
University of Padova

Department of Information Engineering

Master’s degree in Automation Engineering

Automatic Detection of Sensors Swapping using
Hidden Markov Models

Author Supervisor

Marco Barbiero Prof. Luca Schenato

September 11, 2018

Academic Year 2017/2018

ii

Acknowledgements

The work presented in this thesis was carried out with the support of Professor
Luca Schenato and Professor Ruggero Carli, Professors in the Department of
Information Engineering. I am profoundly grateful to both for their help and
concern, especially at times of difficulty when the problem seemed insurmountable
and unsolvable, and the time was running out.

This work is also the concentration of knowledge and experience that I have
gained over the last five years and more. For this reason, special deep thanks go to
my parents, Mara and Tiziano, who have made this possible through their efforts,
and to my brother Matteo, who has supported me in this long period of work.
Furthermore, a very special gratitude also goes to my fellow classmates, Alessandro,
Emanuele, and Maricarmen, who have proved through the last two years to be true
friends.

I am thankful to all my friends too, that took care of me and supported me
through all these years. In particular, heartfelt thanks go to Francesca, Irene, Dilan,
and Matteo for providing me with unfailing support and continuous encouragement
throughout these years. Finally, I am very grateful to all friends that are not
mentioned here only for saving space: thank you for the time spent together. These
moments have contributed to becoming the person I am, and for this, I am very
grateful to you all.

iii

iv

v

Abstract

Nowadays, data covers an important part of our lives: a lot of studies are in
progress and a lot of applications are being developed to improve its collection and
management. This revolution touches all areas and forces them to revalue and
redesign their functionalities: the lighting area is very active about this topic since
lamps are very popular and diffused. Another big area of studies is energy saving:
Europe 2020 program is near of its end but a lot of work has to be done to reach
its objectives. A possible work field is the heating, ventilation, and air conditioning
(HVAC) area: a lot of energy is utilised to air-condition building and houses but
some of it is wasted. To solve this problem, an idea is to use sensors that monitor the
presence of people within areas and connect these to the air conditioning systems.
A smart way to include sensors in offices, places that are huge energy consumers, is
to use smart lamps with a build-in proximity sensor and connectivity since they are
widely diffused and usually positioned near the workers. Of course, the installation
of the lamps is very important as well as the monitoring during time: indeed,
these lamps must be installed and configured very careful not to make mistakes
since lamps cannot be aware of their position and location naturally. This opus
shows a possible way to implement an easy and efficient strategy to control the
errors during the commission and monitor the lamps during the time. The office’s
workstations are modelled using hidden Markov Models whereas the Commission
Errors Detection and the Failure Detection rely on custom algorithms developed
taking inspiration from the Sequential Probability Ratio Test and the CUSUM
algorithms. Finally, the two algorithms are tested in several different situations.

vi

vii

Sommario

Oggigiorno, i dati ricoprono un ruolo sempre più importante nella nostra vita:
molti studi sono in corso e molte applicazioni sono in fase di sviluppo per migliorarne
la raccolta e la gestione. Questa rivoluzione tocca tutti gli ambiti e li costringe
a rivalutare e riprogettare le loro funzionalità: l’area dell’illuminazione è molto
attiva su questo tema in quanto le lampade sono molto popolari e diffuse. Un’altra
area di studi molto estesa riguarda il risparmio energetico: il programma Europa
2020 è prossimo alla conclusione ma c’è ancora molto da fare per raggiungere
i suoi obiettivi. Un possibile ambito di lavoro è quello del riscaldamento, della
ventilazione e della climatizzazione (HVAC): molta energia viene utilizzata per
climatizzare edifici e case ma parte di essa viene sprecata. Per risolvere questo
problema, un’idea è quella di utilizzare sensori che monitorano la presenza di
persone all’interno delle aree e collegarli agli impianti di climatizzazione. Nel caso
di uffici, uno degli ambienti più energivori, è sufficiente implementare dei sensori
di prossimità all’interno delle lampade dal momento che quest’ultime sono molto
diffuse. Le lampade devono, inoltre, fornire la connettività per lo scambio dei
dati raccolti. Naturalmente, l’installazione delle lampade è molto importante cos̀ı
come il monitoraggio nel tempo: infatti, queste lampade devono essere installate e
configurate molto attentamente per non commettere errori in quanto le lampade
non sono naturalmente consapevoli della loro posizione. Questo lavoro riporta un
modo possibile per implementare una strategia semplice ed efficiente per controllare
gli errori durante la messa in servizio e monitorare le lampade durante il tempo. Le
postazioni di lavoro dell’ufficio sono modellate utilizzando modelli di Markov nascosti
(HMM), mentre il controllo di errori durante la messa in servizio (Commission Errors
Detection) e il monitoraggio continuato nel tempo (Failure Detection) si basano
su un algoritmo personalizzato sviluppato ispirandosi agli algoritmi Sequential
Probability Ratio Test e CUSUM. Alla fine del lavoro, i due algoritmi vengono
testati in diverse situazioni e i risultati riportati.

viii

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1

1.1 Application . 2

1.2 Challenges . 4

1.3 State of Art . 5

1.4 Original Contribution . 6

1.5 Outline . 8

2 Problem Formulation 9

2.1 The Problems . 9

2.2 Modelization and Assumptions . 12

2.2.1 Occupancy & Proximity Sensors 12

2.2.2 Assumptions & Notation Adopted 13

2.2.3 Problems Modelization . 15

3 HMM and the Model 19

3.1 Markov Chains . 19

3.2 Hidden Markov Models . 22

3.3 A different approach for HMM description 24

3.3.1 Mathematical Complements 24

3.3.2 The Filter . 25

3.4 The Three Problems . 29

3.4.1 Evaluation Problem . 29

3.4.2 Decoding Problem . 31

3.4.3 Learning Problem . 36

3.5 The Model . 38

3.5.1 The first Model . 39

3.5.2 The second Model . 40

3.5.3 Further Steps . 43

x CONTENTS

4 Event Detection with Time 45
4.1 Available Tools . 45
4.2 SPRT . 47
4.3 CUSUM . 49
4.4 SPRT and CUSUM for HMM . 53

4.4.1 Commissioning Error Detection 56
4.4.2 Failure Detection . 57

4.5 Numerical Problems . 58

5 Simulations 61
5.1 Implementation . 61

5.1.1 Workstation class . 61
5.1.2 SPRT and CUSUM classes 63
5.1.3 The Simulation Implementation 65

5.2 Simulations introduction . 68
5.2.1 Assumptions . 68
5.2.2 Performed Tests . 69

5.3 CED - Simulation Tests Results & Plots 71
5.3.1 Commissioning Error Detection - overview 71
5.3.2 Commissioning Error Detection - γ and δ analysis 79
5.3.3 Computation time Analysis 89

5.4 FD - Simulation Tests Results & Plots 93
5.4.1 Failure Detection - overview 93
5.4.2 Failure Detection - γ and δ analysis 96

6 Conclusions & Future Works 107

A Simulations Full Results 109
A.1 Commissioning Error Detection . 109

A.1.1 CED-MD test . 109
A.1.2 CED-FA test . 111
A.1.3 CED-OE test . 112
A.1.4 CED-T test . 114

A.2 Failure Detection . 116
A.2.1 FD-FA test . 116
A.2.2 FD-TA test . 117
A.2.3 FD-TE test . 119

Bibliography 123

List of Figures

1.1 A office . 2
1.2 A office with some issues . 3

2.1 The situation illustrated. Two smart lamps watch the same worksta-
tion. Front view. 9

2.2 The situation illustrated. Two smart lamps watch the same worksta-
tion. Bird’s-eye view. 10

2.3 A common office with four workstations: Bird’s-eye view. 11
2.4 The fundamental problem illustrated. A pair of sensors is divided

and one of them is taken to another place. 15
2.5 The two possible situations illustrated. 16

3.1 The graph associated to a binary Markov chain. 21
3.2 The graph associated to a binary Markov chain with four observable

events detected by two sensors. 23
3.3 A stylised version of the workstation with two sensors. 39
3.4 The modelled system behind a working workspace. 40
3.5 The modelled system behind a no-working workstation. 41

4.1 Example of SPRT Λ(t) behaviour when null hyp. is true 49
4.2 Example of SPRT Λ(t) behaviour when null hyp. is false 50
4.3 Example of SPRT Λ(t) behaviour when parameters change. 51
4.4 Example of CUSUM ΛG(t) behaviour when parameters change. . . 54

5.1 UML Diagram of class Workstation. 62
5.2 UML Diagram of classes CED, FD, and their parent RatioTests. . 64
5.3 Flow chart of RunSimulation1. 66
5.4 Flow chart of RunSimulation2. 67
5.5 CED-MD test overview . 72
5.6 CED-FA test overview . 73
5.7 CED-OE test overview . 74
5.8 CED-T test overview . 76
5.9 CED-T test overview . 77
5.10 CED tests with fixed γ = 0.95 . 80
5.11 CED tests with fixed γ = 0.80 . 82
5.12 CED tests with fixed γ = 0.65 . 83
5.13 CED tests with fixed δ = 0.95 . 86
5.14 CED tests with fixed δ = 0.80 . 87

xi

xii LIST OF FIGURES

5.15 CED tests with fixed δ = 0.65 . 88
5.16 CED-T test 3D plot . 90
5.17 CED-T test 2D views of 3D plots 91
5.18 FD-FA test overview . 94
5.19 FD-TA/TE test overview . 95
5.20 FD-TA test overview - box plots . 97
5.21 FD-TE test overview - box plots . 98
5.22 FD tests with fixed γ = 0.95 . 99
5.23 FD tests with fixed γ = 0.80 . 100
5.24 FD tests with fixed γ = 0.65 . 101
5.25 FD tests with fixed δ = 0.95 . 102
5.26 FD tests with fixed δ = 0.95 . 103
5.27 FD tests with fixed δ = 0.80 . 104
5.28 FD tests with fixed δ = 0.65 . 105

List of Tables

2.1 Notation examples about y(i)(t) with regards to sensors i.1 and i.2 . 14

4.1 Possible hypothesis test errors . 46

5.1 Thresholds used during simulations. 69
5.2 CED-MD test overview . 71
5.3 CED-FA test overview . 73
5.4 CED-OE test overview . 74
5.5 CED-T test overview . 75
5.6 CED-T outlier models . 78
5.7 Recap of the results in the different tests: δ analysis. 84
5.8 FD-FA test overview . 94
5.9 FD-TA/TE test overview . 96

A.1 CED-MD test: simulated data. 111
A.2 CED-FA test: simulated data. 112
A.3 CED-OE test: simulated data. 114
A.4 CED-T test: simulated data. 116
A.5 FD-FA test: simulated data. 117
A.6 FD-TA test: simulated data. 119
A.7 FD-TE test: simulated data. 121

xiii

xiv LIST OF TABLES

List of Algorithms

1 Likeliest states sequence algorithm 32
2 Viterbi’s algorithm . 36
3 SPRT algorithm . 48
4 CUSUM algorithm . 53
5 Commissioning Error Detection algorithm (SPRT) 56
6 Failure Detection algorithm (CUSUM) 58
7 getNewObservation . 63

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

Nowadays, data covers an important part of our lives: a lot of studies are in
progress and a lot of applications are being developed to improve its collection and
management. This revolution touches all areas and forces them to revalue and
redesign their functionalities: the lighting area is very active about this topic since
lamps are very popular and diffused. Indeed, new light-systems are being developed
that integrate sensing, control, and connectivity functions: more and more requests
are being made about these features and the lighting area reacted developing smart
lamps. These can be produced thanks to the Internet of Thing (IoT) revolution
that brought sensoring and connectivity available to all since permitted to produce
device with small dimensions and price. The Internet of Thing paradigm, as stated
in [1], consists of including in a lot of things around us the capacity to communicate
through Internet to provide information about us and them. Obliviously, this
implies to overcome a lot of challenges since a huge number of different devices
have to communicate.
Another big area of studies is energy saving: Europe 2020 program [2] is near
of its end but a lot of work has to be done to reach its objectives. Indeed, in
addition to economic manoeuvres and actions concerning school and research topics,
this ambitious strategy also focuses on environmental and energy saving policies.
The programme about these topics aims to achieve the 20-20-20 target, i.e. the
greenhouse gas emissions 20% lower than 1990 levels, the 20% of energy coming
from renewable sources, and a 20% increase in energy efficiency. The latter is the
most difficult and quite far away: to achieve this, the EU must reduce primary
energy consumption by a further 1.6 % over the six years from 2014 to 2020 [3]. A
possible work field is the heating, ventilation, and air conditioning (HVAC)
area: a lot of energy is utilised to air-condition building and houses but some of
it is wasted [4]. For example, not all people that works in an office shuts off their
conditioner when they leave or sometimes they cannot do even if they wanted to
because the air-conditioning is centralised. To solve this problem, an idea is to
use sensors that monitor the presence of people within areas and connect these to
the air conditioning systems. A smart way to include sensors in offices is to use
smart lamps with a build-in proximity sensor and connectivity since they are widely
diffused and usually positioned near the workers.

1

2 CHAPTER 1. INTRODUCTION

1.1 Application

Implementing sensors in lamps is a good idea because lamps are widely spread
in an office but, at the same time, they are positioned close to the workers, like
the situation illustrated by Figure 1.1. It is essential for a successful data analysis

5.1 5.2

5

6.1 6.2

6

7.1 7.2

7

8.1 8.2

8

1.1 1.2

1

2.1 2.2

2

3.1 3.2

3

4.1 4.2

4

Figure 1.1: A stylised version of a office with twelve workstations. Each workstation
is equipped with two smart lamps.

that the sensors are close to the people to be monitored. Indeed, the closer the
sensors are to each other, the better performances can be achieved. That is why it
is assumed to have two ceiling lamps hanging over each desk in order to monitor
the person who is sit in front of the workstation. Having two lamps for desk is
a good choice since it allows to have sensors redundancy to improve the quality
of the measurement, and at same time, allows not to expend too much money on
lamps and sensors like if buying three or more of them. Of course, the installation
of the lamps is also of vital importance: indeed, these lamps must be installed and
configured very careful not to make mistakes since lamps cannot be aware of their
position and location naturally. A wrong installation could lead to several issues:
the easiest to solve problem that can happen after a commissioning is that one of
the sensors has not been connected. It is quite easy to solve since it is necessary
only to test and monitor the sensors for a while and see if any of them do not send
data. Silent problems, i.e. those that do not show malfunctions always but only
in particular cases, are more difficult to detect and solve, instead. An example of
silent malfunctions that often cannot be easily identified is a sensor positioned in a
different position than that assigned. Indeed, this problem is difficult to find since
it comes out not very often, no sensors are disconnected, and therefore it is difficult
to find someone or something to blame: Let us think about a situation where
two sensors should monitor a workstation in order to manage the air-conditioning
but one is in a wrong place; finding that could be very tricky because, if it is
assumed that, for example, the air-conditioning is activated when the two sensors
see something within their surveillance area, the guy that sits in this workstation
will never be able to identify the problem if the other is a very present worker. An
even worse situation could occur in the case of worker monitoring without profiling,
i.e. a people monitoring that is used only to obtain aggregated data and thus is

1.1. APPLICATION 3

not linked to any specific worker. In this case, the data arrives at the analysis
centre all together and it is not possible to trace which workstations produced
them. Therefore, if there were an error in the commissioning of the sensors, no one
would be able to detect it by looking only at the aggregated data, but it is still
a big problem because it distorts the data. Let us think, for example, about the
monitoring of presences in a library or store like an Apple Store in which products
are seen and used over a desk: an error of that kind would lead to have irremediably
compromised and useless monitoring data. In Figure1.2, an example of errors is
reported.

5.1 5.2

5

6.1 6.2

6

7.1 7.2

7

8.1 8.2

8

1.1 1.2

1

2.1 2.2

2

3.1 3.2

3

4.1 4.2

4

Figure 1.2: A stylised version of a office with twelve workstations. Each workstation
is equipped with two smart lamps. Four mistakes are present.

From the examples above, it is clear that it is necessary to develop a suitable
strategy to solve this issue, i.e. a plan of action to detect whether the commissioning
was done in a good manner or not. The best idea could be to use an automatic
identification tool to be installed in the lamp management system for a short period
of time. This would be almost at no cost, it can be access to all data without leaks,
and would not require new and expensive hours of work for the staff as in the case of
rechecking all the lamps without any electronic system. In addition, with automatic
systems it is possible to define an a priori accuracy of recognition, which is not
possible with humans. This strategy can be called using a lot of different terms: in
this opus, that branch is called Commissioning Error Detection. As it will be
seen further on this opus, this strategy is based on checking which situation, correct
or incorrect commissioning, is the most likely, i.e. has the highest probability. Of
course, only the sensor data is utilised since they are the only available one.

Another similar problem is called Failure Detection. This consists of moni-
toring the sensors to see if they maintain performance over time or some difficulties
arise. Indeed, offices and open to the public environments are very difficult to be
controlled and therefore different things could happen to the sensors during time.
Let us think for a moment about when refurbishment is done in a wide space: a
lot of errors may occur when the lamps are refitted after being removed to allow
paintwork of walls and ceilings or a space redesign. Another example could be
tampering. Let us think, for example, of a laggard employee who does not want to

4 CHAPTER 1. INTRODUCTION

be monitored precisely or of a prankster worker who enjoys reversing the sensors
of the lamps to make a mockery of the owner of the activity or of it boss. It is
therefore necessary to provide for continuous monitoring and control of the sensors
over time in order to be warned when any of these or similar situations occur. The
strategy, as it can be clearly seen, is different from the problem above: in the other
case, the goal of the Commissioning Error Detection is to give a report about which
workstations work great and which ones have problems. In this case, the idea is
to provide an alarm only when things start to go wrong instead of giving a report
at almost regular intervals. Therefore, it is necessary to develop a quite different
strategy to solve this even if the model to describe the two problems could be pretty
similar. Like in the previous case, only sensor data can be used since they are the
only ones available.

At the end of the day, the goal of this thesis is to develop some algorithms
that allow to solve the two-previous illustrated problem: in other words, to check
whenever sensors are installed in the wrong places or exchanged during time. As
it was already shown, whether sensors that should look at same zones instead see
different ones a lot of problem occurs. However, this is not an easy way and a lot
of challenges have to be overcome, as it can be seen in the next section.

1.2 Challenges

A lot of challenges was encountered during the development of the solutions
for the problems stated above: the main one was to develop a good model on
workstation that allows to carry on the goal. Indeed, this is a not so widespread
research topic and therefore, it is more difficult to find something ready to use.
The situation can be described as a series of workstations where, in each one, there
is a table and two ceiling lamps with an integrated occupancy sensor. Obviously,
the presence of a person seated at the table can only be detected by analysing
the outputs of the two sensors that look at the desk, since the actual presence
is not directly accessible. To write down the idea used for this work in a more
mathematical way, as can be seen later on, the Hidden Markov Models (HMM)
tool was used. This is a very powerful mathematical tool that suits very well to
this case. Indeed, it allows to model very well a workstation without neglecting
the sensors and the fact that the position cannot be directly measured. The con is
that this tool is quite difficult to understand, but, with the right tools, everything
becomes much easier.

Other challenges to be faced are the ones about the sensors. Indeed, the
modelling of an automation system depends a lot on the available sensors. Therefore,
the latter are central to the creation of the model and must be analysed in depth in
order not to create models that are too distant from reality. Obviously, the world
is very complex and that is why it is necessary to put some stakes on how deep to
go to describe the reality. Indeed, in our case different issues must be faced with
regards to sensors: the first is that sensors are noisy, i.e. they are not perfect
and sometimes give a different response from the correct one. Several causes can
be found to explain this: the most important of these is the fact that the proximity
sensors are based on electromagnetic waves and are therefore susceptible to thermal

1.3. STATE OF ART 5

noise and electromagnetic interference. These are widely present in an office due
to PCs, printers, and all other electronic machinery, as well as the lamps themselves.
Therefore, a strategy to face this must be developed: the faster is to use multiple
sensors in order to reduce the noise. The second issue that it is present, is to have
sometimes cross-measurements. Indeed, if two workstations are too close, it
is possible that the sensor of one workstation measures the presence even in the
adjacent one. This is a difficult problem to solve practically and for this reason
it is better to model it as a generic noise and use some algorithms to mitigate
it. The third issue is about the sensing area. Each sensor has a sensing area in
which its performances are those described and guaranteed by the manufacturer.
Outside that area, however, behaviour is not well defined, and may have different
performance in different cases. In addition, the sensing area is not a discrete
whole but a continuous one: that is, closer to the sensor, better performance, which
decreases as you move away. Therefore, depending on the position in which the
person is seated on the workstation, different performances can be achieved. This is
very difficult to model and that is why in this work it was decided to assume that
people sit perfectly in the middle of the desk, halfway between the two lamps. To
reduce the load on this work, all these problems can be reduced to some probability
of errors that will be included in the model parameters.

1.3 State of Art

A very little was done about the topic of detection commissioning errors or
during time changes using sensor data in the lighting area as far as it is known.
The main cause can be found in the fact that smart lamp area is a fairly new topic
and that it has only begun to be developed in recent years. Moreover, installers are
sometimes reluctant to introduce new installation methods and for this reason only
recently, with the arrival of new genres of installers, the subject is beginning to be
studied in depth. Most of the work in lighting commissioning area is about showing
strategies to improve brightness or reduce energy wasting by better positioning of
the lamps like in [5] and in [6]. In the first one a summary of energy management in
lighting systems is done whereas in the second one proposes a method to estimate
adjusted energy baseline using simulation models. Another useful article about
this topic is [7]: in this paper, a study about the state of art is done along with
a comparative between different approaches. The study was done very careful
using very strict assessment criteria for the comparative. The ones that decide to
investigate about using data in this field usually point to develop models based on
statistic instead of using data coming from sensors. For example, in [8] a description
about the light commissioning is done and some advice is shown to improve energy
saving and comfort. Instead, in [9], an algorithm for the simulation of occupant
presence is developed using inhomogeneous Markov chains. This paper is quite
interesting since gives an idea on how to find parameters for modelling. About
modelization of occupancy a lot work was done: for example, in [10] they proposed
a model that can generate representative occupancy profiles in single office rooms
using non-homogeneous Markov chains whereas in [11] authors summarised the
current state of art about occupancy models. Furthermore, in [12], an idea about

6 CHAPTER 1. INTRODUCTION

how real time occupancy data from a wireless sensor network can be used to create
occupancy models is shown. However, some works about using sensor data to
model control lighting or HVAC systems are being done, like [13]. This article
considers smart luminaries with an occupancy sensor and a lightness sensor, and
tries to develop a strategy to achieve a designed illumination condition with low
energy consumption. Another useful work is [14]: in this opus, the authors describe
different lighting control strategies and their evolution with a focus on commercial
office applications It is interesting also [15], which illustrates how fundamental
are the occupancy sensors to obtain lasting results in the field of energy saving
management from the point of view of air conditioning. Another interesting work is
also [16] since it shows different types of sensors that can be used to detect people:
they also develop a semi-Markov model to recognise people by pattern. The work
presented here however assumes to receive binary occupancy data from sensors, but
it is interesting to understand a possible way to implement it at low level.

All these works have been very useful to draw inspiration to solve the problems
of Commissioning Error detection or Failure detection. Indeed, in many of these
works, even if they do not deal directly with these problems, there are many ideas,
sometimes just sketches, that have allowed to build something new. This work,
therefore, takes inspiration from these ideas to develop a new vision.

1.4 Original Contribution

The final aim of this opus can be summarised in using two main targets: the first
is to provide a model for the workstation behaviour to describe the commissioning
error detection and the failure detection problems, but also to perform simulations.
Indeed, simulations are the fastest way to test whether the algorithms work or not
if a real office data is not available. The second target is to find some algorithms to
solve the two issues in a fast and light way. Neither of the two targets had already
been solved and for this reason it was necessary to create a large part of the opus
from scratch.

The first original contribution brought by this opus is to use a hidden Markov
model to create a model for the workstation behaviour: as stated in the state of
art section, using this modelling idea is quite unusual in this field. However, it was
decided to use hidden Markov models since they allow to provide a very tailored
model of the problem: indeed, a stochastic model like this takes care about changing
states as well as sensor behaviours using an all-in-one tool. Thanks to this tool, it
was possible to create a fairly precise model of a workstation. As it will be seen
later, after stating some assumptions, a workstation can be modelled with only two
matrices and a vector if this type of model is used. The first matrix defines the
behaviour of the states, i.e. how they change during the flow of time, whereas the
second matrix defines the characteristics of the sensors using their probabilities
of miss detection and false alarm. The vector instead encloses the initial state
probabilities of the workstation. These elements can be easily built, either by using
manufacturer’s data for sensors and estimates for status change, or by using more
complex algorithms, which will be explained in the further chapters. Indeed, hidden
Markov models are widely studied and thus a lot of tools are available to analyse

1.4. ORIGINAL CONTRIBUTION 7

them and to build something new. In fact, in this work, there are two models
built for a workstation: as already defined above, the two possible behaviours for a
workstation are correct and incorrect. The first occurs when the lamps are correctly
associated with the table whereas the second occurs if at least one of the two lamps
is not in the assigned place. The purpose of the work then becomes to find some
tools that allow to define which of the two models, the correct one or the incorrect
one, is currently the most likely in the workstation. It is necessary to highlight that
there are two situations in which this test must be carried out: immediately after
a commissioning or continued over time. In the first case, the problem is called
commissioning error detection, while in the second, failure detection is mentioned.

The main original contribution made in this opus is to apply the sequential
hypothesis testing to a hidden Markov models for both commissioning error detection
and failure detection situations. This required a lot of study since there was nothing
ready to use. Indeed, it was necessary to study the different methods of application
of the sequential hypothesis testing and find those best suited to the situation:
for the commissioning error detection the Sequential Probability Ratio Test
(SPRT) was used, while for the failure detection problem the CUmulative SUM
(CUSUM) was adopted. The main difference between the two methods is the amount
of information available and therefore used. In the first case, the commissioning
error detection, no information is available about the status of the workstation
since the purpose is to determine if commissioning has been completed correctly or
if any errors have been made. In the second case, instead, information about the
correct commissioning is available and the purpose is to monitor the workstation
to see if new problems can occur. For this reason, it was necessary to adopt two
different algorithms to carry out the work. The biggest problem, however, was still
open: both methods require a last-outcome dependent probability function, but
the latter was not available by now. Indeed, it is quite complicated to derive a
probability function from a hidden Markov model since the probability of states
and observations varies according to the past. It was therefore necessary to build a
function that simulates the behaviour of a probability distribution dynamically, and
since it was not available, it was necessary to build it from scratch on the basis of
the measurable and available values: it must be remembered that, in this work, only
data coming from the sensors are available and, for this reason, all the functions
based on the status value had to be discarded. The problem is more complex
than it can be thought since the probabilistic description of the hidden Markov
models makes wide use of the previous state, which is not directly available. It was
therefore necessary to rewrite part of this description, removing as much as possible
the dependency on the states and use estimators to make up for this. The mission
has been almost completely reached but a small constraint has been necessary to
introduce: the probability function used in the sequential probability ratio test and
in CUSUM depends, in fact, not only on the last available measure, but also on all
the previous ones, making the analysis of the algorithm performances a little more
complex. However, it was possible to make both algorithms in-place, thus making a
future implementation in commercial products possible. Indeed, the main purpose
of this work is to provide some tools that can be easily implemented in commercial
products: to do this, it is necessary that the proposed algorithms are fast and need
a little amount of memory, since the devices that will have to accommodate these

8 CHAPTER 1. INTRODUCTION

algorithms are cheap and do not have large computational capabilities. However,
the algorithms are also suitable for centralised use, where an external machine
performs the algorithms instead of the individual workstations. Hence, even though
the in-place implementation needs to be improved, the use of the two methods and
the centralised approach allows to this opus to be an interesting innovation for the
problem and to be adopted in the industrial environment.

1.5 Outline

This work can be divided in six parts: after a brief introduction, the formulation
of problem is shown in Chapter 2 along with a possible modelization using sequential
hypothesis testing. This part tries to expand the ideas presented in this introduction.
The third part gives some statistic and mathematical complements to understand
better the mathematical tools behind the idea: the hidden Markov models and
the tree possible issues given sequences of data is illustrated. Furthermore, some
useful algorithms that can be used to solve these types of problem are described.
The Chapter 4 is the core of the work: in this part algorithms like the sequential
probability ratio test and CUSUM are described along with their usage to implement
this work. Furthermore, in this chapter, some problems encountered and their
discovered solutions are described. Chapter 5 shows simulations performed to check
the quality of the model and algorithms used in this work. Since algorithms have
some tuning parameters called thresholds, comparisons between different values are
shown to find the best ones. Furthermore, to facilitate the reader, different and
innovative methods for showing the results are used. Last chapter summarises all
and reports future improvements that can be implemented.

Chapter 2

Problem Formulation

In this chapter, the main problems and the ideas it was decided to adopt for
the workstation models are illustrated. To be more precise, initially a detailed
description of the problems will be made: after that, a brief introduction about
occupancy sensor is made while, afterwards, the assumptions used will be shown
along with the notation adopted. Eventually, the idea that will be pursued is shown.

2.1 The Problems

Figure 2.1: The situation illustrated. Two smart lamps watch the same workstation.
Front view.

There are two main problems that this work is aimed to solve with: the detection

9

10 CHAPTER 2. PROBLEM FORMULATION

of commissioning errors and the identification of failure during time. These two
problems, however, are very much related to each other since they both occur in
the same environment, namely a workstation. As it can get guessed, the work is
primarily aimed to be implemented in work environments such as offices albeit it can
be adapted to any environments where people sit in front of a table, such as libraries
or even restaurants. Even modern stores like the Apple Stores, where products are
placed on tables to be tested, can adopt this idea for monitoring customers and
understanding which products are more desired than others. Although this is true
and start to spread, in this work the whole of the desk and the lights connected to
it will still be called workstations, even if, as already mentioned, the idea can also
be exported outside the strictly working environment.

i.1 i.2ii.1 i.2

i
Person

Lamps

stylised workstation model representation

Figure 2.2: The situation illustrated. Two smart lamps watch the same workstation.
Bird’s-eye view.

