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Abstract

Retinopathy of Prematurity (ROP) is a serious eye disease that affects premature in-
fants. The earliest signs of ROP are increased tortuosity and dilation of retinal vessels.
Nowadays, clinicians base their diagnosis only on subjective visual inspection. Auto-
matic segmentation of the vasculature in retinal images is important in the detection
of this type of disease because it can aid physicians during their diagnosis. This the-
sis describes different vesselness measures for the retinal fundus of the infant eye and
presents a comparison among vessel detection’s approaches. We consider three differ-
ent detection methods, i.e., Line Strength, Matched Filter and Eigen-decomposition of
the Hessian. Then, for the best values of accuracy provided by the previous methods,
an algorithm based on the direction coherency measure is proposed to enhance perfor-
mances. In the future, our algorithm can be further improved to provide even better
results in terms of accuracy.





Sommario

La Retinopatia del Prematuro (ROP) è una malattia grave che colpisce i bambini
nati prematuri. I primi segnali del manifestarsi della malattia sono un’eccessiva tortu-
osità e dilatazione dei vasi della retina. Al giorno d’oggi, i clinici basano la propria
diagnosi sull’esperienza diretta che hanno sulla malattia attraverso l’analisi visiva. La
segmentazione automatica della vascolarizzazione in immagini retiniche può essere
un valido aiuto per supportare le decisioni del personale sanitario durante la diagnosi
e le relative cure. Questa tesi descrive le varie misure di vesselness per immagini
di neonato e mostra un confronto fra differenti approcci alla corretta segmentazione.
Come algoritmi di vessel tracking si sono utilizzati Line Strength, Matched Filter e
Eigen-decomposition of the Hessian. Di queste misure, si tengono conto in seguito dei
migliori risultati in termini di accuratezza. Viene poi proposta una misura di coerenza
legata alla direzionalità di ciascun pixel dell’immagine per migliorare le prestazioni dei
precedenti metodi. In futuro, questo nuovo algoritmo può essere migliorato e fornire
risultati più performanti.
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Chapter 1
Introduction

Retinal vessel segmentation is important in the detection of numerous eye diseases
and plays an important role in the automatic retinal disease screening system. Some
diseases, e.g., retinopathy of prematurity (ROP), affect the morphology of the vessel
tree itself. In fact, ROP is categorised by the zone, stage and presence of “plus disease”.
In plus disease, abnormal blood flow in the retina results in the dilation and tortuosity
of the major retinal arteries and veins in the posterior pole. Plus disease is a sign that
ROP is worsening, and may require treatment.

Regional shortages in the availability of ophthalmologists able to provide ROP di-
agnostic examinations are a substantial barrier to ensuring appropriate worldwide ROP
care. Automatic segmentation of the vasculature in retinal images is important in the
detection of this type of disease because it can aid physicians during their detections.

Nowadays, clinicians base their opinions only on their direct experience of the
disease. To overcome the inherent inaccuracies in qualitative evaluation, a computer
can automatically detect the disease or, at least, it can provide guidelines useful for
diagnosis. Several groups have explored the use of the automatic techniques [1]-[4] to
analyse ROP disease but until now none of them has advanced to the stage of being
widely used as a clinical tool.

This thesis describes vesselness measures for the retinal fundus of the infant eye
and proposes a comparison of different approaches. This introductory chapter provides
some background information on ROP disease such as its phatogenesis, screening and
treatment, and concludes with an outline of the thesis.
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1.1 Retinopathy of Prematurity
Retinopathy of Prematurity (ROP) [5] is a serious eye disease that affects premature
infants. It can be mild and resolve spontaneously, but in more serious cases it becomes
very aggressive: new blood vessel formation progresses to scarring, retinal detachment
and blindness. Figure 1.1 shows the anatomy of the human eye with the most important
features labelled.

Figure 1.1: Cross sectional view of the human eye.

1.1.1 Short history
Formerly known as retrolental fibroplasia, ROP was originally described in the 1940s
by Terry who first connected the condition with premature birth [6]. At that time, no
treatment for ROP was available. Major advances in ROP treatment came in the 1980s
and 1990s, when cryotherapy and laser photocoagulation of the avascular retina were
shown to be partially effective in preventing blindness in ROP infants. Despite these
ablation treatments reducing the incidence of blindness by 25% in infants with late-
stage disease, patients still often have poor visual acuity after treatment. Preventive and
less destructive therapies for ROP would be much more desirable, and understanding
the molecular basis of the disease is important in the development of such medical
interventions.

1.1.2 Pathogenesis: two phases of ROP
ROP is a biphasic disease consisting of an initial phase of vessel loss followed by a sec-
ond phase of vessel proliferation. For a better understanding of the process, one needs
to examine the development of retinal vasculature. Retinal vascularisation originates
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from the centre of the optic disc and progresses radially outwards towards the ora ser-
atta. Retinal blood vessel development in humans is initiated during the fourth month
of gestation and reaches the retinal periphery just before birth [7]. Therefore, infants
born prematurely have incompletely vascularised retinas with a peripheral avascular
zone. The gestational age at birth of the premature infant determines the area of the
avascular zone.

In premature infants, vascular growth that would normally occur in utero slows or
ceases and is accompanied by regression of developed retinal vessels. As the infant
matures, the non-vascularised retina becomes increasingly metabolically active and, in
the absence of an adequate vascular system, leads to tissue hypoxia. The first phase of
ROP occurs from birth to approximately 30-32 weeks postmenstrual age.

