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1 Introduction

This thesis oversees the limiting behaviour of the extinction time of the
contact process on random graphs.

The contact process was introduced by Harrys in the late ’70s, and was
then extensively studied by Liggett about twenty years later. In particular,
in [4] Liggett deepens the description of the contact process on deterministic
structures, such as the d-dimensional integer lattice Zd and the homogeneous
tree Td.

The contact process is characterized by a Markovian dynamics and is an
example of interacting particles system. Indeed, given a graph G fixed, and
starting from a configuration in which to each vertex of G is assigned the
value 0 or 1, corresponding to a healthy or an infectious site respectively, the
contact process describes the evolution of the infection across the sites of G,
that is determined by local rules.

The only absorbing state of the contact process is the configuration δ0

that assigns 0 to every site, since it corresponds to the extinction of the
infection (roughly speaking, if all the individuals of a population are healthy,
no one can infect the others, so they will remain healthy from that moment
on).

In order to understand how long it takes to reach such a configuration,
it is necessary to introduce the concept of extinction time. The extinction
time is a random variable that corresponds to the first time in which our
system reaches the configuration δ0. It is also possible that the infection
disappears locally but not globally, so it is necessary to distinguish between
the extinction time and the first time in which just a certain subset of the
vertices of G is healthy, which will be called local extinction time.

Therefore, the contact process is said to die out if the extinction time is
finite almost surely, to die out locally but not globally if the local extinction
time is finite almost surely, but the extinction time is not finite almost surely,
and to survive if the local extinction time is not finite almost surely.

The first results obtained for the contact process on Zd and Td underline
a phase transition depending on the rate λ at which a contagious site can
infect the others. In particular, in the case of Zd there exists a critical value
λc of λ such that for λ ≤ λc the contact process on Zd dies out, while
for λ > λc, it survives. On the contrary, the process on Td exhibits an
intermediate phase, in which the process survives locally but not globally.

In this thesis we will focus on the contact process on a specific class of
random graphs.

Random graphs are random variables that take values in the set of all the
possible graphs that can be drawn starting from a fixed number of vertices
n. One of the simplest class of random graphs is the Erdös Renyi graph, in
which each couple of vertices can connect with probability p independently
of the others.
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Another example of random graph is the random regular graph, which
is a graph chosen uniformly at random among all graphs on n vertices with
constant degree. It is not easy to compute the cardinality of this ensemble,
and thus the corresponding uniform distribution, so in order to analyze the
properties of random regular graphs, we introduce the configuration model,
that gives a procedure to construct multigraphs at random with a given
degree sequence.

Random regular graphs will serve as the structure of our contact process.
This means that we will have to deal with a problem that is anything but
trivial, since it will consist in the study of a double randomness, due to both
the contact process and the random regular graph.

In our analysis we will follow the paper [5] by Mourrat and Valesin,
whose main result is to prove that the limiting behaviour of the extinction
time exhibits a phase transition on the infection rate λ. In particular, we will
show that there exists a critical λg such that asymptotically almost surely
for λ < λg the extinction time will be less than C log n, while for λ > λg it
will be greater than eKn. The critical value corresponds to the critical λc of
global extinction on Td.

In the proof we will use probabilistic techniques, due to the fact that
the problem has a Markovian structure. The local characterisation of the
graph as cycle-free and its connection to branching processes here will play
a crucial role.

The thesis is organized as follow:

• in Chapter 2 we provide the definition of continuous time Markov chain,
of the corresponding semigroup and generator, and recall some basic
facts about invariant measures and asymptotic convergence. We end
the chapter with an example of a continuous time Markov chain, the
Poisson process, since it will be used in the description of the contact
process.

• in Chapter 3 we define the contact process on graph, introducing in-
variant measures, critical values and the concept of local and global
extinction. We continue giving some basic results on Zd and Td and
mentioning a result about the extinction time of the contact process
on Tdl .

• in Chapter 4 we define and describe random graphs, starting from the
Erdös Renyi random graph, continuing with the configuration model
and ending with random regular graphs.

• in Chapter 5 we state our main result, we give a proof and mention
some possible generalisations.

8



2 Continuous time Markov chains

[1][2]
Our aim here is to give a formal definition and a description of a contin-

uous time Markov chain.

2.1 Definition, semigroups, and generators

We start by defining a discrete time Markov chain in the following way:

Definition 2.1. A sequence (Xn)n∈N of random variables which take values
in a finite or countable set I is called a Markov chain if, for each n ≥ 1 and
i1, ..., in+1 ∈ I, it holds that

P(Xn+1 = in+1|Xn = in, ..., X1 = i1, X0 = i0) =

= P(Xn+1 = in+1|Xn = in)

In other words a Markov chain is a stochastic process that retains no
memory of where it has been in the past, so that only the current state will
influence where it goes next.

We are interested in the case in which P(Xn+1 = i|Xn = j) does not
depend on n: when this holds we say that the chain is time-homogeneous
and the matrix P defined by

P := (pij)i,j∈I , pij := P(Xn+1 = i|Xn = j)

is called the transition matrix.
By time-homogeneity we have that

P(Xn = in, Xn−1 = in−1, ..., X0 = i0) =

= pin−1inpin−2in−1 ...px0x1P(X0 = i0)

and this tells us that the law of the process is completely determined by its
initial distribution and its transition matrix.

Notation 2.1. A discrete time Markov chain (Xn)n∈N with initial distri-
bution λ = (λi : i ∈ I) and transition matrix P is denoted by (Xn)n∈N ∼
Markov(λ, P ).

Let us also notice that if (Xn)n∈N ∼ Markov(λ, P ) then, by Markov prop-
erty and time-homogeneity, the probability that after n steps the Markov
chain is in state j is P(Xn = j) = (λPn)j .

We now want to consider the continuous time case.
Let (Xt)t≥0 be a random variable with values in a finite or countable

set I. Let Fs := σ(Xu : u ≤ s) be the σ-algebra generated by the random
variables Xu for which u ≤ s.
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Definition 2.2. (Xt)t≥0 is called a Markov chain if for every i ∈ I and
0 ≤ s ≤ t it holds that

P(Xt = i|Fs) = P(Xt = i|Xs)

Let us notice that this definition is the continuous time analogous of the
discrete time case, since conditioning on Fs is the same as conditioning on
Xs, which means that the process is memoryless as in the discrete case.

We are interested in the case in which P(Xt = i|Xs = j) depends on
s, t only through t − s: when this happens we say that the chain is time-
homogeneous, and we define the operator S(t) : RI → RI for t ≥ 0 by

S(t)f(j) := E(f(Xt)|X0 = j) =
∑
i∈I

f(i)P(Xt = i|X0 = j)

where RI denotes the set of all the functions f from I to R.

Proposition 2.1. For t ≥ 0, S(t) is a semigroup, i.e. S(0) = I and S(t +
s) = S(t)S(s).

The thesis of the previous proposition follows directly from the defini-
tions:

S(0)f(j) = E(f(X0)|X0 = j) =
∑
i∈I

f(i)P(X0 = i|X0 = j) =

=
∑
i∈I

f(i)δij = f(j)

so S(0) = I, and also S(t + s) = S(t)S(s) is a direct consequence of the
definition and Markov property.

Now, let us notice that S(t) is a linear operator from RI to itself, so it
can be seen as a matrix

(S(t)ij)i,j∈I = P(Xt = j|X0 = i) (1)

.
Moreover, if t 7→ S(t) is continuous, it can be shown that

lim
t↓0

S(t)− I
t

exists and we call it L.
Using also Markov property, it holds that

d

dt
S(t)|t=0

= L⇐⇒ S(t) = etL
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since
d

dt
S(t) = lim

h→0

S(t+ h)− S(t)

h
= lim

h→0
S(t)

S(h)− I
h

= S(t)L.

Now, from (1), for 0 < t1 < t2 < ... < tn and i0, i1, ..., in ∈ I, it follows
that:

P(Xtn = in, Xtn−1 = in−1, ..., X0 = i0) =

= (S(tn − tn−1))inin−1(S(tn−1 − tn−2))in−2in−1 ...(S(t1))i0i1P(X0 = i0)

which means that the distribution of X0 and the semigroup S(t)t≥0 iden-
tify the law of the process.

Definition 2.3. We call L the generator of the Markov chain.

Notation 2.2. A continuous time Markov chain (Xt)t≥0 with initial distri-
bution λ = (λi : i ∈ I) and semigroup S is denoted by (Xt) ∼ Markov(λ, S).

The generator L of a semigroup S(t) has some properties that we want
to underline:

(i) Lij ≥ 0 for i 6= j,

(ii)
∑

j∈I Lij = 0 ∀i,

(iii) 0 ≤ −Lii <∞ ∀i.
where (i) holds because

0 ≥ P(Xt = j|X0 = i) = (S(t))ij = tLij + o(t)⇒ Lij ≥ 0 (2)

, (ii) is true since ∑
j∈I

Lij = lim
t↓0

∑
j∈I

(S(t))ij − δij
t

= 0

, and (iii) follows from (i) and (ii) because by (ii)
∑

j∈I Lij = 0 and by (i)
Lij ≥ 0, so that∑

j∈I
Lij = Lii +

∑
j 6=i

Lij = 0⇒ Lii = −
∑
j 6=i

Lij ≤ 0.

From these properties we can obtain a general expression for the gener-
ator of the semigroup:

Lf(i) =
∑
j∈I

Lijf(j) = Liif(i) +
∑
j 6=i

Lijf(j) =

= −
∑
j 6=i

Lijf(i) +
∑
j 6=i

Lijf(j) =
∑
j 6=i

Lij [f(j)− f(i)]. (3)

This expression gives us another way to define a continuous time Markov
chain, just like (2), which is an infinitesimal characterisation of the transition
probability (in other words Lij can be seen as the rate of going from state i
to state j).
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2.2 Convergence and stationary distribution

We now investigate the limiting behaviour of the continuous time Markov
chain law.

Let πt(j) = P(Xt = j). It holds that

πt(j) =
∑
i

P(Xt = j,X0 = i) =

=
∑
i

P(Xt = j|X0 = i)P(X0 = i) =
∑
i

(S(t))ijπ0(i)

so we have

πt = π0S(t)⇐⇒

{
π̇t = π0Ṡ(t) = π0S(t)L = πtL,

π0

Definition 2.4. A probability π on I is called an stationary or invariant
distribution if for every t ≥ 0 πS(t) = π or equivalently πL = 0.

The idea is that the stationary distribution π is the candidate limiting
distribution of our chain.

It can be shown that if I is finite, then at least one stationary measure
exists. This is not necessarily true if I is countable. We hence introduce the
following concept, which will serve as necessary condition for the existence
of a stationary measure even if I is countable.

Definition 2.5. A Markov chain is called irreducible if for every i, j ∈ I
there exists a path i = i0, i1, ...., in = j such that for every k = 0, ..., n − 1
ik 6= ik+1 and Likik+1

> 0.

Given this definition, the following result holds:

Theorem 2.1. (ergodic theorem) For irreducible chains there exists at
most one stationary distribution π. When it exists π(i) > 0 for every i ∈ I
and for every probability π0 we have that

π = lim
t→∞

π0S(t).

2.3 The Poisson process

Poisson processes are some of the simplest examples of continuous time
Markov chains, indeed they may also be used as building blocks for other
continuous time Markov chains that are more general (and this is in fact the
case of the contact process).

Definition 2.6. A Poisson process (Nt)t≥0 of rate λ, 0 < λ < ∞, is a
continuous time Markov chain which takes values in I = N, with N0 = 0,
and Lij = λδi+1,j .
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Notation 2.3. Nt ∼ PP (λ).

Hence, representing L with a matrix, we have:

L =


−λ λ 0 ...
0 −λ λ 0 ...
... 0 −λ λ 0 ...
... ... ... ... ... ...


where we have used properties (i), (ii), and (iii) in the representation.

It is possible to define the Poisson process in other equivalent ways: we
now give an equivalent definition in terms of its increments.

Definition 2.7. The increment of a real-valued process (Xt)t≥0 on an inter-
val (s, t] is given byXt−Xs. We say that (Xt)t≥0 has stationary increments if
the distribution ofXs+t−Xs depends only on t ≥ 0, i.e. Xt+s−Xs ∼ Xt−Xs.
We say that (Xt)t≥0 has independent increments if its increments over any
finite collection of disjoint intervals are independent, i.e. Xt+s −Xs is inde-
pendent of Xu : u ≤ s.

