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Abstract

Passive filters are widely used in high and low-voltage electricity to remove unwanted frequencies in power sup-
plies, and communication devices, ensuring EMI-free operation which stands for an operation without Electro-
magnetic Interference. These filter designs protect sensitive equipment from being damaged by high levels of elec-
trical noise. Despite their effectiveness, passive filters are typically heavy and expensive. We want to design a new
configuration of passive filter that optimizes the weight and maintains performance levels. By having a quasi-3D
simplified model capable of importing finite element mesh files, we categorize the mesh elements corresponding
to ferromagnets and air with labels ’1’ and ’0’, respectively. This approach is known as topology optimization
and draws inspiration from the Ising model in statistical mechanics, where the goal is to achieve equilibrium by
minimizing the system’s energy, governed by the Hamiltonian operator. By utilizing this framework, we aim to
identify theminimum energy configuration, analogous to the behavior observed in ferromagnetic systems within
the Isingmodel. The aim is tomaximize thenumber of zeros, corresponding tomesh elementsmadeof air, thereby
reducing the amount of ferromagnets used to decrease weight and cost. This approach is a combinatorial opti-
mization which is a method used to find the optimal solution from a finite set of discrete solutions. This problem
belongs to theNP-hard class in complexity computation and does not have an effective polynomial-time solution.

In this work, the problem is approached using three distinct AI-basedmethods: a RandomAgent, a Simulated
Annealing Agent, and a Simulated Annealing Agent with tunneling. The Random Agent serves as a baseline
model, making decisions randomly without considering energy minimization or the state of the system. While
simplistic, it provides a reference for evaluating the effectiveness of more advanced strategies. The Simulated An-
nealing Agent, inspired by the physical annealing process, iteratively explores the solution space by allowing occa-
sional increases in energy, thereby avoiding local minima and gradually converging to a low-energy configuration.
This method aligns closely with the behavior of systems seeking equilibrium, as modeled in the Ising framework.
Finally, we extend the Simulated Annealing approach by introducing quantum tunneling, a mechanism that en-
ables the agent to overcome high energy barriers by ”tunneling” through them, rather than escaping slowly via
probabilistic jumps. This allows the system to better explore complex energy landscapes and increase the likeli-
hood of reaching the global energyminimum. By comparing these methods, we aim to identify themost effective
strategy for minimizing the system’s energy and achieving equilibrium, in line with the Hamiltonian-inspired be-
havior of the Ising model.
As an application of the combinatorial optimization inspired by quantum processes, we include a combinatorial
optimization example with the knapsack problem, which is intended to be solved on a real quantum computer.
To approach this, we map the knapsack Hamiltonian to the Ising model and then convert it into a Quadratic
Unconstrained Binary Optimization (QUBO) format, utilizing the QuadraticProgramToQubo converter from
Qiskit. This approach will help to explore possible solutions that minimize the device’s weight with minimal
performance loss.
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1
On Volvo Cars

The car brand that cares about people and theworldwe live in. The legacy of theVolvoCarCorporation started in
1927 with the belief that they can only make the safest cars for the Swedish roads. Now the brand has entered the
last decade to complete its 100 years with a presence in over 100 countries. The company aims to build sustainable,
safe, and high-quality cars. According to statistics of 2024, the number of cars that are produced is about 795,000
to 815,000 units per year. The corresponding core EBIT margin reached a record high of 8.1 percent, versus
6.3 percent in the same period last year. This improvement in the underlying profitability was a result of the
company’s focus on pricing discipline, internal cost control, and sustained growth in sales [7].

1.1 VolvoCarsheritageandalongtraditionofsus-
tainability

On the morning of April 14, 1927, the first Volvo car rolled out of the factory gates in Gothenburg, Sweden.
Officially named the ÖV4, this inaugural model was an open tourer equipped with a four-cylinder engine. The
world’s first Volvo was now ready to embark on its journey seen in Fig1.1. Fast forward to September 1, 1944,
when Volvo unveiled a car that would become pivotal to its international success. Known as “the little Volvo,” the
PV 444 symbolized post-war optimism. Within two weeks of its debut in Stockholm, 2,300 orders had already
been placed for this promising new model which can be seen in Fig1.2. The Volvo Duett was launched as “two
cars in one” – for both work and leisure. It was the first in a long line of estates that havemade Volvo synonymous
with this type of practical car. Since then, more than 6 million Volvo estates have been made pictured in Fig1.3.

Sustainability, at Volvo Cars, is not just a priority but a fundamental aspect of business operations. The am-
bition has always been to lead by example, setting high standards for environmental responsibility. This commit-
ment to the environment dates back to the 1940s, and today, it is stronger than ever. For instance, Back in the
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day, ozone-depleting chlorofluorocarbons (CFC) were often used in car air-conditioning systems. In response
to this environmental issue, Volvo cars company launched the world’s first car free of CFCs and two years later
we eliminated these harmful molecules from the entire product line. andother example, The Volvo V60 was the
world’s first diesel plug-in hybrid that could be driven ondiesel power alone, as a diesel-electric hybrid, or as an elec-
tric car. This was something that no other manufacturer could offer at the time, making this model an attractive
alternative with low fuel consumption and long range [8].

Figure 1.1: 1927 – First car rolls out
from the factory

Figure 1.2: 1944 – The “little Volvo”
comes along Figure 1.3: 1953 – The estate story

begins with Duett

1.2 VolvoCars: DrivingTowardsEnvironmentalSus-
tainability

Volvo Cars is deeply committed to sustainability, consistently prioritizing eco-friendly practices in its operations.
It is dedicated to use sustainable materials in its manufacturing and aims to reduce its carbon footprint through
innovative technologies and energy-efficient processes.

Volvo Cars has set forth ambitious sustainability targets for the year 2030 with the objective of significantly
enhancing its environmental stewardship. The key goals include:

• A reduction inCO2 emissions per car by 75% compared to 2018 levels [8].

• A decrease in energy usage in operations per average car by 40% compared to 2018 levels.

• Achieving 30% average recycled content across its fleet, with new car models incorporating at least 35%
recycled content [8].

• A 50% reduction in water use in its operations per average car compared to 2018 levels [8].

• Ensuring that at least 99% of all waste from its operations is either reused or recycled [8].

Since launching its sustainability strategy in 2019, Volvo Cars has made significant strides towards these goals:

• Approximately 69% of company operations are now powered by climate-neutral energy, up from 55%
in 2019.
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• 100% of the electricity used across its manufacturing plants globally is climate neutral, an increase from
80% in 2019.

• There has been a 19% reduction in CO2 emissions per car since 2018.

This project aims to contribute to carbon dioxide reduction for the environment. By decreasing the amount of
ferrite in each vehicle, even by as little as one gram, the cumulative impact becomes substantial over the vehicle’s
lifetime tracking into account 700K units sold. By decreasing the weight of the vehicle through reduced ferrite
content, not only does it contribute to lower CO2 emissions but also enhances the vehicle’s performance under
the test standards. This ensures that the environmental benefits are both substantial and measurable, helping
Volvo Cars meet international emissions standards more effectively.
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2
Introduction

The main purpose of this thesis is to minimize the weight of a passive filter, a crucial component used in the
charging process of Volvo BEVs. By addressing the issues of its weight and cost, this research aims to optimize
the filter design to be both efficient and cost-effective, while maintaining its essential functionality. The potential
benefits of reducing the filter’s weight are significant. Lighter cars not only decrease the cost of vehicle operation
but also contribute to environmental conservation. Fossil fuels should be phased out in order to support global
efforts to combat climate change. BEV enables phasing out of fossil fuels. Making the BEV more efficient min-
imizes electricity generation-related emissions. This approach to minimizing emissions underscores the broader
environmental benefits of this innovation. It is worth mentioning that Electromagnetic compatibility (EMC)
is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment,
by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause
unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment
[9]. Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function accept-
ably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception
of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even
physical damage to operational equipment.
As illustrated in Fig 2.1, as an example Common Mode (CM) passive filter, is chosen which is composed of a
ferromagnet and one or two conductors. For the purposes of this project, we focus on a simplified 2D model
considering only one conductor. This simplification aids in the analysis and understanding of the CM filter’s be-
havior while maintaining the core functionality in the charging system. The charging process is really important
because it can feed spurious signals to the cities electrical power if the high frequencies are not filtered properly.

Minimizing the weight of the component through mathematical optimization involves selecting the optimal
solution from a set of available alternatives, guided by specific criteria. This process is categorized into two main
subfields: discrete optimization and continuous optimization. Our project specifically utilizes discrete optimiza-
tion, a method integral to applied mathematics and computer science. In this context, the component of interest
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Figure 2.1: Computational mesh unit (red for ferrite and blue for conductor).

is represented by a mesh of 32 domains, where each domain can be either 0 or 1, forming a binary choice system.
This binary framework facilitates an efficient and effective resolution to our problem, ensuring that the filter
maintains its essential functionality while also becoming lighter and less costly. The discrete nature of our data
and the use of linear equations enable the application of Finite Element Method, which will be elaborated upon
in subsequent chapters of this report.

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal
object from a finite set of objects [10]. These problems can be viewed as searching for the best element of some
set of discrete items; therefore, any sort of search algorithm or meta-heuristic can be used to solve them. The
goal of meta-heuristics is to generate a set of candidate solutions and select the best one based on the evaluation
of the quality of the solutions [11]. Central to this field is the objective function, which serves as a quantitative
measure evaluating the ”goodness” of a complex systemby seeking tominimize ormaximizemultiple independent
variables.

Many methods are published for the purpose of combinatorial optimization based on the concept of popula-
tion that manipulates a set of solutions. Simulated Annealing (SA) is a probabilistic technique inspired by the
metallurgical process of annealing. This process entails heating and then controlled cooling of a material to en-
hance the size of its crystals andminimize defects. Similarly, simulated annealing explores the solution space by ini-
tially allowing a broad search that includes suboptimal solutions (reflecting high temperatures) and progressively
narrowing the search to do in on the most promising solutions as the ”temperature” decreases. This method
is particularly effective for finding approximate solutions in complex optimization scenarios, where traditional
methods might fail to escape local optima.