The second phase of ROP is characterised by hypoxia-induced retinal neovascu-
larisation and begins at around 32-34 weeks postmenstrual age. This phase of ROP is
similar to the neovascularisations in other proliferative retinopathies such as diabetic
retinopathy. New vessels form at the junction between the vascularised retina and the
avascular zone of the retina. Over time, this pathological growth of vessels produces
a fibrous scar extending from the retina to the vitreous gel and lens. Retraction of
this scar tissue can separate the retina from the retinal pigment epithelium, resulting in
retinal detachment and likely blindness.

1.1.3 Screening for ROP disease
RetCam [8] is a wide angle pediatric retinal imaging system useful for screening ROP.
It is a non stressful way to screen premature babies and is easier to perform compared
to indirect ophthalmosocopy done by ophthalmologists.

The RetCam can directly image the angle, and they share hardware consisting of a
handheld digital video camera connected fibre-optically to a light-emitting control unit
and computer assembly. The operator controls focus, illumination, and acquisition of
images with a foot switch. A short video stream is captured with still frames saved
from the video at the end of the imaging session. The video mode helps to overcome
movement on the part of the patient or operator and thus allows for the acquisition of
clear, well-focused frames.

For the anterior segment, the operator uses the same lens as for imaging infants.
In our case the 130◦ fundus lens (also known as the ROP lens) attached to the camera
are used. Instead of sitting at the slit lamp, subjects are in a semisupine position on a
bed or reclining chair, while the operator approaches them from behind the top of their
heads. To maintain a reproducible point of reference, the operator should keep the
cable connecting the camera to the RetCam’s mainframe in a 12 o’clock orientation to
the patient.

The main drawbacks of RetCam images, with respect to images provided by the
standard fundus cameras used for the adult patients, are:

• presence of interlacing artifacts, as images are actually single frames extracted
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from video;

• narrow blood vessels, due to the wide-field of view coupled with the 640 × 480
pixel resolution;

• non uniform illumination in the captured wide field of view;

• high visibility of choroidal vessels, related to the lack of pigmentation of the
infant choroid.

All these aspects make the automatic analysis of RetCam images quite challenging
and custom techniques are therefore necessary to successfully trace the vasculature. In
Figure 1.2 there are two examples of wide-field ROP image.

Healthy Pathological (ROP disease)

Figure 1.2: Two examples of wide-field ROP image.

1.1.4 Treatment

Early treatment has been shown to improve a baby’s chances for normal vision. Treat-
ment should start within 72 hours of the eye exam.

Some babies with “plus disease” need immediate treatment. Treatment may in-
clude cryotherapy (freezing) to prevent the spread of abnormal blood vessels.

Laser therapy (photocoagulation) may be used to prevent complications of ad-
vanced ROP. Laser therapy stops the abnormal blood vessels from growing and can
be performed in the nursery using portable equipment. To be effective, it must be done
before scarring and detachment occur.

Surgery is needed if the retina detaches. Surgical procedures continue to improve,
but may not result in good vision.



5

1.2 Outline of this thesis
This thesis describes different approaches for vessel enhancement or mathematically
defined “vesselness measures”.

Chapter 2 provides a theoretical overview of several different techniques for the
automatic detection of the vasculature in retinal images. These techniques are used
in all subsequent chapters. We considered the vesselness measure based on the Line
Strength, Matched Filter and Eigen-decomposition of the Hessian.

In chapter 3 a comparative analysis is performed using ROC curves. For each
method, described in Chapter 2, the ROC curves at different lengths or scales are shown
and the results are discussed.

In chapter 4 a new algorithm is proposed with the aim of improving vesselness
performances. The direction coherency measure uses the “direction map” that provides
an angular value for all the pixels in the image. This new algorithm uses a measure
of direction to find vessels that have a strong probability of being correctly classified.
The ROC curves are performed to show results and make comparisons.

Finally, Chapter 5 provides a brief conclusion.





Chapter 2
Theoretical overview

This chapter provides an overview of different approaches in vessel segmentation, i.e.,
Line Strength, Matched Filter and Eigen-decomposition of the Hessian. A theoretical
approach is provided in order to present the state of the art in this field.

2.1 Line Strength
This study is based on the evaluation of pixel lines at multiple orientations.

At the beginning, it is useful to work on the inverted green channel images, where
vessels appear brighter than the background. To preserve the image in the sense of
vessel structure, preprocessing on the image is not made.

The average grey level is evaluated along lines of fixed length l passing through
the target pixel (i, j) at different orientations. Ricci and Perfetti [9] evaluate 12 angles
each of 15 angular resolution as the best choice on adult images. We use this setup for
our ROP images.

The line with the largest average grey level is considered. This value is denoted
with L(i, j). The difference S (i, j) = L(i, j) − N(i, j) represents the line strength of the
pixel [14], where N(i, j) is the average grey level in the square window, centered on
the pixel, with edge length equal to l.

The basic line detector is illustrated in figure 2.1 and 2.2 (a).

The line strength is large if the winning line is aligned within a vessel. Otherwise,
we have a partial overlap and the line strength is lower. This difference allows the
operator to discriminate vessel pixels from non-vessel pixels. Lines of different lengths
have been considered as a working parameter for the simulation setup.

The square window is not oriented like the winning line but is kept fixed. Moreover,
the average grey level of lines is not obtained by interpolation. In fact, the pixels to be
averaged are found by rounding the coordinates of the points on the ideal line.

The basic line detector described above can be improved for retinal vessel segmen-
tation. In proximity of a large and bright vessel, the line strength of a pixel can be



8 Theoretical overview

Figure 2.1: Twelve orientations to evaluate line
strength of shaded pixel.