Definition 2.8. A Poisson process (Nt)t≥0 of rate λ, 0 < λ < ∞, is a
continuous time Markov chain that has stationary independent increments
and such that, for each t, Nt has Poisson distribution of parameter λt.

A property of the Poisson process that we want to underline is the fol-
lowing:

Theorem 2.2. If (Nt)t≥0 and (Mt)t≥0 are independent Poisson processes of
rates λ and µ respectively, then their sum (Nt +Mt)t≥0 is a Poisson process
of rate λ+ µ.

We end this paragraph giving an example and a graphical construction
of what we obtain building a Markov chain starting from Poisson processes.

We hence consider a continuous time simple random walk (ηt : t ≥ 0) on
I = Z, which is defined by ηt = Nt −Mt, where (Nt : t ≥ 0) ∼ PP (λ) and
(Mt : t ≥ 0) ∼ PP (µ), so as the difference of two Poisson processes.

Therefore, the generator L of (ηt : t ≥ 0) is:

L =


... ... ... ... ... ... ...
... µ −λ− µ λ 0 ... ...
... 0 µ −λ− µ λ 0 ...
... ... 0 µ −λ− µ λ ...
... ... ... ... ... ... ...

 (4)

As for the graphical construction of the process ηt, we show it in Figure 1,
where in each column Nt is represented by →, Mt by ←, and the trajectory
of the process ηt is coloured in red (it is hence uniquely determined).
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Figure 1: Continuous time simple random walk: graphical construction

As said at the end of paragraph 2.1, to define a continuous time Markov
chain such as the simple random walk, we can also give the expression of the
generator of its semigroup, i.e.:

Lf(η) = λ(f(η + 1)− f(η)) + µ(f(η − 1)− f(η))

and indeed this is just another way to define matrix (4).
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3 The contact process

[2]
We now want to describe the contact process. We start with a represen-

tation in terms of its jump rates Lij and a graphical construction, then we
give a definition declaring its generator.

The idea is that the contact process (ηt)t≥0 represents the possible con-
figurations of the spread of an illness in a population. We will hence have a
graph G = (V,E) whose vertices V will be seen as individuals of a popula-
tion whose possible states are {0, 1}, where 0 means that the individual is
healthy, 1 that it is infected.

Moreover, each infected vertex can recover with rate 1, while the healthy
one can be infected with rate λ > 0 times the number of neighbours in the
graph.

In other words, the contact process is made of Poisson processes: the
recovering process (a Poisson process of rate 1) and the infection processes
(Poisson processes of rate λ).

Notation 3.1. We denote with y ∼ x the fact that y is a neighbour of x in
the graph.

The jump rates of the contact process are hence:

Lx,η =

{
1, η(x) = 1

λ
∑

y∼x η(y), η(x) = 0

To give a graphical construction of the contact process, we consider the
case V = Z: this means that each individual will have at most two infectious
neighbours. We will hence introduce three independent Poisson processes:
in Figure 2 × ∼ PP (1) will mark on each line the recovery events, while the
independent Poisson processes →∼ PP (λ), and ←∼ PP (λ) will mark the
infection events. The contact process will be coloured in red.

Notation 3.2. We will denote with ξxt := {y ∈ V : (x, 0)↔ (y, t)} where↔
indicates that x and y are connected by an infection path (which in figure 2
is coloured in red). This means that ξxt is a set of vertices that are infectious.
We also underline that hence ξAt = ∪x∈Aξxt , and ξAs+t = ∪x∈ξAt {y : (x, t) ↔
(y, t+ s)} ≡ ∪x∈ξAt (ξxt ◦ θs).

From notation 3.2, we see that it holds:

∀x ∈ ξt, ξt → ξt \ {x} with rate 1,

∀x /∈ ξt, ξt → ξt ∪ {x} with rate λ|{y ∈ ξt : y ∼ x}|

Let us now define the contact process in terms of its generator.
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Figure 2: Contact process: graphical construction

Definition 3.1. Let G = (V,E) be a strongly connected graph with vertex
set V and edge set E. We call contact process the Markov chain with state
space I = {0, 1}|V | and generator

Lf(η) =
∑
z∈V

(
η(z) + λ(1− η(z))

∑
y∼z

η(y)
)

(f(ηz)− f(η)) (5)

where η(z) denotes the value of the process in the component z and ηz is η
with component z that has been updated.

3.1 Invariant measures and critical values

Let us start by giving some definitions and stating a property for the contact
process. We usually say that a function f : I → R is increasing if x ≤ y ⇒
f(x) ≤ f(y). This concept can also be extended to Markov chains.

Definition 3.2. A continuous time Markov chain (Xt)t≥0 with semigroup
(S(t) : t ≥ 0) is said to be attractive or monotone if f increasing ⇒ S(t)f
increasing ∀t ≥ 0.

Equivalently, using (1), i.e. the fact that S(t) represents the time evolu-
tion of the distribution of a process, we can give the same definition in terms
of distributions:

Definition 3.3. A continuous time Markov chain (Xt)t≥0 with semigroup
(S(t) : t ≥ 0) is said to be attractive or monotone if µ ≤ λ⇒ µS(t) ≤ λS(t),
∀t ≥ 0, where µ and λ are distributions.

16



We now want to say something about the limiting behaviour of the con-
tact process defined as in (5).

First, we give the following result, which can be used to prove proposition
3.1.

Lemma 3.1. The contact process is attractive.

Now, let δ1 be the configuration that corresponds to η(x) = 1 ∀x ∈ V
(i.e. each individual of the population is infectious) and δ0 the configuration
such that η(x) = 0 ∀x ∈ V (i.e. each individual of the population is healthy).

Let us notice that δ0 is stationary, since if the process reaches the con-
figuration in which each individual is healthy, no one will spread the illness
anymore and hence everyone will remain healthy (we say indeed that δ0 is
an absorbing state).

Moreover, the following result holds:

Proposition 3.1. For all 0 ≤ s ≤ t we have

δ1S(t) ≤ δ1S(s)

and that there exists the limit

ν̄λ = lim
t→∞

δ1S(t)

.
Moreover, ν̄λ is invariant and δ0 ≤ π ≤ ν̄λ for every π invariant.
Finally, λ < λ′ implies ν̄λ ≤ ν̄λ′ and for each x ∈ I ρx(λ) := ν̄λ(η(x)) is

monotone increasing in λ.

Definition 3.4. ν̄λ is called the upper invariant measure.

Since on a finite graph the configuration δ0 can be reached in a finite
time from any other configuration (a finite number of infectious individuals
will no longer be infectious in a finite time), and since δ0 is absorbing, we
have that

πS(t)→ δ0 as t→∞

for all π. Hence, taking π = δ1 we have, by the previous proposition, that
ν̄λ = δ0.

On the other hand, on an infinite graph it may be possible that ν̄λ 6= δ0.

Definition 3.5. The survival probability αη with initial configuration η ∈ I
is the probability defined by:

αη := P(ηt 6= 0 ∀t ≥ 0|η0 = η).

Notation 3.3. For each set A ⊆ V we denote by αA the survival probability
α1A . We write αx for α{x}.
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Definition 3.6. The contact process (ηt)t≥0 is said to die out if αx = 0 for
some x ∈ V , otherwise it is said to survive.

Proposition 3.2. If the contact process dies out for infection rate λ′ > 0,
then it dies out for all λ ∈ [0, λ′]

Therefore, we can introduce the following concept:

Definition 3.7. The critical value λc ∈ [0,∞] is defined by:

λc := sup{λ ≥ 0 : the contact process with infection rate λ dies out}.

Our aim now is to show that there exists a phase transition varying λ;
in other words for λ < λc the contact process will have a certain behaviour,
while for λ > λc the trend of the process will be different.

We hence state the next result:

Proposition 3.3. For any set A ⊆ V the survival probability is

αA = ν̄λ({1B : B ∩A 6= ∅}),

and for λ < λc we have ν̄λ = δ0, while for λ > λc, ν̄λ 6= δ0.

To sum up, there exists a well defined critical value λc ∈ [0,∞] such that
the contact process dies out and ν̄λ = δ0 for λ < λc, while for λ > λc it
survives and ν̄λ 6= δ0.

However, if for a finite graph we have seen that λc = ∞, on infinite
graphs it is not clear if λc is non-trivial, i.e. if λc ∈ (0,∞). We hence state
another result, which will give a lower bound for λc on infinite graphs.

Proposition 3.4. Let us consider the contact process on a connected graph
with maximal vertex degree m. Then λc ≥ 1

m .

Giving an upper bound is more difficult, so in paragraph 3.2 and 3.3, we
will focus on the case V = Zd and V = Td respectively, eventually stating
other results.

3.1.1 Local and global extinction

[4] We have already defined (see definition 3.5) the survival probability of
the contact process. However, in some situations it may happen that the
infection survives weakly (for example, in paragraph 3.3 we will see that this
is what happens when we consider the contact process on homogeneous con-
nected trees), then a notion of weak survival probability or local extinction
is necessary.

Definition 3.8. The extinction time τAG of the contact process (ξAt )t≥0 on
G = (V,E), where A ⊆ V is defined by

τAG := inf{t : ξAt 6= ∅}

18



Definition 3.9. The local extinction time τAG of the contact process (ξAt )t≥0

on G = (V,E), where A ⊆ V is defined by

τA,locG := inf{t : ξAt ∩A = ∅}

Notation 3.4. We write τG for τGG , and τx for τ{x}.

Definition 3.10. Let G = (V,E) be a graph, A ⊆ V , and λ > 0. Then, for
the contact process ξAt with parameter λ on G, we define:

• the extinction probability as

pext
G,A,λ := PG,λ[τAG <∞]

• the local extinction probability as

ploc ext
G,A,λ := PG,λ[τA,locG <∞].

Here we underline that the contact process has the same behaviour on
all the subsets: it can either die out (locally) for all the subsets or survive
(locally) for all the subsets, i.e. it holds:

either p(loc) ext
G,A,λ = 1 ∀A, or p(loc) ext

G,A,λ < 1 ∀A

Definition 3.11. We say that the contact process

• dies out if pext
G,A,λ = 1 ∀A

• survives weakly or locally if pext
G,A,λ < 1 and ploc ext

G,A,λ = 1 ∀A

• survives strongly or globally if ploc ext
G,A,λ < 1 ∀A

Let now

λg(G) := sup{λ : pext
G,A,λ = 1} and λl(G) := sup{λ : ploc ext

G,A,λ = 1}

i.e. λg is the greatest λ for which the contact process dies out, while λl is
the greatest λ for which the contact process survives locally.

Obviously, for the process to die out, we need an infection rate that is
less or equal than the infection rate for the process to survive locally, hence
λg(G) ≤ λl(G).
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3.2 Basic results on Zd

[2] Let us consider the contact process on V = Zd.

Theorem 3.1. For the critical value λc(d) of a contact process on Zd, we
have:

1

2d
≤ λc(d) ≤ 2

d
∀d ≥ 1.

Let us notice that the lower bound is the same as in the previous propo-
sition, but m = 2d. It can also be shown that dλc(d)→ 1

2 as d→∞.
The next result is about convergence of the contact process starting from

a generic initial configuration η ∈ I

Theorem 3.2. (complete convergence theorem) Let us consider the con-
tact process on V = Zd. For every η ∈ I we have

ξηt
d−→ αην̄λ + (1− αη)δ0 as t→∞, (6)

where αη is the survival probability, and for ξηt we recall notation 3.2.

The extinction time represents hence the first time for which all the
individuals recover starting from a given configuration. We are obviously
interested in estimating the probability that the extinction time is finite
when we are in the supercritical regime (i.e. the case λ > λc), for which we
know that the process survives.

Theorem 3.3. Let λ > λc and τZd be the extinction time of the contact
process (ηt)t≥0 on Zd. Then there exists ε > 0 such that, for every A ⊆ V ,

P(τAZd <∞) ≤ e−ε|A|

.

However, if µ is translation invariant and µ(η(x)) > 0, then µ(|η| =∞) =
1 by Borel Cantelli lemma, and hence P(τ = ∞|η0 = η) = αη = 1, i.e. the
process survives with probability 1. Now, by (6), setting αη = 1 and δη = µ
we obtain

µS(t)→ ν̄λ as t→∞.

