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Introduction

Every day we encounter macroscopic systems formed by many constituents: the air in a room, the particles in a
glass of water or the photons ejected by a lamp are system formed by a huge number of particles (that is more
than an Avogadro’s number), referred at as many-body systems. Classically, we could treat a many-body system
as components are massive points. For example, if we aim to analyze how the molecules of H2O interact with each
other in a glass of water, we could use the thermodynamic or statistical methods. We obtain a good model that well
describes the system.

Now we assume to simulate the H2O system as a quantum system. We must solve differential equations (like
Schrödinger equation) and exponentiate matrices to obtain a description of the evolution of the model. In general,
study the quantum many-body system is complicated and the numerical simulations have a computational cost that
increases exponentially with the size of the system. An example, we suppose to analyze the evolution of a system
formed by N particles with spin 1/2. The spin state can be ‘up’ |↑〉 or ‘down’ |↓〉, thus we have two possibilities for
a single particle. The total system can be in 2N different configurations. The temporal evolution is defined by the
exponential exp{−(iHsyst)/~}, where Hsys is the Hamiltonian operator of the system. Hsys consists in a 2N × 2N

matrix. For example, assuming N = 50, the classical computer must calculate 250 × 250 ≈ 1030 matrix elements.
For a classical computer, it would require several million Gigabytes of memory and 1013 of years at Gigahertz speed,
namely we have an ‘exponential explosion’ of required sources (like time or memory) [1, 2].

Richard Philips Feynman, in 1982, thought that a quantum system could be simulated by another quantum
system. In his words, “Let the computer itself be built of quantum mechanical elements which obey quantum
mechanical laws.” [1]. Following this idea, in the last years, some machines have been built based on the rules of
quantum mechanics, such as coherent superposition of states. The calculation becomes more efficient and we can
bypass the exponential scaling of the required resources. The idea behind it is simple: we have a controlled system
and we know how it evolves and its proprieties; We consider a model that we want investigate and we map it into
our controlled system [2, 3, 4, 5].

Quantum simulators are ‘digital’ or ‘analog’. The first one is a universal machine formed by reconfigurable
registers of qubits and programmable gates to realize the simulation. It is a quantum computer. The second one
consists of a physical system that can simulate a specific model [6, 7].

In this thesis, we study a possible implementation of an analog quantum simulator, namely ultracold atoms in an
optical lattice. The system consists of an ultracold atomic gas placed in an optical potential, which forms the trap
for the atoms. The lattice is formed by three pairs of counter-propagating lasers orthogonal to each other. According
to the frequency, number and position, and intensity of the lasers, the geometry of the optical trap may be different.
Near zero Kelvin temperature, we can consider the atoms standing still in the potential well.

In the first chapter of this thesis, we briefly describe how the quantum simulator works and the difference between
digital and analog quantum simulation. Then, we describe the optical lattice and how it interacts with the atoms.
Describing the Hamiltonian for a system of bosons, we introduce the potential for two bosons in the condition of
weakly interaction.

In the second chapter of the thesis, we introduce the formalism of second quantization. Passing through the
quantum harmonic oscillator, we derive the ladder operators. Then, we switch to the quantum field theory for global
description of the system. We use the ladder operators to decompose the field and to derive the Bose-Hubbard
Hamiltonian. Analyzing it, we introduce and characterize the Mott insulator and the superfluid phase for a system
of atoms.

In the last part of the thesis, we report a numerical simulation for a chain with two sites. We determine the
fluctuation for the number of particles in one site to establish the passages between the two phases.
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Chapter 1

Cold atoms in periodic potential

1.1 Quantum simulator
Quantum simulators are based on quantum laws and they are helpful to analyze quantum many-body systems. In
general, we have a set of quantum objects placed in a controlled apparatus and we determine the model for that
system: we can achieve information. We can apply this data to another set of particles using the model of the
controlled apparatus and know its proprieties.

Assuming we have a set of N quantum objects and we want to determine its evolution or its energy. The total
system can be defined by a state |Φ〉, given by

|Φ〉 ≡ |φ〉1 ⊗ |φ〉2 ⊗ . . .⊗ |φ〉N ≡ |φ〉1 |φ〉2 . . . |φ〉N , (1.1)

where, {|φ〉i}Ni=1 represents the single particle state. The temporal evolution is determined by Schrödinger equation

i~
∂

∂t
|Φ(t)〉 = Hsys |Φ(t)〉 , (1.2)

whose solutions is
|Φ(t)〉 = e−i

Hsys
~ t |Φ(0)〉 = U(t) |φ(0)〉 , (1.3)

where |Φ(0)〉 is the initial state, at t = 0. The operator U(t) = exp{−(iHsyst)/~} is a unity operator and it determines
the temporal evolution. The exact dynamics is in general hard to computes. Feynman said, "I don’t want to have
an explosion." [7].

Now we supposed to have a quantum simulator. This kind of machine consists of a controlled system how can
simulate the system that we want to study. A set of quantum objects is placed in a specific configuration and we
use the model given by the controlled system to derive proprieties about the other system. If the controlled system
is in the state |Ψ〉 and is define by Hcon, its evolution is given by (1.3) with U ′(t) = exp{−(iHcont)/~}. So temporal
evolution is

|Ψ(t)〉 = e−i
Hcon

~ t |Ψ(0)〉 = U ′(t) |Ψ(0)〉 . (1.4)

There are two principal types of quantum simulator: Digital quantum simulator and Analog quantum simulator.
Digital quantum simulator (DQS) is a universal machine that can emulate the evolution of a quantum system.

The DQS is the Feynman thought about the quantum machine. This is nothing but a quantum computer: it is
formed by reconfigurable registers of the qubit and programmable gates to realize the simulation. Its development is
not to make quantum algorithms, such as Shor factorization or Grover search1. It is thought for optimization of the
problem, as the determination of ground state for a given system described by a Hamiltonian Hsys. The system is
defined by wave function |φ〉, which is encoded by a computational basis in an overlap of binary strings of qubit |0〉
and |1〉. To emulate the evolution of |ψ(0)〉 → |ψ(t)〉, we need to implement a sequence of gates which represent the
unitary operator. The simulation consists in three steps: the initial-state preparation in which we use some quantum
algorithms to define an initial state as |000 . . .〉; the unitary evolution in which we configure some gates to reproduce
the unitary evolution U(t); the measurement in which we obtain the information about controlled system [3, 8].

