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Chapter 1
Rosetta’s Misson to Comet
67P/Churyumov-Gerasimenko

1.1 The Rosetta Mission

Rosetta is an ESA mission that was launched on 2 March 2004, after a delay due to an un-
related launch failure of a European Arianne Rocket in late 2002. The original target, comet
46P/Wirtanen, could no longer be reached. The target was thus changed to comet 67P/Churyumov-
Gerasimenko (hereinafter abbreviated to 67P). Comet 67P has a 6.5 year elliptical orbit that takes
it from Earth’s to Jupiter’s orbit.

The mission’s primary goals were in the first place to rendezvous with the comet and ac-
company it into the interior of the Solar System, observe the comet’s nucleus and once at close
range deploy the Philae lander, measure the increase on cometary activity during perihelion, and
observe the changes associated with the change in season as the comet leaves the inner Solar
System, when a different pole will be exposed to the Sun. Close mapping of the comet has
provided compehensive understanding of the characteristics of the comet, its composition and
environment, both by studying the nucleus itself remotely and by measuring the properties of
the gas, dust, and plasma in the coma surrounding it.

The scientific goals of the Rosetta mission are to create a portrait of the comet’s nucleus,
that is its shape and dynamical properties, take a complete inventory of the comet’s chemical,
mineralogical, and isotopic composition, detail the comet’s physical properties, show how the
coma emerges from the surface of the nucleus and develops different layers of activity as it grows
in the solar wind. An important goal would be to find the comet’s origin, that is, when and
where it has formed, and the relationship between its constituent materials and those found in
the solar wind.

Before reaching 67P, Rosetta travelled 10 years inside the Solar System, performing four
fly-bys that allowed the spacecraft to approach the comet, the first with Earth in March, 2005,
the second with Mars in February, 2007, and the last two with Earth in November, 2007, and
in November, 2009. After a fly-by with asteroid Lutetia, the spacecraft entered deep space
hibernation on June, 2011, for 2.5 years. The trajectory of Rosetta is schematically represented
in Figure 1.1. After awaking from hibernation in January, 2014, a rendezvous was performed by
a series of critical breaking maneuvers between May and August 2014 starting from a distance
of 2 million kilometers, which reduced the speed of the comet relative to the target down to
walking pace at a distance of 100 km from the comet.

Rosetta carries many scientific packages. Those relevant for this research are OSIRIS (Opti-
cal, Spectroscopic, and Infrared Remote Imaging System Camera), a dual camera imaging system

1



2 Chapter 1. Rosetta’s Misson to Comet 67P/Churyumov-Gerasimenko

Figure 1.1. Timeline of Rosetta’s voyage inside the Solar System to rendezvous with comet 67P. Picture taken
from ESA website.

consisting of a narrow angle (NAC) and a wide angle (WAC) camera; CONSERT (COmet Nu-
cleus Sounding Experiment by Radio wave Transmission), for studying the internal structure
of the comet with the lander Philae; GIADA (Grain Impact Analyzer and Dust Accumulator),
measuring the number, mass, momentum and velocity distribution of the dust grains in the
near-comet environment; and MIDAS (Micro-Imaging Dust Analysis System), for studying the
dust environment of the comet. OSIRIS is the science package that allowed the recontruction
of the shape of the cometary nucleus, which is extensively used in this work to compute the
gravitational fields produced by the comet.

Once the comet was reached, a series of triangular paths around the comet (Figure 1.2)
allowed the spacecraft to get to a distance of up to 20 km above the nucleus of the comet.

It has been found (Vincent et al., 2015) that pits appearing in the comet’s surface are not
produced by impacts of external material onto the surface. It may be that they are the result of
explosive mechanisms, and that in any case they are active, and probably created by sinkholes
process, possibly accompanied by outbursts. An example of outburst is pictured in Figure 1.4.

As already mentioned, the CONSERT scientific package inside Rosetta and Philae was used
to investigate the internal structure of the nucleus of the comet. The measures obtained with
CONSERT demonstrated that the upper part of the head of 67P is fairly homogeneous on a
spatial scale of tens of meters (Kofman et al., 2015). This results are fundamental for our
research, since we will make the strong assumption that the whole volume of the comet has
homogeneous mass density in oreder to calculate the external gravitational fields.
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Figure 1.2. Schematic representation of the triangular trajectories followed by Rosetta around 67P. Picture
taken from ESA website.

Figure 1.3. Rosetta activity on July 7, 2015, one month before perihelion. Picture taken from ESA website.
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Figure 1.4. Outburst. The three pictures have been taken at ∼ 20 minutes intervals. Picture from ESA website.

The combined data from GIADA, OSIRIS, MIRO (Microwave Intrument for the Rosetta
Orbiter), and ROSINA (Rosetta Orbiter Spectromenter for Ion and Neutral Analysis) showed
that the dust to gas mass ratio in on average 4 ± 2 over the sunlit nucleus surface (Rotundi
et al., 2015). A cloud of larger grains also encircles the nucleus in bound orbits from the previous
perihelion.

The rotational state of 67P is along the principal axis of inerta of the body, and no complex
rotation has been detected. Measurements constrain any motion of the spin axis to < 0.3◦over
∼ 55 days (Sierks et al., 2015). The rotation is prograde with a spin axis at RA = 69.3◦±0.1◦,
Dec = 64.1◦±0.1◦, and a period T = 12.4043± 0.0007 hours.

As for the origin of the comet, three-dimensional impact simulations using realistic consti-
tutive properties showed results similar to the morphology of the nucleus of 67P (Jutzi and
Asphaug, 2015). From these results the hypotesis that the nucleus formed by collisional coagu-
lation either out of cometesimal accreting in the early solar system or out of comparable-sized
debris clumps paired in the aftermath of major collisions.

1.2 Dynamical Characterization of 67P – A Research Outline

This work aims to study the dynamical environment of 67P. This research is fundamental for
two reasons. The first is to find periodic orbits for future space missions near highly irregular
bodies to economically park the spacecraft. The second is the understanding and explanation
of the dynamics of ejecta, or even the dynamics of capture of dust particles of various sizes. In
particular, it is of great interest to assess the presence of stable regions in which the ejecta might
accumulate, which would explain the observation (Rotundi et al., 2015). During the second half
of the ’90s, many papers were published on the dynamics around cometary nuclei, e.g. Scheeres
et al. (1998). However, no one ever thought that we would find such an irregular body generating
a gravitational field for which efficient computational tools are still missing.

The next three Chapters will discuss new and old ways to model the gravitational field. To
compute the gravitational field at an external point to the body, a polyhedral mesh that best
approximates the surface of the body will be used, as seen in Figure 1.5. Three methods will
be described in the next Chapters. In particular, Chapter 2 will be devoted to describing the
Werner method, which is the most computationally intensive, since every vertex, face and edge
contributes to the computation of the gravitational potential in each point in space. However,
this is the method that was used to integrate all orbits during this research, since it is the only
mathod that can compute the gravitational field in any point outside the volume of the cometary
nucleus.

In Chapter 3 the representation of the potential through the use of inertial functions and
inertial integrals, the computation of the inertial functions and of the inertial integrals through
the use of a polyhedron, will be described. Although the expansion in inertial integrals is well
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Figure 1.5. The surface of 67P shown as a polyhedron formed by a triangular surface mesh.

known in the literature, the expansion of the potential through the use of inertial functions is
completely new, and was developed during this research.

In Chapter 4 the representation of the potential through the use of Spherical Harmonics will
be treated. Even though this method is not new, a unifying approach has been undertaken to
link the external and internal expansion of the potential.

The interest for the representation of the potential, especially inside a sphere not containing
any part of the extended body, is due to the fact that a new, efficient way of computing the
potential near the surface of an irregularly shaped body is required for the integration of orbits
near the surface of such body. This is, in fact, the case for 67P.

The methods for computing the potential described in Chapters 3 and 4 are expected to
be less computationally demanding than the Werner method described in Chapter 2, since the
largest computational effort of these two methods is confined to the preprocessing stage, which
consists in computing the inertial functions, the inertial integrals, and the Stoke’s coefficients
around an expansion point.

Chapter 5 contains the theoretical concepts needed to integrate the equations of motion
around the comet and to converge to periodic orbits for initial conditions close to an almost
periodic orbit. The results of the application of these methods will be shown in Chapter 6,
where the resulting periodic orbits will be displayed and discussed.

Chapter 7 describes, instead, a possible way of designing artificial periodic orbits around the
body. The reason for this part of the research was the desire to find a periodic orbit that passed
deep inside the valley of 67P. Since no natural periodic orbits passing near the valley were found,
the addition of an active force, namely, the thrusters of the spacecraft, was implemented in the
equations of motion. The computation of the thrust acceleration profile and the required ∆V
needed to perform the designed acrobatics with the Rosetta spacecraft is the main point of this
last Chapter.
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Chapter 2
The Gravitational Potential - 1
Werner’s Method

2.1 Introduction

Newton’s Law of Universal Gravitation states that two point masses m1 and m2 attract each
other along the line joining them with a force of magnitude F directly proportional to the product
of their masses and inversely proportional to their mutual distance d, i.e., F is given as

F = G
m1m2

d2
, (2.1)

where G is the constant of universal gravitation. Introducing the position vectors r1 of mass m1

located at point P1 and r2 of mass m2 at P2, as well as the vector r = r2 − r1 pointing from P1

to P2, the force F with which m1 acts on m2 is given by the vector

F = −Gm1m2

r3
r, (2.2)

where r = |r| = d. Viceversa, the force that m2 exerts on m1 is − F.

The extension of Newton’s law of gravitation to extended bodies makes use of the principle
of superposition of forces and can be stated as follows. Notice that the interest here is only for
the region external to the body, i.e., the space where a particle can orbit the extended body.
Therefore it will not be necessary to use distributions in the following treatment, nor will it be
necessary to use the full power of the Helmoltz Theorem, since the gravitational potential is fully
described by a scalar function.

Given a finite, bounded, continuous volumic mass distribution σ as a function of position r,
the gravitational force on a unit point mass (m = 1) located at the field point P located outside
the body at r is given by the three-dimensional integral

g (r) = −G
∫∫∫
V

σ (ρ)
r− ρ
|r− ρ|3

dV, (2.3)

where dV is a volume differential and the integration is extended over the finite volume V
enclosing the entire mass distribution of the extended body. In practice, the position vector ρ
and the volume differential dV are associated with a source point Q of the extended body. In
the future, we will usually adopt the Greek letter ρ and its components (ξ, η, ζ) to indicate the
source point Q.

7
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Werner’s Method

Since it is well-known that the gravitational force is conservative, which is ensured by the
fact that the force field1 g is irrotational, i.e., ∇× g ≡ 0, the gravitational field can be obtained
as the gradient of a potential function U,

g (r) = ∇U, (2.4)

where the ∇ operator indicates the gradient with respect to the standard position variable r,
i.e., ∇ = ∇r = ∂/∂r. The potential function, or more simply the potential, can be expressed as

U (r) = G

∫∫∫
V

σ(ρ)

|r− ρ|
dV. (2.5)

If the density is well-behaved, the integral (2.5) converges for all points P outside the mass
distribution Kellogg (1929) and if the volume’s boundary is stationary differentiation can be
moved inside the integration sign so that using (2.5) in (2.4) yields (2.3). Notice that the
potential function as used here is the negative of the potential energy. This is the convention
adopted in Celestial Mechanics and Geodesy.

The gravitational potential satisfies numerous theorems. Among these we recall that, under
the assumptions stated above, the potential and its first derivatives vanish at infinity (Sternberg
and Smith, 1946) and that at external points the potential is a continuous and arbitrarily often
differentiable function of position (Sigl, 1985, p. 72). Also, since the gradient operates only on
the field coordinates, it follows that

∇ · g (r) = 0, (2.6)

which shows that the external gravitational field is a solenoidal field. Substitution of the potential
from (2.4) then leads to Laplace’s equation

∇2U (r) = 0, (2.7)

which implies that the external potential is a harmonic function. Therefore the potential U of
interest for the present study2 is composed of homogenous functions satisfying Laplace’s equation.

The fundamental problem to solve in order to carry out the integration of the equations of
motion of a particle orbiting an extended mass is to have a means to compute the gravitational
field g (r) of the body. This is indeed a multifacet problem, and the present study will be limited
to some restrictive assumptions. In the case of the Rosetta mission to 67P only the shape and
the total mass of the cometary nucleus are available from in situ measurements. Therefore,
lacking other substantial information or measurements, the density of 67P must be assumed to
be homogeneous. Even under these simple assumptions the computation of the gravitational
field (2.3) can be carried out in several different ways. The starting point common to all is
that the shape of the body is known as a series of surface points (vertices, or nodes) linked
in a three-dimensional mesh with a number of edges. This amounts to approximating the real
shape of the body as a polyhedron. The gravitational field can be computed directly, or it can
be obtained by computing the gradient of the potential (2.5). The integrals appearing in (2.3)
and (2.5) can be computed in essentially two ways, i.e., either in a finite formulation, or by
means of series expansions. The first approach goes back to Betti (1879) and the recent track of
specialized studies by (Werner, 1994; Petrovic, 1996; Werner and Scheeres, 1997; Tsoulis, 2012; ?).
The second approach can be differentiated as to whether inertial integrals or Stokes coefficients

1We will indifferently refer to g (r) as an acceleration field of a force field, which we implicitly assume per unit
mass.

2More in general, both the divergence (Gauss’s Theorem) and the Laplacian (Poisson’s Equation) of the
gravitational field are proportional to the local mass density.
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are used. More precisely, Stokes coefficients can be found not only for expansions in Spherical
Harmonics, but also for other basis functions, depending on the geometry of the body. The rest
of this chapter is concerned with the introduction of the finite model of the gravitational field
through the method of Werner. The next two chapters will be devoted to the expansion of the
potential in terms of inertial integrals and in spherical harmonics, respectively.

Figure 2.1. Comet 67P/Churyumov-Gerasimenko (ESA rendering)

2.2 Werner’s method

Since the nucleus is so irregular, a numerical approach was used to calculate the potential in
whatever position outside the nucleus using Werner’s algorithm (Werner, 1994; Werner and
Scheeres, 1997). We will now briefly outline a derivation of the algorithm and give its final
formulation.

We assume from now on that the density σ of the body—in our specific case the nucleus of
comet 67P— is constant throughout the volume, so that it can be factored out of the integration.
The combined application of Gauss’s divergence theorem and Greeen’s theorem will enable us to
easily calculate the volume integral in (2.5). We first use the particular case of Stokes theorem,
known as Gauss Integral theorem, which asserts that the volume integral of the divergence of a
vector field w is equal to the flux of the field through the surface bounding the volume, or∫∫∫

V

(∇ ·w) dV =

∫∫
S

w · dσ,

Application of this theorem to the definition of the potential (2.5) makes use of the fact that
1
2∇ · r = 1/r to write that

2U =

∫∫
S

r · ds =
∑
f∈F

∫∫
f

r · dσf , (2.8)

where we have introduced the fact that the body is modeled as a polyhedron with a certain
number of planar, polygonal faces consitituting the set F. Here dσf = n̂f dσf is the differential
vectorial surface element aligned with the outer surface unit normal n̂f . The algoritm thus
decomposes the surface integral into the sum of integrals over each face f from the set F. For
convenience, a right-handed Cartesian “face” coordinate system is established for each face, with
basis unit vectors i, j,k, where i and j lie parallel to the face plane and k is aligned with the face’s
outward unit normal n̂f . All the face’s points, described by a vector ρ, or coordinates (ξ, η, ζ),
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Werner’s Method

share the same coordinate along k, denoted by ζf . The field point P in this reference system
has coordinates (x, y, z) and is denoted by the vector r. It is convenient for the derivation to use
coordinates relative to P, so we define the components of the vector difference ρ− r as

∆x = ξ − x,
∆y = η − y,
∆z = ζf − z.

This implies that r̂ = i∆x
r + j∆y

r +k∆z
r , r

2 = ∆x2 + ∆y2 + ∆z2, and dσf = dξdη = d(∆x)d(∆y).
Substituting r̂ and dσf in (2.8) and using Green’s theorem yields for the contribution of a single
face f the potential Uf given by

2Uf = ∆z

∮
1

r
(∆x d∆y −∆y d∆x)− ωf ∆z, (2.9)

where the integral is taken along the perimeter of the face and ωf is the signed solid angle
subtended by the face f when viewed from the field point. It is important to remark that so
far no restrictions have been put on the boundary of the face: the former formula is valid for
any planar face. Considering now a face with n straight edges, we denote by P1, P2, . . . Pn its
vertices, described by coordinates (∆xi,∆yi,∆zi) relative to the field pont P. Let ri denote the
distance between P and vertex Pi, and rij be the distance between vertices Pi and Pj . This
allows the computation of the line integral in (2.9), which can be expressed, after appropriate
manipulation, as∮ (

∆x

r
d∆y − ∆y

r
d∆x

)
=

n∑
i=1

∆xi∆yi+1 −∆xi+1∆yi
ri,i+1

log

(
ri + ri+1 + ri,i+1

ri + ri+1 − ri,i+1

)
, (2.10)

where all indices are taken modulo n and the summation extends over all edges of a face. As for
the solid angle ωf appearing in second term on the RHS of (2.9), we only report the result for a
triangular face f of vertices Pi, Pj , Pk and position vecotrs ri, rj and rk as

ωf = 2 arctan
ri · rj × rk

rirjrk + ri (rj · rk) + rj (rk · ri) + rk (ri · rj)
. (2.11)

The potential Uf of a single face of the homogeneous polyhedron can thus be computed as the
sum of terms involving log functions and inverse trig functions. Summing the contributions from
all faces and all edges of the polyhedron leads to the total potential U at the field point P. The
success of the method rests on the fact that the volume integration over the simplices, defined
by the prisms having the faces as bases and vertex at some fixed common origin, can effectively
be reduced to integration over the faces only, since the surface integrations over the sides sharing
the origin as one vertex are pairwise equal and opposite (due to the direction of the integration
path which is always taken counterclockwise) and thus contributing nil.

The expression for the potential can now be used to derive the acceleration ∇U and the
gravity gradient, or Hessian, ∇∇U. The formulation proposed in (Werner and Scheeres, 1997),
including a variant for the expression of the potential is as follows

U =
1

2
Gσ
∑
e∈E

(
rTe Eere

)
Le −

1

2
Gσ
∑
f∈F

(
rTf Ffrf

)
ωf , (2.12)

∇U = −Gσ
∑
e∈E

Eere Le +Gσ
∑
f∈F

Ff rf ωf , (2.13)

∇∇U = Gσ
∑
e∈E

Ee Le −Gσ
∑
f∈F

Ff ωf , (2.14)
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where re is the vector pointing from the field point P to any point on the straight line containing
the edge e, rf a similar vector to any point on the plane containing face f , while (with the
superscript T indicating transposition (of the algebraic vector!)) Ee = n̂f1n̂

f1T
e + n̂f2n̂

f2T
e and

Fe = n̂f n̂
T
f are each a square matrix of order 3, so that the terms in parentheses in equation

(2.12) for the potential are quadratic forms. Note that n̂fe is a unit vector normal to edge e lying
on the plane of face f to which the edge belongs (thus also normal to n̂f ).

As a check on numerical computations it may be useful to compute the Laplacian from the
formula

∇2U = −Gσ
∑
f∈F

ωf . (2.15)

The Laplacian is equal to the trace of the Hessian (2.14), which in free space is null.

2.3 Petrovich’s and Tsoulis’s Refinements of Werner’s Method

An algorithm for the computation of the potential and its first two gradients in the case of
a homogeneous polyhedral body was introduced by Petrovic (1996) independently of Werner
(1994). The method uses the same strategy of reduction of the volume integral to surface integrals
and finally to line integrals using, however, subsequent applications of the divergence theorem.
The notable difference with respect to Werner’s method is the identification of singularities in
the process. For completeness, we will review the Petrovich method and discuss the singularities
and corrective actions to take when they present themselves following ?.

The derivation of the Petrovic algorithm for the computation of the potential U, its gradient
∇U and Hessian ∇∇U starts by noting that

U = Gσ

∫∫∫
V

1

∆
dV, (2.16a)

∂U

∂r
= Gσ

∫∫∫
V

∂

∂r

(
1

∆

)
dV, (2.16b)

∂2U

∂r2
= Gσ

∫∫∫
V

∂2

∂r2

(
1

∆

)
dV, (2.16c)

can be transformed to surface integrals by application of the divergence theorem to yield, ac-
counting for the polyhedral nature of the body of constant density σ and using the same notation
as before,

U =
1

2
Gσ
∑
f∈F

σfhf

∫∫
Σf

1

∆
dS, (2.17a)

∂iU = Gσ
∑
f∈F

(n̂f · êi)
∫∫
Σf

1

∆
dS, i = 1, 2, 3, (2.17b)

∂ijU = Gσ
∑
f∈F

(n̂f · êi)
∫∫
Σf

∂

∂xj

(
1

∆

)
dS, i, j = 1, 2, 3, (2.17c)

where n̂f is the outward pointing normal to face f, êi (i = 1, 2, 3) is an orthonormal basis centered
at the field point P, Σf is the integration domain relative to face f, and ∆ is the distance between
the P and the integration element. σf is −1 or +1, respectively, depending on whether P is
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on the positive or negative half-space of face f, where positive and negative is decided by the
direction of the outward normal n̂f .