Figure 2.2 shows a currently situation in a standard office from a bird-eye view:
every workstation is composed of a pair of ceiling lamps that illuminate each desk.
To make the design more agile and clear, from now on the model will be represented
using the right-hand model in that figure. Usually, nobody cares too much about
lamps except when they break, and people are shrouded in darkness. In this work
it was decided to concentrate the focus on them and adding to them something
new: it is assumed these lamps are smart type ones, i.e. they have a built-in
proximity sensor that allows them to identify whether a person is sit at the desk.
This is not a strange request since nowadays several lighting producers provide
lamps like the ones are required for this project. Indeed, some new regulations
require that the lighting level must be controlled to always be above of a minimum
brightness threshold, so as to provide an adequate level of comfort to the worker.
Furthermore, to improve energy saving and comfort of workers, some companies
start to monitor workers’ behaviour to switch off lights and air-conditioning when
they leave. Therefore, these smart lamps are the answer and they start to spread
across offices.

The problems that this opus sets out to solve, i.e. identify whether there were any
errors in the commissioning of the workstations or whether they become unreliable
over time, have a common work base and they are equally important. Indeed, the
data collection is meaningless if data gathered are not reliable and therefore is very
useful to have an alarm about this. The target of this work is to provide a tool
that shows if data is reliable and, if it is not, when the issue started. However,

2.1. THE PROBLEMS 11

as these are two problems, it will necessary to provide two different algorithms.
Nevertheless, it is important to find similarities between the two problems in order
to reduce the workload. The main thing in common between the two issues is the
environment to be monitored. Indeed, in both, there are workstations like those
illustrated above.

1.1 1.21

3.1 3.23 4.1 4.24

2.1 2.22

Figure 2.3: A common office with four workstations: Bird’s-eye view.

In Figure 2.3 is illustrated a common situation in which this opus can be applied:
an office where there are a lot of desks like the ones that have been shown in Figure
2.1. Each desk has two smart lamps over it and a number; each lamp is called
using the number of the desk along with one or two: sitting in front of the desk,
the utilised convention is to use number one for the left-hand-side lamp and the
number two for the right-hand-side one. At the end of the day, each desk numbered
i has two lamps called i.1 and i.2. In the case illustrated, two desks are shown with
numbers one and two: therefore, desk one has lamps 1.1 and 1.2 whereas desk two
has lamps 2.1 and 2.2. These numbers are assigned during the commissioning of
the office, when people assembles desks, connects PCs, and installs the lighting.
The issue occurs when two sensors that belong to different desks are put together
over the same desk, and the aim of this work is to develop a solution for recognising
this. Several reasons can be found to explain that: for example, a worker could
swap a pair of lamps because one of his is broken or for luddism. Another reason
can be mistaken during installation after an office renovation. Another one may be
a distraction error committed by the installer during commissioning. From these
examples, it is clear to see that there are two big situations where that could happen:
indeed, as already stated before, errors can be committed during commissioning
or later during time. The main difference between these two cases is that, in the
first,a priori information is not available whereas, in the second, it is aware that
commissioning has been done in a comprehensive manner, but it is required to
monitor if some changes occur. Before to illustrate these two approaches, it is
better to fix some assumptions to reduce the magnitude of the problem.

12 CHAPTER 2. PROBLEM FORMULATION

2.2 Modelization and Assumptions

As it can be seen, the problem is quite wide since a lot of different variables
are present in a workstation. The main ones are about sensors and people: indeed,
a lot of different sensors can be used as well as the person behaviour can be very
variable from person to person. Therefore, it is essential to rejuvenate the working
field and thus make assumptions. But, before to do that, it is better to illustrate
what is an occupancy sensor and a proximity sensor.

2.2.1 Occupancy & Proximity Sensors

An occupancy sensor is a device that is used to detect the presence of a person
in a defined environment, usually a room. The target of this type of devices is to
determine whether electrically powered load should be turn on or not. These are
very useful in public environments where visitors do not take responsibility for their
energy consumption, and where they often do not take great care to be diligent
in switching off electronic equipment when not in use. Therefore, the final target
of occupancy sensor installation is to improve the energy saving, and this has led
some countries to oblige to install them in public spaces.

Two are the most prevalent types of occupancy sensors [17]: the passive
infrared (PIR) and the active ultrasonic type. A passive infrared sensor will
turn on, i.e. a high output is provided, whenever it detects a heat source that is
moving or is barely visible, whereas an active ultrasonic sensor exploits the Doppler
effect: it emits ultrasonic waves at frequencies of 25 kHz or higher, in order not
to be heard by human beings, and it listens to the return echoes. If it detects a
significant Doppler shift, it is expected that a moving body is present, and the
sensor will turn on. In both of cases, a motion sensitivity threshold can be set by
the user as well as the duration of the high signal provided by the sensor for each
detection.

Both of the types of sensors have cons and pros: the passive infrared one may
not be able to detect people behind barriers like resting-room modesty panel, and
they maybe have some dead spot, i.e. some areas in which they are less sensitive
to heat sources than the whole of the environment. The active ultrasonic sensors
are resistant to these disturbances since the sonic waves emitted will permeate all
the environment. However, this type of sensors has cons too. Indeed, they are
susceptible to false triggers from a variety of sources: if the sensor is placed on
a wall bordering another room, some of the emitted waves may go to the other
room and give false alarms in someone there is moving. Furthermore, wind and
air-conditioning can be detected as moving people if the sensibility is set too high.
Usually, in both of the types of sensors, some electronics is put in support of these
sensors to expand signals and clean up noises as well as to manage sampling time.
In recent years, to improve the capabilities of occupancy sensors, both of types are
often used in pairs in order to exploit the best features of them.

Similar to them, but with a shorter working range, are the proximity sensors.
The operating principle is very similar in the case of those used to identify people,
but usually, they have lower power due to low working range. However, in common
language, the two terms are often used to mean the same object. Eventually, in

2.2. MODELIZATION AND ASSUMPTIONS 13

this opus, a generic occupancy sensor that merges the two types is used since it
allows to simplify the description without loss of generality.

2.2.2 Assumptions & Notation Adopted

Several assumptions were done to simplify the work, but it has always tried to
make them as general as possible in order to make this work reusable. Some of
them are used in order to circumvent technical problems, such as not having smart
lamps available. These types of assumptions can be easily dropped if some tests
on the smarts lamps are done, and, thus, a data description of a smart lamp is
available. Part of these assumptions were also done to simplify the work description,
but they can be freely dropped at the cost of greater notation complexity. The
other ones, instead, are the result of the nature of the problem, and, therefore, it
must be dealt with, like the ones about sensors. The main of this work are the
following. The first one is about the state of a workstation: it is defined as the
state of the worker assigned to it and:

Assumption 1. Workstation has two possible states: worker is absent, or worker
is present.

The state is binary and then, the most natural way to represent it is using
{0, 1} digits. In this work, to indicate the state of a workstation, it is used the
notation xi(t): this refers to the state of workstation i at time t. As it can easily be
guessed, if xi(t) = 0, it means the worker is absent whereas, if xi(t) = 1, the worker
is present ahead of the workstation. Another assumption about workstations is:

Assumption 2. Workstations are slow dynamics systems, i.e. changes of states
are slow.

This is a natural assumption that derives from the nature of the problem since
the work is related to people: indeed, in offices, workers usually change their state,
i.e. they sit on their workstation or they have left, very rarely for a machine’s point
of view. Then, it is expected that probability to change states will be low whereas
the probability to stay in the same state will be high. Furthermore:

Assumption 3. Workstations are time-invariant systems, i.e. probability of change
states does not vary during time.

This assumption is quite feasible since people are fairly regular and predictable
beings. However, this assumption simplifies a lot the work since allows to use
constant values with regard to time. Another simplifying assumption is:

Assumption 4. Workstations presences or absences are independent between work-
ers.

This is a very strong assumption and it could be not always verified in all offices
because of arriving, leaving and break times are usually the same for all the workers.
However, it should be remembered that, in modern offices, people often get up,
go to the bathroom, welcome a customer, or retrieve old documents, i.e. they
often leave their workplaces and then return: so, this hypothesis is not completely

14 CHAPTER 2. PROBLEM FORMULATION

strange, and it could be used without reducing the possible applications of this
work. At a closer look this idea would seem to clash with the Assumption 2 about
slow dynamic but these movements are seen as very rare by the sensors because
of their very small sampling time. Another assumption about the operation of a
workstation is:

Assumption 5. Workstation state is not directly available, but it is measured by a
pair of sensors.

This is a natural assumption since the only way to identify the workstation state
is to use data provided by the sensors that are built-in into the lamps watching the
desk. Sensors are not 100 percent reliable because of disturbances and noise: this
leads to modelize the problem as a hidden state problem. It is useful to define a
notation for sensor’s outcomes. A good way is to use y

(i)
j (t) for sensor i.j at time

t. Like for the state case, sensors’ outcomes are binary: 0 means sensor has not
detected any presence whereas 1 means sensor has detected a person in its detection
area. It is also useful to provide a compact notation to return the two outcomes of
the lamps belonging to the same table: in this case, y(i)(t) is adopted. Since y(i)(t)
encloses measurements coming from two different sensors, it can assume four values:
to simplify the implementation, it was decided to use the binary code to represent
them, convert it to decimal one and then add to it one to work with non-zero
values. The first digit contains the value from sensors i.1 whereas the second stores
measurement coming from sensor i.2. To be clearer, an example is provided: let
y

(i)
1 (1) = 1 and y

(i)
2 (1) = 0 be; in this case y(i)(1)→ 102 → 2→ +1 = 3. In Table

2.1 all possible examples are reported.

Table 2.1: Notation examples about y(i)(t) with regards to sensors i.1 and i.2

y(i)(t) y
(i)
1 (t) = 0 y

(i)
1 (t) = 1

y
(i)
2 (t) = 0 1 2

y
(i)
2 (t) = 1 3 4

Other assumptions are needed to define the occupancy sensors. The most
important can be stated as:

Assumption 6. States and measurements are discrete-time values.

This is a forced technical assumption: indeed, sensors have a sampling time and
then measurements are discrete-time values. About states, the issue is different:
states are continuous-time variables since they can be defined for all possible
instants of time. To simplify the work, it is also assumed that states are discrete-
time variables and that they have the same sampling time as sensors’ measurements:
this sampling time is called Ts. Using discrete-time variables for states, it is
not a problem if Ts is small enough: indeed, a continuous-time function can be
approximated as well as desired using a discrete time series with adequate sampling
time. A useful assumption to better outline the model is:

Assumption 7. An occupancy sensor in a workstation is completely described by
probabilities of miss detection psm and of false trigger psf .

2.2. MODELIZATION AND ASSUMPTIONS 15

The aim of this assumption is to reduce the complexity of sensors: as already
stated, occupancy sensors have some problems, like false triggers or dead spot.
Therefore, it is useful to describe all of these problems using only two values: the
first, psm, is the probability of miss detection, i.e. the probability of the sensor to
give a low output even if a person is present. The second, psf , is the probability of
false trigger or false alarm, i.e. the probability of the sensor to give a high value as
output even if nobody is in there. Using these two probabilities, it is possible to
create an observations matrix for the pair of sensors in a workstation without too
much effort as can be seen in the Chapter 3. Indeed, in a more mathematical way,
the two values represent:

psm = P [ys(t) = 0 | x(t) = 1] and psf = P [ys(t) = 1 | x(t) = 0]

and, as it will be seen, they are the building blocks to build the observation matrix.
Thanks to these assumption, now it is possible to model better the problem.

2.2.3 Problems Modelization

In this part, it is possible to forget about the two small problems previously
stated, i.e. the commissioning error detection and the failure detection: both of
them share the same model and the possible situations because their only difference
is the time in which the analysis is done and what data is available. Indeed, the
first is done without any information whereas the second is performed using already
available data. Therefore, for building a model of the situations, the type of analysis
it is wanted to be done is not important.

1.1 1.21 2.1 2.22?

Figure 2.4: The fundamental problem illustrated. A pair of sensors is divided and
one of them is taken to another place.

Furthermore, to simplify the description, it is decided to focus on workstation 1
and 2, i.e. it is assumed that an office contains only two workstations. Since the
problem and the algorithms that will be proposed are distributed, the solution can
be extended for each desk available without any effort. At the same manner, it is
also decided to have lamps 1.1, 1.2, 2.2 and 2.1: the first two are normally present
on the desk 1 whereas the other ones are usually placed over desk 2. To reduce the
number of possible swaps, it is decided to focus on the swap between lamp 1.2 and
lamp 2.1. This is not a limitation because, as it can be seen later, the algorithms
presented are independent with regards to which lamps have been swapped.

In light of what it is stated above, two possible cases are available in this
situation with regards to desk 1:

16 CHAPTER 2. PROBLEM FORMULATION{
θ0 : Lamps 1.1 and 1.2 are present over desk 1

θ1 : Lamps 1.1 and 2.1 are present over desk 1

It is worth reminding that, for desk 1, the only available measurements come from
sensors in lamps 1.1 and 1.2. So, for case θ1, only one measurement regards the
current workstation whereas the other considers an unknown desk. In Figure 2.5

Desk 1

S 1.2S 1.1

Desk 1

S 1.1 S 1.2

Desk ?

θ0 θ1

Figure 2.5: The two possible situations illustrated.

are represented the two situations in a fancier way: θ0 (left-hand side) and θ1

(right-hand side). In that picture, smart lamps are identified using S i.j following
the notation defined above. The issue now is how to express this problem in a more
mathematical and statistical way exploiting the two different cases.

Taking inspiration from Figure 2.5, the problem can be rewritten focusing on
the behaviour of the two observations, S 1.1 and S 1.2, and the links between
them in the two different hypotheses. In the first case, θ0, it can be seen the two
measurements come out from the same desk, i.e. they are correlated with each
other. In the other case, θ1, the two measurements come out from two different
desks. From Assumption 4, the two desks are independent and then it is possible to
define that, in this case, the two measurements are independent from each other. It
is worth reminding that, since they are independent by construction, they maintain
these proprieties regardless of the temporal instant. Therefore, the two situations
can be rewritten, in a more mathematical way, as follows:{

θ0 : Measurement from 1.1 and 1.2 are correlated

θ1 : Measurements from 1.1 and 1.2 are independent from each other

Now the issue is about how-to condensate that information in a tool that can analyse
and give a response about which hypothesis is true. It is worth highlighting that
this tool can only access observation data whereas it cannot check the workstation
state. Furthermore, this operation must be done for the two different detection
problems, even if a huge part of the work can be shared among them. Before
trying to find a tool that allows to perform this, it is better to take some time
to create and describe a model for the desk system. It is necessary to develop a
mathematical model of a workstation which takes into account the presence of

2.2. MODELIZATION AND ASSUMPTIONS 17

inaccessible conditions and noise-dirty observations. The most indicated tool for
this work are the Markov chains and the hidden Markov models, as it can be seen
in the following Chapter 3.

18 CHAPTER 2. PROBLEM FORMULATION

Chapter 3

HMM and the Model

In this chapter, a brief description about Markov Chains and Hidden Markov
Models is done. After that, the three problems that can be solved using the Hidden
Markov Models are shown along with some useful algorithms that can be used to
resolve these issues. Thus, using that knowledge, the model adopted for this work
is derived and described.

3.1 Markov Chains

A Markov Chain is a particular type of discrete dynamic system firstly developed
by Andrey Markov in the early 20th century. It is a system with a finite1 number
of states and where the transition between different states is driven by probabilities
instead of relying on deterministic functions. To be more precise, a Markov chain
Q gives a theoretical model to describe the behaviour of a discrete-time system, i.e.
in which state the chain is. In this work, a model with two states is sufficient since
only two possible position of worker are available, as stated in Assumption 1. Thus,
it can be defined the set of the N = 2 available states, S = {s1, s2}. Since, in this
opus, states are absent or present, the most intuitive idea is to use binary values to
express the elements in S. Thus:

S = {s1, s2} = {0, 1}

As already stated above, to describe the jumps between states, a probability values
are required. Different ideas could be used to define them; to reduce this uncertainty,
the main hypothesis of the Markov chains must be disclosed:

Assumption 8. The chain state at time t+ 1, x(t+ 1) = xt+1 ∈ S, depends only
on the system state at time t, x(t) = xt ∈ S, and on the transition probabilities.

That assumption, called Time-homogeneous property, states that it is
needed to provide only probabilities of transition between states regardless what
happened before. In other words, the system relies only on the current state to
choose the next step and can forget what happens before. To simplify the notation,

1Markov chain theory also works with a numerable infinity of states, but it can be freely
omitted as only a finite number of states are required for this work.

19

20 CHAPTER 3. HMM AND THE MODEL

time-invariant probabilities are assumed: this assumption could be not required
to perform the algorithm. In a more mathematical way, the Assumption 8 can be
rewritten as:

P[x(t+ 1) = si | x(t), x(t− 1), . . . , x(0)] = P[x(t+ 1) = si | x(t)] ∀ t > 0

It is clear that, for this work, only four probabilities of transition must be defined
since only two states are available: the notation for the probability of transition
from state si to sj adopted for this opus is:

aij = ai(j) = P[x(t+ 1) = sj | x(t) = si]

For speed up the reckons, it is useful to write these probabilities in a matrix: using
i to identify the row and j for the column, a transition matrix A ∈ RN×N can
be obtained from these probabilities. It is worth noticing that this matrix is a
row-stochastic matrix since the sum by row is equal to one for each matrix row:
this is obviously since the sum of complementary2 events probabilities is equal to
one. A row vector like this is called stochastic vector and it is used to express
the probabilities about the chain to be in a state for all possible states at time t.
For example,

π(t) = [π1(t) π2(t)]

express that, at time t, the probability to be in the first state is π1(t) where as to
be in the second is π2(t). Obviously, this works for all possible N , but it is decided
to focus only on the binary case, since it is the one interesting for this opus.

Let π0 ∈ RN×1 be the initial probabilities: if it is assumed that the initial
conditions are known, then π0 = eᵀi for a particular i. Remember that ei identifies
the all-zero column vector except from position i where there is a one. Furthermore,
π(1) can be defined as a row vector that contains the i-th row of matrix A: that
row contains the transition probabilities given the fact that the current state is si.
In matrix form:

π(1) = π0A

At the same manner, π(t) can be calculated for all t higher than zero, i.e.:

π(t+ 1) = π(t)A (3.1)

this is the probability update rule for the Markov chain. A different way to
express the behaviour of the chain stated in 3.1 is:

π(t+ 1) = π(t)A = [π(t− 1)A]A = · · · = π0A
t+1

This formula prompts to investigate about what happens when t is closer to infinity:
before to find that, more information about stochastic matrices are required. This
formula also suggests that the only two things that identify a Markov chain given
a set of state is the initial probability π0 and the transition matrix A. Thus, a
compact way to describe a Markov chain is

Q = (A, π0)

2Two events are said to be complementary when the occurrence of one excludes the occurrence
of the other but one of the two will certainly occur.

3.1. MARKOV CHAINS 21

Row-stochastic matrices, also called right-stochastic matrices, have several
properties [18, ch. 3] that could be very useful: the first is, since in this work N = 2,
A can be written as:

A =

 a11 1− a11

1− a22 a22


i.e. there is only two parameters (a11 and a22) available to define this matrix and
they must be positive values lower than 1. It is decided to drop null probabilities
because in this opus are not required and this operation allows to work with positive
matrices and to use some useful properties. Furthermore, this allows to call the
chain regular without doing some complex reckons: regular chains require that A
matrix is primitive but, since positivity is a stricter feature, the whole thing can
be solved much faster. The second property is that a row-stochastic matrix has a
got a right eigenvector equal to a column of ones and the respectively eigenvalue is
1. Indeed, right multiplying a matrix by a column of ones means to sum by row.
Furthermore, it can be proven [18, Lemma 4 p. 120] that all other eigenvalues have
magnitude lower than 1. In this work, it is used row vectors to express probabilities.
Thus, it is useful to have some properties about left eigenvectors. As stated before,
A is a positive matrix: this means that it is primitive, i.e. ∃k : Ak > 0, and
irreducible, i.e.

∑N−1
k=0 A

k > 0. Therefore, the Perron-Frobenius theorem can be
used: this theorem states that, in this case, there is only one dominant eigenvalue,
i.e. only one with maximum magnitude, and eigenvectors are unique and positive.
The most interesting eigenvector is the one associated with the maximum magnitude
eigenvalue that, from what it was written above, is equal to one. Indeed, it can be
proven [19, p. 456] that, if w1 is the left eigenvector associated with eigenvalue 1:

lim
t→∞

π(t+ 1) = lim
t→∞

π0A
t+1 = w1 (3.2)

This is the asymptotic probability distribution of the Markov chain associated
to the matrix A and it allows to describe the behaviour of the chain after the
transitional period has elapsed.

There is another way, more visual, to describe Markov chains and it is to use
graphs. An example can be seen in Figure 3.1.

s1 s2

a12

a11

a21

a22

Figure 3.1: The graph associated to a binary Markov chain.

A graph is a pair composed by a set of nodes, in this case S, and a set of vertices
that link nodes. To be more precise, the Markov chain above described can be
represented using an oriented connected weighted graph: indeed, it is connected

22 CHAPTER 3. HMM AND THE MODEL

since exists a path that connects every node, it is oriented because vertices have
a starting and an ending node, and it is weighted since all of the vertices have
a weight. The weight represents the probability that a transition can occur if
the current state is the starting node and the future state is the other where the
edge lays. If, as a node set, the state set of the Markov chain is used, the graph
obtained contains all the information that contains the pair (S, A). This type of
representation is widely used because it allows to understand better the behaviour
of the chain, which can be difficult to clue at with a glance when using only the
transition matrix.

The theory described above would be perfect if it were possible to have a direct
access to the state of the chain, i.e. if the sensors could not make any mistakes.
This cannot be achieved, however, and it is therefore necessary to extend this
theory slightly to include observations. To resolve this issue, statisticians and
mathematicians developed an extension of Markov Chains, called Hidden Markov
Models.

3.2 Hidden Markov Models

A hidden Markov model, in a nutshell, is a Markov chain where states cannot
be directly observed: in this case, only events about states can be observed. Indeed,
in the hidden Markov model theory, the chain is modelled, as a common Markov
chain but every state, when it is reached, generate an event that depends only on
the probability distribution and the state. In Figure 3.2 a graphical representation
of a binary hidden Markov model with four observable events is shown.

In this Figure, events are represented as circles filled with dots and states are to
them using dotted arrows: the weight of those arrows represents the probability
that the event happens given the current state.

From a more mathematical point of view, the additions with respect to the
standard chains can be summarised as follows. Let O = {w1, w2, w3, . . . , wM} be
the set of the M observable events: the probability that an event is observed given
the current state can be expressed as:

cij = ci(j) = P[y(t+ 1) = wj | x(t) = si]

where y(t) is the event observed at time t. It can be noticed that the probability
of an observation depends only on the current state and it is independent of
previous events observed or states. This concept can be summarised in the following
assumption:

Assumption 9. Given the state x(t), the observation y(t) = yt ∈ O is independent
of other observations and states and depends only on current state x(t).

Similar to what was done above, event probabilities are assumed time-invariant
and they can be written in a more compact way to build the observation matrix
C. Obviously, the C matrix is row-stochastic and non-negative. Using that one, a
simple rule to express probabilities of events is:

σ(t+ 1) = σ(t)C (3.3)

3.2. HIDDEN MARKOV MODELS 23

s1 s2

a12

a11

a21

a22

y1
S1: ON

S2: ON

c11 c21

y2
S1: ON

S2: OFF

c12 c22

y3
S1: OFF

S2: ON

c13 c23

y4
S1: OFF

S2: OFF

c14 c24

Figure 3.2: The graph associated to a binary Markov chain with four observable
events detected by two sensors.

where σ(t) ∈ RM×1 is a row vector that contains the probabilities of all events at
time t, i.e. σi(t) = P [yt = wi].

At the end of the day, a hidden Markov model can be summarised as a stochastic
system described by a transition matrix and an observation matrix where their
states and observations probabilities evolve following formulae 3.1 and 3.3. Similar
to what was done in the Markov chain section, a hidden Markov model given the
states and observations sets can be represented as:

Qh = (A,C, π0)

Even if it is quite simple to be described, this theory allows to solve a lot of issues:
the three fundamental ones are the three HMM problems.

24 CHAPTER 3. HMM AND THE MODEL

3.3 A different approach to describe the proba-

bility behaviour of a HMM

To simplify the description of the three problems, a good idea is to do some
cosmetics improvements to the formulae 3.1 and 3.3. The final aim of this subsection
is to describe the probability behaviour of a hidden Markov model using analogies
with the Kalman filter. This filter is widely diffused to estimate unknown variables
in the continuous-space and then making comparative with it allows to facilitate the
comprehension3. The main concepts that can be copied are the prediction step
and the update step. Indeed, a simple description for the probability of states
is required and a working idea can be to copy the concept of prediction-update
steps. For example, in the Kalman filter, for each sampling time two operations
are performed: the first, called prediction step, tries to predict the state using the
previous estimation whereas, the second, tries to estimate the state comparing the
prediction performed in the previous step and the measurements that are collected
in that time interval. It would be nice if it were possible to reduce the behaviour
of state probabilities in a hidden Markov model to such a simple system. As it
will be seen, this can be done in hidden Markov models too. But, before to show
the algorithms, it is better to illustrate some mathematical complements that will
facilitate the comprehension.

3.3.1 Mathematical Complements

First of all, it is worth reminding that aij = ai(j) = P[xt+1 = sj | xt = si]
whereas cij = ci(j) = P[yt = wj | xt = si]. Another two things that will be useful
are the Bayes’ rule:

P[x, y] = P[x | y]P[y] = P[y | x]P[x] (3.4)

and the marginalization rule:

P[x] =
∑
y∈O

P[x, y] =
∑
y∈O

P[x | y]P[y] (3.5)

Before starting with the maths, a good idea is to define some notations that can be
useful. As a convention, it was decided that:

� T means the last time in which an observation was obtained, i.e. all data
available are YT = {y(1), . . . , y(T)}. In this work, the first sample is obtained
in t = 1; this choice was done to maintain compatibility with the Matlab
toolbox that indexes arrays and vectors from 1.

� All vectors are row vectors if not differently stated. This is a common choice
in statistics but a quite strange one in Engineering. Anyway, this means
that left matrix multiplications are performed instead of the common right
ones. To reduce the possibility of committing misunderstandings, the time-
depending values are stored by columns. It could be seeming topsy-turvy,

3The Kalman filter knowledge is not required to understand the following parts.

3.3. A DIFFERENT APPROACH FOR HMM DESCRIPTION 25

but this convention allows to reduce mistakes when these algorithms will be
implemented in a computer. Indeed, a real variable is stored in a column, and
then each row represents a sampled-time interval, whereas a vector variable
is stored in a matrix: in this case, the i-th row contains the vector at the i-th
sampled-time interval.

� In this opus, the element-wise multiplication is indicated with � and
follows the same behaviour of the times Matlab’s function4. The most used
feature is vector by vector element-wise product: this allows to compact the
following:

a(i) = b(i) c(i)∀i ∈ [1 : I]

into
a = b� c, a, b, c ∈ R1×I

The latter operation is much faster than the for-loop in Matlab.

� The standard notation adopted henceforth for a hidden Markov model is
Q = (A,C, π0). The subscript h has been removed to facilitate notation and
to speed up the writing. No misunderstanding with Markov chain can occur
since they are no longer used in this opus.

� P̂τ |T (i) is the probability that the chain was, is or will be in the state si at time

τ > 0 given the observations from 1 to T > 0, i.e. P̂τ |T (i) = P[x(τ) = si | YT].

3.3.2 The Filter

With the previous assumptions clear in the mind, it is possible to describe well
the various steps of the filter.

Prediction Step

In the so-called prediction step, previous estimated values are used to obtain
the new ones. Using the notation defined above:

P̂t+1|t(i) = P[xt+1 = si | Yt] (3.6)

=
∑
sj∈S

P[xt+1 = si, xt = sj | Yt]

Bayes =
∑
sj∈S

P[xt+1 = si | xt = sj, Yt]P[xt = sj | Yt]

Assum. 8 =
∑
sj∈S

P[xt+1 = si | xt = sj]P[xt = sj | Yt]

=
∑
sj∈S

aji P[xt = sj | Yt]

=
∑
sj∈S

aji P̂t|t(j) (3.7)

4https://it.mathworks.com/help/matlab/ref/times.html

https://it.mathworks.com/help/matlab/ref/times.html

26 CHAPTER 3. HMM AND THE MODEL

This shows how to link the expected states probabilities with the previous states
probabilities. It is worth highlighting that, in the second step, the Bayes’s rule is
used whilst, in the third, the Assumption 8 has been exploited, i.e. future state
depends on the previous state only.

Update Step

In the so-called update step, previous predicted values are used to obtain the
estimation of them, i.e. to calculate P̂t|t(i) using only P̂t|t−1(i) and the current
observation yt. In a mathematical way:

P̂t|t(i) = P[xt = si | Yt]

Bayes =
P[Yt | xt = si]P[xt = si]

P[Yt]

Split past/present =
P[Y0:t−1 | xt = si]P[yt | xt = si]P[xt = si]

P[Yt]

=
P[xt = si | Y0:t−1]P[Y0:t−1]P[yt | xt = si]

P[Yt]

f =
P[Y0:t−1]

P[Yt]
= P̂t|t−1(i) f ci(yt)

In the last step a definition was made: that can be also written as f =
1∑

si∈S
P̂t|t−1(i) ci(yt)

since
∑
si∈S

P̂t|t(i) = 1 and f is constant with regards to the time. Summarizing, the

update rule is:

P̂t|t(i) =
P̂t|t−1(i) ci(yt)∑

sj∈S
P̂t|t−1(j) cj(yt)

(3.8)

Initialization step

It is clear that an initialization step is required for this system in order to work:

P̂0|0(i) = P[xt = si | y0]

=
P̂0|−1(i) ci(y0)∑

sj∈S
P̂0|−1(j) cj(y0)

P̂0|−1(i) = π0(i) =
π0(i) ci(y0)∑

sj∈S
π0(j) cj(y0)

It is decided to use P̂0|−1(i) = π0(i) because no further information is available.

