

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

Relazione per la prova finale «PROGETTO DI UNA TRASMISSIONE DI UN PROPULSORE ELETTRICO»

Tutor universitario: Prof. Matteo Massaro

Laureando: Lorenzo Conte

Padova, 23/09/2024

Obiettivi

 Realizzare il progetto di una trasmissione di un veicolo elettrico con l'ausilio del tool Romax.

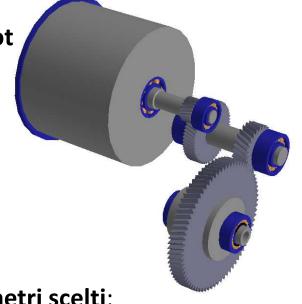
Procedimento

- 1. Determinazione dei parametri di progetto
- 2. Modellazione del motore elettrico
- 3. Disegno della trasmissione
- 4. Progettazione delle ruote dentate
- 5. Completamento della geometria della trasmissione
- Inserimento dei cuscinetti
- 7. Valutazione dei costi
- 8. Valutazione dell'efficienza
- 9. Valutazione degli ordini di eccitazione
- 10. Inserimento del ciclo di guida

Prestazioni richieste dal veicolo

- Velocità massima: 161 km/h
- Accelerazione: 0-100 km/h in 7,9 s
- Prestazioni in pendenza: 25 km/h a 20°
- Autonomia: 280 km
- Massa massima della trasmissione: 60 kg
- Spazio disponibile: 1m (w) x 0,6m (d) x 0,7m (h)

Parametri motore


- Motore a magneti permanenti
- 8 poli
- 48 slots
- Materiale magnete: FeNdB
- Diametro esterno massimo: 250 mm

Parametri trasmissione

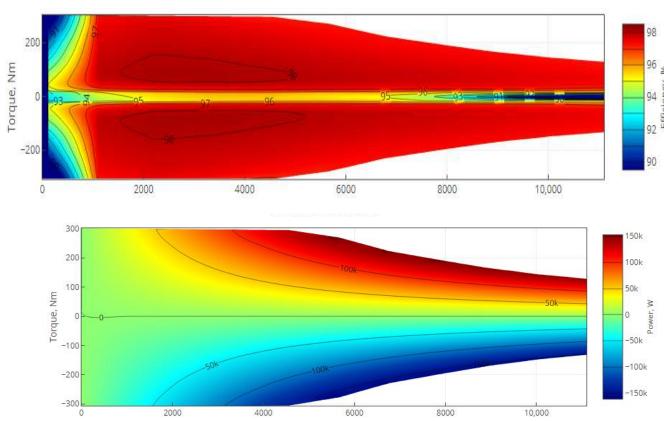
- Trasmissione a una velocità a due stadi
- Durata: 50.000 h
- Lubrificante: ISO VG 320, -/13/10 @70°C
- Materiale alberi: C40
- Materiale ruote dentate: acciaio temprato, AGMA grado 2
- Efficienza: >93%
- Dimensioni: 423(d)x252(w)x350(h)

Dimensioni veicolo (Peugeot e-208)

- Dimensione pneumatici: 195/55 R16
- Massa: 1910 kg
- Dimensioni: 4055x1745x1430

Parametri scelti:

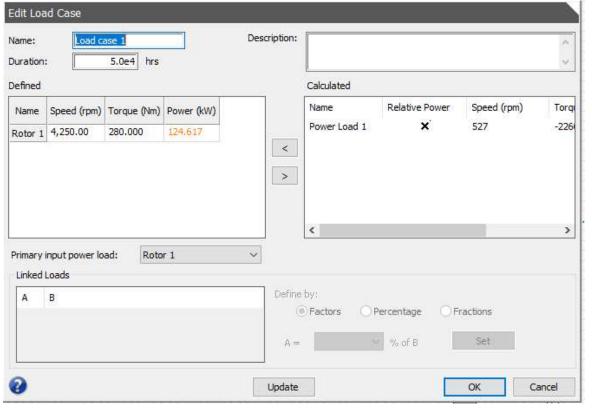
- rapporto di trasmissione: 8:1
- velocità di rotazione massima: 11100 rpm
- coppia massima: 280 Nm
- velocità di rotazione nominale: 4250 rpm
- potenza nominale: 125 kW