Understanding the classifications of P,NP (non-deterministic polynomial-time), NP-complete, andNP-Hard
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problems is crucial in computational theory, as they categorize problems based on their complexity and solvabil-
ity. This framework profoundly impacts various fields, including cryptography, optimization, and algorithm
design, shaping the strategies researchers and practitioners employ in tackling complex problems. SA stands out
as an effective technique for managing particularly challenging optimization problems, especially those classified
as NP-hard. In computational complexity theory, NP-hardness denotes a category of problems known to be at
least as difficult as themost challenging problems inNP (nondeterministic polynomial time). These problems are
notorious for their absence of efficient (polynomial time) solutions, rendering exact solutions impractical as prob-
lem sizes increase. This context highlights the value of simulated annealing, as it provides a probabilistic method
to approximate solutions in scenarios where traditional methods falter.
Finllay, we utilize Qiskit, an open-source quantum computing framework, to address the knapsack problem. We
broaden the classical Knapsack problem to a two-dimensional (2D) lattice arrangement. We map the knapsack
Hamiltonian into the Ising model and subsequently transform it into a Quadratic Unconstrained Binary Opti-
mization (QUBO) format, using the converter provided byQiskit [12]. We implement this because the quantum
effects are described by the Ising type binary interactions and quantum computers support these quadratic formu-
lations in Ising Hamiltonian. Therefore, we need to recast the inequality constraints into an inequality quadratic
form by introducing slack variables which allows us to reach to the QUBO form. The goal is to encode the Knap-
sack problem into the ground state of theHamiltonian and the state that we are looking is the one that minimizes
the energy. Energy is the expectation value of the Hamiltonian that we are looking.
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3
Literature Study

In this section, we provide a literature review and background knowledge to describe the context and the main
concepts of this master thesis. This information serves as a foundation for the subsequent chapters and helps the
reader to follow the arguments, methods, and results.

3.1 Ising formulations of manyNP problems
In recent years, several studies have focused on solving combinatorial optimization. In the following, one can find
an overview of the most relevant studies in this area. First, we start by studying [13] which provides strategies
for mapping a wide variety of NP problems like partitioning problems, binary integer linear programming, and
covering and packing problems to the Ising Model. These terms will be explained in chapter 6.
Spin glasses are disordered magnetic systems known for their complex energy landscapes filled with local minima,
which make optimization challenging. We are interested in spin glasses design because with it we can design our
problem as a phase change transition problem like as nature. In statistical mechanics, the phase change of a system
can be consideredwith temperature. In otherwords, if there is a sudden change inmagnetism at a certain tempera-
ture, we say there is a phase transition at that temperature. Considering our problem, changing our ferromagnets
to air which is the main purpose of our project can be considered exactly as phase change from paramagnetism
to ferrimagnetism in the Ising model. According to the [13] article, we can see how spin glass problems can be
mapped to Ising models, where the spins in the model represent binary decisions in the optimization problem.
The interactions between directions (representing constraints or relationships in the original problem) are for-
mulated such that the energy minimization of the Ising model corresponds to finding an optimal solution to the
original problem. Translating complex computational problems into quantum-friendly formats, is to enable the
groundwork for leveraging quantum computation to tackle problems that are currently intractable for classical
computers. For each problem, the author constructs an Ising Hamiltonian whose ground state corresponds to a

7



solution to the problem. The number of spins required and the interaction between them varies depending on
the complexity of the original problem. The formulation of classical NP problems as Ising models is significant
for quantum computing because it suggests that adiabatic quantumoptimizers if realized practically, could poten-
tially solve a wide range of computational problems more efficiently than classical algorithms. The paper begins
by discussing the potential of adiabatic quantum optimization (AQO) to solve NP-complete and NP-hard prob-
lems. The process involves initializing a quantum system in the ground state of an easy-to-prepare Hamiltonian
(H0) and then adiabatically evolving it to the Hamiltonian encoding the problem of interest (HP) which can be
seen in equation 3.1.

H(t) =
(
1− t

T

)
H0 +

t
T
HP (3.1)

The ground state ofHP encodes the solution to the problem. The formulation of classical NP problems as Ising
models is significant for quantum computing because it suggests that adiabatic quantum optimizers, if realized
practically, could potentially solve a wide range of computational problems more efficiently than classical algo-
rithms [13].
The limitations and challenges in embedding these Hamiltonians onto actual quantum devices are also discussed
in this paper. The number of qubits, their connectivity, and the precision required in specifying interaction
strengths are critical factors that determine the feasibility of solving specific problems on quantum hardware. An-
other important part of this article is packing problems which we canmap fromNP problems to the Ising model.
These problems can often be thought of as asking: how one can pick elements out of a set (such as vertices out
of a graph’s vertex set) so that they “cover” the graph in some simple way (e.g., removing themmakes the edge set
empty) [13]. One of the most important examples of packing problems is the Knapsack problem. Knapsack is
an optimization algorithm that involves selecting a subset of items from a given set, each with a specific weight
and value, to maximize the total value while staying within a weight limit. The goal is to decide which items to
include in a knapsack so that the total weight does not exceed the capacity of the knapsack, and the total value is
maximized. The article also speculates on the future potential of AQO, discussing its limits and the possibility
that while it might not always offer a faster solution than classical algorithms for all NP problems, it could still be
beneficial for certain cases. Moreover, it is mentioned that other NP problems might be easier to solve than previ-
ously thought due to certain properties that could be exploited by AQO or other quantum computing methods.
Finally, the paper concludes with acknowledgments and references, detailing contributions from other scholars
andprevious studies that have explored related concepts in quantumcomputing andoptimizationproblems. This
article serves as a critical resource for understanding how quantum approaches can be tailored to tackle some of
the most challenging problems in computer science and physics.

3.2 Optimization by Simulated Annealing (SA)

Apivotal piece in the literature on SimulatedAnnealing, the article [14] by Scott Kirkpatrick titled ’Optimization
by simulated annealing’, published in 1983 in a science journal, provides foundational insights that are integral to
this thesis. According to this paper, there is a deep connection between statistical mechanics and combinatorial
optimization particularly in the concept of simulated annealing. The SA process consists of first ”melting” the
system being optimized at a high effective temperature, then lowering the temperature by slow stages until the sys-
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tem ”freezes” and no further changes occur [14]. At each temperature, the simulationmust proceed long enough
for the system to reach a steady state. A fundamental question in simulated annealing concerns what happens
to the system in the limit of low temperature. In the context of Boltzmann distribution, the ground state refers
to the lowest energy state available to a system among all possible states. The Boltzmann distribution is directly
related to temperature through the Boltzmann factor which is given by e− E

kT as T increase the exponential term
decreases meaning that states with higher energies become less probable.
This article introduces annealing temperature T which is a controlling parameter in simulated annealing for opti-
mization and shows how to carry out the simulated annealing progresses to obtain a better heuristic solution to
combinatorial optimization. Spin glasses are disordered magnetic systems where the interactions between spins
are random, leading to frustration. This randomness and the resulting frustration cause a highly irregular energy
landscape with many local minima, making the system’s behavior complex and difficult to predict. Annealing as
implemented by the metropolis procedure differs from iterative implementation because annealing is not stuck
in low temperatures and also frustration does not show up.
Design of the computer is also discussed in [14]which is related to the simulated annealing framework that arrives
in the design of computer circuits. This process is usually divided to several steps [14]:

• Partitioning: partitioningmust be done in such away that the number of circuits in each partition is small
enough to fit easily into the available packages.

• Placement: The major focus in placement is on minimizing the length of connection in order to finish
the system.

• Wiring: in wiring, it is desirable to maintain the minimum possible length while minimizing the source
of electromagnetic noise.

If we have connectivity information in a matrix aij which indicates the number of signals passing between circuit
i and j, and if we indicate which circuit i is placed by a two variable μij = ±1 we can have our objective function.
λ is expressed as the relative costs of imbalance and boundary condition.

f =
∑
i>j

(
λ−

aij
2

)
μiμj (3.2)

This objective function has the form of a Hamiltonian, and it can be shown that this Hamiltonian has a spin
glass phase at low temperatures. We understand from [14] that freezing must be slow enough to reach the lowest
possible energy. The metropolis algorithm proceeds in controlled steps from one configuration to the other that
prevent our algorithm to get stuck in local minima.

3.3 Trafic signal optimization Example

Another study by [1] focuses on a square lattice by means of a quantum annealing machine, namely the D-Wave
quantum annealer in order to solve the traffic problems. This article formulates the signal operation problem as a
combinatorial optimization problem and the objective function of which is Hamiltonian. A simplified situation
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Figure 3.1: (a) Grid pattern of roads. (b) The two states of traffic signals at each intersection [1].

is considered in which two states are assumed for each signal: traffic is allowed in either the north-south direction
or the east-west direction. The objective function related to this problem is [1] :

H(σ(t)) = σ(t)TJ0(t) + hσ(t) + c(t) (3.3)

which is a quadratic form with variables ±1, and it matches the Hamiltonian form of the Ising model [15].
Hence, solving the signal optimization problem of the objective function is regarded as equivalent to the problem
of finding the spin direction σi ∈ {±1} that minimizes the Ising Hamiltonian.

According to this model which can be seen in Fig 3.1, at each node i, the signal can be in one of two states: σi =
+1, allowing vehicle fow only in the north-south direction, or σi = −1, permitting vehicle fow only in the east-west
direction. Traffic control is compared in three models of numerical experiments.

• Local control, which determines the signal display at each time stepwith a local rule. There is θ as a thresh-
old, which is the value of the switching parameter and it is determined such that the objective function is
minimized.

• Optimal controlwith simulated annealing: it reduces in equation 3.3 at each time step using the simulated
annealing. The simulated annealing is an algorithm for finding a solution by examining the vicinity of the
current solution at each step and probabilistically determining whether it should stay in the current state
or switch to a vicinity state.

• Optimal control with quantum annealing: it reduces which can be seen in equation 3.3 by using the
quantum annealing with the D-Wave 2000Q. Because the problem size exceeds the size of problems that
2000Q can solve, it is subdivided by the graph partitioning technique.

According to [1] Quantum Annealing performs the best among the three methods. This superiority is primarily
due to its ability to achieve a smaller Hamiltonian value in steady state compared to the other methods, which
indicates a more optimized solution. The Quantum Annealing method, employing the D-Wave 2000Q, demon-
strated better synchronization and lower oscillation in control states, particularly effective in larger cities with
traffic lights with a grid-like intersection layout.

The findings show that QuantumAnnealing can more effectively handle the complex optimization problems
associated with traffic signal control, providing superior performance, particularly in minimizing the objective
function over large-scale networks [1]. The study also highlighted the potential benefits of newer quantum hard-
ware which could further enhance performance, and suggested that Quantum Annealing is particularly advanta-
geous when prioritizing reduction in signal switching frequency and achieving steady control states.
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3.4 Quantum Bridge Analytics I: A Tutorial on For-
mulating and Using QUBOModels

The QUBOmodel has emerged as an underpinning of the quantum computing area known as quantum anneal-
ing and Fujitsu’s digital annealing and has become a subject of study in neuromorphic computing [16]. Through
these connections, QUBO models lie at the heart of experimentation carried out with quantum computers de-
veloped by D-Wave Systems and neuromorphic computers developed by IBM. The model expressed by the opti-
mization problem:

QUBO : minimize/maximizey = xTQx. (3.4)

where x is a vector of binary decision variables andQ is a square matrix of constants [15]. It is common to assume
that theQmatrix is symmetric or inupper triangular form,which canbe achievedwithout loss of generality simply
as follows:
Symmetric form: For all i and j except i = j, replace qij by (qij + qji)/2.

