to appropriate destinations according to predefined
rules.

Specifically, the system built uses EventBridge Scheduler, a feature that al-
lows events to be scheduled at regular intervals or at specific times. This service
is useful for performing recurring tasks or planned actions, such as starting jobs
on AWS Lambda or other resources. In practice, the EventBridge Scheduler
functions as a serverless ’cron’, allowing time-based workflows to be automated
without having to manage a dedicated infrastructure.

2.3 Serverless Framework

The Serverless Framework is an open-source tool that simplifies the deploy-
ment and management of AWS Lambdas by centralizing resource definitions in
a single YAML configuration file. It automates the deployment of AWS Lambda
functions together with other cloud resources, such as API Gateway endpoints
and DynamoDB tables. This approach reduces the complexity involved in set-
ting up permissions, configuring event triggers, and scaling applications auto-
matically. The framework’s command-line interface enables rapid deployment,
monitoring, and version management, simplifying the development cycle and
allowing developers to focus on application logic rather than infrastructure. In
this project, the Serverless Framework efficiently handles the deployment of
Lambda functions minimizing the need for manual configuration.
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2.4 Table formats

2.4.1 Apache Parquet

Apache Parquet3 is an open-source, column-oriented data file format de-
signed for efficient data storage and retrieval. It provides high-performance
compression and encoding schemes to manage complex datasets in bulk and is
supported by many programming languages and analytics tools. Initially used
exclusively in the Hadoop ecosystem, Parquet is now employed by platforms
such as Apache Spark4 and various cloud services to meet the demands of data
warehousing.

Parquet’s main features include:

• Columnar storage: Unlike row-based formats like CSV or Avro, Parquet
stores the values of each column next to one another, allowing for better
compression and faster querying, especially when accessing only a subset
of columns.

• Self-describing: Each Parquet file contains metadata, such as the schema
and structure, facilitating interoperability between services that write,
store, and read Parquet files.

• Efficient compression: By leveraging the fact that columnar data tends to
be of the same type, Parquet achieves more effective compression than row-
based formats. This reduces storage needs and accelerates data transfers.

• Flexible encoding schemes: Parquet supports various encoding schemes,
such as Run-Length Encoding (RLE), Dictionary Encoding, and Delta En-
coding, which further optimize compression and performance.

• Schema evolution: Parquet allows schemas to evolve over time by adding
or removing fields without affecting existing data, making it ideal for
dynamic environments.

3https://parquet.apache.org/
4https://spark.apache.org/

24

https://parquet.apache.org/
https://spark.apache.org/


CHAPTER 2. BACKGROUND

Row Format vs. Columnar Format

Figure 2.1: Parquet File Layout

As you can see in Figure 2.1, each Parquet file contains a header, one or more
data blocks, and a footer. The data itself is stored in the data blocks, while the
footer holds metadata about row groups, columns, the Parquet format version,
and a 4-byte magic number. The data is organized into:

1. Row groups: These logically partition the dataset into rows. Each row
group contains a column chunk for every column in the dataset. Row
group size can be pre-configured: larger groups improve sequential
Input/Output (I/O) but need more buffer memory. A recommended size
is between 512 MB and 1 GB.

2. Column chunks: Each column chunk represents contiguous data for a
specific column within a row group.

3. Pages: A page is the smallest indivisible unit in Parquet, used for compres-
sion and encoding. The division into pages allows for more efficient com-
pression and parallelized reads. Page size can be pre-configured: smaller
data pages allow more precise reads, like single-row lookups, while larger
pages reduce space and parsing overhead. The recommended page size is
8KB.

This structure is optimized for analytical queries that only require a subset
of columns, reducing I/O by reading less data. Moreover, Parquet files contain
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statistics like the minimum and maximum values for each column, enabling
engines to skip irrelevant data blocks during queries.

Compression Techniques

In Parquet, compression is performed at the column level, supporting various
encoding methods, including:

• Plain encoding: The default encoding, used when no more efficient
method is applicable.

• Dictionary encoding: Frequently occurring values are stored in a dic-
tionary, and the data is replaced with the corresponding keys, reducing
storage size. This method is applied dynamically when advantageous.

• Run-Length Encoding (RLE): When consecutive values are the same, they
are stored as a single value along with their count. Parquet combines bit-
packing with RLE to achieve better compression.

• Delta Encoding: Instead of storing raw values, the difference between
consecutive values is stored, which is useful for sequential data.

Parquet also supports compression algorithms such as Gzip, Snappy, Brotli,
and LZO.

Performance Benchmarking

A benchmarking study conducted by Cloudera compares Parquet, Avro5,
and CSV across various tasks [8]. The results are summarized in Table 2.2.

From the table, it is evident that Parquet consistently outperforms Avro and
CSV in terms of storage space and query speed. For instance, Parquet files
required only 750 MB of disk space for the narrow dataset, compared to Avro’s
1 GB and CSV’s 4 GB. Similarly, Parquet demonstrated a 97.5% compression
ratio on the wide dataset, allowing it to process 3.5 times less data in the same
operations, compared to Avro. While Parquet performed well across the board,
its efficiency is particularly notable for read-heavy operations, like analytical
queries involving group-by and column scans.

Another study on the choice of the most efficient format in the Apache
Hadoop system between parquet, orc, avro, CSV, JSON [5] shows that Parquet

5https://avro.apache.org/
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Metric Parquet Avro CSV
Narrow Dataset (3 columns, 83.8M rows)

Dataset to file format (s) 74 72 45.33
Row count (s) 5.33 5.33 45.33
Group by (s) 9 24 N/A
All data pass (s) 8.33 15.66 N/A
Disk space (MB) 750 1,000 4,000

Wide Dataset (103 columns, 694M rows)
Dataset to file format (s) 138 180 68
Row count (s) 2.66 45.33 68
Group by (s) 31 54 N/A
All data pass (s) 33.33 140 N/A
Disk space (GB) 5 18 200

Table 2.2: Performance Comparison of Parquet, Avro, and CSV

is better than its competitors from the point of view of storage, all data search,
unique row search and sorting. However, it has a similar performance to ORC
in the grouping and filtering tasks.

However, Parquet can be slower to write than row-based formats like CSV or
Avro, due to the overhead of generating metadata.

Use Cases and Limitations

Parquet is particularly well-suited for scenarios that require efficient com-
pression and fast query performance on large datasets. It is often used for
analytical queries that need to access a subset of columns, in data pipelines
where schema evolution is crucial, and in cases where efficient data storage
and retrieval are key considerations. However, one limitation of Parquet is the
potential performance drop when querying full rows in datasets with a very
wide structure, typically with more than 100 columns. In such cases, row-based
formats like Avro or ORC may offer better performance, as they are optimized
for retrieving entire rows.
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2.4.2 Apache Iceberg

Apache Iceberg6 is an open-source format for managing large tables in Data
Lakes. Initially developed by Netflix and later open-sourced, Iceberg was de-
signed to overcome the limitations of more traditional table formats such as
Apache Hive, which do not scale well in complex and distributed Data Lakes.
Iceberg natively supports table management on both Hadoop Distributed File
System (HDFS) and cloud storage, such as Amazon S3, Google Cloud Storage,
or Microsoft Azure.

The primary goal of Iceberg is to provide a table format that efficiently
supports the management of distributed data, allowing for reliable large-scale
read and write operations, ensuring data consistency, and facilitating operations
such as dataset scanning and version control.

Like Apache Parquet described in the previous section 2.4.1, Iceberg is based
on a layered architecture that separates metadata management from the data
itself. This separate approach allows for more effective management of read
and write operations and enables scalable modification operations. Metadata in
Iceberg is crucial for table management. Iceberg uses a snapshot system to keep
track of table versions, enabling rollback operations and ensuring full control of
changes. The metadata includes information on schema, partitioning, data files,
and delete files. Each data modification generates a new snapshot that can be
consulted to view the table’s evolution over time.

Since snapshots store details about the snapshot’s timestamp, partition, and
relevant data files, Iceberg supports versioning. Therefore, a snapshot provides
a view of the entire dataset at a specific point in time.

Iceberg Features

Iceberg tables offer several benefits compared to other formats traditionally
used in the data lake, including:

• Schema evolution: Supports commands to add, drop, update, or rename
columns without causing side effects or inconsistency.

• Partitioning: Iceberg introduces dynamic and flexible partitioning. Tra-
ditionally, Data Lakes use file path-based partitioning, which can be inef-

6https://iceberg.apache.org/
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ficient and difficult to manage. Instead, Iceberg implements a metadata-
based partitioning strategy that reduces overhead and improves query
performance. Two key improvements in partitioning are:

– Partition evolution: Facilitates the modification of partition layouts in a
table, such as data volume or query pattern changes, without needing
to rewrite the entire table.

– Hidden partitioning: Iceberg automatically handles partitioning by
transforming column values (e.g., converting event_time into
event_date) without requiring user-maintained partition columns.
This allows queries to benefit from partitioning transparently, hiding
the physical layout from producers and consumers. The separation
of physical and logical partitioning enables the flexible evolution of
partition schemes over time, improving performance without costly
migrations.

• Time travel: Allows users to query any previous version of the table to
examine and compare data or reproduce results using past queries.

• Version rollback: Quickly fixes discovered issues by resetting tables to a
known good state.

• Increased performance: Ensures data files are intelligently filtered for
faster processing through advanced partition pruning and column-level
statistics.

• Transactional consistency: Helps users avoid partial or uncommitted
changes by tracking atomic transactions with ACID (Atomicity, Consis-
tency, Isolation, Durability) properties.

• Table optimization: Optimizes query performance to maximize the speed
and efficiency with which data is retrieved. The main optimization is
file compaction. This is particularly useful in Data Lakes, where data
is often written in small files, causing fragmentation that can negatively
impact query performance. Periodic compaction reduces the number of
fragmented files and improves efficiency.

ACID Operations

One of the key contributions of Apache Iceberg to the Data Lake world is the
implementation of support for ACID operations, a crucial innovation to ensure
the consistency and correctness of data operations.
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• Atomicity: Changes to the data are treated as atomic transactions, meaning
multiple operations are applied as a block, ensuring they are either fully
completed or not applied at all. This is particularly useful in scenarios
requiring concurrent writes.

• Consistency: Thanks to advanced metadata management, Iceberg ensures
that all operations on a table remain consistent, even in distributed envi-
ronments.

• Isolation: Iceberg provides transaction isolation, ensuring that concurrent
operations do not interfere with each other. Using a snapshot system, each
read or write operation accesses a consistent version of the table.

These features make Iceberg ideal for managing highly reliable and resilient
data pipelines.

Table Layout

The Iceberg table format offers similar capabilities to SQL tables in traditional
databases. However, unlike such datasets, Iceberg operates in an open and
accessible manner, allowing multiple engines (such as Spark, Dremio7, etc.) to
work on the same dataset.

7https://www.dremio.com/
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Figure 2.2: Iceberg Table Layout

Through metadata files, Iceberg tracks point-in-time snapshots by maintain-
ing all deltas as a table. Each snapshot provides a full description of the table’s
schema, partition, and file information. Additionally, Iceberg intelligently or-
ganizes snapshot metadata hierarchically, enabling data processing engines to
efficiently apply changes without redefining all dataset files, ensuring optimal
performance at data lake scale.

The Iceberg table architecture consists of three layers:

• The Iceberg catalog: This is where services find the location of the current
metadata pointer, which helps identify where to read or write data for a
given table. Each table’s references or pointers exist here, identifying the
current metadata file.

• The metadata layer: This layer consists of three components: the metadata
file, the manifest list, and the manifest file. The metadata file contains
information about a table’s schema, partition details, snapshots, and the
current snapshot. The manifest list includes a list of manifest files along
with information about the manifests that form a snapshot. Manifest files
track data files and include other details and statistics about each file.

• The data layer: Each manifest file tracks a subset of data files, which con-
tain information about partition membership, record count, and column
upper and lower bounds.
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3
System Development

3.1 System Architecture Design

The design of the system was a crucial part of my internship, consuming
approximately 20% of the total hours dedicated to the project. It was crafted to
meet the specific requirements of the business while also taking into account the
current context and future needs of the company. UNOX, having collaborated
with AWS since 2019, leverages innovative AWS technologies to maintain a com-
petitive edge. For this project, we were guided by an AWS Solution Architect
and an Enterprise Account Manager, who played an essential role in helping
us build a cutting-edge system that adheres to AWS’s Well-Architected Frame-
work principles [3], ensuring Operational Excellence, Reliability, Performance
Efficiency, Security, Cost Optimization, and Sustainability.

