
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Quantum fluctuations in atomic Josephson junctions:

the role of dimensionality

Thesis supervisor Candidate

Prof. Luca Salasnich Andrea Bardin

Academic Year 2022/2023



ii



Abstract

In this thesis we investigate the role of quantum fluctuations in atomic Josephson junctions in dimen-
sion D = 1, 2, 3. In particular, we study the impact of these fluctuations on two key quantities: the
Josephson frequency and the critical strength of macroscopic quantum self-trapping.

Initially, we investigate the inter-atomic potential in the s-wave scattering approximation, explor-
ing the relationship between contact and finite-range coupling constants with the s-wave scattering
length and the effective range in dimensions D = 1, 2, 3. In the second chapter, we illustrate the
mean-field behavior of Josephson junction systems and the calculation of key parameters, namely the
Josephson frequency and the critical strength of macroscopic quantum self-trapping (MQST). After
that, we present the derivation of quantum fluctuations correction to the grand potential of a bosonic
system considering also a finite range term in the potential. This is done systematically for a system
of dimension D = 1, 2, 3. Finally, in the last two chapters, we investigate the effects of quantum fluc-
tuations on the Josephson frequency and the critical strength of macroscopic quantum self-trapping
beyond the mean-field approximation, respectively with and without finite range correction to the
potential.

Our main findings reveal that, when compared to the mean-field Josephson frequency, the Josephson
frequency is higher in 2D and 3D, while it is lower in 1D. On the other hand, the MQST critical
strength is higher in 1D and lower in 2D and 3D. These results highlight the crucial role of quantum
fluctuations in determining the properties of atomic Josephson junctions and show that the behavior
of these systems is different in different dimensions.
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Introduction

The goal of this thesis is to find correction driven by gaussian fluctuation to the mean-field values of
two key quantities of an atomic Josephson junction: the Josephson frequency and the macroscopic
quantum self trapping (MQST) critical strength.

A Josephson junction is a device composed of a pair of superconductors or superfluids. Its behaviour
was first theorized for superconductors by Brian Josephson in 1962 [1]. The main Josephson effects
observed in this device are the DC Josephson effect and the AC Josephson effect. In the DC Joseph-
son effect, a supercurrent passes through an insulator at zero voltage. In the AC Josephson effect, in
addition to the usual DC current, there is an AC supercurrent whose frequency is proportional to the
applied voltage. These effects were demonstrated the following year [2] and have been further studied
since then. In recognition of his groundbreaking work, Brian Josephson was awarded the Nobel Prize
in Physics in 1973. Nowadays the Josephson junction is employed in sophisticated technologies. For
example, a superconducting quantum interference device (SQUID) is a magnetometer with a very high
sensitivity and find primary applications in diverse fields including scientific research, medical diag-
nostics, and industrial settings [3]. Furthermore, Josephson junction are implented in the realization
of qubits for quantum computers [4, 5] and to detect axions, a possible candidate for dark matter [6].

The achievement of Bose-Einstein condensation (BEC) with ultracold and dilute alkali-metal atoms in
the 1990s [7, 8] marked a major milestone in the field of physics, resulting in Eric Cornell, Carl Wie-
man, and Wolfgang Ketterle, being awarded the 2001 Nobel Prize in Physics for their groundbreaking
work. This breakthrough revitalized and significantly enhanced the interest in studying macroscopic
quantum phenomena, leading to a renewed focus on various research areas. In particular, there has
been renewed focus on studying the Josephson effect [9], where in this case the Josephson junction
is made up of two superfluids. This case is interesting because it exhibits a new macroscopic phe-
nomenon, which do not occur in the superconductive Josephson junction. The phenomenon known
as macroscopic quantum self trapping (MQST) is characterized by a self-maintained population im-
balance [10]. In 2004, MQST was experimentally detected in a single bosonic Josephson junction
consisting of two Bose-Einstein condensate of 87Rb atoms [11]. Later, in 2015, the same effect was
empirically observed also for a Josephson junction made of fermionic superfluids in the BEC-BCS
crossover with 6Li atoms [12]. This observation extended the understanding of MQST to a different
physical system, further supporting its generality and relevance in various contexts.

To describe the quantum behaviour of a Josephson junction usually one use the phase model [13],
based upon the commutation rule between the number operator N̂ and the phase operator ϕ̂ [14].
Since this commutation rule is approximately good for systems containing a large number of bosonic
atoms or condensed electronic Cooper pairs, the phase model is used as a starting point for studying
of beyond mean-field quantum effects. [15, 16, 17]. To give an example, finite size effects on an atomic
bosonic Josephson junction have been studied using atomic coherent states [18]. Another possible ap-
proach involves path integral formalism, which is used to obtain an effective action depending only on
the relative phase between the bosonic field of the two sites. The quantum correction to the Josephson
frequency oscillation are then found through the quantum effective action [19].
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2 CONTENTS

Within this dissertation, the atomic bosonic Josephson junction is systematically investigated in di-
mensions D = 1, 2, 3. The main goal of this research is to analyse the influence of quantum fluctuations
on two key phenomena observed in the system: Josephson oscillations and macroscopic quantum self-
trapping. These phenomena are regulated by two important parameters: the Josephson frequency,
which governs the oscillations between the two weakly coupled Bose-Einstein condensates, and the
MQST critical strength, which determines the conditions for the occurrence of self-trapping at a
macroscopic scale.

Since the bosonic atomic Josephson junction is a system involving interacting bosonic atoms, the first
part of the study investigates the inter-atomic potential in dimensions D = 1, 2, 3. The inter-atomic
potential can be approximated well as a sum of a contact-like potential and a finite range correction.
The coupling costants of these terms are systematically calculated for each dimension D = 1, 2, 3 using
two types of approximations, namely the s-wave approximation and the on-shell approximation [20].
Once the structure of the inter-atomic potential is understood, the mean-field model for a bosonic
atomic Josephson junction is described. Specifically, the Josephson-Smerzi equations [10] are utilized
to calculate the Josephson frequency and the MQST critical strength. These results are independent
of the dimensionality of the system. The central chapter cover the beyond mean-field calculations
to retrieve the correction to the Grand Potential driven by Gaussian fluctuation. This is done me-
thodically in D = 1, 2, 3 by means regularization [21]. From the zero temperature grand potential
involving Gaussian fluctuation correction are then found the number density and the energy density.
Note that, neglecting finite-range effects, one retrieve the Lee-Huang-Yang correction for D = 3 [22],
the Schick-Popov correction for D = 2 [23, 24], and the next-to-leading term of the Lieb-Liniger theory
for D = 1 [25]. Finally, implementing the corrected energy density to the Lagrangian density of the
bosonic atomic Josephson junction, it is possible to investigate how the quantum fluctuation acts on
the Josephson junction and therefore to obtain the beyond mean-field contribution to the Josephson
frequency and the MQST critical strength. In the chapter four only the contact term of the inter-
atomic potential is considered, while in the last chapter also the finite range correction are taken in
consideration.



Chapter 1

Inter-atomic Potential

In the following, many-body systems involving bosonic atoms are studied. It is therefore mandatory
to spend few words about the interaction potential between atoms. An almost realistic model that
describes this kind of interaction is the Lennard-Jones potential [26, 27, 28], that is given by

V (r) = 4ϵ
[(σ
r

)12
−
(σ
r

)6]
(1.1)

where r is the inter-atomic distance, ϵ is the bond energy and σ the bond length. The first term is
short-range and repulsive, its origin descends form the Pauli exclusion principle. The second term is
long-range and attractive, and it is given by electric dipole fluctuations. The Lennard-Jones potential

Figure 1.1: Lennard-Jones potential as a function of distance

is such that V (r) → +∞ for r → 0 and |
∫
V (r)d3r⃗| = +∞ (hard-core). In several applications are

used soft-core versions of this potential, characterized by |
∫
V (r)d3r⃗| < +∞.

The Lennard-Jones potential or its soft-core versions are not the potentials used in this work. In
fact under certain conditions (low temperature, diluite gas) a simpler potential, the Fermi pseudo-
potential [29], can be a good approximation for the inter-atomic interaction. This pseudo-potential is
a contact potential given by

V (r⃗) = g δ(3)(r⃗) (1.2)

From this formula it follows after integration with respect to r⃗ that

g =

∫
V (r⃗) d3r⃗ (1.3)

Thus, the strength g of the Fermi pseudo-potential is directly related to the ”real” interaction potential
V (r). Moreover, this result can also be interpreted as the first term of a Taylor expansion of the Fourier
transform of such potential:

g = F [V (k⃗ = 0)] (1.4)

3
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Generalizing to a D-dimensional space, the coupling constant is given by

g =

∫
V (r⃗) dDr⃗ (1.5)

The dimensional units of the coupling constant are therefore

[g] = Energy × LengthD (1.6)

In particular, from scattering theory it follows that, within the Born approximation, calling as the
scattering length in D dimensions and m the mass of an atom [30, 31, 32]:

g =
4πℏ2as
m

(D = 3) (1.7)

g = −4πℏ2

m

1

ln (Λ2a2se
γ)

(D = 2) (1.8)

g = − 2ℏ2

mas
(D = 1) (1.9)

Note that in D = 1 the coupling constant g and the scattering length as have opposite sign. The
case D = 2 is very peculiar: the strength g is always positive and depend on an energy cut-off Λ and
on the Euler-Mascheroni constant γ ≃ −0.5772156649. Another observation is on the dependence of
the coupling constant to the scattering length. The dependence is linear for the D = 3 case, inverse
proportional for the D = 1 case and inverse logarithmic for the D = 2 case. Nevertheless in all the
three dimensional cases there is a proportional dependence to ℏ2

m .
In the following we consider the Grand Potential accounting Gaussian fluctuation. This approxima-
tion, called Gaussian approximation or Bogoliubov approximation is valid only if ñ ≪ 1 [21], where

ñ ≡ m
ℏ2 gn

D−2
D is an adimensional parameter of the expansion. In particular, in D = 3 the condition

translates into a3n≪ 1, in D = 2 into a2sΛ
2 ≫ 1 or a2sΛ

2 ≪ 1, while in D = 1 into |a|n≫ 1.

As said before, the coupling constant g is the first term of a Taylor expansion of the Fourier transform
of such potential. In fact one could express the Fourier transform of the potential as

F [V ] = Ṽ (k) =
∑
n

g2nk
2n (1.10)

where, g0 is the coupling constant g. Note that due to the symmetry of the system, only even powers
of the momentum appear.
A correction of the Fermi pseudo-potential, that is contact-like, occurs with the introduction of a finite
range term given by the second term of the expansion written above. The potential in the Fourier
space is thus

Ṽ (k) = g0 + g2k
2 (1.11)

and the dimensional units of g2 are therefore

[g2] = Energy × LengthD+2 (1.12)
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In particular, calling rs the D-dimensional s-wave effective range [30, 33]

g2 =
πℏ2

m
a2srs (D = 3) (1.13)

g2 =
π2ℏ2

m

r2s
ln2 (Λ2a2se

γ)
(D = 2) (1.14)

g2 = − ℏ2

2m
rs (D = 1) (1.15)

Note that while the D = 3 g2 constant has a quadratic dependence on the scattering length as,
the D = 2 g2 constant has a logarithmic dependence while the D = 1 one is independent of as.
Furthermore, while g2 in D = 3 has the same sign of rs, in D = 2 it is always positive due to the
quadratic dependence on the effective range rs and in D = 1 has opposite sign with respect to rs.
Last but not least, in D = 2 appear a UV cut-off Λ as in the g0 case.



6 CHAPTER 1. INTER-ATOMIC POTENTIAL

1.1 Coupling coefficients determination

To find the terms g0 and g2 let us consider the two-body problem. Given the transition operator T̂ ,
and defining its matrix element as T

k⃗k⃗′ = ⟨k⃗|T̂ |⃗k′⟩ where |k⟩ and |k⟩′ are the initial and the final state
respectively. In D dimension, one has the relation [32]

T̂
k⃗k⃗′ = V

k⃗k⃗′ +

∫
dDk⃗′′

V
k⃗k⃗′′

ℏ2k2
2mr

− ℏ2k′′2
2mr

T
k⃗′′k⃗′ (1.16)

where |k⟩′′ is an intermediate state, mr =
m
2 is the reduced mass, while V

k⃗k⃗′ = ⟨k⃗|V̂ |⃗k′⟩ is the matrix

element of the potential operator V̂ which is given by the Fourier transform of the potential V , namely

V
k⃗k⃗′ =

Ṽ (k−k′)
(2π)D

. The next step is considering the s-wave approximation. First, one define the partial

wave decomposition

V
k⃗k⃗′ =

1

(2π)D

∑
l

Vl(k, k
′)N(D, l)PDl (k̂ · k̂′) (1.17)

where N(D, l is the number of spherical harmonics in D dimension and PDl is the Legendre polynomial
in dimension D. Then, considering k = k′ and selecting l = 0 (s-wave approximation) one finds

T0(k) = V0(k) + SD

∫ ∞

0

dk′′

(2π)D
V0(k, k

′′)
ℏ2k2
m − ℏ2k′′2

m

T0(k
′′, k) (1.18)

where T0(k) ≡ T0(k, k), V0(k) ≡ V0(k, k) and SD = 2π
D
2

Γ(D/2) is the solid angle in D dimension with Γ(x)
is the Euler gamma function.
A further approximation, called ”on-shell approximation” is done [34]. One assumes, due to the
presence of a singularity in k = k′′ in (1.18) that{

V0(k, k
′′) ≃ V0(k, k) ≡ V0(k)

T0(k
′′, k) ≃ T0(k, k) ≡ T0(k)

(1.19)

where V0(k) = g0 + 2g2k
2. Therefore the expression (1.18) becomes

T0(k) = V0(k) + V0(k)C(k)T0(k) (1.20)

where

C(k) ≡
∫

dDk⃗′′

(2π)D
1

ℏ2k2
m − ℏ2k′′2

m

(1.21)

Finally, one finds [20]

T0(k) =
1

1
V0(k)

− C(k)
(1.22)

From this result is possible to calculate the terms for g0 and g2 upon renormalization of C(k) which has
a ultraviolet divergence for any integer dimension D, however it is possible to eliminate the divergence
through dimensional regularization [21, 35].

Using spherical coordinates in (1.21) one gets

C(k) = − SD
(2π)D

m

ℏ2

∫ ∞

0
dk′′k′′D−1 1

k′′2 + (−ik)2 (1.23)

Defining t = −k′′2

k2
, so that k′′ = (−ik)

√
t and dk′′ = (−ik)

2
√
t
dt the expression becomes

C(k) = − SD
(2π)D

m

2ℏ2
(−ik)D−2

∫ ∞

0
dt
t
D
2
−1

t+ 1
(1.24)
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Finally, using the Euler Beta function definition

B(x, y) =

∫ ∞

0
dt

tx−1

(t+ 1)x+y
(1.25)

and the solid angle definition SD = 2πD/2

Γ(D/2) one obtains

C(k) = −m
ℏ2

(−ik)D−2B(D2 , 1−
D
2 )

(4π)
D
2 Γ(D2 )

(1.26)

which, since B(x, y) = Γ(x)Γ(y)
Γ(x+y) can be rewritten as

C(k) = −m
ℏ2

(−ik)D−2Γ(1−
D
2 )

(4π)
D
2

(1.27)
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1.1.1 D=3 case

The D = 3 case is simple. Remembering that Γ(−1
2) = −2

√
π

C3D(k) = (−ik) m

4πℏ2
(1.28)

Returning to the equation for the s-wave transition element T0(k), given by (1.22), one has in the
D = 3 case

T0(k) =
1

1
V0(k)

+ ik m
4πℏ2

(1.29)

and from the scattering theory is known that the s-wave transition element T0(k) is related to the
s-wave phase shift δ0(k) by the formula [32]

T0(k) = −4πℏ2

m

1

k cot δ0(k)− ik
(1.30)

The s-wave phase shift δ0(k) can be expanded at low momenta in terms of the D = 3 s-wave scattering
length as and the D = 3 s-wave effective range rs [32]

k cot δ0(k) = − 1

as
+

1

2
rsk

2 + . . . (1.31)

Therefore one obtains

T0(k) =
1

1
V0(k)

+ ik m
4πℏ2

1
m

4πℏ2as − 1mrs
8πℏ2 k

2 + im m
4πℏ2

=
1

1
g0+2g2k2

+ ik m
4πℏ2

m

4πℏ2as
− 1mrs

8πℏ2
k2 =

1

g0 + 2g2k2

(1.32)

and expanding the RHS term one the expression reduces to

m

4πℏ2as
− 1mrs

8πℏ2
k2 =

1

g0
− 2g2

g20
k2 (1.33)

Hence one retrieves the expressions for g0 and g2 written previously

g0 =
4πℏ2as
m

and g2 =
πℏ2

m
a2srs (1.34)
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1.1.2 D=2 case