The case left is the critical one, i.e. what happens if λ = λc.
In this situation, the following result holds:

Theorem 3.4. The critical contact process dies out.
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3.3 Basic results on Td

[4] Here we want to describe the contact process on Td, therefore first of all
we introduce the following concept:

Definition 3.12. The homogeneous connected tree Td is a tree in which each
vertex has d+ 1 neighbours, where we will assume that d ≥ 2, since T1 = Z.

It is often useful to think of Td as a branching tree in which each vertex
has 1 parent and d children: to express this concept in a formal way, we
define

Definition 3.13. Let l : Td → Z be a function such that ∀x ∈ Td it holds
that l(y) = l(x)− 1 for exactly one neighbour y of x, and l(y) = l(x) + 1 for
the other d neighbours y of x. The generation number of x ∈ Td is l(x).

Now, with the function l(x) it is possible to generate all the elements of
Z, since for every generation we can either add or subtract 1. Conversely
to n ∈ Z, which represents generation n, can correspond more than one
element x of Td, since x can have brothers. Hence, taking en ∈ Td such that
l(en) = n and |en − en+1| = 1, this provides an embedding k = l−1

|Z of Z in
Td

Z k
↪→ Td

n 7→ en.

Taking this into account, we recall that on Zd, as we have seen in para-
graph 3.2, we have that λg = λl = λc, hence there is no need to distinguish
between local and global survival. Conversely, on Td we will see that an inter-
mediate phase between λg and λl exists, so it is possible to have λg < λ < λl
such that the process survives locally.

This crucial result is shown in [4], here we will just describe the main
results that are used in its proof. More precisely, we will follow the next
steps:

(i) Define the function Φ and show that it determines the asymptotics of
E[ωρ(ξt)] in a very strong sense, where ωρ(A) :=

∑
x∈A ρ

l(x), ρ ≥ 0
(proposition 3.5).

(ii) Give various monotonicity and continuity properties that are needed
working with it (proposition 3.6).

(iii) State that if λ = λ1 the process dies out and its expected size remains
bounded (proposition 3.7).

(iv) State that properties of Φ determine whether or not the process sur-
vives strongly (proposition 3.8).

(i) In order to define Φ, we will need the following theorem:
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Theorem 3.5. Suppose that α(t), t ≥ 0 is locally bounded and satisfies the
subadditivity property, i.e.

α(s+ t) ≤ α(s) + α(t), s, t ≥ 0.

Then
−∞ < lim

t→∞

α(t)

t
= inf

t>0

α(t)

t
≤ ∞.

Let us recall notation 3.2 and consider

ξt+s = ∪x∈ξs(ξxt ◦ θs). (7)

We have that, for ρ > 0,

ωρ(ξt+s) =
∑
y∈ξt+s

ρl(y) ≤
∑
x∈ξs

∑
y∈ξxt ◦θs

ρl(y)

where in the last inequality we have used the fact that the union in (7) is not
necessarily disjoint. We now take the conditional expectation with respect
to Fs on both members, obtaining:

E[ωρ(ξt+s)|Fs] ≤ E[
∑
x∈ξs

∑
y∈ξxt ◦θs

ρl(y)−l(x)+l(x)] =
∑
x∈ξs

ρl(x)E[
∑
y∈ξxt

1ρl(y)−l(x)] =

= ωρ(ξs)E[ωρ(ξt)]. (8)

Taking expected values in inequality (8), we get:

E[ωρ(ξt+s)] ≤ E[ωρ(ξs)]E[ωρ(ξt)]

which implies

logE[ωρ(ξt+s)] ≤ logE[ωρ(ξs)]E[ωρ(ξt)].

Hence, we can use theorem 3.5 to say that it exists

lim
t→∞

logE[ωρ(ξt)]

t

so that it also exists
lim
t→∞

(E[ωρ(ξt)])
1/t

therefore,
Φ(ρ) = lim

t→∞
([E[ωρ(ξt)]])

1/t (9)

is well defined.
To end this first step, we also state
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Proposition 3.5. (a) The following symmetry properties hold:

E[ω1/ρd(ξt)] = E[ωρ(ξt)] and Φ
( 1

ρd

)
= Φ(ρ).

(b) There is a constant C(ρ) ≤ ∞ depending only on d and ρ such that

[Φ(ρ)]t ≤ E[ωρ(ξt)] ≤ C(ρ)[Φ(ρ)]t t ≥ 0

and C(ρ) <∞ if ρ 6= 1/
√
d.

(ii)In the following proposition, we give monotonicity and continuity
properties for Φ.

Proposition 3.6. (a) Φ is nondecreasing in λ and is nondecreasing in ρ
for ρ ≥ 1/

√
d

(b) Φ is jointly continuous for λ > 0, ρ > 0.

(iii)In the next result we see that for λ = λg the process dies out and
moreover its expected cardinality remains bounded.

Proposition 3.7. If λ = λg, then Φ(1) = 1, and hence

sup
t>0

E[|ξt|] <∞

and ξt dies out.

(iv) The following proposition tells us that the properties of Φ determines
if the process survives strongly or not.

Proposition 3.8. (a) Suppose that ξt does not survive strongly. If 1/
√
d ≤

ρ1 < ρ2 and Φ(ρ2) ≥ 1, then Φ(ρ1) < Φ(ρ2).

(b) If Φ(ρ) < 1 for some ρ > 0, then ξt does not survive strongly.

Using propositions 3.5, 3.6, 3.7, and 3.8, we are now ready to prove the
existence of an intermediate phase for the contact process on Td.

Theorem 3.6. For all d ≥ 2, λg < λl.

Proof. If λ = λg, then by proposition 3.7, Φ(1) = 1 and ξt dies out. Hence,
by proposition 3.8 applied to ρ1 = ρ and ρ2 = 1, it holds that Φ(ρ) < 1. Let
us now fix such a ρ. By proposition 3.6(b), there exists a λ > λg such that
Φ(ρ) < 1 also for this λ. Now, proposition 3.8(b) implies that hence ξt does
not survive strongly for this λ, so λ ≤ λl. Therefore, λl > λg.

Let us now notice that these results does not only imply the existence of
an intermediate phase, but also some statements about survival and strong
survival. More precisely, we underline that:
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• by proposition 3.5(b) and proposition 3.7 the contact process ηt sur-
vives if and only if Φ > 1, and

• by proposition 3.8 Φ(1/
√
d) < 1 implies that ηt does not survive

strongly.

Our aim now is to see that the remaining implication holds, i.e. that it
is true that if the process ηt does not survive strongly, then Φ(1/

√
d) ≤ 1.

We start by introducing the sequence u(n)

u(n) = P(en ∈ ξt for some t), n ≥ 0

and letting
τ = inf{t > 0 : en ∈ ξt}.

We have that:

u(n+m) = P(en+m ∈ ξt) = E[PAτ (en+m ∈ ξt for some t), τ <∞] ≥

≥ E[Pen(en+m ∈ ξt for some t), τ <∞] = u(n)u(m) (10)

where the inequality is true because of monotonicity and the last equality
comes from the strong Markov property.

Hence, by the discrete version of theorem 3.5 applied to the logarithm of
u, reasoning as in the definition of Φ, we obtain that

β(λ) = lim
n→∞

[u(n)]
1
n (11)

is well defined.
The next theorem collects some properties of β that we are going to need.

Theorem 3.7. (a) β(λl) = 1√
d
.

(b) If β(λ) < 1√
d
, then Φ( 1√

d
) < 1.

To link β with Φ, let us also introduce

u(n, t) = P(en ∈ ξt)

for n ∈ N, and t ≥ 0.
Repeating the reasoning of (10), we obtain

u(m+ n, s+ t) ≥ u(m, s)u(n, t)

and hence, taking s = mt and replacing the previous t with nt,

u(m+ n, (m+ n)t) ≥ u(m,mt)u(n, nt).

24



Taking again the logarithm, and using the discrete version of theorem
3.5, we obtain that

U(t) lim
n→∞

u(n, nt)
1
n

is well defined.
It holds that

Theorem 3.8. The function U(t) is such that logU is concave on (0,∞)
and hence it is continuous there, and satisfies

sup
t>0

U(t) = β(λ)

and
lim
t→0

U(t) = 0. (12)

The introduction of U allows us to state the following results:

Theorem 3.9. If β(λ) < 1/
√
d, then

Φ(ρ) = sup
0<l<∞

[ρdU(t)]
1
t for ρ >

1√
d

and
Φ(β(λ)) = Φ

( 1

β(λ)d

)
= 1 (13)

Corollary 3.1. (a) β(λ) is continuous on [0, λl].

(b) β(λg) = 1
d .

(c) β(λ) > 1
d for λ > λg.

We are finally ready to state a theorem that will allow us to prove that
if the process does not survive strongly, then Φ(1/

√
d) ≤ 1.

Theorem 3.10. The function β(λ) is strictly increasing on [0, λl]

Using the previous result, theorem 3.7, theorem 3.10, and proposition 3.6,
we now prove that if the process does not survive strongly, then Φ(1/

√
d) ≤ 1.

Let us take λ < λl. By theorems 3.7(a) and 3.10, β < 1/
√
d. By theorem

3.7(b), Φ(1/
√
d) < 1. Finally, by proposition 3.6(b), we can let λ → λl to

conclude that Φ(1/
√
d) ≤ 1. To see this, passing to the limit in equation

(13) gives Φ(1/
√
d) = 1 at λ = λl.

To sum up, up to now in this paragraph we have seen that:

• There exists an intermediate phase for the contact process on Td,

• (i) The contact process on Td survives if and only if Φ > 1.
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(ii) The contact process on Td does not survive strongly if and only
if Φ(1/

√
d) < 1.

As for the case V = Zd, where we have seen in theorem 3.2 that ξηt
converges in distribution to an expression depending on ν̄, αη, and δ0, we
have a similar result for V = Td, which is stated in the next theorem.

Theorem 3.11. (complete convergence theorem) If λ > λl, then

ξAt
d−→ αA(λ)ν + [1− αA(λ)]δ0 as t→∞

for any initial configuration A ⊆ Td, where: ν̄ is the upper invariant measure
of the process, and αA the survival probability of the process started at A.

3.4 Extinction time of the contact process on Tdl
[6] Here we want to state the main result for the limiting behaviour of the
extinction time of the contact process on the d-ary tree of length l, hence we
premise the following definition.

Definition 3.14. The d-ary tree of height l Tdl is a tree with a distinguished
vertex o, called root, that has degree d, all vertices at distance between 1
and l− 1 from o with degree d+ 1, and all vertices at distance l from o with
degree 1

In the next theorem we state the main result about the limiting behaviour
of the extinction time τTdl : in particular we establish a phase transition with
critical value λl(Td), i.e. the greatest λ for which the contact process survives
locally on the infinite d+ 1-tree.

Theorem 3.12. (a) ∀0 < λ < λ2(Td) there exists C > 0 such that, as
l→∞,

τTdl
log |Tdl |

P−→ C

(b) ∀λ > λ2(Td) there exists K > 0 such that, as l→∞,

log τTdl
|Tdl |

P−→ K.

Moreover,
τTdl

E[τTdl
]

d−→ exp(1).

Remark. It can be proved that this theorem still holds if we replace Tdl with
T̂dl , which is the subgraph of Td that we obtain if we select a vertex o of Td
that we consider as a root and all the vertices that are at distance at most l
from o. There is hence a difference between Tdl and T̂dl , since we can obtain
Tdl removing one of the subtrees that ramifies from the root o of T̂dl .
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4 Random graphs

[3]
Since we are interested in studying the contact process on random regular

graphs, the aim of this section is to describe what a random graph is.
With the term random graphs we refer to probability distributions over

graphs.
We will start from analysing the simplest random graph imaginable, the

Erdös Renyi random graph ERn(p), in which we have n vertices that connect
with probability p, then we will introduce the configuration model, for which
we have a fixed distribution of the degrees, and just in the end we will talk
about random regular graphs, since they can be seen as a generalisation of
the configuration model.

4.1 The Erdös Renyi random graph

4.1.1 Definition

Definition 4.1. The Erdös Renyi random graph ERn(p) is a graph G =
(V,E) with vertex set V = {1, ..., n}, and edge set E = {st = {s, t}|s, t ∈ V },
where the edge st will be present or occupied in the graph with probability
p and absent or vacant otherwise, independently of all other edges. p will be
called the edge probability.