The ten independent components of the potential and its gradients—recall that the grav-
ity gradient is a symmetrical matrix—clearly reduce to the computation of only two types of
integrals, namely Af and Bfj , defined by

Af =

∫∫
Σf

1

∆
dS (2.18a)

Bfj =

∫∫
Σf

∂

∂xj

(
1

∆

)
dS (2.18b)

? shows that these can be reduced to line integrals and reformulated as

Af =

m∑
q=1

σfqhpq

∫
efq

1

∆
ds+ h2

p

m∑
q=1

σfqhpq

∫
efq

1

d2∆
ds, (2.19a)

Bfj =
m∑
q=1

(n̂fq · êj)
∫
efq

1

∆
ds+ σfhf (n̂f · êj)

m∑
q=1

σfqhfq

∫
efq

1

d2∆
ds, (2.19b)

where d is the distance between the projection P ′ of the point P on the face’s plane and the
integration element, hf is the positive distance of P from the face’s plane, n̂f is the outward
pointing unit normal of face f, σf is −1 when the outward pointing surface normal n̂p of face
Σf points to the half space containing the point P and +1 when it points to the other half,
hfq is the positive distance of the projection of point P onto the line containing the edge epq of
face Σf ,while n̂pq is the unit normal of edge efq pointing outward with respect to the face Σf ,
and finally σfq equals −1 when n̂pq points to the half plane containing the point P ′ and +1 if
it points to the other half space. If point P ′ falls inside one of the polygonal faces, however,
the application of Gauss’s theorem is not permissible. According to Gauss’s theorem, in fact,
the vector field appearing in the formula must have continuous derivatives inside the integration
area. It is obvious how the d2 at the denominator in both formulas (2.19a) and (2.19b) is such
a singular point in the case point P ′ is contained in the face. The solution to this singularity is
well known in potential field theory. One divides the area of integration in two parts: a small
circle containing point P ′ in its interior, and the rest of Σf . One obtains that the corrections
to the final formula are −ϑhf for Af , and −ϑ cos (n̂f , êj)σf , where ϑ represents the angle of a
circle centered on point P ′ contained inside the face Σf . For example, if point P ′ is contained
in the interior of Σf , then ϑ = 2π, while if it belongs to an edge ϑ = π, and finally if it belongs
to a vertex, ϑ is going to be equal to the interior angle of that vertex. After integrating Af and
Bfj , and correcting the cases in which P ′ belongs to the face considered, one obtains the final
formulae

U =
1

2
Gσ
∑
f∈F

σfhf

 m∑
q=1

σfqhfqLNfq + hf

m∑
q=1

σfqANfq + ΓAf

 , (2.20a)

Ui = Gσ
∑
f∈F

(n̂f · êi)

 m∑
q=1

σfqhfqLNfq + hf

m∑
q=1

σfqANfq + ΓAf

 , (i = 1, 2, 3) ,

Uij = Gσ
∑
f∈F

(n̂f · êi)

 m∑
q=1

(n̂fq · ej) LNfq + (n̂f · êj)σf
m∑
q=1

σfqANfq + ΓBfj

 , (i, j = 1, 2, 3) ,
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where ΓAf
and ΓBfj

represent the corrections to be applied to the possible singular cases con-
sidered,

LNfq = log
s2fq + l2fq
s1fq + l1fq

(2.21)

and
ANpq = arctan

(
hfs2fq

hfql2fq

)
− arctan

(
hfs1fq

hfql1fq

)
. (2.22)

Computationally it is more efficient to combine the two arc tangents into a single one as

ANpq = arctan
hfqhf (l1fqs2fq − s1fql2fq)

h2
fql1fql2fq + h2

fs1fqs2fq
. (2.23)

with l1fq and l2fq the distances between P and the two endpoints of edge efq and with s1fq and
s2fq the distances between the endpoints of edge epq and the projection of P ′ onto the edge line,
P ′′, as shown in Figure (2.2).

Figure 2.2. Geometric configuration of the field point P with respect to a quadrangular face. (From Petrovic
and Tsoulis (2001), with the caveat that Gpq ≡ efq, and in general p ≡ f in the subscripts.)



14
Chapter 2. The Gravitational Potential - 1

Werner’s Method



Chapter 3
The Gravitational Potential - 2
Expansion in Inertial Functions

3.1 Introduction

The finite formulation of the potential and the gravitational field presented in the previous
chapter has the advantage of providing the correct values at any field point outside or on the
surface of a polyhedral body of constant density. The downside is that this model is very intensive
computationally, especially in view of the fact that an accurate description of an extended body
requires on the order of millions of vertices. Some alternative computational approaches are
therefore desirable and can be found in terms of series expansions. Other approaches, most
notably in terms of finite elements (Colombi et al., 2008; Russell and Arora, 2012), have also
been explored, but with somewhat inconclusive benefits to be reported. In this chapter we will
try to carry out a program first delineated by MacMillan (1930) for field points far from the
body and consisting of a series expansion in terms of inertial integrals.

Here, we will carry out MacMillan’s program to the full extent for an extended body described
by a polyhedral approximation. We will do so both for the case of distant points and for field
points very near the surface of the body by introducing a generalization of the concept of inertial
integrals to inertial functions. We start with some simple series expansion for a single point mass
and then extend it to the cases of practical interest.

3.2 Expansion of 1/∆ in Cartesian coordinates

Consider the points P and Q, whose coordinates are given with respect to a set of orthogonal axes
O[xyz] centered at O. Let rP = (xP , yP , zP )T be the position vector of P and rQ = (xQ, yQ, zQ)T

the position vector of Q. The Euclidean distance ∆ between P and Q is the function

∆ (rQ; rP ) = [(rP − rQ)2]1/2 = [(xP − xQ)2 + (yP − yQ)2 + (z − zQ)2]1/2 (3.1)

where the notation adopted for the functional dependence implies that this is to be considered
a function of Q, P being considered to be fixed. In the following, for the sake of brevity, the
dependence on the parameter (rP ) may be omitted.

We are interested in the inverse distance ∆−1 and would like to express it as a series expansion
in the coordinates of the field point P. To address the general case, let us introduce a center of

15
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Figure 3.1. General configuration for the expansion abpout point C of the inverse distance 1/∆ between point
P and point Q.

expansion at a point C not coincident with either P or Q (see Figure 3.1). Then, with

r = rP − rC , (3.2)
ρ = rQ − rC , (3.3)

and rC = (xC , yC , zC)T the distance becomes

∆ (r;ρ) = [(r− ρ)2]1/2, (3.4)

where the components of the vectors r and ρ,

r = (x, y, z)T , (3.5)

ρ = (ξ, η, ζ)T , (3.6)

are

x = xP − xC , y = yP − yC , z = zP − zC , (3.7)
ξ = xQ − xC , η = yQ − yC , ζ = zQ − zC . (3.8)

The inverse distance expressed in coordinates referred to the reference system centered at C is
now

∆−1 (r;ρ) =
1

[(r− ρ)2]1/2
=

1√
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (3.9)

The purpose is now to expand the inverse distance 1/∆ in a series about C in the coordinates
x, y, z of P. From the physical point of view this is relevant in terms of potential theory if a point
mass is located at Q and P is the field point. If the reverse were true it would make sense to
expand about C using the coordinates ξ, η, ζ of the point Q. However, here we are only interested
in the formal aspects of the expansion and any switch of variables will be performed, if necessary,
at the appropriate time.



3.2. Expansion of 1/∆ in Cartesian coordinates 17

To carry out the expansion let us first rewrite the inverse distance in the form

∆−1 (r;ρ) =
1

(r2 − 2r · ρ+ ρ2)1/2
(3.10)

as an intermediate step toward realizing that it can be put in a form which can be expanded
as a geometric series. To do so only requires that the larger of r and ρ be collected outside the
square root to yield either

∆−1 (r;ρ) =
1

r

[
1− 2

ρ

r
(r̂ · ρ̂) +

(ρ
r

)2
]−1/2

,
(ρ
r
< 1
)

(3.11)

where, as noted, ρ/r < 1, or

∆−1 (r;ρ) =
1

ρ

[
1− 2

r

ρ
(r̂ · ρ̂) +

(
r

ρ

)2
]−1/2

,

(
r

ρ
< 1

)
(3.12)

where now r/ρ < 1, where the unit vectors r̂ = r/r and ρ̂ = ρ/ρ have been introduced. If now
we define the new variables h as

h ∈
{
ρ

r
,
r

ρ

}
(3.13)

and D as the denominator of h, the two forms can be combined into the single form

D∆−1 (r;ρ) =
[
1− 2h (r̂ · ρ̂) + h2

]−1/2
. (3.14)

The convergence properties of this function need to be investigated. The classical analysis of
Hobson (1931) is repeated here for convenience, but with a slight twist and a final critique.

Note first that the dot product µ = r̂ · ρ̂ is the cosine of the angle formed by the radii vectores
from the center of the expansion C to the points P and Q so that |µ| ≤ 1. Thus we need to study
the convergence of the series expansion of the function

f (h;µ) =
[
1− 2µh+ h2

]−1/2
, (3.15)

where the parameter µ satisfies the constraint just mentioned, i.e., |µ| ≤ 1. Let us first rewrite
f (h;µ) as the product

f (h;µ) = (µ+
√
µ2 − 1− h)−1/2 (µ−

√
µ2 − 1− h)−1/2. (3.16)

It is permissible to view the variable h and the parameter µ as complex quantities. If we now
consider that the critical points of the function f (h;µ) are h = µ±

√
µ2 − 1, the function f (h;µ)

can be expanded in powers of h as long as |h|—the radius of convergence—is either less than
the smaller hm of the two quantities |µ ±

√
µ2 − 1|, or larger than the greater. As we will see

shortly, the region comprised between these two values is of no interest for our analysis. In the
first case convergence is assured over a circle centered at C (where h = 0) and whose radius is
the smaller of |µ±

√
µ2 − 1|, with the proviso that the function being represented is that which

has value +1 at C. In the second case convergence is guaranteed over the region external to the
circle of radius equal to the larger hM of |µ ±

√
µ2 − 1|. Recalling at this point that µ is real

and in the interval [−1,+1] , it follows that the radius of convergence for the first case is |h| < 1,
while for the second case it is |h| > 1. In fact,

1

µ±
√
µ2 − 1

= µ∓
√
µ2 − 1 (3.17)
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and this implies that at the extrema of the interval for µ we have the trivial identity hm = hM = 1.
The form of the expansion is the typical Laurent series

f (h;µ) =

∞∑
n=−∞

cnh
n. (3.18)

In the first case considered here this series reduces to the regular part of the Laurent expansion,
i.e., to the Taylor series

f (h;µ) =

∞∑
n=0

cnh
n, (|h| < 1) (3.19)

since there are no singularities within the unit circle. In the second case the Leurent expansion
is limited to the polar, or principal part

f (h;µ) =

∞∑
n=1

c−nh
−n, (|h| > 1) (3.20)

since a singularity exists within the circle |h| < 1 and the regular part of the series is identically
null due to the fact that it cannot converge in this region. Note that the singularity, due to the
nature of the function is an essential singularity, which causes the expansion to be effectively
infinite, since it corresponds to, so to speak, a polar singularity of infinte order.

If now we redefine the variable h as

h = min

(
ρ

r
,
r

ρ

)
, (3.21)

the Taylor series expansion (3.19) can be written explicitly in terms of the variables and param-
eters of our problem as

∆−1 (r;ρ) =
1

r

∞∑
n=0

cn

(ρ
r

)n
,

(ρ
r
< 1
)
. (3.22)

For reasons that will become apparent later, we will refer to this case as the Brillouin configura-
tion, as depicted in Figure 3.2. The polar expansion (3.20) can instead be written as

∆−1 (r;ρ) =
1

ρ

∞∑
n=0

cn+1

(
r

ρ

)n+1

,

(
r

ρ
< 1

)
, (3.23)

and we will refer to this as the Hotine configuration, as depicted in Figure 3.3. Notice that the
circles of convergence are identical and the regions inside and outside the circle are exactly related
by the complex transformazion z → z−1. Furthermore, the series of the Hotine case reveals itself
as a quasi-Taylor series in the expansion variable r/ρ. By quasi-Taylor we mean the absence of
the zeroth-order term, i.e., the lack of c0 term—a fundamental difference, as we will see from the
physical point of view, from the Brillouin case. Also note that from the physical point of view
the radius of convergence of the series is the distance of the (nearest) point mass from the center
of expansion.

The critique to the analysis carrried out above focuses on the complexification of the real
function expressing the inverse distance. The results obtained are certainly correct, since they
are in line with a different type of analysis which is usually carried out when expanding in terms
of Legendre polynomials. However, the fact that we have made use of the Laurent expansion
and used it to derive two different expansions corresponding to its Taylor and polar parts, rests
on the fact that the complexification has been introduced at the level of the function f (h;µ) . If
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complexification is done at an earlier stage, i.e., at the level of ∆−1 (r;ρ) , identifying the vectors
r and ρ with complex variables, then the modulus function appears—and that is well known not
to be an analytic function, which implies that we cannot invoke the Laurent expansion at that
very early stage. This critique is supported by the remark made by S. Sternberg that there is
no relation between the Newtonian potential and the theory of functions of a complex variable
as it exists, for instance, in the case of the logarithmic potential (Sternberg and Smith, 1946, p.
167), which is the analog of the Newtonian potential in two dimensions (MacMillan, 1930).

Figure 3.2. General Brillouin configuration for the expansion about point C of the inverse distance 1/∆ between
point P and point Q. The shaded area is the infinte region of convergence when the expansion is in the coordinates
of P.

Figure 3.3. General Hotine configuration for the expansion about point C of the inverse distance 1/∆ between
point P and point Q. The shaded area is the region of convergence when the expansion is in the coordinates of P.

It is instructive at this point to observe that the nature of the expansions of the inverse
distance only depend on the center of expansion C, not the location of the origin of the reference
system used to describe the geometrical configuration. Taken note of this, we might as well move
the origin to coincide with the center of expansion, as shown in 3.4 and Figure 3.5.
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Figure 3.4. General Pure Brillouin configuration.

Figure 3.5. General Pure Hotine configuration.

Some insight can be earned about the nature of the coefficients of these expansions by writing
a more explicit form of the series themselves. Let us first consider the Taylor series (3.22) of the
Brillouin configuration. A close look at this equation reveals that formally it is also a Taylor
series in the variable ρ, precisely because the expansion was generated for the variable ρ/r.
The reason to look at this expansion from this point of view is that from now on we shall be
interested in the potential of an extended body, or mass distribution (see Figure 3.6). Therefore,
by referring back to the definition (2.5) of the potential function U, it is seen that the volume
integration is carried out over the variables of the mass element, which in the current analysis
are the components ξ, η, ζ of the vector ρ. The Taylor series expansion we are interested in is
then

∆−1 (Q) = ∆−1 (C) +
∂∆−1

∂ρ

∣∣∣∣
C

ρ+
1

2!
ρT

∂2∆−1

∂ρ2

∣∣∣∣
C

ρ+ ... (3.24)

In order to write the explicit expansion for the higher order terms, it will be expedient to
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Figure 3.6. Mass distribution of an extended body and the location of the origin O of the coordinate system
used to describe it.

make use of multiindex notation. Then, with α = (α1, α2, α3) a multiindex of degree1 3, with

|n| = n = i+ j + k, n! = i!j!k! (3.25)

and
ρn = ξiηjζk (3.26)

as well as
∇nρ = ∂nρ = ∂iξ∂

j
η∂

k
ζ =

∂n

∂ξi∂ηj∂ζk
. (3.27)

For the multivariable Taylor expansion we will also need the operator

ρ · ∇ρ = ξ
∂

∂ξ
+ η

∂

∂η
+ ζ

∂

∂ζ
(3.28)

so that
(ρ · ∇ρ)n =

∑
|n|=n

n!

n!
ρn∂nρ =

∑
i,j,k≥0
i+j+k=n

n!

i!j!k!
ξiηjζk

∂n

∂ξi∂ηj∂ζk
. (3.29)

Then the multivariable Taylor—effectively a MacLaurin series since it is computed at the origin—
expansion can be compactly written as

∆−1 (ρ) =
∑
n

1

n!
(ρ · ∇ρ)n∆−1

∣∣
ρ=0

. (3.30)

In our case this becomes

∆−1 (ρ) =
∑
n

∑
i,j,k≥0
i+j+k=n

1

i!j!k!
ξiηjζk

(
∂i+j+k∆−1

∂ξi∂ηj∂ζk

)
ρ=0

. (3.31)

Due to the special form of the inverse distance function, use can be made of the relationship

∂

∂ρ
= − ∂

∂r
(3.32)

between the gradients with respect to the positions of the two points in question. If this rela-
tionship is exploited in the expansion (3.31) we find the simpler expression

∆−1 (ρ) =
∑
n

∑
i,j,k≥0
i+j+k=n

(−1)i + j + k

i!j!k!

∂i + j + kr−1

∂xi∂yj∂zk
ξiηjζk (3.33)

1The usual term adopted for multiindex is actually order, but degree will be used here in keeping with the
standard terminology adopted in dealing with expansions of the potential.
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This series clearly consists of terms which are homogeneous polyomials of degree n in the variables
ξ, η, ζ. The coefficients are functions of the variables x, y, z which are themselves homogeneous
and, in fact, harmonic functions. This is easily proved by considering that the derivative of any
order of the fundamental solid harmonic function r−1 =

(
x2 + y2 + z2

)−1/2 with respect to x, y,
and z satisfies Laplace’s equation.

Due to the symmetry between the coordinates of P and those of Q, the expansion (3.33) can
be immediately written in the symmetric form

∆−1 (r) =
∑
n

∑
i,j,k≥0
i+j+k=n

(−1)i + j + k

i!j!k!

∂i + j + kρ−1

∂ξi∂ηj∂ζk
xiyjzk (3.34)

These expansion formulae can now be applied to the case where P is the field point and Q
is the source, i.e., the location of an attracting mass.

3.3 The MacMillan Brillouin sphere expansion

After studying some general features of the expansion of the inverse distance 1/∆ between a
source point Q and a field point P, we are now ready for the application to the development of
the formulation of the potential of an extended body. The case of the Brillouin configuration
will be addressed first. This consists in developing a formulation for points P which are farther
from the center of expansion—now taken to coincide with the origin O with respect to which
the body itself is described—than any elementary mass making up the body. This amounts to
points external to the Brillouin sphere, or the sphere of minimum volume and centered at the
center of expansion, containing the entire body as shown in Figure 3.7.

Figure 3.7. Configuration for the Brillouin expansion. The Brillouin sphere with radius rB is shown centered
at O ≡ C containing the entire body.
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The formulation of the potential will now be carried out by more elementary means than
implied by the formulation of the Taylor series just given. That would unnecessarily require
more sophisticated tools, like for instance Faà di Bruno operators (Murdock, 1983; Krantz and
Parks, 2002).

Let us go back and reconsider the expression (3.9) of the inverse distance. Rewrite it according
to the case of (3.11) as

1

|r− ρ|
=

1

|r|
1√

1− 2
r · ρ
r · r

+
ρ · ρ
r · r

, |ρ| < |r| . (3.35)

Now apply the binomial expansion

(1 + α)−1/2 =

∞∑
k=0

(
−1/2

k

)
αk, (3.36)

irrespective of the fact that the condition (ρ · ρ) /r2 − 2 (r · ρ) /r2 < 1 may not be satisfied (this
will be justified later), to yield

1

|r− ρ|
=

1

r

∞∑
n=0

(
−1/2

n

)(
−2

r · ρ
r · r

+
ρ · ρ
r · r

)n
(3.37)

and develop the power so that

1

|r− ρ|
=

∞∑
n=0

(
−1/2

n

)
1

r2n+1

n∑
m=0

(−1)m 2m
(
n

m

)
(r · ρ)m (ρ · ρ)n−m (3.38)

Replacing the scalar products in terms of coordinates then

1

|r− ρ|
=
∞∑
n=0

(
−1/2

n

)
1

r2n+1

n∑
m=0

(−1)m 2m
(
n

m

)
(xξ + yη + zζ)m

(
ξ2 + η2 + ζ2

)n−m
. (3.39)

At this point we use the expansion of the power of a trinomial,

(a+ b+ c)n =

n∑
i=0

i∑
j=0

(
n

i

)(
i

j

)
an−ibi−jcj , (3.40)

to get

1

|r− ρ|
=
∞∑
n=0

(
−1/2

n

)
1

r2n+1

n∑
m=0

(−1)m 2m
(
n

m

) m∑
i=0

i∑
j=0

n−m∑
k=0

k∑
l=0(

m

i

)(
i

j

)(
n−m
k

)(
k

l

)
xm−iyi−jzj

[
ξ2n−m−i−2kηi−j+2k−2lζj+2l

]
(3.41)

Note that the monomials
P ijm (x, y, z) = xm−iyi−jzj (3.42)

are homogeneous of degree m, since P ijm (αx, αy, αz) = αmP ijm (x, y, z) . In the expression of the
inverse distance these monomials span from degree 0 to degree n.
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Likewise, the monomials

Qijkl2n−m (ξ, η, ζ) = ξ2n−m−i−2kηi−j+2k−2lζj+2l (3.43)

are homogeneous of degree 2n−m and span from degree n to degree 2n. Now, since 0 ≤ n ≤ N,
the span of the degree of these monomials is effectively from 0 to 2N. The number NQ of Qijkl2n−m
monomials that appear in the summation is NQ = (2N + 1)

(
4N2 + 16N + 33

)
/6, so NQ ∼ N3.