The D = 2 is more complicate since Γ(0) diverges. To solve this problem, admitting a non-integer
dimension, the calculation is done for D = 2 − ε and at the end of the calculation ε is sent to zero.
Therefore, we need to calculate

C(k) = −m
ℏ2
kε0(−ik)−ε

Γ( ε2)

(4π)1−
ε
2

= − m

4πℏ2
(2√πk0

−ik

)ε
Γ
(ε
2

) (1.35)

Expanding around ε→ 0 one obtains that xε ≃ 1 + ε lnx+O(ε2) and

Γ
(ε
2

)
=

2

ε
− γ+O(ε) (1.36)

Therefore the expression (1.35) can be rewritten as

C(k) = − m

4πℏ2
(2
ε
− γ+ 2 ln

(2√πk0
k

)
+ 2 ln i

)
= − m

4πℏ2
(
2 ln

(2√πk0
ke

γ
2

)
+ iπ

) (1.37)

where the divergent term 2
ε is removed through minimal subtraction scheme. Finally, setting Λ =√

πk0, one obtains the formula for C(k) in the D = 2 case

C2D(k) =
m

2πℏ2
ln
(keγ

2

2Λ

)
− m

4ℏ2
i (1.38)

The formula linking the s-wave transition element T0(k) to the s-wave phase shift δ0(k) is given by
[36]

T0(k) = −4ℏ2

m

1

cot δ0(k)− i
(1.39)

where the cotangent of the s-wave phase shift δ0(k) at low momenta can be expressed as a function of
the D = 2 s-wave scattering length as and the D = 2 s-wave effective range rs as follow [37]

cot δ0(k) =
2

π
ln
(k
2
ase

γ
)
+

1

2
r2sk

2 (1.40)

To retrieve the coupling constants g0 and g2 one inserts (1.38) and (1.39), with the aforementioned
expansion, into the formula relating T0(k) with V0(k), namely (1.22), obtaining

T0(k) =
1

1
V0(k)

− m
2πℏ2 ln

(
ke

γ
2

2Λ

)
+ m

4ℏ2 i

1

− m
2πℏ2 ln

(
k
2ase

γ
)
− mr2s

8ℏ2 k
2 + m

4ℏ2 i
=

1

1
g0+2g2k2

− m
2πℏ2 ln

(
ke

γ
2

2Λ

)
+ m

4ℏ2 i

− m

2πℏ2
ln (Λase

γ
2 )− mr2s

8ℏ2
k2 =

1

g0
− 2g2

g20
k2

(1.41)

Finding the expressions for g0 and g2 mentioned above

g0 = −4πℏ2

m

1

ln (Λ2a2se
γ)

and g2 =
π2ℏ2

m

r2s
ln2 (Λ2a2se

γ)
(1.42)
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1.1.3 D=1 case

Finally, the D = 1 case is similar to the D = 3 one. Remembering that Γ(12) =
√
π then

C1D(k) = −i1
k

m

2ℏ2
(1.43)

From 1D scattering theory it is known that the s-wave transition element T0(k) is related to the s-wave
phase shift δ0(k) through the following relation [38, 39]

T0(k) = −2ℏ2

m

k

cot δ0(k)− i
(1.44)

By definition the ratio between the momentum and the cotangent of the s-wave phase shift δ0(k) can
be expressed at low momenta by means of the D = 1 s-wave scattering length as and the D = 1 s-wave
effective range rs [38, 39]

k

cot δ0(k)
=

1

as
+

1

2
rsk

2 + . . . (1.45)

There are now all the necessary quantities to calculate the coupling constants g0 and g2 starting from
the relation (1.22)

T0(k) =
1

1
V0(k)

+ i 1k
m
2ℏ2

1

− m
2ℏ2

cot δ0(k)
k + i

k
m
2ℏ2

=
1

1
g0+2g2k2

+ i
k
m
2ℏ2

− 2ℏ2

mas
− 2ℏ2

m

rs
2
k2 = g0 + 2g2k

2

(1.46)

Therefore the coupling constants g0 and g2 are given respectively by

g0 = − 2ℏ2

mas
and g2 = − ℏ2

2m
rs (1.47)



Chapter 2

Josephson Junction: Mean-field results

2.1 D-dimensional case

We want to construct an effective Lagrangian for a bosonic system with two sites of volume V = LD

each [19]. The corresponding Lagrangian density is made of three terms:

L = L1 + L2 + LJ (2.1)

The first and the second term are given by

Lk = iℏΦ∗
k(t)∂tΦk(t)−

1

2
g|Φk(t)|4 k = 1, 2 (2.2)

where Φk(t) is a complex time-dependent field describing the bosons in the k-th site and g is the
coupling constant. The third term phenomenologically introduce the tunneling (hopping) and it is
given by

LJ =
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t)) (2.3)

the constant J is connected to the exchange of particles between the two sites. Integrating in space
the Lagrangian density one obtains the Lagrangian [19]

L =

∫
V

L d3r⃗

= LDL

=
∑
k

(
iℏφ∗

k(t)∂tφk(t)−
U

2
|φk(t)|4

)
+
J

2
(φ∗

1(t)φ2(t) + φ∗
2(t)φ1(t))

(2.4)

where the new renormalized functions describing the system are

φk(t) ≡
√
LDΦk(t) k = 1, 2 (2.5)

and the constant U , which has the dimension of an energy, is defined as

U ≡ g

LD
(2.6)

Through the Madelung transformation [40], given by

φk(t) =
√
Nk(t)e

iϕk(t) k = 1, 2 (2.7)

the complex function describing the bosons can be rewritten in terms of its phase ϕk(t) and its
modulus

√
Nk(t), where the square of the latter correspond to the number of boson in the k−th site.

11
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Calculating the time derivative and the complex conjugate of the field

∂tφk(t) =

(
Ṅk(t)

2Nk(t)
+ iϕ̇k(t)

)√
Nk(t)e

iϕk(t)

=

(
Ṅk(t)

2Nk(t)
+ iϕ̇k(t)

)
φk(t)

(2.8)

φ∗
k(t) =

√
Nk(t)e

−iϕk(t) (2.9)

Then

iℏφ∗
k(t)∂tφk(t) = iℏφ∗

k(t)

(
Ṅk(t)

2Nk(t)
+ iϕ̇k(t)

)
φk(t)

= iℏNk(t)

(
Ṅk(t)

2Nk(t)
+ iϕ̇k(t)

)

= iℏ
Ṅk(t)

2
− ℏNk(t)ϕ̇k(t)

(2.10)

and

φ∗
1(t)φ2(t) + φ∗

2(t)φ1(t) =
√
N1(t)N2(t)e

i(ϕ2(t)−ϕ1(t)) +
√
N2(t)N1(t)e

i(ϕ1(t)−ϕ2(t))

= 2
√
N1(t)N2(t) cos (ϕ1(t)− ϕ2(t))

(2.11)

Omitting the time dependence for simplicity of notation, the Lagrangian becomes

L =
∑
k

(
iℏ
Ṅk

2
− ℏϕ̇kNk −

U

2
N2
k

)
+ J cos (ϕ1 − ϕ2)

√
N1N2 (2.12)

Introducing the total number of particles N ≡ N1(t)+N2(t), the relative phase ϕ(t) ≡ ϕ2(t)−ϕ1(t), the
total phase ϕ̄(t) ≡ ϕ1(t) + ϕ2(t) and the population imbalance z(t) ≡ N1(t)−N2(t)

N then the Lagrangian
can be written as a function of N , ϕ, ϕ̄ and z. To express the number of particles on each site in terms
of these parameters, we reverse the definitions of the population imbalance z and the total number of
particles N , resulting in the following expressions:

N1 =
N

2
(1 + z) (2.13)

N2 =
N

2
(1− z) (2.14)

Similarly, to find the expressions for the phases ϕ1 and ϕ2 of each site, we have:

ϕ1 =
ϕ̄− ϕ

2
(2.15)

ϕ2 =
ϕ̄+ ϕ

2
(2.16)

Let us consider the terms of the Lagrangian separately:

∑
k

iℏ
Ṅk

2
= iℏ

Ṅ

2
= 0 (2.17)

Since the total number of particles is a constant of motion, the first term is equal to zero.
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The second term is instead given by

−ℏ
∑
k

ϕ̇kNk = −ℏϕ̇1N1 − ℏϕ̇2N2

= −ℏ
N

2
(1 + z)

˙̄ϕ− ϕ̇

2
− ℏ

N

2
(1− z)

˙̄ϕ+ ϕ̇

2

= −ℏ
N

4

[
(1 + z)( ˙̄ϕ− ϕ̇) + (1− z)( ˙̄ϕ+ ϕ̇)

]
= −ℏ

N

4

[
( ˙̄ϕ− ϕ̇) + z( ˙̄ϕ− ϕ̇) + ( ˙̄ϕ+ ϕ̇)− z( ˙̄ϕ+ ϕ̇)

]
=

ℏN
2

(
zϕ̇− ˙̄ϕ

)
=

ℏN
2
zϕ̇

(2.18)

where, the term −ℏN ˙̄ϕ
2 is an exact differential and therefore it get cancelled by boundary conditions.

For the third term we have

−
∑
k

U

2
N2
k = −U

2

(
N2

1 +N2
2

)
= −U

2

N2

4

[
(1 + z)2 + (1− z)2

]
= −UN

2

8

[
1 + 2z + z2 + 1− 2z + z2

]
= −UN

2

4

(
1 + z2

)
= −UN

2

4
z2

(2.19)

and we remove the term −UN2

4 since it is a constant term. Finally the last term results in

J cos (ϕ1 − ϕ2)
√
N1N2 = J cosϕ

√
N2

2
(1 + z)(1− z)

=
JN

2

√
1− z2 cosϕ

(2.20)

The Lagrangian then depends only on two dynamical variables, the population imbalance z and the
phase difference ϕ and it is independent on the total phase ϕ̄. The complete form of the Lagrangian
is thus

L =
Nℏ
2
zϕ̇− UN2

4
z2 +

JN

2

√
1− z2 cosϕ (2.21)

and the corresponding Euler-Lagrangian equations, called Josephson-Smerzi equations [10] are{
ż = −J

ℏ
√
1− z2 sinϕ

ϕ̇ = J
ℏ

z√
1−z2 cosϕ+ UNz

ℏ
(2.22)

The Josephson-Smerzi equations are the starting point to calculate the Josephson frequency and the
Macroscopic Quantum Self Trapping (MQST) critical value.



14 CHAPTER 2. JOSEPHSON JUNCTION: MEAN-FIELD RESULTS

2.1.1 Josephson Frequency

To obtain the Josephson frequency we need a quadratic Lagrangian in the population imbalance z
and the phase difference ϕ. Hence, one consider the limit in which the dynamical variables are small,
namely |ϕ(t)| ≪ 1 and |z(t)| ≪ 1. Under this limit, the following approximations are valid:√

1− z2 = 1− x2

2
+ o(x3) cosϕ = 1− ϕ2

2
+ o(ϕ2) (2.23)

and quadratic Lagrangian has the form:

L =
Nℏ
2
zϕ̇− UN2 + JN

4
z2 − JN

4
ϕ2 (2.24)

Therefore the linearized Josephson-Smerzi equations are{
ż = −J

ℏϕ

ϕ̇ = J+UN
ℏ z

(2.25)

and from these equations one can get the harmonic oscillator equations for the population imbalance
z(t) and the relative phase ϕ(t): {

z̈ +Ω2
mfz = 0

ϕ̈+Ω2
mfϕ = 0

(2.26)

where the Josephson frequency is introduced [10], its expression is given by

Ωmf =
1

ℏ

√
J2 + UNJ (2.27)

which can be written also in faction of g and n as

Ωmf =
1

ℏ
√
J2 + Jgn (2.28)

Note that there are two particular regimes. If J ≫ UN then the frequency can be approximated with
the Rabi frequency ΩR [10]

Ωmf ≃ ΩR =
J

ℏ
(2.29)

Vice versa, if J ≪ UN then the frequency can be approximated to

Ωmf ≃ ΩJ =

√
UNJ

ℏ
(2.30)

Hence the frequency (2.27) can be rewritten as a function of these two particular cases as

Ωmf =
√
Ω2
R +Ω2

J (2.31)
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2.1.2 Macroscopic Quantum Self Trapping

Another interesting phenomenon that occurs in Josephson junction is the macroscopic quantum self
trapping (MQST) [18].

Firstly, one need to find the conserved energy of the system, which is given by

E =
�
��ż
∂L
∂ż

+ ϕ̇
∂L
∂ϕ̇

− L (2.32)

however the Lagrangian is independent from ż, so one gets from

E =
�
�
��Nℏ

2
zϕ̇ −

�
�
��Nℏ

2
zϕ̇ +

UN2

4
z2 − JN

2

√
1− z2 cosϕ (2.33)

Therefore the conserved energy is given by

E(z, ϕ) =
UN2

4
z2 − JN

2

√
1− z2 cosϕ (2.34)

The macroscopic quantum self trapped happens when ⟨z⟩ ̸= 0 and the condition to have MQST is
given, calling z0 = z(0) and ϕ0 = ϕ(0), by the following inequality

E(z0, ϕ0) > E(0, π) (2.35)

since z(t) cannot become zero during an oscillation cycle. The MQST condition can be expressed also
with a dimensionless parameter, known as strength, defined as

Ξ ≡ NU

J
(2.36)

In fact, inserting (2.34) and(2.36) into (2.35), one has [10]

UN2

4
z20 −

JN

2

√
1− z20 cosϕ0 >

JN

2
UN

2
z20 − J

√
1− z20 cosϕ0 > J

Ξ

2
z20 −

√
1− z20 cosϕ0 > 1

Ξ >
1 +

√
1− z20 cosϕ0
z20/2

(2.37)

and defining the critical value of the strength Ξ above which the macroscopic quantum self trapping
occurs as

ΞMQST ≡ 1 +
√

1− z20 cosϕ0
z20/2

(2.38)

the inequality condition translates to
Ξ > ΞMQST (2.39)

which is the familiar mean-field condition to achieve MQST in Bose-Einstein condensates.
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Chapter 3

Equation of state

The objective of this section is to employ dimensional regularization in order to renormalize the Grand
Potential [21] to obtain the beyond mean-field Gaussian corrections in D = 1, 2, 3 spatial dimensions
correction. These quantum fluctuations, disregarding finite-range effects, result in the Lee-Huang-Yang
correction for D = 3 [22], the Schick-Popov correction for D = 2 [23, 24], and the next-to-leading
term of the Lieb-Liniger theory for D = 1 [25].