The filter

At this stage, we need to put all together to build a filter like the Kalman one.
The target of this filter is finding the probability of all possible reachable states at

3.3. A DIFFERENT APPROACH FOR HMM DESCRIPTION 27

time t using the observations collected from 1 to T . Therefore:

P̂t|T (i) = P[xt = si | YT] = (3.9)

Bayes =
P[Yt | xt = si]P[Yt+1:T | xt = si]P[xt = si]

P[Yt]

Bayes Reverse =

αt|t(i)︷ ︸︸ ︷
P[Yt, xt = si]

βt|t+1(i)︷ ︸︸ ︷
P[Yt+1:T | xt = si]

P[Yt]

rewrite t =

αt|t−1(i)︷ ︸︸ ︷
P[Y0:t−1, xt = si]

βt|t(i)︷ ︸︸ ︷
P[Yt:T | xt = si]

P[Yt]

where

Ya:b = {ya, ya+1, . . . yb}, a < b ∈ N

Defining:

αt|h(i) = P[Y0:h, xt = si] (3.10)

βt|h(i) = P[Yh:T | xt = si] (3.11)

for h ∈ [1 : T] and remembering probabilities are normalised, and therefore

P[Yt] =
∑
sj∈S

αt|t−1(j) βt|t(j)

the probability to be in state si at time t based on observations from 1 to T is:

P̂t|T (i) = P[xt = si | YT] =
αt|t−1(i) βt|t(i)∑

sj∈S
αt|t−1(j) βt|t(j)

(3.12)

A new issue comes out: indeed, the new αt|h and βt|h(i) was defined and then
new prediction and update rules must be specified. These are quite simple to define
for the α case. The prediction rule is:

αt+1|t(i) = P[Yt, xt+1 = si]

@ (3.4) = P[xt+1 = si | Yt]P[Yt]

@ (3.5) = P̂t+1|t(i)P[Yt]

@ (3.7) =
∑
sj∈S

aji P̂t|t(j)P[Yt]

@ (3.33) =
∑
sj∈S

aji
αt|t(j)

P[Yt]
P[Yt]

=
∑
sj∈S

aji αt|t(j) (3.13)

28 CHAPTER 3. HMM AND THE MODEL

whilst the update rule is:

αt|t(i) = P[Yt, xt = si] (3.14)

@ (3.4) = P[Yt | xt = si]P[xt = si]

⊥ = P[yt | xt = si]P[Yt−1 | xt = si]P[xt = si]

@ (3.4) = ci(yt)P[Yt−1, xt = si]

= ci(yt)αt|t−1(i) (3.15)

The initialisation step is:

α0|−1(i) = P[x0 = i] = π0(i);

For β, instead, the formulae are slightly different since β is a backward filter. In this
case, future values are required to calculate the one for the present. The prediction
rule is:

βt−1|t(i) = P[Yt:T | xt−1 = si]

marginalize =
∑
sj∈S

P[Yt:T , xt = j | xt−1 = si]

@ (3.4) =
∑
sj∈S

P[Yt:T | xt = j, xt−1 = si︸ ︷︷ ︸
xt−1=si is redundant

]P[xt = j | xt−1 = si]

=
∑
sj∈S

P[Yt:T | xt = j, xt−1]P[xt = j | xt−1 = si]

=
∑
sj∈S

βt|t(j) aij (3.16)

whereas the update one is:

βt|t(i) = P[Yt:T | xt = si]

= P[yt | xt = si]P[Yt+1:T | xt = si]

= ci(yt) βt|t+1(i); (3.17)

and the initialisation step is:

βT |T (i) = P[yT | xT = si] = ci(yT)

All these formulae can be defined for each state in S. To speed up the process, a
smart idea is to use matrices, vectors, and element-wise product. Let αt|h and βt|h
row vectors with N columns, then the formulae (3.13) and (3.17) can be written in
a more compact way to exploit them. For the α case:

αt|t = αt|t−1 � C(:, yt)
ᵀ (3.18)

αt+1|t = αt|tA (3.19)

α0|−1 = π0 (3.20)

αt+1|t+1 = αt+1|t � C(:, yt+1)ᵀ

= (αt|tA)� C(:, yt+1)ᵀ (3.21)

αt+1|t = αt|tA

= (αt|t−1 � C(:, yt+1)ᵀ)A (3.22)

3.4. THE THREE PROBLEMS 29

where C(:, i) is the i-th column of matrix C. At the same manner, for β:

βt|t = βt|t+1 � C(:, yt)
ᵀ (3.23)

βt|t+1 = βt+1|t+1 A
ᵀ (3.24)

since:

βt−1|t(i) =
∑
sj∈S

βt|t(j) aij = βt|tA(i, :)ᵀ

where A(i, :) is the i-th row of A, i.e. the i-th column of Aᵀ.
These formulae allow to write in an elegant way the update and prediction steps

for the filter that describes the model probabilities behaviour. It can be seen their
powerful in the following part, the one that illustrates the three problems.

3.4 The Three Problems

Hidden Markov models are used for solving a wide range of issues, from speech
recognition to genomics sequencing, but these can be collected in three different set
of problems:

� Evaluation problems

� Decoding problems

� Learning problems

Several algorithms were developed to solve these issues, as can be seen in detail as
follows.

3.4.1 Evaluation Problem

Let Q = (A,C, π0) be a hidden Markov model with set of states S and obser-
vation set O. The evaluation problem consists of calculating the probability of a
given sequence of observation, YT = [y1 y2 . . . yT]ᵀ, i.e. find P[Yt | Q]. This is not a
difficult problem to solve since, using simple probability rules stated above:

P[YT] =
∑

XT∈ST
P[YT | XT]P[XT] =

∑
XT∈ST

(
T∏
k=1

cxk(yk)
T−1∏
l=1

axl(xl+1)

)

where

ST = S × S × · · · × S︸ ︷︷ ︸
T

is the T-ary Cartesian power of the states set. The formula stated above is quite
simple to write but it has a huge computational cost: indeed, there is a summation
with NT elements and, for each element, (T − 1)T products have to be performed.
Therefore, this algorithm has a complexity of O(NT) that is too high to be used

30 CHAPTER 3. HMM AND THE MODEL

normally. For example, given a sequence of 100 observations coming from a two-
state hidden Markov model, that operation will took about 4 × 1015 years on a
High-end CPU5, about three hundred thousand times the age of the universe. To
solve in a smarter way this issue, the forward algorithm and the backward
algorithm were developed. These algorithms allow to reduce the complexity to
O(T N2): in the previous example, using this algorithm, the reckon would only
take four nanoseconds.

Forward Algorithm

Let αt|t(i) be defined following (3.10), i.e. αt|t(i) = P[Y0:t, xt = si]. The forward
algorithm allows to solve issue of finding the probability of an observed event
sequence: it exploits the marginalisation of the last sample of alpha to provide a
faster way than the previous algorithm to perform this. Indeed, using (3.5) and
the definition above:

P[YT] =
∑
si∈S

P[YT , xT = si] =
∑
si∈S

αT |T (i)

Furthermore, using (3.4) and the fact that the alpha is a stochastic vector, i.e. the
sum of its components is equal to one:

P [xT = si | YT] =
P [Y0:T , xT = si]

P [YT]
=
αT |T (i)

P [YT]
=

αT |T (i)∑
sj∈S

αT |T (j)
(3.25)

Therefore, a new to obtain

P [YT] =
∑
sj∈S

αT |T (j) (3.26)

can be found. To perform that reckon, N sums are needed. Furthermore, T alphas
are required to be calculated and each one takes N2 +N operations. Summing all
together, this algorithm has a O(T ·N2) complexity.

Backward Algorithm

The issue of find the probability of an observed event sequence can be also
solved marginalising with regard to the first state. Mathematically, using (3.5) and
(3.4), the problem becomes:

P [YT] =
∑
si∈S

P [YT |x1 = si]P [x1 = si] =
∑
si∈S

β1|1(i)πi(0)

Using the beta definition (3.11), this problem can be solved calculating the betas
from T to 1 with (3.23) and (3.24). In a more compact way, the solution can be
written as

P [YT] = β1|1π
ᵀ
0 (3.27)

5For this reckon, a Intel i5-3550 with 100 GFLOPS was taken as example, assuming that it
can be performed 1010 operation for second. This is a optimistic estimation because it not include
the memory access time and latency.

3.4. THE THREE PROBLEMS 31

Like the other algorithm, T betas are required to be calculated and each one takes
N2 + N operations. Summing all together, also this algorithm has a O(T · N2)
complexity. It is worth highlighting that also in the other algorithm, it is necessary
the knowledge of π0 since it is the initial condition for the alphas.

Forward-Backward Algorithm

Since modern CPU are no more single thread but they can perform several
reckons at same time, it is useful to exploit this to speed up the search for P [YT].
An idea is to combine forward and backward algorithms: indeed,

P [YT] =
∑
si∈S

P [YT , xt = si] =
∑
si∈S

P [Y1:t−1, Yt:T , xt = si]

=
∑
si∈S

P [Yt:T | Y1:t−1, xt = si]P [Y1:t−1, xt = si] (3.28)

=
∑
si∈S

P [Yt:T | xt = si]P [Y1:t−1, xt = si] (3.29)

=
∑
si∈S

βt|t(i)αt|t−1(i) (3.30)

where in step (3.28) Bayes’s rule (3.4) was used whereas in (3.29) the Assumption
9 was exploited. Using t = dT

2
e, the algorithm is split into two parts that can live

independently and therefore they can be performed simultaneously. This allows to
halve the time if this code is executed on a modern CPU.

3.4.2 Decoding Problem

The decoding problem contains all the issue about to estimate states given
observations. The main issues that are included in this are the estimation of a
state and the estimation of the sequence of states. Even if these two problems
are quite similar, two different algorithms were developed.

State Estimation

The state estimation problem consists of finding the most likely state given the
observations, i.e. x̃t|T . To find that it is necessary to calculate the probability of a
state given a sequence of observed events, i.e. P [xt = si | YT]. It is worth reminding
that has already been defined:

P [xt = si | YT] = P̂t|T (i)

and the solution is (3.12), i.e.:

P̂t|T (i) =
αt|t−1(i) βt|t(i)∑

sj∈S
αt|t−1(j) βt|t(j)

(3.31)

32 CHAPTER 3. HMM AND THE MODEL

Also, in this case the algorithm can be paralleled to calculate alphas and betas.
Remind that, if t = T , i.e. only observations until t are available, no betas are
required to be calculated. Indeed, if P̂t|t(i) is needed:

P̂t|t(i) = P[xt = si | Yt] =
αt|t(i)∑

sj∈S
αt|t(j)

(3.32)

=
P[xt = si, Yt]

P[Yt]
=
αt|t(i)

P[Yt]
(3.33)

The state estimation problem required to find a state that is the most likely,
i.e. it has the higher probability value. To solve this, an idea is to use the argmax
function. Indeed, using the argmax properties:

x̃t|T = arg max
si∈S

[
P̂t|T (i)

]
= arg max

si∈S

 αt|t−1(i) βt|t(i)∑
sj∈S

αt|t−1(j) βt|t(j)


= arg max

si∈S

[
αt|t−1(i) βt|t(i)

]
(3.34)

Like in the previous case, if T = t, the betas part can be dropped.
The solution above suggests a possible way to resolve the other issue, the state

sequence estimation. Indeed, if the (3.34) is used for each t from 1 to T , a sequence
of most likely state is built, i.e. X̃T = {x̃1|T , . . . , x̃T |T}. A possible implementation
can be seen in Algorithm 1 using the formulae illustrated in Section 3.3.2. This

Algorithm 1 Likeliest states sequence algorithm

α0|−1 = π0 . Initialisation
βT |T (i) = ci(yT)
for t = 1, t < T , t++ do . Compute α

αt+1|t = (αt|t−1 � C(:, yt+1)ᵀ)A
end for
for t = T , t > 0, t−− do . Compute β

βt|t = (βt+1|t+1A
ᵀ)� C(:, yt)

ᵀ

end for
for t = 1, t < T , t++ do . Argmax step

x̃t|T = arg max
si∈S

[
αt|t−1(i) βt|t(i)

]
end for

algorithm is quite good, but it is not the best can be done because it does not take
into account the links between consecutive states in the chain. Therefore, a new
algorithm was developed to reach better results.

State Sequence Estimation

The problem, which is slightly different from the previous case, consists to find
the most probability sequence of states given the observations YT , i.e.

X̂T = arg max
XT∈ST

[P [XT | YT]] (3.35)

3.4. THE THREE PROBLEMS 33

This can also be rewritten as:

X̂T = arg max
XT∈ST

[P [XT | YT]] = arg max
XT∈ST

[
P [XT , YT]

P [YT]

]
= arg max

XT∈ST
[P [XT , YT]] (3.36)

An iterative solution for this problem was developed by Andrew James Viterbi6 in
1967 and published on [20]. This algorithm is widely used in the telecommunication
field since the receiving of a bit can be modelled effectively using hidden Markov
models and therefore, to retrieve the sequence of bits sent, i.e. the message, a state
sequence estimation must be done.

The Viterbi’s algorithm

The Viterbi’s algorithm was developed to resolve in a better way the following
problem:

X̂T = arg max
XT∈ST

[P [XT |YT]]

i.e. the most likely assignment of state sequence. Therefore, this algorithm focuses
on finding the best path of states. The its derivation is proposed below: it is quite
simple since it uses the properties of the argmax function in addition to some
probability rules. The idea is to use a two-pass filter: the first pass is done to find
the best final state using the previous algorithm whereas the second one allows to
find the best path using the information given by the outcomes and the first step.

To speed up the proof, a definition has to be outlined. The one is:

δt|h(i) = max
x(τ)∈S, τ∈0:t−1

[P [X1:t−1, xt = i, Y1:h]] (3.37)

i.e. the maximum over the first t − 1 possible states of the joint probability of
observations (from 1 to h) and states given a particular final state si. To simplify
the notation, δt(i) = δt|t(i); furthermore, like it was done above, deltas can be
written in vectorial form, i.e. δt|h ∈ R1×N . Therefore, the state estimation problem
can be written as:

x̂t|t = arg max
si∈S

[δt(i)] = arg max
si∈S

[
max

Xt−1∈St−1
[P [Xt−1, xt = i, Yt]]

]
= arg max

si∈S

[
max

Xt−1∈St−1
[P [Xt−1, xt = i | Yt]P [Yt]]

]
= arg max

si∈S

[
max

Xt−1∈St−1
[P [Xt−1, xt = i | Yt]]

]
using Bayes’ rule. Therefore, for the last state:

x̂T = arg max
si∈S

[δT (i)] (3.38)

6Also known as Andrea Giacomo Viterbi, he was born in Bergamo in 1935 and he is one of the
co-founders of Qualcomm Inc., a big semiconductor and telecommunications equipment company.

34 CHAPTER 3. HMM AND THE MODEL

Like in the state estimation, it is useful to have a recursion algorithm for calculating
δt. A possible solution is:

δt+1(i) = max
Xt∈St

[P [Xt, xt+1 = i, Yt+1]]

= max
Xt−1∈St−1

[
max
sj∈S

[P [Xt−1, xt = sj, xt+1 = i, Yt+1]]

]
= max

sj∈S

[
max

Xt−1∈St−1
[P [Xt−1, xt = sj, xt+1 = i, Yt+1]]

]
@ 3.4 = max

sj∈S

[
max

Xt−1∈St−1
[P [Xt−1, Yt+1 | xt = sj, xt+1 = i]P [xt = sj, xt+1 = i]]

]
split Y = max

sj∈S

[
max

Xt−1∈St−1

[
P [Xt−1, Yt | xt = sj, xt+1 = i]P [xt = sj, xt+1 = i]·

P [yt+1 | xt = sj, xt+1 = i]

]]

@ 3.4 = max
sj∈S

 max
Xt−1∈St−1

P [Xt−1, Yt | xt = sj, xt+1 = i]·
P [yt+1 | xt = sj, xt+1 = i]·
P [xt+1 = i | xt = sj]P [xt = sj]




redundancy = max
sj∈S

[
max

Xt−1∈St−1

[
P [Xt−1, Yt | xt = sj]P [yt+1 | xt+1 = i]·

P [xt+1 = i | xt = sj]P [xt = sj]

]]
def and order = max

sj∈S

[
max

Xt−1∈St−1
[P [Xt−1, Yt | xt = sj]P [xt = sj] ci(yt+1) aji]

]

@ 3.4 rev = max
sj∈S

 max
Xt−1∈St−1

[P [Xt−1, Yt, xt = sj]]︸ ︷︷ ︸
δt(j)

ci(yt+1) aji


= max

sj∈S
[δt(j) ci(yt+1) aji]

= max
sj∈S

[δt(j) aji] ci(yt+1) = δt+1|t+1(i)

This solution exploits the power of Bayes’ rule and allows to write a prediction plus
update steps algorithms: indeed, if it is called δt+1|t(i) the prediction step whilst
δt|t(i) the update one:

δt+1|t(i) = max
sj∈S

[δt(j) aji] (3.39)

δt+1|t+1(i) = δt+1|t(i) ci(yt+1) (3.40)

δ0|0(i) = ci(y0)π0(i)

It is worth remembering that aij is the element of the transition matrix A in
position ij and cij is the element of the observation matrix C in position ij whilst
π0 represents the initial probability of the chain. Now it is possible to find X̂T .
Indeed, the last state is x̂T = arg max

si∈S
[δT (i)] and it can be calculated with (3.39)

and (3.40). Using that information and the property that joint and conditioned
probabilities are equal, save for a value that is constant with regards to XT , i.e.

X̂T = arg max
XT∈ST

[P [XT | YT]] = arg max
XT∈ST

[P [XT , YT]]

3.4. THE THREE PROBLEMS 35

Therefore, it is possible to find a recursive method:

max
XT−1∈ST−1

[P [XT−1, xT = x̂T , YT]] =

@ 3.4 = max
XT−1∈ST−1

[P [XT−1, YT | xT = x̂T]P [xT = x̂T]]

⊥ = max
XT−1∈ST−1

P [XT−1, YT−1 | xT = x̂T] P [yt | xT = x̂T]︸ ︷︷ ︸
⊥ X

P [xT = x̂T]


= max

XT−1∈ST−1
[P [XT−1, YT−1 | xT = x̂T]P [xT = x̂T]]

@ 3.4 rev = max
XT−1∈ST−1

[P [XT−1, YT−1, xT = x̂T]]

= max
XT−2∈ST−2

[
max
sj∈S

[P [XT−2, YT−1, xT = x̂T , xT−1 = sj]]

]
@ 3.4 = max

XT−2∈ST−2

[
max
sj∈S

[
P [XT−2, YT−1 | xT = x̂T , xT−1 = sj]·

P [xT = x̂T , xT−1 = sj]

]]
@ 3.4 = max

XT−2∈ST−2

[
max
sj∈S

[
P [XT−2, YT−1 | xT−1 = sj]P [xT = x̂T | xT−1 = sj]·

P [xT−1 = sj]

]]

= max
XT−2∈ST−2

max
sj∈S

P [XT−2, YT−1 | xT−1 = sj]P [xT−1 = sj]·
P [xT = x̂T | xT−1 = sj]︸ ︷︷ ︸

aj(x̂T)




@ 3.4 rev = max
XT−2∈ST−2

max
sj∈S

[P [XT−2, YT−1, xT−1 = sj]]︸ ︷︷ ︸
δT−1|T−1(j)

aj(x̂T)


= max

sj∈S
[δT−1(j) aj(x̂T)]

(3.41)

Even if they seem a lot of difficult reckons, they are quite simple. The first step
exploits the Bayes’ rule whereas the second one the rule about probability of
independent events. In the third, elements that do not depend on XT are removed
whilst in the following the Bayes’ rule is exploited in reverse, i.e. to compact the
equation. The fifth step splits the maximum function into two parts whilst the
sixth and the seventh exploit the Bayes’ rule to write in a more useful way (step 8)
the formula. After that, a swap is done, and it can be noticed that the elements in
the formula are already known. Obviously, the state at time T − 1 which allows
to have the maximum probability of the sequence is the argmax of the last step.
Therefore X̂T = [x̂1, . . . , x̂T] where

x̂t−1 = arg max
sj∈S

[δt−1(j) aj(x̂t)] (3.42)

Summarizing, the algorithm needs four steps:

1. Initialization:
δ1(i) = ci(y1)π0(i)

36 CHAPTER 3. HMM AND THE MODEL

2. Forward pass:
δt(j) = max

k∈S
[δt−1(k) akj cj(yt)]

3. Final state finding:
x̂T = arg max

k∈S
[δT (k)]

4. Backward pass:
x̂t−1 = arg max

sj∈S
[δt−1(j) aj(x̂t)]

some optimizations can be applied to speed up the algorithm. A possible imple-
mentable solution is reported in as Algorithm 2. As can be seen, it is a very efficient

Algorithm 2 Viterbi’s algorithm

for all si ∈ S do . Initialisation
δ1(i) = ci(y1)π0(i)
z1(i) = 0

end for
for t = 2, t ≤ T, t++ do . Forward pass

for all sj ∈ S do
δt(j) = max

k∈S
[δt−1(k) akj cj(yt)]

zt(j) = arg max
k∈S

[δt−1(k) akj cj(yt)] . most probable previous state

end for
end for
x̂T = arg max

k∈S
[δT (k)] . Compute last element

for t = T, t ≥ 2, t−− do . Backward pass
x̂t−1 = zt(xt)

end for

algorithm: its complexity is O(N2 T) instead of O(NT) that is the complexity of a
brute-force argmax.

3.4.3 Learning Problem

The last problem is the learning problem, i.e. how to find the initial probabili-
ties, the transition matrix A, and the observations matrix C given a sequence of
observations YT . The idea is to maximise the likelihood, i.e.:

{π0, A, C} = θ = arg max
θ

[P [YT | θ]]

The most used formula is the Baum-Welch algorithm [21] that exploits the
Expectation–maximization approach and the forward-backward algorithm to
find a quasi-optimal solution, i.e. the local maximum probability given the initial
condition. This approach relies on doing these the EM two steps until convergence:
the first step calculates the probability of the current model whereas the other
performs the maximisation to find the variables.

3.4. THE THREE PROBLEMS 37

Baum-Welch algorithm

This algorithm was developed in order to solve the third problem with a quasi-
optimal solution. Indeed, no analytic way is known to solve it. Therefore, an
iterative procedure must be used: the full proof about this algorithm can be found
in [22] whereas, here, only the most useful formulae will be reported. This algorithm,
to work, takes as inputs random parameters. The first step is the expectation one:
in this one, the probability of the path to be at state si at time t making a transition
to state sj given the observations and the current parameters θ is calculated, i.e.
ξt(i, j). Before doing that, a slightly more general version of (3.9) should be define:

P̂t|T,θ(i) = P[xt = si | YT , θ] (3.43)

exploiting (3.31), it can be rewritten as:

P̂t|T,θ(i) =
αt|t−1,θ(i) βt|t,θ(i)∑

sj∈S
αt|t−1,θ(j) βt|t,θ(j)

=
αt|t,θ(i) βt|t+1,θ(i)∑

sj∈S
αt|t,θ(j) βt|t+1,θ(j)

(3.44)

After that, ξt(i, j) can be defined7 as:

ξt(i, j) = P [xt = si, xt+1 = sj | YT , θ] (3.45)

= P [xt+1 = sj | xt = si, YT , θ]P [xt = si | YT , θ]

= P [xt+1 = sj | xt = si, θ]
P [xt = si, YT | θ]

P [YT | θ]

(3.9) = P [xt+1 = sj | xt = si, θ]
P [xt = si, Yt | θ]P [xt = si, Yt+1:T | θ]

P [YT | θ]

=
αt|t(i) aij βt+1|t+1(j)

P [YT | θ]

=
αt|t(i) aij ci(yt+1) βt+1|t+2(j)

P [YT | θ]
(3.46)

As it can be seen, alphas and betas have to be calculated in this algorithm too.
The second step is the maximisation one: in this one, the θ’s parameters are

re-estimated with regards to maximize the likelihood. The re-estimation formulae
for θ = π0, A, C are:

π0 = P̂0|T,θ ∈ R1×N (3.47)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 P̂t|T,θ̄(i)

(3.48)

cij =

∑T−1
t=1 δyt(j) ξt(i, j)∑T

t=1 P̂t|T,θ̄(i)
(3.49)

7In [21], they defined βt = P[Yt+1:T | xt = si], i.e. βt = βt|t+1.

38 CHAPTER 3. HMM AND THE MODEL

where θ̄ are the parameters estimated during the previous iteration of the algorithm
whereas:

δyt(j) =

{
1 if yt = wj

0 if yt 6= wj
(3.50)

Some of the formulae showed above are quite tricky: the first one represents the
probability of the first step to be in one of the states given the observations and
therefore are quite plain to use (3.43). Instead, for the other ones are useful to
define better the summations:∑T−1

t=1 ξt(i, j) is the number of expected transitions from state si to sj;∑T−1
t=1 P̂t|T,θ̄(i) is the number of expected transitions from state si;∑T
t=1 P̂t|T,θ̄(i) is the number of expected times to be in state si.

It is useful to highlight that the last two summations differ only by PT |T,θ̄(i).
The transition matrix estimation formula, therefore, represents the ratio between
the expected number of changes from state si to sj and the number of expected
transition from state si. Instead, the observation matrix estimation formula is the
ratio of the expected number of time of being in state si and observing the event
wj over the expected number of time to be in state si.

These two steps must be performed until convergence: since it is an iterative
method, a good idea is to execute this algorithm with several initial conditions and
then take the solution with the highest probability P [YT | θ].

The Markov Chain case

In the case of a directly observable chain, the algorithm to estimate π0 and A
is faster and simpler than the Baum-Welch one. Indeed, counting the number of
switch is sufficient:

aij =
1

T − 1

T∑
t=1

δxt(i)δxt+1(j)

A possible estimation of π0 is a(x1)ᵀ, i.e. the x1-th column of the estimate transition
matrix. Indeed, if no initial condition is accessible, the only useful available
information is the first state and the estimated transition matrix. The latter allows
to know the probability to go in state sj: therefore, if the column of A regarding
the future state x1 is considered, the probabilities of their possible parent states
are selected, i.e. the estimate that it has been looking for.

3.5 The Model

After this brief summary about Markov chains and hidden Markov models, all
ingredients to develop a model for the problem are ready. As stated before in this
Chapter, the problem to be solved in this section consists to model a workstation

3.5. THE MODEL 39

1.1 1.21 1.1 ?.21

θ0 θ1

Figure 3.3: A stylised version of the workstation with two sensors. In the left-hand
side there is the working one whereas in the right-hand side a damaged workstation
is drawn.

like the ones in Figure 3.3. Remember that two models are needed: one for the
working workstation and one for the topsy-turvy workstation. To simplify the work,
as already stated, all the workstations have the same behaviour, i.e. they have the
same transition matrix A. Furthermore, all sensors are equally powerful and thus
they have the same observation matrix C.

3.5.1 The first Model

As it can be seen, to model a working workstation a hidden Markov model with
two states and four possible observable events can be used. Indeed, as stated in
Chapter 2, the worker states are two, i.e. absent or present, and the four possible
observations are:

1. The two sensors reported an absence.

2. The left-hand side sensor reported an absence whereas the other reported a
presence.

3. The left-hand side sensor reported a presence whereas the other reported an
absence.

4. The two sensors reported a presence.

In a more mathematical way, this model can be written as:

Qθ0 = (Aθ0 , Cθ0 , πθ00) (3.51)

where Aθ0 ∈ R2×2, Cθ0 ∈ R2×4, and πθ00 ∈ R1×2 since states are S = {s1, s2} = {0, 1}
whilst the observable events are O = {w1, w2, w3, w4} = {1, 2, 3, 4}. An illustration
of this chain can be seen in Figure 3.4. The matrices used for this chain can be
estimated using the algorithm described in subsection 3.4.3. Even if, for this work,
it is assumed that all of these values are known, it is useful to show how to build
the overall observation matrix C if only the singular sensors matrices are available.
Remember that the observations in reality are two and they are merged following
Table 2.1. Let C(1), C(2) ∈ R2×4 be the two observation matrices of the two sensors
defined as:

c
(k)
ij = P

[
yk(t) = wsj | x(t) = si

]

40 CHAPTER 3. HMM AND THE MODEL

A 3 C(1,2)
x(t) y(t)

Figure 3.4: The modelled system behind a working workspace.

where wsj ∈ {ws1, ws2} = {0, 1} is the event observed by the sensor. Then, since Cθ0

represent the probability of an event given the current state, i.e.:

cθ0ij = P [y(t) = wj | x(t) = si] = P [y1(t) = wsl ∩ y2(t) = wsm | x(t) = si]

using l and m s.t.:

j l m

1 1 1

2 2 1

2 1 2

4 2 2

For Assumption 9, the observations are independent each other, therefore:

cθ0ij = P [y1(t) = wsl | x(t) = si] P [y2(t) = wsm | x(t) = si] = c
(1)
il c

(2)
im

In a more compact way:

Cθ0 =

Vect(C(1)(:, 1)� C(2)(:, 1))

Vect(C(1)(:, 2)� C(2)(:, 2))

 (3.52)

where the Vect(·) function is defined as:

Vect(·) : RM×N → R1×MṄ , B 7→
[
B(:, 1)ᵀ . . . B(:, N)ᵀ

]
(3.53)

3.5.2 The second Model

The other model can be written as a pair of hidden Markov models with only two
observable events for each one. Indeed, in this case the two sensors are looking at
two different desks, i.e. they are observations of two distinct chains. An illustration
of this chain can be seen in Figure 3.5 whereas a mathematical expression for this
is:

Qaθ1 = {(A(1), C(1), π
(1)
0), (A(2), C(2), π

(2)
0)} (3.54)

3.5. THE MODEL 41

Like in the previous case, A(1), A(2) ∈ R2×2 and π
(1)
0 , π

(2)
0 ∈ R1×2 but, now,

C(1), C(2) ∈ R2×2, i.e. each sensor has its observation matrix. These matrices
are defined as:

c
(k)
ij = P

[
yk(t) = wsj | xk(t) = si

]
Furthermore, the states are S = {s1, s2} = {0, 1} and the observable events, for each
chain, are Os = {ws1, ws2} = {0, 1}. Anyway, the two observations are merged into
one following Table 2.1: therefore, the real set is O = {w1, w2, w3, w4} = {1, 2, 3, 4}.
To compare the results with the other chain in a faster way, it would be better to

A(1) 3 C(1)
x1(t)

A(2) 3 C(2)
x2(t)

y1(t)

y2(t)

y(t)

Figure 3.5: The modelled system behind a no-working workstation.

merge the pair of chains into a singular one. It is worth highlighting that the two
chains are independent each other: therefore, it is not so difficult to merge them.
The new merged model is:

Qθ1 = (Aθ1 , Cθ1 , πθ10) (3.55)

where set of available state of this model are:

Sm = {s(1)
1 ∩ s

(2)
1 , s

(1)
2 ∩ s

(2)
1 , s

(1)
1 ∩ s

(2)
2 , s

(1)
2 ∩ s

(2)
2 }

= {sm11, s
m
21, s

m
12, s

m
22} = {sm1 , sm2 , sm3 , sm4 }

whilst the set of the possible observations does not change. The state set is built
taking into account all possible combinations of states that the two chains can
provided: since each chain has two states and it is independent with regard to the
other one, the number of possible states of the new model is four. This fact brings
to have a transition matrix that is four-by-four: indeed, the transition matrix Aθ1

is built following this schema:

x(t+ 1) = sm11 x(t+ 1) = sm21 x(t+ 1) = sm12 x(t+ 1) = sm22

x(t) = sm11 aθ111 aθ112 aθ113 aθ114

x(t) = sm21 aθ121 aθ122 aθ123 aθ124

x(t) = sm12 aθ131 aθ132 aθ133 aθ134

x(t) = sm22 aθ141 aθ142 aθ143 aθ144

42 CHAPTER 3. HMM AND THE MODEL

Remember that aθ1ij = P
[
x(t+ 1) = smj | x(t) = smi

]
. Therefore, the transition

matrix of the merged model can be built as follows exploiting the independence:

aθ1ij = P
[
x(t+ 1) = smj | x(t) = smi

]
= P [x1(t+ 1) = sk1 ∩ x2(t+ 1) = sk2 | x1(t) = sl1 ∩ x2(t) = sl2]

using k and l s.t.:

j k1 k2

1 1 1

2 2 1

2 1 2

4 2 2

i l1 l2

1 1 1

2 2 1

2 1 2

4 2 2

Since the two chains do not communicate with each other, the states of the chains
are independent each other, therefore:

aθ1ij = P [x1(t+ 1) = sk1 | x1(t) = sl1]P [x2(t+ 1) = sk2 | x2(t) = sl2] = a
(1)
l1k1

a
(2)
l2k2

Using A(1) and A(2) as transition matrices for the model with two chains, Aθ1 can
be calculated in a more compact way as:

Aθ1 =


Vect(A(1)(:, 1)� A(2)(:, 1))

Vect(A(1)(:, 2)� A(2)(:, 1))

Vect(A(1)(:, 1)� A(2)(:, 2))

Vect(A(1)(:, 2)� A(2)(:, 2))

 (3.56)

where the Vect(·) function is defined in (3.53).