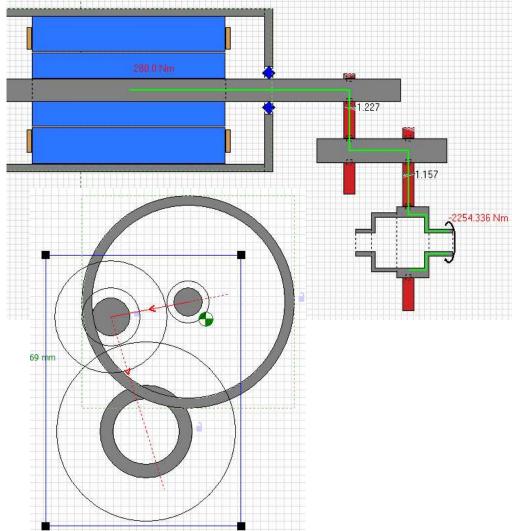

www.dii.unipd.ii

Per progettare il motore si utilizza JMAG, un software di progettazione per apparecchiature elettriche in cui si può accedere direttamente da Romax.

Dopo aver inserito i parametri voluti è possibile valutare la mappa dell'efficienza e della potenza del

modello ottenuto.

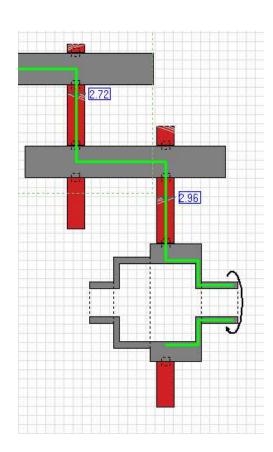




Revolution Speed, rpm

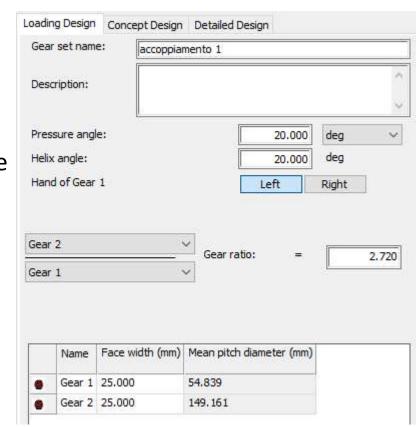
DISEGNO DELLA TRASMISSIONE

Si compie una modellazione iniziale agli alberi e successivamente si aggiunge il carico alla trasmissione.



PROGETTAZIONE DELLE RUOTE DENTATE

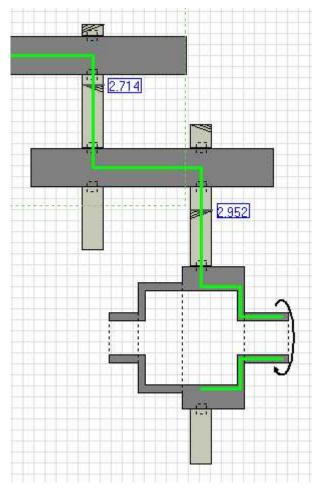
www.dii.unipd.i


Fase 1 (diametri primitivi)

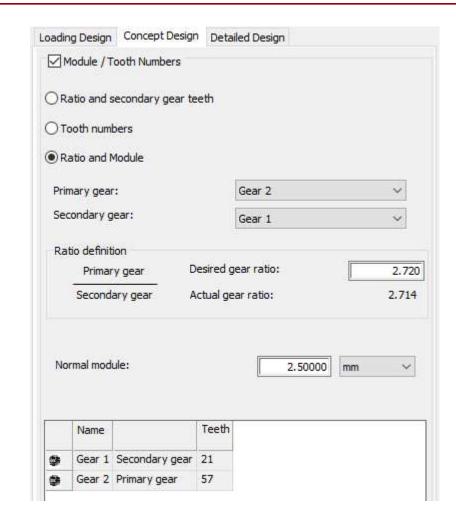
In questa fase è possibile inserire il rapporto di trasmissione dello stadio in considerazione che insieme all'interasse inserito precedentemente serve per calcolare i diametri primitivi delle ruote.