The starting framework is an interacting system of identical bosons in the grand canonical ensem-
ble. To study it the path integral formalism is adopted, where a complex field Φ(r⃗, τ) describes the
bosons [41].
The complex field depends on the position and of the Euclidean time (obtained Wick rotating the
real time τ = −it) . For a system of interacting atomic bosons in a D−dimensional box of volume
V = LD, chemical potential µ and 2−body interaction potential V (r⃗, r⃗′) the Lagrangian density of
the system is

L = Φ∗(r⃗, τ)

(
ℏ∂τ −

ℏ2

2m
∇⃗2 − µ

)
Φ(r⃗, τ) +

1

2

∫
d3r⃗ |Φ(r⃗, τ)|2V (r⃗, r⃗′)|Φ(r⃗′, τ)|2 (3.1)

Since the bosonic gas is diluite and at low temperature, it is possible to approximate the inter-atomic
interaction with the Fermi pseudo-potential corrected with the finite range term, obtaining:

L = Φ∗(r⃗, τ)

(
ℏ∂τ −

ℏ2

2m
∇⃗2 − µ

)
Φ(r⃗, τ) +

g0
2
|Φ(r⃗, τ)|4 − g2

2
|Φ(r⃗, τ)|2∇⃗2|Φ(r⃗, τ)|2 (3.2)

From the Lagrangian, one can construct the partition function of the system using the Euclidean
action

S[Φ,Φ∗] =

∫ ℏβ

0
dτ

∫
d3r⃗ L (3.3)

where β ≡ 1
kBT

, kB is the Boltzmann constant and T the temperature of the system. The partition
function is thus [41]

Z =

∫
D[Φ,Φ∗] e−

S[Φ,Φ∗]
ℏ (3.4)

and from the logarithm of it one retrieves the Grand Potential

Ω = − 1

β
lnZ (3.5)

Since the framework is in the superfluid phase, where there is a spontaneously symmetry breaking of
the global U(1) gauge symmetry [42], it is reasonable to set

Φ(r⃗, τ) = ψ0 + η(r⃗, τ) (3.6)

17
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where ψ0 is the order parameter of the system, it is supposed to be real, constant in time and uniform in
space; and η is the complex field describing the bosonic fluctuation around ψ0. Under this assumption
the Grand Potential can be decomposed as follow [33, 30, 43]:

Ω(µ, ψ0) = Ω0(µ, ψ0) + Ω
(0)
G (µ, ψ0) + Ω

(T )
G (µ, ψ0) (3.7)

The first term is the grand potential of the order parameter Ω0, which is given by

Ω0(µ, ψ0) ≡ −µψ2
0L

D +
1

2
g0ψ

4
0L

D (3.8)

The second term is the zero-temperature contribution to quantum Gaussian fluctuations,

Ω
(0)
G (µ, ψ0) ≡

1

2

∑
q⃗

Eq⃗(µ, ψ0) (3.9)

and the third term accounts thermal Gaussian fluctuations

Ω
(T )
G (µ, ψ0) ≡

1

β

∑
q⃗

ln
(
1− e−βEq⃗(µ,ψ0)

)
(3.10)

The last two terms, which hold the Gaussian fluctuations contributions, depend on the Bogoliubov
spectrum Eq⃗, which is given by

Eq⃗(µ, ψ0) =

√(
ℏ2q2
2m

− µ+ 2g0ψ2
0 + g2ψ2

0q
2

)2

− ψ4
0(g0 + g2q2)2 (3.11)

However this is not the usual form of the Bogoliubov spectrum, to recover this form one needs to
remove the dependence on ψ0. To find an expression for the order parameter, one minimizes the
Grand Potential with respect to such order parameter

∂Ω0(µ, ψ0)

∂ψ0
= 0 (3.12)

and the relation obtained between the order parameter and the chemical potential is therefore

ψ0 =

√
µ

g0
(3.13)

Hence the Bogoliubov spectrum has the more familiar form [33, 30, 43]

Eq⃗(µ, g) =

√
ℏ2q2
2m

(
λ(µ)

ℏ2q2
2m

+ 2µ

)
(3.14)

The finite range effects of the potential are taken into account through the term λ(µ) [33, 30, 43],
defined as

λ(µ) ≡ 1 + χµ (3.15)

where the coefficient of the chemical potential is given by χ ≡ 4m
ℏ2

g2
g0
. If one neglects the finite range

effects (setting g2 = 0), λ ≡ 1 and the Bogoliubov sprectrum has the usual form [44]

Eq⃗(µ, g) =

√
ℏ2q2
2m

(
ℏ2q2
2m

+ 2µ

)
(3.16)

Using the relation (3.13), the mean-field grand potential can be rewritten as

Ω0(µ, g) = − µ2

2g0
LD (3.17)
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Now, taking the continuum limit for Ω
(0)
G a UV divergence appears [21]

Ω
(0)
G

LD
=

1

2

∑
q⃗

Eq⃗(µ, ψ0) −→
1

2

SD
(2π)D

∫ +∞

0
dqqD−1

√
ℏ2q2
2m

(
λ(µ)

ℏ2q2
2m

+ 2µ

)
(3.18)

where SD is the surface area of a (D − 1)-sphere with unitary radius.

Due to the divergence we need to perform a regularization, we achieve this through dimensional
regularization, thinking at D as a continuous variable.∫ +∞

0
dqqD−1

√
ℏ2q2
2m

(
ℏ2q2
2m

+ 2µ

)
=

∫ +∞

0
dqqD−1ℏ2q2

2m

√
λ(µ) +

4µm

ℏ2q2

=
ℏ2
√
λ(µ)

2m

∫ +∞

0
dqqD+1

√
1 +

4µm

ℏ2q2λ(µ)

(3.19)

Performing a change of variable, calling t = 4mµ
ℏ2q2λ(µ) , then dq = −

√
mµ

ℏ2λ(µ)t3dt, so

ℏ2
√
λ

2m

∫ +∞

0
dqqD+1

√
1 +

4µm

ℏ2q2λ
=

ℏ2
√
λ

2m

∫ +∞

0
dt

√
mµ

ℏ2λt3

(
4mµ

ℏ2λt

)D+1
2 √

1 + t

=
1

2
√
λ
(2µ)(

D
2
+1)

(
2m

ℏ2λ

)D
2
∫ +∞

0
dtt−

D+4
2

√
1 + t

=
1

2
√
λ
(2µ)(

D
2
+1)

(
2m

ℏ2λ

)D
2
∫ +∞

0
dtt−

D+2
2

−1
√
1 + t

=
1

2
√
λ
(2µ)(

D
2
+1)

(
2m

ℏ2λ

)D
2

B

(
−D + 2

2
,
D + 1

2

)
(3.20)

where B(x, y) is the Euler Beta Function, related to the Gamma function by the following formula

B(x, y) =

∫ +∞

0
dt

tx−1

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
(3.21)

Thus, the zero-temperature contribution to quantum Gaussian fluctuation can be express in term of
the Euler Beta function as [21]

Ω
(0)
G

LD
=
SD(2µ)

D
2
+1

4
√
λ(2π)D

(
2m

ℏ2λ

)D
2

B

(
−D + 2

2
,
D + 1

2

)
(3.22)

which can be rewritten, remembering the definition of solid angle in D-dimension SD = 2πD/2

Γ(D/2) as

Ω
(0)
G

LD
=

µ√
λΓ(D/2)

( µm

πℏ2λ

)D
2
B

(
−D + 2

2
,
D + 1

2

)
(3.23)

and writing the Euler Beta Function in terms of Gamma functions

Ω
(0)
G

LD
=

µ√
λ

( µm

πℏ2λ

)D
2 Γ

(
−D+2

2

)
Γ
(
D+1
2

)
Γ
(
D
2

)
Γ
(
−1

2

) (3.24)

To compute it we need the Gamma function

Γ(z) =

∫ ∞

0
tz−1e−tdt Re{(z)} > 0 (3.25)
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or rather, some of its properties (n is an integer):

Γ(n) = (n− 1)!

Γ(1/2− n) =
(−2)n

√
π

(2n− 1)!!

Γ(1/2 + n) =
(2n− 1)!!

√
π

2n

(3.26)

where Γ(1/2) =
√
π and the symbol ”!!” denotes the semifactorial.



3.1. D=3 CASE 21

3.1 D=3 case

The D = 3 is rather simple, using the relations (3.26) the zero temperature Gaussian contribution to
the Grand Potential is given by

Ω
(0)
G

L3
=

µ√
λ

( µm

πℏ2λ

) 3
2 Γ (2) Γ

(
−5

2

)
Γ
(
3
2

)
Γ
(
−1

2

)
=
µ

5
2

λ

( m

πℏ2
) 3

2
1!
(−2)3

√
π

5!!

2

1!!
√
π

1!!

(−2)
√
π

=
µ

5
2

λ

( m

πℏ2
) 3

2 8

15
√
π

=
8

15π2λ2

(m
ℏ2
) 3

2
µ

5
2

(3.27)

which is positive. The D = 3 zero-temperature Grand Potential is then [33]

Ω

L3

∣∣∣
T=0

= − µ2

2g0
+

8

15π2λ2

(m
ℏ2
) 3

2
µ

5
2 (3.28)

The number density at T = 0 [33] can be obtained from the Grand Potential deriving respect to the
chemical potential µ

n(µ) = − 1

L3

∂Ω

∂µ

=
µ

g0
− 4

3π2

(m
ℏ2
) 3

2 µ
3
2

(1 + χµ)2
+

16

15π2

(m
ℏ2
) 3

2 χµ
5
2

(1 + χµ)3

(3.29)

Considering na3s ≪ 1, an explicit expression for the chemical potential can be found inverting the
relation using a perturbative approach (for more details see App.A)

µ(n) = g0n+
4g0
3π2

(m
ℏ2
) 3

2 (g0n)
3
2

(1 + χg0n)2
− 16g0

15π2

(m
ℏ2
) 3

2 χ(g0n)
5
2

(1 + χg0n)3
(3.30)

Finally, since µ = dE(n)
dn , the energy density is found by integration of the chemical potential in

E(n) =
∫
µ(n)dn

=
1

2
g0n

2 +
8

15π2

√
m

ℏ2
3

(g0n)
5
2

(1 + χg0n)2

(3.31)

and writing the expression in terms of as instead of g0 one has

E(n) = 2πℏ2asn2

m

(
1 +

128

15
√
π

√
a3sn

(1 + 4πa2srsn)
2

)
(3.32)

The expression in the parenthesis, upon setting rs = 0, gives us the correction that Lee, Huang and
Yang found in 1957 [22].
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3.2 D=2 case

The D = 2 case is more complicated. The zero temperature Gaussian contribution is given by

Ω
(0)
G

L2
=

µ√
λ

( µm

πℏ2λ

) Γ (−2) Γ
(
3
2

)
Γ (1) Γ

(
−1

2

)
=
µ2

λ
3
2

m

πℏ2
Γ (−2)

1!!
√
π

2
0!

1!!

(−2)
√
π

=
µ2

λ
3
2

m

πℏ2
Γ (−2)

1

−4

= − µ2

4πλ
3
2

m

ℏ2
Γ(−2)

(3.33)

However, the term Γ(−2) is divergent. To solve this problem, a non-integer dimension D = 2 − ε is
considered and at the end of the calculation the limit ε → 0 is taken. To calculate the D = 2 − ε
case the zero temperature Gaussian contribution is necessary to step back to the general dimension
formula

Ω
(0)
G

LD
=

µ√
λΓ
(
D
2

) ( µm

πℏ2λ

)D
2 Γ

(
−D+2

2

)
Γ
(
D+1
2

)
Γ
(
−1

2

) (3.34)

which in the D = 2− ε case is given by

Ω
(0)
G

LD
=

µkε0√
λΓ(1− ε

2)

( µm

πℏ2λ

)1− ε
2 Γ
(
−2 + ε

2

)
Γ
(
3−ε
2

)
Γ
(
−1

2

)
= − mµ2

2πℏ2λ
3
2
√
π

(
k0πℏ2λ
µm

) ε
2 Γ
(
−2 + ε

2

)
Γ
(
3−ε
2

)
Γ
(
1− ε

2

) (3.35)

where k0 is a scale wave-number introduced for dimensional reasons.
It is necessary to recall same expansions around ε→ 0, firstly

Γ
(
−n+

ε

2

)
=

(−1)n

n!

[
2

ε
+Ψ(n+ 1) +

ε

4

(
π2

3
+ Ψ(n+ 1)2 −Ψ′(n+ 1)

)
+O(ε2)

]
(3.36)

where Ψ(z) is the digamma function, defined as the logarithmic derivative of the gamma function

Ψ(z) ≡ Γ′(z)

Γ(z)
(3.37)

which has two useful properties, for a natural n different from zero

Ψ(n) = Ψ(1) +

n−1∑
l=1

1

l
(3.38)

with Ψ(1) = −γ where γ = −0.5772156649 is the Euler-Mascheroni constant and

Ψ′(n) = Ψ′(1)−
n−1∑
l=1

1

l2
(3.39)

where Ψ′(1) = π2

6 . Therefore the expansion of the gamma function Γ(−2 + ε
2) around ε → 0 is given

by

Γ
(
−2 +

ε

2

)
=

1

2

[
2

ε
− γ+

3

2
+
ε

4

(
γ2 − 3γ+

7

2
+
π2

6

)
+O(ε2)

]
(3.40)
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Secondly, given a rational number q, an expansion of Γ(q − ε
2) around ε→ 0 is given by

Γ
(
q − ε

2

)
= Γ(q)− ε

2
Γ′(n) +O(ε2)

= Γ(q)− ε

2
Ψ(q)Γ(q) +O(ε2)

= Γ(q)
(
1− ε

2
Ψ(q)

)
+O(ε2)

(3.41)

Therefore one gets for the expansion of Γ−1
(
1− ε

2

)
around ε→ 0 is

Γ−1
(
1− ε

2

)
=
(
1 + γ

ε

2
+O(ε2)

)−1

= 1− γ
ε

2
+O(ε2)

(3.42)

and the one of Γ
(
3−ε
2

)
is given by

Γ

(
3− ε

2

)
=

√
π

2

(
1− ε

2
Ψ

(
3

2

))
+O(ε2)

=

√
π

2

(
1 +

ε

2
(γ+ 2 ln 2− 2)

)
+O(ε2)

(3.43)

since for half-integer arguments the digamma function is given by

Ψ

(
n+

1

2

)
= −γ− 2 ln 2 +

n∑
k=1

2

2k − 1
(3.44)

Finally, a power of ε, xε, can be expressed as

xε = elnx
ε

= eε lnx

= 1 + ε lnx+O(ε2)

(3.45)

therefore the expansion of the term
(
k0πℏ2λ
µm

) ε
2
around ε→ 0 is(

k0πℏ2λ
µm

) ε
2

= 1 +
ε

2
ln

(
k0πℏ2λ
µm

)
+O(ε2) (3.46)

which, setting the UV cut-off Λ ≡
√
πk0, can be rewritten as(

k0πℏ2λ
µm

) ε
2

= 1 +
ε

2
ln

(
ℏ2Λ2λ

µm

)
+O(ε2) (3.47)

Hence, inserting the expressions (3.40), (3.42), (3.43) and (3.47) into (3.35) one gets

Ω
(0)
G

LD
=− mµ2

2πℏ2λ
3
2
√
π

1

2

√
π

2

[
1 +

ε

2
ln

(
ℏ2Λ2λ

µm

)]
×

×
[
2

ε
− γ+

3

2

] [
1 +

ε

2
(γ+ 2 ln 2− 2)

] [
1− γ

ε

2

]
+O(ε)

=− mµ2

8πℏ2λ
3
2

[
2

ε
− γ+

3

2
+ ln

(
ℏ2Λ2λ

µm

)] [
1 +

ε

2
(2 ln 2− 2)

]
+O(ε)

=− mµ2

8πℏ2λ
3
2

[
2

ε
− γ+

3

2
+ ln

(
ℏ2Λ2λ

µm

)
+ 2 ln 2− 2

]
+O(ε)

=− mµ2

8πℏ2λ
3
2

[
2

ε
+ ln

(
4ℏ2Λ2λ

µmeγ+
1
2

)]
+O(ε)

(3.48)
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After removing the divergent term proportional to 1
ε and sending ε→ 0 the expression above reduces

to [45]

Ω
(0)
G

L2
= − mµ2

8πℏ2λ
3
2

ln

(
4ℏ2Λ2λ

µmeγ+
1
2

)
(3.49)

Calculating explicitly the finite range factor λ

λ = 1 + χµ

= 1 +
4m

ℏ2
g2
g0
µ

= 1− πm

ℏ2
r2s

ln (Λ2a2se
γ)
µ

(3.50)

one may observe that the factor χ is small. This is also motivated from the fact that the finite range
constant g2 is a correction to the contact term constant g0 and so g2 ≪ g0, thus χ≪ 1. Therefore one
can do the following approximations

1

(1 + χµ)
3
2

= 1− 3

2
χµ+

+∞∑
ℓ=2

(−1)ℓ
(2ℓ+ 1)!!

2ℓℓ!
χℓµℓ (3.51)

and

ln (1 + χµ) =
+∞∑
k=1

(−1)k+1χ
kµk

k
(3.52)

Putting all together one has

1

λ
3
2

ln

(
4ℏ2Λ2λ

µmeγ+
1
2

)
=

1

λ
3
2

ln

(
4ℏ2Λ2

µmeγ+
1
2

)
+

lnλ

λ
3
2

=

(
1− 3

2
χµ+

+∞∑
ℓ=2

(−1)ℓ
(2ℓ+ 1)!!

2ℓℓ!
χℓµℓ

)
ln

(
4ℏ2Λ2

µmeγ+
1
2

)
+

+

(
1− 3

2
χµ+

+∞∑
ℓ=2

(−1)ℓ
(2ℓ+ 1)!!

2ℓℓ!
χℓµℓ

)(
+∞∑
k=1

(−1)k+1χ
kµk

k

)

=

(
1− 3

2
χµ

)
ln

(
4ℏ2Λ2

µmeγ+
1
2

)
+

+∞∑
ℓ=2

(−1)ℓ
(2ℓ+ 1)!!

2ℓℓ!
χℓµℓ ln

(
4ℏ2Λ2

µmeγ+
1
2

)
+

+

+∞∑
k=1

(−1)k+1χ
kµk

k
− 3

2

+∞∑
k=1

(−1)k+1χ
k+1µk+1

k
+

+

+∞∑
ℓ=2

+∞∑
k=1

(−1)k+ℓ+1 (2ℓ+ 1)!!