The expansion (3.41) can now be inserted in the formula of the potential (2.5)

U (r) = G

∫∫∫
V

σ (ρ)

|r− ρ|
dξ dη dζ. (3.44)

We get

U (r) = G

∫∫∫
V

∞∑
n=0

(
−1/2

n

)
1

r2n+1

n∑
m=0

(−1)m 2m
(
n

m

)
m∑
i=0

i∑
j=0

n−m∑
k=0

k∑
l=0

(
m

i

)(
i

j

)(
n−m
k

)(
k

l

)
xm−iyi−jzj∫∫∫

V

σ (ρ) ξ2n−m−i−2kηi−j+2k−2lζj+2l dξ dη dζ (3.45)

Introducing the inertial integrals Iijk (MacMillan (1930)) defined by

Iijk =

∫∫∫
V

σ (ρ) ξiηjζk dξ dη dζ (3.46)

the potential can be finally cast in the form

U (r) = G
∞∑
n=0

(
−1/2

n

) n∑
m=0

(−1)m 2m
(
n

m

) m∑
i=0

i∑
j=0

n−m∑
k=0

k∑
l=0(

m

i

)(
i

j

)(
n−m
k

)(
k

l

)
[I2n−m−i−2k,i−j+2k−2l,j+2l]

xm−iyi−jzj

r2n+1

(3.47)

Introducing the normalized inertial integrals Īijklnm defined as

Īijklnm = M−1I2n−m−i−2k,i−j+2k−2l,j+2l, (3.48)

the potential can be written more compactly in the form

U (r) =
GM

r

∞∑
n=0

n∑
m=0

m∑
i=0

i∑
j=0

n∑
k=0

−m
k∑
l=0

Cnm
ijklĪijklnm

xm−iyi−jzj

r2n
, (3.49)

where
Cijklnm = (−1)m 2m

(
−1/2

n

)(
n

m

)(
m

i

)(
i

j

)(
n−m
k

)(
k

l

)
. (3.50)

The computation of the binomial coefficients so profusely appearing in these development is
addressed in Appendix B.
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Notice that in the expansion (3.49) the indices k and l do not appear in the expansion
variables. Thus, by introducing the lumped inertial integrals Īijnm as

Īijnm =
n−m∑
k=0

k∑
l=0

(
n−m
k

)(
k

l

)
Īijklnm (3.51)

and the reduced coefficients

Cijnm = (−1)m 2m
(
−1/2

n

)(
n

m

)(
m

i

)(
i

j

)
, (3.52)

the potential assumes the simpler form

U (r) =
GM

r

∞∑
n=0

n∑
m=0

m∑
i=0

i∑
j=0

Cnm
ijĪijnm

xm−iyi−jzj

r2n
(3.53)

3.3.1 The First- and Second-Order Gradients (Gravity and Gravity Gradi-
ent)

The first-order gradients can be easily computed from the expression (3.53) of the potential.
Since the function to be differentiated is of the form

xaybzc

rd
(3.54)

with a = m− i, b = i− j, c = j and d = 2n+ 1, it will be easier to provide the first- and second-
order partials of this template function. The results for use in computing the acceleration are

∂

∂x

xaybzc

rd
=

(
a− dx

2

r2

)
xa−1ybzc

rd
, (3.55)

∂

∂y

xaybzc

rd
=

(
b− dy

2

r2

)
xayb−1zc

rd
, (3.56)

∂

∂z

xaybzc

rd
=

(
c− dz

2

r2

)
xaybzc−1

rd
, (3.57)

while those for the gravity gradients are

∂2

∂x2

xaybzc

rd
=

[
d (2 + d)

x4

r4
− d (1 + 2a)

x2

r2
+ a (a− 1)

]
xa−2ybzc

rd
, (3.58)

∂2

∂y2

xaybzc

rd
=

[
d (2 + d)

y4

r4
− d (1 + 2b)

y2

r2
+ b (b− 1)

]
xayb−2zc

rd
, (3.59)

∂2

∂z2

xaybzc

rd
=

[
d (2 + d)

z4

r4
− d (1 + 2c)

z2

r2
+ c (c− 1)

]
xaybzc−2

rd
, (3.60)

for the diagonal elements, and

∂2

∂y∂x

xaybzc

rd
=

[
2d
x2y2

r4
+

(
a− dx

2

r2

)(
b− dy

2

r2

)]
xa−1yb−1zc

rd
, (3.61)

∂2

∂z∂x

xaybzc

rd
=

[
2d
x2z2

r4
+

(
a− dx

2

r2

)(
c− dz

2

r2

)]
xa−1ybzc−1

rd
, (3.62)

∂2

∂z∂y

xaybzc

rd
=

[
2d
y2z2

r4
+

(
b− dy

2

r2

)(
c− dz

2

r2

)]
xayb−1zc−1

rd
, (3.63)
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for the symmetric, off-diagonal terms.
When numerically evaluating the acceleration and the gravity gradient components efficient

schemes can be devised due to the many different recurrence formulae that can be exploited in
passing to indices one unit higher.

3.3.2 Computation of the Inertial Integrals

The next step toward the numerical evaluation of the potential and its gradients for the Brillouin
configuration is to develop an efficient algorithm for the computation of the inertial integrals.
Following the approach adopted in the method of Werner we can exploit to the fullest extent the
fact that the surface of the body is described as a polyhedron. This will be done in connection
with the simplifying assumption that the body be homogeneous, so that the constant density
will not enter the computation of the volume integrals. The method introduced here appears to
be novel, since no trace of it has been found in the literature.

We first begin by analyzing how many, and which inertial integrals appear in the expansion
of the potential when this is limited to a maximum degree N. The integrals are defined by three
indices, each of which is a linear combination of the six summation indices in equation (3.47).
Given the range of the summation indices and the fact that the monomials Qijkl2n−m (ξ, η, ζ) defined
in (3.43) are homogeneous and span orders from 0 to 2N, it can be seen that the inertial integrals
involved in the expansion are the same that appear in the expression

2N∑
m=0

m∑
p=0

p∑
q=0

Im−p,p−q,q, (3.64)

where the summation is merely used as a surrogate for the associated loops when writing com-
puter code.

Now then we have to compute the set of integrals

V Īm−p,p−q,q =

∫∫∫
V

ξm−pηp−qζq dξ dη dζ (3.65)

for the indices noted above. The strategy is to reduce the volume integral over the polyhedral
body to a series of surface integrals over the faces and each of these finally to a number of line
integrals along the edges. The tools that allow this transformation are the theorems of Gauss,
of Stokes and of Green.

Volume to surface integration

In order to reduce the integral over the volume to an integral of the surface bounding the volume
we make use of Gauss’s divergence theorem. This theorem states that the flux of a vector field T
over a closed surface is equal to the integral of the divergence of the vector field over the volume
contained within the surface. In formal mathematical terms we have that∫∫∫

V

∇ ·T dξ dη dζ =

∫∫
Σ

T · dσ, (3.66)

where dσ = d (σn̂) is the differential vector of the surface element dσ in the direction of the
outer surface normal n̂.

Applied to the case at hand we first have to solve the partial differential equation

∇ ·T =
∂Tξ
∂ξ

+
∂Tη
∂η

+
∂Tζ
∂ζ

= ξm−pηp−qζq (3.67)
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to determine the vector field T. We can take for simplicity any of the three solutions

(A) T = Tξξ̂ =
1

m− p+ 1
ξm−p+1ηp−qζq (1, 0, 0)T , (3.68)

(B) T = Tηη̂ =
1

p− q + 1
ξm−pηp−q+1ζq (0, 1, 0)T , (3.69)

(C) T = Tζ ζ̂ =
1

q + 1
ξm−pηp−qζq+1 (0, 0, 1)T , (3.70)

where the field T has been chosen to have only one component, each of the three solutions being
along one of the coordinate axes. For each of the three cases we have the following application
of the divergence theorem

(A) V Īm−p,p−q,q =
F∑
f=1

∫∫
Σf

Tξξ̂ · dσ

=
1

m− p+ 1

F∑
f=1

∫∫
Σf

ξm−p+1ηp−qζq (1, 0, 0)T · dσ, (3.71)

(B) V Īm−p,p−q,q =
F∑
f=1

∫∫
Σf

Tηη̂ · dσ

=
1

p− q + 1

F∑
f=1

∫∫
Σf

ξm−pηp−q+1ζq (0, 1, 0)T · dσ, (3.72)

(C) V Īm−p,p−q,q =

F∑
f=1

∫∫
Σf

Tζ ζ̂ · dσ

=
1

q + 1

F∑
f=1

∫∫
Σf

ξm−pηp−qζq+1 (0, 0, 1)T · dσ. (3.73)

Accounting for the polyhedral form of the body volume, the surface integral is taken over the
set of F faces, Σf indicating the surface of face f. For short we may in the following denote the
area of the set of faces simply with the symbol Σ. Note that the surface normal n̂ is constant
over each face of the polyhedron, a property which can be exploited to simplify the evaluation
of the integrals.

Surface to line integral

To evaluate these surface integrals we now apply Green’s theorem in Stokes’s form which states
that the flux of the curl of a vector field H through a surface Σ is equal to the circulation of the
field along the boundary of the surface. In symbols,∫∫

Σ

∇×H · dσ =

∫
∂Σ

H · ds (3.74)

where ds is the line element on the countour ∂Σ of the surface Σ. Application to the present
case, in which ∇×H = T, starts with the solution of the three simple equations
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(A) ∇×H = Tξξ̂ =
1

m− p+ 1
ξm−p+1ηp−qζq (1, 0, 0)T , (3.75)

(B) ∇×H = Tηη̂ =
1

p− q + 1
ξm−pηp−q+1ζq (0, 1, 0)T , (3.76)

(C) ∇×H = Tζ ζ̂ =
1

q + 1
ξm−pηp−qζq+1 (0, 0, 1)T , (3.77)

which have been set up corresponding to the three cases being carried through in our analysis.
Upon recalling that the components of the curl of the as yet unknown vector field H are

∇×H · ξ̂ =
∂Hζ

∂η
− ∂Hη

∂ζ
, (3.78)

∇×H · η̂ =
∂Hξ

∂ζ
−
∂Hζ

∂ξ
, (3.79)

∇×H · ζ̂ =
∂Hη

∂ξ
−
∂Hξ

∂η
, (3.80)

it follows that the partial differential equations to be solved in the three cases are the following

(A)
∂Hζ

∂η
− ∂Hη

∂ζ
= Tξ =

1

m− p+ 1
ξm−p+1ηp−qζq, (3.81)

(B)
∂Hξ

∂ζ
−
∂Hζ

∂ξ
= Tη =

1

p− q + 1
ξm−pηp−q+1ζq, (3.82)

(C)
∂Hη

∂ξ
−
∂Hξ

∂η
= Tζ =

1

q + 1
ξm−pηp−qζq+1. (3.83)

At this point we use the freedom to set to zero two of the components of H in each case. It
follows that if we eliminate the component appearing in the second partial on the LHS of the
previous equations and the component not appearing at all, we find the simple solutions

(A) Hζ =
1

p− q + 1

1

m− p+ 1
ξm−p+1ηp−q+1ζq (3.84)

(B) Hξ =
1

p− q + 1

1

q + 1
ξm−pηp−q+1ζq+1 (3.85)

(C) Hη =
1

q + 1

1

m− p+ 1
ξm−p+1ηp−qζq+1 (3.86)

We can now write the Green’s formula (3.74) in the three different case. If we generically
indicate with ω̂ the direction—one of the coordinate axes’ unit vectors ξ̂, η̂, or ζ̂—of the only
component of the field H, i.e., we generically indicate with Hω ω̂ the solution to the PDE
∇×H = T exhibited in (3.84), (3.85) and (3.86), Green’s formula becomes∫∫

Σ

T · dσ =
∑
f

∫
∂Σf

Hω ω̂ · ds =
∑
f

∫
∂Σf

Hω dsω, (3.87)

where we have used the representation d (sωω̂) to indicate the generic line element along a
coordinate axis, i.e., any of the three components of ds = d(ξξ̂ + ηη̂ + ζζ̂).
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Applied to each of the three cases under study yields

(A) V Īm−p,p−q,q =
1

p− q + 1

1

m− p+ 1

∑
f

∫
∂Σf

ξm−p+1ηp−q+1ζqdζ (3.88)

(B) V Īm−p,p−q,q =
1

p− q + 1

1

q + 1

∑
f

∫
∂Σf

ξm−pηp−q+1ζq+1dξ (3.89)

(C) V Īm−p,p−q,q =
1

q + 1

1

m− p+ 1

∑
f

∫
∂Σf

ξm−p+1ηp−qζq+1dη (3.90)

The conversion from volume to line integrals is now complete. Any of the three cases can be
applied in practice, as long as it is consistently applied to all the edges of the polyhedron. This
is because the vector field in each reduction of the dimension of the intergrals must be common
to the entire space considered.

One last step is necessary in order to carry out the final integration along the boundary of
each face of the polyhedron.

3.3.3 Evaluation of the line integrals

In order to compute the line integrals we need a parametrizaion of the integration path. Given
the polyhedral description of the body’s surface, every integration path is the perimeter of a
triangular face. The fact that all faces are triangles in no way limits the approach that follows,
as long as each face is the polygonal face of a polyhedron. Let us assume that the generic segment
of the boundary ∂Σζ

f connects the points Pfi (ξfi, ζfi) and Pf,i+1 (ξf,i+1, ζf,i+1) , i = 1, 2, 3 (here
the sums are taken modulo 3 since we are assuming the polyhedron to be made of triangular
faces). This can be represented as the vector

rfi,i+1 (t) =

 ξfi (t)
ηfi (t)
ζfi (t)

 =

 ξfi (1− t) + ξf,i+1 t
ηfi (1− t) + ηf,i+1 t
ζfi (1− t) + ζf,i+1 t

 , 0 ≤ t ≤ 1 (3.91)

from which we quickly get the expressions for the differentials

dξ = (ξf,i+1 − ξfi) dt = ∆ξfidt, (3.92)
dη = (ηf,i+1 − ηfi) dt = ∆ηfidt, (3.93)
dζ = (ζf,i+1 − ζfi) dt = ∆ζfidt, (3.94)

where we have introduced the projections of the edge as the quantities ∆ξfi = (ξf,i+1 − ξfi) ,
∆ηfi = (ηf,i+1 − ηfi) and ∆ζfi = (ζf,i+1 − ζfi) which are the lengths of the components of the
integration path associated with each edge i of face f.

Let us now focus on case (B), where the vector field H is aligned in the direction ξ̂. Then,
upon changing to the new integration variable t (3.89) can be rewritten as

V Īm−p,p−q,q =
1

(p− q + 1) (q + 1)

∑
f

3∑
i=1

∆ξfi

1∫
0

[ξ (t)]m−p [η (t)]p−q+1 [ζ (t)]q+1 dt

The integrand function can be written explicitly through the use of the parameterization (3.91)
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as

[ξ (t)]m−p [η (t)]p−q [ζ (t)]q+1 = [ξfi (1− t) + ξf,i+1 t]
m−p

× [ηfi (1− t) + ηf,i+1 t]
p−q+1

× [ζfi (1− t) + ζf,i+1 t]
q+1 . (3.95)

This can be greatly simplified and made ready for integration through the application of the
Bernstein polynomials (Farin, 1997) and their useful properties. Bernstein polynomials and
their properties are presented in Appendix C. To illustrate the use of Bernstein polynomials in
this contex, consider the espression [a (1− t) + b t]k , which is the paradigm for the three factors
of the integrand, and expand it using the binomial theorem to yield

[a (1− t) + b t]n = an
[
(1− t) +

b

a
t

]n
= an

n∑
u=0

(
n

u

)(
b

a

)u
tu (1− t)n−u . (3.96)

Now recall that the Bernstein polynomial of degree n and order k is defined as

Bn
k (λ) =

(
n

k

)
λk (1− λ)n−k , (3.97)

which allows rewriting (3.96) as

[a (1− t) + b t]n = an
n∑
u=0

(
b

a

)u
Bn
u (t) . (3.98)

On this basis we can write the three factors in (3.95) as

[ξfi (1− t) + ξf,i+1 t]
m−p = (ξfi)

m−p
m−p∑
u=0

(
ξf,i+1

ξfi

)u
Bm−p
u (t) , (3.99)

[ηfi (1− t) + ηf,i+1 t]
p−q+1 = (ηfi)

p−q
p−q∑
v=0

(
ηf,i+1

ηfi

)v
Bp−q+1
v (t) , (3.100)

[ζfi (1− t) + ζf,i+1 t]
q+1 = (ζfi)

q+1
q+1∑
w=0

(
ζf,i+1

ζfi

)w
Bq+1
w (t) . (3.101)

The multiplication property C.7 of Bernstein polynomials

Bp
i (λ)Bq

k (λ)Br
l (λ) =

(
p

i

)(
q

k

)(
r

l

)
(
p+ q

i+ k

)(
p+ q + r

i+ k + l

)Bp+q+r
i+k+l (λ) (3.102)

can now be used to write the integrand as

[ξ (t)]m−p [η (t)]p−q+1 [ζ (t)]q+1 = (ξfi)
m−p (ηfi)

p−q+1 (ζfi)
q+1

m−p∑
u=0

p−q+1∑
v=0

q+1∑
w=0

(
m− p
u

)(
p− q + 1

v

)(
q + 1

w

)
(
m− q + 1

u+ v

)(
m+ 2

u+ v + w

)
(
ξf,i+1

ξfi

)u(ηf,i+1

ηfi

)v (ζf,i+1

ζfi

)w
Bm
u+v+w (λ) . (3.103)
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As a last step now invoke the integration property of the Bernstein polynomial,∫ 1

0
Bn
k (λ) dλ =

1

n+ 1
, (3.104)

to explicitly write the inertial integral as

V Īm−p,p−q,q =
1

(p− q + 1) (q + 1) (m+ 1)

∑
f

3∑
i=1

∆ξfi (ξfi)
m−p (ηfi)

p−q+1 (ζfi)
q+1 (3.105)

m−p∑
u=0

p−q+1∑
v=0

q+1∑
w=0

(
m−p
u

)(
p−q+1
v

)(
q+1
w

)(
m−q+1
u+v

)(
m+2
u+v+w

) (
ξf,i+1

ξfi

)u(ηf,i+1

ηfi

)v (ζf,i+1

ζfi

)w
(3.106)

This is the final expression for the normalized inertial integral using the development of case
(B) . Cases (A) and (C) can be handled similarly.

3.4 The Hotine sphere expansion

The expansion associated with the Hotine configuration is rather more complicated than that
of the Brillouin configuration. A definite advantage, however, is the much simpler form of
the gradients, since the expansion variables appear only with positive powers in homogeneous
polynomials. The penalty on the other hand is only paid once during the computation of the
coefficients of the expansion. As in the Brillouin case, only elementary methods will be used to
arrive at the final formulation.

Figure 3.8. Configuration for the Hotine expansion. The Hotine sphere with radius rH is shown centered at a
point C external to the body, the sphere being tangent to the body itself.
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Figure 3.9. The six regions in which 3D space is subdivided to guarantee convergence of the expansion of
the inverse distance function. Each of the six regions is further divided into four subregions coded by + and −
superscripts. Positive and negative directions of the ξ, η, ζ axes are clearly marked. Numbers in parentheses are
the sequential numbering scheme of the resulting 24 subregions. The six region-generating planes passing through
the origin are also shown and designated π1, π2, ..., π6.

3.4.1 Expansion of the inverse distance

Consider then the inverse distance function in the Hotine form (3.12) and express it in the form
1

|r− ρ|
=

1

|ρ|
1√

1−2
r · ρ
ρ · ρ

+
r · r
ρ · ρ

, |r| < |ρ| . (3.107)

Now expand according to the geometric series and then using the binomial formula to yield

1

|r− ρ|
=
∞∑
n=0

(
−1/2

n

)
1

ρ2n+1

n∑
m=0

(−1)m 2m
(
n

m

)
(r · ρ)m (r · r)n−m . (3.108)

Attention in now focuse on the coordinates ξ, η, and ζ of the source point Q, which are the
expansion variables, which we readily introduce by writing the previous formula as

1

|r− ρ|
=
∞∑
n=0

(
−1/2

n

)
1

ρ2n+1

n∑
m=0

(−1)m 2m
(
n

m

)
(xξ + yη + zζ)m r2(n−m). (3.109)

Therefore we first expand

(r · ρ)m = (xξ + yη + zζ)m =
m∑
i=0

i∑
j=0

(
m

i

)(
i

j

)
(xξ)m−i (yη)i−j (zζ)j (3.110)

and then consider ρ−2n−1 =
(
ξ2 + η2 + ζ2

)−2n−1
. This latter function can be expanded using

the binomial theorem with special care to ensure convergence of the geometric series involved at
the two steps of the process. With a view at conciseness, we will follow a normalizing procedure.
Let us then assume that2

max
(
ξ2 + η2, ξ2 + ζ2, η2 + ζ2

)
= ξ2 + η2 (3.111)

2Geometrically, this is can be interpreted as choosing the (square of the) largest of the sides of the triangle
formes by the tips of the vectors along the coordinate axes which sum to give ρ. The degenerate case of equal
coordinates is of no consequence in the present analysis.
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so that we can write

1

ρ2n+1
=

1

(ξ2 + η2)(2n+1)/2

1(
1 +

ζ2

ξ2 + η2

)(2n+1)/2
(3.112)

and expand the second factor on the right hand side as

1

ρ2n+1
=

1

(ξ2 + η2)(2n+1)/2

∞∑
p=0

(
− (2n+ 1) /2

p

)(
ζ2

ξ2 + η2

)p
. (3.113)

We then need to expand
(
ξ2 + η2

)(2n−2p+1)/2
. To ensure convergence we assume, according to

the normalization procedure, that3

max
(
ξ2, η2

)
= ξ2 (3.115)

so that
1

(ξ2 + η2)(2n+2p+1)/2
=

1

ξ2n+2p+1

1[
1 +

(
η

ξ

)2
](2n+2p+1)/2

(3.116)

can be expanded into the convergent series

1

(ξ2 + η2)(2n+2p+1)/2
=

1

ξ2n+2p+1

∞∑
q=0

(−(2n+2p+1)/2
q

)(η
ξ

)2q

(3.117)

Subject to the restrictions (3.111) and (3.115), the final form of the expasnion of ρ−2n−1 is
then

1

ρ2n+1
=

∞∑
p=0

∞∑
q=0

(
− (2n+ 1) /2

p

)(
− (2n+ 2p+ 1) /2

q

)
η2qζ2p

ξ2n+2p+2q+1
, (3.118)

which, for ξ2 = η2, simplifies to

1

ρ2n+1
=

1

ξ2n+1

∞∑
p=0

(
− (2n+ 1) /2

p

)
1

[2](2n+2p+1)/2

(
ζ2

ξ2

)p
(3.119)

or
1

ρ2n+1
=

1

(2ξ)(2n+1)/2

∞∑
p=0

(
− (2n+ 1) /2

p

)
1

2p

(
ζ2

ξ2

)p
. (3.120)

For implementation purposes it can be noted that this case is already included in the general
formula (3.118).

The expansion (3.118) can be taken as a template if we can reduce, or “normalize,” all
positions ρ to satisfy the two constraints (3.111) and (3.115). This is easily done if we separate

3The case ξ2 = η2 deserves some attention. In that case we do not need to expand since we simply have

1

(ξ2 + η2)(2n+2p+1)/2
=

1

22n+2p+1ξ2n+2p+1
. (3.114)
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R1 R1 R3 R4 R5 R6

ξR = ξ ξ η η ζ ζ

ηR = η ζ ζ ξ ξ η

ζR = ζ η ξ ζ η ξ

Table 3.1. Mapping of the source point coordinates to the standardized naming.