Inoltre se si sceglie di progettare delle ruote elicoidali è possibile scegliere il verso dell'elica in base ai versi delle forze assiali prese in esame.

Si sceglie il verso in modo tale che le forze siano dirette verso lo spallamento delle ruote.

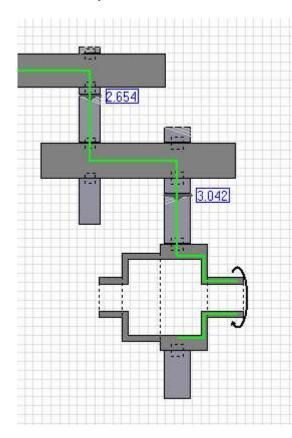


Shaft	Gear Heli	Halis Annia (dan)	Unnd	Load case	
		Helix Angle (deg)	Hand	Load case 1 (N)	Load case 2 (N)
	Gear 2 @ 65.000 mm	19.000	Right	3506.1	1502.6
albero intermedio	Gear 3 @ 164.000 mm	19.000	Right	-6720.1	-2880.0
	Total (N)	LEI ZOLIH SINGS		-3213.9	-1377.4
# 2	Gear 1 @ 624.000 mm	19.000	Left	-3506.1	-1502.6
albero motore	Total (N)	//	V	-3506.1	-1502.6
	Gear 4 @ 89.000 mm	19.000	Left	6720.1	2880.0
differenziale	Total (N)			6720.1	2880.0



Fase 2: (numero di denti)

In questa fase si inserisce il modulo unificato e il rapporto di trasmissione desiderato. In questo caso il software calcola il numero di denti e il rapporto di trasmissione risultante.


La scelta del modulo va fatta tenendo in considerazione che, per motivi di ingranamento, è preferibile che la ruota minore abbia almeno 18 denti.

Fase 3: (ruote totalmente definite)

In questa fase è possibile inserire un intervallo di vari parametri tra cui: modulo, larghezza ruota, interasse, angolo di pressione, angolo d'elica; successivamente, grazie ad un calcolatore, il software restituisce vari design delle ruote, in relazione al numero di parametri inseriti e al numero di step da calcolare per ogni intervallo. Per ogni design calcola vari valori riguardanti la geometria e l'accoppiamento delle ruote.

		H	Minimum:	Maximum:		Steps:	
Face width:		25.000	25.000	0 mm		1	
			2.00000	2,00000	0 mm		1
Gea	ar ratio:	[2.650	2.67	Gear 1	> Gear 2	~
Name		Min CD (mm)	Max CD (mm)		Steps:	
Gear 1	-> Gear 2	102.000		102.000		1	
Gear 2	69	71	Design for m	aximum contac	t ratio 🔻		
☐ Igno	ore integer	tooth ratios			Steps:		1
☐ Igno	ore integer	tooth ratios			Steps:		1
- 201	ore integer	tooth ratios	Minimum:	Maximum:	Steps:	Steps:	1
- 201	geometry	tooth ratios	Minimum:	Maximum:	=	Steps:	
nvolute Helix an	geometry	tooth ratios	1.004010-01100	1 1	00 deg	Steps:	
nvolute Helix and	geometry		18.000	22.0	00 deg		1 5