2ℓℓ!k
χk+ℓµk+ℓ

(3.53)

However, since χ is inversely proportional to ln (Λ2a2se
γ), only the first two term are not discarded

once the limit Λ → +∞ is taken. Hence the zero temperature Gaussian contribution to the Grand
Potential si given by

Ω
(0)
G

L2
= −mµ2

8πℏ2
ln

(
4ℏ2Λ2

µmeγ+
1
2

)(
1− 3

2
χµ

)
(3.54)

The beyond mean-field Grand Potential is obtained summing up the mean-field Grand Potential and
the zero temperature Gaussian contribution

Ω

L2

∣∣∣
T=0

=
Ω0

L2
+

Ω
(0)
G

L2

= − µ2

2g0
− mµ2

8πℏ2
ln

(
4ℏ2Λ2

µmeγ+
1
2

)(
1− 3

2
χµ

) (3.55)
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Recalling that the D = 2 coupling constant g0 also depends on the ultraviolet cut-off as follow

g0 = −4πℏ2

m

1

ln (Λ2a2se
γ)

(3.56)

one obtains

Ω

L2

∣∣∣
T=0

=
mµ2

8πℏ2
ln (Λ2a2se

γ)− mµ2

8πℏ2
ln

(
4ℏ2Λ2

µmeγ+
1
2

)
− 3

2
χ

m

8πℏ2
µ3 ln

(
4ℏ2Λ2

µmeγ+
1
2

)

= −mµ2

8πℏ2
ln

(
4ℏ2

µma2se
2γ+ 1

2

)
− 3

16

m2

ℏ4
r2sµ

3

ln

(
4ℏ2Λ2

µmeγ+
1
2

)
ln (Λ2a2se

γ)

(3.57)

and sending the cut-off to infinity Λ → +∞, one obtains the D = 2 renormalized Grand Potential

Ω

L2

∣∣∣
T=0

= −mµ2

8πℏ2
ln

(
4ℏ2

µma2se
2γ+ 1

2

)
− 3

16

m2

ℏ4
r2sµ

3 (3.58)

This is the same D = 2 renormalized Grand Potential found by Mora and Castin [46] if one set rs = 0.
Note that the first term of the beyond mean-field Grand Potential is independent of the ultraviolet
cut-off even without taking the limit.

Another observation is that the first term of the beyond mean-field Grand Potential is equal in form
to the mean-field one if one defines a renormalized coupling gr, in fact

Ω

L2

∣∣∣
T=0

= − µ2

2gr
− 3

16

m2

ℏ4
r2sµ

3 (3.59)

where the renormalized coupling gr is given by

gr = −4πℏ2

m

1

ln
(
µ
ε0

) (3.60)

and to retrieve the same results of [21] one sets

ε0 ≡
4ℏ2

ma2se
2γ+ 1

2

(3.61)

Also the second term of the beyond mean-field Grand Potential can be written in terms of the renor-
malized coupling gr. To do so one defines also a renormalized finite term coupling g2r given by

g2r =
π2ℏ2

m

r2s

ln2
(
ε0
µ

) (3.62)

and a renormalized χr which uses the renormalized coupling constants gr and g2r

χr ≡
4m

ℏ2
g2r
gr

= −πm
ℏ2

r2s

ln
(
ε0
µ

) (3.63)

Hence, the second term of the beyond mean-field Grand Potential can be rewritten in terms of gr and
χr as follow

− 3

16

m2

ℏ4
r2s =

3

4

−πm
ℏ2

r2s

ln
(
ε0
µ

)
 m

4πℏ2
ln

(
ε0
µ

)

=
3

4

χr
gr

(3.64)
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Finally, rewriting the beyond mean-field Grand potential in a more compact form

Ω

L2

∣∣∣
T=0

= − µ2

2gr
+

3

4

χr
gr
µ3 (3.65)

To find the beyond mean-field chemical potential first the T = 0 number density is computed

n = − 1

L2

∂Ω

∂µ

=
mµ

8πℏ2

(
2 ln

(
ε0
µ

)
− 1

)
+

9

16

m2

ℏ4
r2sµ

2

(3.66)

If the terms gr and χr are redefined such that

ε0ε0 =
4ℏ2

ma2se
2γ+ 1

2

−→ ε0 =
4ℏ2

ma2se
2γ+1

(3.67)

then the number density can then be rewritten as

n =
mµ

4πℏ2
ln

(
ε0
µ

)
+

9

16

m2

ℏ4
r2sµ

2 (3.68)

which can be rewritten in terms of χr and gr as

n =
µ

gr
− 9

4

χr
gr
µ2 (3.69)

One can recognise in the expression for the number density n a quadratic equation in the chemical
potential µ

9

4
χrµ

2 − µ+ grn = 0 (3.70)

Therefore the solutions are given by

µ± =
2

9χr
(1±

√
1− 9χrgrn) (3.71)

Having assumed that χr is small one could rewrite the square root as a binomial series

√
1− 9χrgrn = 1 +

+∞∑
k=1

(−1)k
(1

2

k

)
(9χrgrn)

k (3.72)

where the binomial coefficients are given by(
α

k

)
=
α(α− 1) . . . (α− k + 1)

k!
(3.73)

while
( 1

2
1

)
= 1

2 , the binomial coefficients for k ≥ 2 are given by(1
2

k

)
= (−1)k

(2k − 3)!!

2kk!
(3.74)

Inserting the binomial series into the solutions (3.71) of the quadratic equation in µ one has for the

µ+ =
2

9χr

(
2− 9χrgrn

2
−

+∞∑
k=2

��
��(−1)2k

(2k − 3)!!

2kk!
(9χrgrn)

k

)

=
4

9χr
− grn−

+∞∑
k=2

(2k − 3)!!

2k−1k!
(9χr)

k−1(grn)
k

(3.75)
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and

µ− =
2

9χr

(
9χrgrn

2
+

+∞∑
k=2

(2k − 3)!!

2kk!
(9χrgrn)

k

)

= grn+

+∞∑
k=2

(2k − 3)!!

2k−1k!
(9χr)

k−1(grn)
k

(3.76)

However the solution µ+ is nonphysical since, when the finite range interaction is neglected (χr = 0),
µ+ becomes divergent. Vice versa for the µ− solution one obtains µ− = grn, which upon substituting
gr with g0, corresponds to the mean-field result. The beyond mean-field chemical potential is therefore
given by

µ = grn

(
1 +

+∞∑
k=2

Ck(χrgrn)
k−1

)
(3.77)

where the numerical coefficient Ck is defined as

Ck ≡
(
9

2

)k−1 (2k − 3)!!

k!
(3.78)

However µ appears still in the logarithms of the RHS. To find an explicit expression for the chemical
potential µ as a function of n a further approximation is needed. Starting form

y =
x

ln
(
A
y

)
1 +

+∞∑
k=2

ck
xk−1

ln2k−2
(
A
y

)
 (3.79)

and inserting in the right-hand side of the equation the expression itself one obtains

y =
x

ln

A
x

ln
(

A
y

)
1+

∑+∞
k=2 ck

xk−1

ln2k−2 (A
y )



1 +
+∞∑
k=2

ck
xk−1

ln2k−2

A
x

ln
(

A
y

)
1+

∑+∞
k=2 ck

xk−1

ln2k−2 (A
y )



 (3.80)

Focusing now on the denominator of the first fraction

ln

A
x

ln
(
A
y

)
1 +

∑+∞
k=2 ck

xk−1

ln2k−2
(

A
y

)
 = ln

(
A

x

)
+ ln ln

(
A

y

)
− ln

1 +

+∞∑
k=2

ck
xk−1

ln2k−2
(
A
y

)
 (3.81)

and using the property that the logarithm of the product of two quantities is equal to the sum of their
logarithms, it is possible to neglect the last two term making some assumption. Firstly, the second
term at the denominator is much smaller than the first one due to the presence of the logarithm of
a logarithm, and secondly the third term is negligible since it consists of the logarithm of the finite
range interaction corrections. The equation (3.79) is therefore approximated to

y ≈ x

ln
(
A
x

) (1 + +∞∑
k=2

ck
xk−1

ln2k−2
(
A
x

)) (3.82)
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Namely, the approximation does the following substitution inside gr

4πℏ2

m

1

ln
(
ε0
µ

) → 4πℏ2

m

1

ln
(
mε0
4πℏ2n

)
=

4πℏ2

m

1

ln
(

m4ℏ2
4ma2se

2γ+1πℏ2n

)
=

4πℏ2

m

1

ln
(

1
a2se

2γ+1πn

)
= −4πℏ2

m

1

ln (Cn)

(3.83)

where the constant C is defined as

C ≡ πe2γ+1a2s (3.84)

The same approximation is assumed to hold for g2r χr, too.

Now we need to find the corrected energy density. To do so in the D = 2 case a different approach is
used instead of integrating the chemical potential. The grand potential (divided by the D = 2 volume)
is defined by

Ω

L2
≡ E

L2
− T

S

L2
− µ

N

L2
(3.85)

which at T = 0 reduces to
Ω

L2
= E − µn (3.86)

where E and n are the energy density and the number density, respectively.
Either the grand potential Ω and the number density depends on µ, so one has

E(µ) = Ω(µ)

L2
+ µn(µ)

= − µ2

2gr
+

3

4

χr
gr
µ3 +

µ2

gr
− 9

4

χr
gr
µ2

=
µ2

2gr
− 3

2

χr
gr
µ3

(3.87)

The energy density as a function of the chemical potential µ is therefore given by

E(µ) = µ2

2gr
− 3

2

χr
gr
µ3 (3.88)

However we want an expression of the energy density as a function of the number density n, to obtain
it one inserts (3.77) into the formula above

E(n) = 1

2gr

[
grn

(
1 +

+∞∑
k=2

Ck(χrgrn)
k−1

)]2
− 3

2

χr
gr

[
grn

(
1 +

+∞∑
k=2

Ck(χrgrn)
k−1

)]3

=
grn

2

2

(1 + +∞∑
k=2

Ck(χrgrn)
k−1

)2
− 3

2
χrg

2
rn

3

(1 + +∞∑
k=2

Ck(χrgrn)
k−1

)3


=
grn

2

2

(1 + +∞∑
k=2

Ck(χrgrn)
k−1

)2

− 3χrgrn

(
1 +

+∞∑
k=2

Ck(χrgrn)
k−1

)3


(3.89)
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To proceed with the calculation is necessary to perform the square and the cube of the series above.
For the square one has(

1 +
+∞∑
k=2

Ck(χrgrn)
k−1

)2

=1 + 2
+∞∑
k=2

Ck(χrgrn)
k−1 +

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−2 (3.90)

while for the cube one has(
1 +

+∞∑
k=2

Ck(χrgrn)
k−1

)3

=1 + 3

+∞∑
k=2

Ck(χrgrn)
k−1 + 3

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−2+

+
+∞∑
k=2

+∞∑
j=2

+∞∑
ℓ=2

CkCjCℓ(χrgrn)
k+j+ℓ−3

(3.91)

Inserting the expansions into the energy density formula one obtains

E(n) =grn
2

2

[
1 + 2

+∞∑
k=2

Ck(χrgrn)
k−1 +

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−2+

− 3χrgrn

(
1 +

+∞∑
k=2

+∞∑
j=2

+∞∑
ℓ=2

CkCjCℓ(χrgrn)
k+j+ℓ−3+

+ 3

+∞∑
k=2

Ck(χrgrn)
k−1 + 3

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−2

)]

=
grn

2

2

[
1 + 2

+∞∑
k=2

Ck(χrgrn)
k−1 +

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−2+

− 3χrgrn− 3

+∞∑
k=2

+∞∑
j=2

+∞∑
ℓ=2

CkCjCℓ(χrgrn)
k+j+ℓ−2+

− 9
+∞∑
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Ck(χrgrn)
k − 9

+∞∑
k=2

+∞∑
j=2

CkCj(χrgrn)
k+j−1

]

(3.92)

The next step is to rewrite the series in such a way that they can be summed up, obtaining

E(n) =grn
2

2

[
1− 3χrgrn+ 2

+∞∑
i=1

Ci+1(χrgrn)
i − 9

+∞∑
i=2

Ci(χrgrn)
i+

+
+∞∑
i=2

i∑
j=2

CjCi+2−j(χrgrn)
i − 9

+∞∑
i=3

i−1∑
j=2

CjCi+1−j(χrgrn)
i+

− 3
+∞∑
i=4

i−2∑
j=2

i−j∑
k=2

CjCkCi+2−j−k(χrgrn)
i

]

=
grn

2

2

(
1 +

+∞∑
i=1

Ci(χrgrn)i
)

(3.93)

where the first three coefficients Ci are defined in the following way

C1 ≡ 2C2 − 3 C2 ≡ 2C3 − 9C2 + C2
2 C3 ≡ 2C4 − 9C3 + 2C2C3 − 9C2

2 (3.94)

and for a generic i ≥ 4 index the coefficient Ci is defined by

Ci ≡ 2Ci+1 − 9Ci +

i∑
j=2

CjCi+2−j − 9

i−1∑
j=2

CjCi+1−j − 3

i−2∑
j=2

i−j∑
k=2

CjCkCi+2−j−k (3.95)



30 CHAPTER 3. EQUATION OF STATE

Remembering that Ck ≡
(
9
2

)k−1
(2k−3)!!

k! , in particular

C2 =
9

22
C3 =

92

23
C4 =

5 · 93

26
(3.96)

then the coefficients Ci are given explicitly by

C1 =
9

2
− 3 =

3

2

C2 =
92

22
− 92

22
+

92

24
=

81

16

C3 =
5 · 93

26
− 93

23
+

93

24
− 93

24
= −2187

64

(3.97)

and for a generic i ≥ 4 index

Ci =
9i

2i−1

((2i− 1)!!

(i+ 1)!
− (2i− 3)!!

i!
+

1

2

i∑
j=2

(2j − 3)!!(2i− 2j + 1)!!

j!(i− j + 2)!
+

−
i−1∑
j=2

(2j − 3)!!(2i− 2j − 1)!!

j!(i− j + 1)!
− 1

3

i−2∑
j=2

i−j∑
k=2

(2k − 3)!!(2j − 3)!!(2i− 2j − 2k + 1)!!

k!j!(i+ 2− j − k)!

) (3.98)
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3.3 D=1 case

The procedure in this case is analogue to the D = 3 case. Using the relations (3.26) one finds

Ω
(0)
G

L
=

µ√
λ

( µm

πℏ2λ

) 1
2 Γ (1) Γ

(
−3

2

)
Γ
(
1
2

)
Γ
(
−1

2

)
=
µ

3
2

λ

( m

πℏ2
) 1

2
0!
(−2)2

√
π

3!!

1√
π

1!!

(−2)
√
π

=
µ

3
2

λ

( m

πℏ2
) 1

2 (−2)

3
√
π

= − 2

3πλ

(m
ℏ2
) 1

2
µ

3
2

(3.99)

which, differently from the D = 3 case, is negative. The one dimensional T = 0 Grand Potential is
thus [30]

Ω

L

∣∣∣
T=0

= − µ2

2g0
− 2

3πλ

(m
ℏ2
) 1

2
µ

3
2 (3.100)

As before, the T = 0 number density is given by [30]

n(µ) = − 1

L

∂Ω

∂µ

=
µ

g0
+

1

π

(m
ℏ2
) 1

2 µ
1
2

1 + χµ
− 2

3π

(m
ℏ2
) 1

2 χµ
3
2

(1 + χµ)2
(3.101)

and the explicit expression of the chemical potential as a function of the number density is

µ(n) = g0n− g0
π

(m
ℏ2
) 1

2 (g0n)
1
2

1 + χg0n
+

2g0
3π

(m
ℏ2
) 1

2 χ(g0n)
3
2

(1 + χg0n)2
(3.102)

which is again found by perturbative expansion (for more details see App.C. Finally, the energy density
is

E(n) =
∫
µ(n)dn

=
1

2
g0n

2 − 2

3π

√
m

ℏ2
(g0n)

3
2

1 + χg0n

(3.103)

and writing it in terms of the scattering length as we obtain the next-to-leading term of the Lieb-
Liniger theory for D = 1 [25] which accounts also for finite range corrections

E(n) =
∫
µ(n)dn

= −ℏ2n2

mas

(
1− 2

√
2

3π

1√
−asn(1− 2rsn)

) (3.104)
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3.4 D=0 case

Similarly to the D = 2 case simply setting D = 0 in the equation (3.24) results in a indeterminate
result, indeed

Ω
(0)
G = µ

(µm
πℏ2

)0 Γ (−1) Γ
(
1
2

)
Γ
(
−1

2

)
Γ (0)

= −µ
2

Γ (−1)

Γ (0)

(3.105)

and both Γ(−1) and Γ(0) are divergent. The strategy to obtain a finite result is, as in the D = 2
case, regularization. We recall that regularization consist in setting D = −ε and then performing the
necessary calculations. After completing the calculations, the limit ε → 0 is taken. Therefore the
equation (3.24) takes the following form

Ω
(0)
G = µ

(
µm

k0πℏ2

)−ε
2 Γ

(
−1 + ε

2

)
Γ
(
1−ε
2

)
Γ
(
−1

2

)
Γ
(−ε

2

) (3.106)

where the parameter k0 is a scale wave-number introduced for dimensional reasons.
The expansion of the exponential is given by the relation (3.45), which gives(

k0πℏ2

µm

) ε
2

= 1 +
ε

2
ln

(
k0πℏ2

µm

)
+O(ε2) (3.107)