Upper triangular form For all i and j with j > i, replace qij by qij + qji. Then replace all qji for j < i by 0. (If
the matrix is already symmetric, this just doubles the qij values above the main diagonal, and then sets all values
below the main diagonal to 0).
In our projectwe havemany elements that come together and cooperatewith frequencies in the conductor. There-
fore, eachof these sites interacts according to its configuration if it has a ferrite ornot. Sobinary relations are paying
the way for the overall ability to surpass certain frequencies. Now, our aim is to balance the binary cooperation
while reducing the number of sites, reminiscent of paramagnetic to ferrimagnetic transform for the Isingmaterials
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4
Application to passive filters

4.1 Introduction to Filters
A filter is a circuit or a component capable of passing (or amplifying) certain frequencies while attenuating other
frequencies. Thus, a filter can extract important frequencies from signals that also contain undesirable or irrel-
evant frequencies. Electromagnetic (EMI) filters are essential for power conversion systems interfaced with the
utility grid since they suppress conducted noise and aid in complying with regulatory conducted emissions (CE)
standards such as FCC Part 15 or CISPR 11/32, etc. Common mode (CM) filters are an integral part of EMI
filters and play a key role since they are used for mitigating the CMnoise generated by the fast switching action of
semiconductors used in power converters [17].

4.1.1 Passive and Active Filters
Filters can be placed in one of two categories [2]:

Passive filtersplay an integral role in harmonic elimination in power systems. These filters operate on the basic
principles of electrical circuit theory, harnessing the characteristic behaviors of resistors, inductors, and capacitors
to selectively eliminate unwanted frequencies. A passive filter is a combination of resistors, capacitors, and induc-
tors arranged in various configurations to achieve a desired filtering effect [2]. The main function of a passive
filter is to allow certain frequencies to pass while blocking or attenuating others. This is primarily achieved by ex-
ploiting the frequency-dependent impedance characteristics of capacitors and inductors. Passive filters are most
responsive to a frequency range from roughly 100Hz to 300MHz. The limitation on the lower end results from
the fact that the inductance or capacitance would have to be quite large at low frequencies. The upper-frequency
limit is due to the effect of parasitic capacitances and inductances. Careful design practices can extend the use of
passive circuits well into the gigahertz range [2].
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Figure 4.1: A basic depiction of the four major filter types [2].

Active filters are capable of dealing with very low frequencies (approaching 0 Hz), and they can provide volt-
age gain (passive filters cannot). Active filters can be used to design high-order filters without the use of inductors;
this is important because inductors are problematic in the context of integrated-circuitmanufacturing techniques.
However, active filters are less suitable for very high-frequency applications because of amplifier bandwidth limi-
tations. Radio-frequency circuits must often utilize passive filters [2].

There are four types of filters which are and can be seen in Fig 4.1:

• Low-Pass Filter (LPF): Allows frequencies below a certain cutoff frequency to pass through while attenu-
ating frequencies above the cutoff [2].

• High-Pass Filter (HPF): Allows frequencies above a certain cutoff frequency to pass through while atten-
uating frequencies below the cutoff [2].

• Band-Pass Filter (BPF): Allows frequencies within a certain range (band) to pass through while attenuat-
ing frequencies outside this range [2].

• Band-Stop Filter (BSF) or Notch Filter: Attenuates frequencies within a certain range while allowing
frequencies outside this range to pass through [2].
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5
Finite Element Method

The finite element method (FEM) is a numerical method for solving partial differential equations arising in engi-
neering [18]. The FEM constitutes a general tool for the numerical solution of partial differential equations in
engineering and applied science. Historically, all major practical advances of the method have taken place since
the early 1950s in conjunction with the development of digital computers. However, interest in approximate so-
lutions of field equations dates as far back in time as the development of the classical field theories (e.g. elasticity,
electro-magnetism) themselves [18].
To solve a problem, the FEM subdivides a large system into smaller, simpler parts called (finite) elements. This is
achieved by a particular space discretization in the space dimensions, which is implemented by the construction
of a mesh of the object. We aim to perform an optimization on a continuous domain, but solving it directly is
infeasible. By linearizing the problem, we can achieve solvable solutions. The closer ourmesh approximation is to
the actual car components, the more reliable our results will be. However, the computations with refined mesh
will lead to a temporal overhead. While discrete solutions offer a practical approach, our problem fundamentally
lies in a continuous domain. Therefore, we need to express our problem using integral equations over the domain.
So we discretized everything using mesh because we propagate the solution linearly or quadratically, depending
on the mesh element type chosen.

5.1 Maxwell’s equations

Detailed solutions for magnetic fields in most situations of practical engineering interest involves the solution of
Maxwell’s equations along with various constitutive relationships which describe material properties. Maxwell’s
equations illustrate, with succinct beauty, the unique coexistence in nature of the electric field and the magnetic
field [19].
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TheMaxwell equations are given by [20] :

∇ · D = ρ

(Gauss’s law for electric field)
(5.1)

∇ · B = 0

(Gauss’s law for magnetic field)
(5.2)

∇ × E = −∂B
∂t

(Faraday’s law of induction)
(5.3)

∇ × H = J+
∂D
∂t

(Ampere’s circuital law)
(5.4)

where Maxwell definedD as the displacement current vector, B as the magnetic flux density, ρ as the volume
charge density (in C/m3), J as the electric current density (in A/m2), and∇ as the nabla (i.e., del) operator (i.e.,
the first-order differential operator).

The electric flux always comes from the positive charge and passes to a negative charge. This is expressedmath-
ematically by the divergence equation 5.1 and known as Gauss’s law for electric fields. The magnetic flux is the
magnetic field crossing an area and is always circulating with no starting and end point. The characteristic of
magnetic flux is described by the divergence equation 5.2 of the magnetic flux density and is known as Gauss’s
law for magnetic fields. The continuity equation of the electric current describes the current flowing from the
observation point reduces the charge of the point and can be calculated as [9]:

∇ · J = −∂ρ
∂t

(5.5)

According to Faraday’s law of induction, any change in the magnetic field induces electromotive force. The Fara-
days’ law of induction states that change of magnetic flux crossing an open surface S is equivalent to a negative
line integral of the electric field strength along the line l around the surface and can be calculated as [9]:∮

E · dl = − d
dt

∫
B · dS = −dφ

dt
(5.6)

The association of Faraday’s law and Ampere’s law is essential as these laws determine the induced voltage in the
coil (windings) of the electrical machines. Faraday’s and Ampere’s law is also crucial in determining losses caused
by eddy currents in the magnetic circuit [21].

5.1.1 Eddy-currents
In electromagnetism, an eddy current (also called Foucault’s current) is a loop of electric current induced within
conductors by a changingmagnetic field in the conductor according toFaraday’s lawof inductionorby the relative
motion of a conductor in a magnetic field [22]. Eddy currents flow in closed loops within conductors, in planes
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perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying
magnetic field created by an AC electromagnet or transformer, or by relative motion between a magnet and a
nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic
field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of thematerial.
When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid
[23].

ByLenz’s law, an eddy current creates amagnetic field that opposes the change in themagnetic field that created
it, and thus eddy currents react back on the source of themagnetic field. For example, a nearby conductive surface
will exert a drag force on amovingmagnet that opposes its motion, due to eddy currents induced in the surface by
the moving magnetic field. This effect is employed in eddy current brakes which are used to stop rotating power
tools quicklywhen they are turned off. The current flowing through the resistance of the conductor also dissipates
energy as heat in the material [24].

5.1.2 Flux linkage
In electrical engineering, the term flux linkage is used to define the interaction of a multi-turn inductor with the
magnetic flux as described by Faraday’s law of induction [25]. Since the contributions of all turn in the coil add
up, in the over-simplified situation of the same flux Φ passing through all the turns, the flux linkage (also known
as flux linked) is [25] :

λ = nΦ (5.7)

In a typical application, the term ”flux linkage” is used when the flux is created by the electric current flowing
through the coil itself. Per Hopkinson’s law,

λ = n
MMF
R

(5.8)

where MMF is the magnetomotive force andR is the total reluctance of the coil. Since

MMF = nI (5.9)

where I is the current, the equation can be rewritten as

λ = LI (5.10)

where L is called the inductance [26].
So in this thesis, by having λ and current we can get the L for each body.

5.1.3 Magnetic coenergy
In physics and engineering, Coenergy (or co-energy) is a non-physical quantity, measured in energy units, used
in theoretical analysis of energy in physical systems [3]. Consider a system with a single coil and a non-moving
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Figure 5.1: Graphical definition of coenergy [3]

armature (i.e., nomechanical work is done). Hence, all of the electric energy supplied to the device is stored in the
magnetic field [3].

dWinput = dWstored (dWmechanical = 0) (5.11)

where (e is the voltage, i is the current, and λ is the flux linkage):

dWinput = eidt (5.12)

dWstored = idλ (5.13)

For calculations either the flux linkage λ or the current i can be used as the independent variable.

The total energy stored in the system is equal to the area OABO in Fig 5.1, which is in turn equal to OACO,
therefore [3]:

Energy = Area(OABO) = Wstored =

∫ λ

0
i(λ)dλ (5.14)

Coenergy = Area(OACO) = W′
stored =

∫ i

0
λ(i) di (5.15)

For linear lossless systems, the coenergy is equal in value to the stored energy. the coenergy has no real phys-
ical meaning, but it is useful in calculating mechanical forces in electromagnetic systems. The self inductance is
defined as flux linkage over current:

L =
λ
i

(5.16)

and the energy stored in a coil is:

Wenergy =
1
2
λ2

L
=

1
2
Li2 (5.17)

In a magnetic circuit with a movable armature the inductance L(x) will be a function of position x.

It can be therefore written that the field energy is a function of two mathematically independent variables λ
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and x:

W(λ, x)energy =
1
2

λ2

L(x)
(5.18)

W′(i, x)coenergy =
1
2
L(x)i2 (5.19)

The last two expressions are general equations for energy and coenergy in magnetostatic system.
Elmer computations report the magnetic co-energy as lumped parameter at each time step. This value used to
quantity L.

5.1.4 Inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through
it [9]. The electric current produces a magnetic field around the conductor. Themagnetic field strength depends
on themagnitude of the electric current and follows any changes in themagnitude of the current. From Faraday’s
law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage)
in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing
current has the effect of opposing the change in current. This is stated by Lenz’s law [9].
In our project inductances (L) is computed from FEM and fed to the objective function which is explained in
equation 8.1. All conductors have some inductance, which may have either desirable or detrimental effects in
practical electrical devices. The inductance of a circuit depends on the geometry of the current path, and on the
magnetic permeability of nearby materials; ferromagnetic materials with a higher permeability like iron near a
conductor tend to increase the magnetic field and inductance. Any alteration to a circuit that increases the flux
(totalmagnetic field) through the circuit producedby a given current increases the inductance, because inductance
is also equal to the ratio of magnetic flux to current which can be indicated in eq 5.20 [27] [28] [29] [30].