Similar to Aθ1 , Cθ1 is built following:

y(t) = 00 = w1 y(t) = 01 = w2 y(t) = 10 = w3 y(t) = 11 = w4

x(t) = sm11 cθ111 cθ112 cθ113 cθ114

x(t) = sm21 cθ121 cθ122 cθ123 cθ124

x(t) = sm12 cθ131 cθ132 cθ133 cθ134

x(t) = sm22 cθ141 cθ142 cθ143 cθ144

Remembering that cθ1ij = P [y(t) = wj | x(t) = smi], the observation matrix of the

merged chain Cθ1 can be calculated as:

cθ1ij =P [y(t) = wj | x(t) = smi]

=P
[
y1(t) = wsk1 | x(t)1 = sl1

]
P
[
y2(t) = wsk2 | x2(t) = sl2

]
= c

(1)
l1k1

c
(2)
l2k2

3.5. THE MODEL 43

using k and l s.t.:

j k1 k2

1 1 1

2 2 1

2 1 2

4 2 2

i l1 l2

1 1 1

2 2 1

2 1 2

4 2 2

and exploiting the fact that the observation and the states are independent between
different chains. Using C(1) and C(2) as observation matrices for each sensor of the
model with two chains, Cθ1 can be also calculated as:

Cθ1 =


Vect(C(1)(:, 1)� C(2)(:, 1))

Vect(C(1)(:, 1)� C(2)(:, 2))

Vect(C(1)(:, 2)� C(2)(:, 1))

Vect(C(1)(:, 2)� C(2)(:, 2))

 (3.57)

where the Vect(·) function is defined in (3.53).

3.5.3 Further Steps

The target of this opus is to develop an algorithm that allows to find what is the
current model for each desk, i.e. to choose between case θ0 and θ1. In the first case,
the model is Qθ0 , i.e. the parameters of the model are θ = θ0, whereas in the second
one the parameters of the model are θ = θ1, i.e. the model is Qθ1 . Two different
scenarios are available: the first, called commissioning error detection, is the
one in which it is wanted to know if, during the commissioning, some errors were
done. In this case, no assumptions about the situation are done. The other, instead,
is called failure detection: in this case, it is assumed that the workstation is in
the θ0 case and it is wanted to detect whether the workstation has a failure, i.e. its
behaviour becomes θ1. The most immediate idea to solve the problem in these two
scenarios is to use the probability of an observed event sequence in the two cases to
check which is the most likely model. In a more mathematical way:

θ = arg max
θ={θ0,θ1}

[P [YT | θ]]

The pro about this idea is its simplicity: indeed, all it is computable using the
Forward-Backward Algorithm (3.30). But there are some cons: no flexibility about
starting and ending time and numerical problems caused by small probabilities.
The first negative aspect can be solved if a window of observations is used instead
of using all of them. The second can be alleviated using the ratio between the two
probabilities and, therefore, making some simplifications. But, there is a smarter
way to solve these problems as can be seen in the following chapter that introduces
the sequential hypothesis tests.

44 CHAPTER 3. HMM AND THE MODEL

Chapter 4

Event Detection with Time

This Chapter focuses on the decision-making process for choosing between the
hypotheses presented in the last Chapter. In this one, a brief introduction about
hypothesis tests, ratio tests, and sequential tests is shown: after that, the algorithm
developed is presented. Finally, a discussion about thresholds and some numerical
problems encountered takes place.

4.1 Available Tools

As stated in the previous Chapter, more powerful tools are needed to solve the
problem: one of them is the statistical hypothesis test. Statistical hypothesis
test is a powerful tool of statistical inference that allows to choose between two
hypotheses using a data-set. The first hypothesis is called null hypothesis since
usually is the one that it is believed it is true or the one that it is expected to be
true, whilst the other one is called alternative hypothesis and represents the
mutually exclusive option. In this work, H0 model presented in Section 3.5 is the
null hypothesis whereas H1 model is the alternative one. To perform the decision, a
parameter is needed for the test: it is called significance level and it is indicated
by α. This value defines the probability of rejecting the null hypothesis when it
is true, i.e. to commit the Type I error. Usually, this value is set to 1% or 5%.
Table 4.1 summarises all possible errors that can be committed in during hypothesis
testing. It is worth reminding that type II error cannot be seta priori, but it can
be only calculated after setting the type I error value.

Another requirement is to define the data distribution: in this work, models
have already been defined in chapter 3, but it is very difficult to define from them
some probability distributions that can fit without issues. Indeed, as already seen,
the simplest probability available is the one of an observed event sequence and is
not easy to extract a probability distribution from that. Therefore, it is better to
use a slightly different version of this tool: the likelihood-ratio test.

The Likelihood-ratio test is a statistical test that has the same target of the
statistical hypothesis one. But, instead of relying upon a test statistic distribution
of data, it is based on the likelihood ratio of the two hypotheses: usually, the log
of the likelihood is used in order to avoid numerical problems and be able to use
theorems for a better determination of acceptance zones. In a more mathematical

45

46 CHAPTER 4. EVENT DETECTION WITH TIME

Table 4.1: Possible hypothesis test errors

H0 true H0 false

reject H0

type I error correct inference

(false positive) (true positive)

P = α P = 1− β

accept H0

correct inference type II error

(true negative) (false negative)

P = 1− α P = β

way, suppose to have a random variable X and outcomes x. The ingredients needed
to use this tool are:

Total Possible Parameter Space Ω contains all possible parameters θ that can
be used in the model;

Null Hypothesis H0: this hypothesis states θ ∈ ω where ω ⊂ Ω;

Alternative Hypothesis H1: this hypothesis states θ ∈ ω′, ω′ s.t. ω′ ⊂ Ω ∧
ω ∪ ω′ = Ω ∧ ω ∩ ω′ = ∅;

Probability Density Function f(y|θ) is the probability density function of the
model when the parameter is equal to θ. The respective likelihood function is
L(θ|x);

The most indicated probability to be used in likelihood function is the one of an
observed event sequence given the system parameters, i.e.:

L(θ|x) = logP [YT = x | θ]

since it is easy to calculate and contains all of the information available. Remember
that, the only accessible data is the one regarding the sensors and no information
about state can be retrieved. Furthermore, it can be clearly seen that no one
of these ingredients are function of time: this means that, using this tool, the
information carried by the time flowing is not taken into account. This is not a
smart idea since the system considered is a dynamic one: in fact, data is provided
for every sampling time and results could be different if it is considered one moment
or another. But it is not all to throw away: the basic idea is great, and all those
ingredients can be got without too much effort as it was seen in Chapter 3. It would
only take a small change to include the time: the solution is to use the sequential
probability ratio test [23] to take into account the flowing time.

Before talking about sequential probability ratio test, it is useful to describe its
ancestor, the sequential hypothesis test. Using the words “sequential hypothesis
test”, it is meant a sequential test of a statistical hypothesis, i.e. a procedure which
gives, at every time of sampling, a specific rule about the test in order to make one
of the three possible decisions. These are the following:

4.2. SPRT 47

a) to accept the null hypothesis;

b) to accept the alternative hypothesis;

c) to continue the experiment to make additional observation since none of the
formerly option can be chosen at the time.

Obviously, this test procedure is performed sequentially and ends if decision a) or
b) is made.

The main difference between this approach and the previous one is that it is
not known a priori how much time is needed to perform the decision. In this
work, that value is called Alarm Time (ta). Several attempts are made to provide
an estimation about this issue analytically: in this work, it was decided to use a
numerical approach to estimate the alarm time, i.e. performing several simulations
about the algorithm.

4.2 SPRT

The Sequential Probability Ratio Test is a classic decision maker among two
possible choices. It has been developed in 1943 by Abraham Wald and presented
in [23]: its target was to provide a powerful algorithm that combines the effectiveness
of a likelihood ratio test with the flexibility of the sequential test. Another useful
characteristic is that it allows to save about 50% of observation comparing with
other classic test: but the best feature of this algorithm is that it does not need to
determine any probability distribution of data since only algebraic operations are
needed for working.

Mathematically speaking, suppose to have a random variable Y with probability
distribution f(y|θ), even unknown, where θ are the parameters of the assumed
model, and observations Yt = [y(1), . . . , y(t)] taken one a time until t, the time
when decision will be made. These observations are orthogonal each other, i.e.

Eθ[y(i)y(j)] = Eθ[y(i)]Eθ[y(j)] ∀ i 6= j (4.1)

This means that every fresh observation brings new information to the algorithm.
It is wanted to test the null hypothesis H0 : θ = θ0 against the alternative one
H1 : θ = θ1. Like in the sequential hypothesis test, three possible decisions can be
made:

a) to accept the null hypothesis H0;

b) to accept the alternative hypothesis H1;

c) to continue the experiment to make additional observation since none of the
formerly option can be chosen at the time (t→ t+ 1).

To perform the algorithm, the likelihood ratio associated to the k-th observation
y(k) must be defined, i.e.:

λ(k) = log
f(y(k), θ1)

f(y(k), θ0)

48 CHAPTER 4. EVENT DETECTION WITH TIME

Furthermore, the sum of these values up to t is denoted with:

Λ(t) =
t∑

k=1

λ(k) = log
t∏

k=1

f(y(k), θ1)

f(y(k), θ0)

= log

∏t
k=1 f(y(k), θ1)∏t
k=1 f(y(k), θ0)

= log
f(Yt, θ1)

f(Yt, θ0)

and represents the log-likelihood ratio for the two hypotheses until t. The algorithm
is very simple: whilst Λ(t) is in the thresholds area, a new sample is needed. If Λ(t)
is lower than the first threshold, the decision a) is made whereas if Λ(t) is higher
than the second threshold, the decision b) is made. This algorithm is reported in a
more elegant way in Algorithm 3. The problem now is to define these thresholds, η0

Algorithm 3 SPRT algorithm

t=1

Λ = 0
while η1 > Λ > η0 do

get new observation y(t)

Λ = Λ + log
f(y(t), θ1)

f(y(t), θ0)
t++

end while
if η1 > Λ then

return H0 refused

else
return H0 accepted

end if

and η1. The best idea is to link them to misdetection and false alarm probabilities.
The first is also known as Type I error probability, i.e.

pm = P [say H0 | H1 is true]

whereas the second is the Type II error probability, i.e.

pf = P [say H1 | H0 is true]

Using these values, Wald proved that the thresholds must satisfy the following
inequalities:

η0 ≥ log
pm

1− pf
and η1 ≤ log

1− pm
pf

(4.2)

to have:

pm ≤ P [say H0 | H1 is true] and pf ≤ P [say H1 | H0 is true]

Therefore, the best idea for the thresholds is to use:

η0 = log
pm

1− pf
and η1 = log

1− pm
pf

(4.3)

4.3. CUSUM 49

0 20 40 60 80 100 120 140
-8

-6

-4

-2

0

2

4

6

8

t

Λ
(t

)

Λ(t)
η0
η1

Figure 4.1: Example of SPRT Λ(t) behaviour when the null hypothesis is true using
pm = pf = 1%.

since this choice allows to satisfy the inequalities using the minimum no-threshold
area.

In Figure 4.1 it is shown the behaviour of Λ(t) when the true model is the one
in H0. Instead, in Figure 4.2 the behaviour of Λ(t) when the true model is the one
in H1 is shown. In both of the cases, it can be seen that the algorithm stops to
calculate Λ(t) when one of the threshold is reached.

Watching the pictures, this algorithm seems perfect for solving the first problem,
i.e. how to check if the commissioning of the lamps has been done correctly. Indeed,
in this case nobody knows which the correct hypothesis is and therefore both of
them must be taken into account. It remains open the issue about what to use as
function f in the log ratio. But before to explain that, it is better to think to a
way for solving the other problem, i.e. how to check if lamps have been moved.

4.3 CUSUM

Using the sequential probability ratio test for checking if lamps have been moved
is not a so smart idea. Usually lamps are not moved or, if moved, nobody knows
whenever it happened. Therefore, using this algorithm, a very poor result will be
obtained since it stops when it finds which the hypothesis is true, and it does not
monitor model changes. A new algorithm is needed: the main feature requested is,
given an assumed model, to identify whenever a change happens. It is a slightly
difference between the previous seen algorithm: this algorithm can stop only when
a change is detected, not when it is sure about which model observations come
from. To solve this, E.S. Page developed and reported in [24] the CUmulative

50 CHAPTER 4. EVENT DETECTION WITH TIME

0 20 40 60 80 100 120 140
−8

−6

−4

−2

0

2

4

6

8

t

Λ
(t

)

Λ(t)
η0
η1

Figure 4.2: Example of SPRT Λ(t) behaviour when the null hypothesis is false
using pm = pf = 1%.

SUM algorithm.
Similar to the sequential probability ratio test, for the CUSUM Algorithm [25]

the ingredients are a random variable Y with independent and identically distributed
samples y(k) for k < t. Each of this sample follows the probability distribution
f(y|θ), even unknown, where θ are the parameters of the assumed model. It is
assumed that there are two possible models and a time Tc in which the used model
is changed, i.e. samples from 1 to Tc− 1 come from a model with parameters θ = θ0

whereas the samples from Tc to t come from a model with parameters θ = θ1. This
value, Tc, is called change time. Only θ0 and θ1 are available whilst T is unknown,
and it has to be found. Therefore, there are two possible hypotheses in time k:

� H0: no-change hypothesis. In this case, the probability density function is:

f(Yt|H0) =
t∏
i=1

f(y(i), θ0)

� H1: one-change hypothesis. In this, instead, the probability density function
becomes:

f(Yt|H1) =
Tc−1∏
i=1

f(y(i), θ0)
t∏

i=Tc

f(y(i), θ1)

As already stated, the main target of the CUSUM is to decide whether hypothesis
is true. If H0 is the one true, then the algorithm should continue. Otherwise, the
algorithm should stop and provide an estimation about Tc. It can be seen there are
two operations to be done in this algorithm: the first is to detect which hypothesis

4.3. CUSUM 51

is true whereas the second is to estimate the change time. Obviously, this step
should be done only when the first step returns a change.

The first step, also known as detection step, seeks to decide which hypothesis
is true: in other words, it tries to detect if the model has changed. It based on the
fact that the log-likelihood ratio

λ(t) = log
f(y(t), θ1)

f(y(t), θ0)

changes sign when a parameters modification is done, i.e. Λ(t) changes slope sign:
this can be seen in Figure 4.3. Indeed, there it can be seen that, before the change,

0 100 200 300 400 500 600 700 800 900 1,000

−40

−20

0

20

40

60

80

100

t

Λ
(t

)

Λ(t)
switchTime

Figure 4.3: Example of SPRT Λ(t) behaviour: the change of parameters is performed
at t = 565.

the slope of Λ(t) is positive: after the change, instead, the slope becomes negative.
The idea is to exploit that using some moving thresholds instead of measuring the
slope to have a more robust algorithm. A further footstep about this idea is to
set to zero negative values of Λ(t): indeed, the knowledge about that H0 is true
is assumed and therefore it is needed to check only whether the slope becomes
negative. If this is done, it is possible to recycle the SPRT algorithm: indeed, if the
first hypothesis is true, it is like that the algorithm has never been started since
Λ(t) is zero or very close to. On the other side, if the null hypothesis becomes false,
the algorithm works like SPRT and therefore it can use the same thresholds.

The second step is called estimation step and tries to estimate the value of Tc.
Exploiting the previous idea, the best estimation is to use the last time in which
Λ(k) changes slope before the detection step claims that there was a change, i.e., if
all negative values of Λ(k) are set to zero, the last time when Λ(k) was zero.

These ideas can be written in a more mathematical way [25] in order to prove
their correctness. First of all, λ(k) can be written, exploiting some properties of

52 CHAPTER 4. EVENT DETECTION WITH TIME

the summations to show the recursive property, as:

Λ(k) = λ(k) + Λ(k − 1)

Exploiting the sequential probability ratio test algorithm for the two hypotheses
and their definitions, the best way to write down Λ(t) is:

Λ(t) =
t∑
i=1

log
f(y(i),H1)

f(y(i),H0)

= log
t∏
i=1

f(y(i),H1)

f(y(i),H0)

= log

∏t
i=1 f(y(i),H1)∏t
i=1 f(y(i),H0)

= log
f(Yt | H0)

f(Yt | H1)

= log

∏Tc−1
i=1 f(y(i), θ0)

∏t
i=Tc

f(y(i), θ1)∏t
i=1 f(y(i), θ0)

= log

∏t
i=Tc

f(y(i), θ1)∏t
i=Tc

f(y(i), θ0)

= log
t∏

i=Tc

f(y(i), θ1)

f(y(i), θ0)

=
t∑

i=Tc

log
f(y(i), θ1)

f(y(i), θ0)

=
t∑

i=Tc

log
f(y(i), θ1)

f(y(i), θ0)

=
t∑

i=Tc

λ(i)

It is easy to realise that this is the formula used in a sequential probability ratio
test with starting time t = Tc instead of the common one t = 0. The problem is
that nobody known when the change is made, i.e. when start to sum and compare
with the thresholds. An idea is to use a generalised log-likelihood, as suggested
by [25], i.e.

ΛG(t) = max
Tc∈[1,...,t]

[
t∑

i=Tc

λ(i)

]
In this case, only H1 is checked: in other words, only η1 threshold is utilised.
Obviously, the best estimation for Tc is the argmax of that expression. As it can be
found in [26, Chap. 2], instead of doing the max/argmax at each time t to found
if a change was made and estimate when, a recursive algorithm can be used, like
the one shown in Algorithm 4. Indeed, it can be proven that the ΛG(t) can be also

4.4. SPRT AND CUSUM FOR HMM 53

written as:

ΛG(t) =

{
0 if ΛG(t− 1) + λ(t) < 0

ΛG(t− 1) + λ(t) < 0 otherwise

and, if at time ta = t the hypothesis H1 is accepted,

Tc = ta −Nta + 1

where Nta is the last time when ΛG(t) = 0. This improved version of the algorithm

Algorithm 4 CUSUM algorithm

t=1

Nta = 0
ΛG = 0
while ΛG < η1 do

get new observation y(t)

ΛG = ΛG + log
f(y(t), θ1)

f(y(t), θ0)
if ΛG < 0 then

ΛG = 0
Nta = 0

else
Nta++

end if
t++

end while
return H1 accepted, Tc = t−Nta

allows to be used on-line, that is necessary in this opus. A possible behaviour of
ΛG(t) can be found in Figure 4.4. There, it can be seen that, in the first part of
the graph, ΛG is zero or very close to it. The main cause of this behaviour can
be found in the high noisy measurements. After the change, instead, ΛG starts to
grow until it reaches the threshold η1 and thus the algorithm stops. A good idea
for η1 is to use

η1 = log
1− pm
pf

since, as already proved before, the CUSUM is a sequential probability ratio test
with a moving start. Obviously, since the test is repeated until a change is detected,
the value of pm does not represent the probability of a false alarm, but their
frequency.

4.4 SPRT and CUSUM for HMM

In the previous two sections, two methods for hypothesis checking were shown.
The first one, the sequential probability ratio test, is useful for testing which model
is currently working whereas the second, the CUSUM algorithm, is preferable for

54 CHAPTER 4. EVENT DETECTION WITH TIME

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0

1

2

3

4

5

6

7

8

t

Λ
G

(t
)

ΛG(t)
η1
switchTime
alarmTime
expectedSwitchTime

Figure 4.4: Example of CUSUM ΛG(t) behaviour: the change of parameters is
performed at Ts = 250 (switch time) whereas the algorithm returns Tc = 251
(expected switch time) at Ta = 267 (alarm time).

checking whether a model changes and finding the moment when it happens. The
problem now is how to use these tools on hidden Markov model, i.e. finding what
function f(y(k), θ) should be used in the two algorithms. The idea is to use the
probability of y(k) given the system: this is an almost obligatory choice since y(k)
is the only thing that it can be measured in our system. Before doing the maths, a
reminder should be made: from Chapter 3, all systems used in this opus can be
written as:

Qθ = (Aθ, Cθ, π0θ)

where Aθ is the transition matrix, i.e. aij = ai(j) = P[xt+1 = sj | xt = si] whereas
Cθ the observation one, i.e. cij = ci(j) = P[yt = wj | xt = si]. The θ subscript is
utilised to remember that there are two models that differ for the matrices Aθ and
Cθ as already stated in Section 3.5.

The probability y(k) given the system cannot be directly calculated since the
only information available, i.e. A and C, is function of the current state, that it is
not freely measurable. Therefore, some manipulations are required to make explicit
the dependence from the states:

f(y(k), θ) = P [y(t) | θ]

=
∑
xj∈S

P [y(k) | xj, θ]P [xj | θ] =
∑
xj∈S

C(xj, y(k))P [xj | θ]

There was used the marginalisation probability property (3.5). As it can be seen, the
summation requires two elements: the first is quite easy to be accessed whereas the

4.4. SPRT AND CUSUM FOR HMM 55

problem is to calculate P [xj | θ] since in hidden Markov models a state depends only
on previous state and it is not directly measurable. Therefore, there is not a direct
way to measure the probability of a state without using complex algorithms like the
ones shown in Chapter 3. A possible workaround is to use previous observations to
develop a fast-calculable formula:

f(y(k), Y0:k−1, θ) = P [y(t) | Y0:k−1, θ]

=
∑
xj∈S

P [y(k) | xj, θ]P [xj | Y0:k−1, θ]

=
∑
xj∈S

Cθ(xj, y(k))P [xj | Y0:k−1, θ]

It is worth noting that P [y(k) | xj, Y0:k−1, θ] = P [y(k) | xj, θ]: this derives from the
link between states and observations that appears using hidden Markov models.
Indeed, an observation depends only on the current state of the chain and indirectly
on previous observations since they are outcomes of past states that influence
the current one. This idea has one negative aspect: the independence between
measurements is not still valid since instead of using f(y(k), θ), f(y(k), Y0:k−1, θ)
is used. In other words, the measurement used is (y(k) | Y0:k−1) instead of y(k).
If (4.1), that describes independence between measurements, is used, it is easy to
prove that, if (y(k), Y0:k−1) is used instead of y(k), the independence is not present.
However, this does not preclude the use of the previous algorithms and the formulae
to calculate the thresholds since Wald in [23, p. 130] wrote that the independence
is useful only to prove faster (4.2) but these are still valid even if independence of
measurements is dropped. Therefore, a remark should be done:

Remark. The independence of the observations is not necessary for the validity of
(4.2).

Obviously, this applies on CUSUM too, since CUSUM algorithm can be seen
as an SPRT algorithm with different starting point. Therefore, it is possible to
pursuing that idea: from Chapter 3,

P [xt = xi | Y0:t−1] =
αt|t−1(i)∑

j∈S
αt|t−1(j)

So, putting all together:

f(y(t), Y0:t−1, θ) =
∑
xj∈S

Cθ(xj, y(t))
αt|t−1(j)∑

xl∈S
αt|t−1(l)

(4.4)

The previous formula can be written in a more compact way:

f(y(t), Y0:t−1, θ) =
αt|t−1Cθ(:, y(t))∑
xl∈S

αt|t−1(l)
(4.5)

where, to speed up the reckon in Matlab,

αt|t−1 = αt−1|t−1Aθ =
(
αt−1|t−2 � Cθ(:, yt−1)ᵀ

)
Aθ

56 CHAPTER 4. EVENT DETECTION WITH TIME

This formula can be rewritten as future iteration form:

αt+1|t =
(
αt|t−1 � Cθ(:, yt)ᵀ

)
Aθ

to allow having in-place algorithms as it can be seen later in this Chapter. At this
stage, with these information, it is possible to develop and write down the two
algorithms to solve the two problems.

4.4.1 Commissioning Error Detection

The commissioning error detection is the first problem analysed: the target
is to check whether some errors are made during commissioning. In other words,
this problem aims to find if exists any pair of lamps that is not over the same
workstation. Obviously, there are only two possible situations in each workstation:

a) The commissioning was done correctly;

b) Some errors were made during commissioning.

The issue is that none of them are known truea priori. Therefore, the best idea is to
use the sequential probability ratio test with f(y(t), Y0:t−1, θ) for each workstation
in the area. A possible implementation for a workstation is shown in Algorithm 5.

Algorithm 5 Commissioning Error Detection algorithm (SPRT)

t=1

αθ11|0 = πθ10

αθ01|0 = πθ00

Λ = 0
while η1 > Λ > η0 do

get new observations y1(t) and y2(t) and merge into y(t)

Λ = Λ + log
αθ1t|t−1Cθ1(:, y(t))∑
xl∈S

αθ1t|t−1(l)
− log

αθ0t|t−1Cθ0(:, y(t))∑
xl∈S

αθ0t|t−1(l)

αθ1t+1|t =
(
αθ1t|t−1 � Cθ1(:, yt)ᵀ

)
Aθ1

αθ0t+1|t =
(
αθ0t|t−1 � Cθ0(:, yt)ᵀ

)
Aθ0

t++

end while
if η1 > Λ then

return H0 refused (commissioning: error)

else
return H0 accepted (commissioning: OK)

end if

The input data is the measurements taken from the lamps that are believed to
be a pair, i.e. y1(t) and y2(t). To be used, these two measurements are merged
following Table 4.1. As thresholds η0 and η1, the formulae (4.3) provided by Wald
can be exploited or they can be defined using a trial-and-error approach. Algorithm

4.4. SPRT AND CUSUM FOR HMM 57

5 is an in-place algorithm, i.e. the memory space required does not change during
time, since only Λ and α values must be stored. Therefore, the space complexity of
this algorithm is O(1). From a computational complexity point of view, instead, it is
more difficult to say anything about. However, it can be seen that the computational
complexity does not change during time. More useful is to analyse the behaviour
of the algorithm when multiple workstations are monitored. Indeed, this algorithm
can be implemented in a distributed way, i.e. in each workstation in the office
space, or it can be implemented in a machine that performs Algorithm 5 for all
the workstations, using a centralised solution. For the latter case, it is sufficient to
add an external for-loop for each workstation. However, this is not a huge problem
since this is a una tantum situation. Anyway, since a for-loop is enough to monitor
an entire office, the computational complexity for a centralised monitoring solution
is O(n), where n is the number of monitored workstations. Performances of this
algorithm can be found in Chapter 5.

4.4.2 Failure Detection

The other problem analysed in this opus is to check if, after a correct commis-
sioning, any of the lamps changes position, i.e. a pair of lamps is split. In this issue,
for each workstation, there are two situations:

a) The pair is not split;

b) The pair was coupled but now is split.

The best idea to solve this is to use the CUSUM algorithm with f(y(t), Y0:t−1, θ).
Indeed, a) is the H0 of a CUSUM test whereas b) is the H1 hypothesis. A possible
implementation for a workstation is shown in Algorithm 6. As threshold η1, the
formula present in (4.3) provided by Wald can be used or it can be defined using a
trial-and-error approach.