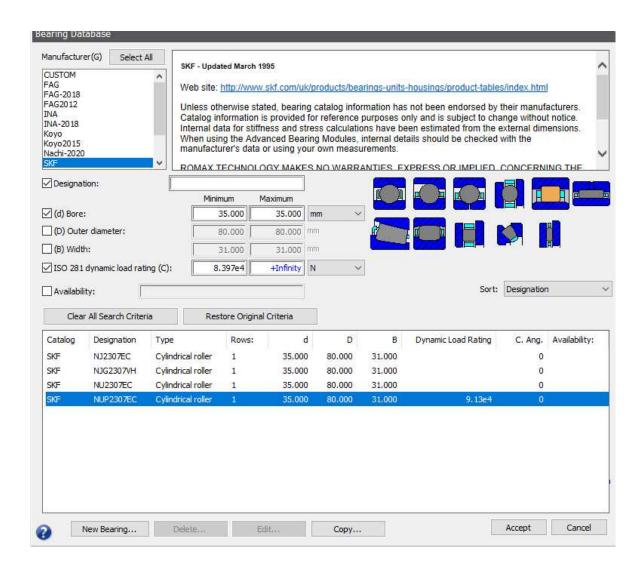
PROGETTAZIONE DELLE RUOTE DENTATE

In questo lucido è possibile vedere un estratto della tabella dei design restituiti dal software, e un riassunto della geometria delle ruote dentate.

	Selection Criteria	Axial Contact Ratio: (none)	Gear 1 Bending Safety Factor (none)	Gear 1 Contact Safety Factor (none)	Gear 2 Bending Safety Factor (none)	Gear 2 Contact Safety Factor (none)	6 A
076	0.0	1.295	1.372	1.177	1.389	1.213	
077	0.0	1.295	1.403	1.172	1.399	1.208	4
078	0.0	1.295	1.428	1.167	1.404	1.202	1
079	1.72797796928632e-2	1.295	1.444	1,161	1.404	1.197	
080	3.32786253637372e-2	1.295	1.452	1.156	1.400	1.191	1
081	0.0	1.295	1.181	1.173	1.197	1.209	1
082	1.15952541845424e-3	1,295	1.221	1.181	1.240	1,217	
083	6.6427419458286e-3	1,295	1,268	1.180	1.278	1,216	
084	1.70871806634036e-2	1.295	1.314	1.176	1.310	1.212	1
085	3.16755557512564e-2	1.295	1.353	1.172	1.336	1.207	1
086	4.91862653526698e-2	1.295	1.385	1.167	1.357	1.202	
087	6.57433405284694e-2	1.295	1.409	1,162	1.373	1.197	
088	7.71295847287003e-2	1.295	1.426	1.157	1.383	1.192	1
089	8.21586079454131e-2	1.295	1.434	1.152	1.388	1.187	
090	7.95407608967441e-2	1,295	1.434	1.146	1.388	1.181	
091	0.0	1.295	1.193	1.175	1.136	1.210	1
092	0.0	1.295	1.244	1.172	1.183	1.208	à
093	8.31517639209676e-3	1.295	1.291	1.169	1.226	1.204	1
094	2.8928921341337e-2	1.295	1.331	1.165	1.264	1.200	
095	5.19403386448685e-2	1.295	1.364	1.161	1.296	1.196	
096	7.21579636476611e-2	1.295	1,390	1.156	1.323	1.192	1
097	8.59419046720332e-2	1.295	1,408	1.152	1.344	1.187	
098	9.10251055307783e-2	1.295	1.417	1,147	1.359	1,181	
099	8.68162714430602e-2	1.295	1.417	1.141	1.369	1.176	1
100	7.44256486385536e-2	1.295	1.409	1.136	1.374	1.170	à
101	0.0	1.361	1.226	1.096	1.485	1,130	71
102	0.0	1.361	1.277	1.107	1.500	1,140	
103		1.361	1.325	1.117	1.509	1.151	
104		1.361	1,370	1.127	1.513	1.161	i
	0.0	1.361	1.412	1.137	1.511	1.171	

Gear:	Gear 1	Gear 2
Number of teeth:	26	69
Profile shift coefficient:	0.2778	0.5157
Generating profile shift coeff:	0.2778	0.5157
Working pitch diameter: (mm)	55.832	148.168
Reference pitch circle diameter:(mm)	54.996	145.952
Face width: (mm)	25.000	25.000
Effective face width:(mm)	25.000	25.000
Base diameter: (mm)	50.573	134.212
Root diameter: (mm)	49.557 (Input)	141.915 (Input)
Protuberance: (mm)	0 (Input)	0 (input)
Root form diameter: (mm)	51.356 (Calculated)	142.766 (Calculated)
Tip diameter: (mm)	61.085 (Input)	153.443 (hput)
Tip form diameter: (mm)	61.085 (Calculated)	153.443 (Calculated)
Tool tip radius:(mm)	0.3671	0.5021
Addendum:(mm)	3.044	3.745
Dedendum:(mm)	2.719	2.018