Notation 4.1. We write s ←→ t if there exists a path of occupied edges
connecting s and t (by convention we also assume that v ←→ v).

Since we want to talk about the properties of the Erdös Renyi random
graph, we first have to introduce the connected component C(v) of a vertex
v and give a procedure to find C(v) in a given graph.

Definition 4.2. For v ∈ V we call cluster of v or connecting component
containing v the set

C(v) = {x ∈ V |v ←→ x}. (14)

This means that the size of C(v), denoted by |C(v)| will denote the number
of vertices connected to v by an occupied path.

Definition 4.3. The largest connected component Cmax is defined by

Cmax = max
v∈V
|C(v)| (15)

so Cmax identifies any cluster C(v) for which |C(v)| is maximal. Since this
definition does not identify Cmax uniquely, we specify the vertex with the
smallest label contained in Cmax.
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We now give a procedure to find the cluster of v C(v) in a given graph
G, which is not necessarily ERn(p).

During our process, vertices can have three statuses: active, neutral,
and inactive. The status of vertices can change in the exploration of the
connected component of v, in the following way:

• At time t = 0 only v is active and all other vertices are neutral, and
we set S0 = 1.

• At each time t ≥ 1 we pick the active vertex with the smallest label
w and we explore all the edges ww′, where w′ is a neutral vertex. If
ww′ ∈ E(G), we set w′ active, otherwise it remains neutral.

• After searching the whole set of neutral vertices w′, we set w inactive
and we put St equal to the new number of active vertices at time t.

• When St = 0 for the first time, which means that there are no more
active vertices, the procedure ends and C(v) is the set of all inactive
vertices, which implies that |C(v)| = t.

From this process we see that St is the total number of active vertices at
time t.

We now define the variable Xt as the number of vertices that become
active during the exploration of the t-th active vertex wt. As described
above, after its exploration wt becomes inactive.

Therefore, it holds that:

S0 = 1, St = St−1 +Xt − 1 (16)

.
The above procedure can be applied to any graph G.
We now focus on the Erdös Renyi graph ERn(p), whose main property

gives us the possibility to determine the distribution of Xt, conditionally on
St−1.

Indeed, in the Erdös Renyi graph ERn(p) each edge can be occupied or
vacant independently of the others with probability p. A consequence of this
property is the fact that the distribution of Xt depends only on St−1: more
precisely, each neutral vertex w′ at time t − 1 has probability p to become
active at time t. Since the edges ww′ are explored precisely once, we also
know the conditional probability that ww′ is an edge in ERn(p): it has to
be always equal to p.

After t − 1 explorations of active vertices w, we have that the inactive
vertices are t−1, while the active vertices are St−1 by definition. This means
that the remaining n− (t− 1)− St−1 vertices are neutral.

Hence, conditionally on St−1, it holds that:

Xt ∼ Bin(n− (t− 1)− St−1, p) (17)
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since to count the number of vertices that from neutral become active during
the exploration, we have to do a number of trials that is equal to the number
of neutral vertices.

Let now T be the first time t for which St = 0:

T = inf{t|St = 0} (18)

then we have that |C(v)| = T , so the size of the connected component con-
taining v actually describes the exploration of a single connected component.

The cluster exploration only makes sense when St−1 ≥ 1, since there is
no point in continuing it formally for t > T .

Let us also notice that the statuses of the edges of the Erdös Renyi graph
are i.i.d. random variables taking the value 1 (which corresponds to the
status "occupied") with probability p and the value 0 (denoting the status
"vacant") with probability 1− p.

A convention that we are going to use is that the edge probability p is
set equal to λ

n : this choice will allow us to establish a phase transition on
|Cmax| varying λ.

Always by convention, with Pλ we are going to denote the distribution
of ERn(λn).

4.1.2 Properties

We are now going to talk about the properties of the Erdös Renyi random
graph.

Monotonicity in the edge probabilities
We will show that the Erdös Renyi random graph is monotonically in-

creasing in p.
Let us start by coupling the graph: to do this we assign independent

uniform random variables Ust for each edge st on [0, 1]:

P(Ust ≤ x) =


0, x < 0

x, 0 ≤ x < 1

1, x ≥ 1

. We say that the edge is occupied if Ust ≤ p and since the edges are occupied
independently of the others, the probability that an edge is occupied is hence
P(Ust ≤ p) = p.

Therefore, the resulting graph of occupied edges has the same distribution
as ERn(p), and moreover the coupling shows that the number of occupied
edges increases when p increases. Hence, formally:

Definition 4.4. We say that an event is increasing when, if the event occurs
for a set of occupied edges, it remains to hold when we make some more edges
occupied.
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We say that a random variable X is increasing if the events {X ≥ x}
are increasing ∀x ∈ R.

Example 4.1. An example of an increasing event is {s↔ t}, and examples
of increasing random variables are |C(v)|, and |Cmax|.

Stochastic domination of connected components
In the following two theorems we will show that branching processes with

binomial offspring distrubution give a stochastic upper bound and a lower
bound on the cluster tail for each connected component of ERn(λn).

We hence premise the definition of branching process and we explain
what an offspring distribution means.

Definition 4.5. A Branching process is the simplest model for a population
evolving in time, in which each individual independently gives birth to a
number of children with the same distribution.

Notation 4.2. • We write (pi)i≥0 for the offspring distribution, where

pi = P(individual has i children)

• We denote by Zn the number of individuals in the n-th generation,
where Z0 = 1 by convention.

Let us notice that hence the following relation holds:

Zn =

Zn−1∑
i=1

Xn,i

where (Xn,i)n,i≥1 is a doubly infinite array of i.i.d. random variables.

Figure 3: Branching processes: example of generation 2
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Definition 4.6. The law (pi)i≥0 of Xn,i ∀n, i ≥ 0 is called the offspring
distribution of the branching process.

We are now ready to state the following result:

Theorem 4.1. The following relation holds:

|C(1)| � T≥

where � means that, ∀k ≥ 1,

Pnp(|C(1)| ≥ k) ≤ Pn,p(T≥ ≥ k)

and T≥ is the total progeny of a binomial branching process with parameters
n and p.

Here we recall that Pλ denotes the law of ERn(λn)

Theorem 4.2. ∀k ∈ V , it holds that:

Pnp(|C(1)| ≥ k) ≥ Pn−k,p(T≥ ≥ k)

where T≥ is the total progeny of a branching process with binomial distribu-
tion with n− k trials and p = λ

n as the success probability.

In the next sections we will investigate the behaviour of |Cmax | in sub-
critical and supercritical regime, i.e. when λ is less or greater than a critical
value λ̄ respectively.

4.1.3 Phase transition

Because of the stochastic domination of the connected components described
in paragraph 4.1.2, it can be shown that the critical value λ̄ for |Cmax | is equal
to 1, as it is for the critical value of a branching process expected offspring.
Hence we study the behaviour of |Cmax | for λ < 1 and λ > 1.

The subcritical regime
Let Iλ = λ − 1 − log(λ). Then it is possible to derive an upper and a

lower bound on the largest subcritical component, as we state in the next
results.

Theorem 4.3. Let λ < 1 be fixed. Then, for every a > 1
Iλ
, there exists

δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≥ a log n) = O(n−δ).

Theorem 4.4. Let λ < 1 be fixed. Then, for every a < 1
Iλ
, there exists

δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≤ a log n) = O(n−δ).
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These two theorems together imply that |Cmax|
logn

P−→ 1
Iλ
.

The supercritical regime
The main result for λ > 1 is a law of large numbers for the size of the

maximal connected component. Before stating this theorem, we premise a
definition:

Definition 4.7. The survival probability of a branching process, denoted by
β = 1− γ, is defined by

β := P(Zn > 0 ∀n ≥ 0).

Notation 4.3. We denote by βλ = 1 − γλ the survival probability of a
Poisson branching process with mean offspring λ.

We are now ready to give the next result:

Theorem 4.5. Let λ > 1 be fixed. Then, for every ν ∈ (1
2 , 1), there exists

δ = δ(ν, λ) > 0 such that

P(||Cmax| − βλn| ≥ nν) = O(n−δ).

This theorem can be interpreted as a weak law of large numbers. Indeed,
for λ > 1 a Poisson branching process has βλ > 0, hence

P(||Cmax| − βλn| ≥ nν) = O(n−δ) = P(
||Cmax|
n

− βλ| ≥
1

n1−ν ) = O(n−δ)

which is a weak law of large numbers.
Moreover, the previous theorem tells us that |Cmax| ∼ n as n→∞, and

hence in the limit all vertices are in the same connected component, which
is called giant component.

Using this theorem, we can derive a discrete duality principle. Before
giving this result, we premise a definition.

Definition 4.8. Let µ < 1 < λ. Then µ and λ are said to be a conjugate
pair if

µe−µ = λe−λ.

Theorem 4.6. Let µλ < 1 < λ be a conjugate pair. Then the vector C
of connected components in the graph ERn(λ/n) with the giant component
removed is close in law to the rendom graph ERm(λ/m), with m = dnγλe
that is the asymptotic number of vertices outside the giant component.

In the previous theorem, by close in law we mean that

lim
n→∞

P′n,λ(E) = lim
m→∞

Pm,µλ(E)
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where P ′n,λ denotes the law the graph obtained by ERn(λ/n) removing its
giant component, Pm,µλ denotes the law of ERm(µ/m), and E an event
which is determined by connected components.

The discrete duality principle can be understood by the law of large
numbers, which implies that the giant component has size n−m = βλn(1 +
o(1)).

We end this paragraph stating a Central Limit Theorem for giant com-
ponents, which can be proved again using the law of large numbers.

Theorem 4.7. Let λ > 1 be fixed. Then,

|Cmax| − βλn√
n

d−→ Z

where Z is a normal random variable with mean 0 and variance

σ2
λ =

βλ(1− βλ)

(1− λ+ λβλ)2
.

4.2 Configuration model

Let us start by giving the following definition:

Definition 4.9. A graph is called simple when it has no self-loops and no
multiple edges between any pair of vertices.

Let us hence consider a vertex set V such that |V | = n and a sequence
of degrees d = (di)i∈V .

The idea to obtain the so called configuration model, is to construct a
simple graph with n vertices belonging to V , and prescribed degree sequence
d. Hence, we want that vertex j has degree dj , where, without loss of
generality, we can assume that dj ≥ 1 for all j ∈ V , since dj = 0 means that
vertex j is isolated.

Now, let us notice that it is not always possible to construct a simple
graph with prescribed degree sequence since it may not exists. Therefore,
we construct a multigraph instead, that is a graph possibly having self-loops
and multiple edges between pairs of vertices.

One way of obtaining such a multigraph, is to see each vertex j with
degree dj as a labelled point from which dj segments are attached. These
segments have to be seen as half-edges, in the sense that if we pair a segment
belonging to a vertex with another segment, the two segments create an edge
of the multigraph. In other words our segments, that from now on we will
call half-edges, can be seen as the right or left half of an edge.

Hence, we now describe how the half-edges are paired. Let ln =
∑

j∈V dj
and the half-edges be numbered arbitrarily from 1 to ln. We start by ran-
domly connecting the first half-edge with one of the remaining ln−1. In this
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way we obtain one of the edges of the graph, so the two paired half-edges
are removed from the list of half-edges to be paired.

We continue the procedure as above until all half-edges are connected,
we call the resulting graph the configuration model with degree sequence d,
and we denote it by CMn(d).

Obviously this procedure does not prevent self-loops nor multiple edges,
since the second half of the edge can be picked among half-edges of the same
vertex or of an already chosen other vertex, as represented in figure 4.

Figure 4: Configuration model: possible connections

The idea is hence that we can merge multiple edges and erase self-loops
in a second moment (Erased configuration model) or we can repeat the proce-
dure until there exists a simple graph (Repeated configuration model). How-
ever, we will see that under certain hypothesis self-loops and multiple edges
are relatively scarce as n→∞.

Let us also notice that the total degree ln has to be even, otherwise we
cannot couple all the half-edges during the pairing procedure.

One may wonder about the influence of the arbitrary ordering of the half-
edges in the pairing procedure: what we would like to have is that the process
is exchangeble, i.e. such that the order does not matter for the distribution
of the final outcome. Hence, to pair two half-edges we have to make sure
that, conditionally on the previous paired half-edges, the new pairing occurs
with equal probability. This allows us to pair half-edges in a random order.