R3 into the six regions R1, R2, ...,R6 defined by the inequalities

R1: ξ2 ≥ η2 ≥ ζ2, (3.121)

R2: ξ2 ≥ ζ2 ≥ η2, (3.122)

R3: η2 ≥ ζ2 ≥ ξ2, (3.123)

R4: η2 ≥ ξ2 ≥ ζ2, (3.124)

R5: ζ2 ≥ ξ2 ≥ η2, (3.125)

R6: ζ2 ≥ η2 ≥ ξ2. (3.126)

That these are the regions defined by the constraints necessary to ensure convergence of
the geometric series in the expansion of ρ−2n−1 is easily seen. In the case examined above the
assumptions were

ξ2 + η2 = max
(
ξ2 + η2, ξ2 + ζ2, η2 + ζ2

)
(3.127)

ξ2 ≥ η2 (3.128)

and these are easily seen to be equivalent to the ordering

ξ2 ≥ η2 ≥ ζ2, (3.129)

which is precisley the definition of the region R1. The region of space R1 defined by (3.121) is
a double, square-based pyramid with vertex at the origin C of the expansion, whose axis is the
ξ-axis. The other regions are associated with all other relevant constraints. The coordinates of
a point in any of the six regions can be mapped, or normalized, to the the coordinates ξR, ηR
and ζR of the standard case treated above (note that for R1 the mapping is clearly the identity
map) according to the scheme shown in Table 3.1.

To keep track of this ragional mapping, let us rewrite the expansion (3.118) in the normalized
form

1

ρ2n+1
=

∞∑
p=0

∞∑
q=0

(
− (2n+ 1) /2

p

)(
− (2n+ 2p+ 1) /2

q

)
1

ξ2n+1
R

(
ζ2
R

ξ2
R

)p(
η2
R

ξ2
R

)q
. (3.130)

We can now combine this expansion (3.130) with the expansion (3.110) into (3.109). Before doing
that, however, we need to take care of the fact that not all the coordinates of the source point
need to be remapped—those associated with the expansion (3.110) must retain their original
identity. However, in order to use a homogeneous set of coordinates, we will find it expedient
in the case of the original coordinates to remap their exponents. In fact, we can introduce the
indices α, β, and γ as functions of the indices m, i, j that appear in the exponents of the source
point original coordinates in equation (3.110) as

α = αR (m, i, j) , β = βR (m, i, j) , γ = γR (m, i, j) , (3.131)
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R1 R2 R3 R4 R5 R6

αR = m− i m− i i− j i− j j j

βR = i− j j j m− i m− i i− j
γR = j i− j m− i j i− j m− i

Table 3.2. Mapping of the source point coordinates to the standardized naming

where the explicit form of the functions are given in Table 3.2. Not surprisingly, these functions
are identical to the regional coordinate mappings of Table 3.1. Equation (3.110) can now be
more appropriately written as

(xξ + yη + zζ)m =
m∑
i=0

i∑
j=0

(
m

i

)(
i

j

)
xm−iyi−jzj ξαRη

β
Rζ

γ
R. (3.132)

Figure 3.10. The six color-coded regions of R3for the expansion of the inverse distance in the Hotine con-
figutration. The axes of the reference system centered at the center if the cube exit the cube at the center of the
“butterflies.” Opposite faces have the same appearance in terms of subregions and their color.

Figure 3.11. Exploded view of the six color-coded regions of R3 showing the butterfly-pyramid nature of each
region.
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Substitution of (3.130) and (3.132) into (3.109) finally yields the expansion

1

|r− ρ|
=

∞∑
n=0

n∑
m=0

m∑
i=0

i∑
j=0

(−2)m
(
−1/2

n

)(
n

m

)(
m

i

)(
i

j

)
r2(n−m)xm−iyi−jzj

∞∑
p=0

∞∑
q=0

(
− (2n+ 1) /2

p

)(
− (2n+ 2p+ 1) /2

q

)
1

ξ2n+1
R

(
ζ2
R

ξ2
R

)p(
η2
R

ξ2
R

)q
ξαR η

β
R ζ

γ
R

Defining the numerical coefficients

Dij
nm = (−2)m

(
−1/2

n

)(
n

m

)(
m

i

)(
i

j

)
, (3.133)

the expansion formula can finally be written concisely as

1

|r− ρ|
=

∞∑
n=0

n∑
m=0

m∑
i=0

i∑
j=0

Dnm
ij F̃mijnpq (ξR, ηR, ζR) r2 (n−m) xm−iyi−jzj , (3.134)

where we have also defined the quatities F̃mijn as

F̃mijn (ξR, ηR, ζR) =
∞∑
p=0

∞∑
q=0

Cpqn
ηβ+2q
R ζγ+2p

R

ξ2n−α+2p+2q+1
R

(3.135)

with the numerical coefficient Cpqn given by

Cpqn =

(
− (2n+ 1) /2

p

)(
− (2n+ 2p+ 1) /2

q

)
. (3.136)

3.4.2 Formulation of the potential for an extended body

The expansion (3.134) can now be inserted in the formula of the potential (2.5)

U (r) = G

∫∫∫
V

σ (ρ)

|r− ρ|
dξ dη dζ (3.137)

to get

U (r) = G

∞∑
n=0

n∑
m=0

m∑
i=0

i∑
j=0

Dij
nm r2(n−m) xm−iyi−jzj∫∫∫

V

σ (ρ) F̃mijn (ξR, ηR, ζR) dξ dη dζ (3.138)

Introducing the inertial functions Fmijn defined by

Fmijn =

∫∫∫
V

σ (ρ) F̃mijn (ξR, ηR, ζR) dξR dηR dζR (3.139)

the potential can be finally put into the form

U (r) = G
∞∑
n=1

n∑
m=0

m∑
i=0

i∑
j=0

Dij
nm Fmijn r2(n−m) xm−iyi−jzj . (3.140)

Note that the first summation starts with degree n = 0, but the term generated is ineffective for
the computation of the acceleration and the gravity gradient, since it is constant with respect to
the field point coordinates.
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3.4.3 The First- and Second-Order Gradients (Gravity and Gravity Gradi-
ent)

The first-order gradients can be easily computed from the expression (3.140) of the potential.
Since the function to be differentiated is of the form

rdxaybzc (3.141)

with a = m − i, b = i − j, c = j and d = 2 (n−m) , it will be easier to provide the first- and
second-order partials of this template function.

The results for use in computing the acceleration are

∂

∂x

(
rd xaybzc

)
=
(
d x2 + ar2

)
rd−2xa−1ybzc, (3.142)

∂

∂y

(
rd xaybzc

)
=
(
d y2 + br2

)
rd−2xayb−1zc, (3.143)

∂

∂z

(
rd xaybzc

)
=
(
d z2 + cr2

)
rd−2xaybzc−1. (3.144)

while those for the gravity gradients are

∂2

∂x2

(
rd xaybzc

)
=

[
d (d− 2)

x4

r4
+ d ( 2a+ 1)

x2

r2
+ a (a− 1)

]
rdxa−2ybzc (3.145)

∂2

∂y2

(
rd xaybzc

)
=

[
d (d− 2)

y4

r4
+ d (2b+ 1 )

y2

r2
+ b (b− 1)

]
rdxayb−2zc (3.146)

∂2

∂z2

(
rd xaybzc

)
=

[
d (d− 2)

z4

r4
+ d (2c+ 1 )

z2

r2
+ c (c− 1)

]
rdxaybzc−2 (3.147)

for the diagonal elements, and

∂2

∂y∂x

(
rd xaybzc

)
=

[
d (d− 2)

x2y2

r4
+ bd

x2

r2
+ ad

y2

r2
+ ab

]
rdxa−1yb−1zc (3.148)

∂2

∂z∂x

(
rd xaybzc

)
=

[
d (d− 2 )

x2z2

r4
+ cd

x2

r2
+ ad

z2

r2
+ ac

]
rdxa−1ybzc−1 (3.149)

∂2

∂z∂y

(
rd xaybzc

)
=

[
d (d− 2 )

y2z2

r4
+ cd

y2

r2
+ bd

z2

r2
+ bc

]
rdxayb−1zc−1 (3.150)

for the symmetric, off-diagonal terms.
When numerically evaluating the acceleration and the gravity gradient components efficient

schemes can be devised due to the many different recurrence formulae that can be exploited in
passing to indices one unit higher.

3.4.4 Computation of the Inertial Integrals

The inertial function defined in (3.139) can be computed subject to the fundamental assumption
of constant mass density and, in view of the analysis of Section 3.4, the integration must be
carried out over the six regions R1, R2, ...,R6 defined in (3.121) to (3.122). Each of these regions
is the union of four disjoint subregions, or simplices, as exhibited graphically in the exploded view
of Figure 3.11, which shows that each region is made up of four symmetrically placed, pyramidal
subregions of the same color. These pyramidal simplices share the same vertex and show pairwise
symmetry about it. In some respect their configuration is reminiscent of a butterfly, so we will
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Figure 3.12. Example of one of the subregions in which the body must be separated to ensure convergence of
the series expansion inside the HOtine sphere.

R++
k R−−k R+−

k R−+
k

R1 ξ ≥ 0, η ≥ 0 ξ ≤ 0, η ≤ 0 ξ > 0, η < 0 ξ < 0, η > 0

R2 ξ ≥ 0, ζ ≥ 0 ξ ≤ 0, ζ ≤ 0 ξ > 0, η < 0 ξ < 0, η > 0

R3 η ≥ 0, ζ ≥ 0 η ≤ 0, ζ ≤ 0 η ≥ 0, ζ < 0 η < 0, ζ > 0

R4 η ≥ 0, ξ ≥ 0 η ≤ 0, ξ ≤ 0 η ≥ 0, ξ < 0 η < 0, ξ > 0

R5 ζ ≥ 0, ξ ≥ 0 ζ ≤ 0, ξ ≤ 0 ζ ≥ 0, ξ < 0 ζ < 0, ξ > 0

R6 ζ ≥ 0, η ≥ 0 ζ ≤ 0, η ≤ 0 ζ ≥ 0, η < 0 ζ < 0, η < 0

Table 3.3. Coordinates restrictions defining the 24 simplices. Column headings show the subregion’s code.

refer to each of the six regions as showing a pyramidal-butterfly shape. As a consequence, in
order to carry out the 3D integration as indicated in (3.139) to compute the inertial functions, the
volume of the body must be divided into 24 disjoint simplices. This is shown in the case of just
one subregion for the nucleus of comet 67P in Figure 3.12. The separation of the triangular mesh
into 24 submeshes has required intense work. Note, however, that since the center of expansion
for the Hotine configuration is external to the body, not all 24 subregions will be generated by
the regional subdivision.

The 24 simplices, or subregions into which the fundamental six regions are subdivided have
been defined as per Tables 3.3 and 3.4.

A B C D E F

R01 R++
1 R05 R+−

4 R09 R−−1 R13 R−+
4 R17 R++

5 R21 R−+
5

R02 R++
2 R06 R++

3 R10 R−+
2 R14 R−+

3 R18 R++
6 R22 R−−6

R03 R+−
1 R07 R++

4 R11 R−+
1 R15 R−−4 R19 R+−

5 R23 R−−5

R04 R+−
2 R08 R+−

3 R12 R−−2 R16 R−−3 R20 R+−
6 R24 R−+

6

Table 3.4. Association of subregional code with simplex order number, four for each of the faces A, B, C, D, E,
F of the cube.
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To start let us rewrite equation (3.139) in the form

Fmijn = σ

∞∑
p=0

∞∑
q=0

Cpqn F
mij
npq , (3.151)

where we have isolated the core of the computation through the integral

Fmijnpq =

∫∫∫
V

ηβ+2qζγ+2p

ξ2n−α+2p+2q+1
dξ dη dζ. (3.152)

In view of what has just been said, the actual inertial functions Fmijn of the full body will result
from the sum of up to 24 contributions of the form of equation (3.151), where each contribution
is associated with the integral (3.152) evaluated over one of the 24 simplices. In order not to
overload the notation, while developing a method for the evaluation of the integral (3.152) no
explicit reference will be made to the specific simplex to which it applies.

The strategy we will follow is the same as that adopted in the case of the inertial integrals in
Section 3.3.2: the volume integral will be reduced to surface integrals, and these in turn to line
integrals.

Volume to surface integral

In order to reduce (3.152) from an integral over the volume to an integral of the surface bounding
the volume we make use of Gauss’s divergence theorem (3.66). In this present case we recall
that the volume is the volume of one of the simplices, or subregions in which the body has been
subdivided. The vector field T is obtained as the solution the PDE

∇ ·T =
∂Tξ
∂ξ

+
∂Tη
∂η

+
∂Tζ
∂ζ

=
ηβ+2qζγ+2p

ξ2n−α+2p+2q+1
(3.153)

twhere the right hand side is the integrand appearing in (3.152). We can take for simplicity any
of the three solutions

(A) T = Tξξ̂ =
1

− (2n− α+ 2p+ 2q)

ηβ+2qζγ+2p

ξ2n−α+2p+2q
(1, 0, 0)T , (3.154)

(B) T = Tηη̂ =
1

β + 2q + 1

ηβ+2q+1ζγ+2p

ξ2n−α+2p+2q+1
(0, 1, 0)T , (3.155)

(C) T = Tζ ζ̂ =
1

γ + 2p+ 1

ηβ+2qζγ+2p+1

ξ2n−α+2p+2q+1
(0, 0, 1)T , (3.156)

where the field has been chosen to have only one component, each of the three solutions being
along one of the coordinate axes. Note that form (A) has been obtained by integrating w.r.t.
ξ, form (B) has been obtained by integrating w.r.t. η, and form (C) has been obtained by
integrating w.r.t. ζ. Substitution of the RHS’s of (3.154), (3.155) and (3.156) into the divergence
theorem formula leads to the equations

(A) Fmijnpq =
1

− (2n− α+ 2p+ 2q)

∑
f

∫∫
Σf

ηβ+2qζγ+2p

ξ2n−α+2p+2q
ξ̂ · dσ, (3.157)

(B) Fmijnpq =
1

β + 2q + 1

∑
f

∫∫
Σf

ηβ+2q+1ζγ+2p

ξ2n−α+2p+2q+1
η̂ · dσ, (3.158)

(C) Fmijnpq =
1

γ + 2p+ 1

∑
f

∫∫
Σf

ηβ+2qζγ+2p+1

ξ2n−α+2p+2q+1
ζ̂ · dσ. (3.159)
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The above formulae can now be further simplified through the use of Stokes theorem in
Green’s form.

Surface to line integral

The next step in the reduction scheme is the application of Stokes’ theorem. The preliminary
step is to solve the PDE

∇×H = T (3.160)

or, component-wise,

∂Hζ

∂η
− ∂Hη

∂ζ
= Tξ, (3.161)

∂Hξ

∂ζ
−
∂Hζ

∂ξ
= Tη, (3.162)

∂Hη

∂ξ
−
∂Hξ

∂η
= Tζ . (3.163)

In the three case being carried along the vector field T only a one component, and this
is aligned with a coordinate axis. Therefore we ony need to solve one of the three component
equations of equation (3.160). Furthermore, we are also free to zero out one of the two components
of the field H that appear in the PDE. Thus we always select to kill the component with the
negative sign. As a result we find the three solutions

(A) Hζ =
1

β + 2q + 1

ηβ+2q+1ζγ+2p

ξ2n−α+2p+2q
, (3.164)

(B) Hξ =
1

γ + 2p+ 1

ηβ+2q+1ζγ+2p+1

ξ2n−α+2p+2q+1
, (3.165)

(C) Hη = − 1

2n− α+ 2p+ 2q

ηβ+2qζγ+2p+1

ξ2n−α+2p+2q
. (3.166)

Substitution of these expression in the formula of Stokes’ theorem leads to

(A) Fmijnpq =
−1

(2n− α+ 2p+ 2q) (β + 2q + 1)

∑
f

3∑
k=1

∫
efk

ηβ+2q+1ζγ+2p

ξ2n−α+2p+2q
dζfk

(3.167)

(B) Fmijnpq =
1

(β + 2q + 1) (γ + 2p+ 1)

∑
f

3∑
k=1

∫
efk

ηβ+2q+1ζγ+2p+1

ξ2n−α+2p+2q+1
dξfk

(3.168)

(C) Fmijnpq =
−1

(γ + 2p+ 1) (2n− α+ 2p+ 2q)

∑
f

3∑
k=1

∫
efk

ηβ+2qζγ+2p+1

ξ2n−α+2p+2q
dηfk

(3.169)
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3.4.5 Evaluation of the line integrals

The line integrals involved in the expressions (3.167), (3.168) and (3.169) can be evaluated using
the same edge parameterization (3.91) that was introduced for the Brillouin case, but written as

rfk,k+1 (t) =

 ξfk (t)
ηfk (t)
ζfk (t)

 =

 ξfk + (ξf,k+1 − ξfk) t
ηfk + (ηf,k+1 − ηfk) t
ζfk + (ζf,k+1 − ζfk) t

 , 0 ≤ t ≤ 1. (3.170)

We will focus on the first case, described in equation (3.167), which can be written as

Fmijnpq =
−1

(2n− α+ 2p+ 2q) (β + 2q + 1)

∑
f

3∑
k=1

Emijnpq (f, k) (3.171)

after introduction of the auxiliary quantity

Emijnpq (f, k) =

∫
efk

ηβ+2q+1
fk ζγ+2p

fk

ξ2n−α+2p+2q
fk

dζfk (3.172)

which is precisely the integral we need to evaluate. Recall that efk indicates edge k of face f of
the polyhedron subregion being examined.

Te keep the notation simple and general, introduce new indices according to4

u = β + 2q + 1, (3.173)
v = γ + 2p, (3.174)
w = 2n− α+ 2p+ 2q, (3.175)

so that
Emijnpq (f, k) =

∫
efk

ηu (t) ζv (t)

ξw (t)
dζfk (t) , (3.176)

where for brevity’s sake we have neglected to write the face and edge indices. Since

ξ (t) = ξfk + ∆ξfk t (3.177)
η (t) = ηfk + ∆ηfk t (3.178)
ζ (t) = ζfk + ∆ζfk t (3.179)

it follows that
Emijnpq (f, k) = ∆ζfk

∫
efk

(ηfk + ∆ηfk t)
u (ζfk + ∆ζfk t)

v

(ξfk + ∆ξfk t)
w dt. (3.180)

Now the integrand can be written using the binomial expansion to handle the product at the
numerator, but the denominator will be kept unaltered, since the use of Bernstein’s polynomial
will be of no use in this context since they only apply to finite binomial expansions, not to the
infinite binomial series that would ensue from the expansion of the denominator. We then have

(ηfk + ∆ηfk t)
u (ζfk + ∆ζfk t)

v

(ξfk + ∆ξfk t)
w = ηufkζ

v
fk

(
1 +

∆ηfk
ηfk

t
)u (

1 +
∆ζfk
ζfk

t
)v

(ξfk + ∆ξfkt)
w

=
ηufkζ

v
fk

(ξfk + ∆ξfkt)
w

u∑
k

v∑
l

(
u

k

)(
v

l

)(
∆ηfk
ηfk

)k (∆ζfk
ζfk

)l
tk+l

(3.181)
4Similar definitions can be made for cases (B) and (C) , the development that follows remaining unaltered.
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Emijnpq (f, k) =
u∑
k

v∑
l

(
u

k

)(
v

l

)(
∆ηfk
ηfk

)k (∆ζfk
ζfk

)l
ηufkζ

v
fk∆ζfk

1∫
0

tk+l

(ξfk + ∆ξfkt)
w dt. (3.182)

A search in the tables of integrals of Dwight (1989) shows that∫
xm

(a+ bx)n
dx =

1

bm+1

m∑
s=0

(
m

s

)
(−a)s

(a+ bx)m−n−s+1

m− n− s+ 1
, (3.183)

except when s = m− n+ 1, in which case the corresponding term in the summation is

(−a)s
(

m

n− 1

)
log |a+ bx| . (3.184)

Then, with m ≡ k + l and n ≡ w,

Emijnpq (fk) =
u∑
k

v∑
l

(
u

k

)(
v

l

)(
∆ηfk
ηfk

)k (∆ζfk
ζfk

)l
ηufkζ

v
fk

∆ζfk

∆ξk+l+1
fk

(3.185)

k+l∑
s=0

(−ξfk)s


(
k + l

s

)
ξk+l−w−s+1
fk

k + l − w − s+ 1

[(
1 +

∆ξfk
ξfk

)k+l−w−s+1

− 1

]
, s 6= k + l − w + 1(

k + l

w − 1

)
log

∣∣∣∣1 +
∆ξfk
ξfk

∣∣∣∣ , s = k + l − w + 1

The case may occur in which ∆ξfk = 0. Then the integral is much simpler and from

1∫
0

xm

an
dx =

1

m+ 1

xm+1

an

∣∣∣∣1
0

=
1

(m+ 1) an
(3.186)

it follows that

Emijnpq (fk) =
u∑
k

v∑
l

(
u

k

)(
v

l

)(
∆ηfk
ηfk

)k (∆ζfk
ζfk

)l ηufkζvfk
ξk+l
fk

∆ζfk
(k + l + 1)

. (3.187)



Chapter 4
The Gravitational Potential - 3
Expansion in Spherical Harmonics

4.1 Introduction

It has been seen in the previous Chapter that expansions for the external and internal potential
can be fully carried out in Cartesian coordinates in terms of inertial integrals and inertial func-
tions. These are methodologies not in common use within the astrodynamical or geophysical
communities. It is therefore of interest to apply the methods developed in Chapter 3, i.e., the
computation of the volume integrals in the definitions of the inertial integrals and functions, to
the case of the more widely used expansions of the potential in Spherical Harmonics. In particu-
lar, this Chapter is concerned with the numerical evaluation of the Stokes coefficients associated
with both the internal and the external gravitational potential field.

Previous work in this area has been done by Werner (1997) using the integration method of
Lien and Kajiya (1984), but is limited to the external potential. Subsequent work, more of a
refinement of Werner’s pioneering analysis, has been presented by Tsoulis et al. (2009) and Jamet
et al. (2010). No study has been found related to the computation of the harmonic coefficients of
the spherical harmonic expansion of the internal potential, except for an approximation method
introduced in Takahashi and Scheeres (2013) in the evaluation of the volume integrals over the
simplices. Other work has also been done by Takahashi and Scheeres (2014) in the way of
determining the Stokes coefficients of the internal potential by a process of numerical fitting to
a three-dimensional grid of data generated by the polyhedron method of Werner introduced in
Chapter 2. Thus, a direct method to evaluate the Stokes coefficients of the internal gravitational
field for an extended body modeled as a homogeneous polyhedron is not currently available. The
following analysis will fill this gap.