ndividual gear geometry	F-30007-00	E1224100001	
Gear:	Gear 3	Gear 4	
Number of teeth:	24	73	
Profile shift coefficient:	0.2778	0.1015	
Generating profile shift coeff:	0.2778	0.1015	
Working pitch diameter: (mm)	76.701	233.299	
Reference pitch circle diameter:(mm)	76.149	231.619	
Face width: (mm)	30.000	30.000	
Effective face width:(mm)	30.000	30.000	
Base diameter: (mm)	70.024	212,989	
Root diameter: (mm)	67.667 (Input)	223.308 (Input)	
Protuberance: (mm)	0 (input)	0 (input)	
Root form diameter: (mm)	70.704 (Calculated)	224.982 (Calculated)	
Tip diameter: (mm)	85.192 (Input)	240.833 (Input)	
Tip form diameter: (mm)	85.192 (Calculated)	240.833 (Calculated)	
Tool tip radius:(mm)	0.4538	0.8217	
Addendum:(mm)	4.522	4.607	
Dedendum:(mm)	4.241	4.155	



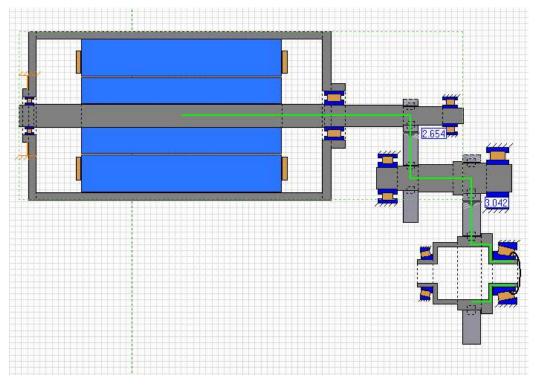
Per inserire i cuscinetti è necessario prima inserire il vincolo generico e in seguito fare l'analisi delle forze agenti sui vincoli.

Successivamente con il coefficiente di carico dinamico richiesto è possibile selezionare il cuscinetto adeguato da un ampio database.

intermedio SX			
Bearing Type	Required Dynamic Load Rating (N)		
Radial ball, rows: 1	2.681e5		
Cylindrical roller, rows: 1	8.48e4		

Inserimento dei cuscinetti e valutazione dei costi

In questo lucido è presente la trasmissione completa dei cuscinetti e un estratto della tabella dei cuscinetti con i rispettivi coefficienti di carico dinamico.


Load Case	Duration (hrs
Load case 1	5.0e4
Load case 2	1.0000

differenziale DX [Taper roller 32309-SKF Explorer]			
Selected data	Actual Dynamic Load Rating (N)		
Taper roller: 32309-SKF Explorer	1.73e5		
Bearing Type	Required Dynamic Load Rating (N)		
A/C Ball, rows: 1	2.737e5		
Taper roller, rows: 1	1.077e5		
Spherical roller bearing with symmetrical roller, rows: 1	1.502e5		

differenziale SX [Taper roller 30209]			
Selected data	Actual Dynamic Load Rating (N)		
Taper roller: 30209	6.6e4		
Bearing Type	Required Dynamic Load Rating (N)		
A/C Ball, rows: 1	9.87e4		
Taper roller, rows: 1	3.577e4		
Spherical roller bearing with symmetrical roller, rows: 1	7.721e4		

intermedio DX [Cylindrical roller NU 2309 ECML-SKF Explorer]			
Selected data	Actual Dynamic Load Rating (N)		
Cylindrical roller: NU 2309 ECML-SKF Explorer	1.6e5		
Bearing Type	Required Dynamic Load Rating (N)		
Radial ball, rows: 1	3.081e5		
Cylindrical roller, rows: 1	8.574e4		
Needle roller, rows: 1	2.323e5		

intermedio SX [Cylindrical roller NUP2307EC]					
Selected data Actual Dynamic Load Rating (
Cylindrical roller: NUP2307EC	9.13e4				
Bearing Type	Required Dynamic Load Rating (N)				
Radial ball, rows: 1	2.681e5				
Cylindrical roller, rows: 1	8.48e4				