The AWS Solution Architect, in particular, provided detailed comparisons
of the various AWS technologies available, enabling key decision-makers such
as the team leader, the company’s Chief Information Officer (CIO), and myself
to gain a comprehensive understanding of the potential architectures we could
build. During the early stages of my internship, we held recurring meetings to
explore potential solutions that best aligned with our specific requirements and
the nature of UNOX’s business operations. These discussions helped us identify
the ideal path to follow, although the initial solutions inevitably evolved as we
encountered and faced practical challenges during the system’s development.

A core aspect of the system design was to ensure a clear separation between
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the storage layer and the business analytics layer, effectively decoupling data
producers (such as operational systems) from data consumers (like reporting
and predictive analytics systems). This separation was essential to facilitate
data science activities, where a data lake provides a convenient storage layer
for experimental data, supporting both the input and output of data analysis
tasks. The architecture also needed to support autonomous creation and use of
data, without the need for coordination between programs or analysts, while
at the same time enabling the sharing and reuse of massive datasets through a
distributed computational framework.

3.1.1 Data Lake vs. Data Warehouse vs. Data Lakehouse

The initial idea for this project was to implement a data lake, a more inno-
vative and flexible approach compared to traditional data warehouses. While
both are used for storing large volumes of data, they serve different purposes
and have distinct architectural characteristics.

Traditionally, a data warehouse is optimized for structured data, meaning
data is cleaned, organized, and stored in a predefined schema, making it ideal for
business reporting and analytics. However, data warehouses typically involve
high setup and maintenance costs, and they require significant preprocessing
to ensure data consistency before it can be used for analysis. Hence, they suffer
from limited flexibility for advanced analytics, including machine learning tasks
[11].

A data lake, on the other hand, offers a more flexible storage solution. It
is capable of storing vast amounts of both structured and unstructured data in
its raw form, allowing for greater adaptability. This means that data lakes are
not bound by rigid schemas and can accommodate data from diverse sources
without the need for heavy preprocessing. Data lakes are particularly suitable for
data science, machine learning, and exploratory analysis, as they allow analysts
and data scientists to directly interact with raw data, creating an environment
where experimentation can thrive.

It enables autonomous data handling, and data producers do not need to
coordinate directly with consumers. It also provides a shared storage framework,
which facilitates collaboration between teams and allows for the re-use of large
datasets without duplication or complex integration. A detailed analysis of the
differences between data warehouses and data lakes is given in Table 3.1 [12].
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Parameters Data Warehouse Data Lake
Data Focuses only on business pro-

cesses
Stores everything

Processing Highly processed data Mainly unprocessed data
Type of Data Mostly in tabular form and struc-

tured
Can be unstructured, semi-
structured, or structured

Task Optimized for data retrieval Share data stewardship
Agility Less agile, has a fixed configura-

tion
Highly agile, can be configured
and reconfigured as needed

Users Widely used by business profes-
sionals and business analysts

Used by data scientists, data de-
velopers, and business analysts

Storage Expensive storage for fast re-
sponse times

Designed for low-cost storage

Security Allows better control of the data Offers less control
Schema Schema on writing (predefined

schemas)
Schema on reading (no prede-
fined schemas)

Data Pro-
cessing

Time-consuming to introduce
new content

Helps with fast ingestion of new
data

Data Granu-
larity

Data at the summary or aggre-
gated level of detail

Data at a low level of detail or
granularity

Tools Mostly commercial tools Can use open-source tools such as
Hadoop or MapReduce

Table 3.1: Comparison between Data Warehouse and Data Lake

However, while data lakes excel in flexibility, they can sometimes suffer from
challenges related to data governance, data quality, performance, and metadata
management. As a result, organizations have adopted a two-tier architecture:
storing data in lakes and then moving curated data to warehouses for structured
analytics. The two-tier model (data lakes + data warehouses) introduces new
complexities, including reliability and cost issues. Indeed, maintaining consis-
tency between the lake and warehouse is complex, storing data in two places
and running ETL processes increases costs.

This is where a more modern architecture, the Data Lakehouse [1], promoted
by Databricks1, a cloud platform built on Apache Spark that enables unified data
analytics, machine learning, and big data processing, comes into play.

The lakehouse architecture combines the best features of both data lakes
and data warehouses. It retains the ability of a data lake to store raw and

1https://www.databricks.com/
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semi-structured data while incorporating some of the data management and
performance optimization features of a data warehouse. This hybrid approach
allows for real-time analytics and ACID transactions on large datasets by adding
structured layers of metadata to the raw data. Actually, although we call it a data
lake for simplicity, the system developed in this project can be interpreted as a
data lakehouse. This is because we have integrated several layers that provide
pre-aggregated tables in Parquet or Iceberg formats, which are directly usable
for advanced analysis. These formats not only offer significant performance
benefits through better compression and faster query times but also enable
ACID operations. This structured approach allows us to maximize the system’s
potential for advanced business intelligence while maintaining the flexibility
and scalability inherent in a data lake.

3.1.2 System architecture overview

The architecture of the entire system, as illustrated in Figure 3.1, was de-
signed to meet the company’s specific requirements, leveraging cloud technolo-
gies to handle large volumes of data while ensuring performance, reliability, and
cost-efficiency. This event-driven design follows a predefined pipeline, where
each event triggers the execution of a specific Amazon service with tailored
parameters. The entire flow is designed to run at a defined frequency, ensuring
up-to-date data availability for analysis. The solution automates the process of
ingesting, transforming, and analyzing data from various sources, providing a
centralized platform for data storage and business intelligence.

The system starts with data being collected from two main sources: Post-
greSQL for operational data and MongoDB for IoT data generated by the ovens.
Each of these data sources follows a custom extraction process. For PostgreSQL,
AWS Glue is used to execute ETL jobs that extract the data, convert it into op-
timized formats, and load it into Amazon S3. For MongoDB, the system uses
AWS Lambda to manage event-driven data extraction, process the data and store
it in S3 in a scalable and efficient way.

Once the data is in S3, it is organized into three layers:

• Raw: Where the data is stored as extracted, without any transformation.

• Curated: Where the data is cleaned, formatted, and partitioned for better
query performance.
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RDS - PostgreSQLEC2 - MongoDB

Lambda Extractor

Glue ETL JobGlue ETL Job

Layer Raw

Layer Curated Glue ETL Job Layer Analytics

Glue Data Catalog

Direct Queries Paginated reports

Quicksight

S3

S3 S3

EC2

Orchestrated by Step Functions

Athena

Figure 3.1: The System Architecture

• Analytics: Where the data is pre-aggregated and optimized for specific
use cases, such as business reports.

The system relies on AWS Glue Data Catalog to manage metadata, enabling
easy access and query capabilities. For queries, AWS Athena is used to allow
SQL queries directly on the data stored in S3, while AWS QuickSight provides
interactive dashboards and visualizations for business users to explore and
analyze the up-to-date data.

To enhance security, each AWS service involved in the event-driven pipeline
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has tailored IAM policies. These policies restrict access so that each service
can only interact with the specific resources it requires, minimizing potential
exposure to other parts of the Amazon ecosystem. The system utilizes strin-
gent access rules to reinforce security by ensuring only the minimum necessary
permissions are granted for each AWS event, helping protect sensitive data and
maintaining a secure environment.

In the following sections, a detailed description of the entire workflow will
be provided, including how data ingestion, integration, and cataloguing are
performed, as well as how queries and reports are generated. This chapter will
also cover how orchestration and scheduling are managed through AWS Step
Functions, ensuring that each component of the system works seamlessly and
in the correct sequence.

3.2 Data Sources

Before going into the implementation details of the solution, it is necessary
to analyse the two data sources in order to better understand certain choices
made during the design phase.

3.2.1 PostgreSQL Data

The Postgres database in this system contains crucial operational data, in-
cluding various datasets related to Unox ovens and their usage. It is managed by
an AWS RDS instance (described in section 2.2.3) that uses a db.t3.xlarge con-
figuration, providing 4 vCPUs, 16 GB Random Access Memory (RAM), and 100
GiB of gp2 storage. The database runs PostgreSQL version 12.19, and backups
are automatically created every 14 days to ensure data safety.

PostgreSQL hosts several databases, among which the most heavily used
is the ddc database. The name ddc refers to the Data Driven Cooking (DDC)
platform, an intelligent cooking system, developed by the Digital Experience
team, that leverages data to optimize and enhance cooking processes. DDC
offers advanced features for oven owners, enabling them to efficiently monitor
and control their devices.

The ddc database comprises 72 tables, with the most critical ones being:

• Device: Contains detailed information about all network-connected de-
vices produced by Unox.
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• Company: Stores information regarding the companies that own Unox
ovens.

• Device group: Facilitates grouping of devices within a company, allowing
management differentiation based on factors such as location, model, or
other criteria.

• Device recipe: Tracks the current recipe loaded on a device.

The relational schema of the main tables is shown in the figure 3.2. In this
diagram, diamonds represent relationship tables, while arrows indicate foreign
key relationships pointing to the primary key of the referenced table.

COMPANYCOMPANY RECIPE

COMPANY RECIPE
GROUP

DEVICE GROUP

DEVICEDEVICE RECIPE

CONTAINS ASSOCIATION PAIRING

Figure 3.2: Main tables relational schema

As seen in the diagram, recipes related to a company can also be differentiated
based on the device group. This means that recipes can apply at different
levels: specific to a device, to a group of devices, or to an entire company.
Furthermore, recipes can be created by the community or by Unox itself, stored
in the community_recipe and chefunox_recipe tables, respectively.

In addition to these, there are other tables related to the primary ones, such
as those containing data on the parameters, profiles, or settings of a company or
device.
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Two more tables, device_recipe_history and device_ip_info_history,
contain historical data. The former records all recipes created since the installa-
tion of a device, while the latter stores the history of IP addresses and associated
information for a device. These are the largest tables in terms of storage, with
device_recipe_history occupying 22 GB and device_ip_info_history stor-
ing 5 GB of data.

3.2.2 MongoDB Data

Since AWS RDS does not support the MongoDB engine, this database is
installed on an AWS EC2 machine. The EC2 instance used is a c5.4xlarge, with
16 vCPUs and 32 GiB of RAM. The C5 instances are optimized for compute-
intensive workloads and offer high performance at a low cost, providing an
optimal balance between price and computational power.

Unfortunately, the MongoDB database is deployed on a single replica set
and is not configured as a sharded cluster. A replica set consists of a group of
MongoDB instances that maintain the same dataset, providing redundancy and
high availability. Furthermore, without a sharded cluster, the system cannot
horizontally scale across multiple nodes, which limits its ability to handle large-
scale datasets and high read/write throughput efficiently.

MongoDB organizes data into collections and documents, which can be
thought of as equivalent to tables and rows in a relational database, respectively.
A document in MongoDB is a flexible, schema-less structure that can be repre-
sented as a JSON-like object, where there are no constraints on the data types or
mandatory fields.

The database contains 20 collections, of which 13 have been deemed useful
for analysis and inclusion in the data lake. Table 3.2 describes all the collections,
including the approximate number of documents and the storage space they
occupy.

All the collections store time series data, which means that they record se-
quences of data points indexed in time order. Consequently, each collection
includes an idDevice field, indicating which device produced the specific doc-
ument, and a timestamp field that records when the data was generated. In
addition to these, each collection contains specific fields that characterize its
data.

As we specified earlier, the data belonging to these collections are generated
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Collection Total # of Size Storage Size
Documents

alarm 43 M 3.7 GiB 1.9 GiB
end_of_prog 240 M 60 GiB 24.7 GiB
end_of_prog_aggregated 29 M 16.2 GiB 15.8 GiB
events 1500 M 152.6 GiB 78.2 GiB
evereo_sess 215 K 48.4 MiB 20 MiB
request 820 K 60.7 GiB 38.8 GiB
sd_events 75 M 11.2 GiB 5.2 GiB
sd_haccp 220 M 90.3 GiB 23.6 GiB
sd_messages 220 M 130 GiB 25.3 GiB
sd_variables 190 M 505 GiB 156.2 GiB
sdata 170 K 80.6 MiB 29 MiB
variable_logs 970 M 7.3 TiB 1.8 TiB
working_minutes_logs 180 K 29.3 MiB 8.6 MiB

Table 3.2: MongoDB collections used for analysis, with document counts and
storage sizes.

by the various sensors installed in the devices. When the device is connected to
the internet and ready for transmission, the collected data is sent to the back-end,
which is responsible for uploading it to the database. The back-end implements
a retention mechanism, ensuring reliability in case of database unavailability or
upload issues. If a problem occurs, the device is alerted that the data upload was
unsuccessful, meaning the device must reattempt the upload once it is ready to
transmit again. This mechanism provides robustness, preventing data gaps and
duplicates across MongoDB collections. Each device, therefore, uploads data
independently, with unpredictable upload intervals.