Like for the previous one, the input data for this algorithm are the measurements
taken from the lamps that are believed to be a pair, i.e. y1(t) and y2(t). To be
used, these two measurements are merged following Table 4.1. Similar to the
previous one algorithm, this one is an in-place algorithm, since only Λ and α values
must be stored. Therefore, the space complexity of this algorithm is O(1). From a
computational complexity point of view, instead, it is difficult to say nothing but the
complexity does not grow during time: since it must be performed until a change is
detected but there is no certainty that this will happen, a computational complexity
index has very little utility. More useful is to find how it scales monitoring more
workstations in order to know how fast the CPU has to be. Indeed, like for the
previous one, this algorithm can be implemented or in a distributed way, i.e. in
each workstation in the office space, or it can be implemented using a centralised
solution on a machine that performs Algorithm 6 for all the workstations using a
for-each loop. Therefore, the centralised solution has a linear increase in complexity
compared to the number of workstations, i.e. computational complexity is O(n)
where n is the number of monitored workstations. This time, instead, concurrent
execution of this algorithm is crucial because it must be performed 24/7 for each
workstation to check whether failures occur. Obviously, some optimisation can be

58 CHAPTER 4. EVENT DETECTION WITH TIME

Algorithm 6 Failure Detection algorithm (CUSUM)

t=1

Nta = 0
αθ11|0 = πθ10

αθ01|0 = πθ00

ΛG = 0
while ΛG < η1 do

get new observations y1(t) and y2(t) and merge into y(t)

Λ = Λ + log
αθ1t|t−1Cθ1(:, y(t))∑
xl∈S

αθ1t|t−1(l)
− log

αθ0t|t−1Cθ0(:, y(t))∑
xl∈S

αθ0t|t−1(l)

αθ1t+1|t =
(
αθ1t|t−1 � Cθ1(:, yt)ᵀ

)
Aθ1

αθ0t+1|t =
(
αθ0t|t−1 � Cθ0(:, yt)ᵀ

)
Aθ0

if ΛG < 0 then
ΛG = 0
Nta = 0

else
Nta++

end if
t++

end while
return H1 accepted - Failure detected on, Tc = t−Nta

done according to requirements, e.g. reduce the sampling time, even if they could
be unnecessary since the algorithm is quite lightweight. For further information,
check Chapter 5.

4.5 Numerical Problems

The Algorithms 5 and 6 are quite powerful as it can be seen in Chapter 5 but
they are not so numerically stable. Indeed, the calculation of αt|t−1 is nothing but
a series of summations and multiplications with decimal numbers, and this leads
to have very small values. These values, if the monitoring time is quite long, can
be close to machine epsilon and thus gives numerical problems with divisions or
logarithms. A solution can be found analysing in particular the f(y(t), Y0:t−1, θ)
formula. Remember that

f(y(t), Y0:t−1, θ) =
αt|t−1Cθ(:, y(t))∑
xl∈S

αt|t−1(l)

=
αt|t−1∑

xl∈S
αt|t−1(l)

Cθ(:, y(t))

There it can be seen that a normalisation of αt|t−1 is done: therefore, if that
normalisation is performed directly during the calculation of αt|t−1 given αt−1|t−2,

4.5. NUMERICAL PROBLEMS 59

the numerical problem can be attenuated. Thus, in Algorithms 5 and 6, it is better
to use:

ᾱt+1|t =
αt+1|t∑

xl∈S
αt+1|t(l)

along with

f(y(t), Y0:t−1, θ) = ᾱt|t−1Cθ(:, y(t))

It is worth highlighting that, without these optimisation, the algorithms become
worthless: even if Matlab1 has a default machine epsilon ε = 4.9407× 10−324 that
it seems big, often it is not enough. Indeed, the operations done over α are:

αt+1|t =
(
αt|t−1 � Cθ(:, yt)ᵀ

)
Aθ

i.e.

αt+1|t(i) =
∑
sj∈S

aji αt|t(j)Cθ(i, yt)

where each element of Aθ and Cθ is smaller than one. Since these are row-stochastic
matrices, in each row there is one element lower or equal to 0.5. Let us assume,
to have easier reckons, that Aθ and Cθ are square matrices 2× 2 with all elements
equal to 0.5, i.e. use a hidden Markov model with 2 states and 2 possible events.
Therefore, the previous formula becomes:

αt+1|t(i) = 0.25
∑
sj∈S

αt|t(j)

Since α1|0 = π0, the sum of its element is equal to one. Let us assume that
π0 = [0.5 0.5], a common choice if no data is available. The formula therefore
becomes:

αt+1|t(i) = αt+1|t(i) = 0.25t−1

that is lower than the machine epsilon for

0.25t−1 = ε → t = log0.25 ε+ 1 = 537 + 1 = 538

i.e. after 538 samples the value of α becomes too small to be distinguished from
zero. This is not a high value, especially in the second algorithm that it must be
executed until a fault is detected. Indeed, using a one-hour sampling time, which
could be too much slow, 538 samples represent only three weeks. Furthermore, if a
one-minute sampling time is used, that is a common value, only up to 9 hours can
be monitored before to have issues. This proves that the normalisation introduced
in the first part of this section is fundamental for having working algorithms.

1The machine epsilon in Matlab for quasi-zero values can be found using eps(0).

60 CHAPTER 4. EVENT DETECTION WITH TIME

Chapter 5

Simulations

In Chapter 4, the algorithms to solve the commissioning error detection and
failure detection problems were shown. In this chapter, these algorithms will be
implemented in Matlab and some simulations will be shown paying close attention
to the algorithms behaviour using different of model parameters and thresholds.
However, before doing that, a brief introduction about how to implement a hidden
Markov model in Matlab will be done.

5.1 Implementation

For this opus, Matlab tool-chain was chosen since it allows to implement
hidden Markov models and the developed algorithm in an easier way than using
more powerful coding languages like C or Java. Furthermore, it includes a lot of
tools for plotting and analysing the obtained results. To speed up the coding and
producing a more robust code, it was decided to use an object-oriented approach
for building the model along with a more functional approach for implementing the
algorithms.

Three classes and several functions were developed to implement the algorithms
and the model. The developed classes are:

Workstation this class defines the model of a workstation, with sensors and
people.

SPRT this class defines the needed parameters and functions to implement a
sequential probability ratio test.

CUSUM this class defines the needed parameters and functions to implement the
CUSUM algorithm.

In the following subsections they will be analysed in particular to better investigate
their behaviour.

5.1.1 Workstation class

Figure 5.1 shows the UML diagram of the Workstation class.

61

62 CHAPTER 5. SIMULATIONS

Workstation
A: transition matrix
C: observation matrix
pi0: initial probability
S: possible states
O: possible events
xl: last simulated state
getNewObservation(): y(t)
getSequence(N: uint): YN

splitSequence(YN): Y1, Y2

mergeSequence(Y1, Y2): YN

Figure 5.1: UML Diagram of class Workstation.

From the Figure, it can be seen that this class implements several tasks: defining
and representing a workstation as well as providing a simulation of it. To do this,
several parameters and variables must be defined. The first ones are the parameters
of the hidden Markov model to be simulated, that, as seen in Chapter 3, are
the transition matrix A, the observation matrix C, the initial states probabilities
π0, and the states and observable events sets S and O. Since the workstation,
in this opus, is modelled as a hidden Markov model with two states and four
possible observations (see Chapters 2 and 3), the previous stated parameters can
be represented in Matlab using well defined matrices and vectors. Indeed, A is
a R2×2 matrix, C is a R2×4 matrix, π0 is a two columns row vector, whereas the
two sets are represented using two row vectors that contain all the possible values.
Another value is necessary to include in this class: the last state field. Indeed,
if a single step simulation is done, i.e. to provide a new sample every time the
function is called, a record about the last state is necessary. Furthermore, it is also
sufficient since states and observations of a hidden Markov model depends only on
the previous state. In order to follow the information hiding principle, which allows
to reduce bugs and issues in coding, all of these parameters have a private scope,
i.e. the cannot be accessed outside of the class.

Along with variables, methods and functions are necessary for building a class
too. The first method is the constructor, i.e. the function that allows to initialise
the previously described parameters. All of them are directly initialised by the
constructor except for the last state parameter: indeed, this one is initialised using
a random function based on π0 to represent the initial state. In Matlab this can
be done using the function randsrc(m,n,[S; prob]): it takes as input two integer
values, m and n, whereas a matrix composed by two rows in which the first is an
alphabet S, and the second their probabilities prob, and returns a matrix m times n
which entry independently is chosen from entries in alphabet taking into account
their probabilities. For this work, it is used:

x_l = randsrc(1,1,[S; pi0])

since only one sample is required with possible states in S with probabilities π0.
The second included method in this class is the getNewObservation method.

5.1. IMPLEMENTATION 63

As the name suggests, this function simulates a new observation by moving the
chain one step further. Obviously, the new status will be saved in xl. The algorithm
behind this function is reported in Algorithm 7. The first operation is to extract

Algorithm 7 getNewObservation

1: probState1 = A(x_l,1)

2: if rand()>probState1 then
3: x_l = S(2)

4: else
5: x_l = S(1)

6: end if
7: probObserv = C(x_l,:)

8: y_l = randsrc(1,1,[O; probObserv])

9: return y_l

the probability of going to state s1 given the state xl. This information is available
and can be found in the A matrix. Since only two states are available, there is
no need to check the other probability value. The second step is to generate a
random value that belongs to the uniform distribution between zero and one. If
this value is higher than the probability found in the previous step, then the new
state will be the s2, otherwise the new state will be s1. The further step is to
provide the new observation: therefore, the probability of all possible events given
the current state is extracted from C matrix and, using the randsrc Matlab
function, a new observation is simulated and returned. For debugging purposes
and to analyse the algorithms performances, the simulated state is returned among
with the observation.

Sometimes is also useful to simulate an entire sequence: for this cause, the
getSequence method was developed. This function does nothing but implement a
for cycle to run N times the Algorithm 7. It returns the sequence of the simulated
observations along with the sequence of the simulated states.

The Workstation class implements two more algorithms: mergeSequence and
splitSequence. These two methods were developed for allowing to split a work-
station, and merge the outcomes of two different simulated workstation. Indeed,
the getNewObservation method uses the compact notation for observed events.
The splitSequence method requires as input a sequence of observations created
using getNewObservation or getSequence methods: even a single observation can
be used since it is a sequence with length equal to one. It returns the two sensors
corresponding sequences implementing Table 2.1. On other hand, mergeSequence
implements the opposite function: it required two same-length sensor-observation
sequences created using splitSequence, even from different iterations, and it re-
turns the corresponding merged sequences following Table 2.1. These two functions
are used together for designing the simulation workbench.

5.1.2 SPRT and CUSUM classes

Before illustrating the simulation workbench, it is useful to show how to imple-
ment the two algorithms developed for this work, i.e. the Commissioning Error

64 CHAPTER 5. SIMULATIONS

Detection algorithm (Algorithm 5) and the Failure Detection algorithm (Algorithm
4). In Figure 5.2 the UML diagrams for the Commissioning Error Detection and
the Failure Detection are shown.

Algorithms
RatioTests

Q0: A0,C0, and pi00for the first model
Q1: A1,C1, and pi01for the second model
α0: current value of alphafor the first model
α1: current value of alphafor the second model
step(·)

CED
η0,η1: thresholds
Λ: current value of SPRT
step(y(t)):

FD
η1: threshold
ΛG: current value of CUSUM
step(y(t)):

Figure 5.2: UML Diagram of classes CED, FD, and their parent RatioTests.

Furthermore, in that Figure, another class is also shown: the RatioTests class.
Since the two algorithms are quite similar, especially as regards the input parameters
for the hypotheses, a good idea is to recycle some code. Therefore, an abstract class
was developed along with the two sub-classes. The super-class contains several
parameters that will be useful for implementing the algorithms: the two first fields
are about the parameters of the chain in the two possible hypotheses. Indeed, as
stated in Chapter 4, for both of the algorithms it is necessary to define a chain
for the no error chain along with one for the error case. The second parameter
field contains the α values that must be stored in order to run the algorithms. A
constructor is also developed to initialise these fields in an automatic-way: indeed,
it is sufficient to provide only the A, C, and π0 matrices for a chain, and it builds
the two chains. The α values are initialised according to π0. It is worth noticing
that an abstract method is present in this class: step. This method requires an
observation as input and returns a structure that contains the response of the
algorithm, i.e. if a choice is made, the choice along with the achieved performances
is returned, whereas, if no choice can be made, a continue-flag is returned. Since it
is an abstract method, it must be implemented in the sub-classes, i.e. in CED and
FD. The first sub-class implements the Commissioning Error Detection algorithm
(Algorithm 5): three new parameters are required for this algorithm. The first
is Λ, that is used to save the current value of the summation, whereas the other

5.1. IMPLEMENTATION 65

two are the desired thresholds. These two values are initialised by the user using
the constructor whereas the other is set to zero. The constructor also calls the
super-class constructor to initialise the other parameters. FD class is designed very
similar to this except for the different number of thresholds, which is one in this
case. In both of classes, the step function implements respectively the central steps
of the two algorithms in Chapter 4, i.e. the part of the algorithm that is inside the
while-loop. For the first one, this method returns:

0 if no choice can be made

1 if the null hypothesis is true

-1 if the null hypothesis is false

whilst, in the second class, the possible step function outputs are:

0 if no issues are detected

Tc if an issue is detected, where Tc is the expected time in which change was
made.

With these ingredients, a simulation workbench can be finally built.

5.1.3 The Simulation Implementation

To perform tests and analysis for these algorithms, it is necessary to develop
a simulation workbench. Similar to the real ones that facilitate to create or
modify objects because they make the necessary tools easily available, a simulation
workbench is a collection of classes, scripts and functions that allows to perform
tests in an all-in-one environment. For this opus, the workbench is composed by the
previous illustrated classes and functions, and three scripts that allow to carry on
the tests. The first script is called RunSimulation1 and it performs the following
operations:

1. defining parameters for the CED class and initialising them

2. running the simulation of faults and performing the CED algorithm

3. calculating the accuracy and the performances of the used algorithms

4. plotting the results

The running of the simulation is not trivial, and it is summarised in Figure 5.3.
The first operation to be done is to insert the parameters of the chains that will

be used in the CED class, i.e. the two thresholds. The second step is to insert the
parameters of the two workstations, i.e. A, C, and π0. These values will be given to
the two class constructors to build the respectively objects. Indeed, the CED class
constructor automatically builds the two chains using only that parameters. The
third operation is to select the flag of the script in order to select whether or not a
fault has to be simulated. After initialising some variables, like the time counter,
the constructors are called to create two Workstation objects and a CED object.

66 CHAPTER 5. SIMULATIONS

Start

CED class parameters

Workstation

classes parameters

switch = T or F

call the constructors to create2 Workstation and 1 CED

result == 0

yt = Workstation1.getNewObservation

t++

yes

Initialise the variables: t = 1

switch ?

[y
(1)
1 , y

(1)
2]=splitSequence(yt)

y
(2)
t = Workstation1.getNewObservation

[y
(2)
1 , y

(2)
2]=splitSequence(y(2)t)

yt=mergeSequence(y(1)1 , y
(2)
2)

result = CED.step(yt)

Commissioning errordetected No issuesfound

End

result=1?

no

no yes

yes

no

Figure 5.3: Flow chart of RunSimulation1.

5.1. IMPLEMENTATION 67

Start

FD class parameters

Workstation

classes parameters

Td= desidered fault time

call the constructors to create2 Workstation and 1 FD

result == 0

yt = Workstation1.getNewObservation

t++

yes

Initialise the variables: t = 1

t > Td?

[y
(1)
1 , y

(1)
2]=splitSequence(yt)

y
(2)
t = Workstation1.getNewObservation

[y
(2)
1 , y

(2)
2]=splitSequence(y(2)t)

yt=mergeSequence(y(1)1 , y
(2)
2)

result = FD.step(yt)

Fault found:Estimated time: Tc

End

no

yes

no

Figure 5.4: Flow chart of RunSimulation2.

68 CHAPTER 5. SIMULATIONS

Now the while-loop starts: the first step is to simulate a new observation using the
first Workstation object. If a switch is desired to be simulated, the observation
just obtained is split using splitSequence, a new observation is simulated using
the other Workstation object and split: after that, the value of sensor one of the
first observation is merged together with the value of second sensor of the second
observation using mergeSequence. If no switch is desired, these steps are ignored.
The further step is to call the step function of CED class: as stated before, giving an
observation (directly or after a split-merge) as input, it returns whether hypothesis
is true or if more data is necessary. If a choice is not made, the while-loop restarts
after increasing the time counter. Otherwise, an output is returned according to the
function result and the script stops. The other script, called RunSimulation2, is
quite similar to RunSimulation1 and it is used to simulate a failure in a workstation,
i.e. a smart lamp has been moved after the commissioning was completed and
tested correctly. In Figure 5.3, this new script is shown.

The main differences between the two scripts are concentrated in the different
initialisation and in the different ending. Instead, the central part is the same
for the two scripts. The initialisation of the FD class requires only one threshold
whereas the workstations parameters are used at the same manner of the other
script: indeed, since FD class inherits the properties from the super-class that is
shared with the CED class, the two constructors work similar. The further step,
that it is different with respect to the other script, is to decide the desired fault
time, i.e. the time in which the switch is made. Until the end, this script behaves
like the other. The end is different this time: the returned values is, this time, the
estimated switch time Tc.

Thanks to these scripts, it is possible to carry on the simulations in an easy way.

5.2 Simulations introduction

The best way to test the algorithms presented in this paper is through simulations.
Indeed, since workstation models are based on probability, it is difficult to analyse
the algorithm performances using only deterministic methods. Furthermore, to
make the results comparable, it is also necessary to introduce some limitations
about the model parameters: the possible values of the parameters are infinite and
therefore it would be impossible to simulate them all. For these reasons, it is better
to state some assumptions about the carried simulation.

5.2.1 Assumptions

The main parameter limitations are introduced to favourite the thresholds
comparison. Indeed, even if a formula was stated to calculate them, it is useful to
check them on field. The first is the following:

Simulation Assumption 1. A and C matrices of a workstation depend respec-
tively only on γ and δ, i.e.:

A =

 γ 1− γ
1− γ γ

 C =

 δ 1− δ
1− δ δ



5.2. SIMULATIONS INTRODUCTION 69

This assumption was done to reduce the complexity of the matrices that could
lead to have incomparable results. However, this assumption is not strange since
it states that probabilities of state change are the same, no matter the previous
state, and that the workstation smart lamp sensors have all the same performances.
Another assumption about parameters is:

Simulation Assumption 2. γ and δ are the same for all workstations in an office.

This assumption was made to reduce the number of possible combinations in
order to allow a threshold comparison and a shorter execution time of the overall
simulation. In view of these assumptions, it is possible to state the used parameter
for simulations. For δ and γ, the used values are:

δ, γ ∈ {0.65, 0.70, . . . , 0.95}

This allows to exclude uninteresting values, such as those close to 0.5 in which
the chain is highly noisy, or unreal values, such as the value 1 which indicates a
stationary chain in the case of γ or noise free sensors in the case of δ, which violates
the assumptions. Furthermore, six different pairs of thresholds (η0, η1) were used in
the first test whereas in the second the η0 thresholds were dropped: to define them,
six probabilities, i.e.

pm = pf ∈ {2× 10−1, 10−1, 5× 10−2, 10−2, 10−3, 10−4}

were stated and then the formulae 4.3 were applied to them. These probabilities
have been chosen to simulate real values that can be used daily. In Matlab, the
threshold values can be calculated in only two rows using:

n0 = log (p_m./(1-p_f));

n1 = log ((1-p_m)./p_f);

These values are reported in Table 5.1.

pm = pf 20% 10% 5% 1% 0.1% 0.01%

η0 =1.3863 =2.1972 =2.9444 =4.5951 =6.9068 =9.2102

η1 1.3863 2.1972 2.9444 4.5951 6.9068 9.2102

Table 5.1: Thresholds used during simulations.

The last thing to highlight is the initial condition used for the chain set-up: for
all tests, π0 = [0.5 0.5] was used.

5.2.2 Performed Tests

It is also important to describe the tests that will be performed and analysed: it
easy to see that different analysis must be done for the Commissioning Error Detec-
tion and the Failure Detection. The tests carried out to check the commissioning
error detection algorithm are as follows:

70 CHAPTER 5. SIMULATIONS

1. percentage value of miss detection (CED-MD)

2. percentage value of false alarm (CED-FA)

3. percentage value of overall errors (CED-OE)

4. time to detect (CED-T)

These tests are quite common for analysing this type of algorithms. The first consists
of simulating several correct commissioned workstations, running the Algorithm 5
for each one, and counting how many errors were made, i.e. how many times the
algorithm states that there was an error during commissioning. For this test, two
hundred and fifty workstations were simulated. The second one is quite similar: two
hundred and fifty faulty workstations were simulated, ran the Algorithm 5 for each
one, and counted how many errors were made, i.e. how many times the algorithm
states that a workstation received a good commissioning. The third test merges
the two previously stated tests to show how many errors the algorithm commits:
for this test, two hundred and fifty faulty workstations and two hundred and fifty
hundred good ones were simulated. The last test consists of recording how many
samples are necessary for the algorithm to make a choice: for this test too, five
hundred workstations, half in good health, half faulty, were simulated. To reduce
the amount of computation time, all these tests are carried concurrently.

For the Failure Detection analysis, the performed tests are:

1. mean time between two false alarms (FD-FA)

2. time to detect (FD-TA)

3. expected switch-time error (FD-TE)

The first test is about to simulate a healthy workstation and count the number
of false alarms reported by the Algorithm 6 within a time window. Every time a
false alarm is detected, the summation was reset to zero. In this work, the window
was chosen of ten thousand samples and the test was repeated a hundred times for
each model and threshold. Obviously, to find the average time between two false
alarms, simply multiply the length of used window by the number of performed
runs and divide the whole by the number of false alarms found. The other two tests,
instead, consist of simulating one thousand workstations that will have an issue
between the twentieth sample and the fiftieth sample, and performing Algorithm
6. For consistent data, false alarms were ignored. Similar to above, the time to
detect test consists of finding how many samples are required for the algorithm
to detect the fault after it happened whereas, the third, analysed how much error
is made when the switch-time estimation is performed. To reduce the amount of
computation time, these two tests were carried concurrently.

Some of the tests performed on Algorithm 6 are different from those performed
on the other algorithm, since the different behaviour makes some of the previous
ones useless. Indeed, miss detection errors cannot be made as the algorithm runs
until it returns that the workstation has become faulty. Not even counting the
number of false alarms makes sense, since if the workstation is never modified,

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 71

the algorithm will run for an infinite amount of time. For this, it was decided to
monitor only the time between consecutive false alarms.

It is worth remembering that all tests for Commissioning Error Detection and
Failure Detection are performed using six different thresholds as well as seven
different values for γ and δ. The utilised thresholds are the ones reported in Table
5.1, and they are stated in tables and graphs by the respective values of pf and pm.
The results of these tests are illustrated in the following section and can be found
in the Appendix.

5.3 Simulation Tests Results & Plots - Commis-

sioning Error Detection

In this section, the results of the above described tests about commissioning
error detection (CED) are shown. The main tools utilised to illustrate them are
plots and tables. Two different approaches are used to show the results for each
performed test: the first one is to group the results by thresholds, no matter the
γ or δ values used, to make a glance comparison (Subsection 5.3.1). The other
idea is to group the results for the threshold and show only the ones that have
the same γ value, i.e. simulations about same test that share the same A matrix
are reported in the same table or plot (Subsection 5.3.2), to encourage a more in
particular comparison: however, sometimes different approaches can be followed,
like aggregating the results by δ value.

5.3.1 Commissioning Error Detection - overview

In this subsection, the grouped results of the commissioning error detection
tests are reported. Remember that four tests were performed using six thresholds
and forty-nine different chains. The full results can be found in Appendix A.

Commissioning Error Detection - Miss Detection

In Appendix Table A.1 the percentage values of the miss detection test are
reported. Remember that this test counts how many times the algorithm states the
commissioning was done correctly even if there is a commissioning error. Forty-nine
different parameters were simulated using for each one two hundred and fifty chains:
therefore, 12250 Montecarlo runs were simulated and thus the sensibility is around
0.01%. In Table 5.2 and Figure 5.5 these results are summarised, normalised, and
grouped by the used threshold.

pm 20% 10% 5% 1% 0.1% 0.01%

% mean 22.24 10.66 5.27 1.14 0.09 0.02

Table 5.2: Commissioning error detection - miss detection test: percentage value
of situations in which the algorithm gives a wrong result. 12250 Montecarlo runs
simulated.

72 CHAPTER 5. SIMULATIONS

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]
Empirical ValueExpected Value

Figure 5.5: Commissioning error detection - miss detection test: percentage value
of situations in which the algorithm gives a wrong result. 12250 Montecarlo runs
simulated.

As it can be seen, most results meet expected values, i.e. the number of miss
detection is within the assigned probability value after taking into account test
sensitivity, or they are very close to it. Only using the first threshold, as it is clearly
illustrated in the graph, the committed errors are appreciably higher than the
expected ones: a possible fault can be found in not having used enough Montecarlo
runs for each model for the test, and, therefore, the variance of the test is still
significant. However, this means that the Wald’s formulae for thresholds work quite
well, they are reliable, and they can be used in daily situations. To analyse better
this idea, grouped by γ and δ results are shown in the Section 5.3.2.

Commissioning Error Detection - False Alarm

In Appendix Table A.2 the percentage values of the false alarm test are reported.
Remember that this test counts how many times the algorithm states the com-
missioning was done incorrectly even if there is not a commissioning error. Also,
for this test, forty-nine different parameters were simulated using for each one two
hundred and fifty chains: therefore, 12250 Montecarlo runs were simulated and thus
the sensibility is around 0.01%. These results are summarised, normalised, and
grouped by the used threshold in Table 5.3 and Figure 5.5.

As it can be seen, all the results are appreciably lower than the expected values:
using the larger threshold, no error were committed. The main difference with
the previous test is that, in this test, the thresholds are quite conservative, and,
therefore, they can be set lower than the values that Wald suggests. Indeed, results
are about 35 % lower than expected values. Furthermore, it seems that the number

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 73

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

Empirical ValueExpected Value

Figure 5.6: Commissioning error detection - false alarm test: percentage value of
situations in which the algorithm gives a wrong result. 12250 Montecarlo runs
simulated.

pf 20% 10% 5% 1% 0.1% 0.01%

% mean 13.62 6.91 3.27 0.64 0.03 0.00

Table 5.3: Commissioning error detection - false alarm test: percentage value of
situations in which the algorithm gives a wrong result. 12250 Montecarlo runs
simulated.

of Montecarlo runs are sufficient since test variances are negligible. Therefore, also
in this case, it can be said that Wald’s formulae for thresholds work well: indeed,
using the stated probabilities, the thresholds are sufficient to take into account test
variances. This concept is stated better in the Section 5.3.2, in which the results
are illustrated grouped by γ and δ.

Commissioning Error Detection - overall number of errors

In Appendix Table A.3 the percentage values of the number of test that have
failed the miss detection or the false alarm tests are reported. Remember that
this test merges the previous twos and then five hundred situations were simulated
for each chain pair of parameters. Therefore, forty-nine different parameters were
simulated using for each one five hundred chains: 24500 Montecarlo runs were
simulated and thus the sensibility is close to 0.004%. Like in the previous cases, the
results are normalised, summarised, and grouped by the used threshold in Table
5.4 and Figure 5.7.

The obtained values are lower than the ones in Table 5.2 but higher than the

74 CHAPTER 5. SIMULATIONS

pm = pf 20% 10% 5% 1% 0.1% 0.01%

% mean 17.927 8.784 4.273 0.894 0.061 0.008

Table 5.4: Commissioning error detection - miss detection and false alarm test:
percentage value of situations in which the algorithm gives a wrong result. 24500
Montecarlo runs simulated.

ones in Table 5.3. This can be explained by the test procedure: for this test, the
previous two tests are merged, and, obviously, a sort of mean is done. However,
all of them are lower than the expected values utilised to build the thresholds.
However, all the results are within the expected area, and they are about 10 %
lower than the respectively thresholds.

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

Empirical ValueExpected Value

Figure 5.7: Commissioning error detection - miss detection and false alarm test:
percentage value of situations in which the algorithm gives a wrong result. 24500
Montecarlo runs simulated.

Therefore, this test confirms that the Wald formulae suit well for this algorithm,
and that produce good results. This can be also seen, more in detail, in the Section
5.3.2 in which the results are illustrated grouped by γ and δ.

Commissioning Error Detection - samples to make a choice

The last committed test regards the algorithm run time, i.e. how many samples
are required by the algorithm to make a choice. In Table 5.5 the means and the
standard deviations of the required samples for each threshold are reported along
with their ranges.

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 75

pm = pf 20% 10% 5% 1% 0.1% 0.01%

mean [samples] 34.96 68.30 99.95 163.77 247.60 327.76

dev.std [samples] 45.19 94.17 140.69 235.07 361.47 479.59

range [samples] 181.34 393.08 580.74 948.73 1468.17 1938.70

Table 5.5: Commissioning error detection - computation time test: means and
standard deviations of samples required by the algorithm to make a choice using
different thresholds. 24500 Montecarlo runs simulated.

For this test it was decided to show the model standard deviations: this index is
useful for controlling whether using only mean is reliable to make considerations or
not. Indeed, a high variance means that different outcomes behave in very different
manners whereas a low variance describes the data as compact and close to mean.
To calculate this index, the standard deviation of each column of Table 5.5 was
performed using the std command in Matlab. In the previous test, the variance
values were very low: the maximum test standard deviation found was 5% but,
usually, the values were around 1% or less. Instead, in this case, the variance is
quite high and therefore it seems no conclusions can be drawn. In these situations,
a good idea is to calculate the range. i.e. the difference between the maximum
and the minimum values in a data-set. As it can be seen in Table 5.5, the range
value is very high and, therefore, it means that the data is very sparse. In other
words, there are cases in which the algorithm is very fast and cases where it is very
slow, no matter the threshold chosen. However, a partial conclusion can be drawn:
the lower the threshold, the faster the algorithm, even if it seems there are some
models that are faster than other also using a larger threshold. To provide a better
explanation, a different method of aggregate reporting must be used.

In Figure 5.8, percentile plots for all used thresholds are reported since this type
of plots allows to classify with a glance the distribution of the data. Before defining
what a percentile plot [27, Sect. 2.2] is, it is better to state what a percentile and a
quantile are. The i percentile, i ∈ {1, 2, . . . , 99}, is a number on the scale of the
data that divides the data into two groups, so that the i % of the observations fall
below and the other ones fall above. The 0.i quantile works in the same way, only
using fractions instead of percentage values. Therefore, a percentile graph is the
plot of the percentile “function”: the faster way to make it is to sort y-data values
by ascending order and plot them over a normalised x-axis.