Analog quantum simulation (AQS) consists of a physical system that can simulate a specific model. The idea
is to create an ensemble of elements with a specific configuration. For example, if we want to simulate a set of
particles with spin 1/2, we must consider a system with two well-defined states, such the polarization of photons or
two internal states of atom and use them to represent the spin state, we must engineer the system in agreement with
the Hamiltonian Hsys we want to simulate. We create a map between the Hamiltonian of the system that we want
to analyze and the Hamiltonian of the controlled system, Hsys corresponding to Hcon.

1They are used for factorization big prime number and search a string in a non-structured database respectively.
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If we want to describe a system in the initial state |φ(0)〉 described by Hsys, we prepare a system in the initial state
|ψ(0)〉 described by Hcon such that an operator f which maps |ψ(0)〉 = f |φ(0)〉. The final state |ψ(t)〉 is mapped
back to |φ(t)〉 via f−1. The choice for the map depends on what we need to simulate and on the capabilities of
the simulator. AQS is helpful in the presence of errors: if we have an appreciable noise in the controlled system,
we also can obtain the answer without the full quantitative details. Some of the experimental setups most analog
simulator, on ultracold quantum gases, artificial ion crystals, photonic system or superconducting circuits [3, 8]. In
the following, we talk about the AQS given by ultracold atoms trapped in an optical lattice.

1.2 Geometry of optical trap
The Hamiltonian of an atom of mass m is given by

Ha =
p2

2m
+
∑
j

εj |j〉 〈j| , (1.5)

where the first term is the kinetic energy formed by centre of mass momentum p and the second denotes the internal
energy εj for the state |j〉. The principal interactions between atoms and laser consists in an absorptive and a
dispersive part. In the absorptive part, a photon hits and excites the atom to a higher state. For example, if the
atom is in the ground state, such as j = 0, next to absorptive event, it rises its state form |0〉 to |j〉, with j 6= 0
[9, 10]. The result is a spontaneous emission of a photon with frequency ν = (Ej − E0)/h. This process transfer
momentum carried by photon to atom [11]. In our discussion we neglect this interaction considering cooled atoms.
The dispersive part is due the interaction between the atoms and the electric field that induce a dipole momentum.
If the laser produces an electric field

E(x, t) = Ē0e
−i(ωt+k·x)ê + c.c., (1.6)

where ê is the unit polarization vector, Ē0 is the field amplitude, ω is the pulsation and finally we have the scalar
product between wave number k = 2π

λ ê and the position x. The λ is the wavelength. The abbreviation c.c. means
‘complex conjugate’ and it is used to take the real part of them. The electric field induces a dipole momentum to
the atom, such as

p(x, t) = p̄0e
−iωt+k·xê + c.c., (1.7)

where the amplitude of the dipole momentum p̄0 is related by Ē0 through the complex polarizability α

p̄0 = α(ω)Ē0. (1.8)

The electric field varies slowly in time t compared to 1/ω and in space x compared to the size of atom. Doing so,
the interaction is well described whithin the dipole approximation2. We obtain an interaction potential

Vdip(x) = −1

2
〈p(x, t) ·E(x, t)〉t = −1

2
α(ω)〈|E(x, t)|2〉t, (1.9)

where the angular brackets denote the time average over the rapid oscillating terms [9, 10, 12]. The dipole interaction
depends only by the time-average of the laser intensity I(x) ∝ |E(x)|2. If the laser uses a frequency near to the
resonance frequency ω0 to pass from the ground state |0〉 to an excited state |n〉, we can approximate the polarizability
as

α(ω) ≈ |〈n| dE |0〉|
2

~(ω − ω0)
, (1.10)

where we have introduced the dipole operator dE in the direction of the field. Depending on the sing of (ω−ω0), the
atoms are attracted to the nodes or to the anti-nodes of the laser intensity [13]. The equation (1.9) lead us to generic
interaction Hdip = −dEE + h.c. for atoms-laser system where the abbreviation h.c. means ‘hermitian conjugated’
and it is necessary to make Hdip hermitian [12].
For next discussion, we can assume that the laser is far detuned from the atom, thus the potential Hdip do not
produces any particular transition from a state to another. In doing so, we find also the AC Stark effect: the internal
state |n〉 shifts and it form a conservative potential V (x). Its intensity is given by the dipole operator dE and the
proprieties of the laser light.
The set-up of the optical lattice is provided by superimposing two counter propagating laser beams which produce
an electric field as in (1.6). If we place two pairs of laser beams along the x, y and z directions, we will obtain an
optical trap. The optimal choise of the electric field polarization is the one in which the polarizations are mutually
orthogonal. In this way, we create a cubic lattice. The potential formed by the standing waves of counter propagator

2We can approximate the dipole as two charge separated instead an object in which the charge is distributed.
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laser beams has a gaussian shape in the x,y and z directions. Since, we made the time-average, we can consider the
optical potential as

V (x) = −V0xe
−2 y

2+z2

ω2
x cos2(kxx)− V0ye

−2 x
2+z2

ω2
y cos2(kyy)− V0ze

−2 x
2+y2

ω2
z cos2(kzz). (1.11)

In the last relation, we assume that V0x,0y,0z includes all the constants appearing in (1.9) and they give us the potential
depths. In the centre of the trap, for distances much smaller than the beam waist, the three dimension potential is
well approximate by the sum of periodic potential and harmonic potential. Starting from (1.11) we can expand the
exponential factor into x, y, z = 0 respectively. We obtain, for example, exp{−2(x2 + y2)/ω2

z} ' 1− 2(x2 + y2)/ω2
z .