After successfully uploading the documents to MongoDB, the system up-
dates the last_log_date timestamp in the device table of the DDC database.
This field reflects the timestamp of the most recent document uploaded for
the respective device. Observing this last_log_date column, we can confirm
that all data with earlier timestamps has been successfully uploaded. However,
there may still be additional data recorded by the device that has not yet been
uploaded to MongoDB.

It is worth noting that the variable_logs collection is the largest in terms of
data size and will be described in detail in the following section.
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Variable Logs

The variable_logs collection represents a time series that captures teleme-
try data from the ovens. Every 30 seconds, each oven sends data for every
available sensor. Each sensor is represented by a variable, and there are sensors
that measure various parameters, such as temperature, humidity, fan speed,
microwave activity, and other values related to the engine or power supply. For
each of these groups, multiple sensors may exist. For example, temperature
can be measured in several locations, including the cooking chamber, the core
probe, the control board, or the power board. There may also be temperature
values such as the one set by the user or the one recommended by algorithms.
Additionally, measurements may be sent by accessories connected to the oven.

Each oven can send up to 30-35 measurements every 30 seconds to the back-
end, which handles the writing to the database. However, only some of these
measurements are actually sent, depending on the oven family, model, and the
type of program that is running.

Unfortunately, the document structure in this collection is not very intuitive.
Each document represents a 6-hour slot of measurements for a single sensor,
divided into 6 one-hour samples, with each sample containing 120 measure-
ments (one every 30 seconds). This format is optimized for the oven’s internal
algorithms and is maintained for backward compatibility.

From an analytical perspective, this pattern is somewhat inconvenient. When
querying data for specific time periods, a single query returns 720 measure-
ments, and to locate a precise measurement, one must navigate through the
nested structure of the JSON document.

To address this issue, a view of the collection was previously created, called
variable_logs_clean, using an aggregation pipeline composed of 7 stages.
This view transforms the data structure into a more accessible format by un-
packing each document so that there is a single document for each individual
measurement, associating it with the specific timestamp of that measurement.
Non-existent measurements are excluded from the view, thus preventing the
creation of unnecessary documents. This solution results in a significant in-
crease in the number of documents, but each document is much lighter in terms
of storage.

For convenience, in the data lake, the view variable_logs_clean will be
used as the source for oven telemetry data instead of the original collection.
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3.3 Data Ingestion

As outlined in the introduction, the data ingestion process differs depending
on the two main data sources used in the system: PostgreSQL and MongoDB.
These differences arise from the unique requirements of each database and the
technologies used to connect and extract data.

For PostgreSQL, AWS Glue establishes a connection using Java Database
Connectivity (JDBC). JDBC is a standard API that facilitates communication
between a client and a relational database, enabling Glue to execute queries,
extract data, and transform it for storage in a structured format like Parquet [15].
This process is crucial for handling structured data efficiently.

In contrast, for MongoDB, the ingestion process involves a direct connection
using a MongoDB-specific driver. This type of connection allows the system
to interact with MongoDB. Unlike JDBC, the driver is tailored for the unique
characteristics of MongoDB, allowing for the handling of unstructured or semi-
structured data.

Due to the need for multiple sequential jobs to export data effectively, it is es-
sential to be able to select specific data subsets for each job. In PostgreSQL, AWS
Glue jobs handle this through incremental data ingestion allowed by Bookmarks,
while for MongoDB, a different approach was required. To achieve scalability
and flexibility in handling the unstructured data from MongoDB, AWS Lambda
was chosen as the ingestion tool.

3.3.1 PostgreSQL Data

Connection to the database

Before building the actual extraction job for PostgreSQL, it was essential to
configure the connection to the database. AWS Glue facilitates the management
of connections through a dedicated section where various parameters can be
defined. However, prior to configuring this, it was necessary to analyze the
company’s networking architecture on AWS.

In AWS, networking is managed through a VPC, which is a virtual network
dedicated to an AWS account. A VPC can contain multiple subnets, which
are smaller segments of the VPC used to organize and isolate resources within
different parts of the network. Subnets can be public or private, depending
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on whether they are associated with an Internet Gateway (IGW) that allows
communication with the Internet. Security Groups act as virtual firewalls,
controlling inbound and outbound traffic for AWS resources. Routing Tables are
used to manage the paths that data packets take to reach various destinations,
such as other AWS resources or external networks via the Internet Gateway.

In this specific setup, the PostgreSQL RDS instance is distributed across
three subnets, all of which belong to the same VPC. These subnets share a
single routing table that contains an Internet Gateway, allowing communication
with external networks, including the Internet.

To configure the connection to the RDS instance, several parameters had to
be specified:

• Database credentials: This includes the connection type, host, username,
password, and port number.

• Networking details: The VPC, subnet, and security group had to be
defined to ensure that Glue could securely connect to the RDS instance.

Once these were set up, it was necessary to create a VPC Endpoint in the
routing table. A VPC endpoint enables a private connection between AWS
services (in this case, RDS and Glue) without the need to traverse the public
internet. In this context, the VPC Endpoint was crucial for allowing Glue to
access the RDS instance directly and securely within the VPC. This reduces
latency and enhances security by keeping traffic within AWS’s private network.

ETL Job description

After setting up the connection to the PostgreSQL database, the next step was
to create the actual ETL (Extract, Transform, Load) job for data extraction. AWS
Glue provides a powerful environment for automating ETL workflows, and each
Glue job operates as a script written in either Python or Scala, leveraging Apache
Spark as the underlying engine for distributed data processing.

The script can be generated visually or written manually, and it is executed in
a serverless environment, meaning there is no need to manage the infrastructure,
as Glue handles the allocation of resources dynamically. The ETL script operates
using a GlueContext, a specialized context that integrates AWS Glue-specific
features into Spark’s ecosystem. GlueContext provides the necessary methods
to read from and write to various data sources, like databases, S3 buckets, and
data catalogs.
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Data in Glue is stored in a structure known as a DynamicFrame [6], which is
similar to Spark’s DataFrame but with added flexibility for semi-structured or
schema-less data. A key difference between a DynamicFrame and a DataFrame
lies in the level of schema enforcement. While a DataFrame in Spark is strictly
tied to a predefined schema, a DynamicFrame is schema-aware but more flexible,
allowing it to adapt to evolving data structures. DynamicFrames are especially
useful in ETL processes that involve reading from semi-structured sources where
data may not adhere to a rigid schema.

As outlined in section 2.2.5, AWS Glue simplifies the creation of ETL jobs
through a fully visual interface. Glue jobs are structured as workflows, which
consist of multiple steps that can be executed either sequentially or in paral-
lel. The visual interface allows users to design a flowchart, where each node
represents a specific step in the job. These nodes are categorized as Source,
Transformation, or Target, depending on the role they play in the ETL process.

For example, in the simplest case of moving a dataset from one location to
another, only two nodes are required: a Source node to define the data source
and a Target node to specify the destination. Additional parameters such as
bookmark usage (to track job progress), execution type, timeout settings, and
the database connection are configured globally at the job level. AWS Glue
automatically transforms the visual ETL workflow into a Python or Scala script.
Therefore, each time the job is executed, it runs the script that was generated
based on the visual design. Each node in the flowchart corresponds to a function
call, either from Apache Spark or from AWS Glue’s specific libraries.

While visual ETL tools are convenient and intuitive for building basic work-
flows, they have limitations. They do not always expose all the parameters or
advanced options available in the GlueContext or SparkContext. This is par-
ticularly restrictive when more granular control is needed, such as fine-tuning
the performance of data extraction or transformation steps. For this reason, a
custom Python script was written for the PostgreSQL extraction. This approach
allowed for full utilization of Glue’s and Spark’s capabilities, ensuring opti-
mal performance and flexibility. Using a custom script also allowed for more
advanced data filtering, error handling, and optimization techniques.
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Glue Bookmarking in JDBC Sources

In the context of AWS Glue, bookmarks serve as a mechanism to track the
progress of a job by saving the last processed primary key. Specifically, for
JDBC sources, the bookmark stores the value of the last primary key that was
successfully processed during the job execution. This information is stored in
an internal JSON file in Glue’s storage system. When the job is run again, it
checks whether a bookmark is present for each table. If a bookmark exists, the
job filters the data by selecting only those rows where the primary key is greater
than the one saved in the bookmark, ensuring that only new rows are imported.

However, this functionality presents certain limitations. If a row in the source
table is updated, but its primary key remains unchanged, the updated row will
not be selected during the next job execution, leading to outdated data in the
data lake. On the other hand, if the primary key changes during the update,
the updated row is imported into the data lake, but the old version of the row
remains, resulting in duplicated data. Consequently, the use of bookmarks is
only advantageous in cases where the source table is append-only, meaning no
updates or deletions are performed.

Given these constraints, specific solutions have been proposed depending
on the behavior of the tables in the company’s ddc database:

• For tables that only undergo append operations, the use of bookmarks is
feasible, allowing the job to load only the newly inserted rows. This helps
optimize the data ingestion process.

• For tables that undergo upserts (i.e., updates or inserts), a more efficient
solution is to replace the entire table during each job execution. This
involves deleting the previous version of the table in the data lake and
replacing it with the updated version from the source. Since the total
memory occupied by these tables is less than 300 MB, this approach is
manageable from a performance and cost perspective.

• A special case is the device_recipe table, which deletes a row and rein-
serts it with a new primary key whenever an update occurs. Given the
size of this table (approximately 1 GB), the most effective solution is to
replace the entire table in the data lake after each job execution to ensure
data consistency.

• The device table also behaves similarly to device_recipe, but with an
additional requirement for Time Travel. Time Travel is a feature that would
be useful in this context to retain historical data, such as older firmware
versions installed on the devices or previous IP addresses. In this case, the
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use of Apache Iceberg is proposed as a solution. Iceberg is a table format
designed for large-scale datasets, providing capabilities such as schema
evolution, partitioning, and Time Travel. During each job execution, the
entire device table (around 70 MB) would be loaded, and, if the table
is already present in the data lake, a MERGE INTO operation would be
performed.

The MERGE INTO operation in Iceberg works by combining data from two
tables based on a matching condition. Specifically, it checks for rows that already
exist in the target table and updates them with the new data from the source.
If a row in the source table does not have a matching row in the target table, it
is inserted as a new row. This process ensures that both the updated and new
rows are correctly handled without creating duplicates.

While performing a MERGE between two nearly identical tables (with only a
few updated rows) is not the most efficient operation, a proposed optimization
is to load only the rows with a recent updated_at timestamp. This column,
which indicates the time at which a row was last updated, can be used to
filter rows that have been updated within a certain time frame. For example, a
query like SELECT * FROM device WHERE updated_at >= NOW() - INTERVAL
’2 DAYS’ would select only the rows that have been updated in the last two
days, reducing the amount of data that needs to be processed during the MERGE
INTO operation.

However, due to inconsistencies in the updated_at column, it was ultimately
decided to perform the MERGE with the entire table as the source, ensuring that
no updates are missed.

Before diving into the specifics of the implemented script, it is worth men-
tioning that the entire solution could have been replaced by a Change Data
Capture (CDC) system [10], for example using AWS Database Migration Ser-
vice (DMS). AWS DMS allows for continuous replication of data changes from
a source database to a target location, capturing inserts, updates, and deletes in
real-time. By leveraging CDC, it would be possible to automatically detect and
replicate any change in the PostgreSQL database to the data lake, eliminating the
need for periodic full-table exports. However, this solution was discarded due
to the high costs associated with its constant execution, as DMS would require
a continuous running process to capture all changes.
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Glue Script

The exporting code is divided into three distinct phases, each processing a
subset of tables sequentially based on their characteristics and behavior. Below
is a detailed explanation of each part of the script.

First Phase: Processing Upsert Tables The first part of the script processes
tables that can undergo upsert operations (update or insert). The list tableNames
contains the name of tables to be processed, which was generated by querying
the information_schema.tables, a system table that holds metadata about all
tables in the database. From this set, append-only tables were excluded.