Figure 2.2: (a) Basic line de-
tector. (b) Line detector with
its orthogonal line.

comparable with that of the pixel inside a darker and thinner vessel. A possible way to
overcome this problem [9] is an orthogonal line, centred on the midpoint of the main
line, has length of three pixel [Figure 2.2 (b)]. This additional information helps to
discriminate between inside and outside pixels

For simplicity, we consider only the line strength approach in its basic form.

2.2 Eigen-decomposition of the Hessian

In [12] vessel enhancement is designed as a filtering process that searches for geomet-
rical structures which can be regarded as tubular.

A common approach to analyse the local behaviour of an image, L, is to consider
its Taylor expansion in the neighbourhood of a point xo,

L(xo + δxo, s) ≈ L(xo, s) + δxT
o∇o,s + δxT

o Ho,sδxo. (2.1)

This expansion approximates the structure of the image up to second order. ∇o,s

and Ho,s are the gradient vector and Hessian matrix of the image computed in xo at
scale s.

The third term in Equation 2.1 gives the second order directional derivative,

δxT
o Ho,sδxo =

(
∂

∂δxo

) (
∂

∂δxo

)
L(xo, s). (2.2)



9

The idea behind eigenvalue analysis of the Hessian is to extract the principal di-
rections in which the local second order structure of the image can be decomposed.
Since this directly gives the direction of the smallest curvature (along the vessel) ap-
plication of several filters in multiple orientations is avoided. This latter approach is
computationally more expensive and requires a discretisation of the orientation space.

Let λs,k denote the eigenvalue corresponding to the k-th normalised eigenvector ûs,k

of the Hessian Ho,s, all computed at scale s. From the definition of eigenvalues:

Ho,sûs,k = λs,kûs,k (2.3)

it follows that

ûT
s,kHo,sûs,k = λs,k. (2.4)

By analysing Equations (2.2 - 2.4) a nice geometric interpretation arises. The
eigenvalue decomposition extracts three orthonormal directions which are invariant
up to a scaling factor when mapped by the Hessian matrix. Table 2.1 summarises the
relations that must hold between the eigenvalues (λk) of the Hessian for the detection
of different structures. The eigenvalues are ordered (|λ1| ≤ |λ2|).

λ1 λ2 Orientation pattern
N N noisy, no preferred direction
L H- tubular structure (bright)
L H+ tubular structure (dark)
H- H- blob-like structure (bright)
H+ H+ blob-like structure (dark)

Table 2.1: Possible patterns in 2D depending on the value of the eigenvalues λk

(H=high, L=low, N=noisy, usually small, +/- indicate the sign of the eigenvalue).
The eigenvalues are ordered: |λ1| ≤ |λ2|.

For 2D images they propose the following vesselness measure:

Vo(s) =

0 if λ2 > 0,

exp
(
−

R2
B

2β2

) (
1 − exp

(
− S 2

2c2

))
otherwise.

(2.5)

RB=λ1/λ2 is the blobness measure in 2D, β and c are thresholds which control the
sensitivity of the line filter to the measures. S is defined as measure of “second order
structures”,

S =

√∑
j≤D

λ2
j (2.6)
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where D is the dimension of the image.

The vesselness measure in Equation 2.5 is analysed at different scales, s. The
response of the line filter will be maximum at a scale that approximately matches the
size of the vessel to detect. [12] integrate the vesselness measure provided by the filter
response at different scales to obtain a final estimate of vesselness.

Vo(γ) = max
smin≤s≤smax

Vo(s, γ) (2.7)

where smin and smax are the maximum and minimum scales at which relevant struc-
tures are expected to be found. They can be chosen so that they will cover the range of
vessel widths.

2.3 Matched Filter
Matched filtering is another approach to edge detection [10]. The intensity profile
varies by a small amount from vessel to vessel and it may be approximated by a Gaus-
sian curve.

G(x | µ, σ) =
1

σ
√

2π
exp
−(x − µ)2

2σ2 (2.8)

with mean µ and standard deviation σ. Some useful information on two dimen-
sional matched filter can be retrieved in [11].

Consider then the Laplacian of an image f (x, y) smoothed by a Gaussian (expressed
using a convolution ∗) . The operation is abbreviated by some authors as LoG, from
Laplacian of Gaussian

∇2[G(x | µ, σ) ∗ f (x, y)]. (2.9)

The order of differentiation and convolution can be interchanged because of the
linearity of the operators involved

[∇2G(x | µ, σ)] ∗ f (x, y). (2.10)

The derivative of the Gaussian filter ∇2G can be pre-computed analytically, since
it is independent of the image under consideration. Thus, the complexity of the com-
posite operation is reduced.

Finding second derivatives in this way is very robust. Gaussian smoothing effec-
tively suppresses the influence of the pixels that are more than a distance 3σ from the
current pixel; then the Laplace operator is an efficient and stable measure of changes
in the image. After image convolution with ∇2G, the locations in the convolved image
where the zero level is crossed correspond to the positions of edges.

This type of filter can be modified and rotated in a template. The rationale is the
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correlation between kernel (2D LoG) and signal at different orientations and scales. In
fact, it is possible to set up length, width and number of rotation of each filter. Width
allows to adjust the filter on vessel calibre and we can track small and tortuous vessels
varying the length parameter . The filter gives higher response as its orientation and
shape better fit the intensity profile.

(a) (b)

(c) (d)

Figure 2.3: Matched filter template. White is the maximum positive value, black is
the maximum negative value. (a) Parameters: length=3, width=2 and rotation=0◦. (b)
Length=3, width=2 and rotation=45◦ (c). Length=11, width=2 and rotation=0◦. (d)
Length=3, width=4 and rotation=0◦.