Thus, we can write

V (x) ' −V0x
(

1− 2
y2 + z2

ω2
x

)
cos2(kxx)− V0y

(
1− 2

x2 + z2

ω2
y

)
cos2(kyy)− V0z

(
1− 2

x2 + y2

ω2
z

)
cos2(kzz). (1.12)

The cos2(x) function changes between 0 and 1; We must describe atoms near the center of the well and so, for the
quadratic term in (1.12) we can approximate cos2(kii) ' 1 where i =x, y, and z and obtain

V (x) ' −V0xcos2(kxx)− V0ycos2(kyy)− V0zcos2(kzz) +
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (1.13)

where ω2
x,y,z are the squares of the effective trapping frequencies of the external harmonic confinement. They are

defined by ω2
x = 4/m(Vy/ω

2
y +Vz/ω

2
z) and permutation of the index x, y and z, where m is the mass of the particle in

the lower lying. For the next discussion we consider the periodic term as Vlat and harmonic term as Vext [18]. Now
we can determine the state of a particle in potential well. For the Bloch Theorem3, the eigenfunction for particles
trapped in a periodic potential is

ψ(n)
q (x) = u(n)q (x)eiq·x (1.14)

and they are known as Bloch functions. They are multiplied by a pure phase factors, thus with a translation of the
vector x we can extend them over all the lattice [13, 14]. The function u(n)q (x) is a periodic function and quantity
q is the quasi-momentum4. Bloch function are the eigenstate for an atom in a lattice site [19]. n is the band index
and it needs because we can have wave the same eigenenergy E(n)

q for different band. The index n is similar to the
principal quantum number and it individuates a specific band. A well approximation for a particle in the lowest lying
is considering it as a harmonic oscillator, in which a particle swings with frequency ωt around the minimal point xj .
By solving this problem as a classical harmonic oscillator, we find ωt =

√
4V0ER, where V0 is the depth of the lattice

and ER is the recoil energy. Recoil energy is a natural measure of energy scales in optical lattice potentials (when a
resting atom absorbs a photon, it acquires an energy ER) [13, 15]. In this assumption, the bands are well separated,
and we can consider every minimum point as isolated by each other.

The dynamics of a particle trapped in a potential well can be described by the Wannier functions. They are
linked with Bloch function through the discrete Fuorier transform5 as

ω(n)
q (x− xj) = Θ−

1
2

∑
i

e−iq·xiψ(n)
q (xj) = Θ−

1
2

∑
i

eiq·(x−xi)u(n)q (xj), (1.15)

where Θ−1/2 a normalization constant and the index j refers to the site in which the function is localized. We will
use the Wannier function to describe the particles in potential well sited in xj . They depend only on the relative
distance x− xj and, in the lowest band, they are centred on the lattice site xj [13]. They obey the orthonormality
relation, such as ∫

d3x ω(n)∗

q (x− xi)ω(n′)
q (x− xj) = δn,n′δxi,xj , (1.16)

for different band index n and different site xi [13].
The position of the lattice site determines the geometry of optical lattice. If we prepare three pairs of counter

lasers beams, we have a cubic lattice. But if we set the pair of lasers with an angle ϕ respect a plane, for example,
xy, we obtain a different optical lattice. We can use the angles between the pairs of laser beams to make a two- or
a one-dimension lattice model, as shown in Fig.1.1.

3The eigenfunctions of the wave equation for a periodic potential are the product of a plane wave exp(ik · x) and a function uk(x)
with the periodicity of the crystal lattice.

4If every particle has a momentum p = h/λ = ~k, in vectoral term is p = ~k. We assume p ≡ q.
5It is defined as X(ω) =

∑+∞
n=−∞ x(n)e−iωn and it is used for function with discrete values.
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Figure 1.1: Different configuration for the optical lattice. In a) two standing waves orthogonal to each other form
an array that is a one-dimension lattice; in b) a three-dimensional lattice potential can be created by superimposing
three standing waves [18].

1.3 Bosons in optical potential
Particles in quantum mechanics are identical. We cannot mark a particle: after the interaction with other particles,
we cannot find it. It has profound consequences: the state |ψ〉 that describes the particles must be symmetric or
anti-symmetric for the exchange of particles. Particles that respect the first are the bosons and particles which
respect the second are the fermions. Bosons obey the Bose-Einstein statistic and they can create a condensate
under special conditions; fermions obey the Fermi-Dirac statistic and they obey the Pauli exclusion principle6. As a
consequence, bosons can stay all in the same state, while instead, fermions cannot. Furthermore, bosons have integer
spin s = 0, 1, 2, . . . instead fermions have semi-integer spin s = 1/2, 3/2, . . ..

In this section we consider a system formed by ultracold bosons in order to have a controlled system.
The Hamiltonian for general system of N bosons is

H =

N∑
i=1

p2
i

2m
+

1

2

∑
i 6=j

V (xi − xj) +

N∑
i=1

U(xi), (1.17)

where pi is the momentum of the i-particle, V (xi − xj) is the interaction potential between the i-particle and the
j-particle and U(xi) is a potential imposed by the system to the particle in xi, as in (1.13). In the Hamiltonian we
assume that the particles have the same mass m because they are indistinguishable. If we neglect the dependence
by the time t, we call |ψi〉 ≡ |i〉, with {|i〉}Ni=1.

Classically, we can follow the evolutions of single particle defined by the position xi and momentum pi. We can
define a space phase for the particles, defined by (x,p) = (x1,p1; x2,p2; . . . ; xN ,pN ) and described the trajectory
of i-particles by it position and momentum without ambiguities. In quantum mechanics we cannot do that.
For the Heisenberg uncertainty principle, a single quantum objects must respect

∆x∆p >
~ · ~ · ~
2 · 2 · 2

=
~3

8
, (1.18)

because we are in 3-dimension. It implies that we cannot treat a system as an ensemble of singular objects but as
unique system. Doing so, the probability |ψ(x1, . . . ,xN )|2 is the conjoint probability to find the 1-particle in the
position x1, the 2-particle in the position x2 and so on. The system obeys to the Schrödinger equation. The solution
to this equation is not easy in general. We need approximation methods or statistic method or simulator to resolve
it.

We can define a generic particle through the quantum numbers. Usually they are n the principal quantum
number who defines if the system is in excited state or not; l is the orbital quantum number and it quantifies the
angular momentum of the particles; m is the magnetic quantum number and it corresponds to the projections of
z-momentum on the z-axis; s is the spin quantum number and it refers to the internal spin momentum projected on
the z-axis. If we neglect the interaction and mark a generic state for a single particle with the quantum number kj ,
with j = 1, 2, . . . , r, a generic wave function for a bosons system is given by the sum over all permutation of position
for the particles, as

ψ(x1, . . . ,xN ) =

(
N1!N2! . . . Nr!

N !

)1/2 ∑
perm. xi

ψk1(x1)ψk2(x2) . . . ψkr (xN ), (1.19)

where N1 +N2 + . . .+Nr = N is the total number of particles, instead Ni is the number of particles in the state ki
[11].