To expand the first factor in the numerator we exploit the expansion for the gamma distribution
Γ
(
−n+ ε

2

)
in (3.36), for n = 1 one has

Γ
(
−1 +

ε

2

)
= −

[
2

ε
+Ψ(2) +

ε

4

(
π2

3
+ Ψ(2)2 −Ψ′(2)

)
+O(ε2)

]
= −

[
2

ε
− γ+ 1 +

ε

4

(
π2

6
+ γ2 − 2γ+ 2

)
+O(ε2)

] (3.108)

where, from (3.38) and (3.39) follow that

Ψ(2) = Ψ(1) + 1 = −γ+ 1 Ψ′(2) = Ψ′(1)− 1 =
π2

6
− 1 (3.109)

The expansion of the second factor in the numerator is given by (3.41), which presents the general
expansion of Γ(q − ε

2). Setting q =
1
2 , the expansion results in

Γ

(
1

2
− ε

2

)
= Γ

(
1

2

)(
1− ε

2
Ψ

(
1

2

))
+O(ε2)

= Γ

(
1

2

)(
1 +

ε

2
(γ+ 2 ln 2)

)
+O(ε2)

(3.110)

where the digamma function in 1
2 is given by

Ψ

(
1

2

)
= −γ− 2 ln 2 (3.111)

Lastly, the expansion of the second factor in the denominator is given by the expansion around 0 of
the reciprocal gamma function, namely

Γ−1
(
1− ε

2

)
=
(
1 + γ

ε

2
+O(ε2)

)−1

= 1− γ
ε

2
+O(ε2)

(3.112)
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Inserting all the expansions (3.107), (3.108), (3.110), (3.112) into (3.106)

Ω
(0)
G =µ

(
µm

k0πℏ2

)−ε
2 Γ

(
−1 + ε

2

)
Γ
(
1−ε
2

)
Γ
(
−1

2

)
Γ
(−ε

2

)
=− µ

2

[
1 +

ε

2
ln

(
ℏ2k0π
µm

)](
1 +

ε

2
(γ+ 2 ln 2)

)
×

× ε

2

[
2

ε
− γ+ 1 +

ε

4

(
π2

6
+ γ2 − 2γ+ 2

)]
+O(ε2)

=− µ

2

[
1 +

ε

2
ln

(
ℏ2k0π
µm

)
+
ε

2
(γ+ 2 ln 2)

] [
1− ε

2
(γ− 1)

]
+O(ε2)

=− µ

2

[
1 +

ε

2
ln

(
ℏ2k0π
µm

)
+
ε

2
(γ+ 2 ln 2)− ε

2
(γ− 1)

]
+O(ε2)

=− µ

2

[
1 +

ε

2
ln

(
4ℏ2k0πe
µm

)]
+O(ε2)

(3.113)

and taking the limit ε → 0 one get the Gaussian fluctuations correction to the mean-field Grand
Potential at T = 0

Ω
(0)
G = −µ

2
(3.114)

Note that differently from the D = 2 case, it is not needed no minimal subtraction.
The zero temperature Grand Potential in D = 0 is therefore

Ω
∣∣∣
T=0

= − µ2

2g0
− µ

2
(3.115)

Since we are at dimension D = 0, then L0 = 1. As a consequence of that, the number density
coincide with the number of particles and the energy density coincide with the energy of the system.
Respectively, n ≡ N and E ≡ E. To determine the number of particles at T = 0, we derive the
opposite corrected Grand Potential with respect to the chemical potential µ, obtaining

N(µ) = −∂Ω
∂µ

=
µ

g0
+

1

2
(3.116)

This expression, contrary to all the previous dimensional cases, can be exactly reversed. The exact
expression for the chemical potential as a function of the number of particle is thus

µ(N) = g0N − g0
2

(3.117)

Since µ = dE(N)
dN , then integrating in N

E(N) =

∫
µ(N)dN

=
g0N

2 − g0N

2

=
g0N

2

2

(
1− 1

N

) (3.118)

where we collect as a common factor the term g0N
2/2, which represent the mean-field value of the

energy.
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Chapter 4

Josephson Junction: Beyond
mean-field results

In this chapter, we incorporate the corrected energy density into the Lagrangian density of the bosonic
atomic Josephson junction, it is possible to investigate the effects of quantum fluctuations on the
Josephson junction in different dimensions.

While in D = 0 the quantum corrections do not affect the results, in D = 1, 2, 3 the corrections to
the Josephson frequency, KΩ, and the MQST critical strength, KΞc , can be expressed as follows:

Ω =
J

ℏ
√

1 + ΞKΩ Ξc =
1 + cosθ0

√
1− z20

z20/2 +KΞc

(4.1)

The values of the corrections for each dimension are shown in Table 4.1 and Table 4.2.

D KΩ

3 1 +
8
√

2a3sn√
π

2 1− 3
2 ln (Cn) +

1
ln2 (Cn)

1 1− 1
π
√
−asn

Table 4.1: Beyond mean-field correction to the Josephson frequency in dimension D = 1, 2, 3. The
correction is determined by the s-wave scattering length as, and the number density n. In the case
of D = 2, the result depends also on the parameters C = πe2γ+1a2s, where γ = −0.5772156649 is the
Euler-Mascheroni constant.

D KΞc

3 2
√
2

15π2

√
m
ℏ2

3
g

3
2
0 n

1
2

[
(1 + z0)

5
2 + (1− z0)

5
2 − 2

]
2

K(z0,n)−(1+z20)
2

1 −
√
2

3π

√
m
ℏ2 g

1
2
0 n

− 1
2

[
(1 + z0)

3
2 + (1− z0)

3
2 − 2

]
Table 4.2: Beyond mean-field correction to the MQST critical value in dimension D = 1, 2, 3. The
correction is a function of the s-wave scattering length as, the number density n and the initial
population imbalance z0. In D = 2 the result depends also on a function of z0 and n given by

K(z0, n) ≡ 1
2

(
(1+z0)2

1+
ln (1+z0)
ln (Cn)

+ (1−z0)2

1+
ln (1−z0)
ln (Cn)

)
where C = πe2γ+1a2s.

The chapter is structured into four sections, with each section providing a detailed demonstration
of the calculations undertaken to obtain the results pertaining to each dimension.

35
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4.1 D=3 case

Substituting the mean-field energy density with the Lee-Huang-Yang energy density [22] found in
(3.31) upon setting rs = 0, as we are neglecting finite range corrections for now, given by

E =
1

2
g0n

2 +
8

15π2

√
m

ℏ2
3

(g0n)
5
2 (4.2)

the Lagrangian density acquires a new term

L =

2∑
k=1

iℏΦ∗
k(t)∂tΦk(t)−

1

2
g0|Φk(t)|4 −

8g
5
2
0

15π2

√
m

ℏ2
3

|Φk(t)|5
+

+
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t))

≡L0 −
8g

5
2
0

√
m3

15π2ℏ3
(
|Φ1(t)|5 + |Φ2(t)|5

)
(4.3)

where L0 is the mean-field Lagrangian density and the remaining part is the beyond mean-field con-
tribution. Integrating the Lagrangian density in space one obtains the beyond mean-field Lagrangian

L = L0 −
8g

5
2
0

√
m3

15π2ℏ3L
9
2

(
|φ1(t)|5 + |φ2(t)|5

)
(4.4)

where L0 denotes the Lagrangian density within the mean-field approximation, while the additional
term captures the correction arising from quantum fluctuations.

Performing the Madelung transformation (2.7) the new term is a function of the number of particles
in the two sites

L = L0 −
8
√
m3g50

15π2ℏ3L
9
2

(
N

5
2
1 (t) +N

5
2
2 (t)

)
(4.5)

and expressing the number of particles in each site as a function of the total number of particles N
and the population imbalance z, specifically as N1,2 = N(1± z)/2 the Lagrangian can be rewritten as

L = L0 −
√

2m3g50N
5
2

15π2ℏ3L
9
2

[
(1 + z)

5
2 + (1− z)

5
2

]
(4.6)

4.1.1 Josephson Frequency

To obtain the Josephson frequency, we make use of the assumption that we are in the low population
imbalance limit, i.e. |z| ≪ 1. Under this assumption, we can proceed with an expansion that disregards
terms in z beyond quadratic order

(1± z)n = 1± nz +
n(n− 1)z2

2
+O(z3) (4.7)

and summing the two contributions one obtains

(1 + z)n + (1− z)n = 2 + n(n− 1)z2 +O(z3) (4.8)

Inserting it into (4.6) the Lagrangian reads

L = L0 −
√
2m3g50N

5
2

15π2ℏ3L
9
2

(
2 +

15

4
z2
)

(4.9)
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Since the term independent of z is constant, it is canceled out, leading to:

L = L0 −
√
m3g50N

5
2

2
√
2π2ℏ3L

9
2

z2 (4.10)

Finally, in the case of D = 3, the beyond mean-field Lagrangian for the system has the form

L =
Nℏ
2
zϕ̇−

(
UN2 + JN

4

)
z2 − JN

4
ϕ2 −

√
m3g50N

5
2

2
√
2π2ℏ3L

9
2

z2 (4.11)

and the corresponding Euler-Lagrangian equations are0 = Nℏ
2 ϕ̇−

(
UN2+JN

2

)
z −

√
m3g50N

5
2

√
2π2ℏ3L

9
2
z

0 = −Nℏ
2 ż −

JN
2 ϕ

(4.12)

In a similar manner to the mean-field case, we can rearrange the equation to recover the Euler-Lagrange
equations of a harmonic oscillator, in factϕ̇ =

(
UN+J

ℏ +

√
2m3g50N

3
2

π2ℏ4L
9
2

)
z

ż = −J
ℏϕ

=⇒

{
ϕ̈+Ω2ϕ = 0

z̈ +Ω2z = 0
(4.13)

where the corrected Josephson frequency Ω is

Ω ≡ 1

ℏ

√
J2 + JUN +

J
√

2g50n
3m3

π2ℏ3
(4.14)

The Josephson frequency Ω can also be written as a function of the coupling constant g0 and number
density n

Ω =
1

ℏ

√
J2 + Jg0n+

J
√

2g50n
3m3

π2ℏ3

=
J

ℏ

√√√√1 +
g0n

J

(
1 +

√
2

π2

√
m

ℏ2
3√

g30n

) (4.15)

Remembering the definition of Rabi Frequency ΩR, i.e. ΩR ≡= J/ℏ, one obtains

Ω = ΩR

√√√√1 +
g0n

J

(
1 +

√
2

π2

√
m

ℏ2
3√

g30n

)
(4.16)

and writing explicitly the frequency as a function of the s-wave scattering length as

Ω = ΩR

√√√√1 +
4πℏ2asn
mJ

(
1 +

8
√

2a3sn√
π

)
(4.17)

Moreover, defining the reference energy εs and the gas parameter γ, which is adimensional, as

εs ≡
ℏ2

ma2s
(4.18)

and
γ ≡ a3sn (4.19)
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the Josephson Frequency can also be written as

Ω = ΩR

√√√√1 + 4πγ
εs
J

(
1 + 8

√
2γ

π

)
(4.20)

To understand the magnitude of the beyond mean-field correction to the Josephson Frequency the ratio
between the beyond mean-field Josephson Frequency Ω and the mean-field one Ωmf as a function of
the strength parameter, given by Ξ = 4πγεs/J , is done. Namely it is considered

Ω

Ωmf
=

√√√√√1 + Ξ

(
1 + 8

√
2γ
π

)
1 + Ξ

(4.21)

Looking at the Fig. 4.1 one observes the following behavior: the correction increases the value of
the Josephson frequency and it is more significant at higher strength parameters Ξ. For strength
parameters Ξ → 0 the beyond mean-field correction is irrelevant regardless of the gas parameter.
Instead, for larger Ξ, the relative correction is given by

Ω

Ωmf

∣∣∣∣∣
Ξ≫1

=

√
1 + 8

√
2γ

π
(4.22)

Focusing now on the bounds of the gas parameter γ, while the lower bound is γ = 0 and this is given
by the fact that both the quantities defining γ, namely the s-wave scattering length as and the number
density n are non-negative quantities. Instead, the upper bound limit is due to the fact that to obtain
(3.29) from (3.30) we used a perturbative approach, assuming γ ≪ 1, for this reason the upper bound
limit is given by γ = 3× 10−4 (for more details see App.A).
As pictured in Fig. 4.1 the relative correction is higher for larger values of the gas parameter γ, while
for γ = 0 one retrieves the mean-field case.

Figure 4.1: 3D beyond mean-field relative correction to the Josephson Frequency.
In the plot is pictured the ratio between the beyond mean-field Josephson frequency Ω and the mean-
field one Ωmf as a function of the strength parameter Ξ = g0n

J for different values of the gas parameter
γ = a3sn: γ = 3 × 10−4 (red solid line), γ = 3 × 10−5 (green dashed line) γ = 3 × 10−6 (blue dotted
line) and γ = 0 (black dash-dotted line). The last line corresponds to the mean-field case.
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4.1.2 Macroscopic Quantum Self Trapping

Starting from the beyond mean-field Lagrangian written in terms of the total number of particles N ,
the population imbalance z and the phase difference ϕ

L =
Nℏ
2
zϕ̇− UN2

4
z2 +

JN

2

√
1− z2 cosϕ−

√
2m3g50N

5
2

15π2ℏ3L
9
2

[
(1 + z)

5
2 + (1− z)

5
2

]
(4.23)

one finds that the conserved energy is

E(z, ϕ) =
UN2

4
z2 − JN

2

√
1− z2 cosϕ+

L3
√
2m3

15π2ℏ3
(UN)

5
2

[
(1 + z)

5
2 + (1− z)

5
2

]
(4.24)

Imposing the inequality condition, given by E(z0, ϕ0) > E(0, π), to have the Macroscopic Quantum
Self Trapping phenomenon one gets
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4
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2

√
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+
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√
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√
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5
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5
2

]
> 1 +

4L3
√
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(4.25)

and finally

Ξ >
1 +

√
1− z20 cosϕ0

z20
2 + 2L3

√
2m3

15π2ℏ3 U
3
2N

1
2

[
(1 + z0)

5
2 + (1− z0)

5
2 − 2

] (4.26)

The inequality condition still has the form

Ξ > Ξc, 3D (4.27)

where the critical value defined as

Ξc, 3D ≡ 1 +
√
1− z20 cosϕ0

z20
2 + 2L3

√
2m3

15π2ℏ3 U
3
2N

1
2U

3
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1
2

[
(1 + z0)

5
2 + (1− z0)

5
2 − 2

] (4.28)

which can also be written as a function of the coupling constant g0 and the number density n

Ξc, 3D ≡ 1 +
√
1− z20 cosϕ0

z20
2 + 2

√
2

15π2

√
m
ℏ2

3
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3
2
0 n

1
2

[
(1 + z0)

5
2 + (1− z0)

5
2 − 2

] (4.29)

or as a function of the gas parameter γ

Ξc, 3D ≡ 1 +
√

1− z20 cosϕ0
z20
2 + 16

√
2

15
√
π

√
γ
[
(1 + z0)

5
2 + (1− z0)

5
2 − 2

] (4.30)

To understand the significance of the beyond mean-field correction to the MQST critical value, one
can compare it to the mean-field critical value Ξc, mf . This comparison can be expressed as the ratio:

Ξc, 3D
Ξc, mf

=
1

1 + 32
√
2

15
√
π

√
γ (1+z0)

5
2+(1−z0)

5
2−2

z20

(4.31)
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Note that since the denominator of Ξc, 3D is larger than the Ξc, mf one, then the beyond mean-field
macroscopic quantum self trapping critical value is smaller than the mean-field one, i.e. Ξc, 3D < Ξc, mf ,
as pictured in Fig. 4.2. Furthermore, the relative correction grows as the gas parameter decreases and
it is slightly more significant for lower values of |z0|. Additionally, the beyond mean-field correction is
more important as the gas parameter γ increases.

Figure 4.2: 3D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 3D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = (n1(0) −
n2(0))/(n1(0)+n2(0)) for different values of the gas parameter γ = a3sn: γ = 3× 10−4 (red solid line),
γ = 3× 10−5 (green dashed line) γ = 3× 10−6 (blue dotted line) and γ = 0 (black dash-dotted line).
The last line corresponds to the mean-field case.
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4.2 D=2 case

The 2-dimensional case is very different from the 1-dimensional and the 3-dimensional cases for many
reasons.
Firstly, the coupling depends on the number density of the site as follow

gr,k = −4πℏ2

m

1

ln (Cnk)
k = 1, 2 (4.32)

where C ≡ πe2γ+1a2s.
Secondly, the corrected Lagrangian is no more composed of a mean-field part and a correction, but
rather it is equal in form to the mean-field Lagrangian although with the renormalized coupling gr
replacing g0. Therefore, before computing the potential term, a discussion on the coupling is needed.