As it can be seen there, for all the different utilised thresholds, the plots are
pretty similar if, for a moment, the adopted scale factor is ignored: in all cases,
about 77% of the tests are completed within a reasonable time. Instead, to have
that 90% of the tests are completed, it is necessary to wait a time twice as long
as the one necessary for the first 77%. Furthermore, for everyone to finish, it is
necessary to wait up to five times the time that for the 77% of tests is more than
enough. These plots clearly show that this behaviour is influenced by the model
utilised, i.e. the γ and δ values, since the threshold does not change within a single
plot. To better highlight this, a new display method should be used.

In Figure 5.9, the same information of 5.8 is displayed using Box Plots. A

76 CHAPTER 5. SIMULATIONS

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

77% of tests have time to detect lower than 40 samples

90% of tests have time to detect lower than 90 samples

% tests

sam
ples

(a) pf = pm = 2× 10−1

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

77% of tests have time to detect lower than 73 samples

90% of tests have time to detect lower than 185 samples

% tests
sam

ples
(b) pf = pm = 10−1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

77% of tests have time to detect lower than 100 samples

90% of tests have time to detect lower than 266 samples

% tests

sam
ples

(c) pf = pm = 5× 10−2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1,000

77% of tests have time to detect lower than 170 samples

90% of tests have time to detect lower than 440 samples

% tests

sam
ples

(d) pf = pm = 10−2

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

1,600

77% of tests have time to detect lower than 260 samples

90% of tests have time to detect lower than 660 samples

% tests

sam
ples

(e) pf = pm = 10−3

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

77% of tests have time to detect lower than 350 samples

90% of tests have time to detect lower than 865 samples

% tests

sam
ples

(f) pf = pm = 10−4

Figure 5.8: Commissioning error detection - computation time test: percentile plots
of samples required by the algorithm to make a choice using different thresholds.
24500 Montecarlo runs simulated.

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 77

0

20

40

60

80

100

120

140

160

180

200

(a) pf = pm = 2× 10−1

0

50

100

150

200

250

300

350

400

(b) pf = pm = 10−1

0

100

200

300

400

500

600

(c) pf = pm = 5× 10−2

0

100

200

300

400

500

600

700

800

900

1,000

(d) pf = pm = 10−2

0

200

400

600

800

1,000

1,200

1,400

1,600

(e) pf = pm = 10−3

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

(f) pf = pm = 10−4

Figure 5.9: Commissioning error detection - computation time test: box plots
of samples required by the algorithm to make a choice using different thresholds.
24500 Montecarlo runs simulated.

78 CHAPTER 5. SIMULATIONS

box plot [28], also known as box-and-whisker plot, is a powerful tool to rapidly
summarise and interpret data coming from experiments: it allows, with only a
glance, to find the main properties of a data-set. The diagram [27, Sect. 2.5] was
developed by J. Tukey, and it is composed by a rectangle (the box), a horizontal
line inside the rectangle, two horizontal lines (the whiskers) outside of the rectangle
linked to it by a vertical line, and some points above them. The lower horizontal
side of the rectangle represents the first quartile, i.e. the middle value between the
smallest number and the median of the data-set, whereas the higher horizontal side
represents the third quartile, i.e. the middle value between the maximum number of
the data-set and the median. The horizontal line inside the rectangle is the data-set
median, also known as second quartile or 50-th percentile. The whiskers are a
little more difficult to be drawn: the upper one has an y-value equal to +1.5×IQR
whereas the lower one is equal to −1.5×IQR, if IQR is defined as the interquartile
range, i.e. the difference between the third and the first quartile. The lengths of
the vertical lines that connect the whiskers to the rectangle show how stretched
the tails of the data distribution are. The points drawn beyond the whiskers are
the data points that are not included in the range [−1.5,+1.5]× IQR, and, for this,
they are often defined outliers even if their mere presence in this area is not enough
to classify them in this way.

γ δ

0.65 0.65

0.70 0.65

0.75 0.65

0.80 0.65

0.85 0.65

0.90 0.65

Table 5.6: Commissioning error detection - computation time test: model parameters
that produce outliers in Figure 5.9. The first is furthest from the upper whisker,
and so on.

The box plots in Figure 5.9 seem very similar to each other at first glance: if the
scale factor is ignored, the diagram is almost similar for each graph: in each box
plot the lower whisker is very close to the rectangle whereas the other whisker is
very far apart. Furthermore, the horizontal line that represents the median is not in
the centre of the rectangle, but it is closer to the lower side of the rectangle than to
the higher one. This means that the distribution of data is not symmetric, and that
the right side of the distribution is very long. This leads to think that there are
some very fast models along with very slow ones, even if, since the median is closer
to the lower whisker than the upper one, there are faster models than slow ones.
Another interesting thing that these plots show is that there are six points above
the last whisker in each plot. This means there are six models that provide values
higher than one and half times of the interquartile range, and they are probably
outliers. In other words, there are six models whose behaviour is very different from

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 79

the other ones, and, therefore, it is not possible to perform any overall analysis
about algorithm computation time. Since the models differ from each other only
by γ and δ, some values of these two parameters must be blamed for this. Indeed,
the model parameters that produce outlier data is only six and are the same for all
the used thresholds: they are reported in Table 5.6.

From these data, it seems that a low value of δ in the model leads to have
a slow algorithm: this seems a likely idea since a low value of δ means that the
sensors are very noisy and thus the measurements are not very reliable. This will
be investigated deeper in the following section where more in particular γ and δ
analyses will be performed, and thus an identification of these odd models can be
performed.

Commissioning Error Detection - overall aggregated analysis

After a first summary analysis of the results, it appears that in the first three
tests of commissioning error detection, which consist of counting the number of
miss detection, false alarms and their sum, Wald’s formula works quite well. Only
in the first test, some of the results do not respect the expected values, even for
just a little. Moreover, especially in the case of the false alarms test, the values
obtained are appreciably lower than those imposed: this means that it is possible
to reduce the thresholds a little more compared to Wald’s formula, which therefore
seems a little conservative for daily use.

Different conclusions were drawn from the fourth test, the one regarding the
algorithm time performances. As it can be seen, using the aggregated data, it was
not possible to obtain anything else that, on average, a higher threshold algorithm
takes longer to finish than a lower threshold one. For this reason, it was necessary to
introduce two different methods of aggregate reporting, the percentile plot, and the
box plot. Using these tools, it was found that there are six models that have a very
different behaviour with regards to the other ones. All of these ones have δ = 0.65,
the lowest value available for the sensor sensibility. To find the mathematical
motivation for this behaviour, more in particular analysis must be performed.

5.3.2 Commissioning Error Detection - γ and δ analysis

To better appreciate the results that can be found in Appendix A, it is useful
to plot the test values using a fixed variable, γ or δ, and compare the behaviour of
the others as it changes. Remember that, models are defined as:

A =

 γ 1− γ
1− γ γ

 C =

 δ 1− δ
1− δ δ


A lot of comparisons can be done using the simulated data: in this paper, only the
most relevant ones are reported. Indeed, forty-nine different models were simulated
five hundred times, but, therefore, only some of them can be shown.

It is worth highlighting the different sensibility of the tests performed to better
understand the results. The first two tests are carried on over two hundred and

fifty simulations: this means that the sensibility of the results is
1

250
= 0.004 =

80 CHAPTER 5. SIMULATIONS

4 × 10−3 = 4 × 10−1%. In other words, the points reported in plots for tests
(CED-FA) and (CED-MD) that are close to 4 × 10−1% are not sufficient precise
and are within a hypothetical confidence interval of zero. At the same manner, the
points in (CED-OE) test that are close to 2 × 10−1% should be treated as zero
values.

Commissioning Error Detection - γ = 0.95 analysis

The first comparison was done using a fixed high γ, i.e. γ = 0.95, and changing
the δ value. This means that models with rare state changes were utilised. The
tests plots can be found in Figure 5.10.

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

100

200

300

400

500

600

700

Pm = Pf

τ
[sam

ples
]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95

(d) CED-T

Figure 5.10: Commissioning error detection tests with fixed γ = 0.95. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

In this figure, it can be seen that the results of the first test do not show a very
clear dependence on δ values but it seems that low values of δ provide more stable
results than high ones. Indeed, high δ values do not ensure a lower number of
errors but, sometimes, they do not respect the a priori miss detection probability.
However, to be sure of this and not be deceived by the variance of the tests, a
similar analysis with other values of α must be performed.

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 81

In the false alarm test, no correlation between algorithm results and the δ values
used for the models can be clearly seen: indeed, an order is very difficult to be
found. In this case, all cases except two respect the probability values defined: the
model with issues is the one with the lowest δ. It seems that a high value of δ
gives better results in false alarm test, but is more susceptible to performing miss
detections, whereas a low value of δ does the opposite. Furthermore, it seems that
false alarms are rarer than miss detections for workstations with high δ values:
using the largest threshold, no false alarms were reporting during the simulations
whereas with the second largest only one false alarm occurred. This is not always
desired since, in the case of commissioning, it is better to have a false alarm with
respect to an undetected error.

Obviously, since the third test (CED-OE) merges the two previous ones, nothing
more can be said since all the results are within the expected values after considering
the test sensitivity, but an order cannot be found. However, a better situation
with respect to the miss detection analysis can be found here, since all parameter
choices follow the expected threshold values. This means that the Wald formulae
are perfect for γ = 0.95.

The fourth test, the one that represents how much time the algorithm takes
to make a choice, is much more clarifying and lends itself to many considerations:
as it can be clearly seen, as the required probability increases, the number of
required samples to make a decision increases. This was expected since the higher
the probability, the higher the thresholds must be used. Another expected fact
is that, using the same required probability, with the increase of the model δ the
number of samples used increases. This can be explained if it is considered the
fact that the value of δ represents the probability of correctly measuring the status,
i.e. the accuracy of the sensors. As a result, noisier measurements lead to a lower
probability of a correct measurement, and consequently the sum, Λ, grows more
slowly and takes longer to reach the set thresholds.

Commissioning Error Detection - γ = 0.80 analysis

The second comparison was done using a fixed medium γ, i.e. γ = 0.80, and
changing the δ value. This means that models with not so rare state changes were
simulated. The tests plots can be found in Figure 5.11.

In the first test, the miss detection one, the majority of the simulated models
are within the expected values, but there are more than ten situations that not
respect the defined probability. Interestingly, high and low values of γ produce
unexpected results, and the models that leads the algorithm to do not respect the
limits are often different by using one threshold or another. However, it seems that
high values of γ lead the algorithm to be more susceptible to make errors.

A better situation can be found in the false alarm test: indeed, in this test,
a smaller number of test fail to reach the desired error thresholds and the ones
are the models that have a low value of γ. In this case too, it is difficult to find a
consistent order for the models.

The third test provides a little more information than the two previous tests: it
seems that, using higher values of δ, the algorithm performs better than using low
ones, even if an order is not so clearly defined. However, also in this test, there are

82 CHAPTER 5. SIMULATIONS

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

1,200

1,400

Pm = Pf

τ
[sam

ples
]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95

(d) CED-T

Figure 5.11: Commissioning error detection tests with fixed γ = 0.80. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

some models that do not allow the algorithm to reach the expected error thresholds:
it seems that, using models with a medium value of γ, the performances of Wald
formulae start to deteriorate.

The fourth test results, instead, are very clear and reaffirm that the lower the
model δ value, the faster the algorithm: furthermore, like in the previous test, low δ
value models with low thresholds take more time to finish than high δ value models
with high thresholds.

Commissioning Error Detection - γ = 0.65 analysis

The last comparison was done using models with a fixed low γ, i.e. γ = 0.65,
and changing the δ value. This means that simulated models change frequently the
states. The tests plots can be found in Figure 5.12.

In the first test, the miss detection test, a huge number of the simulated models
are outside the expected values ranges: there more than fifteen situations that do
not respect the defined probability. Interestingly, high and low values of γ produce
unexpected results, but it seems that high values of γ are more susceptible to make

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 83

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95

(d) CED-T

Figure 5.12: Commissioning error detection tests with fixed γ = 0.65. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

errors. After the third comparison, it is very difficult to blame the test variances
for this, and likely a cause might be found.

Like in the previous comparison, better situation can be found in the false alarm
test: in this test, a smaller number of test fail to reach the desired error thresholds
and the one is the model that has the lowest value of γ. Instead, in this case, a
consistent order for the models can be glimpsed. It seems that the higher the δ
value, the lower the errors made.

The third test does not provide more information than the two previous tests,
but it quite confirms that an overall order for the models is difficult to be found.
Moreover, it shows that the worst model is the one with γ = 0.80: the cause can be
found in that it excels neither in the first test nor in the false alarm test, while all
others have a test that is more favourable to them.

The last test confirms the ones shown in the previous comparison, but this time
the algorithm takes a very long time to be executed with respect to the other cases.
It seems that also the value of γ should be blamed for the computation time, as it
can be seen later on.

84 CHAPTER 5. SIMULATIONS

Commissioning Error Detection - overall δ analysis

In Table 5.7, the previous results are summarised to allow a fast availability.
It can be clearly seen that the pattern is the quite same for each different

workstation γ value: indeed, except for the first case, the miss detection tests are
often failed whereas the false alarm ones are usually passed. Furthermore, the third
test is usually passed too, whereas the last test states that the higher values of δ
are used, the faster is the algorithm.

γ CED-MD CED-FA CED-OE CED-T

0.95 RT, LiB RT, HiB RT HiB

0.80 NRT, LiB RT, HiB RT HiB

0.65 NRT, LiB RT, HiB RT HiB

Table 5.7: Recap of the results in the different tests: δ analysis. LiB = lower δ
values is better, HiB = higher δ values is better, RT = respected thresholds, NRT
= not respected thresholds, NA = no choice made.

Motivations Several causes can be found to explain the behaviour of the test
results. But the common one can be found in the way the algorithm was built. It
is worth reminding that the main step of Algorithm 5 is:

Λ(t+ 1) = Λ(t) + log
αθ1t|t−1Cθ1(:, y(t))∑
xl∈S

αθ1t|t−1(l)
− log

αθ0t|t−1Cθ0(:, y(t))∑
xl∈S

αθ0t|t−1(l)

where, the update rule for α values are:

αθ1t+1|t =
(
αθ1t|t−1 � Cθ1(:, yt)

ᵀ
)
Aθ1

αθ0t+1|t =
(
αθ0t|t−1 � Cθ0(:, yt)

ᵀ
)
Aθ0

and the C matrices are built following (3.52) and (3.56), i.e.:

Cθ0 =

 δ2 δ(1− δ) δ(1− δ) (1− δ)2

(1− δ)2 δ(1− δ) δ(1− δ) δ2



Cθ1 =


δ2 δ(1− δ) δ(1− δ) (1− δ)2

δ(1− δ) (1− δ)2 δ2 δ(1− δ)
δ(1− δ) δ2 (1− δ)2 δ(1− δ)
(1− δ)2 δ(1− δ) δ(1− δ) δ2


It is also worth noticing that, if δ is close to 0.5, all the elements matrices become
equal and close to 0.25. On other hand, if δ is close to 1, the matrices become very

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 85

sparse and all the no-zero entries are close to 1. The last thing to remember is that
δ represents the sensibility of the sensors utilised, i.e. how much the algorithm can
trust the outcomes.

Putting the whole together, some conclusions can be drawn. The first is that,
for the same γ used, a high value of δ leads to having less uniform C matrices
and that favours, during the α update, the most probable values: therefore, the α
vectors will have very similar elements if δ is close to 0.5 whereas very different if δ
is close to one. Since the value of α is normalised in the algorithm step as shown
above, a high δ leads to having the likely part of the α vector very high whilst using
a low δ leads to having them low. Another thing to take care about is the Λ value
behaviour since a difference between logarithms is also made in the algorithm step.
To better understand, this step should be made more explicit:

log
αθ1t|t−1Cθ1(:, y(t))∑
xl∈S

αθ1t|t−1(l)
− log

αθ0t|t−1Cθ0(:, y(t))∑
xl∈S

αθ0t|t−1(l)
= log

αθ1t|t−1Cθ1(:, y(t))∑
xl∈S

αθ1t|t−1(l)

αθ0t|t−1Cθ0(:, y(t))∑
xl∈S

αθ0t|t−1(l)

A further useful step is to make this formula explicit in the case of the two extreme
values of δ. For δ close to 0.5, the formula can be written as:

ll = log
K π0

K π0

= log 1 = 0, K ∈ R

since the C matrices are very similar to a constant value times an all-ones matrix,
the α values are constant from the beginning, and this leads to have logarithm of
a division of same things, that is equal to zero. Even from an intuitive point of
view, it seems to work: indeed, if δ is close to 0.5, it means that the measurements
are not reliable and consequently the algorithm does not take them into account.
Therefore, since the algorithm cannot distinguish between the two cases, since the
C matrix is the same for all measurements, it gives the same weight to both the
cases: this leads the ratio to be equal to one. Obviously, the logarithm of one is
zero and this leads to having a constant Λ equal to 0 since the sum never grows:
thus, the algorithm never stops. For δ value close to 1, the C matrices are very
sparse, and have a lot of zeros in the cells that represent the miss detection or false
alarm of the sensor. It is worth noticing that the matrix Cθ1 becomes similar to
an identity matrix whereas the other becomes a null matrix except for the first
and the last entries that are equal to one. This means that the elements of the
vector α can only be zero or one, and this only depends on the value of the state
of the chain, since the sensor is infallible. This leads to a ratio of zero or infinite
depending on the situation already at the first step. By doing the logarithm, this
becomes a positive or negative infinity based on which of the two hypotheses is
true. Then the algorithm ends in one step since lh = ±∞.

Summarising, from what has been written above, the most important conclusion
that can be drawn is that, as expected, a high value of δ allows the algorithm to
take less time than a low one as Λ grows much faster in this case. Indeed, high

86 CHAPTER 5. SIMULATIONS

values of δ lead the algorithm to trust a lot the measurements, and thus to assign
to them a high probability values. This causes to have an appreciable difference
of logarithms that makes Λ to reach the threshold very fast. However, it is also
interesting to check out the behaviour of the algorithm when different values of γ
are utilised while using constant δ values. This is done in the following subsections.

Commissioning Error Detection - δ = 0.95 analysis

Similar to what was done for the test results with γ fixed, also for the tests
using models with δ fixed the comparison will be performed using three values of
δ. The first comparison is done using δ = 0.95, i.e. the workstation has two quite
perfect sensors since their sensibility is very high. In Figure 5.13 the plots of the
tests that utilised δ = 0.95 are shown.

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

5

10

15

20

25

30

35

40

45

50

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95

(d) CED-T

Figure 5.13: Commissioning error detection tests with fixed δ = 0.95. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

The miss detection test clearly shows that, using such a high value of δ, it is
difficult to find an order that clearly illustrates the situation. Another information
provided by the first graph is that very few cases meet the defined probabilities of
miss detection. This is the worst situation so far. The situation changes considerably

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 87

if the second graph is looked at: indeed, in that plot, almost all cases perform
much better than the assigned probabilities, especially in the cases of high error
probability. Not even here a clear order between the models can be found but it
seems that a higher γ will produce better results. The third plot merges the two
previous tests: in this one, almost all tests are within the expected probabilities. In
this situation too, a clear order between models cannot be found, but it seems that
all the model behaviours are pretty close to each other. The last test, the one that
measures how long the algorithm takes to finish, is the clearest one. Indeed, a clear
order can be found: the higher the γ value, the slower the algorithm. This is an
interesting result since, using a δ fixed values, the higher the δ value, the faster the
algorithm. To be sure about this, it is better to analyse some more different values.

Commissioning Error Detection - δ = 0.80 analysis

In Figure 5.14, the plots of the results of the tests performed with δ = 0.80 are
shown. A value of 0.80 for δ is a medium value and represents a sensor that is not
perfect, but it is sufficient precise for daily use.

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

140

160

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80

(d) CED-T

Figure 5.14: Commissioning error detection tests with fixed δ = 0.80. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

88 CHAPTER 5. SIMULATIONS

The situation using δ = 0.80 is smoother than the previous one. In the first
plot, the one regarding the miss detection test, it can be seen that the models
respect more the thresholds than in the case of using δ = 0.95. Vice-versa, in the
second plot, it can be seen that the results are worse than the ones in 5.13b even
if almost all models respect the pre-set thresholds. Furthermore, the third test
is pretty similar to the one performed with δ = 0.95 in which almost all models
behave correctly. Therefore, it seems that using a medium δ value allows to have
better results in miss detection test than using a high δ value. This, however, is
paid with a worse performance in the test of false alarms. The third test, instead,
does not seem to be affected of the δ value but only by γ values. Also, in this case
the fourth test is the clearest but it gives very different results from the previous
one: indeed, even in this case an order is clearly visible, but it is the opposite of
the previous case. Here, the lower γ value, the slower the algorithm. However,
unlike the tests carried out with the value of γ fixed, the distances between the
models are quite small: so, the threshold choice affects much more the duration of
the calculation than the γ value utilised for the model. This issue needs further
investigation, which will be carried out later with new δ value tests.

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65Expected Value

(a) CED-MD

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65Expected Value

(b) CED-FA

0.2 0.1 0.05 0.01 1e-03 1e-04

10−2

10−1

100

101

Pm = Pf

erro
rs[%

]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65Expected Value

(c) CED-OE

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65

(d) CED-T

Figure 5.15: Commissioning error detection tests with fixed δ = 0.65. In a) and
b) 250 Montecarlo runs were performed whereas in c) and d) 500 Montecarlo runs
were executed. Lower is better.

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 89

Commissioning Error Detection - δ = 0.65 analysis

It is useful to check out what happens if a low value of δ is employed for the
tests, i.e. if a very poor performance sensor is utilised. The results of these tests
are reported in 5.15

Following the trend of the two previous cases, the first graph shows that the
number of miss detection errors in the tests is slightly lower than before, whilst
the second graph shows that the false alarms are slightly increasing using models
with noisier sensors. With this choice of δ, the number of false alarms almost often
exceeds the pre-set values, even if, using the two largest thresholds, no false alarms
were reported. The third test shows that the average errors are usually within
the thresholds, as expected. Similar to the previous choice of δ, also in this case
the fourth test behaves as expected, i.e. models with high values of γ lead the
algorithm to be faster than using small values. However, unlike the previous case,
the distances between the different models have grown a lot: this means that if the
value of δ is low, the value of γ is crucial to determine the computation time of the
algorithm. After all, it is clear that a different way of illustrating this comparison
is needed.

5.3.3 Computation time Analysis

The most interesting question that has remained unsolved by the previous tests
is the one concerning the computation time of the algorithm. To try to solve this
issue, some 3D plots are quite useful, as can be seen in Figure 5.16.

In this Figure, 3D plots are used to display how much time the algorithm
requires to analyse the model and make a choice: in the x-axis the γ values are
plotted whereas the y-axis reports the δ values. The z-axis, instead, represents the
amount of time required: this value can be also read using the black intensity of
the plot marks. As it is stated by the colour-bar next to each plot, the darker the
mark, the faster the algorithm.

Looking to each plot, it seems that a pattern can be found: each plot is quite
flat for δ from 0.7 to 1, but it starts to grow and becomes like a series of hairpins
as the δ value decreases and the γ value approaches 0.65. So, it becomes clear that
the main responsible for the duration of the algorithm is the value of δ and only
secondarily the α value can be blamed. Another interesting thing, which is much
more evident here than in the single value charts, is that the computation time
trend compared to δ value that drops is almost exponential while, in the case of γ
value decreasing, this is almost linear. This is more evident using the orthogonal
views, like the ones shows in Figure 5.17. This means that, if it is possible to do,
it is better to invest a little more money to have good sensors than into a faster
machine.

This intuition is also confirmed by the mathematics: it is worth remembering
that the main steps of Algorithm 5 are the α update and the log-ratio. These can

90 CHAPTER 5. SIMULATIONS

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

50

100

150

200

γ δ

t

20

40

60

80

100

120

140

160

180

(a) pf = pm = 2× 10−1

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

200

400

γ δ
t

50

100

150

200

250

300

350

(b) pf = pm = 10−1

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

200

400

600

γ δ

t

100

200

300

400

500

(c) pf = pm = 5× 10−2

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

500

1,000

γ δ

t

100

200

300

400

500

600

700

800

900

(d) pf = pm = 10−2

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

500

1,000

1,500

γ δ

t

200

400

600

800

1,000

1,200

1,400

(e) pf = pm = 10−3

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

1,000

2,000

γ δ

t

200

400

600

800

1,000

1,200

1,400

1,600

1,800

(f) pf = pm = 10−4

Figure 5.16: Commissioning error detection - computation time test: 3D plots of
the number of samples required by the algorithm to make a choice using different
thresholds. 24500 Montecarlo runs simulated.

5.3. CED - SIMULATION TESTS RESULTS & PLOTS 91

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

120

140

160

180

200

γ

t

20

40

60

80

100

120

140

160

180

(a) pf = pm = 2× 10−1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

50

100

150

200

250

300

350

400

γ

t

50

100

150

200

250

300

350

(b) pf = pm = 10−1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

100

200

300

400

500

600

γ

t

100

200

300

400

500

(c) pf = pm = 5× 10−2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

γ

t

100

200

300

400

500

600

700

800

900

(d) pf = pm = 10−2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

1,200

1,400

1,600

γ

t

200

400

600

800

1,000

1,200

1,400

(e) pf = pm = 10−3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

γ

t

200

400

600

800

1,000

1,200

1,400

1,600

1,800

(f) pf = pm = 10−4

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

120

140

160

180

200

δ

t

20

40

60

80

100

120

140

160

180

(g) pf = pm = 2× 10−1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

50

100

150

200

250

300

350

400

δ

t

50

100

150

200

250

300

350

(h) pf = pm = 10−1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

100

200

300

400

500

600

δ

t

100

200

300

400

500

(i) pf = pm = 5× 10−2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

δ

t

100

200

300

400

500

600

700

800

900

(j) pf = pm = 10−2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

1,200

1,400

1,600

δ

t

200

400

600

800

1,000

1,200

1,400

(k) pf = pm = 10−3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

δ

t

200

400

600

800

1,000

1,200

1,400

1,600

1,800

(l) pf = pm = 10−4

Figure 5.17: Commissioning error detection - computation time test: 2D views of
3D plots about samples required by the algorithm to make a choice using different
thresholds. Views from a) to f) are about δ values whereas views from g) to l) are
about γ values. 24500 Montecarlo runs simulated.

92 CHAPTER 5. SIMULATIONS

be easily summarised in:

Λ(t+ 1) = Λ(t) + log

((
αθ1t−1|t−2 � Cθ1(:, yt−1)ᵀ

)
Aθ1

)
Cθ1(:, yt)∑

xl∈S

((
αθ1t−1|t−2 � Cθ1(:, yt)ᵀ

)
Aθ1

)
(l)

− log

((
αθ0t−1|t−2 � Cθ0(:, yt−1)ᵀ

)
Aθ0

)
Cθ0(:, yt)∑

xl∈S

((
αθ0t−1|t−2 � Cθ0(:, yt)ᵀ

)
Aθ0

)
(l)

From this mathematical step, which compacts the two operations performed at
each iteration of the algorithm, it is very evident that, for calculating the input for
the logarithm function, two multiplications for the matrix C are performed whereas
only one A multiplication is required. This means that a change in value of δ has
twice the weight of changing the value of γ by the same amount. However, since
normalisation is performed, the γ value and the first multiplication using δ can be
ignored. There remains a multiplication for δ that is not absorbed, and therefore
remains at the numerator: if δ has a great value, the logarithm will be high too.
Vice-versa, if δ has a value close to one half, as seen in the overall analysis, the
logarithm value is low. Remembering that the logarithm is a function that spreads
the values smaller than one, the expected behaviour is immediately found. About
α, it would seem that the algorithm should be independent of the A matrix used.
In fact, the problem lies not in the algorithm but in the data it receives. If the γ
is very high, it means that state changes are very rare, and consequently in the α
vector only one particular component grows while all the others decrease. Please
note that the entry i-th of the carrier α is the probability of being in the state i and
observing a particular sequence of observations. On the other hand, if the value of
γ is close to 0.5, it means that state changes are frequent, and therefore the vector
α has entries very similar among them. To clarify the idea, it is better to use a
situation in which α has two components: obviously, the reasoning works also for
larger dimensions. Exploiting the following property:

(aγ1 + b(1− γ1)) > (cγ2 + d(1− γ2))

for a + b = c + d = 1, a > c, b < d, and γ1 > γ2 > 0.5, it becomes clear that
the contribution to the Λ adder is higher in the case of γ large than in the one
with γ small, and for this reason it reaches the threshold in less time, allowing the
algorithm to finish using fewer samples. As mentioned above, this has a marginal
impact if the value of δ is low. Indeed, using a low δ, the C matrix no longer favours
some values at the expense of others and so the components of the α vector all
become equal to each other, causing the property defined above to lose substance.
For this reason, a high value of δ should be always used, i.e. sufficient precise
sensors shall be implemented.

In summary, it was found that algorithm has better performance analysing
models with values close to 1 for γ and δ than models with values close to 0.5. In
addition, it has been seen that the value of δ weighs much more than the γ value

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 93

for the algorithm duration. The last remark to make is about the large distance
between points among same γ value if δ begins to be small. The fault is to be
attributed to the logarithm, which spreads very small values, made even smaller by
a low value of δ. As it will be seen in the following Sections, this behaviour can be
also found in the Failure Detection Algorithm.

5.4 Simulation Tests Results & Plots - Failure

Detection

In this Sections, the results of the tests about failure detection are shown. The
three metrics used here are the mean time between two false alarms, the time taken
to execute the algorithm, and the difference between the expected switch time
and real one. For the first test, a chain that represents a healthy workstation was
built, simulated for ten thousand samples, and reported the number of false alarms.
This operation was performed one hundred times to provide stable results. For
the latter two tests, the modus operandi was the following for each Montecarlo run
performed: two chains were built, one to represent the working situation and one
for the failure situation. Furthermore, a random number in range from 20 to 50 was
simulated to indicate the switching time. With regard to the algorithm, it received
the observations from the first chain or from the second depending on elapsed time.
The switching time range was defined in order to have a chain sufficiently heated
but not too long to simulate. Simulations that reported false alarm were dropped.
A more in particular description of the tests can be found in Subsection 5.2.2.
However, it is worth highlighting that in the first a higher value means a better
model for the algorithm whereas the other two are lower is better tests. Similar to
what was done in the case of commissioning error detection, the main tools utilised
to illustrate them are plots and tables, and two different approaches are used to
show the results: initially, an overview will be given, but later on, for the most
interesting cases, a more in particular analysis will be carried on.