The configuration model can also be constructed in another way, in terms
of uniform matchings.

For this procedure, we draw a second graph, with vertex set W =
{1, ..., ln}, which hence is such that the vertices in the new graph correspond
to the half-edges of the random multigraph in the configuration model.

We pair the vertices of the new graph in a uniform way to produce a
uniform matching, i.e. we pair vertex 1 with a uniform other vertex, then
we pair the first not yet paired vertex to another uniform vertex which is
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not yet paired. We stop the procedure when all the vertices are paired with
another, unique vertex. The resulting graph is denoted by Confn(d).

We can hence define Confn(d) := {iσ(i) : i ∈W}, where σ(i) is the label
of the vertex to which vertex i ∈W is paired.

We hence understand why we choose the name configuration model in
the next definition:

Definition 4.10. The pairing of the vertices 1, ..., ln is called a configuration.

By construction, each configuration has the same probability.
We now focus on the vice versa: we want to draw the graph of the

configuration model starting from a configuration.
We hence identify vertices 1, ..., d1 in Confn(d) to form vertex 1 in CMn(d),

vertices d1 + 1, ..., d1 + d2 in Confn(d) to form vertex 2 in CMn(d), and so
on. In this way dj vertices in Confn(d) are identified precisely with vertex j
in CMn(d), and the degree of vertex j in CMn(d) is precisely equal to dj .
Also in this construction self-loops and multiple edges are possible.

Figure 5: Example for n = 3 and d = (2, 3, 1)

In this case it also holds that, as long as each configuration has probability
1

(ln−1)!! , the order in which the pairings take place is irrelevant. This is made
formal in the next definition:

Definition 4.11. A pairing scheme is a sequence (xi)i∈A, where A is a set
such that |A| = ln

2 , where xi denotes the half-edge to be paired. We call a
pairing scheme adaptable if the choice of xm only depends on the previous
pairings (Xj , yj)

m−1
j=1 , where yj denotes the half-edge to which xj is paired.

An adaptable pairing scheme is said to be uniform when

P(xm is paired to ym|xm, (xj , yj)m−1
j=1 ) =

1

ln − 2m+ 1
, (19)

for every ym /∈ {x1, ..., xm} ∪ {y1, ..., ym−1}.
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When we use a uniform adaptable pairing scheme, the resulting graph
has the same law as the configuration model, as stated in the next lemma:

Lemma 4.1. For every uniform adaptable pairing, every configuration σ ∈
Confn(d) has probability

1

(ln − 1)!!

. Consequently, the resulting multigraph has the same distribution as the
configuration model CMn(d).

If we consider the multigraphs that can be obtained from a uniform
adaptable pairing scheme, not all the multigraphs have the same probability
(we say that they are not produced uniformly at random) since for each loop
the number of corresponding pairings is divided by 2, while for each multiple
edge of multiciplity j it is divided by 1/j!.

For example, if we consider a multigraph with a triple edge between
vertex v and w, the triple edge can be generated in 3! ways by pairing the
three half-edges of v with the three half-edges of w.

This is formalized in the next result:

Proposition 4.1. the law of CMn(d) Let G = (xij)i,j∈V be a multigraph
with vertex set V such that |V | = n, and such that

di = xii +
∑
j∈V

xij .

Then

P(CMn(d) = G) =
1

(ln − 1)!!

∏
i∈V di!∏

i∈V 2xii
∏

1≤i≤j≤n xij !
(20)

.

We end this paragraph introducing some notation and giving regularity
conditions for the vertex degrees.

We denote the degree of a uniformly chosen vertex U in the vertex set V
of cardinality n by Dn = dU . The random variable Dn has hence distribution
Fn given by

Fn(x) =
1

n

∑
j∈V

1{dj≤x}

which we call empirical distribution of the degrees, since it gives the number
of vertices with degree less or equal than x over the total number of vertices.

From now on, we assume that the vertex degree satisfy the following
regularity conditions.

Regularity conditions for vertex degrees
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(a) Weak convergence of vertex weight There exists a distribution
function F such that

Dn
d−→ D,

where Dn and D have distribution functions Fn and F respectively.
Equivalently, for any x,

lim
n→∞

Fn(x) = F (x).

Moreover, F (0) = 0, i.e. P(D ≥ 1) = 1.

(b) Convergence of average vertex degrees

lim
n→∞

E[Dn] = E[D]

where Dn and D have the same distributions as in (a)

(c) Convergence of second moment vertex degrees

lim
n→∞

E[D2
n] = E[D2]

where again Dn and D have the same distributions as in (a).

These regularity conditions can also be strengthened if our degrees di are
random variables themselves, for example in the case in which they are the
realizations of i.i.d. random variables.

If we are in this more general context, we can replace (a) with

Pn(Dn = k)
P−→ P(D = k)

where Pn denotes the conditional probability given the random degrees, and
(b) and (c) with

En[Dn]
P−→ E[D], En[D2

n]
P−→ E[D2]

where En denotes the expectation with respect to Pn.

4.2.1 Erased configuration model

Now that we have constructed our multigraph, what is left is understanding
how it can be made simple. We hence start by defining the erased configu-
ration model.

Let the sequence d of vertex degrees be fixed. We start from the multi-
graph CMn(d) and erase all self-loops. After this, we merge all multiple
edges into single edges. We hence obtain a simple graph.

In order to state the main result concerning the degree sequence of this
model, we premise some notations.
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Notation 4.4. • We denote the degrees in the erased configuration model
by D(er) = (D

(er)
i )i∈V , where |V | = n, so that

D
(er)
i = di − 2si −mi,

where (di)i∈V are the degrees in CMn(d), si = xii is the number of
self-loops of vertex i in CMn(d), and

mi =
∑
j 6=i

(xij − 1)1{xij≥2}

is the number of multiple edges removed from i.

• We denote the empirical degree sequence (p
(n)
k )k≥1 in CMn(d) by

p
(n)
k = P(Dn = k) =

1

n

∑
i∈V

1{di=k}

and the related degree sequence in the erased configuration model
(P

(er)
k )k≥1 by

P
(er)
k = P(Dn = k) =

1

n

∑
i∈V

1{D(er)
i =k}.

Let us notice that (p
(n)
k )k≥1 is a deterministic sequence when d is deter-

ministic, while (P
(er)
k )k≥1 is a random sequence even if d is deterministic,

since (D
(er)
i )i∈V is a random vector.

We are now ready to state the main result about this model:

Theorem 4.8. For fixed degrees d satisfying the regularity conditions, the
degree sequence of the erased configuration model (P

(er)
k )k≥1 converges in

probability to (pk)k≥1.

4.2.2 Repeated configuration model

The idea of the repeated configuration model is that we repeat the procedure
of generating CMn(d) until we obtain a simple graph..

Hence, we are interested in the probability that the graph produced in
the configuration model is simple. This probability will be computed in a
theorem which is a consequence of the next result, which we will state after
some notation.

Notation 4.5. We denote the number of self-loops by Sn, and the number
of multiple edges by Mn, where

Sn =
∑
i∈V

si, Mn =
1

2

∑
i∈V

mi.
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Proposition 4.2. Let d = (di)i∈V , |V | = n, satisfy the regularity conditions
of paragraph 4.2. Then

(Sn,Mn)
d−→ (S,M)

where S and M are two independent Poisson random variables with means
ν/2 and ν2/4, where

ν =
E[D(D − 1)]

E[D]
.

Now, if we are interested in the case in which the CMn(d) is simple, this
corresponds to the fact that Sn = Mn = 0, since simple means that it has
no self-loops nor multiple edges.

So, using the weak convergence stated in the proposition and the inde-
pendence of S and M , we have

P(Sn = Mn = 0) −→ P(S = M = 0) = e−E[S]−E[M ] = e−ν/2−ν
2/4.

Hence, as a consequence of the proposition it holds that:

Theorem 4.9. Let d = (di)i∈V , |V | = n, satisfy the regularity conditions
of paragraph 4.2. Then the probability that CMn(d) is a simple graph is
asymptotically equal to e−ν/2−ν2/4, where ν = E[D(D − 1)]/E[D].

We end this section giving the probability that CMn(d) is simple in the
case in which E[D2] =∞.

Proposition 4.3. Let d = (di)i∈V , |V | = n, satisfy the regularity conditions
of paragraph 4.2 and let E[D2] =∞. Then P(CMn(d) is simple) = o(1) when
E[D2] =∞.

4.3 Random regular graphs

In this section, we will define a random d-regular graph and give its law. We
will then focus on a way to generate it and on the so called small cycles.

4.3.1 Definition, law, and construction

Definition 4.12. A d-regular graph is a graph with the same degree d at
each vertex.

Definition 4.13. A random d-regular graph is a random graph which is
chosen uniformly at random among all d-regular graphs with vertex set V =
{1, ..., n}.

In order to give the law of a d-regular graph, we recall from paragraph
4.2 that it is the same as the law of the corresponding configuration model
if we use a uniform adaptable pairing scheme.
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Hence, starting from (20), taking d = (di)i∈V such that di ≡ d, and
ln = dn, as it is in the regular case, since the regularity conditions of vertex
degrees are obviously satisfied, we obtain:

P(CMn(d) = G) =
1

(dn− 1)!!

(d!)n∏
i∈V 2xii

∏
1≤i≤j≤n xij !

. (21)

where we recall that (dn−1)!! is the number of all the possible pairings, and
the necessary pairings to obtain a regular d-multigraph are

(d!)n∏
i∈V 2xii

∏
1≤i≤j≤n xij !

since for each loop the pairings have to be divided by 2 and for each multiple
edge of multiplicity k by k! not to count the same multigraph more than
once.

From equation (21) we can see that, if G is simple, then

P(CMn(d) = G) =
(d!)n

(dn− 1)!!
(22)

hence in the simple case every graph has the same probability since it corre-
sponds precisely to to (d!)n pairings. This means that it would be possible
to choose a simple d-regular graph uniformly at random by generating a
uniform adaptable pairing scheme and rejecting it if the result has loops or
multiple edges. In fact in this way we could make a uniform choice since
we would pick a graph just among simple graphs, that have all the same
probability.

In other words, a way to generate a random d-regular graph is to adopt
the repeated configuration model.

4.3.2 Small cycles

An important part of the analysis of random regular graphs is the study of
the number of their small cycles.

Notation 4.6. Given a (multi)graph G, we denote with Zk = Zk(G) the
number of cycles of length k in G.

Example 4.2. Z1 = Sn is the number of self-loops, Z2 = Mn is the number
of multiple edges.

Let us notice that Zk is a random variable that allows us to generalize
proposition 4.2, in the d-regular case, for k also greater than 2.

Theorem 4.10. Let λk = 1
2k (d−1)k, let G be a random d-regular multigraph

and let lk ∼ Poisson(λk) be independent Poisson random variables, where
k = 1, 2, 3, .... Then

Zk(G))
d−→ lk as n→∞
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Directly from this result, conditioning on the event Z1 = Z2 = 0, we
obtain:

Corollary 4.1. Let λk and lk be as in theorem 4.10 and G be a simple
random d-regular graph. Then

Zk(G)
d−→ lk as n→∞ ∀k ≥ 3.

Another corollary of theorem 4.10 is the following.

Corollary 4.2. Let G be a d-regular random multigraph. Then, as n→∞,

P(G is simple)→ e−(d2−1)/4 > 0.

That can be shown using the fact that

P(G is simple) = P(Z1 = Z2 = 0)→ P(l1 = l2 = 0) =

= e−λ1−λ2 = e−
d−1
2
− (d−1)2

4 = e−(d2−1)/4

since lk ∼ Poisson(λk).
Here we underline that indeed this result is a particular case of the sim-

plicity probability computed for the repeated configuration model: indeed
ν = E[D(D−1)]/E[D] in the d-regular case is d(d−1)/d, hence substituting
this value in the simplicity probability computed in theorem 4.9 we obtain
e−(d2−1)/4.

We are now also ready to compute the asymptoptic number of d-regular
graphs on n vertices.

Corollary 4.3. The number of d-regular graphs on n vertices as n→∞ is:

e−(d2−1)/4 (dn− 1)!!