Since the coupling gk,r is different for each site, it is useful to define a coupling gr for the entire
system

gr = −4πℏ2

m

1

ln (Cn)
(4.33)

where n is the number density of the system and it is given by the mean of the number densities of
the sites

n =
n1 + n2

2
(4.34)

Then the number densities of the sites n1,2 can be expressed in terms of the population imbalance
variable z(t) = n1−n2

n1+n2
and the number density of the system n as

n1 = n(1 + z)

n2 = n(1− z)
(4.35)

The sites couplings gr,k can rewritten in terms of population imbalance z(t), number density of the
system n and coupling of the entire system gr

gr,k = −4πℏ2

m

1

ln (Cnk)
k = 1, 2

= −4πℏ2

m

1

ln (Cn(1± z))

= −4πℏ2

m

1

ln (Cn) + ln (1± z)

= −4πℏ2

m

1

ln (Cn)

1

1 + ln (1±z)
ln (Cn)

=
gr

1 + ln (1±z)
ln (Cn)

(4.36)

and therefore
gr,k =

gr

1 + ln (1±z)
ln (Cn)

k = 1, 2 (4.37)
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As seen in the previous chapter, the D = 2 beyond mean-field energy density is given by (3.93)

E(n) = grn
2

2
(4.38)

Hence, the Lagrangian density is given by

L =
2∑

k=1

(
iℏΦ∗

k(t)∂tΦk(t)−
1

2
gr,k|Φk(t)|4

)
+
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t)) (4.39)

and it is obtained substituting g0 with gr,k. Integrating in space the corresponding Lagrangian is

L =
∑
k

(
iℏφ∗

k(t)∂tφk(t)−
Uk
2
|φk(t)|4

)
+
J

2
(φ∗

1(t)φ2(t) + φ∗
2(t)φ1(t)) (4.40)

where as a reminder
Uk ≡

gr,k
L2

φk(t) ≡ LΦk(t) k = 1, 2 (4.41)

In the mean-field D = 2 case the rewriting of the potential term in terms of N and z is simple and it
gives

−
∑
k

U

2
N2
k −→

�
�

��−UN
2

4
− UN2

4
z2 (4.42)

In the beyond mean-field case it is not so simple since gr,k and so n depend on nk, hence the potential
term transforms differently. For k = 1 we have

1

2
U1|φ1(t)|4 =

gr,1
2L2

|φ1(t)|4

=
gr
2L2

1

1 + ln (1+z)
ln (Cn)

N2
1

=
Ur
2

1

1 + ln (1+z)
ln (Cn)

N2(1 + z)2

4

(4.43)

where in the last step the constant Ur is defined as

Ur ≡
gr
L2

(4.44)

Similarly for k = 2

1

2
U2|φ2(t)|4 =

gr,2
2L2

|φ2(t)|4

=
gr
2L2

1

1 + ln (1−z)
ln (Cn)

N2
2

=
Ur
2

1

1 + ln (1−z)
ln (Cn)

N2(1− z)2

4

(4.45)
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4.2.1 Josephson Frequency

Since we are interested in computing the Josephson frequency, we move to the low population imbal-
ance limit, i.e. |z(t)| ≪ 1, and the terms (4.43) and (4.45) are then Taylor expanded in z. For k = 1
the expansion is given by

Ur
2

1

1 + ln (1+z)
ln (Cn)

N2(1 + z)2

4
=
UrN

2

8

(
1 +

z2 − 2z

2 ln (Cn)
+

z2

ln2 (Cn)

)
(1 + 2z + z2) +O(z3) (4.46)

while for k = 2 one has

Ur
2

1

1 + ln (1−z)
ln (Cn)

N2(1− z)2

4
=
UrN

2

8

(
1 +

z2 + 2z

2 ln (Cn)
+

z2

ln2 (Cn)

)
(1− 2z + z2) +O(z3) (4.47)

Summing the two contributes one obtains, disregarding∑
k

Ur,k
2

|φk(t)|4 =
UrN

2

4

(
1 + z2 − 3z2

2 ln (Cn)
+

z2

ln2 (Cn)

)
+O(z3) (4.48)

Writing this result in terms of the system coupling, inverting the relation (4.33)

1

ln (Cn)
= −mgr

4πℏ2
(4.49)

one gets an expression of the beyond-mean field correction written in terms of the system coupling
constant gr ∑

k

Ur,k
2

|φk(t)|4 =
UrN

2

4

[
1 + z2

(
1 +

3

8

mgr
πℏ2

+
1

16

m2g2r
π2ℏ4

)]
(4.50)

The term is similar to the mean-field one, given by UN2z2

4 with caution to substitute U with Ur and
add the beyond the mean-field corrections to the contact interaction term. Therefore to obtain the
Josephson frequency in the 2-dimensional beyond mean-field framework is sufficient to substituting
inside the mean-field Josephson frequency (2.27) the constant U with

U → Ur

(
1 +

3

8

mgr
πℏ2

+
1

16

m2g2r
π2ℏ4

)
(4.51)

Doing so, the 2-dimensional beyond mean-field Josephson frequency is given by

Ω =
1

ℏ

√
J2 + JUrN

(
1 +

3

8

mgr
πℏ2

+
1

16

m2g2r
π2ℏ4

)
(4.52)

or, alternatively, expressing it as a function of system coupling constant gr and the number density n

Ω =
1

ℏ

√
J2 + Jgrn

(
1− 3

2 ln (Cn)
+

1

ln2 (Cn)

)
(4.53)

Note that, in the limit of low density n≪ 1, powers of the term

1

ln (Cn)
(4.54)

become smaller and smaller, the higher is the power, therefore keeping only terms of the order 1
ln (Cn)

then (4.51) can be approximated to Ur and so the Josephson frequency in D = 2 reduces to mean-field
one (2.27)

Ω =
1

ℏ
√
J2 + UrNJ (4.55)
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with the care of substituting U with Ur.
Writing explicitly the Rabi frequency, the s-wave scattering length as and the number density n one
obtains

Ω = ΩR

√
1− 4πℏ2n

mJ ln (Cn)

(
1− 3

2 ln (Cn)
+

1

ln2 (Cn)

)
(4.56)

Introducing the reference energy εs and the gas parameter in the 2-dimensional case

εs ≡
ℏ2

ma2s
γ ≡ a2sn (4.57)

and calling C∗ ≡ C/a2s = πe2γ+1 where, as a reminder, in the exponential γ = −0.5772156649 is the
Euler-Mascheroni constant and not the gas parameter. The Josephson frequency can be written as

Ω = ΩR

√
1− 4πγ

ln (C∗γ)

εs
J

(
1− 3

2 ln (C∗γ)
+

1

ln2 (C∗γ)

)
(4.58)

The beyond mean-field relative correction to the Josephson Frequency Ω is given by

Ω

Ωmf
=

√√√√1 + Ξ
(
1− 3

2 ln (C∗γ) +
1

ln2 (C∗γ)

)
1 + Ξ

(4.59)

where the strength parameter is given by Ξ = −(4πγ/ ln (C∗γ))(εs/J).

As pictured in Fig. 4.3, the relative Ω/Ωmf correction at fixed gas parameter γ is more significant
for higher values of the strength parameter Ξ. As a matter of fact, for larger values of the strength
parameter Ξ, the relative correction Ω/Ωmf is independent on Ξ and it is given by

Ω

Ωmf

∣∣∣∣∣
Ξ≫1

=

√
1− 3

2 ln (C∗γ)
+

1

ln2 (C∗γ)
(4.60)

Instead, focusing on the gas parameter γ dependence one has an increment of the relative Ω/Ωmf
correction for higher value of γ. Conversely for γ = 0 one retrieves the mean-field result.

As one can see in App. B, the expression for the beyond-mean Josephson frequency stated above is
not valid for all values of the gas parameter. There are indeed two ranges in which the approximations
we have made hold true: 0 ≤ γ ≲ 3×10−18 and 0.01283 ≲ γ ≲ 0.01421. In the first range, the beyond-
mean field correction is almost negligible, meaning that the contribution from fluctuations beyond the
mean-field is very small. However, in the second range, the contribution due to Gaussian fluctuations
is significant. For instance, in the case of high Ξ, the beyond-mean field Josephson frequency is almost
double that of the mean-field frequency.
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Figure 4.3: 2D beyond mean-field relative correction to the Josephson Frequency.
In the plot is pictured the ratio between the beyond mean-field Josephson frequency Ω and the mean-
field one Ωmf as a function of the strength parameter Ξ = grn/J for different values of the gas
parameter γ = a2sn: γ = 1.42×10−2 (red solid line), γ = 1.29×10−2 (green dashed line) γ = 3×10−18

(blue dotted line) and γ = 0 (dark dash-dotted line). The last line corresponds to the mean-field case.
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4.2.2 Macroscopic Quantum Self Trapping

Unlike the Josephson frequency calculation, in the MQST one the low population imbalance limit
is not taken. Therefore it is necessary to see how the interaction terms transform in the case the
population imbalance is generic. Taking into account the contact interaction terms

∑
k

1

2
Uk|φk(t)|4 =

N2

8
[U1(1 + z)2 + U2(1− z2)] (4.61)

Keeping in mind about the definitions of Ur and Uk, they can be linked by the followed relation

Uk = Ur
1

1 + ln (1±z)
ln (Cn)

k = 1, 2 (4.62)

Then the interaction term reduces to

∑
k

1

2
Uk|φk(t)|4 =

UrN
2

8

 (1 + z)2

1 + ln (1+z)
ln (Cn)

+
(1− z)2

1 + ln (1−z)
ln (Cn)

 (4.63)

Hence, the 2-dimensional beyond mean-field Lagrangian is

L =
Nℏ
2
zϕ̇+

JN

2

√
1− z2 cosϕ− UrN

2

8

 (1 + z)2

1 + ln (1+z)
ln (Cn)

+
(1− z)2

1 + ln (1−z)
ln (Cn)


=
Nℏ
2
zϕ̇+

JN

2

√
1− z2 cosϕ−K(z, n)

UrN
2

4

(4.64)

where, for simplicity of notation, we introduce the beyond-mean field energy correction to the 2-
dimensional Lagrangian K

K(z, n) ≡ 1

2

 (1 + z)2

1 + ln (1+z)
ln (Cn)

+
(1− z)2

1 + ln (1−z)
ln (Cn)

 (4.65)

From the Lagrangian one can compute the conserved energy

E = K(z, n)
UrN

2

4
− JN

2

√
1− z2 cosϕ (4.66)

and imposing the MQST inequality condition, given by E(z0, ϕ0) > E(0, π) one obtains

K(z0, n)
UrN

2

4
− JN

2

√
1− z20 cosϕ0 >

JN

2
+
UrN

2

4

(K(z0, n)− 1)
UrN

2

4
− JN

2

√
1− z20 cosϕ0 >

JN

2

(K(z0, n)− 1)
UrN

2J
−
√
1− z20 cosϕ0 > 1

(K(z0, n)− 1)
Ξr
2

−
√

1− z20 cosϕ0 > 1

(4.67)

where in the last step we define the the dimensionless constant Ξr as

Ξr ≡
UrN

J
(4.68)
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the inequality is equivalent to

Ξr >
1 +

√
1− z20 cosϕ0

(K(z0, n)− 1) /2

Ξr >
1 +

√
1− z20 cosϕ0

z20
2 +

K(z0,n)−(1+z20)
2

(4.69)

where we make explicit the mean-field term z20/2 at the denominator. Furthermore, we can simplify
the inequality to the following form:

Ξr > Ξc, 2D (4.70)

where the critical value Ξc, 2D is given by

Ξc, 2D ≡ 1 +
√
1− z20 cosϕ0

z20
2 +

K(z0,n)−(1+z20)
2

(4.71)

By considering the definition of the gas parameter, we can further express Ξc, 2D as

Ξc, 2D ≡ 1 +
√

1− z20 cosϕ0
z20
2 +

K(z0,γ)−(1+z20)
2

(4.72)

where

K(z0, γ) ≡
1

2

 (1 + z0)
2

1 + ln (1+z0)
ln (C∗γ)

+
(1− z0)

2

1 + ln (1−z0)
ln (C∗γ)

 (4.73)

Dividing by the mean-field MQST critical value Ξc, mf we obtain the expression

Ξc, 2D
Ξc, mf

≡ 1

1 +
K(z0,γ)−(1+z20)

z20

(4.74)

Upon examining Fig. 4.4, one can observe that the ratio is equal to 1 as the gas parameter approaches
zero, γ = 0, thereby recovering the mean-field result. It is noteworthy that the ratio is consistently
lower than 1, implying that the beyond-mean-field correction reduces the MQST critical value. An-
other significant observation is that as the gas parameter increases, the relative correction becomes
more substantial, as evidenced by the decreasing ratio.

In particular, when considering the beyond-mean-field Josephson frequency, we observe different
effects depending on the gas parameter range. For the range 0 ≤ γ ≲ 3 × 10−18, the contribution of
Gaussian fluctuations is relatively limited, resulting in only minor modifications to the MQST critical
value. Viceversa, for the range 0.01283 ≲ γ ≲ 0.01421, the presence of Gaussian fluctuations leads to
a significant reduction in the beyond-mean-field MQST critical value. In this regime, the impact of
these fluctuations becomes substantial, resulting in a notable deviation from the mean-field result.

Lastly, it is interesting to note that the reduction in the beyond-mean-field critical value is more
prominent for higher values of |z0|. This is in contrast to the case of D = 3, where the critical values
were smaller for smaller |z0|. These differences highlight the distinct behavior of the system in two
dimensions compared to three dimensions.
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Figure 4.4: 2D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 2D and the

mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = n1(0)−n2(0)
n1(0)+n2(0)

for

different values of the gas parameter γ = a2sn: γ = 1×10−2 (red solid line), γ = 1×10−3 (green dashed
line) γ = 1× 10−4 (blue dotted line) and γ = 0 (dark dash-dotted line). The last line corresponds to
the mean-field case.
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4.3 D=1 case

As for the contribution of Gaussian fluctuations to the Grand Potential calculation, the procedure
to find the beyond mean-field Josephson frequency is analogous to the one used for the D = 3 case.
Starting from the next-to-leading term of the Lieb-Liniger theory [25], which is given by (3.103) when
the effective range rs is set to zero, the expression for the energy density is:

E =
1

2
g0n

2 − 2

3π

√
m

ℏ2
(g0n)

3
2 (4.75)

the Lagrangian density is obtained as

L =
2∑

k=1

(
iℏΦ∗

k(t)∂tΦk(t)−
1

2
g0|Φk(t)|4 +

2
√
mg30

3πℏ
|Φk(t)|3

)
+

+
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t))

≡L0 +
2
√
mg30

3πℏ
(
|Φ1(t)|3 + |Φ2(t)|3

)
(4.76)

where L0 represents the mean-field Lagrangian density, and the second term accounts for the beyond
mean-field calculation, taking into account quantum fluctuations.

Integrating in space, the Lagrangian takes the following form

L = L0 +
2
√
mg30

3πℏL
1
2

(
|φ1(t)|3 + |φ2(t)|3

)
(4.77)

where L0 represents the mean-field Lagrangian, and the other term accounts for the correction due to
quantum fluctuations.