The following code snippet illustrates how each table is processed:

1 for tableName in tableNames:

2 logger.info("TABLE: " + str(tableName))

3 table = glueContext.create_dynamic_frame.from_options(

4 connection_type = "postgresql",

5 connection_options = {

6 "useConnectionProperties": "true",

7 "dbtable": tableName ,

8 "connectionName": "Postgresql connection production",

9 }

10 )

11

12 objects_to_delete = s3.list_objects_v2(Bucket="datalake -postgres"

, Prefix=tableName+"/")

13 if ’Contents’ in objects_to_delete:

14 delete_keys = {’Objects’: [{’Key’: obj[’Key’]} for obj in

objects_to_delete[’Contents’]]}

15 s3.delete_objects(Bucket="datalake -postgres", Delete=

delete_keys)

16

17 out = glueContext.getSink(path="s3://datalake -postgres/"+

tableName+"/", connection_type="s3", updateBehavior="

UPDATE_IN_DATABASE", partitionKeys=[], enableUpdateCatalog=True,

transformation_ctx="write_"+tableName)

18 out.setCatalogInfo(catalogDatabase="postgres", catalogTableName=

tableName)

19 out.setFormat("glueparquet", compression="snappy")

20 out.writeFrame(table)

Code 3.1: First phase Postgres extraction
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The glueContext.create_dynamic_frame.from_options() function reads
the PostgreSQL table and converts it into a DynamicFrame, which can then be
manipulated and written to other destinations. Since these tables undergo
upserts, it is necessary to delete the existing tables in Amazon S3 to replace
them with the updated version. This is done using the list_objects_v2() and
delete_objects() methods from the boto3 client. boto3 is the AWS Software
Development Kit (SDK) for Python, which allows to interact with AWS services,
such as S3.

After clearing the existing data, the updated DynamicFrame is written back
to S3 in Parquet format using glueContext.writeFrame(). The data is auto-
matically added to the AWS Glue Data Catalog, making it available for further
querying and processing. The use of the Snappy compression format ensures
efficient storage.

Second Phase: Processing Append-Only Tables The second phase processes
tables that are append-only, meaning that new rows are only added, and no
updates or deletions occur. This phase is similar to the first one, but with a few
key differences. First, in this case, the use of bookmarks is enabled, allowing
the job to only load new rows since the last execution. This is achieved by
configuring the transformation_ctx parameter, which ensures the bookmark
functionality tracks the last processed row and continues from that point during
the next run.

Furthermore, since some of these append-only tables (as discussed in section
3.2.1) contain a large amount of data, it was necessary to optimize the read oper-
ations. This was done by using the hashfield and hashpartition parameters.
These parameters enable partitioning of the data based on a hash of the speci-
fied field, which allows for parallel processing, improving the performance of
reading large tables. The hashfield determines the column used for hashing,
and hashpartition defines how many partitions the data should be split into
for parallel execution.

Third Phase: Processing the Device Table with Time Travel The third phase
of the script processes the device table, which involves upsert operations and
requires Time Travel. To enable Time Travel, the table is stored in Apache Iceberg
format, which supports versioning and allows efficient retrieval of data from
different historical snapshots.
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Below is the snippet that handles the MERGE INTO operation for the device
table:

1 MERGE INTO glue_catalog.postgres.device t

2 USING merge_source s

3 ON t.id = s.id

4 WHEN MATCHED AND (t.id_firmware <> s.id_firmware OR t.board_serial <>

s.board_serial OR t.id_board_model <> s.id_board_model OR t.

last_ip <> s.last_ip OR t.city <> s.city OR t.connection_kind <> s

.connection_kind OR t.bridge_firm <> s.bridge_firm OR t.cloud_pin

<> s.cloud_pin OR t.mirror <> s.mirror) THEN

5 UPDATE SET *

6 WHEN NOT MATCHED THEN

7 INSERT *

Code 3.2: MERGE INTO for Postgres extraction

The MERGE INTO operation compares the rows from the source table (desig-
nated as s) with the target table (designated as t). If a matching row is found
(based on the id), and any of the key fields (such as firmware, board serial, or
IP address) has changed, the row in the target table is updated. If no matching
row is found, the new row from the source table is inserted into the target. This
ensures that the table in S3 remains synchronized with the PostgreSQL source,
while also maintaining historical data for Time Travel purposes.

3.3.2 MongoDB Data

For the IoT data stored in MongoDB, a completely different approach was
adopted. AWS Glue does not support bookmarks for connections other than
JDBC and S3, which ruled out the possibility of using Glue’s native bookmarking
functionality. Additionally, several challenges made it impractical to create a
custom bookmark system in Glue. One such limitation is that the functions
provided by the Glue context do not support pushdown predicates, which are
conditions applied at the data source level to filter the data returned. Without
pushdown predicate support, every time a collection is read, it must be fully
imported and then filtered afterward. Importing several terabytes of data with
each job execution is clearly unfeasible.

In principle, PySpark provides a read() function that allows passing an
aggregation pipeline as a parameter, allowing to drain data. An aggregation
pipeline is a MongoDB framework that processes data through multiple stages,
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each applying specific transformations or filtering conditions to the dataset.
While this approach would work for ongoing operational tasks, during the initial
ingestion phase, it would still be highly inefficient due to the large data volume.
Handling this with multiple aggregation pipelines, each importing a subset of
data, would require sequential execution in Glue, as asynchronous operations
are not supported in this environment, significantly increasing execution time.

Given these constraints, it was decided to use AWS Lambda functions, which
offer scalability based on workload, parallel execution, and support for asyn-
chronous queries. AWS Lambda is a serverless computing service that runs
code in response to events, automatically managing the infrastructure required
to execute the code. A notable limitation of Lambda is its maximum execution
duration of 15 minutes, which needs to be considered when handling large-scale
data processing tasks.

To deploy the Lambda functions, the Serverless Frameworkwas used. This
framework enables simplified management of serverless applications by au-
tomating the setup, deployment, and scaling of resources, without needing to
manually provision or manage servers. The functions were written in Node.js
with TypeScript, chosen for its robust asynchronous code handling capabilities
and strong type-checking, which enhances code reliability and maintainability.

Two ORMs were utilized. For PostgreSQL, Prisma was selected to handle
bookmarking data, as it allows connections to multiple databases in the same en-
vironment. Prisma simplifies data access by generating a type-safe client, which
improves both the efficiency and reliability of database interactions. For Mon-
goDB, the original MongoDB driver developed for Node.js was used, offering
direct and optimized support for MongoDB’s functionalities and data handling
requirements.

To interact with AWS services, the JavaScript SDK v3was utilized. AWS SDK
v3 is the latest version of the Software Development Kit provided by Amazon,
specifically designed to facilitate interaction with AWS services. It offers modu-
lar packages, each dedicated to a specific service, allowing developers to import
only the required functionalities. This approach optimizes application perfor-
mance by reducing the overall bundle size, which is especially beneficial for
serverless environments where minimizing execution time and memory usage
is crucial.

The architecture for the Lambda functions consists of two TypeScript-based
functions: master and worker. To initiate the data extraction process, the master
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Lambda function is invoked. This function is responsible for identifying which
devices have sent data since the previous job execution and for invoking multiple
worker Lambdas accordingly. The worker Lambdas, then, handles the export of
new data for the identified devices, allowing the system to bypass the 15-minute
execution timeout limitation by distributing the workload across multiple func-
tions. Each worker Lambda imports data from a single collection and processes
a subset of devices. Figure 3.3 illustrates the architecture of the Lambda-based
solution used for the data ingestion process.
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•••
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42k-64k
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1-64k

Devices:
1-21k

Lambda Worker
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Collection: evereo_sess Collection: variable_logs_clean

Figure 3.3: Lambdas architecture

To implement custom bookmarking, a dedicated support database was cre-
ated in an AWS RDS instance to avoid overloading the production database.
This support database includes a table named lastts, designed to track data
ingestion progress. The lastts table contains three columns: idDevice, which
identifies each specific device, collection, indicating the dataset collection,
and lastts, a timestamp indicating the latest ingestion point for the device.
Together, idDevice and collection form the primary key, ensuring uniqueness
for each device and collection combination.

In addition, the support database includes a table named metrics for track-
ing processing metrics. Each time a worker completes processing a list of
devices, it logs a new entry in the metrics table with details such as First
device processed, Last device processed, Devices to query, Documents
uploaded, Worker computation time, Total runned queries,
Devices processed, Collection, and Number of errors. These metrics pro-
vide valuable insights into job performance, allowing for monitoring and opti-
mization of the data ingestion pipeline.
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Master Function

The master function begins by querying all devices in the device table to
obtain their last_log_date timestamps. These timestamps represent the latest
data logged by each device, which is essential for determining if any new data
needs to be processed. For each collection in the system, the function also re-
trieves the lastts timestamp for each device from the lastts table. This lastts
timestamp indicates the most recent data ingestion point for that collection. If a
device’s lastts does not exist, or if its last_log_date is greater than its lastts,
the device is added to an array called devicesToQuery, marking it as ready for
further processing.

Once the devicesToQuery array is populated for each collection, the function
organizes these devices into batches for parallel processing. The batching is
controlled by workerSize, which is calculated based on the total number of
devices and the preset number of workers specified in workersPerCollection.
This object defines the desired number of workers per collection, with collections
containing a higher volume of documents assigned a greater number of workers
to manage the load more effectively. Alternatively, it is possible to use the
split mode option, which instead of batching devices according to a predefined
number of workers, specifies a target number of devices per worker, dynamically
adjusting the number of workers invoked according to the number of devices
identified for processing.

The code snippet below demonstrates the batching and invocation of work-
ers:

1 const workerSize = Math.ceil(devicesToQuery.length /

workersPerCollection[operationalMode][collection])

2 for (let i = 0; i < devicesToQuery.length; i += workerSize)

3 invocations.push(invokeWorkerWithTimeout(devicesToQuery.slice(i,

i + workerSize), collection))

Code 3.3: Device batching

The master function manages all worker invocations using
Promise.allSettled(invocations), which executes all promises concurrently
and returns an array of results, one for each promise. In JavaScript, a promise
represents an operation that will complete asynchronously in the future, either
successfully or with an error. Each result from allSettled indicates whether
the corresponding promise was fulfilled or rejected. This approach ensures
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that all worker executions complete, regardless of individual failures, without
interrupting the entire process.

The following functions handle each worker invocation:

1 async function invokeWorkerWithTimeout(dev: number[], collection:

string) {

2 const timeoutPromise = new Promise<never >((_, reject) =>

3 setTimeout(

4 () => reject(new Error(‘Timeout for worker ${collection}${dev

[0]}‘)),

5 WORKERS_TIMEOUT ,

6 ),

7 );

8

9 return Promise.race([invokeWorker(dev, collection), timeoutPromise

]);

10 }

11

12 async function invokeWorker(dev: number[], collection: string) {

13 const params = {

14 FunctionName: ‘datalake -mongo-extractor -${process.env.NODE_ENV}-

worker‘,

15 Payload: JSON.stringify({

16 body: {

17 devices: JSON.stringify(dev),

18 collection: collection ,

19 },

20 }),

21 };

22

23 const command = new InvokeCommand(params);

24 const response = await lambdaClient.send(command);

25

26 // Handle worker Lambda response

27 if (response.StatusCode !== 200) {

28 throw new Error(‘Invocation failed for a worker ‘);

29 }

30

31 const payload = JSON.parse(new TextDecoder(’utf-8’).decode(response

.Payload));

32

33 if (payload.errorMessage) {

34 throw new Error(
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35 ‘${payload.errors} error(s) in worker ${payload.id} (${payload.

log_stream_name})‘,

36 );

37 }

38

39 return payload;

40 }

Code 3.4: invokeWorkerWithTimeout and invokeWorker functions

The invokeWorker function constructs and sends the invocation command
for each worker Lambda. If the response StatusCode is not 200, an error is
thrown, indicating that the invocation failed. Additionally, if there are specific
errors reported in the worker’s payload, these are also logged as errors.

In this process, three primary types of errors may occur. Each is handled
independently by logging the error to avoid affecting other workers or the master
function:

• Worker invocation failure: If InvokeCommand returns a StatusCode other
than 200, the invocation did not succeed.

• Error within the worker: If the worker encounters any issue, the master
function receives a payload containing the number of errors that occurred.
Full error details are logged within each individual worker, accessible via
AWS CloudWatch.

• Worker timeout: If a worker does not complete within 15 minutes, the
issue is managed by Promise.race() to which two promises are passed:
the actual worker invocation (invokeWorker) and a timeout promise. If
the worker exceeds the predefined WORKERS_TIMEOUTduration, the timeout
promise rejects, ensuring the master function is aware that the worker did
not complete within the expected time.

In this setup, all master and worker logs are available in AWS CloudWatch,
enabling easy access to error details and execution summaries. CloudWatch is
an AWS tool for monitoring and managing log data from AWS services.