Valutazione dei costi dei materiali e dei cuscinetti

Cost Breakdown

Component	Mass (kg)	Cost / unit mass: (1/kg)	Cost scale factor	Estimated cost	Specified Cost
albero intermedio	2.686	10.000	0.35	9.399	.
differenziale	4.357	10.000	0.35	15.249	-
accoppiamento 1	3.343	10.000	0.4	13.371	4
accoppiamento 2	7.819	10.000	0.4	31.277	

Component	Specified Cost
differenziale DX [Taper roller 32309-SKF Explorer]	38.530
differenziale SX [Taper roller 30209]	19.970
intermedio DX [Cylindrical roller NU 2309 ECML-SKF Explorer]	81.320
intermedio SX [Cylindrical roller NUP2307EC]	86.170

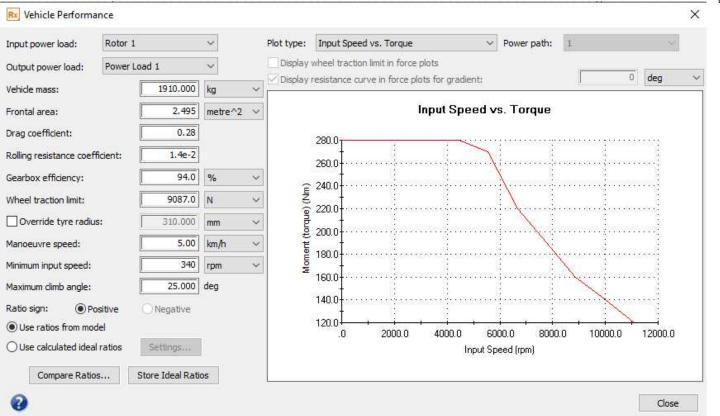
Corso di Laurea in Ingegneria ...

www.dii.unipd.ii

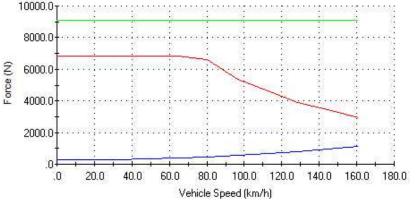
Dopo aver inserito i cuscinetti si procede con la valutazione dell'efficienza della trasmissione che per i parametri di progetto deve superare il 93%.

Load case 1 Total power in (kW) 124.616509 Total power out (kW) 122.740392 Total power loss (kW) 1.876117 Total cylindrical gear blank drag power loss (kW) 0.504 Total bevel gear blank drag power loss (kW) Total helical gear mesh drag power loss (kW) 0.3655 Total bevel gear mesh drag power loss (kW) Total bearings power loss (kW) 1.006691 Total efficiency (%) 98.5

Efficiency 250-Efficiency (%) 200 95.0 93.1 Torque (Nm) 150-91.2 89.4 85.6 100-83.7 81.9 80.0 50 65.2 5000 10000 Speed (rpm)

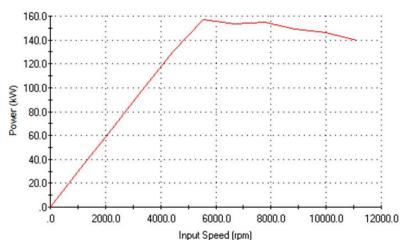

Load case 2

Total power in (kW)	139.486714
Total power out (kW)	127.321032
Total power loss (kW)	12.165682
Total cylindrical gear blank drag power loss (kW)	8.978385
Total bevel gear blank drag power loss (kW)	0
Total helical gear mesh drag power loss (kW)	0.2932
Total bevel gear mesh drag power loss (kW)	0
Total bearings power loss (kW)	2.894111
Total efficiency (%)	91.3


Al massimo regime di rotazione non è stato possibile rispettare il vincolo di efficienza imposto poiché riducendo troppo le ruote aumentano le forze e di conseguenza le dimensioni dei cuscinetti che non risulterebbero più compatibili con gli alberi della trasmissione.