6It is impossible to have a system formed by fermions with two particles the same quantum numbers.
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In our discussion, we have to consider the interaction between bosons. They are cooled and so we can consider
they have low energies. The low interaction is given by scattering between close atoms. It is a short-range interaction
between two bodies. We call s-wave the interaction between atoms characterized by angular quantum number l equal
to zero. We can assume that because we are in a system of ultracold atoms and it means the classical motions, like
rotations, are freeze [16]. In this condition, the interaction is given by the Fermi pseudopotential

U(xi − xj) =
2π~2

m
asδ(xi − xj), (1.20)

in which xi, xj are the position of the two atoms, as are scattering length, δ are the Dirac function [17].
This approximation is valid until the de Broglie wavelength7 of the atoms is much larger than the range of the
interatomic interaction potential [9].

A set of ultracold bosons can be described by the Hamiltonian in (1.17). The potential terms are given by the
sum of (1.13) and (1.20) [18]. We obtain:

H =

N∑
i=1

(
− ~2

2m
∇2
i + Vlat(xi) + Vext(xi)

)
+

1

2

∑
i 6=j

U(xi − xj). (1.21)

This is the Hamiltonian that we use in the next discussion for derive the Bose-Hubbard model. The Hamiltonian is
formed by the kinetic and the optical potential whose will form tunneling term of the model; the external potential
will describe the energy for the system; the interaction potential will describe the possibility that two or more bosons
stay in the same potential well [18]. In Fig.(1.2) there is a representation how optical lattice can trap a system of
bosons.

Figure 1.2: Schematic representation of two-dimensional optical lattice. Laser beams (arrow in figure) force the
atoms to stay in optical lattice. They cannot stay or can stay more than one in the lattice [20].

7He thought all the particles as a wavelength λ = h/|p| where p is the momentum of the particle.
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Chapter 2

Second quantization

2.1 Harmonic oscillator
The harmonic oscillator is composed of a particle trapped in a quadratic potential well. We briefly recall it now since
permits to introduce special operators used in quantum field theory [11].

Given a particle with mass m in one dimension, its Hamiltonian is

Ĥquan =
P̂ 2

2m
+
m

2
ω2X̂2 = − ~2

2m
∇2 +

m

2
ω2x2, (2.1)

where the last part is written in position representation. The symbol ∇ is the gradient defined as ∇ = (∂x, ∂y, ∂z)
which in one dimension is just ∂x. We can solve this system analytically. Harmonic potential V (x) = mω2x2/2 is
time-independent and we can write the time-independent Schrödinger equation. If the system is in the state |ψ〉 a
we express it in the position representation, we have

Ĥquanψ(x) = Eψ(x). (2.2)

This is the eigenvalues equation, in fact E is the eigenvalue for Hamiltonian operator if |ψ〉 is the eigenstate for Ĥ.
In explicit form, the (2.2) is

− ~2

2m

∂2ψ(x)

∂x2
+
m

2
ω2x2ψ(x) = Eψ(x) ⇒ ∂2ψ(x)

∂x2
+

2m

~

(
E − m

2
ω2x2

)
ψ(x) = 0. (2.3)

We can resolve the equation analytically through the Hermite polynomials and find the eigenvalues and eigenvec-
tors for the system. Every state is determined by quantum number n. n = 0 is the ground state, i.e. the low energy.
The wave eigenfunctions for the system are

ψn(x) = CnHn(αx)e−
1
2α

2x2

, where Hn(αx) = (−1)n
eα

2x2

αn
dn

dxn
e−α

2x2

, Cn =
( α

π1/22nn!

)1/2
(2.4)

and α =
√

mω
~ . We can derive also the energy En analytically. Another way to solve this problem is to define the

operators

â =

√
mω

2~

(
X̂ + i

P̂

mω

)
and â † =

√
mω

2~

(
X̂ − i P̂

mω

)
, (2.5)

knows as ‘ladder’ operators. In particular â † is the ‘raising’ and â is the ‘lowering’ operator. Now we can define the
position and momentum operators through the â and â † operators, such as

X̂ =

√
~

2mω

(
â+ â †

)
and P̂ = −i

√
mω~

2

(
â− â †

)
. (2.6)

We introduce the algebra of raising and lowering operators that is helpful for the next treatment.
Now we can compute the commutator between â and â † using their definition

[â, â †] =

[√
mω

2~

(
X̂ + i

P̂

mω

)
,

√
mω

2~

(
X̂ − i P̂

mω

)]
= 1 ⇒ [â, â †] = ââ † − â †â = 1. (2.7)
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Obviously, the commutators of an operator with itself is zero [â, â] = [â †, â †] = 0. We can use the ladder operators
to redefine the Hamiltonian operators Ĥ. Using the relation in (2.6), we write

Ĥ =
P̂ 2

2m
+
m

2
ω2X̂2 = − 1

2m

mω~
2

(â− â †)2 +
m

2
ω2 ~

2mω
(â+ â †)2 =

=
~ω
4

(
2â †â+ 2ââ †

) ~ω
4

(
4â †â+ 2

)
⇒ Ĥ = ~ω

(
â †â+

1

2

)
. (2.8)

Now we obtain the eigenvalues for the Hamiltonian operator Ĥ. We start by observing that

[â †â, â †] = â † = â †(ââ † − â †â) and [â †â, â] = −â = (â †â− ââ †)â. (2.9)

Then, we calculate the eigenvalue equation for Ĥâ(†) for a generic eigenstate |n〉. If |n〉 is an eigenvector for Ĥ, we
obtain

Ĥâ † |n〉 = (En + ~ω) â † |n〉 and Ĥâ |n〉 = (En − ~ω) â |n〉 . (2.10)

This means that both â |n〉 and â † |n〉 are also eigenstates for the Hamiltonian operator Ĥ. We define

N̂ = â †â; (2.11)

called ‘number’ operator. Thus, the Hamiltonian operator is Ĥ = ~ω(N̂ + 1/2). The eigenvalues for raising and
lowering operators are

â |n〉 =
√
n |n− 1〉 and â † |n〉 =

√
n+ 1 |n+ 1〉 . (2.12)

We achieve
â †â |n〉 = ââ † − [â, â †] |n〉 = â

√
n+ 1 |n+ 1〉 − |n〉 = n |n〉 ⇒ N̂ |n〉 = n |n〉 . (2.13)

Thus, the eigenvalues for Hamiltonian operator, in a generic eigenstate |n〉 are given by

Ĥ |n〉 = ~ω
(
N̂ +

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉 = En |n〉 . (2.14)

To understand which values n can assume, we start from the ground state |0〉 which corresponds to the energy
E0 = ~ω

2 and we apply the lower operator â; from (2.12) we obtain

â |0〉 = 0. (2.15)

Vice versa, if we apply the raising operator â †, we obtain â † |0〉 = |1〉 . If we apply a second time the ladder operator
to the ground state the raising operator, we obtain â †

2 |0〉 = â † |1〉 =
√

2 |2〉 , understanding that the operator N̂
has natural number as eigenvalues. It can be shown that the eigenstates |n〉 are

|n〉 =

(
â †
)n

√
n!
|0〉 . (2.16)

The ladder operators and the N̂ can be defined through their matrix elements and give us the representations in
matricial terms. Considering that the eigenstates for the system belong to an orthonormal basis which respects
〈m|n〉 = δn,m, where δn,m is the Kronecker delta, who is equal to 1 if n = m and 0 in all other cases. The matrix
elements for an operator are âmn = 〈m| â |n〉. The representation for the operators is

â =


0
√

1

0 0
√

2
. . . . . . . . .