Once all worker responses are received, the master function logs summary
statistics for each collection. This includes progress as a percentage of documents
uploaded relative to the total documents in each collection. The uploaded
document count is calculated by summing the values in the docs_uploaded
field within the metrics table for a specific collection in the support database.
The total document count is estimated using the MongoDB driver’s
estimatedDocumentCount() function.
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Since variable_logs_clean is a view and does not support direct document
counting, progress is calculated based on the percentage of devices processed
relative to the total number of devices. The following function, countTotalKeys,
counts the already processed devices:

1 async function countTotalKeys() {

2 let totalKeyCount = 0;

3 let continuationToken;

4 let isTruncated = true;

5

6 while (isTruncated) {

7 const params: ListObjectsV2CommandInput = {

8 Bucket: AWS_CONFIG.TARGET_BUCKET ,

9 Prefix: ’variable_logs_clean/’,

10 Delimiter: ’/’,

11 ContinuationToken: continuationToken ,

12 };

13

14 const data = await s3Client.send(new ListObjectsV2Command(params)

);

15

16 // Sum KeyCount from the current response

17 totalKeyCount += data.KeyCount ?? 0;

18

19 // Handle pagination

20 continuationToken = data.NextContinuationToken;

21 isTruncated = data.IsTruncated ?? false;

22 }

23

24 return totalKeyCount;

25 }

Code 3.5: countTotalKeys function

This function iterates through paginated S3 results to count the total keys,
providing an approximate measure of processed devices. This estimation is
more approximate than document counting and is mainly useful for bulk loads.

Finally, the master function returns a JSON response summarizing the num-
ber of successfully executed workers and overall progress, completing the or-
chestration for data processing and upload.
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Worker function

As previously seen, the master function invokes each worker function with
two parameters: the collection to process and a list of devices. The worker
function begins by adding all devices to an async queue with a concurrency level
of 5, meaning that up to five tasks can be executed concurrently. An async
queue allows tasks to be processed asynchronously, enabling the execution of
multiple tasks in parallel. However, it should be noted that, due to Node.js’s
single-threaded nature, this parallelism is achieved via asynchronous handling
rather than true parallel threads.

Each task in the queue processes a single device, querying and loading its
data into the data lake in manageable portions. Given the high volume of
data, it is necessary to retrieve records in smaller segments. Starting from the
earliest available data in 2015, the function performs sequential queries, each
covering a 60-day period until it reaches the device’s last_log_date. Due to
AWS Lambda’s 15-minute maximum execution time, all queries must complete
within 10 minutes, leaving a 5-minute buffer to finalize the last query without
risking timeout.

Each execution task in the queue involves a while loop, iterating as long as
the total runtime is under 10 minutes. In each iteration, the loop defines the
query period’s boundaries: from and to. The from value is set to the device’s
lastts if available; otherwise, it defaults to October 2015 (the beginning of
MongoDB data storage). The to value is determined as the minimum between
from + 60 days and last_log_date. If from is greater than or equal to to, the
loop ends, indicating all data has been imported for that device.

Query Construction
Once the time boundaries are defined, the worker constructs a MongoDB query
tailored to the specific collection. Since each collection has its own structure
and timestamp field names, a custom query format is created for each one.
For instance, in the variable_logs_clean collection, the query is structured as
follows:

1 variable_logs_clean: (device, from, to) => ({

2 idDevice: device,

3 day: {

4 $gte: new Date(from.getTime() - (from.getTime() % 21600000)),

5 $lte: new Date(to.getTime() - (to.getTime() % 21600000)),

6 },
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7 time: { $gt: from, $lte: to },

8 })

This query filters by idDevice, with from and to as the start and end times,
respectively. The time field is represented by both day and time, this is because,
as we said, variable_logs_clean is a view and day is used to exploit the day
index in the real variable_logs collection.

The MongoDB query then runs, with results stored in queryResult. After
obtaining the data, it undergoes two main aggregation steps to ensure consis-
tency and format the records properly:

• Common aggregation: Applied to all collections, this step moves non-
standard fields (those not defined in the Parquet schema for that collection)
into a payload field. This standardizes each document by consolidating
unusual fields.

• Variable_logs_clean aggregation: Specific to the variable_logs_clean
collection, this aggregation combines all measurements with the same
timestamp from a single device into one document.

Data Loading to the Data Lake
Once the documents are ready for data lake ingestion, the worker function
performs three crucial steps: updating the lastts, converting JSON documents
to Parquet format, and uploading the data to an S3 bucket. It is essential that
these three operations are executed robustly, meaning that if any one of them
fails, the other steps should not complete. To ensure this robustness, these
operations are encapsulated within a transaction managed by Prisma.

In Prisma, interactive transactions provide a way to bundle multiple database
operations into a single logical unit. Within an interactive transaction, either
all operations are successfully completed and committed, or if any operation
fails, the transaction is rolled back, undoing any changes made during the
transaction. In this context, if either the conversion to Parquet or the upload
to S3 fails, the transaction is not committed, effectively rolling back the lastts
update. Consequently, the next execution will attempt to re-import the same
data. Additionally, if a transaction-level error occurs, the worker ensures any
partially uploaded files are removed, maintaining data consistency.

For the conversion of JSON documents to Parquet format, the parquetjs2
library was utilized. parquetjs allows for efficient transformation of JSON data

2https://www.npmjs.com/package/@dsnp/parquetjs
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into Parquet format, a columnar storage format optimized for high-performance
querying. The library supports schema definitions, so each collection’s schema
is specified, ensuring consistent data structure in the output files. Furthermore,
both the conversion and upload processes are performed using streaming, allow-
ing the function to handle large data volumes without overwhelming memory.

Streaming in Node.js enables data to be processed in chunks, where each
data chunk flows continuously from one stage of the pipeline to the next without
waiting for the entire dataset. In this implementation, the streaming pipeline
begins with a Readable stream that reads data from documentsAggregated,
applies the Parquet transformation, and finally streams the transformed data to
the S3 destination. Here is the code that accomplishes this:

1 const destination = new PassThrough();

2 const reader = Readable.from(documentsAggregated);

3 const pt = new ParquetTransformer(parquetSchemas[params.body.

collection]);

4

5 await new Promise<void>((resolve, reject) => {

6 pipeline(reader, pt, destination).catch((err) => reject(err));

7

8 const upload = new Upload({

9 client: s3Client ,

10 params: {

11 Bucket: AWS_CONFIG.TARGET_BUCKET ,

12 Key: ‘${params.body.collection}/${device}/${from.getTime()}.

parquet‘,

13 Body: destination ,

14 ContentType: ’application/parquet’,

15 },

16 });

17 upload

18 .done()

19 .then((res) => resolve())

20 .catch((err) => reject(err));

21 });

In this code:

• destination is a PassThrough stream that serves as the final output in the
pipeline.

• Readable.from(documentsAggregated) creates a readable stream from
the JSON documents, allowing them to be processed sequentially.
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• ParquetTransformer applies the Parquet schema transformation, convert-
ing the JSON data into Parquet format in real-time.

• pipeline() connects the readable stream, Parquet transformation, and
destination stream in a sequence, with errors caught and handled via
reject.

The transformed data is then uploaded to S3 using the SDK’s Upload()
function, which reads from destination and streams data directly to the S3
bucket, saving memory and speeding up the process.

Once the queue is empty, either due to reaching the time limit or because
all devices have been processed, a new entry is added to the metrics table
in the support database. This entry records various metrics measured during
execution, such as the number of processed devices, total queries executed, and
uploaded document count. These metrics are also logged to AWS CloudWatch,
where they can be monitored for performance analysis and troubleshooting.

Finally, the worker function returns a response to the master function, in-
cluding the statusCode, the unique Lambda identifier, and any error counts
detected during execution.

3.4 Data Integration

As described earlier, the extracted data is directly stored in two different S3
buckets. AWS S3 is an object storage service that organizes data within contain-
ers called buckets, each capable of storing virtually unlimited objects. A bucket
does not function as a typical directory; rather, each file within S3 is identified by
a unique key, which may include prefixes resembling folder structures. In this
system, PostgreSQL data is stored in a bucket nameddatalake-postgres, where
each table is assigned a distinct prefix corresponding to its table name. Mon-
goDB data, on the other hand, is stored in a bucket named datalake-mongodb,
organized with prefixes based on collection names and device IDs.

As introduced in Section 3.1.2, the data lake structure is composed of three
layers: raw, curated, and analytics. For PostgreSQL data, it was decided to
combine the raw and curated layers, as data can be cleansed during extraction
through the Glue ETL job. Maintaining an additional extraction job and S3
bucket for raw data was deemed unnecessary, given that PostgreSQL tables are
relatively lightweight and do not justify the complexity of a separate raw layer.
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For MongoDB, however, an ETL job is required to transform data from the
raw layer to the curated layer. The structure of this job is similar to that de-
scribed in Section 3.3.1, with each collection processed sequentially. It comprises
a source node (reading from the raw layer), a transformation node, and a target
node (writing to the curated layer). For this transformation, Glue bookmarks
are employed to track progress when reading from S3. Unlike JDBC book-
marks, which record the last processed primary key, S3 bookmarks store the last
modified timestamp of the files read.

Currently, this ETL job performs four key functions:

1. conversion from Parquet format to Iceberg,

2. Snappy compression,

3. partitioning,

4. and deduplication of the alarm collection.

Transforming MongoDB tables to Iceberg format is beneficial primarily for
two reasons: Iceberg enables optimized table storage through table optimiza-
tions and enhances partitioning capabilities. Table optimizations are covered in
detail in Section 3.5, as these are applied directly within the data catalog. In-
stead, Iceberg’s partitioning facilitates effective partitioning based on metadata
for timestamp columns, as well as customizable partitioning by year, month, or
day.

Partitioning of collections was implemented to improve query performance
by reducing the scope of data scanned [13]. Specifically, all collections are
partitioned by idDevice, and larger collections are additionally partitioned by
year. By leveraging Iceberg’s hidden partitioning, data can be partitioned based
on timestamps down to the year, month, or day level. To determine the optimal
time granularity for partitioning, several tests were conducted (see Section 4.2),
as daily partitioning is not always ideal. While partitioning by day minimizes
the amount of data scanned for short-term queries, it significantly increases I/O
operations for long-term queries. This results in multiple small files for daily
partitions, whereas a yearly partition would only require a single file and a single
I/O access.

In the context of company data, the daily volume for each device and collec-
tion does not justify creating a separate file. Additionally, most queries target
extended time periods, so partitioning by year was chosen to minimize I/O
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overhead, thus improving response latency. The downside of this choice is a
potential increase in scanned data for certain queries, which may elevate query
costs (particularly when using AWS Athena, where costs are based on scanned
data size).

Deduplication of alarm documents
Deduplication of documents in the alarm collection is necessary because alarm
is the only collection in the data lake that may undergo updates. Each docu-
ment in alarm includes fields such as id (document identifier), idDevice (device
identifier), code (alarm code), activeTS (alarm activation timestamp), resetTS
(alarm reset timestamp), among others. Here, resetTS is always greater than
or equal to activeTS, but a document may initially lack a resetTS if the alarm
is active when recorded in the database. The document is subsequently up-
dated with a resetTS once the alarm is deactivated. Consequently, documents
are added to the data lake if either activeTS or resetTS is greater than the
lastts. Depending on the status of these timestamps during data ingestion,
three scenarios can arise:

• activeTS and resetTS are both greater than lastts: No deduplication is
required.

• activeTS is greater than lastts and resetTS does not exist: The doc-
ument will be re-imported when resetTS becomes available, requiring
deduplication.

• activeTS is less than lastts and resetTS is greater than lastts: The
document is imported, but since it is already present in the data lake,
deduplication is required.

Glue ETL manages deduplication through two methods:

• For duplicate documents imported within the same job, deduplication is
achieved via a groupBy operation in PySpark, aggregating by resetTS:

1 .groupBy("id", "class", "activationMail", "activeTS", "code"
, "iddevice", "resetMail", "payload")

2 .agg(max("resetTS").alias("resetTS"))
3

• For duplicate documents imported by different jobs, deduplication is han-
dled using Apache Iceberg’s MERGE INTO operation. If a document with
the same id already exists in the Iceberg-formatted S3 target, the row is
updated with the latest resetTS:
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1 MERGE INTO glue_catalog.mongodb.alarm t
2 USING merge_source s
3 ON t._id = s._id
4 WHEN MATCHED THEN
5 UPDATE SET t.resetTS = s.resetTS
6 WHEN NOT MATCHED THEN
7 INSERT *
8

Finally, the analytics layer was designed to facilitate specific data aggre-
gations for targeted analyses. A base job and an S3 bucket were established
for this layer, providing flexibility for future recurring analyses. For instance,
this layer can support tasks such as joining multiple tables with column-level
aggregations.