Similarly to the previous dimensional cases, a Madelung transformation (2.7) is performed, result-
ing in

L = L0 +
2
√
mg30

3πℏL
1
2

(
N

3
2
1 (t) +N

3
2
2 (t)

)
(4.78)

which can be rewritten in terms of the total number of particles N and the population imbalance z as

L = L0 +

√
mg30N

3
2

3
√
2πℏL

1
2

[
(1 + z)

3
2 + (1− z)

3
2

]
(4.79)

4.3.1 Josephson Frequency

To calculate the Josephson frequency, we make use of the assumption that the population imbalance is
small, i.e., |z| ≪ 1. This allows us to expand the terms

√
1± z in the expression (4.7) up to quadratic

order in z. By summing the two expanded terms, we obtain the following approximation

L = L0 +

√
mg30N

3
2

3
√
2πℏL

1
2

(
2 +

3

4
z2
)

(4.80)

where the first term in the parenthesis is disregarded since it is a constant, obtaining

L = L0 +

√
mg30N

3
2

4
√
2πℏL

1
2

z2 (4.81)

Finally, the beyond mean-field Lagrangian in D = 1 case is given by

L =
Nℏ
2
zϕ̇−

(
UN2 + JN

4

)
z2 − JN

4
ϕ2 +

√
mg30N

3
2

4
√
2πℏL

1
2

z2 (4.82)



50 CHAPTER 4. JOSEPHSON JUNCTION: BEYOND MEAN-FIELD RESULTS

Therefore the Euler-Lagrangian equations are0 = Nℏ
2 ϕ̇−

(
UN2+JN

2

)
z +

√
mg30N

3
2

2
√
2πℏL

1
2
z

0 = −Nℏ
2 ż −

JN
2 ϕ

(4.83)

Similarly to the mean-field case, we can manipulate the equation to retrieve the Euler-Lagrange
equations that resemble those of a harmonic oscillatorϕ̇ =

(
UN+J

ℏ −
√
mg30N

1
2

√
2πℏ2L

1
2

)
z

ż = −J
ℏϕ

=⇒

{
ϕ̈+Ω2ϕ = 0

z̈ +Ω2z = 0
(4.84)

where, the beyond mean-field Josephson frequency is given by

Ω ≡ 1

ℏ

√
J2 + JUN − J

√
g30nm√
2πℏ

(4.85)

Expressing it as a function of the coupling constant g0 and number density n one has

Ω ≡ 1

ℏ

√
J2 + Jg0n− J

√
g30nm√
2πℏ

=
J

ℏ

√
1 +

g0n

J

(
1− 1

π

√
m

ℏ2
g0
2n

) (4.86)

and remembering the definition of Rabi Frequency ΩR, given by ΩR ≡= J/ℏ, one obtains

Ω = ΩR

√
1 +

g0n

J

(
1− 1

π

√
m

ℏ2
g0
2n

)
(4.87)

Writing now the Josephson frequency as a function of the s-wave scattering length as

Ω = ΩR

√
1− 2ℏ2n

masJ

(
1− 1

π
√
−asn

)
(4.88)

and defining the reference energy εs and the gas parameter γ in the 1-dimensional case as

εs ≡
ℏ2

ma2s
(4.89)

and
γ ≡ asn (4.90)

the Josephson Frequency can also be written as

Ω = ΩR

√
1− 2γ

εs
J

(
1− 1

π
√
−γ

)
(4.91)

Note that the gas parameter γ must be negative due to the presence of the inverse of the square root
of it.
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Analogously to the 3-dimensional case to acknowledge the degree of the beyond mean-field cor-
rection to the mean-field Josephson frequency is taking in account the ratio between the corrected
frequency and the mean-field one as a function of the strength parameter Ξ = −2γεs/J

Ω

Ωmf
=

√√√√1 + Ξ
(
1− 1

π
√
−γ

)
1 + Ξ

(4.92)

Let us focus now on the bounds of the gas parameter γ. The upper bound limit is due to the fact that
to obtain (3.102) from (3.101) we used a perturbative approach, assuming −γ ≫ 1, for this reason
the upper bound limit is given by γ = −20.3, while there is no lower bound limit (see more on App.C).

Contrary to the D = 3 case, the beyond mean-field Josephson frequency is lower than the mean-
field one. Indeed, as pictured in Fig. 4.5 the relative correction Ω/Ωmf ≤ 1, where the equality is
obtained for γ → −∞ or when the strength parameter is Ξ = 0. Furthermore, the beyond mean-field
correction becomes more important as Ξ grows. In fact, for larger strength parameters, Ξ ≫ 1, the
asymptotic behaviour of the relative correction is given by

Ω

Ωmf

∣∣∣∣∣
Ξ≫1

=

√
1− 1

π
√
−γ

(4.93)

The relative correction Ω/Ωmf behaviour also depends on the gas parameter γ, for higher values of
the gas parameter the correction is more important and so the value of Ω/Ωmf decreases.

Figure 4.5: 1D beyond mean-field relative correction to the Josephson Frequency.
In the plot is pictured the ratio between the beyond mean-field Josephson frequency Ω and the mean-
field one Ωmf as a function of the strength parameter Ξ = g0n

J for different values of the gas parameter
γ = asn: γ = −20 (red solid line), γ = −200 (green dashed line) γ = −2000 (blue dotted line) and
γ → −∞ (black dash-dotted line), which corresponds to the mean-field case.
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4.3.2 Macroscopic Quantum Self Trapping

To compute the conserved energy one consider the beyond mean-field Lagrangian in D = 1 case given
by

L =
Nℏ
2
zϕ̇− UN2

4
z2 +

JN

2

√
1− z2 cosϕ+

√
mg30N

3
2

3
√
2πℏL

1
2

[
(1 + z)

3
2 + (1− z)

3
2

]
(4.94)

one finds that the conserved energy is

E(z, ϕ) =
UN2

4
z2 − JN

2

√
1− z2 cosϕ− L

√
m

3
√
2πℏ

(UN)
3
2

[
(1 + z)

3
2 + (1− z)

3
2

]
(4.95)

Imposing the inequality condition, i.e. E(z0, ϕ0) > E(0, π), to observe the Macroscopic Quantum Self
Trapping phenomenon (2.35), one gets

UN2

4
z20 −

JN

2

√
1− z20 cosϕ0+

− L
√
m

3
√
2πℏ

(UN)
3
2

[
(1 + z0)

3
2 + (1− z0)

3
2

]
>
JN

2
− L

√
2m

3πℏ
(UN)

3
2

Ξ

2
z20 −

√
1− z20 cosϕ0+

− L
√
2m

3πℏ
U

3
2N

1
2

J

[
(1 + z0)

3
2 + (1− z0)

3
2

]
> 1− 2L

√
2m

3πℏ
U

3
2N

1
2

J
Ξ

2
z20 −

√
1− z20 cosϕ0+

− L
√
2m

3πℏ
ΞU

1
2N− 1

2

[
(1 + z0)

3
2 + (1− z0)
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and finally

Ξ >
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Defining the critical value Ξc, 1D as

Ξc, 1D ≡ 1 +
√

1− z20 cosϕ0
z20
2 − 2L

√
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3πℏ U
1
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3
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or, alternatively, as a function of g0 and n

Ξc, 1D ≡ 1 +
√

1− z20 cosϕ0
z20
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√
2
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√
m
ℏ2 g

1
2
0 n

− 1
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(1 + z0)

3
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3
2 − 2

] (4.99)

or, also, as a function of the gas parameter γ

Ξc, 1D ≡ 1 +
√
1− z20 cosϕ0

z20
2 − 2

3π
1√
−γ

[
(1 + z0)

3
2 + (1− z0)

3
2 − 2

] (4.100)

One obtains the same inequality condition of the mean-field case

Ξ > Ξc, 1D (4.101)

In this case, it is interesting to note that the critical value is reached for larger values of Ξ since
Ξc, 1D > Ξc, mf , namely the beyond mean-field critical value Ξc, 1D is larger than the mean-field one.
Indeed, dividing Ξc, 1D by the mean-field critical value Ξc, mf one gets

Ξc, 1D
Ξc, mf

=
1

1− 4
3π

1√
−γ

(1+z0)
3
2+(1−z0)

3
2−2

z20

(4.102)
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and looking at Fig. 4.6 one finds Ξc, 1D/Ξc, mf ≥ 1, where the equality is verified for γ → −∞, which
corresponds to the mean-field case. It is evident that the beyond-mean-field correction becomes less
significant as the gas parameter decreases. Additionally, at a fixed γ value, the correction is more
substantial for higher values of |z0|.

Drawing a parallel to the beyond-mean-field correction in other dimensions, we find similarities
between the 1-dimensional and 2-dimensional cases. In both scenarios, higher values of |z0| corre-
spond to increased quantum fluctuation effects. However, unlike the 3-dimensional and 2-dimensional
cases, the beyond-mean-field corrections in the 1-dimensional case lead to an increase in the strength
parameter above which Macroscopic Quantum Self Trapping occurs.

Figure 4.6: 1D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 1D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = (n1(0) −
n2(0))/(n1(0) + n2(0)) for different values of the gas parameter γ = asn: γ = −20 (red solid line),
γ = −200 (green dashed line) γ = −2000 (blue dotted line) and γ → −∞ (dark dash-dotted line).
The last line corresponds to the mean-field case.
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4.4 D=0 case

The beyond mean-field energy in D = 0, given by (3.118), is

E(N) =
g0N

2

2

(
1− 1

N

)
(4.103)

The beyond mean-field lagrangian is thus

L =
2∑

k=1

[
iℏφ∗

k(t)∂tφk(t)−
g0
2
|φk(t)|4

(
1− 1

|φk(t)|2

)]
+
J

2
(φ∗

1(t)φ2(t) + φ∗
2(t)φ1(t))

(4.104)

Performing the Madelung transformation (2.7) on each of the potential terms, one obtains

g0
2
|φk(t)|4

(
1− 1

|φk(t)|2

)
=
g0N

2
k

2

(
1− 1
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)
=
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2

8
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(
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N(1± z)

)
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g0N

2

8
(1± z)2 − g0N

8
(1± z)

(4.105)

where in the second step we rewrite the number of particles in each site as a function of the total
number of particles and the population imbalance N1,2 = N(1± z)/2.

Summing up the two contribution one has

2∑
k=1

g0
2
|φk(t)|4

(
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|φk(t)|2

)
=
g0N

2

4
(1 + z2)− g0N

4

=
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2z2

4
) +

g0N(N − 1)

4

(4.106)

However, the second term, representing the beyond-mean field term is a constant term and therefore
can be eliminated. The final result is

2∑
k=1

g0
2
|φk(t)|4

(
1− 1

|φk(t)|2

)
=
g0N

2z2

4
(4.107)

which is the equal to the mean-field one, hence quantum fluctuation does not provide any correction
to either the Josephson frequency or the MQST critical value.



Chapter 5

Josephson Junction: Beyond
mean-field with finite range results

In this chapter, we examine the corrected energy density, taking into account also the finite range
corrections. We incorporate these corrections into the Lagrangian density of the bosonic atomic
Josephson junction. By doing so, we can investigate the combined effects of quantum fluctuations and
the finite range potential on the Josephson junction in various dimensions. We exclude the D = 0
case from our analysis since there are no finite range corrections to the potential. In this case, the
contact potential is exact. Conversely, in dimensions D = 1, 2, 3, the finite range corrections to the
Josephson frequency, denoted as KΩ, rs , and the critical strength of the MQST (Macroscopic Quantum
Self-Trapping), denoted as KΞc, rs , can be expressed as follows:

Ω =
J

ℏ
√
1 + ΞKΩ, rs Ξc =

1 +
√
1− z20cosθ0

z20/2 +KΞc, rs

(5.1)

The values of the corrections for each dimension are shown in Table 5.1 and Table 5.2.

D KΩ, rs

3 1 +
8
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2a3sn√
π(1+2πa2srsn)
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3
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+ 8

5
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)
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+
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ℓ=1 Cℓ
(

2π2r2sn
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(ℓ+2)(ℓ+1)
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(
1 + 4 rsn

1−rsn + 8
3

(rsn)2
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)
Table 5.1: Beyond mean-field correction to the Josephson frequency in dimension D = 1, 2, 3.
The correction is determined by the s-wave scattering length as, the s-wave effective range rs, and the
number density n. In the case of D = 2, the result depends also on the parameters C = πe2γ+1a2s and
Cℓ, with the discussion of the latter’s dependence on ℓ being presented in Chapter 3.
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)
Table 5.2: Beyond mean-field correction to the MQST critical value in dimension D = 1, 2, 3.
The correction is a function of the s-wave scattering length as, the s-wave effective range rs, the number
density n and the initial population imbalance z0. In D = 2 the result depends also on a function of z0

and n given by K(z, n) ≡ 1
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5.1 D=3 case

Substituting the mean-field energy density with the beyond mean-field energy density found in (3.31),
which account also finite range correction and its form is given by

E =
1

2
g0n

2 +
8

15π2

√
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3

(g0n)
5
2
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2

(5.2)

The Lagrangian density obtains a new term

L =
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k=1

iℏΦ∗
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)
(5.3)

where L0 is the mean-field Lagrangian density and the remaining part is the beyond mean-field
contribution accounting also finite range corrections. Integrating the Lagrangian density in space one
obtains the beyond mean-field Lagrangian

L = L0 −
8g

5
2
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√
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15π2ℏ3L
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)
(5.4)

Note that the Lagrangian is equal in form to the one which not account finite range terms (4.4).
However, each beyond mean-field term is attenuated by a factor that depends on the s-wave parameters
as and rs, the corresponding wave function, and the size of the site.
By performing the Madelung transformation (2.7), the new term becomes dependent on the number
of particles present in the two sites Nk

L = L0 −
8
√
m3g50

15π2ℏ3L
9
2

 N
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2
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 (5.5)

By expressing the number of particles in each site as a function of the total number of particles N
and the population imbalance z, namely N1,2 = N(1 ± z)/2, the Lagrangian can be reformulated as
follows

L = L0 −
√
2m3g50N

5
2

15π2ℏ3L
9
2

[
(1 + z)

5
2

[1 +R(1 + z)]2
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5
2

[1 +R(1− z)]2

]
(5.6)

where the common factor R multiplying (1± z) at the denominators is dimensionless and it is defined
in terms of the s-wave scattering length as, the s-wave finite range rs and the system number density
n

R ≡ 2πa2srsn =
1

2
χg0n (5.7)

5.1.1 Josephson Frequency

Now, since we are in the low population imbalance limit, i.e. |z| ≪ 1, it is possible to expand the
numerator of the beyond mean-field term of the Lagrangian (5.6) as

(1± z)
5
2 = 1± 5

2
z +

15

8
z2 +O(z3) (5.8)
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and the denominator of the same fraction as

1
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Putting the approximations (5.8) and (5.9) together one obtains
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and the sum of the two contributions is given by
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Inserting this approximation in (5.6) the beyond mean-field Lagrangian reads
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where the term independent of z is removed since it is constant. Factoring out 15z2/4 one obtains
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Finally, the beyond-mean-field Lagrangian in the D = 3 case is
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and the Euler-Lagrangian equations are given by0 = Nℏ
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Similarly to the to the mean-field case, we can rearrange the equation to recover the Euler-Lagrange
equations of a harmonic oscillator, in factϕ̇ =
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where the frequency of the harmonic oscillators Ω, which has the form
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is the corrected Josephson frequency. This quantity can also be written as a function of the coupling
constant g0, the ratio χ and the number density n
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Remembering the definition of Rabi Frequency ΩR, one obtains
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and writing explicitly the frequency as a function of the s-wave scattering length as and the s-wave
effective range rs
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Moreover, remember the definitions of the reference energy εs and the gas parameter γ, and defining
the adimensional ratio α as

ϵs ≡
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ma2s
(5.21)

γ ≡ a3sn (5.22)

and
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the Josephson Frequency can also be written as
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To understand the magnitude of the beyond mean-field correction to the Josephson Frequency the ratio
between the beyond mean-field Josephson Frequency Ω and the mean-field one Ωmf as a function of
the strength parameter, given by Ξ = 4πγεs/J , is done. Namely it is considered
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Looking at the Fig. 5.1 one observes the following behavior: similarly to the case in which finite
range correction are not involved the correction is more significant at higher strength parameters Ξ.
When the strength parameters approach zero (Ξ → 0), the beyond mean-field correction becomes
irrelevant regardless of the ratio α, which means that for small values of Ξ the correction has a very
weak dependence on the finite range corrections. Conversely, for larger Ξ, the relative correction is
given by
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(5.26)

At a fixed value of γ, Fig. 5.1 demonstrates that finite range corrections are more significant for higher
magnitudes of |α|. Specifically, for α < 0, the correction is greater than the one without considering
finite range corrections (i.e., for α = 0), while the opposite is observed for α > 0, where the correction
is lower than the α = 0 case. This can be observed more precisely by considering the specific finite
range correction illustrated in Fig. 5.2. It can be noted that this correction becomes more prominent
as the absolute value of the ratio α increases. Furthermore, the sign of the correction is opposite to
that of the ratio α.
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Since the sign of the ratio α is the same as that of the finite range rs (due to the positive scattering
length as), this can be interpreted as follows: if the finite range correction to the repulsive contact-
like potential is repulsive (α > 0), then the finite range correction mitigates the effects of quantum
fluctuations. Conversely, if the finite range correction to the repulsive contact-like potential is attrac-
tive (α < 0), then the finite range correction amplifies the corrections due to quantum fluctuations.
However, regardless of sign of the ratio α, the beyond mean-field Josephson frequency is greater then
the mean-field one.

Figure 5.1: 3D beyond mean-field relative correction to the Josephson Frequency.
In the plot is pictured the ratio between the beyond mean-field Josephson frequency Ω and the mean-
field one Ωmf as a function of the strength parameter Ξ = g0n

J for different values of the ratio α = rs
as
:

α = 100 (red solid line), α = 10 (green dashed line) α = −10 (blue dotted line) and α = −100 (dark
dash-dotted line). In all the cases the gas parameter is γ = a3sn = 0.0003.