(d!)n
(1 + o(1))

That can be shown starting from equation (22), since, taking G simple:

P(CMn(d) = G) =
(d!)n

(dn− 1)!!
⇒

⇒ P(CMn(d) is simple) =
(d!)n

(dn− 1)!!
|{simple d-regular graphs}|

and hence

|{simple d-regular graphs}| = P(CMn(d) is simple)(dn− 1)!!

(d!)n
=

=
e−(d2−1)/4(dn− 1)!!

(d!)n
(1 + o(1)).

Now we see that an asymptotic property that holds for the multigraph
holds also for the corresponding simple graph.
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Theorem 4.11. Any property that holds asymptotically almost surely for the
multigraph CMn(d), holds asymptotically almost surely for the corresponding
simple graph G too.

Proof. Let P be a property that holds asymptotically almost surely for
CMn(d). Then

P(G does not have P) = P(CMn(d) does not have P|CMn(d) is simple) =

=
P(CMn(d) does not have P and is simple)

P(CMn(d) is simple)
≤

≤ P(CMn(d) does not have P)

P(CMn(d) is simple)
=

P(CMn(d) does not have P)

e−(d2−1)/4
→ 0

where in the last equality we have used corollary 4.2.

The converse does not hold as the example of containing a loop shows.
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5 Contact process on random graphs

[5] Here we want to study and model the spread of an illness in a population.
In particular, we are interested in the limiting behaviuor of the infection. To
study it, we consider the contact process with rate λ, which represents the
rate of spreading the infection to a neighbour, on a random d + 1-regular
graph with n vertices Gn, and we analyze what happens to the extinction
time τGn of the process as n→∞.

Let us notice that this will imply a double randomness, due to the fact
that we are on a random graph Gn, and to the contact process.

We will see that there is a phase transition, i.e. a change in the behaviour
of the extinction time, depending on λ. More precisely, if λ < λg(Td), where
λg(Td) is the lower critical value for the contact process on the infinite (d+1)-
regular tree, τGn will grow logarithmically with n, while if λ > λg(Td) it will
grow exponentially with n.

We will then generalize to the contact process on a graph Gn with degrees
bounded by d + 1, as it is more likely to have this situation in reality (the
individuals of a population can be infected by a number of neighbours that
is finite, but not necessarily constant as it is in the regular case). In this
situation we will see that there is again a phase transition depending on λ
and that for λ < λg(Td) the corresponding contact process dies out.

5.1 Main result

To investigate the limiting behaviour of the extinction time on random regu-
lar graphs, we are going to fix λ and the parameters n and d+1 of the graph,
that are the number of vertices and the degree of each vertex respectively.

Then, we let n → ∞ and we obtain a sequence of graphs Gn to which
the random variable τGn will be associated. We denote with Pn the law of
Gn, and with Pn,λ the probability measure under which both Gn and the
contact process on Gn are defined.

The following theorem is our main result about the phase transition in the
limiting behaviour of the extinction time of the contact process on random
regular graphs, and it will be proved in the next section.

Theorem 5.1. (a) ∀0 < λ < λg(Td) there exists a constant C < ∞ such
that

lim
n→∞

Pn,λ(τGn < C log n) = 1

(b) ∀λ > λg(Td) there exists a constant K > 0 such that

lim
n→∞

Pn,λ(τGn > eKn) = 1

Now, since we will prove that P(Gn is isomorphic to T̂dR)→ 1 as n→∞
(see the remark after proposition 5.1), the above result may seem to contrast
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theorem 3.12, that holds also for T̂dl as we have seen in the remark, for which
the critical λ is λl(Td) instead of λg(Td).

This apparent contraddiction is solved by the fact that in both cases the
critical λ is actually λg(liml→∞X(l)) whereX(l) = Tdl in theorem 3.12, while
X(l) = T̂dl in theorem 5.1. Indeed, liml→∞ T̂dl = Td while liml→∞ T̂dl = CTd,
and λg(CTd) = λl(Td), where CTd is the canopy tree (for a proof and a
definition of the canopy tree, see [4] and [5]).

However, this observation underlines the difference between Tdl and T̂dl ,
i.e. the fact that Tdl and T̂dl do not look alike locally and hence converge to
different limits.

Notation 5.1. From now on we fix d ≥ 2 and omit d from Td and Tdl , hence
writing T and Tl respectively. The root of Tl will be denoted by o.

5.2 Proof

In this section we will prove part (a) and (b) of theorem 5.1 on the subcritical
and critical regime respectively.

5.2.1 Proof of (b): supercritical regime

To prove theorem 5.1 part (b) we will use theorem 5.2 and the two lemmas
5.2 and 5.3.

We will hence proceed as follows:

• we prove lemma 5.1

• we prove proposition 5.1 and corollary 5.1 using 5.1

• we prove theorem 5.2 using corollary 5.1

• we prove lemma 5.2

• we prove lemma 5.3 using lemma 5.1

• we prove theorem 5.1 part (b) using theorem 5.2.

Before giving these statements and their proofs, we premise some definitions.

Definition 5.1. A rooted graph is a pair ρ,G where G is a graph and ρ ∈ G.
Given two rooted graphs (ρ,G) and (ρ′, G′), with G = (V,E) and G′ =
(V ′, E′), we say that f : V → V ′ is an embedding of (ρ,G) if

1. f(ρ) = ρ′,

2. f is injective,

3. for every u.v ∈ V the number of edges in G containing u and v is less
than or equal to the number of edges od G′ containing f(u) and f(v).
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where 1. means that (ρ,G) and (ρ′, G′) have the same root, 2. that distin-
guished vertices of (ρ,G) remain distinguished also in (ρ′, G′), and 3. means
that the neighbours of vertices in (ρ,G) are equal or less than the neighbours
of (ρ′, G′).

Definition 5.2. We say that (ρ′, G′) embeds (ρ,G) if there exists an embed-
ding of (ρ,G) into ρ′, G′, and that (ρ,G) and ρ′, G′ are isomorphic if each
embeds the other.

Definition 5.3. We say that a set of vertices W ⊆ Vn is l-regenerative if
there exists a family (G′w)w∈W of subgraphs of Gn that are pairwise disjoint
and such that for every w ∈W the following two conditions hold:

• G′w contains w

• there exists x ∈ G′w such that the distance in G′w between x and w is
4 and (x,G′w) embeds (o,Tl)

Definition 5.4. A set of vertices W ⊆ V is said to be well separated if:

1. for every w ∈ W the 3-neighbourhood of w is cycle-free, where with
r-neighbourhood of a vertex v ∈ V we mean a set of vertices x whose
distance to v is at most r,

2. for every two distinct vertices v, w ∈W the 3-neighbourhoods of v and
w are disjoint.

Figure 6: Example of W well-separated

We are now ready to start the proof of theorem 5.1 part (b).
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Lemma 5.1. For every λ > λg(T) there exist R, p0 > 0, and α0 > 1 such
that, for l large enough,

PTl,λ[|ηoRl| ≥ (α0)l] ≥ p0.

Proof. Let T∞ be the infinite, rooted, d-ary tree, i.e. the infinite rooted tree
in which the root o has degree d and all the other vertices have degree d+ 1.
In [5] it is shown that, for every λ > λg(T), there exists U > 0, γ > 1, and
p > 0 such that, for l ∈ N large enough,

PT∞,λ[|ξoUl| ≥ γl] ≥ p. (23)

Using equation (12), we can also show that there exists S > 0 such that,
for all t > 0,

PT∞,λ[ξos(y) = 0 for all s ≤ and y with dist(o, y ≥ St)] ≥

≥ PT,λ[ξos(y) = 0 for all s ≤ t and y with dist(o, y ≥ St)] > 1− p

2
. (24)

Combining equations (23) and (24), and setting R = S−1, and α0 =
γR/U > 1, we get

p

2
≤ PTinfty,λ [|ξoRl| ≥ αl0, ξos(y) = 0 for all s ≤ Rl and y with dist(o, y) ≥ l] ≤

≤ PTl,λ[|ξoRl| ≥ αl0].

Proposition 5.1. For every l ∈ N there exists c > 0 such that for every ε > 0
sufficiently small (depending on l) and every n large enough, if E is the event
E ="the set {1, ..., εn} is well separated but has no l-regenerative subsets of
size εn/5", then:

P[E] ≤ (cε6/5)εn.

Proof. In what follows, we will pretend that certain quantities, such as εn,
are integers. To be formal we should take the proper integer part of such
quantities adding or subtracting 1 if needed, but this would make the nota-
tion too heavy without changing the proof in any relevant way.

In this proof we are going to give a procedure to generate a regular
random graph starting from a set of vertices with degree d+ 1. Before doing
this, we premise some notation. By semi-graph g := (V, E ,H) we mean a
triple consisting of a set of vertices V , a set of edges between points of V
and a set H of half-edges, each half-edge being attached to some vertex in V .
Given two half-edges h and h′, we write h+h′ to denote the graph obtained
by gluing together h and h′ (we will assume that (d + 1)n is even), and by
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distance in the semigraph g we mean simply the distance in the graph (Vn, E).
The initial configuration will be E = ∅, since at the beginning we imagine to
have just |V | vertices with d+ 1 half-edges attached, without formed edges.
To construct a random (d + 1)-regular graph with distribution Pn we will
use the following recursive procedure:

• we take an arbitrary half-edge h in H (we will call it the elected half-
edge),

• we choose a half-edge h′ ∈ H \ {h} uniformly at random,

• we add the edge h+ h′ to the set E and remove h, h′ from H

• we repeat the previous steps until the set H of half-edges is empty.

Notation 5.2. In a more symbolic form, since each step we replace E with
E ∪ {h+ h′} and H with H \ {h, h′}, we write:

E ← E ∪ {h, h′}, H ← H \ {h, h′}.

Now that notation 5.2 is clear, we want to apply the procedure specified
above to prove the proposition.

We hence fix l ∈ N, ε ∈ (0, 1), and n ∈ N arbitrarily. We take the
semigraph g = (Vn, E ,H) such that E = ∅, and such that every site has
exactly d + 1 half-edges. We let W be the set of vertices {1, ..., εn}. As
long as there is a half-edge h attached to a vertex at distance 2 or less
from W, we choose this as the elected half-edge, then we pick another half
edge h′ ∈ H \ {h} uniformly at random and we do the operations written
in notation 5.2. At the end of this procedure, we have obtained the 3-
neighbourhood of every vertex of W: these 3-neighbourhoods may be well-
separated or not. If not, then we stop. If on the contrary they are well-
separated, we continue the construction of the graph, with the aim of showing
thatW will contain an l-regenerative subset with high probability for n large
enough.

Let F be the set of vertices still having d + 1 half-edges at this point.
We call fresh vertices the elements of F , while elements of W will be called
seeds.

Below we will give a procedure to continue electing half-edges, and thus
continue the construction of the graph. At any point of the construction, we
will say that a seed ρ ∈ W is active if there are at least 3 half edges attached
to vertices at distance 3 from ρ. As of now, there are (d + 1)d3 half-edges.
On the contrary, a point is said to be quiet if it is not active. As of now,
every seed is active. We let ρ be any active seed, that as of now means that
ρ ∈ W, and run the step described below.

The step Take the active seed ρ.
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Let V̄ be the set of vertices at distance 3 or less from ρ and let Ē be the
set of vertices with both extremities in V̄ . Let H̄ be the set of half-edges
attached to vertices of V̄ . By definition of active seed, |H̄| ≥ 3.

z) Let v ∈ V̄ be at distance strictly less than l + 4 from ρ as
measured in the graph (V̄ , Ē) and such that there is a half-edge h ∈ H̄
attached to it.

If such v does not exists, declare that the pass is a success and
stop.

Otherwise, pisk h′ uniformly at random in H\{h} and let v′ be the
vertex to which it is attached. If v′ /∈ F , then declare that a collision
occurs. More precisely, if v′ ∈ V̄ say that a short collision occurs,
otherwise that a long collision occurs.

• If it is the second time during the step that a collision occurs,
then declare that the step is a failure, do the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′},

and then stop the pass.

• If it is the first time during the step that a collision occurs, do
the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′}, H̄ ← H̄ \ {h, h′}

where more precisely we subtract h′ from H̄ just in case of a short
collision, since for a long collision h′ is not an element of H̄ at this
point, and then go back to z).