0 0
√
n

0 0

 , â † =


0 0√
1 0 0

. . . . . . . . .√
n− 1 0 0√

n 0

 , N̂ =


0 0
0 1 0

. . . . . . . . .
0 n− 1 0

0 n

 .

(2.17)
The objects â and â† are used to raise or to lower the number of excitations of the harmonic oscillator. The physical

interpretation for this operator shows up thinking about Ĥ and its eigenvalue problems. Assuming that energy levels
are equidistant by ~ω, we consider Ĥ as a Hamiltonian who describes a system of indistinguishable particles. Because
each particle stays in the same dynamical state corresponds to energy ~ω, every value of N corresponding to well-
defined energy for the total system. Thus, we can consider the state |n〉 as the state constituted with n particles,
and the state |0〉 as the vacuum state, i.e. without particles. According to this picture, the operator N̂ gives us the
number of particles in the state |n〉 and it can take all the natural values: from 0 to ∞. The application of â † to
the state |n〉 gives us the state |n+ 1〉, formed by n+ 1 particles. For this reason, the raising operator in quantum
field theory is called ‘creation operator’. Similar, the lower operator gives us a state formed by n− 1 particles, so, in
quantum field theory, it is known as ‘destruction operator’ [11, 21, 22].
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2.2 Second quantization for bosons
In quantum mechanics a particle state is described by a wave function ψ(x, t), where x is the position. It obeys
the Schrödinger equation and we can determine the evolution. This formalism is known as ‘first quantization’. In
quantum field theory the description of particles set is given by the fields operators, which contain all the information
about the system. The state of a system is defined, for example, by the action of the field in the position x. Replacing
wave function with fields operators is known as ‘second quantization’. The wave function ψ(x, t) and ψ∗(x, t) are
replaced by the operators ψ̂(x, t) and ψ̂ †(x, t), in which complex conjugated ψ∗ is replaced by its hermitian adjoint
ψ̂ †. In this formalism, the Hamiltonian for a generic system is given by

Ĥ =

∫
V
d3x Ĥ =

∫
V
d3x ψ̂ †(x, t)

(
− ~

2m
∇2 + V (x, t)

)
ψ̂(x, t), (2.18)

where Ĥ is called Hamilton density and ψ̂ †(x, t) is the adjoint of ψ̂(x, t). The integration on a volume V is necessary
because we do not matter the dependence by the position x but we only matter the dependence from the field. These
operators satisfy the equal time commutation relation (ETCR):

[ψ̂(x, t), ψ̂ †(x′, t)] = δ(3)(x− x′), and [ψ̂(x, t), ψ̂(x′, t)] = [ψ̂ †(x, t), ψ̂ †(x′, t)] = 0, (2.19)

where δ(3)(x− x′) is the Dirac delta function. It is equal to +∞ if x = x′ and 0 in all other cases. These relations
are true only for bosonic particles. The evolution of the field operators is given by Heisenberg picture

˙̂
ψ =

1

i~
[ψ̂, Ĥ] and ˙̂

ψ
†

=
1

i~
[ψ̂ †, Ĥ]. (2.20)

The field operators ψ̂ and ψ̂† are operators in abstract space called ‘Fock space’, defined in the next section. We
want to rewrite the Hamiltonian in (2.18) in term of ladder operators. We assume that ui(x) is a set of orthonormal
wave functions that form an orthonormal basis for the eigenfunction of Ĥ. We can decompose the field operators
with this set of wave functions and obtain

ψ̂(x, t) =
∑
i

b̂i(t)ui(x) and ψ̂ †(x, t) =
∑
i

b̂ †i (t)u∗i (x). (2.21)

We are decomposing the field operators into a sum of time-dependent operator b̂i(t) or b̂ †i (t) and ordinary complex-
valued function ui(x) or u∗i (x). Since ψ̂ and ψ̂ † are bosonic fields, b̂ and b̂ † are bosonic operators too and behave as
the â and â † operators defined for the harmonic oscillator. Indeed, the ui(x) are a set of complex-valued functions
that form an orthogonal system, such as∫

V
d3x u∗i (x)uj(x) = δij and

∑
i

ui(x)u∗i (x
′) = δ(3)(x− x′). (2.22)

By inserting the relations (2.21) into (2.19) and obtain

[̂bi(t), b̂
†
j (t)] = δij and [̂bi(t), b̂j(t)] = [̂b †i (t), b̂ †j (t)] = 0. (2.23)

This leads to an explicit form for the Hamiltonian operator

Ĥ =

∫
V
d3x ψ̂ †(x, t)

(
− ~2

2m
∇2 + V (x)

)
ψ̂(x, t)=

∑
i,j

b̂ †i (t)̂bj(t)εj

∫
V
d3 xu∗i (x)uj(x) =

∑
i

b̂ †i (t)̂bi(t)εi, (2.24)

where in the last step we use the orthogonality of the ui functions. We can demonstrate that the temporal evolution
for operator b̂i(t) is given by the definitions in (2.20) and (2.24), obtaining

i~ ˙̂
bi(t) = εib̂i(t) ⇒ b̂i(t) = e−

iεit

~ b̂i(0) (2.25)

and in similar way we treat b̂ †i (t). Using an eigenfunction basis for the decomposition make the time dependence
for b̂i(t) trivial being characterized by a phase factor. Thus, for the construction of state vector, we can assume b̂i
time-independence.