L =
Φ(i)
i

(5.20)

5.2 Elmer software

In our simulation work using Elmer, a critical aspect involves the meticulous definition of boundary conditions
to accurately model the physical interactions at different locations of our component. For instance, boundary
condition 2 is specified tomodel a current density at a particular boundary, essential for studying electromagnetic
effects. Meanwhile, boundary condition 3, known as Adiabatic_boundary, ensures no heat transfer across the
boundary by setting a zero heat transfer coefficient, simulating an insulated condition. Additionally, Boundary
Condition 4, labeled Heat_transfer_environment, is defined to simulate heat exchange with an external en-
vironment by assigning a specific heat transfer coefficient. These conditions allow us to replicate and analyze real-
world physical behaviors accurately, leveraging Elmer’s capabilities to handle complex multi physical interactions
efficiently.

Elmer software consists of different parts which are :
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• ElmerGUI : ElmerGUI is the graphical user interface for Elmer and it serves as a user-friendly front end
that facilitates the setup, execution, and post-processing of simulations within the Elmer software suite.
It allows users to create simulationmodels by defining the geometry, selecting material properties, setting
boundary conditions, and configuring solver settings through a graphical interface, rather than requiring
manual edits of text files or script-based setups [31]. In our project, we use this tool to present the grid
domains.

• ElmerGrid: ElmerGrid is a simplemesh generator andmeshmanipulation utility. It is an appropriate tool
for generating structuredmeshes for simple 1D, 2D, and 3D geometries. It can also readmeshes generated
by other mesh generators and manipulate them. Among the possible operations are scaling, changing of
element type, defining boundaries, or partitioning themesh for parallel solution, for example. ElmerGrid
was originally a side product of research done in the area of silicon carbide crystal growth. The main goal
of ElmerGrid was to write a simple mesh generator for multiphysical problems where different meshes
based on the same geometry were needed for different physical problems. Since that the software has been
modified to meet the needs of Elmer’s development [32].

• ElmerSolver: The numerical solver that performs the finite element calculations, using the mesh and case
files [33].

• ElmerPost: We use Paraview as a postprocessor for the visualization module [34].

As it can be seen in Fig 5.2 we are able to show our Grid domain with bodies using ElmerGui. Our mesh is
consisted of 32 bodies each with the value 1 representing the ferrite. It is worth to mention that the body in the
middle isCooper and the domain around the boundary is air. We can see from the Fig 5.3 that each body is unique
with their labels as Fig 5.4. Visualizing the unique bodies is going to help us to understand the phase changewhich
is the main goal our project. The phase change from ferrite to air, leading to lighter CM filter designs..

5.3 Elmer FEM Solver
In this thesis, we utilize Elmer, an open-source finite element software initially developed through collaboration
among Finnish universities, research institutes, and industry. Elmer facilitates the solving of multi-physical prob-
lems including fluid dynamics, structural mechanics, electromagnetic, heat transfer, and acoustics [35]. These are
modeled by partial differential equations solved via the FEM.
Solving partial differential equation (PDE) models with the solver of Elmer requires that a precise description of
the problem is given using the so-called solver input file, briefly referred to as thesif.file. This file contains user-
prepared input data that specify the location of mesh files and control the selection of physical models, material
parameters, boundary conditions, initial conditions, stopping tolerances for iterative solvers, etc.

5.3.1 The solver input file
The material of the solver input file is organized into different sections. Each section is generally started with a
row containing the name of the section, followed by a number of keyword commands. The names of the sections
that we have in our template file are :
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Figure 5.2: Grid domain with bodies, as it can be seen we have 32 bodies with conductor in the middle. The domain
around the bodies is air.

Figure 5.3: Grid domain with bodies. It indicates a finite element mesh generated for a computational simulation. Within
this grid, there are 32 distinct bodies, each uniquely colored to differentiate them from one another
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Figure 5.4: The label of 32 bodies. According to these labels we can understand which body is going to experience the
phase change from ferrite to air. It is worth to mention that Mesh manipulation software ANSA is used for visualization [4]
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Figure 5.5: The areas of each domain in mm2, which is a way to show the weight of each domain.

Header

We locate the location of mesh files in the header section

Simulation

The simulation section is used for giving general information that is not specific to a particular PDE model in-
volved in the simulation. This information describes the coordinate system used, indicates whether the problem
is stationary or evolutionary, defines the file names for output, etc. We’ve configured several key aspects to ensure
the simulation accurately reflects the dynamic behavior of the system over time.
The simulation is conducted within a quasi-3D filter with 1 meter of depth by using symmetric boundary condi-
tions. The conventional quasi-3D analysis is a method that can equalize a 3D analysis with multiple 2D analyses
and is widely used for 3D models that take a long analysis time. We utilize a transient simulation type, which
allows us to observe how variables evolve, rather than assuming steady conditions. To achieve this, we employ a
timestepping method using the second-order Backward Differentiation Formula (BDF), known for its stability
and effectiveness in solving stiff equations. The simulation parameters are set with time steps of 0.1 units and run
for several intervals to capture the necessary data, all defined in our solver input file.

Constants

The constants section is used for defining certain physical constants. Like Boltzman, permeability of vacuum.

Body, Material, Body Force, and Initial Conditions

The Elmer mesh files contain information on how the computational region is divided into parts referred to as
bodies. A body section associates each body with an equation set, material properties, body forces, and initial
conditionsby referring todefinitions given in a specified equation section,material section, body force section, and
initial condition section. To do this, the different sections of the same type are distinguished by integer identifiers
that are parts of the section names. It is worth mentioning that we have 3 different materials and their physical
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properties are used in simulations. The first material considered in our simulation is air at room temperature,
pivotal for fluid dynamics and thermal transfer analyses. Its dynamic viscosity of 1.983e-5 Pa·s reflects air’s internal
friction, crucial for predicting flow behaviors in fluid dynamics simulations. Other essential properties include
a heat capacity of 1005.0 J/kg·K, the sound speed of 343.0 m/s, and air’s heat expansion coefficient of 3.43e-
3 per Kelvin which are key for modeling thermal expansion, Additionally, air’s density of 1.205 kg/m³ affects
buoyancy andpressure calculations, and its thermal conductivity is considered as 0.0257W/m·K.These properties
are fundamental for accurately simulating air’s behavior under various conditions and ensuring the reliability of
our simulation outcomes. Following air, the second material explored in our study is a specific type of ferrite,
designated ferromagnetic. This material is crucial as we aim to optimize and minimize the number of meshes
required in our simulations. The third material in our study is copper, serving as the conductor centrally located
within the component previously described. Wehave carefully defined its properties to ensure accurate simulation
and analysiswithinourmodel. Copper’s selection is crucial due to its excellent conductive attributes, both thermal
and electrical, which are integral to the component’s performance.

Equation and solver sections

Equation section provides us a way to associate each body with a set of solvers, where each solver is typically
associated with the ability to solve a certain physical model. This section provides a way to associate each body
with a set of solvers, where each solver is typically associated with the ability to solve a certain physical model. We
have 6 solvers in our file.:

• Solver 1: MagnetoDynamics2D
The first solver is designed to solve for the magnetic vector potential A in a 2D magnetodynamics prob-
lem. The magnetic vector potential A is used in electromagnetism to describe the magnetic field B. The
equation being solved is typically derived from Maxwell’s equations, focusing on the magnetostatic or
magnetodynamic behavior in two dimensions. This solver employs an iterative method (BiCGStab) for
solving the linear system with appropriate preconditioning. Key parameters include nonlinear system
convergence criteria, maximum iterations, and details of the linear system solver.

• Solver 2: MagnetoDynamicsCalcFields
Purpose: Calculating various electromagnetic field quantities based on the magnetic vector potential
solved by Solver 1.
Theory: This solver computes derived fields such as magnetic field strengthH, magnetic flux density B,
electric field E, current density J, and more. These calculations are crucial for understanding the detailed
electromagnetic behavior of the system, including Joule heating, nodal forces, andMaxwell stress.

• Solver 3: Heat Equation
Purpose: Solving the heat equation to model thermal effects in the material.
Theory: The heat equation, in the form

ρcp
∂T
∂t

= ∇ · (k∇T) + Q
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describes the distribution of temperature T in a material over time, where ρ is density, cp is specific heat,
k is thermal conductivity, and Q is the heat source term. This solver models the thermal response of the
material, taking into account thermal conductivity and potential heat generation from electromagnetic
effects (e.g., Joule heating).

• Solver 4: Result Output
Purpose: Outputting the results of the simulation in a specified format.
Theory: This solver formats and writes the computed simulation results to a file, typically used for post-
processing and visualization. The VTU format (VTKunstructured grid) is commonly used for represent-
ing mesh-based data, allowing detailed visualization of the simulation results.

• Solver 5: SaveScalars
Purpose:Saving scalar quantities for post-processing or further analysis.
Theory: This solver extracts specific scalar quantities such as time, CPU time, current density, and mag-
netic flux density. These scalar values can be used for analyzing the performance and behavior of the
system over time or at specific locations.
Key Parameters:Variables to save, operators for calculating averages or integrals, and masks for selecting
specific regions or bodies.

• Solver 6: Density purpose: The captured data is essential for post-processing activities, where detailed
analysis or optimization of materials based on their responses in various conditions is conducted. The-
ory: This parameter is highlighted as a key variable, indicating that the density of materials is specifically
recorded by this solver. We have 3 material and with 3 different densities which are air with the density
of 1.205, ferrite with the density of 7925.0, and Copper with 8960.0. The aim is to visualize 3 materials
distinctly on an image.

Boundary Condition

Boundary condition sections define the boundary conditions for the different models. The Elmer mesh files con-
tain information on how the boundaries of the bodies are divided into parts distinguished by their own boundary
numbers [36]. The setup provides insights into the complexity and multidisciplinary nature of the simulations
that can be handled within a FEM framework, where electrical, thermal, and other physical phenomena can be
independently or jointly modeled depending on the requirements of the study or design process. The boundary
condition in our case actively enforces an electrical grounding (zero potential) at boundary 1.
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6
Optimization methods

6.1 Optimization

In mathematics and computer science, an optimization problem is the problem of finding the best solution from
all feasible solutions. In the simplest terms, an optimization problem consists of maximizing or minimizing a
real function by systematically choosing input values from within an allowed set and computing the value of the
function.
Optimization problems can be divided into two categories, depending on whether the variables are continuous
or discrete [37]:

• An optimization problem with discrete variables is known as a discrete optimization, in which an object
such as an integer, permutation or graph must be found from a countable set.

• A problem with continuous variables is known as a continuous optimization, in which an optimal value
from a continuous function must be found. They can include constrained problems and multimodal
problems.