3.5 Data Cataloguing

The construction of the data lake is completed by cataloging the various
tables. The AWS Glue Data Catalog serves as a centralized metadata repository
that organizes, describes, and indexes datasets stored within the data lake,
making them accessible and queryable through services like AWS Athena. This
cataloging process facilitates data exploration, searchability, and consistency
across the data pipeline. For convenience, two distinct catalogs were created in
this setup: Postgres and Mongodb, each corresponding to a database within the
Glue Data Catalog. Each database contains all the respective tables present in
the various data lake layers.

There are two primary methods for creating a catalog (i.e., a database and
tables) in Glue:

• Using the Glue Crawler: Glue crawlers automate catalog creation by
scanning specified data locations, identifying data formats and schemas,
and creating or updating tables. Crawlers work by inspecting a dataset,
inferring its schema, and periodically refreshing the catalog entries to
ensure metadata remains current.

• Direct Table Creation within Glue Jobs: Glue jobs can automatically
create tables in the catalog when writing data to S3. This method, triggered
at the time of data ingestion, enables Glue to create or update tables based
on the data format, schema, and location specified within the job.
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For the curated and analytics layers, the second method was applied, al-
lowing tables to be cataloged as soon as data is written to S3. However, for
MongoDB’s raw layer, using a crawler is mandatory to capture the unprocessed
data format, as direct cataloging through Glue jobs is not supported. Since the
raw layer is considered less relevant for analytical use, the curated layer was
cataloged instead, eliminating the need to crawl the raw layer tables with each
system execution, thereby reducing both time and cost.

Tables stored in S3 are available in either Parquet or Iceberg formats. In terms
of cataloging, the Glue Data Catalog handles both formats similarly, recording
schema, partitioning, and metadata, allowing queries to be executed regardless
of format.

Table Optimization for Iceberg in the Glue Data Catalog
One of the powerful features in the Glue Data Catalog for Iceberg tables is

table optimization [14]. The most effective optimization, among those offered by
Glue, is the table compaction. This feature addresses performance and storage
efficiency by compacting small files within the table, a process especially useful
for managing data updates. Each system execution potentially generates new
files as data is added or updated, which could lead to numerous small files. File
compaction in Iceberg combines these smaller files into larger ones, reducing file
fragmentation and optimizing read performance by lowering the number of I/O
operations needed for queries.

Compaction is particularly advantageous in this context, as it consolidates
updated data added with each execution cycle, thus enhancing query perfor-
mance and minimizing storage costs. This process not only improves the data
lake’s efficiency but also helps manage the storage footprint of frequently up-
dated collections, making it easier to manage large datasets effectively over time.

3.6 Direct Queries

For on-demand data queries, AWS Athena provides a flexible querying tool
that supports ANSI SQL, enabling users to execute complex operations such as
joins, window functions, and array manipulations. Query results can be viewed
directly on the console or downloaded as CSV files for further use. Athena
relies on the Presto and Trino engines, which are optimized for large-scale data
processing and integrate optimally with the Glue Data Catalog, making all
cataloged data accessible without additional configuration.
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The Athena interface displays the tables in the Postgres and Mongodb cata-
logs, providing the possibility to preview, create, or delete them and run SQL
queries with ease. Autocomplete suggestions speed up query creation, helping
reduce errors, and users can save frequently used queries to streamline repetitive
tasks.

A notable advantage of Athena is its integration with Iceberg, which brings
version control and efficient update handling directly into the data lake. With
Iceberg, Athena enables point-in-time queries that simplify historical data anal-
ysis without requiring duplicated data versions.

For more complex data transformations or iterative analyses, PySpark and
Spark SQL offer complementary options. These tools enable large-scale dis-
tributed processing, allowing users to employ both Python and SQL syntax for
diverse analytical needs, integrating with both Parquet and Iceberg data formats.

Athena also provides comprehensive query statistics, including execution
time, data scanned, and cost metrics. These insights are crucial for query op-
timization, helping users adjust their queries to improve efficiency and reduce
costs in future executions.

3.7 Report creation

For BI reporting, Amazon QuickSight has been primarily used to build and
publish analyses. Creating an analysis with up-to-date data in QuickSight in-
volves three main steps: preparing the datasets, building the analysis, and
publishing it as a dashboard.

In QuickSight, it is not possible to directly use tables cataloged in the Glue
Data Catalog; instead, specific datasets must be created. QuickSight distin-
guishes between Data Sources and Datasets. A Data Source represents the un-
derlying connection to a specific data repository, such as an S3 bucket, RDS
database, or data lake, while a Dataset refers to the actual data used in the
analysis, which can integrate one or more data sources.

Datasets in QuickSight can undergo several preparatory transformations to
align data with analysis requirements. Users can exclude unnecessary fields,
edit existing fields, change data types, add calculated fields, and apply filters
to refine the data. Datasets can operate in two distinct modes: Direct Query or
SPICE [17]. In Direct Query mode, each query retrieves data in real-time from
the source, whereas SPICE (Super-fast, Parallel, In-memory Calculation Engine)
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stores a cached version of the dataset, improving performance but requiring pe-
riodic refreshes to maintain updated data. To avoid redundancy, further details
about SPICE can be referenced in Section 2.2.8. SPICE datasets need a defined
schedule for refresh operations, which can be set as either full or incremental.
Incremental refreshes are particularly efficient, as they only update records that
have changed since the last refresh. For MongoDB datasets, enabling incremen-
tal refresh required adding a processing timestamp to each document during the
ETL transformation in Glue, which provides the necessary update information
for each record.

Deciding whether to store a dataset in SPICE or Direct Query mode requires
careful consideration, as SPICE incurs a monthly cost of $0.38 per GB stored.
With storage requirements for SPICE generally up to 5 times higher than for
S3, and knowing that all 13 collections in the curated layer collectively require
around 300GB in S3, using SPICE exclusively would cost approximately 570$.
Due to these significant costs, only the most frequently accessed tables are
stored in SPICE. The variable_logs_clean collection, which would contribute
disproportionately to the cost due to its size, is retained in Direct Query mode.

With datasets prepared, analyses can be built. Each analysis in QuickSight
can only contain a single dataset, so it is essential that the selected dataset in-
cludes all the necessary fields and data. In QuickSight, an analysis is structured
as a collection of sheets, each of which acts like a separate page within the anal-
ysis. Each sheet provides a flexible layout where users can position multiple
visuals, add text boxes, and even insert images to create a cohesive view of the
data. Users can freely arrange these elements, allowing for a customized lay-
out where visuals can be displayed side-by-side, stacked, or arranged in grids.
Text boxes and images are added to provide context, explanations, or branding,
supporting a more comprehensive presentation of data insights. This flexibil-
ity helps users organize and present data on different aspects within a single
analysis e.g., a sales analysis might have one sheet focused on revenue trends,
another on product performance, and a third on regional comparisons.

Within each sheet, visuals play a central role. A visual is a chart type selected
to represent the data, with options ranging from line and bar charts to scatter
plots, pie charts, and heat maps. Each visual type has parameters specific to
its format, allowing users to control how the data is represented. Adding data
to visuals is simple and intuitive: users can drag and drop columns from the
dataset directly into the visual’s parameter fields. For example, to create a line

66



CHAPTER 3. SYSTEM DEVELOPMENT

chart showing monthly temperature trends, one could drag a Date column to
the X-axis and a Temperature column to the Value field. This drag-and-drop
interface makes it easy to experiment with different columns and chart types,
adapting the visuals to best fit the data and the analysis goals.

QuickSight also supports complex filtering options to control which data is
shown in each visual. Filters can be applied at multiple levels of granularity,
giving users flexibility in how they present their data. Filters can be applied at
three levels:

• Visual-level filters: These filters apply only to the data within a specific
visual. For instance, if a visual shows cooking programs, a filter can be set
to display only the programs of a specific category, such as "Washings".

• Sheet-level filters: Filters applied to an entire sheet affect all visuals within
that sheet. This is helpful when analyzing a particular subset across multi-
ple visuals on the same sheet. For example, on a sheet with various charts
showing sales data, a filter could limit all visuals to data from the last fiscal
quarter.

• Analysis-level filters: These global filters apply to the entire analysis,
affecting every sheet and visual. This approach is useful for setting con-
sistent filter criteria across all sheets, such as showing only data for Gas
ovens throughout the analysis.

QuickSight also allows users to create calculated fields, which generate new
data columns based on existing fields. To create a calculated field, users write a
formula using QuickSight’s built-in functions [4], which include mathematical,
statistical, and string operations. For example, a calculated field showing the
duration of a program could be created using the formula:

1 dateDiff(endTS, startTS ,"MI")

This formula, once defined, becomes a new column available for use in any
visual within the dataset, making it easy to integrate custom metrics directly
into the analysis.

Once an analysis is complete, it can be published as a dashboard, making
it available to other stakeholders. Dashboards in QuickSight are interactive,
enabling viewers to filter data, view specific metrics, and drill down into key
insights. This interactivity makes dashboards a powerful tool for communi-
cating complex data analyses in an accessible format and supports data-driven
decision-making by delivering relevant insights to a wide audience.
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Figure 3.4: Quicksight Dashboard about Alarm Summary

3.7.1 Analysis with Generative AI

Incorporating generative AI into data analysis enhances user accessibility to
data insights without requiring specialized data expertise. Amazon QuickSight
Q, an innovative feature within AWS QuickSight, empowers users to interact
with data using natural language queries. By enabling users to ask questions
in plain language, Q lowers the technical barriers to data analysis, making
advanced insights accessible to non-technical stakeholders and expanding the
utility of business intelligence resources.

QuickSight Q integrates with the QuickSight dashboards, allowing users
to query directly from dashboards without navigating complex query tools.
This capability supports a range of question types, including queries about
metrics, historical comparisons, and trend analysis. For example, a user can
ask, How many ovens were produced in the last quarter? or How does current
year performance compare to last year? QuickSight Q interprets these queries,
executes the necessary computations, and presents results as visualizations or
summary metrics directly in the dashboard interface. This minimizes time-to-
insight by reducing dependency on SQL or other query languages. In addition
to this, Q allows the creation and formatting of specific visual elements or
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calculated fields by means of instructions provided in natural language, thus
speeding up and simplifying their management.

Quicksight Q not only offers AI functionality into dashboards but also allows
topics to be constructed. Topics are structured data models tailored for natural
language queries. Unlike dashboards, which present pre-configured visualiza-
tions, topics are designed to interpret and respond to dynamic, ad hoc questions
by users. Each topic defines a specific dataset, along with custom metadata such
as field definitions, synonyms, and data relationships optimized for natural lan-
guage processing. Administrators configure topics to reflect business-specific
terminology and metrics, allowing QuickSight Q to parse queries accurately
based on relevant data fields. This setup enables Q to deliver precise responses,
making it ideal for scenarios where users need on-demand insights beyond the
fixed queries and visualizations typically available in dashboards.

Unfortunately, the cost of using these features is not moderate; in fact, acti-
vation of Q requires a fixed $250 each month in addition to the per-user costs
described more precisely in Section 4.4.2.

In summary, by implementing Q, this system leverages AI-driven natural
language processing to simplify and accelerate data analysis. This promotes a
more data-driven culture throughout the organization.

3.8 Orchestration and Scheduling

To fully automatize the data system, orchestrating the execution of each
component in a specific sequence is essential. Some services must be triggered at
precise times to avoid overlaps, and certain operations need to follow a particular
order so that the output of one stage can serve as the input for the next. This
orchestration is managed using Amazon’s Step Functions, a serverless workflow
service that coordinates multiple AWS services into a series of steps defined by
a state machine.

Step Functions enables complex workflows by chaining together a series of
tasks, where each step can be a distinct AWS service task, such as a Lambda
function or an activity integrated through APIs. The state machine, defined in
ASL, specifies the order, conditions, and dependencies between steps, and it
allows for retries, branching, parallelization, and error handling. This flexibility
is especially advantageous when coordinating components that need to process
and transform data sequentially and concurrently.
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In this data import process, two separate workflows, one for bulk load and
one for operational load are implemented. These workflows differ significantly
in data volume: the bulk load workflow handles large amounts of data quickly,
while the operational workflow supports smaller, more regular data imports.
To address these requirements, two distinct Step Functions were created.

Figure 3.5: datalake-cold-start Step Function for Bulk load

The datalake-cold-start Step Function manages the bulk load. It starts
with a parallel phase where two branches execute concurrently to optimize pro-
cessing time. The first branch handles MongoDB data import and the second
focuses on PostgreSQL data. In the MongoDB branch, four sequential invoca-
tions of the master Lambda function occur, each of which may trigger up to 30
worker Lambdas. Thus, this branch can potentially invoke up to 120 workers to
facilitate data extraction. After these workers complete their tasks, a Glue job is
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launched to transform the extracted data for the curated layer. In the PostgreSQL
branch, the Glue job dedicated to extracting PostgreSQL data is executed.