We can use the definition in (2.11) to define the total number of particles

N̂ =
∑
i

n̂i =
∑
i

b̂ †i b̂i, where n̂i = b̂ †i b̂i. (2.26)
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This operator is known as ‘particles-number operator’ and it counts the number of particles for the system.
The operators n̂i count the number of particles in the state i, thus the Hamiltonian in (2.24) describes the total
energy of a collection of particles distributed over the states ui, with energy εi. The algebra for these operators is

[n̂i, n̂j ] = 0, [n̂i, b̂j ] = −b̂i and [n̂i, b̂
†
j ] = b̂ †i . (2.27)

We can understand that the number of particles is constant. The number of objects cannot change for a system if
we do not make any operation. We have ˙̂N = −i/~[N̂ , Ĥ] = 0.

2.3 Fock Space
We define the Hilbert space on which field operators act, namely the ‘Fock space’. This space is a Hilbert space
for second quantization in particle number representation. If we have N particles, we can define a set of eigenstates
fully characterized by the number of occupations for the single state i. The generic state has the form |N〉 =
|n1, n2, . . . , ni . . .〉. If we apply the operator n̂i to this state, it returns the number of particles in the state i. Similar,
if we apply the particle-number operator N̂ , we obtain the total number of particles for the system.
We can define the scalar product in Fock space as

〈n′1, n′2, . . . |n1, n2 . . .〉 = δn1,n′1
δn2,n′2

. . . . (2.28)

We define now the action of the ladder operators to a generic state |N〉: applying b̂ †i the number of particles in
the state i increases by 1 and applying b̂i the number of particles decreases by 1. This justifies why they are called
‘creation’ and ‘annihilation’ operators. In analogy with the harmonic oscillator, they obey the relation:

b̂ †i |n1, n2, . . . , ni . . .〉 =
√
ni + 1 |n1, n2, . . . , ni . . .〉 (2.29)

and
b̂i |n1, n2, . . . , ni + 1 . . .〉 =

√
ni |n1, n2, . . . , ni − 1 . . .〉 . (2.30)

The state without particles, is called vacuum |0〉. The application of annihilation operator to the vacuum state gives
us zero b̂i |0, 0, . . .〉 ≡ b̂i |0〉 = 0 for all the sites i. We can start from the vacuum state to build a generic state, such
as

|n1, n2, . . .〉 = Cn1,n2,...

(
b̂ †1

)n1
(
b̂ †2

)n2

. . . |0〉 , Cn1,n2,... =
1√

n1!n2! . . .
(2.31)

where Cn1,n2,... is a constant needed to the normalization. This term derives from the fact that we have indistin-
guishable particles: if we have two particles, the state is |2〉; it means that the system may be in two different
configuration: particles 1 and 2 respectively in position x1 and x2 or vice versa. We can also represent the ladder
operators in matricial terms through its matrix elements

〈n′1, . . . , n′i . . .| b̂
†
i |n1, . . . , ni, . . .〉 =

√
ni + 1δn1,n′1

. . . δni+1,n′i
. . . (2.32)

and
〈n′1, . . . , n′i . . .| b̂i |n1, . . . , ni, . . .〉 =

√
niδn1,n′1

. . . δni−1,n′i . . . . (2.33)

We must link the Fock space a generic Hilbert space in which we have positions or momenta to describe particles.
We define a localized state as

|x1,x2, . . . ,xn; t〉 =
1√
n!
ψ̂ †(x1, t) . . . ψ̂

†(xn, t) |0〉 , (2.34)

which describes a system of n particles at the same time t. This state follows the orthonormality relation

〈x′1, . . . ,x′n; t|x1, . . . ,xn; t〉 =
1

n!

∑
permutation

P
[
δ(3)(x1 − x′1) . . . δ(3)(xn − x′n)

]
, (2.35)

where P is the permutation operator that interchange the order of the index. The equation shows up the indistin-
guishably of quantum particles. The state shows how many particles are in the position x1, . . .xn. If we apply the
particle-number operator N̂V , restricted to a volume V, to the state in (2.35), the eigenvalue is 0 if none a particles
are in the position xi ∈ V, where i = 1, . . . , r and r is the number of sites; it may be 1 if there are particles in just
one xi ∈ V, where i = 1, . . . , r, and so on. The particle-number operator counts how many positions are occupied
by particles in a specific volume. From definition of localized state vector in (2.34) we understand that the filed

12



operator creates a particle in the position x. If we apply ψ̂ †(x, t) to a localized state, we start from n particles and
we obtain n+ 1, where the n+ 1-th particle is in the position x

ψ̂ †(x, t) |x1, . . . ,xn; t〉 =
√
n+ 1 |x,x1, . . . ,xn; t〉 . (2.36)

Analogously by applying the field operator ψ̂(x, t) to the state in (2.34), we destroy a particle in the position x.
Applying the field operator to the vacuum state, we obtain ψ̂(x, t) |0〉 = 0.

Now we can build a wave function for the state in which field operators act. We define

Φ
(n)
[k1,k2,...]

(x1,x2, . . . ,xn; t) = 〈x1, . . . ,xn; t|n1, n2, . . .〉 . (2.37)

In the definition, n is the total number of particles namely n = n1+n2+ . . .. ki is the i-state, which is occupied or not
by particles. The function Φ

(n)
[k1,k2,...]

(x1,x2, . . . ,xn; t) is a wave function of n-particles system in space coordinate.
The wave functions defined early is symmetric under permutation of coordinates: we are describing a collection of
indistinguishable particles that obey the Bose-Einstein statistics.

2.4 Bose-Hubbard model
We can start from the (1.21) and write the Hamiltonian operator in terms of field operators. We write

Ĥ =

∫
d3x ψ̂ †(x)

(
− ~

2m
∇2 + Vlatt(x) + Vext(x)

)
ψ̂(x) +

∫
d3x

∫
d3x′ ψ̂†(x)ψ̂†(x′)U(x− x′)ψ̂(x)ψ̂(x′), (2.38)

where we use the proprieties of delta function in U(x− x′) to eliminate second integral in x′. We obtain

Ĥ =

∫
d3x ψ̂ †(x)

(
− ~

2m
∇2 + Vlatt(x) + Vext(x)

)
ψ̂(x) +

g

2

∫
d3x ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (2.39)

where we set g = 4π~2/m by (1.20). This Hamiltonian describes a weakly interacting atomic gas trapped in an
optical lattice: ultracold atoms are in low energy and we can use the tiny-binding approximation. In this condition,
we assume that all the particles are in the lowest energy band. Thus, we can consider the Wannier function (1.21)
only for the lowest band and use them to expand the field operators. We are in the band defined by n = 0 and so
we neglect the index. We can write