Wewould like to use passive filter design as a combinatorial optimization problemwhich is a component func-
tioning in the vehicle as a Low Pass Filter (100MHz). Looping the optimization candidates designed by the dif-
ferent algorithms with FEM, we will be able to see how the resulting filter performs towards human-designed
alternatives.
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6.2 Np-hardness
In computational complexity theory, a complexity class is a set of computational problems ”of related resource-
based complexity” [38]. The two most commonly analyzed resources are time and memory. Therefore, under-
standing the complexity class of a problem is a crucial aspect of every research. This knowledge enables researchers
to select the most appropriate algorithm, effectively manage time, and achieve more accurate results. By classify-
ing a problem’s complexity, we can tailor our computational approaches to be both efficient and effective, thereby
enhancing the quality and reliability of the outcomes. The following complexity classes are relevant for the opti-
mization problems considered here:

• P: complexity class of problems that can be solved by a deterministic Turingmachine in polynomial time.
Following Cobham-Edmonds thesis [39], problems belonging to this class are in practice efficiently solv-
able. P contains many important nontrivial problems, including the decision versions of linear program-
ming, of the greatest common divisor problem, and of finding a maximum matching in a graph, as well
as deciding if an integer is prime [38].

• NP : complexity class of problems that can be solved by a non-deterministic Turing machine in polyno-
mial time.

• NP-hard : complexity class of problems towhich every problem inNPcanbe reduced in polynomial time.
The resulting problems can also be in NP, but not necessarily. Informally these problems can be viewed
as the hardest problems of NP and problems that are even harder. This class contains many problems,
including Traveling Sales Person and other routing problems, finding a minimum vertex cover in a graph,
or the graph coloring problem. There are even NP-hard problems that are not decidable, for example the
Halting problem [38] [40].

• NP-complete: complexity class of problems that areNP-hard and inNP.This class is very important since
everyNP-complete problem represents thewhole class in terms of complexity characterization, i.e. general
findings on a single NP-complete problem can be applied to every NP-complete problem. A number
of NP-complete problems are known [39], including the boolean satisfiability problem, the knapsack
problem, or the decision version of TSP.

Fig 6.1 depicts the correlation of the described complexity classes under the assumption that P and NP are not
equivalent. Since it has not yet been proven that the complexity class P is not equivalent to the complexity class
NP, it cannot be excluded that P = NP. The consequences would be enormous for practical computer science,
due to the fact that the equivalence of P andNP implies the equivalence of the class ofNP-complete problems and
P. Therefore algorithms would exist that solve every NP-complete problem in polynomial time. This would be
of great value for the solution of many optimization problems, and a tremendous threat for cryptography. Never-
theless, strong evidence exists that P ̸= NP, since nobody has found an algorithm yet that solves any of the 3000
known NP-complete problems in polynomial time. Therefore it is reasonable as well as practical to research the
application of heuristics or metaheuristic algorithms to NP-complete and N P-hard problems.

Our project involves optimizing the configuration of ferromagnetic bodies on a grid to minimize energy. This
problem is classified as NP-hard due to the combinatorial nature of the task. With 32 ferrite bodies, there are 32!
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Figure 6.1: Euler diagram of problem complexity classes, under the assumption that P ̸= NP [5]

(approximately 2.63× 1035 ) feasible solutions. Given the vast number of possible configurations, this optimiza-
tion problem is characterized by numerous local minima, which we can see in the parts of the results, making the
identification of the global minimum a computationally intensive task.

6.3 Statistical mechanics

Statistical mechanics is a branch of physics that uses statistical methods to explain and predict the behavior of
systems with a large number of particles. It bridges the microscopic laws of physics, which govern individual
particles, and the macroscopic properties of materials that we observe, such as temperature, pressure, and volume
[41]. Statistical mechanics contains many useful tricks for extracting properties of a macroscopic system from
microscopic averages. The partition function Z is a central concept in this context which can be seen in equation
6.1. In this equation, β is the thermodynamic beta, defined as 1

kBT , where kB is the Boltzmann constant, and Ei is
the total energy of the system in the respective microstate.

In statistics and statistical physics, theMetropolis-Hastings algorithm is aMarkov chainMonteCarlo (MCMC)
method for obtaining a sequence of random samples from a probability distribution fromwhich direct sampling
is difficult [42]. New samples are added to the sequence in two steps: first a new sample is proposed based on
the previous sample, then the proposed sample is either added to the sequence or rejected depending on the value
of the probability distribution at that point. This algorithm is an essential tool in computational statistical me-
chanics and allows for the efficient sampling of the Boltzmann distribution. It generates a sequence of states for
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the system, where each state is generated with a probability P proportional to e−βEi . The algorithm proceeds as
follows:

• Start with an initial state swith energy E(s).

• Propose a new state s′ with energy E(s′).

• Calculate the acceptance probability A = min
(
1, e−β(E(s′)−E(s))

)
.

• Generate a random number r uniformly distributed between 0 and 1.

• If r ≤ A, accept the new state s′; otherwise, retain the current state s.

By iterating this process, theMetropolis algorithm ensures that the states are sampled according to the Boltzmann
distribution, allowing the computation of thermodynamic averages and other properties [41].

Z =
∑
i
e−βEi (6.1)

6.4 IsingModel
To address combinatorial optimization problems with a quantum algorithm, there is a way that is accomplished
by expressing the optimization problem in terms of quantum variables. In many scientific situations, models
are essential tools for understanding the world around us. The universe’s inflation, general circulation models
of the earth’s climate, the double-helix model of DNA, evolutionary models in biology, agent-based models in
social science, and equilibrium models of markets are just a few of the many phenomena they have documented
[43]. Models of nature that can encompass a wide range of completely different systems are the most fruitful
ones, and understanding how these models work leads to understanding all the physical systems the model can
represent. The Isingmodel is one of themost often usedmodels in physics which is a model consisting of discrete
variables that represent magnetic dipole moments of atomic ”spins” that can be in one of two states (+1 or −1).
The IsingModel is a mathematical model; however, it can be considered as a model for a magnet. Mathematically,
the fact that a problem isNP-completemeans we can find amapping to the decision form of the Isingmodel with
a polynomial number of steps. This mapping can be re-interpreted as a pseudo-Boolean optimization problem
[43]. The function that represents the energy of every single possible configuration (microstate) of the spins in
the magnet is called the Hamiltonian which is shown as [44] :

H = −Jij
∑
⟨i,j⟩

SiSj − hi
∑
i
Si (6.2)

In the Ising model, the Hamiltonian includes two types of interactions:

• the external field term. The energies of the ”spin down” and ”spin up” states canbe divided by an external
magnetic field h, making one state more energetic than the other. The size of h represents how strong the
field is, and the sign of which is describing whether it’s spin up or spin down that’s preferred. Since every
individual spin feels the external field, it needs to sum over all sites to find the total contribution to the
energy.

28



• the interaction term between neighboring spins. The reason for this interaction is that every spin in the
magnet functions as a tiny magnetic dipole, creating a magnetic field that is felt by its neighbors. The size
of J shows how strongly neighboring spins are coupled to each other, and the sign of it represents whether
neighbors prefer to align or to anti-align [44].

– Jij < 0 is usually called the ferromagnetic coupling because the classical spins prefer to align with
each other.

– Jij > 0 is usually called the anti-ferromagnetic coupling be cause the spins prefer to anti-align with
each other.

We are using the Ising model since we want to minimize the weight of our ferrites by knowing the interactions
between them. For a quantum form, we use spin operators σiz, giving an Ising Hamiltonian, whose eigenvalues
correspond to the previous cost. What we try to achieve forminimization, is to find the stateminimizing the Ising
model, Which corresponds to finding the minimal eigenvalue or ground state of the Hamiltonian. And this is
what research/applications in combinatorial optimization using quantum computers are focusing on.

6.4.1 Phase change in Ising model

The Ising model of a ferromagnet is one of the simplest models displaying the paramagnetic ferromagnetic phase
transition, that is, the spontaneous emergence ofmagnetization in zero external fields as the temperature is lowered
below a certain critical temperature [45]. This model undergoes a phase transition between an ordered and a
disordered phase in 2 dimensions or more. This was first proven by Rudolf Peierls in 1936, using what is now
called a Peierls argument. The same phase change occurs in our project. In the end, Ising’s model proved to
be effective in simulating a variety of distinct physical systems. Any system composed of several independent
components that communicate with one another pairwise can be described using this paradigm.

• High Temperature (Paramagnetic Phase): At high temperatures, thermal fluctuations dominate, and the
spins are randomly oriented. The net magnetizationM (the average spin) is close to zero. This disordered
state is called the paramagnetic phase.

• Low Temperature (Ferromagnetic Phase): At low temperatures, the interaction energy dominates, and
the spins tend to align either all up or all down, resulting in a non-zero netmagnetizationM.This ordered
state is called the ferromagnetic phase.

• CriticalTemperatureTc: Thephase transitionbetween theparamagnetic and ferromagnetic phases occurs
at a specific temperature called the critical temperature Tc at T=Tc , the system undergoes a second-order
phase transition.
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6.5 Objectivefunctionformulationfor Isingtypeprob-
lems

In order to navigate the intricacies of our algorithms for ferrite design, we must first establish a clear objective
function. The objective function is prominently used to represent and solve the optimization problems of linear
programming. Assuming the form Z = ax + by, where x and y are the decision variables. This function serves as
the metric for quantifying the weight of the component based on the arrangement of mesh points (ie. distribu-
tion of ferromagnetic material). The primary aim of quantum algorithms is to minimize this objective function,
a pivotal element in optimization problems representing what we want to minimize or maximize. Drawing an
analogy to a common problem like the traveling salesman dilemma, where the objective function could signify
the total distance traveled, our focus is onminimizing it. In the case of passive filter design, we adopt a straightfor-
ward model. Here, each mesh point contributes a fixed weight when set to 1 and no weight when set to 0. The
overarching objective is to minimize the total weight, all while potentially adhering to specific constraints. In the
realmofQCand optimization, it’s intriguing to note that the objective function and theHamiltonian can assume
comparable roles. In quantum computing, particularly in algorithms like Quantum Annealing or the Quantum
ApproximateOptimizationAlgorithm (QAOA), theHamiltonian often serves as a direct counterpart to the prob-
lem’s objective function but is expressed within the framework of quantummechanics. Concretely, the objective
function can be conceptualized as the sum of the weights associated with all mesh points. If w denotes the weight
contributed by a mesh point when it’s set to 1, and ′x[i]′ represents the binary variable indicating the state of the
i-th mesh point (either 0 or 1), the objective function captures the essence of the weight distribution across the
entire configuration. The objective function can be expressed as :

f(x) = −
32∑
i=1

xi(αwi + βli) (6.3)

α and β are constants that weigh the influence of wi and li, respectively for a mesh with 32 domains representing
the ferrite.

6.6 RandomAgent (RA)

In the pursuit of optimizing passive component configurations, we employ a Random Agent algorithm to gen-
erate a substantial number of candidate configurations which is shown in Fig 6.2. The primary goal is to iden-
tify configurations that exhibit both minimal weight and maximal inductance, which are critical parameters in
our project. Initially, a template file is read into the Python environment. The Random Agent algorithm then
proceeds to generate 30000 unique candidate configurations. Each configuration consists of 32 binary variables,
represented by either 1 or 0. These binary variables correspond to ferrite and air respectively. For each candidate
configuration generated during an iteration, a new ”modified.sif” file is created. This file, which is a key input for
Finite Element Method (FEM) simulations, is stored in a separate working directory to maintain organizational
clarity and computational efficiency. Subsequently, FEM simulations are conducted for each candidate config-
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uration to determine the flux linkage and current. These simulations are critical as they provide the necessary
data to calculate the inductance of each configurationwhich is explained in equation 5.19. Alongside inductance,
the weight of each configuration is also calculated. The weight is a function of the material properties and the
geometric arrangement of the components within each configuration. Both inductance and weight are crucial
parameters; therefore, each candidate configuration is evaluated to form a tuple consisting of its weight and in-
ductance values.