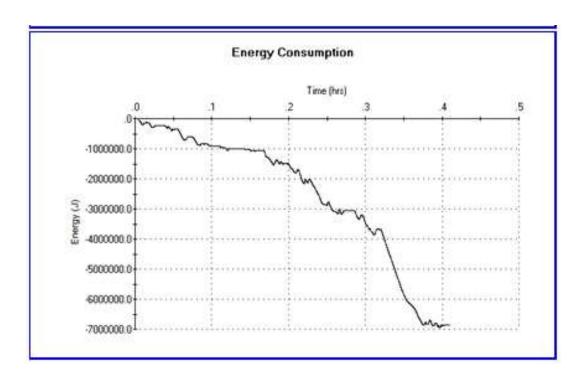
Qui è possibile valutare le prestazioni del veicolo in relazione al motore scelto e agli ingombri di veicolo.

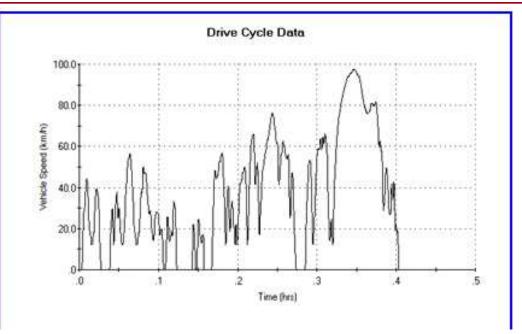
Nel caso in esame si sono utilizzate le dimensioni dell'auto Peugeot e-208.



Tractive Force For: Load case 1, Load case 2

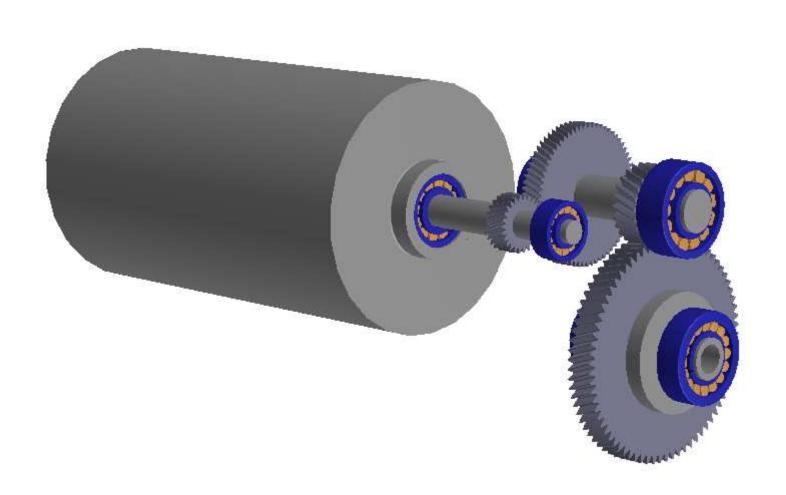
Tractive Force For: Load case 1, Load case 2
Resistance Force: 0 deg
Wheel Traction Limit


Input Speed vs. Power



DI INGEGNERIA

Per la simulazione dei consumi si utilizza un ciclo guida armonizzato a livello mondiale, il WLTC classe 3, ovvero la classe legata ai veicoli più performanti.



Energy Consumption Data

Net energy consumption (J)	6.865e6
Distance travelled (km)	14.847
Total energy used in driving operation (J)	9.538e6
Total energy reclaimed in coasting operation (J)	2.673e6
Average driving system efficiency (%)	90.8
Average driving motor efficiency (%)	99.2
Average driving gearbox efficiency (%)	91.6
Average coasting system efficiency (%)	93.5
Average coasting motor efficiency (%)	99.0
Average coasting gearbox and braking efficiency (%)	94.5

In conclusione si può dire che la trasmissione è correttamente dimensionata e pronta per le successive fasi di analisi.