ψ̂(x) =

r∑
i=1

b̂iω(x− xi) and ψ̂ †(x) =

r∑
i=1

b̂ †i ω
∗(x− xi), (2.40)

in which we assume to have r lattice site. The decomposition is expanded on the basis formed by the Wannier
functions. The operators b̂ †i and b̂i are respectively the creation and annihilation operators. They can create or
destroy a particle whose probability distribution is relative to the function ωi ≡ ω(x− xi). By replacing (2.40) into
(2.39), we obtain

Ĥ = −
∑
i,j

Jij b̂
†
i b̂j +

1

2

∑
i,j,k,l

Uijklb̂
†
i b̂
†
j b̂k b̂l (2.41)

where we define

Jij = −
∫
d3x ω(x− xi)

(
− ~2

2m
∇2 + Vlat(x) + Vext(x)

)
ω(x− xj) (2.42)

and
Uijkl = g

∫
d3x ω∗(x− xi)ω∗(x− xj)ω(x− xk)ω(x− xl). (2.43)

We can make some consideration. The first one is about the interaction term Uijkl. For the atoms we have a
short-range interaction, so the matrix elements of U involving Wannier function centred at difference lattice site are
insignificant compared to the interaction to the same lattice site. We can neglect them and define Uiiii ≡ U . The
second one is about the term Jij . It can be demostrated, by using the porprieties of the Wannier functions, that
only the passages to the nearest neighbour sites is allowed [10]. It means, if we are in two dimension and we placed
in Cartesian plane xy, in the square defined by (0, 0), (0, 1), (1, 0) and (1, 1), an atom in the origin can pass just into
(1, 0) or (0, 1) but it is not allowed to pass directly to (1, 1). We can define Ji,i+1 ≡ Ji+1,1 ≡ J . So, we obtain the
standard Bose-Hubbard Hamiltonian

ĤB−H = −J
∑
〈i,j〉

b̂ †i b̂j + h.c.+
U

2

∑
i

b̂ †i b̂
†
i b̂ib̂i +

∑
i

εib̂
†
i b̂i. (2.44)
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Using the algebra of ladder operators, we may rewrite the HB−H in terms of the number particle operator n̂i. In
the equation, we can distinguish three terms: the tunneling term, the interaction and an external potential one. We
must insert the hermitian conjugated term in (2.44) because we want a hermitian Hamiltonian [10].

The notation 〈i, j〉 means the sum over the nearest neighbor site. It is called hopping or tunneling term and it
describes the process of an atom hops from the i site to the nearest i + 1 and it is defined by the matrix elements
in (2.42) which satisfy j = i + 1. Ladder operators can destroy a particle in a site only to create it in the nearest
neighbor site. If we assume to have an ideal gas with U = 0 and set the energy εi = 0, the Hamiltonian eigenvalues
are E(0)

q = −2J cos(qa), where a is the site size and q is the quasi-momentum. The highest value for the energy
is 4J and the lower −4J . In this condition, the atoms in the ground state are delocalized over the whole of the
lattice. In this limits, the state for N particle in is given by |ψ〉SF ∝ (

∑
i b̂
†
i )
N |0〉 and we have a superfluid (SF)

[9, 10, 18, 23, 24].
The second term describes an interatomic onsite interaction and it describes the short-range interaction between

two atoms in the same lattice site. This term is a repulsive potential (U > 0) and it hinders the configuration with
more than one boson on the same lattice site. Its values are 0 if the site is not occupied or just one atom it contains.
Its matrix elements are given by Uiiii ≡ U = g

∫
d3x |ω(x− xi)|4 and it can be written as U

∑
i(n̂i(n̂i − 1))/2.

If this term dominates on the hopping term, we have a completely different scenario. The long-range correlations
cease to exist in the ground state, and we have a Mott insulating (MI). In this case, the state for the system is
|ψ〉MI ∝

∏
i b̂
†
i |0〉 and the atoms tend to be localized on the site [9, 10, 18, 23, 24].

The third one is an external potential that gives an energy offset. It reads as εi =
∫
d3x |ω(x− xi)|2 Vext(x) and

it is due by the effects of external potential use to trap the atoms. It can be written as ε
∑
i n̂i.

The Bose-Hubbard Hamiltonian is dominated by the competition between U and J . They are proportional to
the lattice deep V0 and the recoil energy ER as U ∝ (V0/ER)3/4 and J ∝ (V0/ER)3/4 exp{−2

√
V0/ER}. When the

potential depth of the optical lattice is increased, the tunneling barrier between neighboring lattice sites is raised and
therefore the tunneling matrix element J decreases exponentially. On the other hand, the interaction U is slightly
increased in a deeper lattice because the wave function must be confined in a tighter lattice site [9, 13, 18].

Figure 2.1: a) Pictorial representation of the Bose-Hubbard model. We can distinguish the action of the hopping term
J and the interaction term U . The black line is the Wannier function for the site; b) Representation of superfluid
and Mott insulating. In the first one the atom is delocalized and in the second one atom are ordained [20].
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Chapter 3

Numerical simulation results

Now we analyze numerically a specific case for the system defined by the Bose-Hubbard Hamiltonian: namely a
one-dimensional chain formed by two sites. In particular, we will study the behavior of the system for different
values of Hamiltonian parameters of (2.44). The quantity we will focus on is the local number of particles n1 and
its fluctuations. The technique used to investigate the ground state is the exact diagonalization for the Hamiltonian
in (3.1): we compute the eigenvalues and the eigenvector. The first step is to write the matrix relative to the
Hamiltonian in (2.44), namely

ĤB−H = J
(
b̂ †1 b̂2 + b̂1b̂

†
2

)
+
U

2
(n̂1(n̂1 − I) + n̂2(n̂2 − I))− µ(n̂1 + n̂2), (3.1)