Tuple = (Weight, Inductance) (6.4)

The optimization process seeks to identify the candidate configuration that exhibits theminimumweight and the
maximum inductance, twokey performancemetrics for the project. This dual-objective approach ensures that the
selected configuration not only minimizes the material usage but also maximizes the electromagnetic efficiency,
resulting in a highly efficient and cost-effective design. To achieve this, the process begins with the generation
and evaluation of a large number of candidate configurations, each representing a potential solution to the op-
timization problem. After the evaluation phase, a meticulous selection process is undertaken to determine the
most optimal configuration from the generated pool. This selection is guided by two fundamental criteria. First,
minimum weight, prioritizes configurations that use the least amount of ferrite material. By minimizing the ma-
terial usage, the design reduces overall costs and contributes to a lighter, more practical solution for real-world
applications. Moreover, reducing the weight can have additional benefits, such as ease of manufacturing, better
thermal performance, and lower operational constraints in certain environments. Second, the maximum induc-
tance criterion ensures that the selected configuration achieves the highest possible inductance. Inductance is a
critical parameter as it reflects the effectiveness of the electromagnetic design. A higher inductance indicates supe-
rior electromagnetic performance, which is essential for meeting the technical requirements of the project. This
criterion guarantees that the solution not only meets but exceeds the performance benchmarks, paving the way
for a robust and reliable outcome. Ultimately, the configuration that best satisfies these two criteria, minimum
weight and maximum inductance is chosen as the optimal solution. The rigorous nature of this process under-
scores the importance of achieving the dual objectives, laying a strong foundation for the success of the overall
project.
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Start: Load Template File

Run Random Agent Algorithm

Generate 30,000 Candidate Configurations

Create ”modified.sif” for Each Configuration

Run FEM Simulations

Calculate Inductance andWeight

Form Tuple: (Weight, Inductance)

Criteria Met? Select Optimal Configuration

End: Output Optimal Configuration

Figure 6.2: Flowchart illustrating the optimization process of RA for passive component configurations. It includes key
steps from template loading to the selection of the optimal configuration.

32



6.7 Simulated Annealing (SA)
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function.
Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization
problem. For large numbers of local optima, SA can find the global optimum [46]. SA is closely related to combi-
natorial optimization as it provides a robust technique for finding high-quality solutions in problems where the
search space is discrete and vast [47].

In this process, temperature has a crucial rolewhich is a controlling parameter that dictates the probability of ac-
cepting worse solutions as the algorithm searches for an optimal solution. High temperatures allow the algorithm
to explore the solution space more freely, accepting worse solutions to escape local minima. As the temperature
decreases, the algorithm becomes more selective, focusing on refining and converging to the best solution which
can be seen in algorithm 6.1. The gradual reduction of temperature is crucial for balancing exploration and ex-
ploitation in the search process. Simulated annealing extends two of the most widely used heuristic techniques.
The temperature distinguishes classes of rearrangements, so that rearrangements causing large changes in the ob-
jective function occur at high temperatures, while the small changes are deferred until low temperatures. This is
an adaptive form of the divide-and-conquer approach. Like most iterative improvement schemes, theMetropolis
algorithm proceeds in small steps from one configuration to the next, but the temperature keeps the algorithm
from getting stuck by permitting uphill moves [14].

The algorithm is :

• we start with a random configuration of 1 and 0 as a list with 32 index and with the initial temperature of
50000.

• we set the parameter for the cooling schedule as a cooling rate of 0.9999.

• we compute the inductance of each body with FEM according to the eq 5.19 of the initial configuration.

• we calculate the objective function of the initial configuration with eq 8.1 and save it as the energy. The α
is set to be 60 and β as 0.4. This is due to the prioritizing of the weight to be minimized.

• Generate a new solution, in the neighborhood of the current solution by flipping one of the spins and
then calculate the energy of the new solution.

• If the new solution has a lower cost, we accept it as the new current solution. Otherwise, we accept it with
a probability of P = e− ΔE

T . This probabilistic acceptance allows the algorithm to escape local minima.

• Reduce the temperature according to the cooling schedule.

• Repeat the iteration steps until the system has sufficiently cooled (i.e., the temperature is very low or a
predefined number of iterations is reached). The current solution at the end of the process is taken as the
optimal or near-optimal solution.

We choose SA because combinatorial optimization problems often have numerous local minima. The goal
of this algorithm in this context is to minimize the ’energy’ of the Ising model, where ’energy’ is a metaphor for
the objective or cost function of the optimization problem. The global minimum energy state corresponds to
the optimal solution to the combinatorial optimization problem. Simple algorithms may get trapped in these
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suboptimal solutions. SA addresses this by allowing worse solutions to be accepted with a certain probability,
controlled by a temperature parameter. This helps the algorithm escape local minima and explore a broader area
of the solution space. In SA, we appear to have found a richer framework for constructing heuristic algorithms,
since the extra control provided by introducing a temperature allows us to separate problems on different scales
[14].

Algorithm 6.1 Simulated Annealing
0: Initialize: T = T0, current solution s, best solution s∗
0: while stopping criterion not met
0: Generate a neighbor solution s′
0: Compute ΔE = f(s′)− f(s)
0: if ΔE < 0 or exp

(
−ΔE

T

)
> random(0, 1)

0: s← s′
0: end if
0: if f(s) < f(s∗)
0: s∗ ← s
0: end if
0: Update T according to the cooling rate
0: end while
0: return s∗ =0

6.8 Simulated Annealingwith Tunneling (tSA)

Quantum-inspired annealing introduces a nuanced enhancement to classical simulated annealing by incorporat-
ing principles from quantum mechanics [48]. In classical simulated annealing, a system transitions from its cur-
rent energy state to a lower adjacent energy state by overcoming potential barriers through thermal fluctuations.
However, quantum mechanics introduces the concept of quantum tunneling, where a particle can sometimes
pass through a potential barrier, reaching a non-adjacent lower energy state without needing the thermal energy
to overcome the barrier.

Incorporating this idea, quantum-inspired annealing allows the system to explore the solution space more ef-
fectively. This is achieved by occasionally permitting the simultaneous flipping ofmultiple spins in the new config-
uration, mimicking the quantum tunneling process [49]. Additionally, the algorithm increases the temperature
suddenly when it reaches very low values. This strategic increase in temperature helps the system escape local
minima and further expands the search space, enhancing the probability of finding a global optimum.

By integrating these mechanisms, quantum-inspired annealing leverages both the broad exploration capabili-
ties of higher temperatures and the efficient traversal of energy landscapes via tunneling. This combination paves
the way formore effective optimization and potentially superior results compared to classical simulated annealing.
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Algorithm 6.2 Simulated Annealing with Tunneling
0: Initialize: T = T0, current solution s, best solution s∗
0: while stopping criterion not met
0: Generate a neighbor solution s′
0: Compute ΔE = f(s′)− f(s)
0: if ΔE < 0 or exp

(
−ΔE

T

)
> random(0, 1)

0: s← s′
0: end if
0: if f(s) < f(s∗)
0: s∗ ← s
0: end if
0: if T ≤ T0 × 0.00001
0: T← T0 {Reset temperature if it drops too low}
0: else
0: Update T according to the cooling rate
0: end if
0: end while
0: return s∗ =0

6.9 Knapsack Optimization

The Knapsack problem is a typical combinatorial optimization and NP-completely difficult problem. It can be
described as follows: Given a set of m items, where item j has weight wj and profit vj, and an integer C is the total
capacity of the knapsack. The problem is to choose a set of items such that their total profit is maximized, while
the total weight is not larger than capacity C [50].

max f(x) =
m∑
j=1

vjxj

subject to
m∑
j=1

wjxj ≤ C,

xj ∈ {0, 1}, j = 1, 2, . . . ,m.

(6.5)

Here xj represents the number of instances of the item j to include in the knapsack. In other words, if it is 1, we
include the item and if it is 0 we exclude it. This process is illustrated in algorithm 6.3. We map the Knapsack
Optimization to Ising Hamiltonian because quantum computers (particularly those using quantum annealing)
are designed to minimize energy functions [13]. The Ising model describes such an energy landscape. In this ap-
proach, we leverage the quantum computer’s natural ability to find the minimum of the system, solving complex
combinatorial problems faster than classical methods.
It is worth mentioning that to map a knapsack problem into an Ising model, we need to transform the binary
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variables xj into spin variables (zj = 2xj − 1, where zj ∈ {−1, 1}). After which, we promote this new decision
variables to Pauli spin operators with Zi|xi⟩ = (−1)xi |xi⟩ In our project, items are the 16 bodies of ferromagnets
that we want to choose the best configuration for them according to their values which are the inductances that
we get from FEM.

We want to maximize the total value ,inductance in our term, of the selected bodies. This can be written as a
HamiltonianHobj:

Hobj = −
n∑

i=1

viσiz (6.6)

Where: σiz is the Pauli-Z matrix applied to qubit i, which represents the binary variable xi. The negative sign
ensures that minimizing the Hamiltonian corresponds to maximizing the total value.

The constraint on the total weight is incorporated as a penalty term in the Hamiltonian. If the total weight
exceeds the knapsack capacityW, a penalty is added. This can be shown as:

Hpen = λ

( n∑
i=1

wiσiz −W

)2

(6.7)

The total Hamiltonian is a combination of the objective function and the penalty term:

H = Hobj +Hpen (6.8)

H = −
n∑

i=1

viσiz + λ

( n∑
i=1

wiσiz −W

)2

(6.9)

The ground state of this Hamiltonian corresponds to the optimal solution of the knapsack problem.

Thenwe reformulate the IsingHamiltonian intoQUBO form. Quadratic unconstrained binary optimization
(QUBO), is a combinatorial optimization problemwith a wide range of applications from finance and economics
to machine learning [51]. QUBO is an NP hard problem and we convert the Ising model to a QUBO, since it is
suitable for quantum and hybrid algorithms in Qiskit. The function fQ that assigns a value to each binary vector
through :

fQ(x) = x⊤Qx =
n∑

i=1

n∑
j=i

Qijxixj (6.10)

Intuitively, the weightQij is added if both xi and xj have value 1. When i = j, the valuesQii are added if xi = 1,
as xixi = xi for all xi ∈ B.