In Figure 2.3 we can see some examples of the graphical implementation. These
matched filter templates better show the previous considerations. The reference tem-
plate is in Figure 2.3 (a). This template is aligned with zero degrees and has 3 as length
and 2 as width. Subfigure (b) shows a rotation on 45◦ of the same filter. If we stretch
on the x-axis (left and right directions) we can modify length of the filter template. On
the y-axis (up and down direction) width is modified. These last two considerations
are shown respectively in Figure 2.3 (c) and (d).





Chapter 3
Vessel segmentation

This chapter presents a comparison among different methods in vessel segmentation.
The presence of noise, the variability of vessel shape and width, the low contrast be-
tween vasculature and background make the accurate vessel segmentation a difficult
task.

For the comparison, twenty RetCam images, with 130◦ field of view and 640×480
pixel size, provided by Clarity Medical Systems, CA, USA, were acquired in pre-
mature infants with different severity of ROP. A manual segmentation of the vessel
network (ground truth) was provided and used to evaluate the performance of the al-
gorithm proposed for vessel extraction.

We use the ground truth without preprocessing to show a realistic analysis. It
is possible to use a variance mask on the image for discarding pixels lower than a
threshold. However, the correct value of this threshold and the size of the mask are
subjective.

In the analysis of red-green-blue (RGB) images, usually the colour components are
considered separately because the green channel exhibits the best vessel/background
contrast. In few cases also red component might be interesting but very often blue and
red ones tend to be very noisy.

3.1 Receiver Operating Characteristic

It is common practise to evaluate the performances of retinal vessel segmentation al-
gorithms using a Receiver Operating Characteristic (ROC) curve. It is a graphical plot
which illustrates the performance of a binary classifier system as its discrimination
threshold is varied [13].

Starting from the basic concepts, a classification model is a mapping of instances
between certain classes or groups. We consider a two-class prediction problem (bi-
nary classification) in which the outcomes are labelled either as positive or negative.
There are four possible outcomes from a binary classifier. T P is the number of correct
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predictions that an instance is positive; FP is the number of incorrect predictions that
an instance is negative; FN is the number of incorrect predictions that an instance is
positive; T N is the number of correct predictions that an instance is negative. The four
outcomes can be formulated in a 2 × 2 contingency table or confusion matrix, as in
Figure 3.1.

Figure 3.1: Contingency table.

Sensitivity or True Positive Rate T P
T P+FN

Specificity or True Negative Rate T N
T N+FP

Accuracy T P+T N
T P+T N+FP+FN

Table 3.1: Terminology.

ROC curves, constructed from sensitivity and specificity (Table 3.1), do not depend
on the decision threshold. In a ROC curve, every possible decision threshold is consid-
ered. A ROC curve is a plot of a test’s false-positive rate (FPR), or 1-specificity (plotted
on the horizontal axis), versus its sensitivity (plotted on the vertical axis). Each point
on the curve represents the sensitivity and FPR at a different decision threshold. The
plotted (FPR, sensitivity) coordinates are connected with line segments to construct an
empiric ROC curve.

A ROC curve begins at the (0, 0) coordinate, corresponding to the strictest decision
threshold whereby all test results are negative for disease. The ROC curve ends at the
(1, 1) coordinate where all test results are positive for disease.

The line connecting the (0, 0) and (1, 1) coordinates is called the “chance diago-
nal” and represents the ROC curve of a diagnostic test with no ability to distinguish
patients with disease versus those without disease. A test with perfect discrimination
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(no overlap in the two distributions) has a ROC curve that passes through the upper
left corner. Therefore, the closer the ROC curve is to the upper left corner, the higher
the overall accuracy of the test.

3.2 Line Strength
Line strength method is our first local measure of vesselness. In our analysis, we
consider the number of rotation as fixed parameter. This value is set at 12, as used in
[9]. In this way, we want to underline the importance of different lengths used in the
simulations, regardless of the effect of other parameters.

Colour Length in pixel
Cyan 7
Red 9

Black 11
Blue 13

Green 15
Magenta 17

Table 3.2: Colour legend at different lengths.

Every line is linked to a different colour (Table 3.2) with the aim of showing in a
better way each ROC curve. Figure 3.2 shows the mean trend of the twenty images of
the dataset.
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Figure 3.2: ROC curves (mean) for Line Strength.
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Figure 3.3: A blow-up of ROC curves (mean) for Line Strength.

In Figure 3.3 we can better see different responses at different lengths. In this
image there is a blow-up of the previous picture. As before every line is linked to a
different colour (Table 3.2).

The curve corresponding to 7 pixels length is the lowest in Figure 3.3. Increasing
gradually the length of each line, the ROC curves prove an enhancing of performances
in terms of sensitivity and specificity. A high value of specificity means a better capac-
ity to find pixels that are part of vessels. For this reason, we consider almost 0.90 of
specificity a satisfactory result in our analysis. On the other hand, sensitivity is linked
to the number of false negative and shows the rate of wrong pixels classified as vessels.
High sensitivity means few pixels of the background classified as part of vessels.

From Figure 3.3 we observe that the gap between 7 and 9 pixels is very highlighted.
There is a difference in terms of space that shows an improvement for the red curve. In
fact, the red line is much closer the y-axis and it reaches a higher value of sensitivity
than the cyan line on equal values of the x-axis.