4.2 The Representation of the Gravitational Field in Spherical
Harmonics

The expansion of the potential in spherical harmonics is usually separated into the internal
potential U i and the external potential U e. The latter expansion is valid outside the Brillouin
sphere, already introduced in the previous Chapter, while the expansion of the internal potential
U i is valid inside what we have introduced there as the Hotine sphere.

In terms of spherical coordinates, with r indicating the radial distance, φ the latitude and λ
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the East-longitude, these expansions can be written as

U e (r) =
GM

R

∞∑
n=0

n∑
m=0

(
R

r

)n+1

[Cenm cos (mλ) + Senm sin (mλ)]Pnm (sinφ) (4.1)

and

U i (r) =
GM

R

∞∑
n=1

n∑
m=0

( r
R

)n [
Cinm cos (mλ) + Sinm sin (mλ)

]
Pnm (sinφ) (4.2)

where GM is the gravitational factor, R a typical length of the extended body which simply acts
as a scale factor, Pnm (sinφ) are the Associated Legendre Functions of degree n and order m
defined as Pnm (µ) =

(
1− µ2

)m/2
/ (2nn!) dm

(
µ2 − 1

)n
/dµm and the constants Cenm, Senm, Cinm

and Sinm are known as the Stokes coefficients. Their fully normalized expressions in terms of
volume integrals over the body are(

Cenm
Senm

)
=

2− δ0m

M

(n−m)!

(n+m)!

∫∫∫
V

σ (ρ, φ, λ)
( ρ
R

)n( cos (mλ)
sin (mλ)

)
Pnm (sinφ) dV (4.3)

(
Cinm
Sinm

)
=

2− δ0m

M

(n−m)!

(n+m)!

∫∫∫
V

σ (ρ, φ, λ)

(
R

ρ

)n+1(
cos (mλ)
sin (mλ)

)
Pnm (sinφ) dV (4.4)

where δij is the Kronecker delta.
In Space Geodesy, as a scaling device for numerical representation purposes, both the ALF’s

and the Stokes coefficients are used in their fully normalized versions (Heiskanen and Moritz,
1967), denoted with an overbar. The relationships between the unnormalized and the fully
normalized quantities are

P̄nm = NnmPnm, (4.5)
C̄knm = Cknm/Nnm, (4.6)
S̄knm = Sknm/Nnm, (4.7)

where the normalization factor Nnm is defined

Nnm =

√
(2− δ0m) (2n+ 1)

(n−m)!

(n+m)!
. (4.8)

In order to apply the methods developed in the previous chapter, we need to transform the
volume integrals from spherical polar coordinates to Cartesian coordinates. The relationship
between the two sets is

ξ = ρ cosφ cosλ, (4.9)
η = ρ cosφ sinλ, (4.10)
ζ = ρ sinφ, (4.11)

where we have used ρ to indicate the distance from the origin to a mass element of the body.
Note that the origin of the coordinate system is of course the same for the expansion of the
potential as for the definition of the Stokes coefficients. Working under the same hypothesis as
before, i.e., under the assumption of constant density, σ (ρ) can be factored out of the integral
sign and the integrand functions (here effectively a two-dimensional vector) can then be defined
as the two regular solid spherical harmonics(

cenm (ρ)
senm (ρ)

)
=
( ρ
R

)n( cos (mλ)
sin (mλ)

)
Pnm (sinφ) (4.12)
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for the Brillouin case, and the two irregular solid spherical harmonics(
cinm (ρ)
sinm (ρ)

)
=

(
R

ρ

)n+1(
cos (mλ)
sin (mλ)

)
Pnm (sinφ) (4.13)

for the Hotine case. These harmonic functions are pairwise related by Kelvin’s theorem.
The Stokes coefficients then assume the form(

Cenm
Senm

)
=

2− δ0m

M

(n−m)!

(n+m)!
σ

∫∫∫
V

(
cenm (ρ)
senm (ρ)

)
dV (4.14)

and (
Cinm
Sinm

)
=

2− δ0m

M

(n−m)!

(n+m)!
σ

∫∫∫
V

(
cinm (ρ)
sinm (ρ)

)
dV (4.15)

The key to the method introduced in this chapter is the transformation of the spherical
harmonics cnm (φ, λ) and snm (φ, λ) from spherical coordinates to Cartesian coordinates. We
will consider the transformation of the surface harmonics first.

4.3 Cartesian Formulation of Surface Spherical Harmonics

Expressions in Cartesian coordinates for the surface spherical harmonics are known, although
seldom used. A useful reference in this regard is still MacMillan (1930). Here we follow a direct
method in a self-consistent manner. In order to isolate the angular dependence of the solid
harmonic functions defined in equations (4.12) and (4.13), introduce the fundamental surface
spherical harmonics

c̃nm (φ, λ) = cos (mλ)Pnm (sinφ) , (4.16)
s̃nm (φ, λ) = sin (mλ)Pnm (sinφ) , (4.17)

so that the regular solid harmonics can be rewritten as

cenm (ρ) =
( ρ
R

)n
c̃nm (ρ̂) , (4.18)

senm (ρ) =
( ρ
R

)n
s̃nm (ρ̂) , (4.19)

and the irregular solid harmonics as

cinm (ρ) =

(
R

ρ

)n+1

c̃nm (ρ̂) , (4.20)

sinm (ρ) =

(
R

ρ

)n+1

s̃nm (ρ̂) . (4.21)

We need to use series expansion for the trigonometric functions and the Associated Legendre
Functions appearing in the spherical harmonics (4.16) and (4.17). These are the well-known
expansions (Abramowitz and Stegun, 1965) of sines and cosines of multiples of an angle in terms
of that angle

cos (mλ) =

bm2 c∑
k=0

(−1)k
m!

(2k)! (m− 2k)!
cosm−2k λ sin2k λ, (4.22)

sin (mλ) =

bm−1
2 c∑

k=0

(−1)k
m!

(2k + 1)! (m− 2k − 1)!
cosm−2k−1 λ sin2k+1 λ, (4.23)
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and a suitable representation of the ALF that will facilitate the conversion, such as

Pnm (sinφ) =
cosm φ

2n

bn−m
2 c∑
l=0

(−1)l
(2n− 2l)!

l! (n− l)! (n−m− 2l)!
sinn−m−2l φ. (4.24)

Substitution of these expressions into (4.16) and (4.17) yields

c̃nm (ρ̂) =

bm2 c∑
k=0

bn−m
2 c∑
l=0

Kc,kl
nm ĉklnm (ρ̂) (4.25)

s̃nm (ρ̂) =

bm−1
2 c∑

k=0

bn−m
2 c∑
l=0

Ks,kl
nm ŝklnm (ρ̂) (4.26)

where

Kc,kl
nm = (−1)k+l 1

2n
m!

(2k)! (m− 2k)!

(2n− 2l)!

l! (n− l)! (n−m− 2l)!
, (4.27)

Ks,kl
nm = (−1)k+l 1

2n
m!

(2k + 1)! (m− 2k − 1)!

(2n− 2l)!

l! (n− l)! (n−m− 2l)!
(4.28)

and

ĉklnm (φ, λ) = cosm−2k λ sin2k λ cosm φ sinn−m−2l φ, (4.29)

ŝklnm (φ, λ) = cosm−2k−1 λ sin2k+1 λ cosm φ sinn−m−2l φ. (4.30)

Now transform equation (4.29) as follows

ĉklnm (ρ̂) = cosm−2k λ sin2k λ cosm φ sinn−m−2l φ

=
[
cosm φ cosm−2k λ

] [
sin2k λ

] [
sinn−m−2l φ

]
=
[
cosm−2k φ cosm−2k λ

] [
cos2k φ sin2k λ

] [
sinn−m−2l φ

]
=

[ρ cosφ cosλ]m−2k

ρm−2k

[ρ cosφ sinλ]2k

ρ2k

[ρ sinφ]n−m−2l

ρn−m−2l

leading finally to

ĉklnm (ρ̂) =

(
ξ

ρ

)m−2k (η
ρ

)2k (ζ
ρ

)n−m−2l

=
ξm−2kη2kζn−m−2l

ρn−2l
. (4.31)

A similar transformation of equation (4.30) for ŝklnm (ρ̂) leads to the following expression

ŝklnm (ρ̂) =

(
ξ

ρ

)m−2k−1(η
ρ

)2k+1(ζ
ρ

)n−m−2l

=
ξm−2k−1η2k+1ζn−m−2l

ρn−2l
. (4.32)

The last two equations will now be used during the transformation process of all forms of the
Stokes coefficients from spherical to Cartesian coordinates.
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Figure 4.1. Configuration for the Brillouin expansion. The Brillouin sphere with radius rB is shown centered
at O ≡ C containing the entire body.

4.4 The Stokes-Brillouin coefficients for the External Potential

On the basis of the results from the previous Section, the Stokes coefficients of the external
potential—which we shall refer to as the Stokes-Brillouin coefficients—can now be written as

Cenm =
2− δ0m

MRn
(n−m)!

(n+m)!
σ

bm2 c∑
k=0

bn−m
2 c∑
l=0

Kc,kl
nm Ce,klnm , (4.33)

Senm =
2− δ0m

MRn
(n−m)!

(n+m)!
σ

bm−1
2 c∑

k=0

bn−m
2 c∑
l=0

Ks,kl
nm Se,klnm , (4.34)

where the coefficients Ce,klnm and Se,klnm have been defined as

Ce,klnm =

∫∫∫
V

ρ2lξm−2kη2kζn−m−2l dξ dη dζ, (4.35)

Se,klnm =

∫∫∫
V

ρ2lξm−2k−1η2k+1ζn−m−2l dξ dη dζ. (4.36)

The evaluation of these integrals is clearly the crucial point of the method being developed.
The first factor of the integrands in (4.35) and (4.36) can be developed as the integer power of
a trinomial to yield

ρ2l =
(
ξ2 + η2 + ζ2

)l
=

l∑
p=0

p∑
q=0

(
l

p

)(
p

q

)
ξ2(l−p)η2(p−q)ζ2q. (4.37)

We can then write

Ce,klnm =

l∑
p=0

p∑
q=0

Ke
lpq

∫∫∫
V

ξm−2(k−l+p)η2(k+p−q)ζn−m−2(l−q) dξ dη dζ, (4.38)
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and

Se,klnm =

l∑
p=0

p∑
q=0

Ke
lpq

∫∫∫
V

ξm−2(k−l+p)−1η2(k+p−q)+1ζn−m−2(l−q) dξ dη dζ, (4.39)

in both of which we have used the numerical coefficients Ke
lpq defined by

Ke
lpq =

(
l

p

)(
p

q

)
. (4.40)

A close look at (4.38) and (4.39) reveals that the triple integrals involved are the very same
inertial integrals (3.46) developed in the previous Chapter. In fact

Ce,klnm =
l∑

p=0

p∑
q=0

Ke
lpq Im−2(k−l+p),2(k+p−q),n−m−2(l−q) (4.41)

and

Se,klnm =

l∑
p=0

p∑
q=0

Ke
lpq Im−2(k−l+p)−1,2(k+p−q)+1,n−m−2(l−q). (4.42)

What becomes apparent at this point is that the Stokes coefficients are expressed here as finite
linear combinations of the inertial integrals,—a well-known result in the case of the external
potential from (Hotine, 1969)—which has here been found in a constructive manner.

4.5 The Stokes-Hotine coefficients for the Internal Potential

Figure 4.2. Configuration for the Hotine expansion. The Hotine sphere with radius rH is shown centered at a
point C external to the body, the sphere being tangent to the body itself.

On the basis of the results of Section 4.3, the Stokes coefficients (4.15) of the internal poten-



4.5. The Stokes-Hotine coefficients for the Internal Potential 49

tial—which we shall refer to as the Stokes-Hotine coefficients—can now be written as

Cinm = (2− δ0m)
(n−m)!

(n+m)!

Rn+1

M

bm2 c∑
k=0

bn−m
2 c∑
l=0

Kc,kl
nmC

i,kl
nm , (4.43)

Sinm = (2− δ0m)
(n−m)!

(n+m)!

Rn+1

M

bm−1
2 c∑

k=0

bn−m
2 c∑
l=0

Ks,kl
nm Si,klnm , (4.44)

where the coefficients Ci,klnm and Si,klnm have been defined as

Ci,klnm = σ

∫∫∫
V

ξm−2kη2kζn−m−2l

ρ2n−2l+1
dV, (4.45)

Si,klnm = σ

∫∫∫
V

ξm−2k−1η2k+1ζn−m−2l

ρ2n−2l+1
dV. (4.46)

The integrands on the RHS’s of these equations are of the same form as already encountered
in the previous Chapter when dealing with the inertial functions, except for the fact that the
numerator contains three, rather than two factors. In particular, the expansion of the factor
ρ−(n−2l+1) can be carried out according the the regional subdivision of R3 already introduced in
Section 3.4.1. The result can be obtained by a direct extension of the expansion (3.130), i.e., by
performing the replacement 2n+ 1 −→ 2n− 2l + 1, as

1

ρ2n−2l+1
=
∞∑
p=0

∞∑
q=0

Ki,lpq
n

1

ξ2n−2l+1
R

(
ζ2
R

ξ2
R

)p(
η2
R

ξ2
R

)q
, (4.47)

where we have used the numerical coefficient Ki,lpq
n defined by

Ki,lpq
n =

(
− (2n− 2l + 1) /2

p

)(
− (2n− 2l + 2p+ 1) /2

q

)
. (4.48)

For the regional mapping associated with the coordinates ξR, ηR, ζR reference should be made to
Table 3.1.

We can now write the coefficients (4.45) and (4.46) in the form

Ci,klnm = σ

∞∑
p=0

∞∑
q=0

Ki,lpq
n

∫∫∫
V

1

ξ2n−2l+1
R

(
ζ2
R

ξ2
R

)p(
η2
R

ξ2
R

)q
ξm−2kη2kζn−m−2l dξ dη dζ, (4.49)

Si,klnm = σ

∞∑
p=0

∞∑
q=0

Ki,lpq
n

∫∫∫
V

1

ξ2n−2l+1
R

(
ζ2
R

ξ2
R

)p(
η2
R

ξ2
R

)q
ξm−2k−1η2k+1ζn−m−2l dξ dη dζ. (4.50)

As in Section 3.4.1, in order to use the same set of “regional” coordinates, the exponents of
the original coordinates ξ, η, ζ in (4.49) and (4.50) need to be remapped. In the first case (4.49)
we introduce the exponents α, β, γ with a C lower index, in the second case (4.50) we use the
lower index S. The exponents are explicitly defined respectively in Table 4.1 and Table 4.2. The
resulting compact expressions are

Ci,klnm = σ
∞∑
p=0

∞∑
q=0

Ki,lpq
n

∫∫∫
V

ηβC+2q
R ζγC+2p

R

ξ2n−2l+2p+2q+1−αC
R

dξ dη dζ, (4.51)
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R1 R2 R3 R4 R5 R6

αC = m− 2k m− 2k 2k 2k n−m− 2l n−m− 2l

βC = 2k n−m− 2l n−m− 2l m− 2k m− 2k 2k

γC = n−m− 2l 2k m− 2k n−m− 2l 2k m− 2k

Table 4.1. Mapping of the exponents of the source point coordinates to the standardized naming (case of the
Cnm coefficients).

R1 R2 R3 R4 R5 R6

αS = m− 2k − 1 m− 2k − 1 2k + 1 2k + 1 n−m− 2l n−m− 2l

βS = 2k + 1 n−m− 2l n−m− 2l m− 2k − 1 m− 2k − 1 2k + 1

γS = n−m− 2l 2k + 1 m− 2k − 1 n−m− 2l 2k + 1 m− 2k − 1

Table 4.2. Mapping of the exponents of the source point coordinates to the standardized naming (case of the
Snm coefficients).

and

Si,klnm = σ
∞∑
p=0

∞∑
q=0

Ki,lpq
n

∫∫∫
V

ηβS+2q
R ζγS+2p

R

ξ2n−2l+2p+2q+1−αS
R

dξ dη dζ. (4.52)

As in the case of the Stokes Brillouin coefficients, also in this case we identify in (4.51) and
(4.52) the presence of the integrals Fmijnpq defined in (3.152). In fact, note that in terms of the
coefficient Cpqn defined in equation (3.136) we have that

Ki,lpq
n = Cpqn−l (4.53)

and both Ci,klnm and Si,klnm can be related to the inertial functions defined in equation (3.151) as

Ci,klnm = σ

∞∑
p=0

∞∑
q=0

Cpqn−l F
mij
(n−l)pq (RC) = Fmijn−l (RC) (4.54)

and

Si,klnm = σ

∞∑
p=0

∞∑
q=0

Cpqn−l F
mij
(n−l)pq (RS) = Fmijn−l (RS) , (4.55)

where with the symbols RC and RS we have explicitly added the dependence on the exponent
mapping of Table 4.1 and Table 4.2, respectively, for the computation of the inertial functions
Fmijn−l given by equation (3.139) and successive developments found in the previous Chapter.

We conclude by noting that, as in the Stokes Brillouin coefficients, the Stokes Hotine coeffi-
cients can be expressed as

Cinm = (2− δ0m)
(n−m)!

(n+m)!

Rn+1

M

bm2 c∑
k=0

bn−m
2 c∑
l=0

Knm
c,klFmijn−l (RC) , (4.56)

and

Sinm = (2− δ0m)
(n−m)!

(n+m)!

Rn + 1

M

bm−1
2 c∑

k=0

bn−m
2 c∑
l=0

Ks,kl
nm Fmijn−l (RS) , (4.57)
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which shows that they are finite linear combinations of the inertial functions derived in the
previous Chapter. The fully normalized versions of the Stokes Hotine coefficients can easily be
found with the use of the relationships (4.6) and (4.7).

The acceleration and the gravity gradients can easily be computed using very well-known
formulae and making efficient use of recurrence relations to compute the Associated Legendre
Function, for which reference can be made to Fantino and Casotto (2009) or to Fukushima (2012).
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Chapter 5
Orbit Dynamics Near 67P

5.1 Introduction

Characterizing the dynamical space around 67P is of great importance for two reasons. The
first is the understanding of the dynamics of natural ejecta, or even the dynamics of capture (or,
possibly, recapture) of gas or dust particles of various sizes. In particular, it is of great interest
to assess the presence of stable regions in which the ejecta might accumulate, which would
explain their observation. The second reason is the desire to measure the system parameters in
order to make it possible to fly exploration missions close around the body. Of course this is
an iterative process, since flying close means knowing the environmental parameters, but these
parameters can only be measured by “sensing,” or probing the dynamics in the near regions. What
actually is done in practice is that the parameters are determined progressively as the probe get
closer, starting with some very rough assumptions—like a homogeneous mass distribution—
while orbiting far away or imaging the body even from Earth and using the shape information
as we have done in the previous chapters to generate a gravitational field for it. Then, knowing
the system parameters, one can study the dynamical environment and search, for instance, for
periodic orbits, possibly of a stable nature, which can be used to safely and economically park
a spacecraft while it is performing scientific observations. For these reasons, this Chapter will
address the problem of identifying periodic orbits around the nucleus of 67P.

For these reasons, this Chapter will introduce the dynamical equations to study the orbital
evolution of a spacecraft and natural particles in the near space of 67P. The various components
of the force field will be described and assessed in terms of their relevance for the purposes at
hand. The dynamical equations will also include the sensitivity equations, what is known as the
state transition matrix, which will also be formulated for the special case in which the integration
is carried out in a non-inertial system. This will be a preliminary step to the Section devoted
to the introduction of an algorithm for the computation of periodic orbits around the nucleus of
67P. Some general remarks will be made about the conditions of stability of these orbits. As a
special case, stationary orbits will also be briefly discussed.

5.2 Force Modeling

To integrate orbits around the nucleus of 67P, we first have to define the forces that act on the
orbiter in order to write the equations of motion. In the following, we are going to consider only
the accelerations acting on the orbiter, factoring out its mass mS , considered to be negligible
with respect to the mass M67P . The accelerations acting on a satellite can be distinguished in
two main categories: the gravitational accelerations and the non-gravitational accelerations.
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The relevant gravitational accelerations acting on the orbiter are the acceleration a67P due
to the mass distribution and the third-body acceleration aS due to the Sun. We will not consider
the perturbations of other planets for simplicity, even though the comet could enter the sphere
of influence of one of them—Jupiter in particular,—making its gravitational attraction a major
effect. The passage through the asteroid belt could also produce significant perturbations.

The non-gravitational forces acting on the spacecraft are due the acceleration caused by the
solar radiation pression aSP , the drag acceleration aD due to the gas and dust present around
the cometary nucleus and the outgassing in the form of jets near perihelion. If the aim is to find
periodic orbits closer than 10 km from the surface of the comet, such that their period is shorter
than a few Earth days, we can make the assumption that the reference frame centered at the
center of mass of the comet is inertial, thus neglecting its motion around the Sun. In this inertial
reference frame, the differential equations of motion are

ẋ = a67P + aS + aSP + aD (5.1)

which are to be integrated from given initial conditions x(t0) = x0. The different force models
at play will now be briefly described.