After the two branches complete, they merge at a decision point, where the
system evaluates the progress. If the system has processed over 95% of the
devices, the workflow transitions to the operational Step Function; otherwise, it
re-triggers the same bulk load state machine.

The progress percentage is determined by calculating the ratio of processed
devices to the total number of devices for the variable_logs_clean collection.
This value is computed by the master Lambda, logged in CloudWatch, and in-
cluded in the Lambda’s response under the progress key. Within the workflow,
the progress value from the fourth Lambda invocation is retrieved, passed to
the MongoDB Glue job, and subsequently used as a parameter throughout the
parallel stage, leading up to the decision state.

If the progress is below 95%, the initial ingestion phase must continue. The
analytics layer Glue job is triggered, followed by a refresh of all QuickSight
datasets. At this stage, the ListDataSets API in QuickSight retrieves a list of
available datasets. This list is processed in a Map state, iterating over each dataset.
For each dataset, SPICE Choice evaluates whether it meets specified conditions,
such as containing a valid ID, name, and specific keywords corresponding to the
datasets requiring a refresh. In this setup, all SPICE datasets must be manually
included in these conditions. Only datasets that satisfy the criteria undergo
an incremental refresh, with refresh parameters, including timestamp columns,
configured directly in QuickSight during dataset setup.

After the QuickSight refresh completes, the state machine executes the
StartExecution coldStart state, launching another state machine to continue
the cold start phase.

However, if the progress reaches or exceeds 95%, the system sends a notifi-
cation via Simple Notification Service (SNS). SNS is a fully managed messaging
service that sends notifications from one publisher to multiple subscribers. In
this workflow, an SNS message is configured with the subject "Data lake status"
and the specific message "End of cold start phase. Starting operational mode".
This notification informs by email both myself and the team leader that the bulk
load phase has completed and that the system is transitioning to operational
mode. Finally, an API function call updates an EventBridge Scheduler, which I
will discuss in detail in the following section.
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The EventBridge Scheduler The EventBridge Scheduler was employed to
schedule the operational Step Function flow, as continuous data import was
not necessary at this stage. During the bulk load phase, the state machine
was configured to auto-trigger in cycles without any pause, making a scheduler
redundant. However, the operational phase requires a more controlled data im-
port frequency, typically determined by business needs, whether data updates
are required hourly, daily, or weekly. In this case, as near real-time updates were
not deemed essential, a daily schedule was chosen to balance data currency and
cost-effectiveness.

EventBridge automates the execution of workflows by scheduling events
based on pre-defined triggers. To set up this scheduler, a cron expression was
defined, which is a time-based syntax specifying when the event should trigger.
The cron expression used in this case, 0 1/2 * * ? *, instructs EventBridge
to run the operational workflow every day at a specific hour, giving fine control
over execution timing. This cron pattern consists of five fields that represent
minute, hour, day of month, month, and day of week values.

When initially configuring the EventBridge event, it was set to disabled.
The final task within the bulk load Step Function enables this event, activating
the daily schedule. Once activated, the scheduler initiates the operational Step
Function as described later, automatically running the workflow on a daily
basis. The scheduler settings, including the cron expression, can be modified or
temporarily disabled if business requirements change.

Operational Step Function The operational Step Function closely resembles the
cold-start workflow in structure, with two key differences. Firstly, in the
operational phase, only a single invocation of the Lambda function is required
to handle MongoDB data import, as one execution is sufficient to process the
data accumulated over a single day. This simplification reduces system overhead
while keeping the data imports timely.

Secondly, the operational workflow omits the progress check. Once the
system transitions to the operational phase, reverting to a previous stage is
unnecessary, and thus, tracking the progress of data loading becomes redun-
dant. Additionally, there is no need for the Step Function to trigger itself upon
completion, as the EventBridge Scheduler handles regular daily execution.
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4
Experiments and Analyses

4.1 Alarms Report use case

To evaluate the overall system performance, we focused on reproducing a
report that the company has routinely generated and analyzed. By doing so,
we were able to directly compare the new BI approach with existing processes,
using AWS tools to replicate the report generation.

The collection named alarm in MongoDB records all alarms triggered by
devices, with each alarm containing fields such as the device ID, alarm code,
activation timestamp, termination timestamp, and other optional details. The
required output for this report is a pivot table: a format used to summarize,
analyze, and reorganize data by grouping it across specific dimensions. In this
case, the rows represent different devices, while the columns include device
details (serial number, model code, family, range, and version) and all potential
alarm codes. For each alarm code, we need the total count of occurrences from
the past week.

To obtain device-specific details like serial number, model code, and family
which are not present in MongoDB’s alarm collection we also needed to reference
the device table stored in PostgreSQL.

Previously, this report was generated through a JavaScript script that used
the MongoDB driver to access alarm data and the ORM Sequelize to access
PostgreSQL data. The script would create a CSV file that was then automatically
emailed to key stakeholders. The entire process was managed by an AWS
Lambda function scheduled for weekly execution.
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To reproduce this outcome using the new BI system, we required data from
both the alarm and device tables, which are stored in the data lake’s curated layer.
To link alarm events with device information, we performed a left join between
the two tables, aligning each alarm with its respective device information. We
explored three possible solutions for executing this join:

• Data Lake Join in Analytics Layer: In this approach, we added steps in
the Glue job to read the two tables from the curated layer, join them on
the device ID, and write the result in the analytics layer using the Iceberg
format. For the alarm table, Glue bookmarks ensure that only new data
is read, while the device table is read in full each time. Additionally,
the column uploaded_at is updated to allow QuickSight to refresh only
new data. Since both the alarm code and device code are labeled: code,
one of them was renamed for clarity. This joined table, identified as
"alarm_device" in the AWS catalog, is then ready to be imported into
QuickSight as a SPICE or Direct Query dataset. This solution is ideal for
regularly scheduled analyses, though it requires AWS Glue knowledge,
making it less accessible for end users.

• QuickSight Dataset Join: QuickSight allows datasets to be created by
joining other datasets through its visual interface. With both alarm and
device as source datasets, users can create a joined dataset in QuickSight.
This approach requires both the source and joined datasets to be in SPICE
mode. When the analysis is recurring, daily incremental refreshes are
necessary for each dataset, with the joined dataset refreshed last. This
solution is more user-friendly and accessible for non-technical users who
may need quick analyses, though it incurs storage costs for three SPICE
datasets, making it unsuitable for large tables.

• Athena Join and View Creation: For users preferring QuickSight’s Direct
Query mode, the join can be executed in Athena by creating a view: a saved
query that functions as a virtual table. This view can then be registered in
the AWS catalog and used in QuickSight without requiring data refreshes,
as queries are executed live.

For this use case, the first solution was selected, as it best supports recurrent
analyses with frequently updated data. After creating the joined dataset, further
preparation was necessary to ensure all fields were analysis-ready. Device
details like family, range, and version are embedded within the model code,
which is a 14-character alphanumeric string. Specifically, the third character
of the model code identifies the family and range, while the twelfth character
denotes the version. A calculated field was created for each missing attribute,
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re-implementing the existing company function to derive these values from the
model code directly within QuickSight.

1 ifelse(substring(split({code},’-’,1),4,1)=’L’,’MIND.Maps BIG’,

2 substring(split({code},’-’,1),3,1)=’V’,’MIND.Maps’,

3 substring(split({code},’-’,1),3,1)=’B’,’MIND.Maps’,

4 substring(split({code},’-’,1),3,1)=’C’,’MIND.Maps Compact’,

5 substring(split({code},’-’,1),3,1)=’F’,’SHOP.Pro’,

6 substring(split({code},’-’,1),3,1)=’E’,’Evereo’,

7 substring(split({code},’-’,1),3,1)=’S’,’SPEED.Pro’,

8 substring(split({code},’-’,1),3,1)=’D’,’Digital.ID’,

9 substring(split({code},’-’,1),3,1)=’L’,’Digital.ID’,

10 substring(split({code},’-’,1),3,1)=’P’,’Digital.ID’,

11 ’’)

Code 4.1: Family calculated field

Once the dataset was fully prepared, we developed the report using a pivot
table with the following configuration: device ID, serial, device code, family,
range, and version as rows; alarm codes as columns; and the alarm code counts
as values. A filter was applied to the alarm activation date, defaulted to "Last 7
days." The layout was refined to fill the view window, with conditional format-
ting applied to highlight cells with alarm counts over 50 in orange and over 100
in red.

The resulting analysis was published as an interactive dashboard (shown in
Figure 4.1) shared with stakeholders, allowing them to adjust the alarm activa-
tion date filter to specific relative or absolute periods. With the large number
of columns and rows, only visible portions of the table are loaded initially, opti-
mizing performance and accessibility. This setup allows stakeholders to access
daily-updated data and view historical data on demand, eliminating the need
for weekly emails and file downloads.
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Figure 4.1: Alarm Report from Quicksight

Finally, generative AI was tested by creating a topic based on this dataset.
It was necessary to define the scope of the questions, selecting and structuring
the relevant data in order to narrow the field of questions that users can ask
and make the answers more precise. Through a configuration process, it was
possible to enrich the topic with synonyms and phrases commonly used to
describe the various data fields. This allows QuickSight Q to recognise different
formulations of the same question and still answer correctly.

4.2 Partitioning Strategy

The following experiment evaluates temporal partitioning strategies for the
mongodb tables, comparing different levels of time granularity: no time-based
partitioning, partitioning by year, and partitioning by month. Specifically, the
events table was used for this test, which keeps track of all events occurring in
the ovens; examples of frequent events are: door opening/closing, magnetron
hour reset, dirt reset, etc. This evaluation aims to identify the impact of each
strategy on query performance in terms of execution time and scanned data
volume. In all cases, the data is firstly partitioned by device. Then, the analysis
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explores how adding various levels of time-based partitioning interacts with
device-based partitioning, helping to identify the most efficient approach for
complex queries involving both device ID and time filters.

Three types of queries were used for each partitioning strategy: a generic
time filter (one year and one month), a filter by year, and a filter by month.

1 -- Generic Filter:

2 SELECT * FROM "mongodb"."events"

3 WHERE idDevice BETWEEN 1000 AND 5000 AND

4 ts BETWEEN TIMESTAMP ’2023-01-01’ AND TIMESTAMP ’2024-01-31’;

5

6 -- Year Filter:

7 SELECT * FROM "mongodb"."events"

8 WHERE idDevice BETWEEN 1000 AND 5000 AND

9 ts BETWEEN TIMESTAMP ’2023-01-01’ AND TIMESTAMP ’2023-12-31’;

10

11 -- Month Filter:

12 SELECT * FROM "mongodb"."events"

13 WHERE idDevice BETWEEN 1000 AND 5000 AND

14 ts BETWEEN TIMESTAMP ’2023-01-01’ AND TIMESTAMP ’2023-01-31’;

Code 4.2: SQL Queries used for Execution Time and Data Scanning Analysis

The execution time results, displayed in Figure 4.2, reveal some unexpected
insights. Specifically, the queries on the non-partitioned table exhibit faster per-
formance compared to the year- and month-partitioned tables. For instance,
the generic filter query on the non-partitioned table completes in 53 seconds,
compared to 58.3 seconds on the year-partitioned table and 54.2 seconds on
the month-partitioned table. A similar trend is observed for year-specific and
month-specific filters. This counterintuitive outcome can be attributed to the
computational overhead of scanning partitions and managing the complexity
of partitioned structures. Firstly, when data is partitioned, additional overhead
arises from managing partition metadata, which can slow down query process-
ing. Furthermore, partitioning the data into multiple files necessitates more
I/O operations, as the database engine must access several files to retrieve the
relevant data. Consequently, partitioning does not guarantee faster execution
for all types of queries.

The data scanned, as shown in Figure 4.3, illustrates the effectiveness of par-
titioning in reducing the volume of data processed for targeted queries. For
instance, the month-specific filter in the month-partitioned table scans only 44
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Figure 4.2: Query Execution Time by Partitioning Strategy for the events table
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Figure 4.3: Scanned Data by Partitioning Strategy for the events table

MB, compared to 1,780 MB in the non-partitioned table and 470 MB in the
year-partitioned table. This reduction demonstrates the value of partitioning in
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limiting data scans when filters closely match the partitioning strategy. Con-
versely, without partitioning, the table must scan a substantially larger amount
of data, as all records are treated as a single, unstructured set.