From 9 to 11 pixels the difference is lower than the previous two lines. Increasing
the number of pixels there is an improvement of the performances and the pick is 15
pixels. Here, the green line shows the best trend. In our analysis this value maximises
sensitivity and specificity. This is also the cut off point because at 17 pixels we have
worse performances. In fact, the previous trend suggested an enhancement of the
performances with an increasing of line length. However, from 17 to more pixels, the
algorithm completely fails the vessel detection (see magenta line in Figure 3.2).
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3.3 Eigen-decomposition of the Hessian
Eigen-decomposition of the Hessian is linked to the values of the different scales. In
Table 3.3 the colour legend at different scales is reported. The ROC curves for the
twenty images are shown in Figure 3.4 while in Figure 3.5 we can see a blow-up.

Colour Scale
Cyan 1
Red 2

Black 3
Blue 4

Green 5

Table 3.3: Colour legend at different scales.
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Figure 3.4: ROC curves (mean) for Eigen-decomposition of the Hessian.

Our analysis starts from the lower scale that is drawn in cyan colour. The corre-
sponding ROC curve is very close to the origin and remains parallel to the y-axis until
the 0.3 value of sensitivity. In comparison with the other scales, the lowest scale shows
the best trend in this part of the graph.

From 0.3 the cyan line becomes curve and in the observation window (Figure 3.5)
its maximum value of sensitivity is 0.7, the same of the green line. We can say that
scale 1 and scale 5 are the boundaries in terms of performances because the other three
scales show an enhancement in terms of accuracy for this dataset. In fact, scale 3 and
4 have similar trend but the first is better than the second one. In Figure 3.5 we can see
that the gap between the two ROC curves varies from 0.1 to 0.2 in terms of sensitivity
with the black line performing better than the blue line.
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Figure 3.5: A blow-up of ROC curves (mean) for Eigen-decomposition of the Hessian.

Finally, scale 2 is the best. The red line shows the highest value of sensitivity in
almost all the trend in the observation window. Table 3.4 summarises the accuracy
values. It is reported the mean of the best values of accuracy, computed for each image
of the dataset, at different scales.

Scale Accuracy

1 0.9505
2 0.9517
3 0.9489
4 0.9489
5 0.9488

Table 3.4: Accuracy values at different scales.

3.4 Matched Filter

The discussion about the measure of vesselness for the matched filter is shown using
different approach. In fact, this analysis is more complicated than the previous ones.

The most important parameter is width but also length plays a significant role.
Table 3.5 reports the accuracy for 5 different width values and for 4 lengths. In total
there are 20 values. We use an adaptive threshold that corresponds to the maximum
value of accuracy for each filter. The number of rotation is set to an angular resolution
of 10◦. A total of 36 convolutions are needed.
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Width Length
3 7 11 15

1 0.9582 0.9617 0.9626 0.9613

2 0.9650 0.9655 0.9658 0.9649

3 0.9669 0.9672 0.9670 0.9660

4 0.9666 0.9662 0.9658 0.9651

5 0.9652 0.9641 0.9631 0.9626

Table 3.5: Results for the different Matched Filter templates in terms of accuracy.

Figure 3.6 shows the ROC curve for the best value among the accuracy found
previously. In this case, the highest value corresponds to 3 as width and 11 as length.
However, Table 3.5 proves the possibility of other candidates. The gap among the
coloured cells is very small but it should be noted that the width value of 3 gains the
three-fourths of the better values. In this case the filter gives higher response as its
orientation and shape better fit the intensity profile.

After a limit value, there is a worsening of the performances. In this case, a higher
value of length shows the lowest performances in terms of accuracy. On the other
hand, only two width values (3 and 4) achieved the expected result.
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Figure 3.6: ROC curve for the best value of accuracy. Parameters: length=7, width=3.

Figures 3.7-3.14 show a comparison among the best value of accuracy and the
surrounding eight cells of Table 3.5. The ROC curve with densely dashed line is the
term of comparison while the solid line is the new benchmark. All the figures are not
the entire ROC curves but only a blow-up with the most significant parts.

The ROC curves of the eigth cells around the red one show some interesting feau-
tures. In fact, six of eight figures prove the same trend between the two curves. Small
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differences are visible but the sensitivity profile remains the same. Only Figures 3.8
and 3.9 disagree with the control line. The first one has a better response at high val-
ues of specificity but at 0.1 of the x-axis the two ROC curves are overlapped. On the
other hand, Figure 3.9 shows the best trend in the entire observation window. The gap
remains costant and it is almost 10% more in terms of sensitivity. Matched filter with
length equal to 11 and width equal to 2 provide the best ROC curve trend.
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Figure 3.7: Parameters: l = 3, w = 2
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.8: Parameters: l = 7, w = 2
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.9: Parameters: l = 11, w = 2
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.10: Parameters: l = 3, w = 3
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.11: Parameters: l = 11, w = 3
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.12: Parameters: l = 3, w = 4
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.13: Parameters: l = 7, w = 4
for the solid line; l = 7, w = 3 for the
dotted line.
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Figure 3.14: Parameters: l = 11, w = 4
for the solid line; l = 7, w = 3 for the
dotted line.





Chapter 4
Direction coherency measure

In this chapter we compute a new algorithm with the aim of enhancing performances
of the previous three methods. This uses a measure of direction to find vessels that
have a strong probability to be correctly classified.

From each previous method we obtain the “direction map” that provides an angu-
lar value for all the pixels in the image. If a pixel is part of a vessel, it is probably
surrounded by pixels that have the same direction. A group of pixels can be intercon-
nected with another group with slightly different angular value and form with it a piece
of vessel. Areas where pixels have a random distribution probably belong to the back-
ground. On the other hand, the presence of choroidal vessels can be detected as retinal
vessels, causing false positive in our analysis. The difference between choroidal and
retinal vessels is difficult to find and the algorithm almost always tracks both types.