• If a collision does not occur, i.e. v′ ∈ F , then do the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′}, H̄ ← H̄ \ h,

V̄ ← V̄ ∪ {v′}, F ← F \ {v′}, Ē ← Ē ∪ {h+ h′},

and finally add the remaining half-edges of v′ to H̄. Then go back
to z).

When we iterate this stepwe always start with an active seed that
has not been the starting point of any previous step, until every
seed is quiet or has already been used as the starting point of a step.
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Observation 5.1. Let us notice that in the case of a failure, we do not
update Ē and H̄, and in the case of a first collision we do not update Ē.
In this way, the graphs G′ρ(V̄ , Ē) obtained ∀ρ ∈ W will continue to be
disjoint and cycle-free if a step is a success. In other words, at the end
ouf our procedure a success will mean that our seeds will have become
either l+4 cycle-free neighbourhoods or l+4 cycle-free neighbourhoods
with some missing edges, due to collisions occured during the step.

More formally, if the pass is a success, we define G′ρ = (V̄ , Ē). This
subgraph of Gn is a tree satisfying:

1. ρ is the vertex set,

2. there exists x ∈ V̄ such that distG′ρ(x, ρ) = 4 and x,Gρ′ embeds
(o,Tl).

To verify (b), given a vertex x ∈ V̄ , let V̄x be the set of vertices
y ∈ V̄ whose path to ρ contains x, let Ēx be the set of edges with
extremities in V̄x, and let G′ρ,x ≡ (V̄x, Ēx).

If during the step there where no collisions, then there are at least
three distinct vertices x1, x2, x3 (this is due to the fact that an active
seed has at least three half-edges attached by definition) such that
distG′ρ(xi, ρ) = 4, and (xi, G

′
ρ,xi

) is isomorphic to (o,Tl) for each i, so
(b) holds.

If one collision occurred in the step, then at most two of these
subtrees is compromised by missing edges (one in case of a long colli-
sion, two in case of a short collision), so there still exists some x with
distG′ρ(x, ρ) = 4 and (x,G′ρ,x) is isomorphic to (o,Tl). This is also the
reason why we do not declare that the step is a failure if it is just the
first time that a collision occurs.

Apart from satisfying the above properties, G′ρ is disjoint from any
other subgraph G′ρ̂ obtained from the previous passes.

Observation 5.2. During one step, the instruction z) is iterated at
most

cl := (d+ 1)d3 + (d+ 1)d4 + ...+ (d+ 1)dl+4

times, since this is the maximum number of half-edges that are free
to be connected to other half-edges. This also means that at most cl
vertices are removed from the set F of fresh vertices. The number of
fresh vertices at the beginning of the step, since the 3-neighbourhoods
are already part of the seeds, and since we cannot run the step more
than |W| times having just |W| seeds, is at least

n− |W|(1 + (d+ 1) + (d+ 1)d+ (d+ 1)d2).
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Therefore, the number of fresh vertices at any given time will be at
least

n− |W|(1 + (d+ 1) + (d+ 1)d+ (d+ 1)d2)− |W|cl =

= n− |W|(1 + (d+ 1) + (d+ 1)d+ ...+ (d+ 1)dl+4) =

= n− |W|c′l (25)

where c′l = 1 + (d+ 1) + (d+ 1)d+ ...+ (d+ 1)dl+4.

Observation 5.3. During the step it may happen that a seed becomes
inactive without having been used in a step, but just because of half-
edges removed for collisions. We will say that such a seed is then
ruined.

It is possible to count the minimum number of steps started from
other seeds to ruin a seed ρ. Indeed, at the beginning ρ has (d + 1)d3

half-edges attached to vertices at distance 3 from ρ, and we know that it
remains active as long as at least 3 of these half-edges are still present.
Hence (d+1)d3−2 is the number of half-edges that should be removed
to the graph for the occurrence of collisions in order to ruin the seed.
Moreover, at each step that starts from another seed ρ′, we can remove
at most two of these half-edges (two in case of a short collisions, one
in case of a long collision).

In conclusion, it takes at least

(d+ 1)d3 − 2

2

steps started from other seeds to ruin the seed ρ.
Taking this into account, if we run the step t times, then at most

t+ t
2

(d+ 1)d3 − 3

seeds become inactive: those that have been explored in each step, and
those ruined by collisions.

Hence, starting from |W| = εn seeds, we can run the pass at least(
1 +

2

(d+ 1)d3 − 2

)−1

|W| ≥ 4

5
(26)

where the inequality holds since
(
1 + 2

(d+1)d3−2

)−1 is increasing and
d ≥ 2.
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We can now estimate the probability that a pass is a failure.
We start with estimating the probability of having a collision, that

is
P(a collision occurs) ≤ dc′l|W|

(d+ 1)(n− |W|c′l)
as a result of equation (25) and the definition of c′l.

Now, since |W| = εn

dc′l|W|
(d+ 1)(n− |W|c′l)

=
dc′lεn

(d+ 1)(n− εnc′l)
=

c′lε

1− εc′l − 1/d− εc′l/c
=

=
c′lε

(1 + 1
d
)(1− εc′l)

≤ c′lε

1− εc′l
hence it holds that:

P(a failure occurs) = P(two collisions occur) ≤ P[X ≥ 2] (27)

where X ∼ Bin(cl,
c′lε

1−c′lε
).

Since X has a binomial distribution of known parameters, we can
easily estimate the probability that is greater or equal than 2, indeed

P[X ≥ 2] = 1− P(X = 0) + P(X = 1) =

= 1− (1− 1− c′lε
1− c′lε

)cl − cl(
c′lε

1− c′lε
)(1− c′lε

1− c′lε
)cl−1 ≤

≤ c(cl, c
′
l)ε

2 = Cε2 (28)

where we have obtained the final inequality using a Taylor expansion.
Therefore, combining (27) and (28), we have

P(a failure occurs) ≤ Cε2.

From this result it follows that, if Y ∼ Bin(|W|, Cε2) = (εn, Cε2)
and δ = 3

5
− Cε2, then

P(at least
3

5
steps fail) = P(Y ≥ 3

5
εn) ≤ e−εnψCε2 (δ) (29)

where in the last inequality we have used lemma 5.2. In this case, after
some computations, we get:

ψCε2(δ) =
3

5
log(

3

5Cε2
) +

2

5
log (

2

5(1− Cε2)
)
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and hence
eεnψCε2 (δ) ≤ cε6/5|W| (30)

, where c = 5
3

3/5|W| 5
2

2/5|W|
C3/5|W|.

Therefore, combining (29) and (30), we obtain:

P(at least
3

5
steps fail) ≤ cε6/5|W|

which, taking the complementary event, becomes

P(at most
3

5
εn steps fail) ≥ 1− cε6/5|W|. (31)

Now, from observation 5.3, and equation (31), we have respectively
that:

• we run our procedure for at least 4
5
steps,

• we have at most 3
5
failed passes with probability larger than 1−

cε6/5|W|.

From this it follows that

P(at most
εn

5
steps have success) ≥ 1− cε6/5|W|

which, taking the complementary is our thesis.

Remark. This proposition tells us that a random regular graph, for n large
enough and ε small enough is locally T̂dl , so it is locally cycle-free. Indeed,
since in the limit the probability that a small enough well-separated subset
of Vn does not have l-regenerative subsets goes to 0, this means that with
probability tending to 1 a small enough well-separated subset of Vn has l-
regenerative subsets, hence it embeds (o,Tl).

Corollary 5.1. For every l ∈ N and ε > 0 sufficiently small, if E is the
event E ="from every well-separated set W ⊆ Vn of size εn, one can extract
an l-regenerative subset of size εn/5", then:

P[E]→ 1 as n→∞

Proof. To show that P[E] → 1 as n → ∞, we will compute the probability
that taking all the well-separated sets of size εn in Vn one cannot extract
any l-regenerative set, and we will show that this probability tends to 0 as
n→∞.

We will need the following estimates:(
m

k

)
≤ mk

k!
(32)
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log(m!) ≥ m logm−m (33)

where (33) can be proved by induction.
Now, the total number of sets W ⊆ Vn of size εn is obviously

(
n
εn

)
, which

can also be seen as elog ( nεn). By estimate (32) we have:(
n

εn

)
≤ nεn

(εn)!

hence
log

(
n

εn

)
≤ log

nεn

(εn)!
= εn log n− log (εn)! ≤

≤ εn log n− εn log εn+ εn = εn
(

1 + log
(1

ε

))
where in the second inequality we have used estimate (33).

Taking ε > 0 sufficiently small, and using also proposition 5.1, our prob-
ability is equal to (

cε
6
5
)εn
eεn
(

1+log
(

1
ε

))
which tends to 0 as n→∞.

Theorem 5.2. For any l ∈ N and ε > 0 sufficiently small (depending on l),
the following holds with Pn-probability tending to 1 as n → ∞. From every
W ⊆ Vn of cardinality at least εn, one can extract an l-regenerative subset
of cardinality at least ε

40d6
n.

Proof. In this proof we want to use corollary 5.1, hence we will start from
any subset W ⊆ Vn such that |W | ≥ εn as in our hypothesis, but we will
show that it is possible to find a subset W̄ of W which is well-separated, so
that we can apply the corollary and obtain the thesis.

Let W ⊆ Vn such that |W | ≥ εn. We want to show that from W it is
possible to extract W̄ well-separated, i.e. W̄ such that

1. for every w̄ ∈ W̄ its 3-neighbourhood is cycle-free

2. for every v̄, w̄ ∈ W̄ the 3-neighbourhoods of v̄ and w̄ are disjoint.

In order to show that we can extract W̄ from W such that 1. holds, let
us define the random variable X3 := the number of cycles in Gn bounded
above by 3. If E[X3] <∞, then

P(X3 ≤
√
n)→ 1 as n→∞,

since by Markov inequality

P(X3 ≥
√
n) ≤ E[X3]√

n
→ 0 as n→∞.
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Hence, if we show that E[X3] <∞, we have that for n large enough the
event E ="X3 ≥

√
n" does not occur almost surely.

Now, let Yk be the random variable that represents the number of cycles
of length k, with k ∈ N. Since for x, y ∈ Vn

P(there is a cycle between x and y) =
r2(r − 1)2

(nr − 1)!!

and there are
(
n
2

)
possible couples of vertices, we have that

E[Y2] = E[
∑

x,y∈Vn

1"there is a cycle between x and y"] =

=
∑

x,y∈Vn

P("there is a cycle between x and y") =

(
n

2

)
r2(r − 1)2

(nr − 1)!!
≤

n2

2

r2(r − 1)2

(nr − 1)2
→ c2(r) for n large enough.

Analogously, for n large enough, it holds that E[Y3] ≤ c3(r) since

E[Y3] =

(
n

3

)
C(r)

(nr − 1)!!
≤ n3

3

C(r)

(nr − 1)3
→ c3(r).

Therefore,

E[X3] = E[Y2 + Y3] ≤ K3(r) = c2(r) + c3(r) <∞.

We hence take W̄ such that |W̄ | >
√
n: in this way we are sure that W̄

has cycle-free 3-neighbourhoods.
It remains to make sure that also 2. holds for W̄ .
Let us notice that ∀v ∈ Vn the number of vertices that compose the

6-neighbourhood of v is

1 + (d+ 1) + (d+ 1)d+ ...+ (d+ 1)d5

since to enumerate the cardinality of the k-neighbourhood of v we start from
v, then we can choose a neighbour among (d + 1) vertices and from that
step on we can only choose d vertices since one is already connected to the
neighbourhood.

It also holds that

1 + (d+ 1) + (d+ 1)d+ ...+ (d+ 1)d5 ≤ 4d6

since

1 + (d+ 1) + (d+ 1)d+ ...+ (d+ 1)d5 = 1 + d+ 1 + 22 + d+ ...+ d6 + d5 =
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= 2 + 2d+ 2d2 + ...+ 2d5 + d6 = 2
(d6 − 1

d− 1

)
+ d6 < 2d6 + d6 = 3d6 ≤ 4d6

Now, taking U ⊆ Vn such that |U | = m, we can extract from U a subset
Ū of m

(4d6)
vertices whose 3-neighbourhoods are pairwise disjoint. To see this,

let x1 ∈ U be arbitrary and remove its 6-neighbourhood from U , obtaining
U1. Obviously U1 will have cardinality at least m− 4d6. Then, take x2 ∈ U1

arbitrarily and remove its 6-neighbourhood from U1, obtaining U2, where
similarly to before |U2| ≥ m − 8d6. Continue this procedure until xm/4d6
is defined and let Ū := {x1, x2, ..., xm/4d6}. With this construction, the 3-
neighbourhood of any point of Ui+1 will be disjoint from the 3-neighbourhood
of any point of Ui, hence the elements of Ū will have pairwise disjoint 3-
neighbourhoods.