where we have set εi = 0 and we consider a uniform chemical potential term proportional to µ. Ladder operators act
on infinite-dimensional space, i.e. the Fock space relative to each lattice site. in principle, we can apply the creation
operator without limits. Unfortunately, computers cannot store and infinite-dimensional vector. Then, we must
impose a truncation: we impose the application of b̂ † to |n〉 give us 0. In our simulation, we consider, as truncation,
two particles.
The Bose-Hubbard Hamiltonian is the sum of three terms. The hopping term allows that a particle moves from the
first well to the second and vice versa. The interaction term describes the interaction of particles in the first and
second sites; it is 0 for all the states except when there are two particles in one site. Finally, we have the chemical
potential whose expression is equal to the external confinement term. The chemical potential µ is necessary to fix
the total physical number of particles that we want to consider in our system. Hereafter, we set µ = U/2 which
means that are allowed two particles for the total system. In (3.1), we have operators acting on different sites. It
implies we must compute the tensor product between operators with different indexes. For example, the chemical
potential term for the first site is µ(n̂1 ⊗ I3×3), in which the identity matrix leaves invariant the second site.
The system can be in nine different state:{|0, 0〉 , |0, 1〉 , |0, 2〉 , |1, 0〉 , |1, 1〉 , |1, 2〉 , |2, 0〉 , |2, 1〉 , |2, 2〉}. The numbers
in the ket describe the number of particles in the first and second site respectively. For the choice of the chemical
potential, we expect only the physical state, like |0, 2〉, |1, 1〉 and |2, 0〉. To determine the ground state for the system,
we have to fix one of the parameters J and U . We choose to set U = 1 for simplicity. Then, we can define the
parameters in the unit of U , as J/U and µ/U . The choice of µ = U/2 implies that µ = 1/2. By setting different
values of the hopping term, we find the ground state by the diagonalization of the Hamiltonian and we can calculate
the fluctuation for the operator n̂1 for each different site.

We start calculating the eigenvalues for HB−H and search the lowest and the corresponding eigenvectors are
the ground states. We consider it as the state used for the computation for the fluctuation of n̂. We consider the
occupation number for the first site and determine the fluctuation

(∆n1)
2

= 〈ψgs| (n̂1)2 |ψgs〉 − (〈ψgs| n̂1 |ψgs〉)2 = 〈n̂21〉gf − (〈n̂1〉gs)2, (3.2)

where is implicit n̂21 ≡ n̂21 ⊗ I3×3 and n̂1 ≡ n̂1 ⊗ I3×3. For the symmetry of the Hamiltonian, it emerges that the
value of ∆n1 and ∆n2 are equal. In the next, we simply call ∆n1 = ∆n2 ≡ ∆n. In Tab.3.1, we report the chosen
values of J/U , the respective state, and ∆n. In Fig.3.1 we plot the expectation values and the fluctuations of n1.

From the Tab.3.1 and graphic in Fig.3.1, we can see that two different behaviors emerge, corresponding to the
Mott insulator and the superfluid phases, while the expectation number 〈n〉 is independent by the ratio of J/U .
When the value of J is smaller than U , the ground state is dominated by the Mott Insulator: the hopping term is
dominated by the interaction one and the atoms are disposed of an orderly manner. We have 1 atoms for each site.
By increasing the value of J/U , the approximation for the ground state is the superfluid phase in which the hopping
term dominates on the interaction one. In this case, the atoms are delocalized on the lattice: the number of particles
varies between 0 and 2 for each site and we have ∆n 6= 0. By increasing the value of the hopping term, the states
|2, 0〉 and |0, 2〉 acquire more probability and the particles are more delocalized.
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J/U Ground state (∆n)
0 |1, 1〉 0

1/1000 −0.001 |0, 2〉+ 0.999 |1, 1〉 − 0.001 |2, 0〉 0.002
1/100 −0.014 |0, 2〉+ 0.999 |1, 1〉 − 0.014 |2, 0〉 0.020
1/10 −0.134 |0, 2〉+ 0.981956 |1, 1〉 − 0.134 |2, 0〉 0.189
1/5 −0.234 |0, 2〉+ 0.944 |1, 1〉 − 0.234 |2, 0〉) 0.331
1/2 −0.372 |0, 2〉+ 0.851 |1, 1〉 − 0.372 |2, 0〉 0.526
1 −0.435 |0, 2〉+ 0.788 |1, 1〉 − 0.435 |2, 0〉 0.615
5 −0.487 |0, 2〉+ 0.725 |1, 1〉 − 0.487 |2, 0〉 0.689
10 −0.494 |0, 2〉+ 0.716 |1, 1〉 − 0.494 |2, 0〉 0.698
100 −0.499 |0, 2〉+ 0.708 |1, 1〉 − 0.499 |2, 0〉 0.706
1000 −0.499 |0, 2〉+ 0.708 |1, 1〉 − 0.499 |2, 0〉 0.707

Table 3.1: Data obtained by the simulation of the Bose-Hubbard model for two particles in two sites.

Figure 3.1: On the left: plotting the expectation number for the number of particles. The x-axis is the J/U and the
y-axis is 〈n〉; on the right: plotting of data in Tab.3.1. The x-axis is the J/U and the y-axis is ∆n.
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Conclusions

We started from the tools necessary to describe ultracold atoms in an optical lattice. In the first chapter, we analyzed
the fundamental potentials to write the Hamiltonian for a system of bosons, like the interaction between atoms,
the periodic lattice and the external confinement. Here, the introduction of Wannier functions was important for
obtaining the Bose-Hubbard Hamiltonian. In the second chapter, we introduced the formalism of second quantization.
We introduced the filed operators and how they can be decomposed in the Wannier functions base to obtain a picture
of the fields in terms of ladder operators. Thanks to this, we obtained the Bose-Hubbard Hamiltonian. This function
contains three terms: the hopping, the interaction and the external energy. These terms are multiply by the
parameters J , U , and µ respectively. If the hopping term is higher than the interaction one, or vice versa, we could
see two different behavior. The first is the superfluid phase, in which the particles are delocalized in all the lattice;
the other is the Mott Insulator phase in which the particles are disposed of with the same number for each site.
We decide to demonstrate the theory in which the system passes from the superfluid to Mott insulator or vice versa:
in the last chapter, we proposed a simulation of two atoms in two sites. Setting the U parameter of the coupling term,
we changed the J to obtain a ground state. The truncation that we imposed is given by two particles. We should
introduce the chemical potential to fix the number of particles, so we set µ = U/2. For simplicity we assume U = 1,
thus we have µ = 1/2. Then, we computed the Bose-Hubbard Hamiltonian with different values for the parameters
J, U and µ, where we changed the value of J . Using the ground state, we established the expectation values of the
number of particles in each site. By the value of (∆n) we could determine in which state the system is: if J is higher
than U , we have a Mott Insulator; if J is lower than U we have a superfluid. To confirm this theory, we computed
different values of J . The simulation showed us when the hopping term is dominated by the interaction, the system
is in the insulating phase and, when the hopping term dominated to the interaction one, the atoms perform like a
superfluid.

In conclusion, the behavior of the system of ultracold atoms is well described by the Bose-Hubbard model.
Depending on the set parameters, we confirmed and distinguished the system phase.
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