We report in the following the implementation of our function. It extends the image
with zero pixels (zero-padding) like a picture frame. In this way it is possible to use the
algorithm for all the pixels. Then, the function selects each pixel and checks its angular
value. If in the neighbourhood there are pixels of the same value (or very close) the
function “rewards” the chosen pixel. The observing mask can be edited according to
the user experience.

In this chapter we use three different masks (3 × 3, 5 × 5 and 7 × 7 pixels). The
target value used by the comparison with the ground truth is composed for the 80% of
the best vessel measure and the remaining 20% of the output of the new algorithm.

4.1 Line Strength

Figure 4.1 shows the direction coherency measure for the Line Strength method. In
this figure the length of the line is 15 pixels, considering 12 angles each of 15 angular
resolution, according to the results in Section 3.2.

In Table 4.1 there are the maximum values of accuracy for Line Strength method
without postprocessing and using the three different masks.
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In Figure 4.1 (a) there is the ROC curve for the Line Strength method. In subfigures
(b), (c) and (d) there is a comparison among the different sizes of implemented masks
using a blow-up of the ROC curves. The densely dashed line is the ROC curve without
the direction coherency measure while the solid line is the new benchmark.

None Mask
3 × 3 5 × 5 7 × 7

0.9651 0.9649 0.9646 0.9647

Table 4.1: Results in terms of accuracy (length=15).
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(d)

Figure 4.1: ROC curves for Line Strength and after the direction coherency measure.
(a) Line Strength method (length=15). (b) Mask 3×3. (c) Mask 5×5. (d) Mask 7×7.

After this analysis, we can see that the contribution of the algorithm does not
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change the performances of the vesselness measure and it does not increase the ac-
curacy value. Also the best ROC curve holds steady.

4.2 Eigen-decomposition of the Hessian
Table 4.2 shows the maximum values of accuracy for this method and after the di-
rection coherency measure. In Figure 4.2 (a) there is the ROC curve for the Eigen-
decomposition of the Hessian with scale equal to 2. In subfigures (b), (c) and (d) there
is a comparison among the different sizes of implemented masks using a blow-up of
the ROC curves. The dashed line is the ROC curve without the direction coherency
measure while the solid line is the new benchmark.
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Figure 4.2: ROC curves for Eigen-decomposition of the Hessian and after the direction
coherency measure. (a) Eigen-decomposition of the Hessian (scale=2). (b) Mask 3×3.
(c) Mask 5 × 5. (d) Mask 7 × 7.
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None Mask
3 × 3 5 × 5 7 × 7

0.9517 0.9517 0.9494 0.9489

Table 4.2: Results in terms of accuracy (scale=2).

In this case, there is a loss of quality after the direction measure. In fact, subfigures
(b), (c) and (d) show a gap between the ROC curves in spite of the similar value in
terms of accuracy. The direction map provided by this method is not acceptable for the
subsequent analysis.

4.3 Matched Filter
As the previous sections, in Figure 4.3 (a) there is the ROC curve for the matched
filter method. In subfigures (b), (c) and (d) there is a comparison among the different
sizes of implemented masks using a blow-up of the ROC curves. The dashed line is
the ROC curve without the direction coherency measure while the solid line is the new
benchmark. Results in subfigure (a) are evaluated for the matched filter with length
equal to 7 and width equal to 3.

Figure 4.4 has the same structure of Figure 4.3 but different parameters of the
matched filter. Length is equal to 11 and width is equal to 2.

Table 4.3 summarises the results with and without the direction method. All the
values represent the means of the best accuracies of each image.

None Mask
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

0.9672 0.9672 0.9674 0.9675 0.9675 0.9672

0.9658 0.9659 0.9662 0.9664 0.9664 0.9661

Table 4.3: Results in terms of accuracy. In the first line length=7 and width=3. In the
second line length=11 and width=2.

The analysis is the same for Figure 4.3 and Figure 4.4. In fact, increasing the mask
size, the value of accuracy improves, as outlined in Table 4.3. The cut off value for the
size of the mask is 7 × 7 because after this there are not changes in terms of accuracy
and the values hold steady or decrease.

On the one hand, the direction coherency measure increases the accuracy, on the
other hand the ROC curves show the same profile. The curves overlap and there is no
improvement in the sensitivity profile.
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(d)

Figure 4.3: ROC curves for Matched Filter and after the direction coherency measure.
(a) Matched Filter (length=7 and width=3). (b) Mask 3 × 3. (c) Mask 5 × 5. (d) Mask
7 × 7.
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Figure 4.4: ROC curves for Matched Filter and after the direction coherency measure.
(a) Matched Filter (length=11 and width=2). (b) Mask 3×3. (c) Mask 5×5. (d) Mask
7 × 7.



Chapter 5
Conclusion

ROP disease is a new field of study for bioimaging groups in all over the world. The
aim of this work is to compare the performances of three different vesselness measures.
This idea was born from a lack of studies in literature. Line Strength, Matched Filter
and Eigen-decomposition of the Hessian are vesselness measures used for adult images
of Diabetic Retinopathy. However the automatic detection of retinal vessels in digital
fundus photograph of infants involves several problems as mentioned in Section 1.1.3.

This thesis presents the comparative results in terms of ROC curves and shows the
performances of the previous methods. It is difficult to choose a winner because the
results can be seen in a subjective way. In fact, the correct trade-off between sensitivity
and specificity is difficult to set. Choosing a good criterion to measure the performance
of vessel segmentation algorithms is not trivial. Whether one method performs better
than another is highly dependent on the application or database in which the algorithm
is to be used.