5.2.1 Third body effects

We can treat the third body forces of external bodies by considering these bodies as point masses.
In the reference frame with origin O centered on the center of mass of the dominant body, the
third body acceleration aTB due to the action of N bodies can be expressed as (Danby, 1976;
Roy, 2004; Battin, 1989; Vallado, 2001)

aTB = G
N∑
i

mi

(
ri − r

|ri − r|3
− ri
r3
i

)
, (5.2)

where mi and ri are respectively the mass and the position of the ith perturbing body, and r is
the position of the spacecraft. In the present case, the only perturbing body worth considering
is the Sun, and thus the formula we need is simply

aS = GmS

(
rS − r

|rS − r|3
− rS
r3
S

)
. (5.3)

The difference inside the parenthesis can get very small, especially in the present case, where
the size of the orbit of the spacecraft around the nucleus is less than 10 km. As formulated in
equation (5.3) the difference in parenthesis can be quickly driven to zero by the finite numerical
representation on a computing machine—which would cause a possibly fatal loss of significant
digits. This singularity can be avoided by adopting the regularized Encke-Battin formulation
(Battin, 1989)

aS = − GmS

|rS − r|3
[r + f (qS) rS ] , (5.4)

where the auxiliary variable qS and its function f (qS) are defined by

qS =
(r− 2rS) · r

rS · rS
, (5.5)

f (qS) = qS
3 + 3qS + q2

S

1 + (1 + qS)3/2
. (5.6)
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5.2.2 Drag force

The drag force is caused by the interaction of the satellite with the gas and the dust particles
that surround the body around which it is orbiting. The drag force

FD = −1

2
ρV 2

r S (CDa−CLb) (5.7)

where ρ is the density of the gas, CD is the drag coefficient, CL is the lift coefficient, S is the
cross section area of the satellite, and Vr is the relative velocity of the satellite with respect to
the gas and a is its unit vector. The unit vector b is the direction in which the lift force acts.
However, since the lift forces are in this case negligible with respect to the drag forces, we can
safely set CL = 0. It is clear that when approaching perihelion, this contribution will increase
because of the higher outgassing activity in the vicinity of the Sun. This will increase the density
and velocity of the surrounding gas, effectively increasing the drag force acting on the orbiter.
Unfortunately, a density model of the gas surrounding the comet 67P is not yet available. We
can just make suppositions on the magnitude of such force. This is also the reason why we did
not take into account this contribution when integration the equations of motion. This formula
is quadratic in the relative velocity because, when orbiting Earth, the velocity of the satellite are
on the order of 10 km/s. In our case, the velocities involved are four orders of magnitudes lower.
This means probably means that the best model of the drag force might be the one linear in the
relative velocity Vr.

5.2.3 Solar radiation pressure

The solar radiation pressure produces a force acting on the satellite due to the absorption,
reflection and scattering of the photons hitting the satellite. It can be described as a momentum
flux P on the satellite, and has a value PEarth = 9 · 10−6 N/m2 at 1 AU and PMars = 4 · 10−6

N/m2 at 1.52 AU. The force of the direct solar radiation pressure from the Sun on a spherically
symmetric satellite is well modelled by Tapley et al. (2004)

FRP = −P (1 + η)Aνu, (5.8)

where P is the momentum flux from the Sun, A is the cross section area of the satellite normal
to the Sun, different from the cross section area S used in the drag force formula, η is the
reflectivity coefficient, or albaedo, u is the unit vector pointing from the satellite to the Sun, and
ν is the eclipse factor, that is bounded between 0 (satellite in full shadow) and 1 (satellite in full
sunlight). The model can surely be improved by modeling the force acting on the satellite (Gini,
2014) when it passes the penumbra region. However, this is goes beyond our needs and will not
be further considered.

5.3 The Equations of Motion and the State Transition Matrix

The equations of motion necessary to propagate the initial state of a spacecraft in a specific
acceleration field a can be written in general form as

ẋ(t) = f(x,p, t), x(t0) = x0, (5.9)

where as usual x is the dynamical state vector and p a vector of system parameters, like the
Stokes coefficients, or the inertial integrals, or the inertial functions of the present study. These
equations are valid in any frame, be it inertial or not, as long as the fictitious accelerations are
taken into proper account when the system is not inertial. It is of interest to note that in the
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synodic system corotating with the central body at constant angular velocity the equations of
motion form an autonomous system and this implies the existence of an energy-like first integral
like the Jacobi integral in the celebrated Circular Restricted Three-Body Problem (CRTBP).

Alongside the integration of the equations of motion, the sensitivity to initial conditions is a
fundamental quantity to propagate as well. Therefore, we need to supplement the six equations
of motion of a single particle with the 36 partials of the dynamical state with respect to the initial
conditions. This implies that the state transition matrix, i.e., the variational equations need to be
integrated at the same time as the equations of motion are integrated. The variational equations
are fundamental for several reasons, mainly for inverse problems like orbit determination and,
more specifically in our case, for the search of periodic orbits. They are also fundamental for
establishing their stability. The sensitivity to initial conditions is the matrix ∂x/∂x0, which is
a function of both the initial time t0 and the current time t. Its value resides in the fact that it
allows to propagate any initial error δx0 = δx (t = 0) to the current time t, that is, it allows to
compute

δx (t) =
∂x

∂x0
(t, t0) δx0. (5.10)

Equation (5.10) can be obtained by Taylor expanding the distance between solutions starting
with a small difference δx0 of the initial conditions as

δx (t) = x (t;x0 + δx0)− x (t;x0) (5.11)

=
∂x

∂x0
(t, t0) δx0 + higher-order terms. (5.12)

In general, the sensitivity matrix is denoted as the operator Φ (t, t0) , i.e.,

Φ (t, t0) =
∂x

∂x0
(t, t0) , (5.13)

a square matrix of order six known as the State Transition Matrix (STM).
The STM can be computed by integrating the variational equations, which are themselves

derived from partial differentiation of the equations of motion (5.9) leading, after a process of
expansion to the first order, to Tapley et al. (2004); Montenbruck and Gill (2001)

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I, (5.14)

where

A(t) =

(
∂f

∂x

)∗
(5.15)

the asterisk being a reminder that the indicated partials are to be computed along the orbit
being integrated.

It will be seen that the STM plays a fundamental role in the search for periodic orbits, since it
will be used to correct misclosure errors. If computed at the end of one period of a periodic orbit,
the STM is also known as the Monodromy Matrix, through which the stability or instability of
the periodic orbit can be inferred.

5.3.1 The Equations of Motion

The orbits around 67P can be numerically integrated in the corotating, or synodic reference
frame. The equations of motion then are

ρ̈ = ∇U67P − ω × (ω× ρ)− 2ω× ρ̇, (5.16)
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where ρ is the position vector and ω is the angular velocity vector of the corotating with respect
to an inertial frame, which can be considered fixed in direction, in good agreement with the
measurements (Keller et al., 2015). The acceleration taken into account in the integration is
only the gravitational acceleration due to 67P, as explained in the first Chapters of this research.
Other components of the force field were not considered. We thus effectively treated the comet
as an asteroid, since no drag force was implemented. The model is actually more idealized than
that, since not even the radiation pressure effects, nor third-body perturbations were taken into
consideration. The reason for this choice is multifarious. For gravitational perturbations it can be
safely assumed that the large distance of the Sun compared to the typical size of the close orbits
under study makes them negligible. As for the non-gravitational forces, the typical magnitude
of the solar radiation pressure effect is about 5 · 10−7 m/s2 at 1 AU from the Sun, and falls to
2 · 10−7 m/s2 and 2 · 10−8 m/s2 at Mars and Jupiter distance from the Sun respectively, which
must be compared to the average gravitational acceleration from the comet nucleus of about 10−5

m/s2. It must be taken into account that the values of the acceleration due to the solar radiation
pressure were calculated considering a mass of 1657 kg for Rosetta and the maximum possible
area exposed to solar radiation of approximately 70 m2, making these estimates the maximum
of the solar pressure contribution. As far as the drag acceleration is concerned, a model for 67P
is still under development and was not available for use in this research. Finally, the third-body
effects are totally negligible. We calculated the acceleration contribution of the third-body effects
with the spacecraft at 10 km from the center of mass of the comet at conjunction at Earth and
Jupiter distances through formula (5.4), yielding 1.6·10−12 m/s2 and 8.0·10−13 m/s2 respectively.
This is in agreement with the Hill sphere, i.e., the sphere of influence, of 67P being 318 km in
radius (Rotundi et al., 2015).

We conclude by pointing out that the largest acceleration that was neglected is radiation
pressure, which is nonetheless almost 2 orders of magnitude smaller than the gravitational pull
of 67P—which definitely supports our neglect of all forces other than ∇U67P .

5.3.2 The Variational Equations

In the particular case of 67P we need to explicitly write the partials (5.15) in order to integrate the
variational equations and obtain the state transition matrix. We can write matrix A separating
it in blocks to account for the spatial and velocity components as

A =
∂f (ρ, ρ̇)

∂ (ρ, ρ̇)
=

 0 I
∂ρ̈

∂ρ

∂ρ̈

∂ρ̇

 , (5.17)

where the four blocks are 3×3 matrices with I the unit matrix. In the corotating reference frame,
equation (5.16) holds. This leads to computing ∂ρ̈/∂ρ and ∂ρ̈/∂ρ̇ explicitly as

∂ρ̈

∂ρ
= ∇∇U67P + ω2I− ωωT (5.18)

and
∂ρ̈

∂ρ̇
= −2Ωω, (5.19)

where

ω2I− ωωT =

 ω2
y + ω2

z −ωxωy −ωxωz
−ωxωy ω2

x + ω2
z −ωyωz

−ωxωz −ωyωz ω2
x + ω2

y

 (5.20)
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and

Ωω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (5.21)

here ωx, ωy, and ωz are the components of the angular velocity vector ω and Ωω is the skew-
symmetric matrix associated with the axial vector ω, sometimes also denoted with the operator
symbol ω × . In the case under study we have ωx = ωy ≡ 0, which considerably simplifies the
two matrices above. In fact, ωωT = 0 so that

ω2I− ωωT ≡ ω2
z I (5.22)

and
∂ρ̈

∂ρ̇
= −2ωz

 0 −1 0
1 0 0
0 0 0

 . (5.23)

Note that equation (5.14), with the block decomposition

Φ =

(
Φρρ Φρρ̇
Φρ̇ρ Φρ̇ρ̇

)
, (5.24)

can now be written using the notation introduced in (5.17) as

Φ̇ρρ = Φρ̇ρ, (5.25a)

Φ̇ρρ̇ = Φρ̇ρ̇, (5.25b)

Φ̇ρ̇ρ =
∂ρ̈

∂ρ
Φρρ +

∂ρ̈

∂ρ̇
Φρ̇ρ, (5.25c)

Φ̇ρ̇ρ̇ =
∂ρ̈

∂ρ
Φρρ̇ +

∂ρ̈

∂ρ̇
Φρ̇ρ̇. (5.25d)

Since the STM is a fundamental matrix of solutions of the variational equations (5.14), each
column of the state transition matrix is independent of the other columns, and can thus be
integrated alone.

5.4 Finding periodic orbits in the synodic reference frame

A periodic orbit is a solution x (t) to the equations of motion (5.9), with initial conditions
x (0) = x0, for which there exists a minimum T > 0, called period, such that

x (t+ T ) = x (t) ∀t. (5.26)

Typically, periodic orbits are found by using the symmetries of the body and for point
particles systems use can be made of the Roy and Ovenden’s Mirror Theorem (Roy, 2004). In
our case, however, this theorem is of no help, since the extended body is completely irregular
and presents no symmetries whatsoever. We thus have to rely on an iterative algorithm applied
to the entire period of the periodic orbit, rather than to the half period at the core of the mirror
theorem. This implies some severe numerical problems in connection with the inversion of the
monodromy matrix, which, as already noted by Broucke and Boggs (1975), becomes singular
as the periodic orbit is approached during the search. The situation can be saved by applying
appropriate numerical techniques, mainly by applying singuar value decmposition techniques, as
described in (Russell and Lara, 2007).
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Let the body rotate around the z axis, parallel to the principal axis of inertia of greatest
moment. Let x0 be the initial state. We impose now that the orbit starts on the x-z plane, so
that y = 0 for the initial state. We can introduce now the constraint vector

K =

(
ξT − ξ0

C − C∗

)
, (5.27)

where ξ = (x, z, u, v, w) , with u = ẋ, v = ẏ and w = ż, and C = 2U∗ −
(
u2 + v2 + w2

)
is the

Jacobi integral with U∗ the effective potential in the synodical reference frame, and C∗ is the
reference Jacobi integral—usually taken to be the Jacobi integral of the first iteration. We do
not consider the y component of the state x in ξ, since it is set to 0. Assuming an initial guess
ξ0 in the vicinity of a solution will yield a nonzero K. To drive the constraint vector to zero, a
∆ξ0 is sought satisfying the equation

dK

dξ0
∆ξ0 = −K. (5.28)

We point out that the system (5.28) has five unknowns in six equations. To ensure a unique
solution a least-square approch is adopted, allowing all af the constraints to be enforced. How-
ever, there are frequently multiple directions in the phase space where periodic solutions exist.
Therefore, despite the fact that the system of equations (5.28) is overcontrained, the dynamics
suggest that solutions exist that satisfy all of the constraints. If a solution exists, the least.squaree
correction will drive the norm of the constraint down to zero.

The Singular Value Decomposition (SVD) provides a simple solution ot the problem of the
degenerate Jacobian associated with the periodic orbit. The dimension of the null space of
such Jacobian is non-zero because any direction tangent to the solution leads again to the same
periodic solution. An additional degeneracy exist on the case of a bifurcation orbit Russell and
Lara (2007), that is an orbit that belongs to two different orbit families. The SVD technique
deals efficiently in reducing the system in only the degenerate directions. The 6×5 Jacobian has
a singular value decomposition of the form

dK

dξ0
= UDVT (5.29)

where U and V are square orthogonal matrices of dimensions 6 and 5, respectively, and D is a 6×5
matrix with nonnegatives entries along the diagonal, and zeroes etherwise. The pseudoinverse
of the Jacobian is thus (

dK

dξ0

)+

= VSUT, (5.30)

where the matrix S is diagonal with elements

Sii =

{
1/Dii, for Dii > ε,
0, for Dii < ε.

(5.31)

The diagonal elements of D are called singular values of the Jacobian. For practical computations,
any singular value less than some predefined threshhold ε is considered zero as indicated in
equation (5.31). The solution to (5.28) is then

∆ξ0 = −(VSUT)K, (5.32)

where the problem associated with any degenerate direction is solved through the selection of
the paramenter ε.
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The Jacobian is calculated as

dK

dξ0
=


dξT
dξ0
− I5×5

dC

dξ0


6×5

, (5.33)

where
dC

dξ0
=
dC

dξT

dξT
dξ0

, (5.34)

and
dξT
dξ0

=
∂ξT
∂ξ0

+
∂ξT
∂T

∂T

∂ξ0
, (5.35)

where the partial derivative of the period T with respect to the initial conditions ξ0 is found from

∆yT =
∂yT
∂ξ0

δξ0 + ẏT δT. (5.36)

Because the integrator implicitly stops on the x-z plane, equation (5.36) can be solved with
∆yT = 0, giving

∂T

∂ξ0
= −∂yT

∂ξ0

1

ẏT
. (5.37)

To sum up, equation (5.35) can be now written as

dξT
dξ0

= Φ (T, t0)i6=2,j 6=2 −
1

ẏT
ξ̇TΦ (T, t0)i6=2,j 6=2 , (5.38)

where
Φ (t, t0) =

∂x (t)

∂x (t0)
(5.39)

is the state transition matrix that provides the sensitivity to the initial conditions after a time t,
as it was shown in the previous Chapter. The state transition matrix is obtained by integrating
equations

Φ̇ (t, t0) =

(
∂f

∂x

)∣∣∣∣
t

Φ (t, t0) (5.40)

along with

ẋ(t) = f(x). (5.41)

To summarize, given an initial guess ξ0 in the vicinity of a solution that yields a constraint
violation K, the linearized first-order correction is given by equation (5.32). It is useful to
scale the correction step in order to not exceed any of the user-defined maximum step sizes.
The process is iterated with the corrected guess until convergence as indicated by a constraint
violation that is sufficiently small and is no longer reducing in length. The constraints used to
check the convergence are based on the values of d1 and d2, defined by

d1 =
|r (tf )− r (t0)|
|r (t0)|

, (5.42)

d2 =
|v (tf )− v (t0)|
|v (t0)|

. (5.43)

Convergence is reached when d1 < d∗1 and d2 < d∗2. The constraint associated with the Jacobi
integral was not used as a check since the difference between the reference Jacobi integral C∗ and
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the Jacobi integral of the final periodic orbit Cp was unknown and the d1 and d2 checks were
sufficient to locate a periodic orbit.

After some trials, the parameters ε, d1, and d2 were set as ε = D1,1 · 10−10, with D1,1 the
largest singular value, d∗1 = 10−13 and d∗2 = 10−8. Larger values of ε did not allow the orbit
to converge, while lower values of d∗1 and d∗2 were never reached during the selection of the
parameters.

To apply this algorithm, one needs to know when to stop the integration of the orbit on the
x-z plane. The initial guess of periodic orbit might in fact pass several times through the x-z
plane before getting close to the initial conditions, thus enabling the application of the algorithm.
During test runs, some checks were tried before choosing the final one. We first counted how
many times the orbit passed through the x-z plane, then added the check on the direction of the
velocity while passing through the plane, and then also tried to distinguish the number of times
that the plane was passed through a point with coordinate x > 0 or otherwise. None of these
checks were general and useful, since even using a small and controlled grid, no periodic orbits
could be found other than the equatorial orbits. Also since there was no check or constraint on
the distance to the initial conditions while passing the x-z plane, often the corrections to the
initial conditions given by the algorithm described in this Section were outside the linear regime,
thus invalidating the theory applied.

The final check used to discriminate when to stop the orbit integration is as follows. Every
time the orbit passed through the x-z plane, the state computed just before passing, defined as
xb, was used to calculate the distance from the initial state. The spatial and velocity components
were controlled separately through the inequalities

|rb − r0| < a, (5.44)
|vb − v0| < b. (5.45)

It was not possible to determine the parameters a and b beforehand, so after some trials a was
set in the range [100, 200] m and b in the range [0.4, 0.6] m/s. Higher values of a like 800 m
were also used when grid search of inclined periodic orbits yielded no results, even though the
linearity regime was not satisfied.

5.4.1 Stability Conditions

The stability of a periodic orbit can be derived to first order thanks to the state transition matrix
Φ (T, 0) , which takes the name Monodromy Matrix in the case of a periodic orbit. We define the
monodromy matrix

M = Φ (T, 0) . (5.46)

Given a perturbation δx0 to the initial state at time t = 0, it is clear that after n periods T of
the periodic orbit, the propagation to first order of the perturbation is

δx (nT ) = Φ (nT, 0) δx0 (5.47)
= Mnδx0. (5.48)

It is clear that for δx not to diverge in time, the eigenvalues of the monodromy matrix must
all have absolute valus less than or equal to 1. In particular, for an autonomous system, two
eigenvalue are 1, one linked to the existence of the Jacobian integral of motion, the other linked
to the fact that the solution is periodic, as explained in Seydel (2010). The remaining four
eigenvalues are the ones that determine the stability or instability of the orbit. In particular,
since the monodromy matrix is real, the four remaining eigenvalues can be divided into two pairs
of conjugate complex numbers.
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5.4.2 Potential stationary points stability

There exists stationary solutions to equations (5.9). This solutions are such that

x(t) = s, a(s,p, t) = 0. (5.49)

In the case of 67P we will see that 4 such points exists in the proximity of the comet surface.
Two of them are saddle points, and thus unstable, and the other two are maxima of the effective
potential U∗ relative to the corotating reference frame. We heuristically show here that all such
points are unstable. it is known (Danby, 1976) that in the Restricted Three-Body Problem, the
stationary points L4 and L5 are linearly stable only if the ratio of the masses of the two main
bodies satisfies µ2/µ1 < 0.62 . . . . We hypothesize here that this criterion can be extended to
a similar mass ratio, which in the present case could be associated with the masses of the two
main lobes, or heads, of the nucleus of 67P, which can be imagined to be concentrated near their
respective centers of mass, this way mimicking the CRTBP configuration. The heuristic result
seems to point to a failed stability test for the hypothetical triangular homographic solutions.



Chapter 6
Periodic Orbits Around 67P

After introducing the theoretical concepts and the equations of motion and the computaional
scheme for finding periodic orbits, we are now ready for their application to the study of the
orbital dynamics around comet 67P. Recall that the cometary nucleus will be considered inactive,
i.e., we will essentially treat it as it were an asteroid. We start by defining the main orbital and
physical characteristics of 67P that are important to our study. Then we will report on the search
for periodic orbits close to the nucleus and leave for the following Chapter the assessment of the
possibility of designing and characterizing artificial orbits for specific exploration purposes.

One of the main tasks in carrying out the orbital computations is the computation of the
gravitational accceleration of the extended central body. We have devoted three Chapters to the
study of several different ways of modeling the potential and its gradients in an attempt to find
the most computationally efficient method. It is known, in faact, that the Werner algorithm is
very computationally intensive, since it must compute several costly mathematical functions for
each face and each edge of the polyhedral model of the central body. Time constraint, however,
have not allowed us to fully compare the new methods introduced in Chapter 2 and 3, respectively
dealing with the inertial integrals and inertial functions representation and with the expansions
in Spherical Harmonnics both outside the Brillouin sphere and inside the Hotine sphere for orbits
reaching close to the surface. As a result, the method of Werner has been used throughout this
investigation. This somewhat limited the extent of the search for periodic orbits in the sense
that it was not possible to proceed to a full parallelization of the polygrav code. The search,
however, was carried out over significant sections of phase space, as will be reported next.

6.1 Characterization of 67P

67P/Churyumov-Gerasimenko is a short-period comet whose orbital elements at epoch 2457262.5
TDB (2015, Aug. 28.0) are shown in Table 6.1, while Table 6.2 shows other physical parameters
of interest, like its mass density.

The main characteristics of the orbit can be summarized by noting that its perihelion distance
is rp = 1.2432 AU and its aphelion distance is ra = 5.6805 AU with an associate eccentricity e of
approximately 0.64. The radius vector of the comet at quadrature is p = 2.0400 AU. The angular
velocity at perihelion is 0.908 deg/d and at aphelion 0.0435 deg/day, two rather different values
on account of the great eccentricity of the orbit.

The comet rotates around its greatest principal axis with a period T = 12.4043 h. However,
this value changes over time, mostly due to the sublimation activity during perihelion. The
decrease in the rotational period is currently estimated to be 1285 s since the 2009 perihelion
passage (Keller et al., 2015).
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Element Value
a 3.4619 AU
e 0.64088

i 7.040 deg
Ω 50.1358 deg
ω 12.79600 deg
Perihelion passage τ 2457247.5865 JED
GM 667. m3kg−1s−2

Period T 6.44 y
Mean motion n 0.153011 deg/d
Parameter p 2.0400 AU
Perihelion distance rp 1.2432 AU
Aphelion ra 5.6805 AU
Perihelion speed vp 34.187 km/s
Aphelion speed va 7.479 km/s

Table 6.1. The orbitl elements of comet 67P (JPL/SSD)

Physical parameter Value
Density σ 470 kg/m3

Mass M 1013 kg
Volume V 19 km3

Rotation period 12.404 h

Table 6.2. Some useful physical parameters of comet 67P from (Sierks et al., 2015)

This body is without a doubt the most irregularly shaped body ever imaged in the Solar
System—let alone explored in situ. This poses a new series of problems in terms of modeling its
gravitational field, and this is the main reason why we have devoted a large part of this research
effort to develop new methods of representing the potential and the gravitationa field of this
body, in particular in the region near the surface, where calssicaly no investigation has ever been
carried out.