We hence take m = εn, so that Ū ⊆ W has at least εn
4d6

vertices whose
3-neighbourhoods are pairwise disjoint, i.e. 2. holds for Ū .

Now, since we want W̄ to be well-separated, and above εn
4d6

this may not
be true, we take W̄ such that |W̄ | < εn/(4d6) and also W̄ ⊆ Ū so that also
property 2. is satisfied.

Combining 1. and 2. we have that

√
n < W̄ <

εn

4d6
,

so if we pick W̄ such that |W̄ | = εn
8d6

, and n large enough for which
√
n < εn

8d6
,

we have that W̄ is well-separated.
By corollary 5.1 we have that from a well-separated set W̄ of cardinality

εn
8d6

we can extract an l-regenerative subset of cardinality at least |W̄ |/5 =
εn

40d6
.
Therefore, starting from W ⊆ Vn of cardinality at least εn we are able

to extract an l-regenerative subset L of cardinality εn
40d6

, since we can first
extract W̄ from W such that corollary 5.1 holds, and then extract L from
W̄ using the corollary.

Lemma 5.2. Let X ∼ Bin(m, p) be a binomial random variable with pa-
rameters m ∈ N and p ∈ [0, 1]. Then, for every δ ≥ 0, it holds that

P(X ≥ (p+ δ)m) ≤ e−mψp(δ)

where
ψp(δ) = sup

λ
[λ(p+ δ)− log(1− p+ peλ)] =

= (p+ δ) log
(p+ δ

p

)
+ (1− p− δ) log

(1− p− δ
1− p

)
.

Proof.
P(X ≥ m(p+ δ)) = P(eλX ≥ eλm(p+δ)) ∀λ,
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and by Markov inequality

P(eλX ≥ eλm(p+δ)) =
E[eλX ]

eλm(p+δ)
= (1− p+ peλ)me−λm(p+δ)

hence

P(X ≥ m(p+ δ)) = em log(1−p+peλ)e−λm(p+δ) = e−m(λ(p+δ)−log(1−p+peλ)) ≤

≤ e−m supλ>0 λ(p+δ)−log(1−p+peλ) = e−mψp(δ)

Here we recall notation 3.2, which will be used in the next lemma.

Lemma 5.3. For every λ > λg(T) and r > 0, there exist r, σ > 0 and α > 1
such that for every l large enough, the following holds. For any graph G with
vertices x, y such that dist(x, y) ≤ r and (y,G) embeds (o,Tl), we have

PG,λ[|ξxRl| ≥ (α)l] > σ.

Proof. Let R, p0 and α0 be as in the previous lemma. Then:

PG,λ[|ξxRl+R| ≥ αlo] ≥

≥ PG,λ[ξxR(y) = 1]PG,λ[|ξyRl| ≥ α
l
0] ≥ PG,λ[ξxr (y) = 1]p0.

In the first inequality we have used the fact that all the possible vertices
connected by an infectious path to x after a time Rl+R are more than the
vertices connected by an infection path to y after a time Rl, since y is a fixed
vertex connected by an infection path to x after a time R. In the second
inequality we have used the embedding of (o,Tl) in (y,G) and lemma 5.1.

Since P[ξxR(y) = 1] > 0, we have that

PG,λ[|ξxRl+R| ≥ αlo] > σ > 0. (34)

We now rewrite equation (34) for l̄ = l − 1.

PG,λ[|ξxRl̄+R| ≥ α
l̄
o] > σ > 0

PG,λ[|ξxR(l−1)+R| ≥ α
l−1
o ] > σ > 0

PG,λ[|ξxRl| ≥ αl−1
o ] > σ > 0.

Now, since

α
l−1
l

0 = α
1−1/l
0 → α0,
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choosing α ∈ (1, α0) and l large enough, it holds that

α < α
l−1
l

0 , i.e. αl−1
0 > αl

.
We hence have that

PG,λ[|ξWRl | ≥ αl] ≥ PG,λ[|ξxRl| ≥ αl−1
o ] > σ > 0.

Proof of theorem 5.1 part (b): supercritical regime
Let us fix λ > λg(T) and choose:

1. α,R, σ that correspond to λ and r = 4 as in lemma 5.3;

2. l large enough as required by lemma 5.3, and also such that αl > 80d6

σ ;

3. ε corresponding to l as in theorem 5.2.

Let us assume that Gn satisfies the property of theorem 5.2, i.e.

every W ⊆ Vn with |W | ≥ εn has an l-regenerative subset of cardinality
ε

40d6
n.

We will now prove that, if it holds that for some constant c > 0 which
does not depend on n,

∀W ⊆ Vn with |W | ≥ εn, PGn [|ξWRl | ≥ εn] ≥ 1− e−cn, (35)

then this implies the statement of theorem 5.1. Eventually, we will prove
equation (35).

Equation (35) means that there is a high probability to have at least εn
vertices that are connected by an infection path to the elements of W after
the time Rl. Hence, we can iterate our process, so that after n repetitions,
it will hold that PGn [|ξW(Rl)n | ≥ εn] ≥ (1− e−cn)n and, since (Rl)n = en logRl,
setting Rl ≡ c, we obtain that

PGn [|ξWenc | ≥ εn] ≥ (1− e−cn)n.

Then, we underline the following inclusions between events:

{τGn > enc} ⊇ {τWGn > enc} = {|ξWenc | > 0} ⊇ {|ξWenc | > εn}.

where for the first inclusion we recall that τGn ≡ τGnGn and the only equality
comes from the fact that an extinction time greater than enc means that
after enc the contact process has not died out yet, therefore after enc the
cardinality of the infected vertices is greater than 0.
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We hence obtain

PGn(τGn > enc) ≥ PGn(|ξWenc | > εn) ≥ (1− e−cn)n → 1 as n→∞

where we have computed the limit log (1− ecn)n = n log(1−ecn) = n(−ecn+
o(e−cn))→ 0 as n→∞ and used continuity of the function logarithm.

It remains to show (35).
Let us fix W , with |W | ≥ εn, and extract from it an l-regenerative sub-

set W ′ of cardinality n′ = ε
40d6

n, so that W ′ = {v1, ..., vn′} (this is possible
thanks to theorem 5.2). By definition 5.3, there exist pairwise disjoint sub-
graphs G′v1 , ..., G

′
vn such that for i = 1, ..., n′

• vi ∈ G′vi
• there exists xi ∈ G′vi such that dist(vi, xi) = 4 and (xi, G

′
vi) embeds

(o,Tl).

Let hence define a new contact process (ζvit )t≥0 on G′vi for each i, where
(ζvit )t≥0 and (ζ

vj
t )t≥0 are independent since Gvi and Gvj are disjoint.

Let Ei be the event Ei := {|ζviRl| ≥ α
l}, 1 ≤ i ≤ n′. Then, P(Ei) ≥ σ > 0

by lemma 5.3, and

PGn
[ n′∑
i=1

1Ei ≥
σ

2
n′
]
≥ 1− e−cn (36)

by lemma 5.2 with X =
∑n′

i=1 1Ei .
Equation (36) obviously still holds if we multiply by αl both members

inside the probability, hence we have

PGn
[
αl

n′∑
i=1

1Ei ≥ αl
σ

2
n′
]
≥ 1− e−cn (37)

Moreover, let us notice that ξWt ⊇ ξW
′

t ⊇ ζW
′

t = ∪v∈W ′ζvt by definition,
so it holds that

|ξWRl | ≥ | ∪v∈W ′ ζvt | ≥ αl
n′∑
i=1

1Ei (38)

where in the first inequality we have used that ζvit and ζvjt are disjoint.
Therefore, we have that

PGn [|ξWRl | ≥ εn] ≥ PGn
[
αl

n′∑
i=1

1Ei ≥ εn
]
. (39)

To obtain our thesis from equation (37), we want αl σ2n
′ > εn, so remem-

bering that n′ = εn
40d6

, we want

αl
σ

2

εn

40d6
> εn. (40)
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Since in 2. we have said that l was chosen such that αl > 80d6

σ , inequality
(40) is satisfied, hence euqation (37) implies that

PGn
[
αl

n′∑
i=1

1Ei ≥ εn
]
≥ 1− e−cn (41)

is true a fortiori.
Therefore, combining (39) and (41), we obtain

PGn [|ξWRl | ≥ εn] ≥ PGn
[
αl

n′∑
i=1

1Ei ≥ εn
]
≥ 1− ecn

which is our thesis.

5.2.2 Proof of (a): subcritical regime

The proof of theorem 5.1(a) is a consequence proposition 5.2 and lemma 5.4.

Proposition 5.2. For any λ < λg(T), there exists C > 0 such that

lim
n→∞

sup
A⊆T:|A|=n

PT,λ[τAT > C log n] = 0.

Proof. Let λ < λg(T): by theorem 3.10 and corollary 3.1, this implies that
β(λ) < 1

d . Now, by theorem 3.9, this shows that Φ(ρ) = 1 for some ρ. Hence,
using proposition 3.8(a), we obtain Φ(1) < 1 that, together with proposition
3.5(b), implies

E[|ξot |] ≤ C0e
c0t, t ≥ 0. (42)

Now, since
|ξAt | = | ∪x∈A ξxt | ≤

∑
x∈A
|ξxt |

where the last inequality is due to the fact that ξxt are not necessarily disjoint,
we have:

PT,λ(|ξAt | 6= 0) ≤ ET,λ[|ξAt |] = ET,λ[| ∪x∈A ξxt |] ≤ ET,λ[
∑
x∈A
|ξxt |] ≤

≤
∑
x∈A

C0e
−c0t = |A|C0e

−c0t (43)

where in the penultimate inequality we have used (42), and in the last (5.2.2).
We now set C = 2/c0, so that equation 43 becomes:

PT,λ(|ξAt | 6= 0) ≤ |A|C0e
− 2
C
t. (44)
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Now, noticing that

{|ξAt | 6= 0} = {τAT > t}

, (44) becomes
PT,λ(τAT > t) ≤ |A|C0e

− 2
C
t

hence taking t = C log n we get

PT,λ(τAT > C log n) ≤ |A|C0e
− 2
C
C logn =

|A|C0

n2
.

This implies that

sup
A⊆T:|A|=n

PT,λ(τAT > C log n) ≤ |A|C0

n2
→ 0 as n→∞

holds a fortiori.

Lemma 5.4. For any finite graph G = (V,E) with degree bounded by d+ 1,
A ⊆ V and t > 0,

PG,λ[τAG > t] ≤ sup
B⊆T:|B|=|A|

PT,λ[τBT > t]

For the proof of lemma 5.4 we refer to [5].
Proof of theorem 5.1(a): subcritical regime By lemma 5.4 with

G = Gn, A = Gn, and t = C log n, we have:

PGn,λ[τGn > C log n] ≤ sup
B⊆T:|B|=|Gn|

PT,λ[τBT > C log n]

that goes to 0 as n→∞ by proposition 5.2.

5.3 Generalisations

In these section we state some generalisations to graphs with bounded degree.
For the proofs we refer to [5].

We first give a result that generalizes theorem 5.1 to connected graphs
with vertex degree bounded by d+ 1, in the sense that it establishes a phase
transition varying λ also in this case, that is more general than the regular
one.

Theorem 5.3. Let Gn,d be the set of of the connected graphs with n vertices
with degree bounded by d+ 1. Then:

(a) ∀0 < λ < λg(Td) there exists a constant C <∞ such that

lim
n→∞

inf
G∈Gn,d

PG,λ(τG < C log n) = 1
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(b) ∀λ > λc(Z) there exists a constant K > 0 such that

lim
n→∞

inf
G∈Gn,d

PG,λ(τG > eKn) = 1

The last result we give is the fact that the contact process on general
graphs with vertex degrees bounded by d + 1 dies out in the subcritical
regime.

Theorem 5.4. If λ ≤ λg(Td), then the contact process of parameter λ on
any graph with vertex degree limited by d+ 1 dies out.
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