5.4.1 Failure Detection - overview

In this part, a test overview will be presented. As in the test of commissioning
error detection, forty-nine different models were simulated: each one differs from
the others by the value of γ or δ. For the first test, one hundred simulations with a
length of ten thousand samples have been considered. Therefore, to find the mean
time between two false alarms, the reckon to be performed is:

τFA =
106

#FA
(5.1)

For the other two tests, for each model, one thousand Montecarlo runs were
performed: thus, a total of 49000 simulations were executed. In this case too, in all
tests, six different thresholds were used, and they have the same value of η1 utilised
in commissioning error detection test.

94 CHAPTER 5. SIMULATIONS

Failure Detection - False Alarms

In Appendix Table A.5 the mean time values between two false alarms, grouped
by the model utilised, are reported. For this test, a false alarm is defined as the
case in which the algorithm communicates to have detect a fault even if it has not
happened yet. Every time a false alarm is reported, the value of ΛG is reset to zero.
The mean of the results obtained using (5.1) is plotted in Figure 5.18 and reported
in Table 5.8. Furthermore, in the Table the median of the data can be also found.

0.2 0.1 0.05 0.01 1e-03 1e-04

102

103

104

105

106

Pm = Pf

τ F
A
[sam

ples
]

Figure 5.18: Failure Detection - mean time between two false alarms test. 100
Montecarlo runs. 10000 samples for each run. Higher is better.

As it can be seen, the situation is clear: the lower the threshold, the lower the
time between two false alarms. This can be rewritten in a more familiar way as the
lower the threshold, the higher the number of false alarms within a time window.
This is not strange and retraces the same results obtained in commissioning error
detection test.

pm = pf 20% 10% 5% 1% 0.1% 0.01%

mean [samples] 102.27 333.11 832.26 5.2× 103 6.7× 104 4.9× 105

median [samples] 64.65 191.53 511.77 2.9× 103 2.4× 104 3.3× 105

Table 5.8: Failure Detection - mean time between two false alarms test. 100
Montecarlo runs. 10000 samples for each run. Higher is better.

The results obtained, especially those with high threshold values, are very
interesting and show that this method of failure detection can also be applied in
the real world. Indeed, in the last two cases, the average between two false alarms

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 95

is one hundred thousand samples and this corresponds, using a sampling time of
one minute, to more than two months. However, similar to what happened in the
commissioning error detection test, a differentiated analysis for the different γ and
δ values is required: a median quite far from the average indicates that there is
some variability between different cases, and this is the fastest method to find the
cause.

Failure Detection - Time to Detect & Expected Switch-time Error

In Appendix Table A.6 and A.7 the results of the time to detect and the expected
switch-time error tests are reported. It was decided to perform a joint treatment
for these tests since the twos are very closely related. In Table 5.9 and Figure 5.19,
the results of these tests are reported.

0.2 0.1 0.05 0.01 1e-03 1e-04
0

50

100

150

200

250

Pm = Pf

τ
[sam

ples
]

Time to DetectGuessing Error

Figure 5.19: Failure Detection - time to detect and expected switch-time error tests.
49000 Montecarlo runs. No false alarms. Lower is better.

Results are quite interesting since the two tests provide very different results.
The first, the time to detect (TA) test, shows that the higher the threshold, the
higher the time to give a response. Furthermore, simulations performed using
different pm values provide very different results: the simulations using the largest
value of pm are up to ten times faster to detect then the smallest one. The second
test, instead, shows that there is not so much difference between thresholds when
estimation of the switching time is performed. This can be seen better looking at
the median of the estimation test results. This index describes the behaviour of the
fifty percent of the tests and shows that the values are pretty close to each other,
especially when high thresholds are adopted. Indeed, the difference between the
simulations using the three largest thresholds is lower than one sample.

96 CHAPTER 5. SIMULATIONS

pm = pf 20% 10% 5% 1% 0.1% 0.01%

FD-TA - mean [samples] 25.14 47.25 69.48 118.84 178.01 222.22

FD-TA - median [samples] 10.79 17.14 23.45 38.71 61.43 84.75

FD-TE - mean [samples] 15.27 23.39 28.66 33.35 32.76 29.89

FD-TE - median [samples] 7.54 10.53 12.45 14.72 15.26 15.35

Table 5.9: Failure Detection - time to detect (TA) and expected switch-time error
(TE) tests. 49000 Montecarlo runs. No false alarms. Lower is better.

However, the algorithm performances are better using model with the lowest
values than with the highest ones. Intuitively it might seem strange since, usually,
a low threshold means a not full reliable result, but in reality this fact is fully
predictable: the used estimation method is based on taking note of the last time
the sum was reset to zero. If the threshold is low, the algorithm takes only few
moments between the reset and the transmission notification as the test is very
sensitive. Vice-versa, if the threshold is very high, it takes a long time between the
detection and the notification since the ΛG value has to become large to trig the
threshold, as observed in the previous test. As a result, it is more likely than the
previous case to have a series of noisy measures that reset the counter even if the
switch has already been made. Therefore, a substantial error is likely to occur.

Anyway, these results cannot be fully trusted since it seems that some variance
is present: the mean and the median differ a lot in both tests. Similarly to what
was done for the algorithm in the commissioning error detection Section, also in this
case it is useful to show the relative box plots. These are reported in Figure 5.20
and Figure 5.21 respectively. There, it can be seen that, in both tests, there are six
models that do not behave like the others. They are the same ones that were found
in the commissioning error detection test, i.e. the ones that have δ = 0.65. Hence,
the results of the first test provide an evidence that CUSUM is nothing more than
a SPRT where the counter is repeatedly reset: this is the motivation why, for the
time to detect tests, the both algorithms have very close results.

In the box plots it can be also seen that, in addition to the median of the tests,
the third quartile is also very low compared to the maximum value reached. This
means that the algorithm works well in almost the situations, since in the seventy
percent of the simulated models lead to good performances, but there are some
cases make it particularly slow and inaccurate. However, also in this case a more
detailed analysis is required and will be carried on in the following Subsection.

5.4.2 Failure Detection - γ and δ analysis

In this part, the most interesting values found, grouped according to the used
model, are reported. It is worth remembering that γ describes the transition matrix
whereas δ defines the observation matrix of the model. Obviously, the time to
detect and the estimation switching time tests were carried out by removing the
simulations that reported a false alarm.

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 97

0

20

40

60

80

100

120

140

(a) pf = pm = 2× 10−1

0

50

100

150

200

250

300

(b) pf = pm = 10−1

0

50

100

150

200

250

300

350

400

450

(c) pf = pm = 5× 10−2

0

100

200

300

400

500

600

700

(d) pf = pm = 10−2

0

100

200

300

400

500

600

700

800

900

1,000

(e) pf = pm = 10−3

0

100

200

300

400

500

600

700

800

900

1,000

1,100

(f) pf = pm = 10−4

Figure 5.20: Failure Detection - box plots for time to detect test. 49000 Montecarlo
runs. No false alarms. Lower is better.

98 CHAPTER 5. SIMULATIONS

0

10

20

30

40

50

60

70

(a) pf = pm = 2× 10−1

0

20

40

60

80

100

120

(b) pf = pm = 10−1

0

20

40

60

80

100

120

140

160

(c) pf = pm = 5× 10−2

0

20

40

60

80

100

120

140

160

180

(d) pf = pm = 10−2

0

20

40

60

80

100

120

140

(e) pf = pm = 10−3

0

20

40

60

80

100

120

(f) pf = pm = 10−4

Figure 5.21: Failure Detection - box plots for switch-time estimation error. 49000
Montecarlo runs. No false alarms. Lower is better.

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 99

Failure Detection - γ = 0.95 analysis

In Figure 5.22 the results of tests performed using γ = 0.95 are reported. In the
first test, it turns out that the lower the δ, the better the algorithm’s false alarm
performances. Indeed, for the last used threshold, the plot mark for the model with
δ = 0.65 is missing, since no false alarm were found in the time window of each
one of the one hundred simulations carried on. Since the time window is set to
ten thousand samples, this means that the algorithm is very judicious with regard
to false alarms, especially for models with highly noisy sensors. In other cases,
however, the situation is not tragic as they are all in the same order of magnitude.

0.2 0.1 0.05 0.01 1e-03 1e-04

102

103

104

105

106

Pm = Pf

τ F
A
[sam

ples
]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

50

100

150

200

250

300

350

400

450

500

Pm = Pf

τ
[sam

ples
]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

10

20

30

40

50

60

70

80

90

Pm = Pf

τ
[sam

ples
]

γ: 0.95 δ: 0.65
γ: 0.95 δ: 0.70
γ: 0.95 δ: 0.75
γ: 0.95 δ: 0.80
γ: 0.95 δ: 0.85
γ: 0.95 δ: 0.90
γ: 0.95 δ: 0.95

(c) FD-TE

Figure 5.22: Failure detection tests with fixed γ = 0.95. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

In the other two tests, the results reflect what is expected since an order between
the different models can be easily found: the higher the δ value, the faster and more
precise the algorithm. Furthermore, similarly to what happened in commissioning
error detection, the higher the threshold value, the longer the time taken by the
algorithm to make a choice if the same model is analysed.

100 CHAPTER 5. SIMULATIONS

Failure Detection - γ = 0.80 analysis

As previously performed, also in this case the results obtained using an in-
termediate γ value, i.e. γ = 0.80, are reported. They can be seen in Figure
5.23.

0.2 0.1 0.05 0.01 1e-03 1e-04

102

103

104

105

Pm = Pf

τ F
A
[sam

ples
]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

Pm = Pf

τ
[sam

ples
]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

140

Pm = Pf

τ
[sam

ples
]

γ: 0.80 δ: 0.65
γ: 0.80 δ: 0.70
γ: 0.80 δ: 0.75
γ: 0.80 δ: 0.80
γ: 0.80 δ: 0.85
γ: 0.80 δ: 0.90
γ: 0.80 δ: 0.95

(c) FD-TE

Figure 5.23: Failure detection tests with fixed γ = 0.80. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

In the first test, the situation is pretty similar to the one found with the fixed
γ = 0.95. The main differences can be found in that the distances between the
different models are slightly increasing, and that there are two models that, using
the last threshold, have not recorded false alarms. Same as before, higher δ values
lead the algorithm to commit errors with a higher frequency, i.e. the time between
false alarms decreases.

The second test plot has a shape very close to the one reported for the test
using γ = 0.95: the lower the model δ value, the faster the algorithm. In this case,
however, the scale is two times larger than before, thus highlighting that the overall
performances are worse. However, also in this case, the worst performances are
obtained by the model which has the lowest δ value: it seems that, using the latter
value, the algorithm is very careful about making decision, and therefore is slower

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 101

but less prone to giving false alarms.
The third test, instead, is more interesting: as it can be seen, the shapes of the

plots of all the models are the same of the previous tests except for the one with
the lowest δ. For this model, the estimation error is not growing monotonous but,
instead, decreases. This is quite strange and should be analysed using a different
value of γ.

Failure Detection - γ = 0.65 analysis

The last comparative for a fixed γ value is performed for γ = 0.65, a low value.
This means that the simulated models have quite frequent state changes. The
results are reported in Figure 5.24.

0.2 0.1 0.05 0.01 1e-03 1e-04

101

102

103

104

105

106

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

100

200

300

400

500

600

700

800

900

1,000

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

140

160

180

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.65 δ: 0.70
γ: 0.65 δ: 0.75
γ: 0.65 δ: 0.80
γ: 0.65 δ: 0.85
γ: 0.65 δ: 0.90
γ: 0.65 δ: 0.95

(c) FD-TE

Figure 5.24: Failure detection tests with fixed γ = 0.65. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

The first test results are pretty similar to the ones found for the other γ values.
Therefore, the lower the δ value, the better. In this case too, the algorithm makes
no errors for the model with δ = 0.65.

The other two tests, instead are very interesting: in these ones, the shapes of
the results about the smallest value of δ are very different than before. In the

102 CHAPTER 5. SIMULATIONS

second test, only for the last threshold a strange value is reached whereas, in the
third test, the curve loses its monotonicity starting from the fourth threshold: for
the higher threshold, the performances for models with δ = 0.65 or δ = 0.70 are
pretty the similar. However, evidence of this behaviour had already been found in
the previous analysis: to find more information about this, an analysis with a fixed
δ is required, like the one is carried out in the following subsections.

Failure Detection - overall fixed γ analysis

Summing up, a leitmotiv can easily be found: low δ values models allow the
algorithm to reach good results in false alarm tests, but, at same time, lead to poor
performances in the time to detect test and in the estimation error test. The models
with high δ values lead the algorithm to have the opposite behaviour: it has good
performances in the second and third tests whereas in the first the performances
are appreciably lower than the ones obtained in the other models.

In the analyses carried out, a strangeness had emerged: for the lowest values of
δ, the time to detect test curve and one about the estimation error test were very
different from those obtained with the other values of δ. In addition, it had been
seen that as the γ value fells, the curve changed more and more. To bring further
information, in Figure 5.25 the situation using γ = 0.55 is reported.

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

Pm = Pf

τ
[sam

ples
]

γ: 0.55 δ: 0.65
γ: 0.55 δ: 0.70
γ: 0.55 δ: 0.75
γ: 0.55 δ: 0.80
γ: 0.55 δ: 0.85
γ: 0.55 δ: 0.90
γ: 0.55 δ: 0.95

(a) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

140

160

180

200

Pm = Pf

τ
[sam

ples
]

γ: 0.55 δ: 0.65
γ: 0.55 δ: 0.70
γ: 0.55 δ: 0.75
γ: 0.55 δ: 0.80
γ: 0.55 δ: 0.85
γ: 0.55 δ: 0.90
γ: 0.55 δ: 0.95

(b) FD-TE

Figure 5.25: Failure detection tests with fixed δ = 0.95. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

This Figure proves that the algorithm behaviour with the δ = 0.65 models in
these two tests is not random but has a precise motivation: however, a in detail
analysis with δ fixed is required before a verdict can be issued.

Failure Detection - δ = 0.95 analysis

The first analysis using a fixed δ value models is the one using δ = 0.95. This
means that the workstations with powerful sensors are simulated: the results are
plotted in Figure 5.26.

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 103

0.2 0.1 0.05 0.01 1e-03 1e-04

101

102

103

104

105

Pm = Pf

τ F
A
[sam

ples
]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

2

4

6

8

10

12

14

16

18

20

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

2

4

6

8

10

12

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.95
γ: 0.70 δ: 0.95
γ: 0.75 δ: 0.95
γ: 0.80 δ: 0.95
γ: 0.85 δ: 0.95
γ: 0.90 δ: 0.95
γ: 0.95 δ: 0.95

(c) FD-TE

Figure 5.26: Failure detection tests with fixed δ = 0.95. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

Similar to what happens in simulations with a fixed γ value, no model allows
the algorithm to achieve the best performance in all three tests: indeed, the best
case in the first test become the worst in the other two tests and vice-versa. In
this analysis, however, the difference of achieved performances using the different
models is really small (in the last two tests is less than four samples), and therefore,
the following conclusion can be drawn: the performance of the algorithm does not
depend on the value of γ if that of δ is high.

Failure Detection - δ = 0.80 analysis

The results of the simulations carried on using models with δ = 0.8 are reported
in Figure 5.27.

These simulations provide quite different results than before: in the first tests,
the algorithm performs well in all the situations and the δ value does not matter so
much. In the second test and in the third test the results using different models
are very similar to each other although it seems that, unlike the previous case, the
models with higher δ values allow the algorithm to have better performances than

104 CHAPTER 5. SIMULATIONS

0.2 0.1 0.05 0.01 1e-03 1e-04

102

103

104

105

Pm = Pf

τ F
A
[sam

ples
]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

2

4

6

8

10

12

14

16

18

20

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.80
γ: 0.70 δ: 0.80
γ: 0.75 δ: 0.80
γ: 0.80 δ: 0.80
γ: 0.85 δ: 0.80
γ: 0.90 δ: 0.80
γ: 0.95 δ: 0.80

(c) FD-TE

Figure 5.27: Failure detection tests with fixed δ = 0.80. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

using models with noisy sensors. However, the difference of performances using
different models is quite negligible also in this case.

Failure Detection - δ = 0.65 analysis

The last analysis is the most interesting one since it is performed using δ = 0.65
models, the value that in the fixed γ analysis led the algorithm to an unusual
behaviour. The results are reported in Figure 5.28. It can be clearly seen that
the difference of performances caused by models are more evident than before,
especially in the second and third tests.

The first test shows that, with a low value of δ, the algorithm is very reliable as,
using the larger threshold, only one false alarm is reported on the 600 000 simulated
samples. The second, instead, shows that the performances drop a lot than before:
however, it is worth highlighting that the unusual algorithm’s behaviour appears
for the models with γ equal to 0.65 and 0.70. In these cases, the performances of
the algorithm in the second test are better using the largest threshold than using
the second largest. This is counter-intuitive as the larger the threshold, the slower

5.4. FD - SIMULATION TESTS RESULTS & PLOTS 105

0.2 0.1 0.05 0.01 1e-03 1e-04
102

103

104

105

106

Pm = Pf

τ F
A
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65

(a) FD-FA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

200

400

600

800

1,000

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65

(b) FD-TA

0.2 0.1 0.05 0.01 1e-03 1e-04
0

20

40

60

80

100

120

140

160

180

Pm = Pf

τ
[sam

ples
]

γ: 0.65 δ: 0.65
γ: 0.70 δ: 0.65
γ: 0.75 δ: 0.65
γ: 0.80 δ: 0.65
γ: 0.85 δ: 0.65
γ: 0.90 δ: 0.65
γ: 0.95 δ: 0.65

(c) FD-TE

Figure 5.28: Failure detection tests with fixed δ = 0.65. FA: 100 Montecarlo runs
executed, 10000 samples for each run, higher is better. TA/TE: 1000 Montecarlo
runs executed, no false alarm, lower is better.

the algorithm, as seen before. The third test highlights a time more this fact: the
model with the smallest value of γ is the worst in this test using the first four
threshold whereas is the best using the largest threshold. This behaviour is fairly
faithfully reproduced by the model with γ = 0.7.

Failure Detection - overall fixed δ analysis

The last three analyses showed that the γ value of the model is not so decisive for
the algorithm performances, although for models with a low δ value the performances
vary quite a bit. Furthermore, it was shown that the algorithm has very good
performances also in models with low δ and γ values, even if a high threshold shall
be used.

Analysing these results, the most interesting thing discovered is that, using high
thresholds, the Algorithm performs better using noisy sensors than using good
ones if the model has frequent changes of states. This is quite strange since it is
expected that the noisier the sensors, the worse the performances of the algorithm.
However, this is a situation out of the assumptions since it is assumed that the

106 CHAPTER 5. SIMULATIONS

workstations have state changes with low frequency: for this reason, this situation
will be analysed in a future work.

Chapter 6

Conclusions & Future Works

In this opus, a new way of modelling sensors and workstations has been presented
along with some algorithms for fault detection. In the light of the birth of smart
lamps with built-in sensors, it is necessary to develop new methods to describe
their behaviour and monitor them. The choice to describe them fell on the hidden
Markov models: using them, it was possible to obtain a powerful description that
allows to solve the main problems that smart lamps brought to light. Furthermore,
this type of description allows to reuse parts of some available algorithms. The
problems are the commissioning error detection, i.e. to detect if some mistakes were
committed by the installer during the commissioning, and the failure detection, i.e.
to detect if during the life of the workstation some changes to lamp position were
performed.

In this paper, two methods were presented to solve the problems of commissioning
error detection and failure detection respectively. The first was solved developing
an algorithm based on the sequential probability ratio test whereas the second issue
was solved thanks to a custom version of the cumulative summation algorithm. The
second algorithm allows to estimate the fault time, too.

The main problem encountered during the development of both algorithms was
how to calculate the probability of an observation given only the previous ones.
The solution was tough to be found but the result repaid all the efforts. Indeed,
the solution found is not restricted to this work, but it can be used in all situations
where there are hidden Markov models.

To validate the two developed algorithms, several tests were carried out using
simulated models. With regards to the first algorithm, tests about miss detection,
false alarms, and time to detect were carried on using forty-nine different models.
The results obtained were very encouraging, especially in the case of models with
slow dynamics and precise sensors, the most common ones. At the same manner,
the second algorithm was checked: the time to detect, the mean time between false
alarms and the fault time estimation error tests were performed using forty-nine
different workstation models. In this case too, the results were good, especially for
the common models: the mean time between false alarms is higher than one million
samples whereas the estimation error is lower than ten samples.

The tests highlight that the modelling is suitable, and that these algorithms
are quite ready to be implemented in every day office workstations, even if some
more work shall be accomplished. Indeed, some aspects of the algorithms are

107

108 CHAPTER 6. CONCLUSIONS & FUTURE WORKS

not unravelled yet: for example, the way the algorithm performances depend on
workstation parameters is not fully understood yet, but only outlined. Moreover, it
is interesting to perform an analysis on the sensitivity of the algorithms, i.e. how
their performances change if the algorithms do not know the real parameters of the
workstations. A comparative with other algorithms developed, especially the ones
based on machine learning, is interesting too: this can be performed in a follow-up
paper along with an on-field test in an office; the latter shall be performed before
real implementation to be sure that simulations match the real environment.

Hence, this opus represents a turning point for the development of the topic
treated. In particular, if the aspects that have not been taken into account in this
analysis will be deepened, this work could be employed in a real environment in
order to show its potential in practice.

Appendix A

Simulations Full Results

In this appendix, the results obtained thanks to the simulations are reported.
It is worth noticing that, in the tables, to highlight the values that do not respect
the thresholds a bold font is used.

A.1 Commissioning Error Detection

A.1.1 CED-MD test

γ δ 20% 10% 5% 1% 0.1% 0.01%

0.65 0.65 17.6 7.6 2.8 0.0 0.0 0.0

0.65 0.70 20.4 9.6 5.2 2.0 0.0 0.0

0.65 0.75 18.4 11.6 5.6 2.0 0.0 0.0

0.65 0.80 26.0 15.2 6.4 0.4 0.0 0.0

0.65 0.85 26.4 10.0 4.8 1.2 0.0 0.0

0.65 0.90 24.0 11.2 5.6 0.8 0.0 0.0

0.65 0.95 35.6 13.2 6.4 0.4 0.0 0.0

0.70 0.65 18.8 8.8 3.6 1.6 0.0 0.0

0.70 0.70 23.2 11.6 5.6 1.2 0.0 0.0

0.70 0.75 25.2 10.8 6.0 0.0 0.0 0.0

0.70 0.80 20.4 10.0 6.4 0.4 0.0 0.0

0.70 0.85 26.4 15.2 7.6 0.8 0.0 0.0

0.70 0.90 37.6 16.4 8.0 0.4 0.4 0.0

0.70 0.95 24.8 13.6 6.4 1.2 0.4 0.0

0.75 0.65 22.0 10.8 4.0 1.2 0.4 0.0

0.75 0.70 17.2 10.4 5.6 1.6 0.0 0.0

0.75 0.75 19.2 9.2 4.8 0.4 0.0 0.0

109

110 APPENDIX A. SIMULATIONS FULL RESULTS

0.75 0.80 20.4 10.4 5.2 2.0 0.4 0.0

0.75 0.85 26.8 11.6 4.8 0.4 0.0 0.0

0.75 0.90 26.4 16.0 8.0 2.4 0.0 0.0

0.75 0.95 30.4 16.8 8.0 1.6 0.0 0.0

0.80 0.65 21.6 10.8 4.8 0.8 0.0 0.0

0.80 0.70 21.6 12.0 5.6 0.4 0.4 0.0

0.80 0.75 20.8 8.0 4.0 1.6 0.0 0.0

0.80 0.80 22.8 10.4 6.0 1.2 0.0 0.0

0.80 0.85 26.0 10.4 5.6 1.2 0.0 0.0

0.80 0.90 18.8 7.2 4.0 0.8 0.0 0.0

0.80 0.95 30.8 15.2 7.6 0.4 0.0 0.0

0.85 0.65 18.4 8.0 4.4 0.4 0.0 0.0

0.85 0.70 20.8 12.0 5.2 0.8 0.0 0.0

0.85 0.75 25.2 12.4 6.0 1.6 0.0 0.0

0.85 0.80 17.6 8.8 3.6 0.4 0.0 0.0

0.85 0.85 20.8 8.0 4.4 2.4 0.0 0.0

0.85 0.90 27.2 12.0 4.8 1.6 0.8 0.0

0.85 0.95 20.0 12.0 5.6 3.6 0.4 0.4

0.90 0.65 22.4 11.6 6.4 2.0 0.0 0.0

0.90 0.70 17.2 5.6 4.0 2.0 0.0 0.0

0.90 0.75 19.2 12.4 5.6 0.0 0.0 0.0

0.90 0.80 20.4 10.4 4.4 0.4 0.0 0.0

0.90 0.85 18.8 10.4 3.6 0.8 0.0 0.0

0.90 0.90 16.8 6.8 5.6 2.0 0.0 0.0

0.90 0.95 25.2 11.2 6.0 1.6 0.0 0.0

0.95 0.65 16.0 6.0 2.8 1.2 0.0 0.0

0.95 0.70 15.2 8.0 2.4 0.8 0.0 0.0

0.95 0.75 17.2 7.6 4.0 0.8 0.4 0.4

0.95 0.80 18.4 9.6 4.8 1.2 0.0 0.0

0.95 0.85 18.0 8.0 6.0 0.8 0.4 0.0

0.95 0.90 22.4 8.4 4.0 1.2 0.0 0.0

0.95 0.95 22.8 9.2 6.4 2.0 0.4 0.0

A.1. COMMISSIONING ERROR DETECTION 111

Table A.1: CED-MD test: percent value of miss detection. 250 Montecarlo runs.
Lower is better.

A.1.2 CED-FA test

γ δ 20% 10% 5% 1% 0.1% 0.01%

0.65 0.65 22.8 10.8 5.6 1.6 0.0 0.0

0.65 0.70 15.6 9.6 3.6 0.8 0.0 0.0

0.65 0.75 16.0 6.8 3.2 1.2 0.4 0.0

0.65 0.80 17.6 8.8 4.0 1.2 0.0 0.0

0.65 0.85 15.2 6.8 1.6 0.8 0.0 0.0

0.65 0.90 13.2 5.6 1.6 0.0 0.0 0.0

0.65 0.95 5.2 3.2 1.6 0.4 0.0 0.0

0.70 0.65 24.4 11.6 6.4 2.4 0.0 0.0

0.70 0.70 18.0 7.6 2.4 0.0 0.0 0.0

0.70 0.75 13.6 6.0 3.2 0.0 0.0 0.0

0.70 0.80 16.8 6.4 3.2 0.0 0.0 0.0

0.70 0.85 12.8 8.0 4.8 0.8 0.0 0.0

0.70 0.90 14.0 8.4 5.6 0.4 0.0 0.0

0.70 0.95 5.6 3.6 2.0 0.0 0.0 0.0

0.75 0.65 22.0 8.0 3.6 0.8 0.0 0.0

0.75 0.70 16.4 7.6 2.4 0.8 0.0 0.0

0.75 0.75 12.4 8.0 3.2 0.4 0.0 0.0

0.75 0.80 16.8 6.8 3.2 0.4 0.0 0.0

0.75 0.85 11.2 4.8 4.0 0.4 0.0 0.0

0.75 0.90 11.2 3.2 0.8 0.4 0.0 0.0

0.75 0.95 4.0 3.2 1.2 0.0 0.0 0.0

0.80 0.65 16.0 12.4 5.6 0.0 0.0 0.0

0.80 0.70 18.8 8.8 4.8 0.8 0.4 0.0

0.80 0.75 20.0 11.2 5.2 0.4 0.0 0.0

0.80 0.80 14.4 8.0 3.2 0.4 0.0 0.0

0.80 0.85 12.0 6.0 2.8 0.0 0.0 0.0

0.80 0.90 12.0 7.2 3.2 0.4 0.0 0.0

112 APPENDIX A. SIMULATIONS FULL RESULTS

0.80 0.95 5.2 4.4 2.0 0.0 0.0 0.0

0.85 0.65 19.6 11.6 3.6 0.8 0.0 0.0

0.85 0.70 17.6 8.8 5.6 1.2 0.0 0.0

0.85 0.75 16.0 9.2 4.0 0.4 0.0 0.0

0.85 0.80 10.4 4.4 2.8 1.2 0.0 0.0

0.85 0.85 10.4 5.6 1.6 0.8 0.0 0.0

0.85 0.90 11.2 5.6 2.8 1.2 0.0 0.0

0.85 0.95 7.2 5.6 4.4 2.0 0.0 0.0

0.90 0.65 18.4 8.0 4.0 1.2 0.0 0.0

0.90 0.70 12.8 7.2 2.8 0.4 0.0 0.0

0.90 0.75 16.8 9.2 3.2 0.4 0.0 0.0

0.90 0.80 14.8 5.6 4.0 0.4 0.0 0.0

0.90 0.85 13.2 7.2 2.4 1.2 0.4 0.0

0.90 0.90 10.0 5.2 3.2 0.8 0.0 0.0

0.90 0.95 2.0 2.0 0.4 0.0 0.0 0.0

0.95 0.65 21.2 11.6 4.8 1.2 0.0 0.0

0.95 0.70 13.6 6.0 2.4 0.4 0.0 0.0

0.95 0.75 15.6 4.8 2.8 0.0 0.0 0.0

0.95 0.80 14.0 4.0 3.6 1.6 0.4 0.0

0.95 0.85 8.0 6.0 3.2 0.4 0.0 0.0

0.95 0.90 6.0 5.6 4.4 1.2 0.0 0.0

0.95 0.95 5.2 2.4 0.4 0.0 0.0 0.0

Table A.2: CED-FA test: percent value of false alarm. 250 Montecarlo runs. Lower
is better.