Line strength shows higher ROC curves than the eigen-decomposition of the Hes-
sian in terms of sensitivity. The matched filter proves its adaptability and its capacity to
track all types of vessels. The filter gives higher response as its orientation and shape
better fit the intensity profile. In this case, using more lengths and widths at the same
time, the resulting vesselness analysis could be more accurate. However, the scope
of this study is to present a linear analysis without increasing the complexity of the
problem.

The direction coherency measure gives different results depending on the used
method. Only the matched filter shows a good trend while the other two methods
worsen the performances. The reasons for this are linked to the quality of direction
maps that in turn depend on the quality of the images. In the near future, an improving
of quality of RetCam images can help automatic detection of vessel analysis.





Bibliography

[1] DK. Wallace, Z. Zhao, SF. Freedman, A pilot study using ROPtool to quantify plus
disease in retinopathy of prematurity, J AAPOS, Vol. 11(4), pp. 381-387, 2007.

[2] C. Swanson et al, Semiautomated computer analysis of vessel growth in preterm
infants without and with ROP, Br J Ophatlmol, Vol. 87(12), pp. 1474-1477, 2003.

[3] R. Gelman et al, Diagnosis of plus disease in retinopathy of prematurity using
Retinal Image multi Scale Analysis, Invest Ophthalmol Vis Sci, Vol. 46(12), pp.
4734-4738, 2005.

[4] E. Poletti et al, Automatic vessel segmentation in wide-field retina images of infants
with Retinopathy of Prematurity, in Proc. IEEE EMBC 2011, pp. 3954-3957, 2011.

[5] Committee for the Classification of Retinopathy of Prematurity, The International
Classification of Retinopathy of Prematurity revisited, Arch Ophthalmol, 2005.

[6] T. L. Terry, Retrolental fibroplasia in the premature infant: V. Further studies on
fibroplastic overgrowth of the persistent tunica vasculosa lentis, Trans Am Ophthal-
mol Soc 42:383-396.

[7] AM Roth, Retinal vascular development in premature infants, Am J Ophthalmol
84:636-640, 1977.

[8] I. I. K. Ahmed and L. D. MacKeen, A New Approach to Imaging the Angle, Glau-
coma Today, pp. 27-30, July 2007.

[9] E. Ricci, R. Perfetti, Retinal Blood Vessel Segmentation Using Line Operators and
Support Vector Classification, Medical Imaging, IEEE Transactions on, 2007.

[10] M. Sonka, V. Hlavac, R.Boyle, Image Processing, Analysis and Machine Vision
- 3rd Ed, Thomson Engineering, 850 p., 2007.

[11] S. Chaudhuri et al, Detection of Blood Vessels in Retinal Images using Two-
Dimensional Matched Filters, IEEE Transactions on Medical Imaging, 1989.



32 BIBLIOGRAPHY

[12] A. Frangi et al, Multiscale vessel enhancement filtering, In Proc. 1st MICCAL,
1998.

[13] C. Metz, ROC Methodology in Radiologic Imaging, Investigative Radiology, vol
21, no. 9, pp 720-733,1986.

[14] R. Zwiggelaar, S.M. Astley, C. R. M. Boggis, and C. J. Taylor, Linear structures
in mammographic images: Detection and classification, IEEE Trans. Med. Imag.,
vol. 23, no. 9, pp. 1077-1086, Sep. 2004.



List of Figures

1.1 Cross sectional view of the human eye. . . . . . . . . . . . . . . . . . 2
1.2 Two examples of wide-field ROP image. . . . . . . . . . . . . . . . . 4

2.1 Twelve orientations to evaluate line strength of shaded pixel. . . . . . 8
2.2 (a) Basic line detector. (b) Line detector with its orthogonal line. . . . 8
2.3 Matched filter template. White is the maximum positive value, black is

the maximum negative value. (a) Parameters: length=3, width=2 and
rotation=0◦. (b) Length=3, width=2 and rotation=45◦ (c). Length=11,
width=2 and rotation=0◦. (d) Length=3, width=4 and rotation=0◦. . . 11

3.1 Contingency table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 ROC curves (mean) for Line Strength. . . . . . . . . . . . . . . . . . 15
3.3 A blow-up of ROC curves (mean) for Line Strength. . . . . . . . . . . 16
3.4 ROC curves (mean) for Eigen-decomposition of the Hessian. . . . . . 17
3.5 A blow-up of ROC curves (mean) for Eigen-decomposition of the Hes-

sian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 ROC curve for the best value of accuracy. Parameters: length=7,

width=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Parameters: l = 3, w = 2 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Parameters: l = 7, w = 2 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Parameters: l = 11, w = 2 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Parameters: l = 3, w = 3 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Parameters: l = 11, w = 3 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Parameters: l = 3, w = 4 for the solid line; l = 7, w = 3 for the dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



34 LIST OF FIGURES

3.13 Parameters: l = 7, w = 4 for the solid line; l = 7, w = 3 for the dotted
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.14 Parameters: l = 11, w = 4 for the solid line; l = 7, w = 3 for the dotted
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 ROC curves for Line Strength and after the direction coherency mea-
sure. (a) Line Strength method (length=15). (b) Mask 3 × 3. (c) Mask
5 × 5. (d) Mask 7 × 7. . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 ROC curves for Eigen-decomposition of the Hessian and after the di-
rection coherency measure. (a) Eigen-decomposition of the Hessian
(scale=2). (b) Mask 3 × 3. (c) Mask 5 × 5. (d) Mask 7 × 7. . . . . . . 26