In this work, the shape of the comet nucleus is approximated by a polyhedron model (Jorda
et al., 2015) generated from imaging data by the Rosetta/OSIRIS team (Keller et al., 2007). The
most recent model available consists of a triangular mesh composed of 1, 572, 866 vertices and
3, 145, 728 triangular faces. In the interest of computational speed, this mesh was reduced by
95% to a mesh with 7, 866 vertices and 15, 728 triangular faces. This mesh was used to obtain all
the results in this and in the following chapter. For the reduction the MeshLab software tool was
used (Visual Computing Lab ISTI CNR). The procedure to obtain the reduced meshes was as
follows. The original mesh was first centered on its baricenter, which was computed by MeshLab
considering the polyhedron as a homogeneous body. Then, an alignment to the principal axes
of inertia was performed, using a built-in function of MeshLab. The reduction used the built-in
function Quadratic Edge Collapse Decimation with the options:

• preserve the normal to the surface,

• preserve the topology of the surface,

• optimal position of simplified vertices,

• post-simplification cleaning,
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• percentage reduction of 0.005.

A final rotation to align the body to the principal axes of inertia was performed.

6.2 Search Grid

A fortran90 program was developed to intergate the orbital equations of motion and carry
out the search for periodic orbits. The program was not parallellized due to lack of resources,
time in particular. The set of initial conditions to start the search was therefore limited to a
few linear grids of initial positions and velocities. All initial conditions were set on the y = 0
plane and the orbits were integrated using a multi-step, variable-order, variable-step numerical
integrator. The time of the y = 0 plane crossing was found using locally an RK7(8) algorithm
with a precision of 10−10 m.

The gravitational acceleration was computed using Werner’s method and code polygrav at
any point outside polyhedral body. The initial positions were taken very close to 67P’s surface,
since the objective was the exploration of the dynamical behaviour of test particles very close to
the cometary nucleus.

Because of the limited computational power, only small grids were used during the search
for periodic orbits. Each grid was composed of a linear spatial component, with a step size in
the range [50, 200] m, and a velocity component, in which the direction of the velocity was kept
constant and normal to the y = 0 plane, while its absolute value was changed by adding or
subtracting from the circular velocity vC an integer multiple of vC/20.

The initial spatial positions were chosen along the x-axis in order to find planar equatorial
orbits. The spatial grid was then moved along the z-axis for the search of inclined periodic orbits.

Although direct equatorial periodic orbits were found, the search never converged to any
direct inclined periodic orbits. However, the search was successful when it was changed from
direct to retrograde orbits (referred to the inertial reference frame).

6.3 Stationary Locations

The potential minima were found by calculating the gravitational potential in a 2-dimensional
grid for different values of z. The following image represents a x − y plane of the potential for
z = 0. Orbits with initial conditions close to the minimum of the potential were integrated, but
all orbits resulted to be unstable, some of them crashing in the comet, the others drifting away
from the nucleus. Figure 6.1 shows the equipotential lines on the equatorial plane of the comet,
from which is clear that the two unstable stationary configurations lie near the x-axis.

6.4 Periodic Orbits

6.4.1 Near-Equatorial Periodic Orbits

We begin by showing the results of the search for planar periodic orbits. Figure 6.4 shows
three equatorial linearly stable orbits, while Figure 6.5 shows a sample of three linearly unstable
equatorial periodic orbits. No equatorial orbits closer to the shown ones were found. Planar
periodic orbits can only occur near the equatorial plane, due to the rotation and the irregular
shape of the central body.

Figure 6.6 shows a view from the negative y-axis of an equatorial orbit. Note that the orbit
does not strictly lie on the equatorial plane, caused by the fact that the body is highly irregular.
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Figure 6.1. Equipotential lines on the equatorial plane of 67P.

Figure 6.2. Equipotential lines on the y-z plane of 67P.

Figure 6.3. Equipotential lines on the x-z plane of 67P.
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Figure 6.4. Planar and stable periodic orbits 1-2-3 seen from positive z axis.

Figure 6.5. Planar and unstable periodic orbit 4-5-6 seen from positive z axis.
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Figure 6.6. Planar and unstable periodic orbit 5 seen from negative x axis.

6.4.2 Inclined Periodic Orbits

Inclined periodic orbits have been a little more difficult to find. However, after some trials
and choosing inital conditions for inertially retrograde orbits, the search was successful. We
exhibit here just a sample of the set of inclined periodic orbits found. Each Figure from 6.7
to 6.19 display inclined retrograde periodic orbits. Each of them contains four panels with the
same periodic orbit viewed from different directions, namely, from left to right and from top to
bottom, 1) from the negative y-axis, 2) from the positive x-axis, 3) from the positive z-axis, 4)
a view from azimuth 130◦and elevation 40◦. The units in all Figures are in kilometers. Figures
6.7 to Figure 6.19 display inclined retrograde periodic orbits found from starting paramenters of
different grids. The actual number of inclined periodic orbits found was almost three times the
number of orbits shown in this Section.

The view of these periodic orbits from inertial frame is also displayed in Figures 6.20 and
6.21,as an example. Figure 6.20 is displayed to show how mush the irregularity of the nucleus
perturbs the inertial orbit, while Figure 6.21 is displayed to show the large precession rate to
which these orbits are subjected to.

Note that Figure 6.15 displays an orbit that enters the Brillouin sphere of the nucleus. In
this case, computing the acceleration with the algorithm described in Chapter 2 is fundamental,
since any other method would not converge everywhere outside the body.

6.4.3 Search for Periodic Orbits Deep in the Valley

A search was also carried out for orbits that would fly in the low region of the big valley around
the two heads of the nucleus. Since the region where the valley is located is displaced from the
center of mass, and the plane of the valley is not parallel to any of the principal planes, and
due to the large dimensions of the head region opposite the valley (with respect to the center
of mass, which must belong to any osculating orbit plane), any periodic orbit must be highly
elliptic on average. The initial conditions used in this search were chosen so that the oribt would
start deep inside the valley, and the velocity was chosen so that the trajectory would follow the
direction of the valley. A process of trial and error indicated that higher altitude (in the vertical
z component) were more suitable. However, even increasing the altitude to about the top of
the valley did not yield to convergence. The orbits which yielded the smallest misclosure are
nonetheless displayed in Figures 6.22 and 6.23. Clearly a more extensive search on a wider set of
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Figure 6.7. Inclined retrograde periodic orbit #1. Unstable

Figure 6.8. Inclined retrograde periodic orbit #2. Unstable.
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Figure 6.9. Inclined retrograde periodic orbit #3. Unstable.

Figure 6.10. Inclined retrograde periodic orbit #4. Unstable
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Figure 6.11. Inclined retrograde periodic orbit #5. Unstable

Figure 6.12. Inclined retrograde periodic orbit #6. Unstable
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Figure 6.13. Inclined retrograde periodic orbit #7. Unstable

Figure 6.14. Inclined retrograde periodic orbit #8. Unstable
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Figure 6.15. Inclined retrograde periodic orbit #9. Unstable

Figure 6.16. Inclined retrograde periodic orbit #10. Stable.
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Figure 6.17. Inclined retrograde periodic orbit #11. Unstable.

Figure 6.18. Inclined retrograde periodic orbit #12. Unstable
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Figure 6.19. Inclined retrograde periodic orbit #13. Unstable

Figure 6.20. Inclined retrograde periodic orbit #9 in the inertial reference frame.
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Figure 6.21. Inclined retrograde periodic orbit #13 in the inertial reference frame.

initial conditions is required in order to identily periodic orbits with the desired characteristics.
Set forth for this task.
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Figure 6.22. Almost periodic orbit 1.

Figure 6.23. Almost periodic orbit 2.



78 Chapter 6. Periodic Orbits Around 67P



Chapter 7
Orbital Engineering at 67P

The search for periodic orbits close to the comet nucleus has identified several orbits which cover
the entire nucleus. However, a specific search for orbits passing extremely close to the surface in
the region of the “neck” of the dumbell shape has yielded no results, although some orbits were
found that are fairly close to being periodic. It is thought that a more extensive search will yield
positive results, i.e., it will lead to finding some periodic orbits that pass through the neck as
desired.

In the absence of such results, we can perform an investigation as to whether it might be
possible to use the onboard thrusters to guide the Rosetta spacecraft on an artificial, or unnatural
orbit which satisfies some criteria as to orbit height, orbital period, and coverage of specific
nucleus regions. We will call such an orbit a design orbit and this Chapter will be devoted to
establish some characteristics of this orbits and evaluate the requirements to implement it during
a mission phase, possibly just before the foreseen final impact.

One basic question is to find the thrust profile that will make the design orbit possible. The
answer to this is fairly straightforward. Another question is how much fuel is required per orbital
period, for instance. Even here the answer is straightforward. As a first step, however, we need
to design the orbit.

7.1 Artificial Orbit Design

One very basic possibility is to have Rosetta follow a Keplerian orbit in the synodic system. The
equations of motion of this design orbit are quite simple and can be written as

ρ̈ = −µ ρ
ρ3
, (7.1)

where ρ is the position vector of the spacecraft in the synodic reference system and µ = GM
is the gravitational parameter. As a result, the Keplerian orbit will be fixed in this reference
system, although it will not be in any inertial reference system. To make things a little more
complicated, but satisfying a requirement of orbiting very close around the neck of the nucleus,
we can impose that the focus of the Keplerian orbit be displaced from the center of mass of the
comet by a vector c. Then the equations of motion read

ρ̈ = −µ ρ− c

|ρ− c|3
. (7.2)

The natural acceleration is only the gravitational pull ∇U67P of the cometary nucleus and the
non-inertial forces aNI acting in this reference—here we consider the nucleus as an isolated and
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inactive body—and in order to have a resultant equal to the Newtonian term on the RHS of
equation (7.2) an additional acceleration f must be applied so that

− µ ρ− c

|ρ− c|3
= ∇U67P + aNI + f , (7.3)

where the presence of inertial accelerations aNI has been made explicit. The thrust will be
analyzed later. Here we want to define an algorithm to generate the initial conditions for a
design orbit of given characteristics, such as the orbital period and type of coverage of the
nucleus for a hypothetical close observation mission phase.

The purpose is then to identify a set of free parameters that can be used to design the
artificial orbit to satisfy the given requirements. The period of the orbit seems to be a reasonable
requirement to be fixed according to the science requirements, or the operational requirements
or engineering constraints of the mission. For a Keplerian orbit the orbital period T is in direct
relation with the semimajor axis a throught Kepler’s third law µ = n2a3, where n is the mean
motion, n = 2π/T. It becomes apparent that the gravitational parameter µ plays a fundamental
role, since it acts as a scale parameter that defines the size of the orbit—in fact, it is sometimes
known as the seventh orbital element. The gravitational parameter µ67P of the nucleus can be
used to design the orbit, but its value will hardly meet the design requirements of the artificial
orbit. Thus other values can be used for µ and the difference, so to speak, will be payed by the
thrust profile that will be necessarily implemented.

We can express the semimajor axis as a function of the orbital period and the gravitational
parameter as

a =
(
µn−2

)1/3
=

(
µ
T 2

4π2

)3

. (7.4)

For ease of treatment, let us stipulate to start the orbit from the pericenter. This fixes one
of the orbital parameters, the time of perigee passage. We need to define the remaining initial
conditions of position and velocity at this particular point of the Keplerian orbit. The well-known
formulae for the radius vector rp and the speed vp at pericenter are

rp = a (1− e) , (7.5)
ra = a (1 + e) , (7.6)

vp =

√
µ

a

(
1 + e

1− e

)
. (7.7)

where e is the eccentricity—another parameter to be reckoned with. It seems reasonable a this
point to adopt T and rp as free parameters, so that

a =
rp

1− e
(7.8)

and

µ =

(
2π

T

)2( rp
1− e

)3

(7.9)

Therefore the initial conditions of the artificial orbit can be found in terms of the design
parameters T, rp and e. The initial distance from the focus being already set, only the speed is
required, and this is given by

vp =

√
(1 + e)

µ

rp
(7.10)

where the gravitational parameter has the expression (7.9).
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As an alternative, the eccentricity can be replaced by the radius vector at apocenter ra so
that

vp =

√
2µ

ra + rp

ra
rp

(7.11)

with the gravitational parameter now expressed as

µ =

(
2π

T

)2(ra + rp
2

)3

. (7.12)

To complete the analysis we now need to find the initial conditions in R3 to find the oriantation
of the orbit in space. In particular, we need expressions for the components of the velocity,
given that we already know its absolute value given by the speed (7.10) or (7.11). This can be
accomplished by consdering the expression for the specific angular momementum h given by

h = h sin i sin Ω i− h sin i cos Ω j + h cos ik, (7.13)

with the usual notation for the inclination i and the longitude of the ascending node Ω. The
longitude of the node can be considered as free perameter, since they can be set by the designers
on the basis of geometric considerations. Since i and the initial position vector rp are not
independent anymore, we can choose one of them as free parameter. Both parameters have been
used as free parameters while searhcing for the sought designed orbits. The relation between
these two parameters is

i = cos−1 (k · r̂p) . (7.14)

At this point, we set that the starting position satisfies

y = 0 (7.15)
vz = 0. (7.16)

We thus know that h = vprp. We conclude by finding the cartesian components of the starting
velocity. Writing the definition h = r× v of the specific angular momentum componentwise, we
have

yvz − zvy = h sin i sin Ω, (7.17)
zvx − xvz = −h sin i cos Ω, (7.18)
xvy − yvx = h cos i. (7.19)

From the first and the second of these equations, given that at the initial position y = 0 and
vz = 0, we find the components along i and j of the initial velocity to be

vy = −vprp
z

sin i sin Ω, (7.20)

vx = −vprp
z

sin i cos Ω. (7.21)

where we have used the fact that the specific angular momentum h is already known to be
h = vprp. Note that the initial velocity components of the design orbit have thus been found in
terms of the free parameters rp, ra, T,Ω, with possibly radial distance at apocenter ra exchanged
with the eccentricity e, or the direction of vector rp exchanged with i. The sixth free parameter
has actually been used in setting the initial conditions at pericenter.
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Another set of parameters may also be used in case the location of the pericenter is defined
by the coordinates xp and yp, rather than by rp and the inclination i. The set of free parameters
is xp, yp, ra, T,Ω, where now the velocity components at pericenter are given by

vy = −vpyp
z

sin Ω, (7.22)

vx = −vpyp
z

cos Ω. (7.23)

The sixth free parameter has actually been used in setting the initial conditions at pericenter.
Also note that the focus of the Keplerian orbit is at c, which may differ from the nucleus’s center
of mass.

We conclude this Section by recalling that the preceding analysis has been done in the synodic
reference system and the Two-Body formulae have been used as required by simple geometric
considerations in order to have the Keplerian orbit fit the constraints dictated by the shape of
the nucleus of 67P and in particular to satisfy the goal of orbiting low in the neck region of the
body. No reference has been made or implied as to the actual dynamics of the orbit, which will
be investigated in the next Section.

7.2 Equations of Motion of the Artificial Orbit and Thrust Profile

The equations of motion (7.2) have been written in the synodic system since the orbit design
was carried out in that reference system. To find the actual thrust to be applied in order to meet
the requirements, the equations of motion must be written in an inertial reference system. The
inertial equations of motion are then

r̈ = ∇U67P + f (7.24)

where r̈ is the vector indicating inertial acceleration and f the inertial thrust acceleration.
Rewrite then the equations of motion in the synodic reference frame as

ρ̈ = ∇U67P − ω × (ω× ρ)− 2ω× ρ̇+ f , (7.25)

where the form of the non-inertial accelrations has been made explicit (the Euler acceleration is
not present on account of the assumed uniformity of the rotational motion). Since (7.2) holds,
we find that the active force f , or thrust, in the synodic system needed to realize such orbit is

f = −µ ρ− c

|ρ− c|3
−∇U67P + ω × (ω× ρ) + 2ω× ρ̇. (7.26)

To find the components of the thrust f in the inertial system we apply the rotation operator
Rz about the z-axis

Rz (ωt) =

 cosωt − sinωt 0
sinωt cosωt 0

0 0 1

 , (7.27)

where t is the time passed from the beginning of the integration and ω is the absolute value of
the angular velocity of the cometary nucleus.

Thrust components are conventionally expressed in the orbital refrence system, also known
as the radial-transverse-normal (RTN) reference system. This is defined, as the name implies,
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by axes along the three unit vectors r̂, t̂, n̂ which are defined in terms of the dynamical state
components as

r̂ =
r

r
, (7.28)

t̂ = n̂× r̂, (7.29)

n̂ =
r× v

|r× v|
. (7.30)

The RTN reference system can be taken with the origin at the spacecraft, or coincident with the
origin of the inertial frame. The RTN frame is most useful for Earth-, or in this case, comet-
observing missions, since its first axis is in the radial direction to the center of mass. As far as
the thrust implementation is concerned, the RTM frame acts as an intermediary reference frame
to the satellite-fixed axes, where the thrusters are fixed.

7.3 Fuel Consumption

Once the thrust profile for a circular Keplerian orbit around the neck of the comet has been
designed in the synodical reference frame, we naturally come to ask if, considered as a function
of the orbital period T, a minimum exists, i.e., if we can find a period Topt that minimizes the
“orbit maintenance” ∆V required over a period of the orbit (in the synodical frame), where

∆V =

∫ T

0
|f(t)| dt. (7.31)

In a sense, this is equivalent to asking what the associated fictitious mass M is in equation (7.9)
that generates the Newtonian field closest to the actual field ∇U67P generated by 67P in the
corotating frame along the artificial, or engineered, orbit.

For very large T, the thrust profile will lead to huge ∆V, since the spacecraft will barely be
moving in the corotating frame, and will thus have to oppose the full gravitational attraction of
the body to “almost” a stand still. Furthermore, appropriately large inertial forces will need to
be generated as part of the thrust.

At the opposite end, when the period T becomes very short, then what is needed is the
equivalent of a large gravitational parameter to make the period as short as needed, in contrast
to the much longer period that would naturally be associated with the mass of the nucleus. The
actual fictitious accelerations will not need to be very large, since the inertial angle over which
the orbital plane precesses is very small.

These considerations seem to provide a physical basis for expecting that a minimum ∆V
actually exists, which can be verified by computing the fuel consumption over an appropriate
range of values of the design orbital period. Several periods were thus assumed and orbits
integrated without changing any other design parameters.

By numerically integrating the equation of motion we obtain the thrust profile needed to
maintain the spacecraft in the design orbit. In order to get the fuel mass consumption as well,
we can at the same time integrate the variable mass equation Prussing and Conway (2013)

dm

dt
= − m

Ispg0
|f (t)| (7.32)

over the required time period, starting with the initial wet mass m = m0 of the spacecraft. In
this equation Isp is the specific impulse of the thruster and g0 is a normalizing factor equal to
the gravitational acceleration at the Earth’s surface. The product Ispg0 is equal to the exhaust
velocity from the thruster, which is here assumed to be of the constant specific impulse type.
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The variable mass equation can easily be solved and yields (Prussing and Conway, 2013) the
fuel mass consumption ∆mf over a period T equal to

∆mf

m0
= 1− exp

(
− 1

Ispg0

∫ T

0
|f (t)| dt

)
. (7.33)

From (Stramaccioni, 2004) we know that the specific impulse of the Rosetta thrusters is
Isp = 292 s. The Rosetta dry mass is m0 = 1335 kg, which includes the mass mPhil = 108 kg of
the Philae lander. Originally the stored fuel mass was mfuel = 1719 kg, capable of producing a
total ∆V = 2300 m/s, with an implementation capability precision of the order of 1 mm/s. Due
to our lack of information about the real current mass of the Rosetta spacecraft, since a large
fraction of the fuel has probably been used, we assume that the remaining propellant is about
one fourth of its initial mass, or mfuel = 430 kg, equivalent to assuming a current total wet mass
m0 = 1657 kg.

We note that this is not sufficient to actually perform an artificial orbit around the celestial
body. Optimal control and the Ricci formula should be implemented to obtain that result.
However, this is sufficient to estimate the order of magnitude of fuel necessary for the spacecraft
to perform an artificial orbit.

7.4 Results

The first artificial orbits found were integrated while keeping the force center c at the center of
mass of 67P. An example is shown in Figure 7.1. This specific orbit was obtained for a design
period T of 70, 000 s. The computed total ∆V needed for the manouver is 2.482 m/s per orbital
period. The thrust profile in the RTN reference system required to maintain this orbit is shown in
figure 7.2. It can be seen that the thrust amplitude excursion differes for the three components.
It can also be appreciated that the thrust profile is not periodic. This is a consequence of the fact
that the thrust is an inertial acceleration and the fact that the orbit in the synodic system has
been forced to be Keplerian does not imply that the thrust is inertially periodic. Since the RTN
decomposition shows the same inertial components resolved along different axes, this character
is also seen in the plots of Figure 7.1. This is in line with the fact that the trajectory is periodic
in the synodic frame, but not in the inertial frame.

The center of the Keplerian force field was then moved from the center of mass of 67P, i.e., the
origin of the corotating reference system, to a point c in the middle of the neck of the comet with
coordinates c = (0.6, 0.0,−0.2) km. Figure 7.3 represents an eccentric periodic orbit resulting
from an integration characterized by a period T = 90, 000 s. To accomplish this manoeuver,
∆V = 4.18 m/s per period is required. Figure 7.4 shows the thrust profile needed to realize such
orbit.

To investigate the existence of a minimum ∆V as a function of the design orbital period,
different values of T in the rangee from 10, 000 s to 100, 000 s were used to integrate the same
geometric orbit. An example is shown in Figure 7.5 and Table 7.1. We see that a minimum ∆V
does exist corresponding to a period T of approximately 34, 000 s.

Artificial orbits hovering in the deep valley of the comet were also computed. With the
center of attraction c of the Keplerian orbit moved outside the body, orbits such as the one
shown in Figure 7.6 were obtained, for which c = (0.5, 0.0, 0.5) km. Figure 7.7 shows the
acceleration required to realize this artificial orbit, expressed as previously in RTN reference
frame components. The period of this specific orbit is T = 70, 000 s, with an associated ∆V of
0.6m/s needed per orbit.