In our case converting Knapsack Hamiltonian to QUBO form will be as:

HQUBO = −
n∑

i=1

vixi + λ

( n∑
i=1

wixi −W

)2

(6.11)
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Expanding the penalty term gives:

λ

( n∑
i=1

wixi −W

)2

= λ

 n∑
i=1

w2
i xi + 2

∑
i<j

wiwjxixj − 2W
n∑

i=1

wixi +W2

 (6.12)

Now, combining the value function and expanded penalty term:

HQUBO = −
n∑

i=1

vixi + λ

 n∑
i=1

w2
i xi + 2

∑
i<j

wiwjxixj − 2W
n∑

i=1

wixi +W2

 (6.13)

TheW2 term is a constant and can be omitted since it doesn’t affect the optimization process.

Algorithm 6.3 0/1 Knapsack Problem
0: Input: Array of weights w1,w2, . . . ,wn, array of values v1, v2, . . . , vn, knapsack capacity

C
0: Output: Maximum value that can be obtained in the knapsack
0: Create a 2D arrayK[0..n][0..C]
0: for each i from 0 to n
0: for each w from 0 to C
0: if i = 0 or w = 0
0: K[i][w]← 0
0: else if wi ≤ w
0: K[i][w]← max(K[i− 1][w], vi + K[i− 1][w− wi])
0: else
0: K[i][w]← K[i− 1][C]
0: end if
0: end for
0: end for
0: returnK[n][W] =0
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Figure 6.3: Our project with the max cut problem. As it can be seen from the figure the nodes represent the ferromagnetic
bodies that we want to minimize them. Python module networkx is used. [6]
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7
QuantumComputing

7.1 Hamiltonian

In the realm of quantum annealing, crafting the Hamiltonian formula involves tailoring it to encapsulate the
essence of our optimization challenge. Generally, the Hamiltonian in a quantum annealing scenario comprises
two principal components:

• The problemHamiltonian (Hp), which encodes the optimization problem

• The driverHamiltonian (H0), which is used to initiate the quantum state in a superposition of all possible
states.

Quantum annealing aims to uncover the ground state of Hp, where we seek to minimize the total energy (and
consequently, the overall weight in this context). This process alignswith finding themost favorable configuration
ofmeshpoints that imparts the leastweight contribution. Considering the goal ofminimizingweight, let’s assume
that eachmesh point i contributes a weight wi when set to ’1’ and imparts zeroweight when set to ’0’. In this light,
the problemHamiltonian can be articulated as follows:

Hp =

32∑
i=1

wi · Zi (7.1)

Here, Zi is the Pauli-Z operator applied to the i-th qubit. The Pauli-Z operator has eigenvalues +1 and -1, corre-
sponding to the qubit states |0⟩ and |1⟩ respectively. Thus, each term in the sum contributes to the energy (and
thereby the weight) only if the corresponding qubit (mesh point) is in the |1⟩ state.
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7.1.1 Contribution to the hamiltonian’s energy
The energy of a quantum system in a particular state is determined by applying the Hamiltonian to that state.
Specifically, for the problemHamiltonian Hp:

Hp =

32∑
i=1

wi · Zi (7.2)

In the context of a qubit (representing a mesh point), when the qubit is in the state |0⟩, the term wi · Zi effec-
tively reduces to wi × (+1). In this case, it contributes nothing to the overall energy, signifying that themesh point
adds zero weight. Conversely, when the qubit is in the state |1⟩, the term becomes wi × (−1), actively contributing
to the total energy. This scenario signifies that the mesh point adds its weight to the overall energy.

In the realm of quantum mechanics, the energy levels denoted by the eigenvalues of the Hamiltonian don’t
always have a straightforward correspondence to tangible aspects like weight. Yet, when delving into optimiza-
tion problems tackled through quantum annealing, we construe lower energy states as more favorable solutions.
Consequently, a qubit existing in the |1⟩ state (which imparts a negative contribution to the Hamiltonian’s en-
ergy) implies that the associated configuration, where the mesh point adds weight, is less preferable concerning
the pursuit of the minimumweight objective.

7.1.2 Driver hamiltonianH0:
The design of the driver Hamiltonian usually aims to establish a uniform superposition of all conceivable states
as the annealing process initiates. A widely adopted selection is:

H0 =

32∑
i=1

Xi (7.3)

where Xi is the Pauli-X operator on the i-th qubit. The Pauli-X operator acts like a bit-flip, taking |0⟩ to |1⟩ and
vice versa. The use of the Pauli-X operator in the driver Hamiltonian for quantum annealing serves a purpose
similar to the Hadamard gate in other quantum computing contexts – to prepare the system in a superposition
state. However, it does so as part of a continuous, dynamic process unique to quantum annealing, rather than the
discrete application of a gate.

7.2 Quantum Approximate Optimization Algorithm
(QAOA)

Herewe demonstrate an approach that is based on theQuantumApproximateOptimizationAlgorithm (QAOA)
by Farhi, Goldstone, and Gutmann [52]. This algorithm is designed to solve combinatorial optimization prob-
lems and it is a variation formof form,which is basedonquantumadiabatic annealingwith a classical optimization
loop on top of it. For combinatorial optimization, the quantum approximate optimization algorithm (QAOA)
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[52] briefly had a better approximation ratio than any known polynomial-time classical algorithm (for a certain
problem),[7] until a more effective classical algorithm was proposed [52]. The relative speed-up of the quantum
algorithm is an open research question. A time evolution of a Hamiltonian is described by the Schrödinger equa-
tion which is :

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (7.4)

and it follows the following steps:

1. Defining a cost HamiltonianHC such that its ground state encodes the solution to the optimization prob-
lem.

2. Defining amixer Hamiltonian HM.

3. Defining the oraclesUC(γ) = exp(−iγHC) andUM(α) = exp(−iαHM), with parameters γ and α.

4. Repeated application of the oraclesUC andUM, in the order:

U(γ, α) =
N∏
i=1

(
UC(γi)UM(αi)

)
(7.5)

5. Preparing an initial state, that is a superposition of all possible states and applyingU(γ, α) to the state.

6. Using classical methods to optimize the parameters γ, α and measure the output state of the optimized
circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be
one that maximizes the expectation value of the cost HamiltonianHC [53].

7.3 QuantumAnnealing Process

In quantum annealing, the system starts in the ground state of the driver Hamiltonian and evolves towards the
ground state of the problemHamiltonian. This process is governed by the time-dependent Hamiltonian:

H(t) =
(
1− t

T

)
H0 +

t
T
HP (7.6)

where t is the current time, and T is the total annealing time.

• Initial State and the Driver Hamiltonian (H0) : The system starts in a simple quantum state that is easy
to prepare. This state is typically the ground state of an initial Hamiltonian, known as the driver Hamil-
tonian (H0). In this state, the quantum system is in a superposition of all possible states (solutions).

• Final State and the ProblemHamiltonian (Hp): The goal is to evolve this system into the ground state of
the problemHamiltonian (Hp), which encodes the solution to the optimization problem.

• The Role of 1 − t
T in the Annealing Schedule The quantum annealing process is governed by a time-

dependent Hamiltonian that gradually transitions fromH0 toHp over a period T (total annealing time).
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• At the beginning (t = 0):
1− t

T
= 1. (7.7)

The Hamiltonian is entirelyHd. The system is in a superposition of all possible states.

• During the process (0 < t < T):
1− t

T
(7.8)

smoothly decreases from 1 to 0, and t/T increases from 0 to 1. The influence ofH0 decreases while that
ofHp increases. This gradual change allows the quantum system to evolve naturally from the initial state
towards the final state.

• 6- At the end (t = T):
1− t

T
= 0.

The Hamiltonian is entirelyHp. Ideally, the system is now in the ground state ofHp, which encodes the
solution to the problem.
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8
Results

The main question of our research is how we can make the component of the study (passive filter) lighter along
with keeping the same performance. Inspired by the Ising model we indicate the model with discrete variables
1 and 0 representing the ferrite and air respectively. By considering their interaction terms we want to find the
optimal solution that maximizes the number of zeros while having the most inductance that plays as a constraint
in our objective function.

Fig 8.1 illustrates the initial design createdmanually. For visualizing the results, we use the Paraview tool, which
is part of the Elmer suite used for Finite ElementMethod (FEM) simulations. In this figure, the redmesh elements
represent the ferrite bodies, the darker red region in the center corresponds to the conductor, and the surround-
ing blue region indicates the air mesh elements. This human-designed model, while effective, is relatively heavy,
motivating the need for an optimized, lighter alternative.

The magnetic field flux density for the human design can be seen in Fig 8.2. The red arrows illustrate the mag-
netic field flux density and evident is the fact that we have more density in the center than in the corners. In other
words, themagnetic field flux density is continuous around the conductor, this observation suggests that themesh
elements in the corners may be reduced or removed without significantly affecting performance.
Considering the human-designed model, we apply three agents which are Random, Simulated Annealing, and
Simulated Annealing with tunneling to optimize the weight. After this, we can compare the results and conclude
the best candidate for the agent. We also try QA, a faster way to solve NP-hard problems. It should be noted that
in this case, due to CPU limitations, a 16-domain case is investigated. We use Qiskit Optimization which is an
open-source framework [12]. Built-in Python, the Qiskit Optimization module enables easy, efficient modeling
of optimization problems for developers and optimization experts without quantum expertise. It uses classical
optimization best practices and masks complex quantum programming. In order to find a solution for our prob-
lem on a quantum computer, we need first tomap it to an IsingHamiltonian and theQiskit optimizationmodule
can generate it. After mapping we convert to QUBO to be solved with the quantum computers [54].
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Figure 8.1: Visualization of the initial human‐designed passive filter. The red mesh represents the ferrite material, the dark
red in the center indicates the conductor, and the surrounding blue region depicts the air mesh. This design is effective but
relatively heavy, prompting optimization efforts.

Figure 8.2: magnetic field flux density magnitude for the initial human‐designed passive filter configuration. The red ar‐
rows in the left picture indicate the magnetic field flux density, showing a higher concentration in the center around the
conductor compared to the corners.
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8.1 RandomAgent (RA)
The best candidate that our randomAgent chooses is illustrated in Fig 8.3. After 30000 iterations, the configura-
tion with the lowest weight and the highest inductance was determined to be [1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1 0 0 0 0 0 0]. By considering the weight of each body as 1, the weight of the best candidate of this
agent is 21, with the total inductance of 5.7094831880985096× 10−11 provided in equation 5.20. By having the
total flux linkage of the configuration which is gathered from the FEM, and divided by the current i, we have the
total inductance. Using Python, we created a mapping that links each configuration’s weight to its total induc-
tance. Notably, we prioritized minimizing weight in this model. An analysis of these results indicates that while
the RandomAgent successfully minimized the weight of the passive filter, the outcome is not entirely satisfactory.
This is due to the discontinuity in themagnetic field flux density observed in the center of the structure, as shown
in Fig 8.3. Although the RA effectively reduced the overall functionality of the filter, this result was anticipated
since the optimization was not fully implemented in this aspect.

Figure 8.3: Visualization of the optimal configuration (left) and its resulting magnetic field flux density for the Random
Agent (right). The elimination of bodies 20, 10, and 23 creates a discontinuity in the magnetic field flux density at the
center.