4.3 ROC curves for Matched Filter and after the direction coherency mea-
sure. (a) Matched Filter (length=7 and width=3). (b) Mask 3 × 3. (c)
Mask 5 × 5. (d) Mask 7 × 7. . . . . . . . . . . . . . . . . . . . . . . 28

4.4 ROC curves for Matched Filter and after the direction coherency mea-
sure. (a) Matched Filter (length=11 and width=2). (b) Mask 3× 3. (c)
Mask 5 × 5. (d) Mask 7 × 7. . . . . . . . . . . . . . . . . . . . . . . 29



List of Tables

2.1 Possible patterns in 2D depending on the value of the eigenvalues λk

(H=high, L=low, N=noisy, usually small, +/- indicate the sign of the
eigenvalue). The eigenvalues are ordered: |λ1| ≤ |λ2|. . . . . . . . . . 9

3.1 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Colour legend at different lengths. . . . . . . . . . . . . . . . . . . . 15
3.3 Colour legend at different scales. . . . . . . . . . . . . . . . . . . . . 17
3.4 Accuracy values at different scales. . . . . . . . . . . . . . . . . . . . 18
3.5 Results for the different Matched Filter templates in terms of accuracy. 19

4.1 Results in terms of accuracy (length=15). . . . . . . . . . . . . . . . 24
4.2 Results in terms of accuracy (scale=2). . . . . . . . . . . . . . . . . . 27
4.3 Results in terms of accuracy. In the first line length=7 and width=3.

In the second line length=11 and width=2. . . . . . . . . . . . . . . . 27





Ringraziamenti

Cominciamo con i ringraziamenti formali. In primis, ringrazio il professor Alfredo
Ruggeri per la possibilità datami nello sviluppare una tesi interessante e innovativa.
Ringrazio l’ing. Enea Poletti per il lavoro svolto insieme, condito da tanta pazienza
per le mie sviste. Un grazie anche per le chiacchierate informali che hanno arricchito
questi mesi di lavoro. Ringrazio la mia famiglia e la nonna per la sempre puntuale
attenzione nei miei confronti, per il sostegno economico e morale in tutti questi anni
di studio. Ringrazio zio Bruno e famiglia per avermi sempre fatto sentire importante e
per essersi spesso interessati alla mia carriera universitaria.

Ora vorrei cimentarmi in ringraziamenti particolari. L’ispirazione viene dal tele-
film Scrubs, in particolare dall’ultima puntata dell’ ottava stagione. J.D. si trova nel
corridoio dell’ospedale e immagina che due ali di folla lo salutino al termine del suo
periodo al Sacro Cuore. A salutarlo e incoraggiarlo sono tutti i personaggi apparsi
nella serie, dalle persone speciali fino ai semplici camei.

Ecco, la fine dell’università per me significa questo. Vedo la fine del mio percorso
di studi ma non posso fare a meno di girarmi indietro e ringraziare tutte le persone che
ho conosciuto in questi anni padovani. Non farò nomi per non scontentare nessuno ma
penso che chi mi ha conosciuto si veda riflesso nei personaggi che andrò a citare.

I primi sono i compagni del collegio, gli ingegneri e i medici che hanno diviso con
me gran parte delle giornate. Per chi l’elettronica è una ragione di vita e ha diviso per
tanti anni la stanza con un futuro chirurgo amante del teatro; chi ha passato le notti
a guardare telefilm e chi gli è stato sempre insieme; chi è venuto a rubare bibanesi
e caramelle Big Fruit in camera mia ma che ha sempre messo una parola simpatica
dopo ogni furto; chi ha bussato tutti i giorni alla mia porta quando ritornava da lezione
ma che poi ha cambiato città; chi nella musica ha trovato la sua grande passione.
L’università non è stata facile ma da subito ho incontrato ottimi colleghi. C’è chi passa
le ferie a girare il mondo e chi invece vincerà la paura e prenderà presto l’aereo; chi ha
passato con me giornate intere in biblioteca ma ha sempre mantenuto il sorriso anche
dopo un’intensa giornata di lavoro; chi ha spesso cercato di ammazzarmi ma che in
fondo mi vuole molto bene; chi si è concesso uno spritz oppure una pizza serale per
rinsaldare un’amicizia. Le pause caffè sono sempre state dei momenti magici. In par-



ticolare, una di queste pause è stata la scintilla che mi ha fatto rincontrare una ragazza
speciale. Dopo 5 anni, di caffè ne ho presi tanti ma con lei sono rimasti sempre unici.
La mia vita padovana a questo punto si è aperta a nuove conoscenze e la bicicletta mi
ha portato in Via Coronelli. Conoscere un’intera famiglia non è mai facile ma anche
questo fu amore a prima vista. Tra gli amici di Padova vorrei ringraziare chi una casa
la sta costruendo per coronare un amore profondo e chi invece ha scelto di vivere in
Germania per inseguire una brillante carriera. L’Erasmus è stata una parentesi incred-
ibile che mi ha fatto incontrare persone favolose e apprezzare le bellezze locali. Il
gruppo italiano come sempre si è distinto per l’ironia, la spigliatezza e la tanta voglia
di divertirsi. C’è chi sfoggiato capelli colorati e chi mi ha quasi convinto a fabbricare
una bomba atomica; chi aveva una propria religione da seguire e certe scelte gli erano
imposte, anche se la carta igienica rimane ancora un mistero; chi ha invaso la cucina
con mille teglie e che all’occorrenza trovava in me il suo fido assistente.

Grazie a tutti per questi anni passati insieme. Da domani si comincia una nuova
avventura, con persone nuove e forse lontano da Padova, ma so che voi rimarrete
sempre un pezzo unico della mia vita.