We point out that the choice of the period of the artificial orbit is a fundamental parameter,
and must be chosen wisely. Given a Keplerian orbit, it is the only remaining free parameter.
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Figure 7.1. Example of an artificial Keplerian orbit in the corotating reference frame. From left to right and
top to bottom they are seen from 1) the negative y axis, 2) the positive x axis, 3) the positive z axis, 4) azimuth
130◦and elevation 40◦.

Figure 7.2. Thrust profile in the RTN reference frame for orbit in Figure 7.1
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Figure 7.3. Example of an artificial Keplerian orbit in the corotating reference frame, with center of mass c
inside the cometary neck. From left to right and top to bottom they are seen from 1) the negative y axis, 2) the
positive x axis, 3) the positive z axis, 4) azimuth 130◦and elevation 40◦.

Figure 7.4. Thrust profile needed to follow artificial orbit centered at the comet neck depicted in Figure 7.3
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Figure 7.5. Example of artificial circular Keplerian orbit in the corotating reference frame, with center of mass
c = (0.6, 0.0,−0.2) km inside the cometary neck. Semimajor axis a = 1.7 km. From left to right and top to
bottom they are seen from 1) the negative y axis, 2) the positive x axis, 3) the positive z axis, 4) azimuth 130◦and
elevation 40◦.

Period T (s) Fictitious GM (m3s−2) ∆V (m/s)
25000 1241.32 2.651
26000 1147.67 2.636
27000 1064.23 2.623
28000 989.57 2.613
29000 922.50 2.605
30000 862.03 2.599
31000 807.31 2.595
32000 757.64 2.592
33000 712.42 2.590
34000 671.13 2.590
35000 633.33 2.590
36000 598.63 2.592
37000 566.71 2.595
38000 537.27 2.598
39000 510.07 2.603
40000 484.89 2.608

Table 7.1. ∆V per orbit required to maintain the Keplerian circular orbit shown in Figure 7.5 for different
design orbital periods T. Also shown are the correspong values of the fictitious gravitational parameter.
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Figure 7.6. Example of an artificial Keplerian orbit in the corotating reference frame hovering the neck of the
comet. From left to right and top to bottom they are seen from 1) the negative y axis, 2) the positive x axis, 3)
the positive z axis, 4) azimuth 130◦and elevation 40◦.

Figure 7.7. Thrust profile needed to follow artificial orbit hovering over the neck of the comet’s nucleus depicted
in Figure 7.6
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Figure 7.8. Example of an artificial Keplerian orbit in the inertial reference frame of period T = 104 s. From
left to right and top to bottom they are seen from 1) the negative y axis, 2) the positive x axis, 3) the positive z
axis, 4) azimuth 130◦and elevation 40◦.

The total ∆V and, more importantly, the maximum acceleration the thrusters need to supply
depend entirely on it. In fact, if we wanted to orbit around the comet at a much faster rate, the
thrusters would have to supply an enormous amount of acceleration, which could not reach by
design.

Representations of the inertial trajectories of the same design orbits that are travelled with
different periods are shown in Figures 7.8 and 7.9, both of which refer to the same corotating
trajectory, shown in Figure 7.5. The greater number of loops the spacecraft must perform in the
inertial frame for the orbit with larger period, pictured in Figure 7.9, are an indication of the
inertial accelerations the spacecraft has to supply with its thrusters to maintain the design orbit.
The total ∆V per orbit needed was computed as 3.438 m/s for a period of T = 105 s. When the
period is small, however, as in Figure 7.8 where T = 104 s, ∆V = 3.901 m/s per orbit, which
is comparable to the one computed for the long period orbit, since the spacecraft will have to
supply the thrust needed for the centripetal acceleration.
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Figure 7.9. Example of an artificial Keplerian orbit in the inertial reference frame of period T = 105 s. From
left to right and top to bottom they are seen from 1) the negative y axis, 2) the positive x axis, 3) the positive z
axis, 4) azimuth 130◦and elevation 40◦.



Chapter 8
Conclusions and Future Work

The reasearch carried out in this thesis work has focused on the modeling of orbits in the near
space of comet 67P/Churyumov-Gerasimenko. Due to the extremely unusual shape of the nucleus
of this comet, as revealed by the images collected during the ongoing ESA mission Rosetta, the
task of simulating the dynamics of a spacecraft orbiting close to the comet presents unusual
problems in terms of the computational of its gravitational field. The first step of this work
thererefore addressed the problem of modeling the gravitational potential of an irregular body in
the near regionds in a numerically efficient manner. This was done under the strict assumption
of constant mass density of the body. After a review of the only available method to carry out
the computation of the gravitational accelerations and the gravity gradient necessary for arbital
analysis,—a method originally due to Robert Werner as far as applications to orbital dynamics
are concerned— two alternative methods of series expansions were investigated. The first one
is an expansion in Cartesian coordinates based on the use of inertial integrals, the second is
the very well-known method of expansion in Spherical Harmonics. The novelty of the present
analysis is that both methods were extended to the regions near the surface, or within what is
usually known as the Brillouin sphere, within which the known series expansions do not converge.
A new terminology has been introduced in this regard—the Hotine sphere—so named to honor
a researcher among the pioneers of the analysis of the convergence of series expansions of the
potential near the surface of extended bodies. Keeping for simplicity the Hotine sphere devoid
of matter and thus completely outside the body, to which it may only be tangent, we have
developed a series expansion which does converge within such sphere. The expansion introduced
a generalization to inertial functions of MacMillan’s inertial integrals. This was possible only
after a careful analysis of the 24 subregions into which the body must be sectioned in order to
ensure convergence of the series. The method appears to be new and is presented here for the
first time. The advantage of the formulation in inertial functions or inertial integrals is twofold.
In the first place the coefficients of the series need only be computed once, and secondly the
formulation is entirely in Cartesian coordinates and thus is intrinsically regular and presents no
singularities. A new method has also been introduced to compute these coefficients, be they
inertial intergals or inertial functions, based on the application of knwon theorems of vector
analysis through which the computations are reduced to simple functions of the coordinates
of the vertices of the polyhedron model of the extended body and the associated connectivity
matrix.

The expansion of the gravitational potential has also been carried out in terms of Spherical
Harmonics, the novelty in this case being that a method has been found which allows to express
the harmonic coefficients for both the external and the internal field, respectively related to the
Brillouin and the Hotine spheres, as linear combinations of the inertial integrals or the inertial
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functions. This result is actually known in the case of the external potential, but appears here
for the first time for the internal potential inside the Hotine sphere.

The new methods, although completely developed from the analytical point of view, were
not fully tested for numerical applications—something which will be reserved for a future phase
of research. Rather, the well-tested Werner’s method was used in the interest of completing the
research within a reasonable time frame.

The core of the research consisted, in fact, in exploring the orbital space near comet 67P.
A methodology has been described and implemented in a software code to find periodic orbits
using standard techniques, except for the fact that in the case of an extended irregular body no
appeal can be made to the Mirror Theorem, which usually simplifies the search by limiting the
the temporal extent to half the period. The disadvantage of having to use the monodromy matrix
in the search strategy implies that the inversion of near-singular matrices has to be carried out.
The device used is the algorithm of singular value decomposition, which is extremely powerful
but must be handled with much care in terms of the threshhold to neglect singular values in
order for the search to be successful. This was done by trial and error until convergence of the
search algorithm was reached.

Periodic orbits were identified for initial conditions related to both near-equatorial and in-
clined orbits up to near polar. The force field adopted was a simplified one, which only consisted
of the gravitational attaction of the nucleus. Although admittedly incomplete, this force field
is adequate for the study of orbits of natural or artificial bodies in the near regions around the
nucleus, where other gravitational disturbing forces, as well as solar radiation pressure, are neg-
ligible, at least for relatively high-mass test particles like a spacecraft or large ejecta from the
nucleus. The search for periodic orbits was carried out by using initial conditions from various
small grids of approximately 500 starting dynamical states each, with position vectors in sev-
eral locations of the xz-plane. The grids were chosen manually after a brief evaluation of test
integrations.

A few hundred periodic orbits were found, many of which very similar to each other. Just a
handful of them were found to be stable, the majority of them being near equatorial. Some of
these periodic orbits seem well suited to exploration of the nucleus from close distance. Periodic
orbits passing throught the low neck region, or valley, of 67P were not found, even though the
search was conducted as best allowed by manual trial and error. The best results in this context
were a few orbits in the high neck region, which however did not reach convergence, although
they were apparently close to being periodic.

Equatorial periodic orbits were far more easy to find than inclined periodic orbits. Due to
the rotational motion of the comet, in fact, finding suitable initial conditions leading to periodic
inclined orbits was found to be difficult, especially in close proximity of the surface, where
crashing on the nucleus is the norm.

Finally, although periodic orbits were not found, a different strategy was pursued and orbits
were engineered to satify the requirement of orbiting low in the comet’s valley. This was accom-
plished by a very straightforward planning of Keplerian orbits in the corotating system of the
nucleus. These artifical orbits can only be realized with the use of continuous thrusting.

The thrust profile of these orbits was computed in the RTN reference frame and an estimate
of the required ∆V per orbit was computed. Since the period T of the Keplerian orbit was set
as a free parameter, we were also able to find a period T that minimized the required ∆V to
continuously follow the same geometric artificial orbit.

The research carried out has touched several different aspects of the dynamical modeling
and behavior of test particles orbiting in close proximity of a very irregular, homogeneous body.
Much, however, remains to be investigated. In particular, the new algorithm introduced in
this work need to be implemented numerically, and fully tested. Their efficiency must then be



93

compared to that of the Werner method. It is expected that, although several Hotine sphere
expansions will be needed to cover the region inside the smallest Brillouin sphere of the body,
the fact that the greatest comoputational effort is relegated to the preprocessing stage, in which
the inertial functions are computed, this algorithm will be faster than the Werner method.

As for the search for periodic orbit, a parallelization of the code will be necessary in order
to extend the search to a wider set of initial conditions. The parallelization will also make it
possible to use finer meshes to describe the body. Further research is also needed to correctly
reduce (Werner) the extremely detailed meshes that are generated by image analysis, maintaining
important physical characteristics such as the center of mass and the direction of the principal
axes of inertia, but not limited to these. This has important implications as to the capabilities
to represents the actual fields using a minimum set of paramenters.

The research for the artificial orbits, that was motivated by the idea that a much closer
inspection of the surface might be a desirable science objective in the final phases of the mission,
can be extended in order to find implementation strategies for sequentially hopping from one
orbit type to another. Optimal control theory will be useful in achieving this result. Minimization
of the ∆V per orbit required to maintain the design orbit, and optimizing the geometry of the
design orbit is another further research goal reserved for the future.

We may conclude with the wild idea that the currently planned final impact of Rosetta on
the surface of the comet might be preceded by a close exploration phase—if the risk of flying
deep inside the valley of 67P would be deemed tolerable—in which the novel and challenging
orbital acrobatics just proposed could be implemented.
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Appendix A
Point in Polyhedron Algorithm

To check if the orbit intersects with the nucleus, an algorithm was implemented to check wheather
each successive point of the orbit lied inside the polyhedron. Two were the main algorithms taken
into consideration to achive this goal.

The first is to calculate the number of steradians covered by the nucleus at the test-mass
point. If the number of steradians is 4π then the point lies inside the polyhedron, while if the
number is 0, the polyhedron lies outside of it. The case in which the test-mass lies on the surface
of the polyhedron is not considered since it is very unlikely that an orbit-point is contained in
a face of the mesh given at least a 15 digit precision. However, this algorithm is not the most
efficient way to obtain the result needed. Given a number N of faces, this calculation needs a
computational effort of O(N), slowing down the program.

The second and more efficient way is to take a ray starting from the test-point and calculate
how many times the ray intersects with the surface of the polyhedron, which is closed and
oriented. If the number of intersections is odd, the point will lie inside the polyhedron, while if
it is even, it will lie outside. This does not take into consideration singular cases, for example
if the ray is tangent to the surface in a face or in an edge. However, if not considering those
cases, this calculation can take much less calculation time if a preprocessing is carried out.
The preprocessing should be done as follows. First create the Bounding Box (BB) of each face
projection onto the x-y plane. Next find the biggest x-edge and y-edge among the BBs separately,
Lxmax and Lymin. Rearrange the order of the faces with respect to the x coordinate of the center
of each BB. With this preprocessing, the computation time to find the intersections of the ray
with the mesh is lowered to O(N1/2) approximately. This is because assuming a homogeneous
distribution of the faces on the mesh and making the approximation that ... To find the number
of intersections of a ray starting at ~r0 = (x0, y0, z0), we first find through bisection method the
two faces in the re-ordered sequence that have the x-coordinate of the BB closer to x0−Lxmax/2
and x0 +Lxmax/2, and consider from now on only the faces that are included between these two
faces plus their exterior next neighbors. This algorithm has the known computational cost of
O(logN). The next step is to exclude all faces whose BB projection onto the y-axis does not
include y0. This has a computational cost of order O(

√
N). A number of faces of order O(1)

remains now to be checked for intersection with the ray. The greatest computational effort in
this algorithm is represented by the step in which all faces whose BB projection onto the y-axis
does not include y0 are excluded. Thus the computational effort of this algorithm is of order
O(
√
N), depending thus substantially on the number of faces the polyhedron is composed of.
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Appendix B
Binomial Coefficients

Many of the developments of the potential in Chapter 2 are based on the use of the binomial
expansion, both for positive powers, as well as for negative rational powers. We here present
some properties of binomial coefficients that are of use in such developments, and some which
are especially useful in connection with numerical evaluations.

The binomial coefficients
(
n
m

)
arise in the expansion of the power of a binomial,

(x+ y)n =

n∑
m=0

(
n

m

)
xn−mym. (B.1)

The definition of the binomial coefficient is(
n

m

)
=
n (n− 1) (n− 2) ... (n−m+ 1)

m!
, (B.2)

which is easily seen to be symmetric to the eschange m↔ (n−m) so that(
n

m

)
=

(
n

n−m

)
. (B.3)

In turn, implies that the binomial expansion may be written in several different ways as

(x+ y)n =
n∑

m=0

(
n

m

)
xmyn−m =

n∑
m=0

(
n

n−m

)
xmyn−m =

n∑
m=0

(
n

n−m

)
xn−mym, (B.4)

which may be exploited depending on the circumstances.
The fact that the numerator of (B.2) consists of m factors can be exploited for computational

purposes. In fact, the evaluation of a binomial coefficient c =
(
n
k

)
can be done recursively, as

implied by (
n

m

)
=

(n)

(m)

(n− 1)

(m− 1)

(n− 2)

(m− 2)
...

(n−m+ 2)

(2)

(n−m+ 1)

(1)
. (B.5)

which can be rephrased algorithmically into the loop

c0 =
n

k
,

ci =
n− i
k − i

ci−1, i = 1, 2, ..., k − 1.
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Note that the commonly used definition(
n

m

)
=

n!

n! (n−m)!
(B.6)

can be useful for analytical developments, but is inefficient for computing the coefficient.
When n is a negative number, even rational, the numerical algorithm implied by equation

(B.5) is certainly valid. From an analytical point of view, however, we have from the definition
(B.2) that (

−n
m

)
=

(−n) (−n− 1) (−n− 2) ... (−n−m+ 1)

m!
, (B.7)

which can manipulated as

(
−n
m

)
=

mfactors︷ ︸︸ ︷
(−n) (−n− 1) (−n− 2) ... (−n−m+ 1)

m!

= (−1)m
(n) (n+ 1) (n+ 2) ... (n+m− 1)

m!

= (−1)m

mfactors︷ ︸︸ ︷
(n+m− 1) (n+m− 2) ...n

m!

from which (
−n
m

)
= (−1)m

(
n+m− 1

m

)
, (B.8)

or (
−n
m

)
= (−1)m

(n+m− 1)!

m! (n− 1)!
, (B.9)

both forms being useful in analytical manipulations.
Note that by definition, with m > 0,(

n

−m

)
= 0,

(
n

0

)
= 1.

The case of negative upper entry in the binomial coefficients is related to the expansion of
negative powers. In that case the expansion is non-terminating, as can be seen by rewriting (B.8)
using (??) as (

−n
m

)
= (−1)m

(
n+m− 1

n− 1

)
. (B.10)

In fact, the expansion of the binomial function f (x) = (1 + x)−n can be written as

(1 + x)−n =
∞∑
m=0

(
−n
m

)
xm, (B.11)

where the upper limit of the summation index is infinity, in line with the fact that this is the
Taylor series of f (x) subject to the restriction |x| < 1.
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It may also be useful to have some explicit formulae related to negative half-integer powers.
In that case the binomial coefficient has the form

(−n+1
2
n

)
and can be manipulated as follows(

−n+1
2

m

)
=

[
(
−n+1

2

)
(−n+1

2 −1)(−n+1
2 −2) · · · (−n+1

2 −m+1)]

m!

=
[
(
−n+1

2

)
(−n+1+2

2 )(−n+1+4
2 ) · · · (−n+1+2(m−1)

2 )]

m!

= (−1)m
[(n+ 1) (n+ 1 + 2)(n+ 1 + 4) · · · (n+ 1 + 2 (m− 1))]

2mm!

= (−1)m
[(n+ 1) (n+ 3)(n+ 5) · · · (n+ 1 +2m− 2)]

2mm!

= (−1)m
[(n+ 1) (n+ 3)(n+ 5) · · · (n+2m− 1)]

2mm!

= (−1)m
[(n+2m− 1)(n+2m− 3) · · · (n+ 5)(n+ 3) (n+ 1)]

2mm!

to finally yield the expression

(
−n+ 1

2
m

)
= (−1)m

(n+2m− 1)!!

(2m)!!(n− 1)!!
(B.12)

in terms of the double factorial, or Schuster notation

(n)!! = n (n− 2) (n− 4) ... (n0) , (B.13)

where n0 can be either 2 or 1, depending on the parity of n. With this notation we can write the
identities

(2n)!! = 2nn! (B.14)

(2n+ 1)!! =
(2n+ 1)!

2nn!
(B.15)

(2n− 1)!! =
(2n)!

2nn!
(B.16)

n! = n!! (n− 1)!! (B.17)

which were used in deriving (B.12). As useful examples of the application of this equation we
may write (

−1
2

n

)
= (−1)n

(2n− 1)!!

(2n)!!
(B.18)

and (
−3

2

n

)
= (−1)n

(2n+ 1)!!

2nn!
. (B.19)
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Appendix C
Bernstein Polynomials

We provide a brief introduction to Bernstein polynomials, referring to (Farin, 1997) for further
details. Bernstein polynomials are defined as

Bn
k (λ) =

(
n

k

)
λk (1− λ)n−k , 0 ≤ k ≤ n, (C.1)

which clearly shows that they are associated with the binomial expansion

[λ+ (1− λ)]n =
n∑
k=0

(
n

k

)
λk (1− λ)n−k =

n∑
k=0

Bn
k (λ) , (C.2)

of the constant function 1. These polynomials form a basis over [0, 1] .
Bernstein polynomials enjoy many properties, like the integral formula∫ 1

0
Bn
k (λ) dλ =

1

n+ 1
, (C.3)

the differentiation formula
d

dλ
Bn
k (λ) = n

[
Bn−1
k−1 (λ)−Bn−1

k (λ)
]

(C.4)

and the subdivision formula

Bn
k (λµ) =

n∑
s=0

Bs
k (λ)Bn

s (µ) . (C.5)

More important for our purposes is the product formula of two Bernstein polynomials,

Bp
i (λ)Bq

k (λ) =

(
p

i

)(
q

k

)
(
p+ q

i+ k

) Bp+q
i+k (λ) . (C.6)

This is easily proved by noting that

Bp
i (λ)Bq

k (λ) =

(
p

i

)(
q

k

)
λi+k (1− λ)p+q−i−k

=

(
p

i

)(
q

k

)
Bp+q
i+k (λ)

Bp+q
i+k (λ)

λi+k (1− λ)p+q−i−k

=

(
p

i

)(
q

k

)
Bp+q
i+k (λ)(

p+ q

i+ k

)
λi+k (1− λ)p+q−i−k

λi+k (1− λ)p+q−i−k
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which after simplification leads to (C.5). Repeated application of the product formula provides
the formula for the product of three Bernstein polnomials used in the main text,

Bp
i (λ)Bq

k (λ)Br
l (λ) =

(
p

i

)(
q

k

)(
r

l

)
(
p+ q

i+ k

)(
p+ q + r

i+ k + l

)Bp+q+r
i+k+l (λ) . (C.7)

This can be generalized to the product of any number n of Bernstein polynomials to yieldor

n∏
k=1

Bpk
ik

(λ) =

n∏
k=1

(
pk
ik

)
n∏

m=2

(
Pm
Im

) , (C.8)

where

Pm =
m∑
k=1

pk, Im =
m∑
k=1

ik. (C.9)

Bernstein polynomials also satisfy some useful recurrence relations. Using the known identity(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
we can write

Bn
k (λ) =

(
n

k

)
λk (1− λ)n−k

=

[(
n+ 1

k + 1

)
−
(

n

k + 1

)]
λk (1− λ)n−k

=

(
n+ 1

k + 1

)
λk (1− λ)n−k −

(
n

k + 1

)
λk (1− λ)n−k

= λ−1

(
n+ 1

k + 1

)
λk+1 (1− λ)n−k − λ−1 (1− λ)

(
n

k + 1

)
λk+1 (1− λ)n−k−1

= λ−1Bn+1
k+1 (λ)− λ−1 (1− λ)Bn

k+1 (λ)

which leads to
Bn+1
k+1 (λ) = λBn

k (λ) + (1− λ)Bn
k+1 (λ) (C.10)

Other properties, known under the name of degree elevation, are

(1− λ)Bn
k (λ) =

n+ 1− k
n+ 1

Bn+1
k (λ) , (C.11)

λBn
k (λ) =

k + 1

n+ 1
Bn+1
k+1 (λ) , (C.12)

the combination of which provides another recurrence formula as

Bn
k (λ) =

n+ 1− k
n+ 1

Bn+1
k (λ) +

k + 1

n+ 1
Bn+1
k+1 (λ) . (C.13)
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