8.2 Simulated Annealing Agent (SA)
SA uses the idea of annealing to escape from the local minima and reach to the best configuration. In this case, the
process begins at a high initial temperature of 50,000with a cooling rate of 0.9999which is shown in Fig 8.7. Over
30,000 iterations, SA explores various configurations in search of the optimal solution according to the objective
function:

f(x) =
32∑
i=1

xi(αwi + βli) (8.1)

So according to this agent, in each iteration, the objective function of the configuration is calculated and it
compares it with the last candidate. If the current configuration has a lower energy, it is accepted as the new
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candidate. If the energy is higher, the acceptance of the new candidate depends on a probability that decreases as
the temperature is reduced. The probability of accepting a new configuration is determined by the difference in
energy between the current configuration and the new configuration, relative to the current temperature. This
probability is computed using the following formula:

Paccept = exp
(
Ecurrent − Enew

Tcurrent

)
(8.2)

whereEcurrent is the energy of the current configuration,Enew is the energy of the new configuration, andTcurrent is
the current temperature. Once this probability Paccept is calculated, a random number p is drawn from a uniform
distribution between 0 and 1. The new configuration is accepted if p < Paccept. In other words, the lower the
energy of the new configuration relative to the current one, and the higher the temperature, the more likely the
new configuration is to be accepted. The corresponding code logic is as follows:

accept_p = np.exp((current_energy - new_energy) / curr_temperature)
p = rnd.random()
if p < accept_p:

curr_config = new_config
config.append(curr_config)
current_energy = new_energy

This code first calculates the acceptance probability Paccept. Then, it generates a random number p and compares
it to Paccept. If p is less than Paccept, the new configuration is accepted, and the algorithm updates its current state
to this new configuration. The best candidate for this Agent is [1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0] with the best energy of best energy = -156.58983848127514 which is illustrated in Fig 8.4. Evident is
the justification that this candidate is heavier than the candidate of the RA, but this configuration is better for us
because we can see the continuity in our model.

Fig 8.6 illustrates the logarithm of the energy values across 30,000 iterations during the Simulated Annealing
(SA) process. This analysis provides insights into the behavior of the SA algorithm as it searches for the optimal
configuration. Throughout the entire process, significant fluctuations in the energy values are observed. This
behavior is characteristic of the early stages of the SA algorithm, where the system is designed to accept a wide
range of energy states, including higher energy configurations. The purpose of these fluctuations is to enable the
algorithm to escape local minima and continue exploring the solution space effectively. As the number of itera-
tions increases, the expectation is that the energy fluctuations should decrease, reflecting the algorithm’s gradual
convergence toward a global minimum. However, the plot shows that energy values continue to fluctuate with
considerable amplitude throughout the entire process. This indicates that the cooling schedule, which is governed
by a cooling rate of 0.9999, is relatively slow. Consequently, the systemmaintains a high degree of exploration even
at later stages of the SA process, preventing premature convergence to a local minimum. The use of a logarithmic
scale for energy, magnifies the perception of fluctuations, making even minor variations in energy appear more
pronounced. The visible spikes and dips correspond to moments where the algorithm accepts suboptimal con-
figurations, a deliberate feature of SA that allows the process to bypass local minima. Despite the apparent noise
in the data, there is a subtle downward trend in the energy values, suggesting that the SA algorithm is gradually
moving towards configurations with lower energy.
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Figure 8.4: The best candidate of our Simulated Annealing Agent. It can be seen that this agent has conserved the continu‐
ity of magnetic field flux density and eliminated the last bodies.

Figure 8.5: Magnetic field flux density for SA. Compared to RA, we have more density in the center which shows the
impact of the optimization.

Figure 8.6: Logarithm of energy values versus the number of iterations in the Simulated Annealing process. The plot shows
significant fluctuations with a gradual trend towards lower energy states over 30,000 iterations.
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Figure 8.7: Temperature decreases during the Simulated Annealing process, starting from an initial temperature of 50,000
with a cooling rate of 0.9999, illustrating the gradual reduction in temperature over 30,000 iterations

Figure 8.8: The best candidate of the tSA.

8.3 Tunneling Simulated Annealing Agent (tSA)

The approach of tSA is to convert standard simulated annealing to quantum-inspired simulated annealing by
adding ideas from quantum tunneling. The idea is to raise the temperature when the agent has reached the tem-
perature’s end and flip multiple spins at each iteration 8.10. This approach is effective because it helps to find a
better solution than classical simulated annealing. The temperature reduction is controlled by the cooling rate
which is alpha and it is set to be 0.9999 the same as the SA agent. The best candidate that tSA finds is [1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0] and the best energy of best energy = -158.58983848127514
which is shown in Fig 8.8. This is what we expected to see better results than SA.We can see a complete continuity
in the center and lower energy of our objective function than SA.Moreover, in Fig 8.9 it can be seen that we have
a highermagnetic field flux density in the center comparedwith the SA agent and since it plays a key role, it should
not be taken for granted.

8.4 Knapsack Optimization via QUBO formulation

The Knapsack Problem goal is to find a combination of items such that the total weight is within the capacity of
the knapsack and maximize the total value of the items. In this thesis, we employ Qiskit, an open-source quan-
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Figure 8.9: The magnetic field flux density for the tSA Agent with 30000 iterations

Figure 8.10: The temperature decreases gradually during the tSA process, starting at an initial value of 50,000 and follow‐
ing a cooling rate of 0.9999 over 30,000 iterations. At the end of the process, the temperature is then increased.

tum computing framework, to tackle the knapsack problem. we extend the classical Knapsack problem to a two-
dimensional (2D) lattice configuration where each element of the lattice represents a binary variable (0 or 1), and
they correspond to the inclusion or exclusion of each element in the optimal configuration. Each element of the
lattice has associated physical properties such as weight and inductance, which we seek to optimize using quan-
tum computation. Since we are usingQiskit, first we convert the problem into aQuadratic Unconstrained Binary
Optimization (QUBO) format. This involves defining a Hamiltonian that combines the objective function and
the penalty for violating constraints. To solve this, We both use Classical (Numpy Eigensolver), and Quantum
Approximate Optimization Algorithm (QAOA). In both approaches, we arrive at the same solution with an ob-
jective function value of 2.7689178906558642 and the selected items corresponding to the variables. In knapsack
optimization the whole :

0.1006869263238621 0.3272448299581979 0.3295748209048719
0.09665066758164843 0.10610910693765153 0.1874750208847037
0.18321187336958628 0.10549461186016788 0.10547543668393612
0.18221514205585024 0.18799900418328772 0.10569193436011937
0.09703606079014983 0.3243472572576163 0.32641801288426925
0.09993785220159371
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and we want to maximize the values:

0.1006869263238621 · x0 + 0.3272448299581979 · x1 + 0.3295748209048719 · x2 + 0.09665066758164843 · x3
+ 0.10610910693765153 · x4 + 0.1874750208847037 · x5 + 0.18321187336958628 · x6 + 0.10549461186016788 · x7
+ 0.10547543668393612 · x8 + 0.18221514205585024 · x9 + 0.18799900418328772 · x10 + 0.10569193436011937 · x11
+ 0.09703606079014983 · x12 + 0.3243472572576163 · x13 + 0.32641801288426925 · x14 + 0.09993785220159371 · x15

(8.3)
The optimization is subject to the weight constraint of the knapsack, which can be written as:

2 · x0 + 3 · x1 + x10 + 2 · x11 + 2 · x12 + 3 · x13 + 3 · x14 + 2 · x15
+ 3 · x2 + 2 · x3 + 2 · x4 + x5 + x6 + 2 · x7 + 2 · x8 + x9 ≤ 30

(8.4)

here the xi are the binary variable and the the coefficients are the weights of each bodywewant to The solution
reached is:

[0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In this 16-bodies case, it can be seen that the body number 3 is removed. In this scenario, the approach results
in the exclusion of a single item from the optimal selection. While this method may be considered simplistic, it
effectively reduces the overall weight of the knapsack while minimizing the associated loss in total value. This bal-
ance betweenweight efficiency and value retention highlights a pragmatic solution in the context of optimization.
It can be seen that the total capacity of the knapsack is considered as 30 and we have an inequality in equation 8.4.
In order to solve this equation first we need to convert inequality constraints into equality constraints with addi-
tional slack variables to remove inequality constraints from QuadraticProgram. In other words, by introducing
the slack variable s ≥ 0, the inequality Ax ≤ b can be converted to the equation Ax + s = b. In the knapsack
problem, slack variables help enforce our constraints. In our case, by introducing S0 we convert equation 8.4 to :

2 · x0 + 3 · x1 + x10 + 2 · x11 + 2 · x12 + 3 · x13 + 3 · x14 + 2 · x15
+ 3 · x2 + 2 · x3 + 2 · x4 + x5 + x6 + 2 · x7 + 2 · x8 + x9 + s0 = 30

(8.5)

S0 represents the difference between the left-hand side of the inequality and the constant (30) on the right-hand
side. Essentially, it takes up any unused capacity in the constraint. In mathematical terms:

s0 = 30− (2 · x0 + 3 · x1 + x10 + 2 · x11 + 2 · x12 + 3 · x13 + 3 · x14 + 2 · x15 + 3 · x2
+ 2 · x3 + 2 · x4 + x5 + x6 + 2 · x7 + 2 · x8 + x9 )

(8.6)

Thequantumcircuit elements are shown inFig 8.11. It is a variational quantumalgorithmdesigned for solving
our optimization problem using parameterized quantum gates. The circuit consists of multiple layers of param-
eterized rotations RY and RZ which act on individual qubits, and entangling gates (CNOT gates) that connect
qubits across different layers. The role of the quantum circuit is to explore the solution space more efficiently
than classical algorithms can. By leveraging quantum superposition and entanglement, the circuit can represent
and manipulate multiple potential solutions simultaneously, providing a potential speedup for solving complex
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optimization problems. After running the quantum algorithm, the final state of the qubits is measured, and the
resulting bitstring represents a candidate solution to the knapsack problem. Through iterative optimization, the
QAOA adjusts the quantum circuit parameters to find the optimal or near-optimal solution. The final verdict of
the approach is still to be tested on real quantum hardware.
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Figure 8.11: Overview of the quantum circuits used to solve the Knapsack problem. The circuits show different stages of
qubit preparation and entanglement, from initial setup to complex entanglement across multiple qubits.
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9
Conclusion

An industry-relevant component designproblem is tackled. Theoptimizationproblemof aCMfilter is prescribed
using FEM software, coupled with Python based pipeline, designed specifically for this MSc. The optimization
problem is designed to decrease the weight of a CM passive filter while its function(L) is preserved. 3+1 agents
(RA,SA, QT-SA, and a QISKIT version) were designed. RA has worse results, SA improves this, and tSA is
even better. Through these four approaches, the project demonstrates a progression in solution quality, with
each agent incrementally improving upon the last. The results highlight the feasibility of applying classical and
quantum-inspired algorithms to problems, suggesting pathways for integrating emerging quantum methods in
real-world engineering challenges.
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