The findings underscore the importance of selecting appropriate partitioning
strategies based on the nature of the queries executed and the underlying data
characteristics. While smaller partitioning intervals can enhance data efficiency
and significantly reduce the volume of scanned data, they may also introduce
a slight increase in execution time due to the necessity of additional metadata
reads and higher I/O access counts. Therefore, a balance must be found between
minimizing scanned data and optimizing execution times to achieve the best
performance in data querying and processing.

Partitioning Strategy Results on "sd_variables" Table

The same test performed with events was re-executed on the table
sd_variables to confirm the results obtained. "sd_variables" contains about
8 times fewer documents than events, but these are much heavier (see table
3.2). Specifically, "sd_variables" contains the IoT values generated by Digital ID
devices, i.e. the highest oven range produced by Unox.

As shown in Figure 4.4, execution times for queries on "sd_variables" display
only minor variations across partitioning strategies. In the case of year and
month filters, the execution times remain relatively consistent across strategies,
with a marginally faster performance for year-based and month-based partition-
ing compared to no partitioning.

In terms of scanned data, partitioning again shows a clear advantage in
limiting the volume of data processed, especially for month-specific queries. For
instance, the month-specific query scans only 170 MB in the month-partitioned
table, while the no-partition approach scans up to 1,620 MB. These reductions in
data scanning are similar to those noted in the "events" table, where finer-grained
partitions significantly minimized data read volumes.

Based on these observations and tests, a year-based partitioning strategy has
been chosen as an effective compromise. While finer-grained (month-based)
partitioning minimizes scanned data, it often results in higher execution times
due to the overhead associated with managing more granular partitions. Conse-
quently, year-based partitioning offers a balanced trade-off, achieving acceptable
query times while reducing data scans effectively for time-based filters.
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Figure 4.4: Query Execution Time and Scanned Data by Partitioning Strategy
for sd_variables table

4.3 Benchmark of the BI System

This section presents a benchmark comparing query execution times on
AWS Athena and the original MongoDB data sources. Since Postgres tables
contain relatively small amounts of data and are generally not the bottleneck
in business analyses, tests focused primarily on MongoDB tables. The queries
on the original MongoDB source were executed using Studio 3T, a widely used
GUI tool that facilitates query building, performance tuning, and data analysis.
Before executing the benchmark, it was crucial to verify data consistency between
the DBMSs and the data lake, especially considering frequent daily updates.

To ensure a reliable comparison, five representative queries were executed
on both systems, with each query being run seven times on each system to
calculate an average execution time. The test queries were executed on the
end_of_prog_aggregated table, which contains a moderate number of docu-
ments with an average size compared to other tables.

The MongoDB performance is shown in two scenarios: with no optimizations
and with optimizations. The available optimizations include:
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• Index Plan for a Query: MongoDB caches the query execution plan,
reducing the need to evaluate which index to use on repeated queries,
which helps speed up execution.

• Index Cached in Memory: When an index is used, MongoDB caches it in
memory, so subsequent queries using the same index can access it faster.

• Data Cached in Memory: MongoDB relies on the operating system’s
memory management system, which caches frequently accessed data.
Once a document is read, it stays in memory, significantly reducing ac-
cess time for future queries that request the same data.

The index in MongoDB is a data structure that speeds up query execution
by enabling fast searching within the data [7]. When a query is run for the first
time, MongoDB must scan through the dataset and load the necessary index
into memory. Once cached, the subsequent executions of the same query are
faster, as the data and index reside in memory. Each collection contains at least
one index consisting of the idDevice and timestamp fields.

Therefore, the first execution of each query requires reading the data and
index from the disk and moving them into memory, which takes an enormous
amount of time. Moreover, considering the EC2 instance has only 32 GiB of
memory, only a fraction of the datasets/indexes can be cached at any given
time, making MongoDB’s performance highly dependent on caching.

The following is a brief description of the five test queries executed on both
systems:

• Query 1: Returns documents generated after January 1, 2024.

• Query 2: Groups documents by device and calculates the average energy
consumed during cooking for each device.

• Query 3: Filters documents with daily cooking time greater than one hour,
groups them by device, and calculates the total cooking time, then orders
the results by descending cooking time.

• Query 4: Groups devices into five cooking times ranges, counts the num-
ber of devices in each range, and calculates the average cooking energy for
each range, presenting the results in ascending order.

• Query 5: Performs a join between the "end_of_prog_aggregated" table
and the sdata table (containing device configuration information) based
on the device ID.
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In the first four queries, 5000 devices were filtered to reduce execution time,
while in the last query only 500 devices were filtered.
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Figure 4.5: Query Execution Time on AWS Athena and MongoDB (optimized
and not optimized) for end_of_prog_aggregated table

The results in Figure 4.5 clearly show the significant performance improve-
ment with optimizations in MongoDB. In the "no optimizations" case, Mon-
goDB’s query times are significantly higher, as it must read both the data and
indexes from disk. With optimizations enabled, the query times decrease dra-
matically, as both the data and indexes are cached in memory. However, when
comparing MongoDB with AWS Athena, it is evident that Athena consistently
outperforms MongoDB, even with all optimizations applied.

AWS Athena achieves execution times that are 10 to 70 times faster than
MongoDB in its non-optimized state, which is the typical case in most business
intelligence analyses, as queries are often run on-demand or with low frequency,
preventing data and indexes from remaining in memory.

In conclusion, while MongoDB, with proper optimizations, can deliver com-
petitive performance for smaller datasets, Athena outperforms MongoDB in
large-scale data processing scenarios, especially when query performance and
scalability are crucial.
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4.4 Cost Estimation

Once the system had been tested and validated, it was essential to estimate
the costs of each AWS service utilized. This estimation provides the company
with an approximate understanding of the total solution cost. For simplicity,
costs were divided into two phases: the bulk load and operational phases. The
bulk load represents a one-time expense, while operational costs recur monthly
and depend on user activity.

4.4.1 Bulk Load Phase Cost Summary

The following table summarizes the estimated costs for the bulk load phase:

AWS Service Feature Description Cost ($)
Lambda Elaboration ((46,000 requests × 450 s × 6 GB) -

400,000 GB/s) × 0.0000166667 USD
2,063.34

Glue ETL mongo 5,000 DPU × 0.42 hours × 0.29 USD 604.18
ETL postgres 20 DPU × 0.42 hours × 0.29 USD 2.43

S3 (Raw) Storage 2,400 GB × 0.0245 USD 58.80
PUT requests 3,000,000 requests× 0.0000054 USD 16.20

S3 (Curated) Storage 300 GB × 0.0245 USD 7.35
PUT requests 1,000,000 requests× 0.0000054 USD 5.40

S3 (Analytics) Storage 34 GB × 0.0245 USD 0.83
PUT requests 1,000,000 requests× 0.0000054 USD 5.40

RDS Instance 730 hours × 0.074 USD 54.02
Storage 50 GB × 0.137 USD 6.85

Total 2,824.80

Table 4.1: AWS Service Costs for the Bulk Load Phase

In this one-time phase, costs were incurred primarily by Lambda, Glue, S3,
and RDS. Approximately 46,000 Lambda invocations were required to pro-
cess the initial data load, involving complex orchestration between master and
worker functions, each with an estimated average runtime of 7 minutes and
memory usage of 6 GB. Glue costs stemmed mainly from the ETL processes
handling data transformation, especially for MongoDB, which demanded ap-
proximately 20 Data Processing Units (DPU) per function. The RDS instance,
slightly overprovisioned for initial testing, could potentially be downsized to
reduce costs. Costs for GET requests in S3 were negligible and thus omitted.
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4.4.2 Operational Phase Monthly Costs

The table below shows the monthly costs for the system’s operational phase:

AWS Service Feature Description Cost ($)
Lambda Elaboration ((1,217 requests × 720 s × 6 GB) -

400,000 GB/s) × 0.0000166667 USD
80.93

Glue ETL mongo
curated

600 DPU × 0.42 hours × 0.29 USD 73.08

ETL postgres 600 DPU × 0.1 hours × 0.29 USD 17.40
ETL analytics 600 DPU × 0.05 hours × 0.29 USD 8.70

S3 (Raw) Storage 2,400 GB × 0.0245 USD 58.80
PUT requests 1,500,000 requests× 0.0000054 USD 8.10

S3 (Curated) Storage 300 GB × 0.0245 USD 7.35
PUT requests 1,500,000 requests× 0.0000054 USD 8.10

S3 (Analytics) Storage 34 GB × 0.0245 USD 0.83
PUT requests 1,000,000 requests× 0.0000054 USD 5.40

Athena Queries 1,521 queries × 0.009765625 TB ×
5.00 USD

74.27

QuickSight Readers 10 Readers × 3.00 USD 30.00
Authors 1 Author × 24.00 USD 24.00
SPICE (100 GB - (10.00 GB × 1 author)) ×

0.38 USD
34.20

Total 431.16

Table 4.2: AWS Service Costs for the Operational Phase (Monthly)

These monthly operational costs are estimated based on an expected daily
load of 40 Lambda invocations with a runtime average of 10 minutes each. Glue
requires 20 DPUs daily for ETL processes. Athena costs vary depending on usage
but are estimated with a baseline of 50 queries per day, scanning approximately
10 GB of data each. QuickSight includes 10 reader accounts and 1 author
account, along with 100 GB of SPICE storage. The estimate does not include
the use of generative AI with Quicksight Q, which would require an increase
of at least $275 per month. RDS costs are negligible here, as daily upserts are
minimal and could be handled by an RDS instance with lower performance or
by leveraging free AWS options. In summary, the system has an initial cost of
approximately 2800 USD for the bulk load phase and for the ongoing operational
phase, the estimated monthly cost is around 430 USD. Operational expenses
vary a lot based on actual system utilization by users.
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5
Conclusions and Future Works

This thesis presents the design and development of a data lake and business
intelligence solution on AWS, specifically tailored to improve data accessibility,
integration, and analysis within UNOX S.p.A. Through leveraging AWS services
such as S3, Glue, Athena, and QuickSight, the project succeeded in creating a
robust architecture that automates data ingestion, transformation, and storage,
thus enabling near real-time access to data analytics across multiple depart-
ments.

The system introduced not only provides a centralized data repository but
also empowers non-technical users with tools to perform independent analyses.
By implementing a data lake over a traditional data warehouse, UNOX gains
flexibility in handling diverse data sources, supporting both structured and
unstructured data formats. Furthermore, the architecture’s reliance on server-
less components, such as AWS Glue, has minimized infrastructure management
efforts and optimized the system’s scalability and cost-efficiency.

Performance tests confirm the solution’s reliability and responsiveness, sig-
nificantly reducing the time required for data queries and report generation.
Financial analyses also indicate that the system is sustainable for long-term
operation, with manageable monthly costs.

Despite the positive results achieved, several areas for improvement emerged
during the implementation, particularly regarding the initial MongoDB data
ingestion process. This bulk loading phase was identified as the most resource-
intensive part of the pipeline in terms of both time and cost. The initial ingestion
from MongoDB is markedly slow, taking several weeks to complete and incur-
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ring high costs relative to the workload managed. This inefficiency is primarily
due to the long response times for MongoDB queries, which can take several
minutes to retrieve IoT data generated over two months for a single device.

One approach to mitigate these costs is to dynamically adjust the memory
allocated to each Lambda worker, based on the volume of data extracted. Cur-
rently, memory allocation remains static and relatively high to prevent overload
issues, but refining this setting based on workload requirements could offer a
slight reduction in cost.

An alternative to the existing ingestion method could involve employing a
dedicated migration service, such as AWS DMS, to transfer the full historical
database into Amazon S3. AWS DMS could handle bulk data migrations more
efficiently, potentially reducing both the time and cost of initial data ingestion.

Regarding the operational phase, optimizations could be achieved by imple-
menting a CDC or a streaming data transfer system. In this project context, CDC
would continuously track and propagate changes from the source databases to
the data lake, ensuring that only new or updated data is transferred, which
would streamline data processing and reduce load times. A streaming transfer
system would enable real-time data ingestion by pushing data as it is created,
ideal for rapid data analysis and time-sensitive reporting.

From a storage perspective, further cost reductions could be achieved by
categorizing data into different storage classes based on usage and tagging files
when they are created in the data lake. For instance, Amazon S3’s Intelligent-
Tiering could automatically move data between storage classes based on access
patterns, minimizing costs without manual intervention [2].

Additionally, exploring advanced machine learning integrations, especially
for predictive analytics, could add further value to the BI platform.

Overall, the project represents a substantial step forward in the digital trans-
formation of UNOX’s data management capabilities, fostering a data-driven
culture and enhancing decision-making processes across the organization.
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