A.1.3 CED-OE test

γ δ 20% 10% 5% 1% 0.1% 0.01%

0.65 0.65 20.2 9.2 4.2 0.8 0.0 0.0

0.65 0.70 18.0 9.6 4.4 1.4 0.0 0.0

0.65 0.75 17.2 9.2 4.4 1.6 0.2 0.0

0.65 0.80 21.8 12.0 5.2 0.8 0.0 0.0

0.65 0.85 20.8 8.4 3.2 1.0 0.0 0.0

A.1. COMMISSIONING ERROR DETECTION 113

0.65 0.90 18.6 8.4 3.6 0.4 0.0 0.0

0.65 0.95 20.4 8.2 4.0 0.4 0.0 0.0

0.70 0.65 21.6 10.2 5.0 2.0 0.0 0.0

0.70 0.70 20.6 9.6 4.0 0.6 0.0 0.0

0.70 0.75 19.4 8.4 4.6 0.0 0.0 0.0

0.70 0.80 18.6 8.2 4.8 0.2 0.0 0.0

0.70 0.85 19.6 11.6 6.2 0.8 0.0 0.0

0.70 0.90 25.8 12.4 6.8 0.4 0.2 0.0

0.70 0.95 15.2 8.6 4.2 0.6 0.2 0.0

0.75 0.65 22.0 9.4 3.8 1.0 0.2 0.0

0.75 0.70 16.8 9.0 4.0 1.2 0.0 0.0

0.75 0.75 15.8 8.6 4.0 0.4 0.0 0.0

0.75 0.80 18.6 8.6 4.2 1.2 0.2 0.0

0.75 0.85 19.0 8.2 4.4 0.4 0.0 0.0

0.75 0.90 18.8 9.6 4.4 1.4 0.0 0.0

0.75 0.95 17.2 10.0 4.6 0.8 0.0 0.0

0.80 0.65 18.8 11.6 5.2 0.4 0.0 0.0

0.80 0.70 20.2 10.4 5.2 0.6 0.4 0.0

0.80 0.75 20.4 9.6 4.6 1.0 0.0 0.0

0.80 0.80 18.6 9.2 4.6 0.8 0.0 0.0

0.80 0.85 19.0 8.2 4.2 0.6 0.0 0.0

0.80 0.90 15.4 7.2 3.6 0.6 0.0 0.0

0.80 0.95 18.0 9.8 4.8 0.2 0.0 0.0

0.85 0.65 19.0 9.8 4.0 0.6 0.0 0.0

0.85 0.70 19.2 10.4 5.4 1.0 0.0 0.0

0.85 0.75 20.6 10.8 5.0 1.0 0.0 0.0

0.85 0.80 14.0 6.6 3.2 0.8 0.0 0.0

0.85 0.85 15.6 6.8 3.0 1.6 0.0 0.0

0.85 0.90 19.2 8.8 3.8 1.4 0.4 0.0

0.85 0.95 13.6 8.8 5.0 2.8 0.2 0.2

0.90 0.65 20.4 9.8 5.2 1.6 0.0 0.0

0.90 0.70 15.0 6.4 3.4 1.2 0.0 0.0

0.90 0.75 18.0 10.8 4.4 0.2 0.0 0.0

114 APPENDIX A. SIMULATIONS FULL RESULTS

0.90 0.80 17.6 8.0 4.2 0.4 0.0 0.0

0.90 0.85 16.0 8.8 3.0 1.0 0.2 0.0

0.90 0.90 13.4 6.0 4.4 1.4 0.0 0.0

0.90 0.95 13.6 6.6 3.2 0.8 0.0 0.0

0.95 0.65 18.6 8.8 3.8 1.2 0.0 0.0

0.95 0.70 14.4 7.0 2.4 0.6 0.0 0.0

0.95 0.75 16.4 6.2 3.4 0.4 0.2 0.2

0.95 0.80 16.2 6.8 4.2 1.4 0.2 0.0

0.95 0.85 13.0 7.0 4.6 0.6 0.2 0.0

0.95 0.90 14.2 7.0 4.2 1.2 0.0 0.0

0.95 0.95 14.0 5.8 3.4 1.0 0.2 0.0

Table A.3: CED-OE test: percent value of miss detection or false alarm. 500
Montecarlo runs. Lower is better.

A.1.4 CED-T test

γ δ 20% 10% 5% 1% 0.1% 0.01%

0.65 0.65 185.2 399.1 588.9 961.0 1485.9 1962.0

0.65 0.70 67.8 131.1 189.8 309.3 479.5 647.0

0.65 0.75 29.2 56.8 83.7 132.4 203.1 273.3

0.65 0.80 15.6 28.6 41.8 67.3 101.3 136.0

0.65 0.85 8.6 16.7 22.9 36.5 54.1 71.0

0.65 0.90 5.4 9.5 13.2 21.2 30.2 39.8

0.65 0.95 3.8 6.4 8.3 12.6 17.9 23.3

0.70 0.65 174.3 347.4 524.3 893.6 1398.0 1875.0

0.70 0.70 63.7 128.1 186.9 296.6 437.9 592.1

0.70 0.75 29.4 58.7 83.7 135.2 199.1 263.6

0.70 0.80 14.8 27.7 40.3 66.6 98.5 128.8

0.70 0.85 8.8 15.2 22.9 37.9 54.6 71.0

0.70 0.90 5.6 10.4 13.9 22.0 32.1 41.4

0.70 0.95 4.0 6.0 8.2 12.3 17.7 23.3

0.75 0.65 153.0 324.1 470.6 782.2 1209.1 1588.9

0.75 0.70 57.7 108.2 166.1 271.8 410.3 545.4

A.1. COMMISSIONING ERROR DETECTION 115

0.75 0.75 25.8 50.1 73.5 116.1 175.7 227.4

0.75 0.80 14.6 28.9 40.5 64.1 93.9 124.3

0.75 0.85 8.6 15.9 22.7 37.3 53.8 69.1

0.75 0.90 6.1 10.3 13.8 21.1 31.4 40.7

0.75 0.95 4.2 6.3 8.5 13.0 18.9 24.4

0.80 0.65 133.3 268.6 407.5 699.6 1034.6 1374.6

0.80 0.70 52.5 98.6 151.2 253.0 379.5 500.3

0.80 0.75 26.2 51.1 73.2 116.2 172.6 226.6

0.80 0.80 15.2 26.8 37.9 61.1 89.4 117.1

0.80 0.85 8.8 15.7 21.5 33.7 50.8 67.1

0.80 0.90 6.1 10.2 13.6 21.2 30.6 39.5

0.80 0.95 5.1 7.1 9.4 13.9 19.4 25.1

0.85 0.65 110.0 220.6 340.6 554.9 826.4 1092.2

0.85 0.70 46.4 87.8 128.2 208.0 308.2 405.9

0.85 0.75 22.8 43.7 62.9 101.2 153.2 202.9

0.85 0.80 13.7 24.6 34.3 55.0 80.0 105.7

0.85 0.85 9.6 16.1 22.8 34.0 49.8 65.4

0.85 0.90 6.7 10.8 14.6 21.7 31.5 41.1

0.85 0.95 5.4 7.6 9.7 14.7 21.7 28.0

0.90 0.65 91.8 183.3 266.0 437.2 661.4 865.7

0.90 0.70 38.9 72.8 103.0 169.1 257.6 346.7

0.90 0.75 21.5 37.0 55.7 91.2 133.5 177.6

0.90 0.80 13.9 24.4 34.2 54.1 79.5 104.0

0.90 0.85 10.4 17.0 22.8 34.7 50.6 66.2

0.90 0.90 7.6 12.8 16.3 24.7 35.3 45.1

0.90 0.95 6.5 8.8 11.6 16.5 23.5 30.4

0.95 0.65 67.5 131.2 187.8 316.7 481.0 632.3

0.95 0.70 34.8 67.7 94.7 148.1 222.4 290.2

0.95 0.75 21.8 36.9 51.6 81.5 121.2 160.8

0.95 0.80 15.5 26.9 35.2 53.4 77.8 103.7

0.95 0.85 13.5 21.2 27.4 41.7 59.4 77.3

0.95 0.90 11.2 17.3 21.6 32.0 44.1 56.7

0.95 0.95 9.8 14.5 18.1 25.4 34.5 44.0

116 APPENDIX A. SIMULATIONS FULL RESULTS

Table A.4: CED-T test: samples to make to a choice. 500 Montecarlo runs. Lower
is better.

A.2 Failure Detection

A.2.1 FD-FA test

γ δ 20 10 5 1 0.1 0.01

0.65 0.65 423.37 1533.74 4000.00 2.3× 104 5.0× 105 > 106

0.65 0.70 158.40 540.25 1379.31 8.3× 103 7.7× 104 5.0× 105

0.65 0.75 78.44 253.74 619.20 3.6× 103 3.6× 104 1.7× 105

0.65 0.80 47.95 143.12 350.39 2.2× 103 2.0× 104 2.0× 105

0.65 0.85 29.10 95.08 226.91 1.3× 103 1.3× 104 1.0× 105

0.65 0.90 24.19 56.76 182.42 8.9× 102 1.1× 104 1.0× 105

0.65 0.95 11.02 66.39 148.83 6.3× 102 8.4× 103 7.1× 104

0.70 0.65 404.86 1381.22 3717.47 3.3× 104 5.0× 105 > 106

0.70 0.70 152.28 508.39 1282.05 8.0× 103 7.1× 104 1.0× 106

0.70 0.75 79.49 246.61 619.20 3.7× 103 4.8× 104 1.0× 106

0.70 0.80 50.71 146.67 350.02 2.1× 103 2.4× 104 5.0× 105

0.70 0.85 31.55 105.05 232.99 1.3× 103 1.2× 104 3.3× 105

0.70 0.90 27.26 60.93 188.57 9.9× 102 9.3× 103 7.1× 104

0.70 0.95 11.02 65.58 156.10 7.8× 102 8.4× 103 1.3× 105

0.75 0.65 366.84 1257.86 3105.59 1.8× 104 3.3× 105 1.0× 106

0.75 0.70 147.45 479.85 1212.12 7.0× 103 7.7× 104 1.0× 106

0.75 0.75 78.08 253.61 612.37 3.6× 103 3.2× 104 1.0× 106

0.75 0.80 54.56 156.42 364.30 2.1× 103 2.0× 104 2.5× 105

0.75 0.85 33.27 118.22 252.84 1.5× 103 1.4× 104 1.3× 105

0.75 0.90 39.05 65.90 221.29 1.2× 103 1.2× 104 9.1× 104

0.75 0.95 11.07 95.40 184.30 1.1× 103 1.1× 104 9.1× 104

0.80 0.65 329.82 1126.13 3058.10 2.3× 104 3.3× 105 > 106

0.80 0.70 138.66 447.83 1121.08 7.5× 103 9.1× 104 > 106

0.80 0.75 73.55 242.78 576.37 3.5× 103 4.8× 104 3.3× 105

0.80 0.80 57.73 156.99 369.28 2.2× 103 2.4× 104 3.3× 105

A.2. FAILURE DETECTION 117

0.80 0.85 34.34 129.05 266.24 1.6× 103 1.7× 104 2.0× 105

0.80 0.90 46.08 67.56 268.31 1.3× 103 1.3× 104 3.3× 105

0.80 0.95 29.26 134.83 213.95 1.4× 103 1.3× 104 9.1× 104

0.85 0.65 277.85 943.40 2222.22 1.3× 104 1.3× 105 > 106

0.85 0.70 127.16 410.00 1000.00 6.6× 103 7.7× 104 > 106

0.85 0.75 73.77 234.58 572.41 3.5× 103 4.3× 104 > 106

0.85 0.80 61.47 167.53 389.11 2.5× 103 2.9× 104 5.0× 105

0.85 0.85 33.62 140.81 303.86 1.8× 103 1.6× 104 1.3× 105

0.85 0.90 50.96 68.20 312.89 1.5× 103 1.8× 104 1.0× 106

0.85 0.95 41.53 173.01 228.26 1.9× 103 1.8× 104 1.7× 105

0.90 0.65 237.53 777.00 2012.07 1.3× 104 1.4× 105 > 106

0.90 0.70 120.86 379.22 947.87 5.7× 103 5.9× 104 1.0× 106

0.90 0.75 77.75 237.76 562.75 3.2× 103 3.0× 104 2.0× 105

0.90 0.80 64.65 181.23 402.09 2.5× 103 2.1× 104 2.0× 105

0.90 0.85 50.82 154.92 367.24 2.0× 103 2.0× 104 1.7× 105

0.90 0.90 52.71 154.80 378.50 1.8× 103 2.0× 104 1.7× 105

0.90 0.95 61.06 191.53 228.26 2.5× 103 1.9× 104 2.0× 105

0.95 0.65 198.97 642.67 1600.00 9.1× 103 9.1× 104 > 106

0.95 0.70 117.47 374.67 904.16 6.0× 103 5.9× 104 1.0× 106

0.95 0.75 89.40 267.45 637.76 3.8× 103 4.0× 104 3.3× 105

0.95 0.80 72.53 231.59 548.85 3.3× 103 2.9× 104 1.7× 105

0.95 0.85 76.54 174.22 556.17 3.2× 103 2.3× 104 2.0× 105

0.95 0.90 54.10 277.93 511.77 2.9× 103 2.4× 104 2.5× 105

0.95 0.95 101.22 203.96 815.00 3.4× 103 3.2× 104 5.0× 105

Table A.5: FD-FA test: mean time between two false alarms. 100 Montecarlo runs.
10000 samples for each run. Higher is better.

A.2.2 FD-TA test

γ δ 20 10 5 1 0.1 0.01

0.65 0.65 139.44 289.94 439.53 722.43 914.91 872.60

0.65 0.70 45.93 89.65 139.32 246.58 397.76 563.71

0.65 0.75 20.89 39.92 58.14 103.15 169.53 234.72

0.65 0.80 10.73 19.97 28.17 48.42 79.88 111.94

118 APPENDIX A. SIMULATIONS FULL RESULTS

0.65 0.85 5.32 10.38 15.01 25.38 40.68 56.23

0.65 0.90 3.32 5.42 8.80 13.80 21.90 30.55

0.65 0.95 0.96 3.31 4.54 6.80 11.04 14.76

0.70 0.65 128.55 270.83 404.66 682.13 921.90 940.91

0.70 0.70 43.08 83.26 130.58 232.89 374.24 520.25

0.70 0.75 19.42 36.73 54.95 96.94 154.46 212.97

0.70 0.80 10.62 18.19 25.84 45.64 73.97 101.82

0.70 0.85 5.73 10.86 14.72 24.17 38.67 53.23

0.70 0.90 3.79 5.49 8.30 13.00 20.40 28.37

0.70 0.95 1.03 3.48 4.56 7.11 11.34 14.84

0.75 0.65 119.36 234.82 348.21 605.43 883.70 1014.17

0.75 0.70 39.59 74.62 113.08 205.86 338.10 465.84

0.75 0.75 17.56 33.54 47.78 85.86 140.83 196.28

0.75 0.80 10.60 17.67 24.60 41.99 66.58 94.12

0.75 0.85 5.82 10.17 13.88 23.28 36.50 49.54

0.75 0.90 4.33 5.27 8.89 14.02 20.41 27.39

0.75 0.95 1.08 4.14 4.78 7.40 10.83 14.46

0.80 0.65 96.02 191.93 291.37 524.21 793.17 968.57

0.80 0.70 36.48 67.52 100.63 172.44 279.64 389.55

0.80 0.75 16.88 30.29 42.97 75.42 123.13 170.73

0.80 0.80 10.79 17.14 23.45 38.71 61.43 84.75

0.80 0.85 5.62 10.50 14.01 22.14 33.82 46.59

0.80 0.90 4.97 5.64 8.67 12.81 19.03 25.01

0.80 0.95 2.87 4.53 5.21 8.07 11.50 14.54

0.85 0.65 77.12 158.37 243.86 435.70 681.64 880.62

0.85 0.70 31.48 60.67 86.71 149.12 242.68 332.93

0.85 0.75 17.13 29.12 40.50 69.06 109.85 149.45

0.85 0.80 11.03 16.94 22.59 36.25 54.26 72.68

0.85 0.85 5.77 10.23 13.35 20.56 30.75 42.05

0.85 0.90 4.97 5.50 8.94 12.71 18.47 24.01

0.85 0.95 3.66 4.98 5.24 8.13 11.30 14.29

0.90 0.65 69.03 123.40 185.37 322.07 512.52 689.08

0.90 0.70 26.63 47.61 66.48 113.35 183.78 253.21

A.2. FAILURE DETECTION 119

0.90 0.75 15.37 25.36 34.57 57.84 87.35 120.14

0.90 0.80 11.59 16.71 21.17 32.70 48.55 65.27

0.90 0.85 7.71 10.66 13.46 19.32 27.82 36.77

0.90 0.90 5.29 7.53 9.10 12.64 17.62 22.58

0.90 0.95 4.92 5.49 5.51 8.37 10.86 13.65

0.95 0.65 50.92 87.59 123.77 212.82 335.92 457.06

0.95 0.70 25.76 39.96 52.89 86.87 134.25 182.80

0.95 0.75 17.14 24.39 30.26 45.92 66.97 89.00

0.95 0.80 12.09 16.53 20.38 28.79 40.66 53.28

0.95 0.85 9.52 11.14 15.10 19.34 25.57 32.93

0.95 0.90 7.01 10.48 11.28 14.93 18.86 22.87

0.95 0.95 7.15 7.23 9.23 10.57 13.27 15.66

Table A.6: FD-TA test: samples to make to a choice. 1000 Montecarlo runs. Lower
is better.

A.2.3 FD-TE test

γ δ 20 10 5 1 0.1 0.01

0.65 0.65 70.30 125.15 157.16 167.54 121.72 75.88

0.65 0.70 27.76 41.69 52.60 62.21 66.65 67.70

0.65 0.75 12.96 20.41 24.24 28.33 30.76 31.20

0.65 0.80 7.25 11.43 13.67 15.88 16.68 17.06

0.65 0.85 3.68 6.03 7.36 8.64 9.43 9.44

0.65 0.90 2.30 3.43 4.42 5.04 5.45 5.49

0.65 0.95 1.05 2.16 2.54 2.83 3.16 3.21

0.70 0.65 67.92 113.68 142.01 161.70 134.56 89.95

0.70 0.70 25.79 38.83 49.38 58.82 62.97 63.97

0.70 0.75 12.02 18.50 23.54 29.20 30.76 31.11

0.70 0.80 7.05 10.16 12.53 15.69 15.96 15.96

0.70 0.85 4.13 6.58 7.64 8.93 9.62 9.62

0.70 0.90 2.53 3.54 4.23 4.95 5.29 5.30

0.70 0.95 1.04 2.20 2.56 2.88 3.01 3.04

0.75 0.65 63.42 103.92 125.39 145.58 133.66 107.33

120 APPENDIX A. SIMULATIONS FULL RESULTS

0.75 0.70 24.11 35.61 44.47 55.07 61.74 62.08

0.75 0.75 11.48 18.55 22.53 26.58 28.87 29.18

0.75 0.80 7.08 9.82 12.04 14.72 15.32 15.50

0.75 0.85 4.32 6.38 7.61 9.04 9.68 9.68

0.75 0.90 2.97 3.53 4.68 5.55 5.89 5.92

0.75 0.95 1.19 2.61 2.72 3.02 3.15 3.18

0.80 0.65 52.85 83.38 109.70 132.34 130.26 110.83

0.80 0.70 23.04 32.40 38.59 42.76 44.60 44.60

0.80 0.75 11.14 17.38 20.75 23.92 25.89 26.11

0.80 0.80 7.54 9.96 11.67 13.56 14.52 15.00

0.80 0.85 4.18 6.71 7.87 9.35 9.62 9.62

0.80 0.90 3.56 3.91 5.12 5.91 6.17 6.20

0.80 0.95 2.24 3.01 3.34 3.70 3.80 3.85

0.85 0.65 44.47 74.50 97.24 113.82 115.44 107.41

0.85 0.70 20.27 32.10 36.79 43.72 46.56 46.95

0.85 0.75 11.79 17.33 20.25 23.83 25.04 25.04

0.85 0.80 7.75 10.72 12.45 14.76 15.22 15.24

0.85 0.85 4.43 6.27 7.71 8.94 9.70 9.70

0.85 0.90 3.79 4.01 5.25 5.86 6.19 6.20

0.85 0.95 2.81 3.48 3.58 4.02 4.16 4.20

0.90 0.65 42.34 62.10 77.43 93.20 99.16 96.48

0.90 0.70 18.22 27.27 30.88 36.54 40.26 40.53

0.90 0.75 10.47 15.42 18.25 20.82 21.80 21.80

0.90 0.80 8.19 10.53 12.16 14.36 14.83 15.04

0.90 0.85 5.45 7.05 8.02 9.05 9.52 9.52

0.90 0.90 4.06 5.02 5.69 6.32 6.49 6.53

0.90 0.95 3.86 4.13 4.15 4.58 4.73 4.73

0.95 0.65 34.83 49.94 59.38 74.51 77.19 76.15

0.95 0.70 18.94 25.08 28.07 32.58 34.45 35.48

0.95 0.75 12.82 16.51 18.78 20.98 21.76 21.76

0.95 0.80 9.42 11.48 13.05 14.56 15.26 15.35

0.95 0.85 7.21 8.21 9.77 10.89 11.07 11.07

0.95 0.90 5.86 7.87 8.40 9.54 9.86 9.95

A.2. FAILURE DETECTION 121

0.95 0.95 6.21 6.24 6.88 7.33 7.42 7.54

Table A.7: FD-TE test: difference between the expected switching time and the
sample in which the switching takes place. 1000 Montecarlo runs. No false alarms.
Lower is better.

122 APPENDIX A. SIMULATIONS FULL RESULTS

Bibliography

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] “Council Recommendation (EU) 2015/1184 of 14 July 2015 on broad guidelines
for the economic policies of the Member States and of the European Union,”
Jul. 2015. [Online]. Available: http://data.europa.eu/eli/reco/2015/1184/oj

[3] Eurostat, “Smarter, greener, more inclusive? INDICATORS TO SUPPORT
THE EUROPE 2020 STRATEGY,” 2016. [Online]. Available: http://ec.
europa.eu/eurostat/documents/3217494/7566774/KS-EZ-16-001-EN-N.pdf

[4] D. Yan, J. Xia, W. Tang, F. Song, X. Zhang, and Y. Jiang, “DeST — An
integrated building simulation toolkit Part I: Fundamentals,” Building Sim-
ulation, vol. 1, no. 2, pp. 95–110, jun 2008.

[5] T. D. Baenziger, “Energy management in lighting systems,” in Industry
Applications Conference, 2000. Conference Record of the 2000 IEEE,
vol. 5. IEEE, 2000, pp. 3452–3459.

[6] M. Miyata, H. Yoshida, M. Asada, T. Iwata, Y. Tanabe, and T. Yanagisawa,
“Estimation of energy baseline by simulation for on-going commissioning and
energy saving retrofit,” 2006.

[7] C. de Bakker, M. Aries, H. Kort, and A. Rosemann, “Occupancy-based lighting
control in open-plan office spaces: A state-of-the-art review,” Building and
Environment, vol. 112, pp. 308–321, 2017.

[8] F. Rubinstein, D. Avery, J. Jennings, and S. Blanc, “On the calibration and
commissioning of lighting controls,” in Proceedings of the Right Light,
vol. 50, 1997, p. 207.

[9] J. Page, D. Robinson, N. Morel, and J.-L. Scartezzini, “A generalised stochastic
model for the simulation of occupant presence,” Energy and Buildings,
vol. 40, no. 2, pp. 83–98, jan 2008.

[10] C. Sandels, J. Widén, and L. Nordström, “Simulating occupancy in office
buildings with non-homogeneous Markov chains for demand response analysis,”
in Power & Energy Society General Meeting, 2015 IEEE. IEEE, 2015,
pp. 1–5.

123

http://data.europa.eu/eli/reco/2015/1184/oj
http://ec.europa.eu/eurostat/documents/3217494/7566774/KS-EZ-16-001-EN-N.pdf
http://ec.europa.eu/eurostat/documents/3217494/7566774/KS-EZ-16-001-EN-N.pdf

124 BIBLIOGRAPHY

[11] D. Yan, W. O’Brien, T. Hong, X. Feng, H. B. Gunay, F. Tahmasebi, and
A. Mahdavi, “Occupant behavior modeling for building performance simulation:
Current state and future challenges,” Energy and Buildings, vol. 107, pp.
264–278, 2015.

[12] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. E. Cerpa, “Occupancy mod-
eling and prediction for building energy management,” ACM Transactions
on Sensor Networks (TOSN), vol. 10, no. 3, p. 42, 2014.

[13] A. Pandharipande and D. Caicedo, “Smart indoor lighting systems with
luminaire-based sensing: A review of lighting control approaches,” Energy
and Buildings, vol. 104, pp. 369–377, 2015.

[14] A. Pandharipande and G. R. Newsham, “Lighting controls: Evolution and
revolution,” Lighting Research & Technology, vol. 50, no. 1, pp. 115–128,
jan 2018.

[15] S. Nagarathinam, S. R. Iyer, A. Vasan, V. Sarangan, A. Sivasubramaniam
et al., “On the utility of occupancy sensing for managing hvac energy in
large zones,” in Proceedings of the 2015 ACM Sixth International
Conference on Future Energy Systems. ACM, 2015, pp. 219–220.

[16] B. Dong and B. Andrews, “Sensor-based occupancy behavioral pattern recog-
nition for energy and comfort management in intelligent buildings,” in Pro-
ceedings of building simulation, 2009, pp. 1444–1451.

[17] D. D. Myron, E. R. Williams, C. C. Hardin, T. W. Woytek, and
M. A. Stephens, “Occupancy sensor and method of operating same,”
United States of America patentus US5 640 143A, 1997. [Online]. Available:
https://patents.google.com/patent/US5640143A

[18] A. Cenedese, M. Fabris, G. Michieletto, R. Antonello, and the CSD class of
2016-17, “Control System Design Lecture notes,” Dec. 2017.

[19] E. Fornasini, “Catene di Markov,” in Appunti di teoria dei sistemi.
Padova: Edizioni Libreria Progetto, 2015, ch. 13. [Online]. Available:
http://www.dei.unipd.it/∼fornasini/13 2011 Catene%20di%20Markov13.pdf

[20] A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm,” IEEE transactions on Information Theory,
vol. 13, no. 2, pp. 260–269, 1967.

[21] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[22] S. Tu, “Derivation of baum-welch algorithm for hidden markov mod-
els.” [Online]. Available: http://people.csail.mit.edu/stephentu/writeups/
hmm-baum-welch-derivation.pdf

https://patents.google.com/patent/US5640143A
http://www.dei.unipd.it/~fornasini/13_2011_Catene%20di%20Markov13.pdf
http://people.csail.mit.edu/stephentu/writeups/hmm-baum-welch-derivation.pdf
http://people.csail.mit.edu/stephentu/writeups/hmm-baum-welch-derivation.pdf

BIBLIOGRAPHY 125

[23] A. Wald, “Sequential tests of statistical hypotheses,” The annals of mathe-
matical statistics, vol. 16, no. 2, pp. 117–186, 1945.

[24] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2,
pp. 100–115, 1954.

[25] P. Granjon, “The CuSum algorithm-a small review,” 2013.

[26] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory
and application. Prentice Hall Englewood Cliffs, 1993, vol. 104.

[27] J. M. Chambers, W. S. Cleveland, P. A. Tukey,
and B. Kleiner, Graphical Methods for Data Analy-
sis (Wadsworth & Brooks/Cole Statistics/Probability Series).
Duxbury Press, 1983. [Online]. Available: https://www.amazon.com/
Graphical-Analysis-Wadsworth-Statistics-Probability/dp/053498052X

[28] D. F. Williamson, R. A. Parker, and J. S. Kendrick, “The box plot: a simple
visual method to interpret data,” Annals of internal medicine, vol. 110,
no. 11, pp. 916–921, 1989.

[29] L. R. Rabiner and B.-H. Juang, “An introduction to hidden Markov models,”
IEEE assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[30] S. H. Dandach, R. Carli, and F. Bullo, “Accuracy and decision time for
decentralized implementations of the sequential probability ratio test,” in
American Control Conference (ACC), 2010. IEEE, 2010, pp. 2390–
2395.

[31] C.-D. Fuh, “SPRT and CUSUM in hidden Markov models,” The Annals of
Statistics, vol. 31, no. 3, pp. 942–977, jun 2003.

https://www.amazon.com/Graphical-Analysis-Wadsworth-Statistics-Probability/dp/053498052X
https://www.amazon.com/Graphical-Analysis-Wadsworth-Statistics-Probability/dp/053498052X

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Application
	Challenges
	State of Art
	Original Contribution
	Outline

	Problem Formulation
	The Problems
	Modelization and Assumptions
	Occupancy & Proximity Sensors
	Assumptions & Notation Adopted
	Problems Modelization

	HMM and the Model
	Markov Chains
	Hidden Markov Models
	A different approach for HMM description
	Mathematical Complements
	The Filter

	The Three Problems
	Evaluation Problem
	Decoding Problem
	Learning Problem

	The Model
	The first Model
	The second Model
	Further Steps

	Event Detection with Time
	Available Tools
	SPRT
	CUSUM
	SPRT and CUSUM for HMM
	Commissioning Error Detection
	Failure Detection

	Numerical Problems

	Simulations
	Implementation
	Workstation class
	SPRT and CUSUM classes
	The Simulation Implementation

	Simulations introduction
	Assumptions
	Performed Tests

	CED - Simulation Tests Results & Plots
	Commissioning Error Detection - overview
	Commissioning Error Detection - and analysis
	Computation time Analysis

	FD - Simulation Tests Results & Plots
	Failure Detection - overview
	Failure Detection - and analysis

	Conclusions & Future Works
	Simulations Full Results
	Commissioning Error Detection
	CED-MD test
	CED-FA test
	CED-OE test
	CED-T test

	Failure Detection
	FD-FA test
	FD-TA test
	FD-TE test

	Bibliography