1

Figure 5.2: 3D Finite range correction 1
(1+2παγ)2

[
1− 8

3
2παγ

1+2παγ + 8
5

(
2παγ

1+2παγ

)2]
as a function of the gas

parameter γ = a3sn at fixed α = rs/as.
Left : α = −1 (red solid line), α = −4 (green dashed line) α = −20 (blue dotted line) and α = −100
(dark dash-dotted line). Right : α = 1 (red solid line), α = 4 (green dashed line) α = 20 (blue dotted
line) and α = 100 (dark dash-dotted line).
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5.1.2 Macroscopic Quantum Self Trapping

Starting from the beyond mean-field Lagrangian written in terms of the total number of particles N ,
the population imbalance z and the phase difference ϕ
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one finds that the beyond mean-field conserved energy is

E =
UN2

4
z2 − JN

2

√
1− z2 cosϕ+

L3
√
2m3

15π2ℏ3
(UN)

5
2

[
(1 + z)

5
2

[1 +R(1 + z)]2
+

(1− z)
5
2

[1 +R(1− z)]2

]
(5.28)

Imposing the inequality condition (2.35), i.e. E(z0, ϕ0) > E(0, π), to have MQST one gets
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and finally

Ξ >
1 +

√
1− z20 cosϕ0

z20
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√
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(1+R)2

) (5.30)

The inequality condition still has the form

Ξ > Ξc, 3D (5.31)

where the critical value defined as

Ξc, 3D ≡ 1 +
√
1− z20 cosϕ0

z20
2 + 2L3

√
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15π2ℏ3 U
3
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2
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2
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5
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(1+R)2

) (5.32)

which can also be written as a function of g0 and n

Ξc, 3D ≡ 1 +
√
1− z20 cosϕ0

z20
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√
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5
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) (5.33)

or as a function of the gas parameter γ and the ratio α

Ξc, 3D ≡ 1 +
√
1− z20 cosϕ0

z20
2 + 16

√
2

15
√
π

√
γ

(
(1+z0)

5
2

[1+2παγ(1+z0)]2
+ (1−z0)

5
2

[1+2παγ(1−z0)]2 − 2
(1+2παγ)2

) (5.34)
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Note that since the denominator of Ξc, 3D is larger than Ξc, mf , the beyond mean-field critical value for
macroscopic quantum self-trapping is smaller than the mean-field critical value, i.e., Ξc, 3D < Ξc, mf ,
just as in the case where finite range corrections are not considered, namely the ratio is given by

Ξc, 3D
Ξc, mf

=
1

1 + 32
√
2

15
√
πz20

√
γ

(
(1+z0)

5
2

[1+2παγ(1+z0)]2
+ (1−z0)

5
2

[1+2παγ(1−z0)]2 − 2
(1+2παγ)2

) (5.35)

By examining the graph in Fig. 5.3, a comparison can be made between the behavior of the beyond
mean-field MQST critical value and of the beyond mean-field Josephson frequency in D = 3 as a
function of the ratio α. Likewise, the correction due to the finite range term in the inter-atomic
potential is more significant as the absolute value of the ratio |α| increases. However, there is an
opposite behavior observed between the two quantities. While the finite range correction increases
the value of the Josephson frequency compared to the mean-field value if the ratio is negative, and
decreases it if the ratio is positive, for the beyond-mean-field MQST critical value, the effect is opposite.

Nevertheless, the interpretation given for the Josephson frequency remains valid: if the finite range
correction to the repulsive contact-like potential is repulsive (α > 0), then the finite range correction
mitigates the effects of quantum fluctuations. Conversely, if the finite range correction to the repulsive
contact-like potential is attractive (α < 0), then the finite range correction amplifies the corrections
due to quantum fluctuations.

Figure 5.3: 3D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 3D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = (n1(0) −
n2(0))/(n1(0) + n2(0)) for different values of the ratio α = rs/as: α = 100 (red solid line), α = 10
(green dashed line) α = −10 (blue dotted line) and α = −100 (dark dash-dotted line). In all the cases
the gas parameter is γ = a3sn = 0.0003.
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5.2 D=2 case

As in the previous chapters, the 2-dimensional case differs significantly from the other cases and
therefore requires careful treatment and consideration.
The D = 2 beyond mean-field energy density is given by (3.93)

E(n) = grn
2

2

(
1 +

+∞∑
ℓ=1

Ci(χrgrn)ℓ
)

(5.36)

Hence, the renormalized Lagrangian density is given by

L =

2∑
k=1

[
ℏΦ∗

k(t)∂tΦk(t)−
1

2
gr,k|Φk(t)|4

(
1 +

+∞∑
ℓ=1

Cℓ(χr,kgr,k|Φk(t)|2)ℓ
)]

+

+
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t))

(5.37)

and it is obtained substituting g0 with gr,k and adding the finite range term. The coupling constant
was computed in the last chapter (4.37) and it is given by

gr,k =
gr

1 + ln (1±z)
ln (Cn)

k = 1, 2 (5.38)

where, as a reminder, the constant C is defined as C ≡ πe2γ+1a2s.

Integrating in space, the corresponding beyond mean-field Lagrangian is

L =
∑
k

[
iℏφ∗

k(t)∂tφk(t)−
Uk
2
|φk(t)|4

(
1 +

+∞∑
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L2
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|φk(t)|2ℓ

)]
+

+
J

2
(φ∗

1(t)φ2(t) + φ∗
2(t)φ1(t))

(5.39)

where as a reminder
Uk ≡

gr,k
L2

φk(t) ≡ LΦk(t) k = 1, 2 (5.40)

How the terms U1|φ1|/2 and U1|φk|/2 transforms through the Madelung transformation is calculated
in (4.43) (for k = 1) and (4.45) (for k=2) and as a reminder its expression is

1

2
Uk|φk(t)|4 =

UrN
2

8

(1± z)2

1 + ln (1±z)
ln (Cn)

(5.41)

where for the ℓ-th finite range correction the procedure is similar and result in
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ln2ℓ (Cnk)
N ℓ
k

= Cℓ
(
4π2r2s
L2

)ℓ
1
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(5.42)

and as did for the the 3-dimensional case we define a parameter R, given by

R ≡ 2π2r2sn

ln2(Cn)
=

1

2
χrgrn (5.43)
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5.2.1 Josephson Frequency

Considering our interest in computing the Josephson frequency, we focus on the low population im-
balance limit, where |z(t)| ≪ 1. In this regime, the term (5.41) is Taylor expanded with respect to z
as

UrN
2

8

(1± z)2

1 + ln (1±z)
ln (Cn)

=
UrN

2

8

(
1 +

z2 ± 2z

2 ln (Cn)
+

z2

ln2 (Cn)

)
(1± 2z + z2) +O(z3) (5.44)

Summing the two contributes one obtains the beyond-mean field results that neglects the finite range
correction ∑

k

Ur,k
2

|φk(t)|4 =
UrN

2

4

(
1 + z2 − 3z2

2 ln (Cn)
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z2

ln2 (Cn)

)
+O(z3) (5.45)

Writing this result in terms of the system coupling, inverting the relation (4.33)

1

ln (Cn)
= −mgr

4πℏ2
(5.46)

one gets ∑
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16
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For the ℓ-th finite range correction the procedure is similar and the expansion is given by

CℓRℓ
(1± z)ℓ[
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2
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where z3 term or higher are discarded since they are higher order terms.
Multiplying (5.48) by (5.44) one obtains the ℓ-th finite range contribution
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Summing up the two contributions one gets
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(5.50)

As done previously, we remove the term z−independent, since it is a constant, obtaining the ℓ − th
finite range correction term to the 2-dimensional beyond mean-field Lagrangian
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) (5.51)
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The whole interaction term for the 2-dimensional beyond mean-field Lagrangian which account also
for finite range correction to the inter-atomic potential is

2∑
k=1

Uk
2
|φk(t)|4

(
1 +

+∞∑
ℓ=1

Cℓ
(χr,kgr,k
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)ℓ
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)
(5.52)

is therefore given by

UrN
2z2

4

[
1− 3

2 ln (Cn)
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2
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ln2(Cn)

)]
(5.53)

The term is similar to the mean-field one, given by UN2z2

4 with caution to substitute U with Ur and
add all the corrections, the second and the third terms inside the parenthesis are the beyond the mean-
field corrections due to the contact interaction terms while the subsequent terms are the correction
given by the inclusion of the finite range interaction. Therefore to obtain the Josephson frequency in
the 2-dimensional beyond mean-field framework is sufficient to substituting inside (2.27) the energy
constant U with

Ur

[
1− 3

2 ln (Cn)
+

1

ln2 (Cn)
+

+∞∑
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(5.54)

Doing so, the Josephson frequency is given by

Ω2 =
J2

ℏ2
+
JNUr
ℏ2

(
1− 3

2 ln (Cn)
+

1

ln2 (Cn)

)
+
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2 ln (Cn)
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ln2(Cn)

)] (5.55)

Note that, in the limit of low density n≪ 1, the term

1

lnℓCn
(5.56)

become more and more smaller higher is ℓ, therefore keeping only terms of the order 1
lnCn , since

Ur ∝
1

ln (Cn)
R ∝ 1

ln2 (Cn)
(5.57)

then (5.54) can be approximated to Ur and so the Josephson frequency in D = 2 reduces to mean-field
one (2.27)

Ω =
1

ℏ
√
J2 + UrNJ (5.58)

with the care of substituting U with Ur. Writing explicitly the Rabi frequency, the strength parameter
Ξ and ln (Cn) inside the Josephson frequency

Ω = ΩR

√√√√1 + Ξ

[
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For simplicity we analyze in details only the first contribution due to finite range correction, i.e.
ℓ = 1, obtaining

Ω = ΩR

√
1 + Ξ

[
1− 3

2 ln (Cn)
+

1

ln2 (Cn)
+ C1R

(
3− 15

2 ln (Cn)
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6

ln2(Cn)

)]
(5.60)

Expressing then the finite range Josephson frequency as a function of the gas parameter γ and the
ratio α, namely

Ω = ΩR

√
1 + Ξ

[
1− 3

2 ln (C∗γ)
+

1

ln2 (C∗γ)
+

9π2α2γ

ln2 (C∗γ)

(
1− 5

2 ln (C∗γ)
+

2

ln2 (C∗γ)

)]
(5.61)

where C∗ = C/a2s = πe2γ+1. Finally, to evaluate the finite range correction contribute to the beyond
mean-field Josephson frequency we divide it by the mean-field one obtaining

Ω

Ωmf
=

√√√√1 + Ξ
[
1− 3

2 ln (C∗γ) +
1

ln2 (C∗γ)
+ 9π2α2γ

ln2 (C∗γ)

(
1− 5

2 ln (C∗γ) +
2

ln2 (C∗γ)

)]
1 + Ξ

(5.62)

The values of the gas parameter γ in which the approximation that we have done are valid depends
on the value of α (to see more on this dependence see App.B). The boundary of the range where the
approximation holds is presented in Tab.B.1. The ratio Ω/Ωmf is then plotted in the Fig. 5.4 for
α = 1, 4, 20, 100.

As for the other dimensional cases, including or not the finite range correction, the dependence on
the strength parameter is the usual one. As Ξ approaches zero, we recover the mean-field result, while
for higher values of Ξ, i.e., Ξ ≫ 1, the relative correction beyond mean-field becomes independent of
Ξ. This correction can be expressed as:

Ω

Ωmf

∣∣∣∣∣
Ξ≫1

=

√
1− 3

2 ln (C∗γ)
+

1

ln2 (C∗γ)
+

9π2α2γ

ln2 (C∗γ)

(
1− 5

2 ln (C∗γ)
+

2

ln2 (C∗γ)

)
(5.63)

Now focusing on the dependence on the ratio α, it can be observed from (5.63) that the dependence
is quadratic. Therefore, the sign of α, and thus of the s-wave effective range rs, do not affect the
finite range correction. This is consistent with the fact that the constant coupling of the finite range
correction to the inter-atomic potential, i.e. g2r, is also unaffected from the sign of the s-wave effective
range due to the quadratic dependence on rs. For this reason we only consider positive values of the
ratio α.

As in the case where the finite range corrections were absent (α = 0) the beyond-mean field
Josephson junction is approximately the mean-field one for the range 0 ≤ γ ≲ 3× 10−18, while for the
second range, which varies when changing α, we have important finite range corrections. In particular
the finite range contributions are higher and higher when the ratio increases.

It is important to note that the second range depends on the ratio α. Specifically, for higher values
of α, the boundaries of the range are smaller. Thus, the dependence on the ratio α is stronger than
that of the gas parameter γ since the beyond mean-field correction increases with the ratio α while
the gas parameter decreases.

Furthermore, an interesting observation arises regarding the beyond-mean field correction for sys-
tems with a gas parameter at the boundaries of the second range of suitable parameters. For different
values of α, when the ratio α is small, the correction due to Gaussian fluctuations and finite range
effects at the boundaries of the second range are similar, resulting in a less pronounced dependence
on the gas parameter. However, for higher values of α, the correction to the Josephson frequency
becomes more reliant on the gas parameter value. Specifically, at the upper limit of the second range,



66CHAPTER 5. JOSEPHSON JUNCTION: BEYONDMEAN-FIELDWITH FINITE RANGE RESULTS

the beyond-mean field Josephson frequency is more than triple the mean-field value, while at the lower
limit, the corrected Josephson frequency is just double the mean-field value.

Figure 5.4: 2D beyond mean-field relative correction to the Josephson Frequency.
In the plots is pictured the ratio between the beyond mean-field Josephson frequency Ω and the
mean-field one Ωmf as a function of the strength parameter Ξ = grn

J for different values of the ratio
α = rs/as. (Top Left): At fixed α = 1, γ = 9.4× 10−3 (red solid line), γ = 8.6× 10−3 (green dashed
line) γ = 3 × 10−18 (blue dotted line) and γ = 0 (dark dash-dotted line). (Top Rigth): At fixed
α = 4, γ = 4.4× 10−3 (red solid line), γ = 3.8× 10−3 (green dashed line) γ = 3× 10−18 (blue dotted
line) and γ = 0 (dark dash-dotted line). (Bottom Left): At fixed α = 20, γ = 1.1× 10−3 (red solid
line), γ = 8.2×10−4 (green dashed line) γ = 3×10−18 (blue dotted line) and γ = 0 (dark dash-dotted
line). (Bottom Right): At fixed α = 100, γ = 2×10−4 (red solid line), γ = 1.1×10−4 (green dashed
line) γ = 3× 10−18 (blue dotted line) and γ = 0 (dark dash-dotted line). In all the cases the last line
represent the mean-field case.
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5.2.2 Macroscopic Quantum Self Trapping

Unlike the Josephson frequency calculation, in the MQST one the low population imbalance limit
is not taken. Therefore it is necessary to see how the interaction terms transform in the case the
population imbalance is generic. Taking into account the contact interaction terms∑

k

1

2
Uk|φk(t)|4 =

N2

8
[U1(1 + z)2 + U2(1− z2)] (5.64)

Keeping in mind about the definitions of Ur and Uk, they can be linked by the followed relation

Uk = Ur
1

1 + ln (1±z)
ln (Cn)

k = 1, 2 (5.65)

Then the interaction term reduces to

∑
k

1

2
Uk|φk(t)|4 =

UrN
2

8
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 (5.66)

Instead for the ℓ-th finite range interaction correction one has
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(5.67)

Hence, the beyond mean-field Lagrangian in the D = 2 case is

L =
Nℏ
2
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(5.68)

where we introduce the beyond-mean field energy correction to the 2-dimensional Lagrangian K

K(z, n) ≡ 1
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(5.69)

From the beyond mean-field Lagrangian one can compute the conserved energy

E =K(z, n)
UrN

2

4
− JN

2

√
1− z2 cosϕ (5.70)
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and imposing the MQST inequality condition, given by E(z0, ϕ0) > E(0, π) one obtains
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where we define the adimensional constant Ξr as

Ξr ≡
UrN

J
(5.72)

the inequality reduces to

Ξr >
1 +

√
1− z20 cosϕ0

[K(z0, n)− (1 +
∑∞

ℓ=1 CℓRℓ)] /2

Ξr >
1 +

√
1− z20 cosϕ0

z20
2 +

K(z0,n)−(1+z20+
∑∞

ℓ=1 CℓRℓ)
2

(5.73)

where we make explicit the mean-field term z20/2 at the denominator. The inequality condition can
be expressed as

Ξr > Ξc, 2D (5.74)

where the critical value Ξc, 2D is given by

Ξc, 2D ≡ 1 +
√
1− z20 cosϕ0

z20
2 +

K(z0,n)−(1+z20+
∑∞

ℓ=1 CℓRℓ)
2

(5.75)

The finite range correction is contained inside the function K(z0, n), which expression is given by
(5.69) and inside the series

∑∞
ℓ=1 CℓRℓ. If we consider only the first term of the finite range correction,

the function K(z0, n) assumes the following form

K1(z0, n) ≡
1

2

 (1 + z0)
2

1 + ln (1+z0)
ln (Cn)

+
(1− z0)

2

1 + ln (1−z0)
ln (Cn)

+
3π2r2sn

ln2 (Cn)

 1 + z0

1 + ln (1+z0)
ln (Cn)

3

+

 1 + z0

1 + ln (1+z0)
ln (Cn)

3
(5.76)

will the first term of the series
∑∞

ℓ=1 CℓRℓ is given by

C1R =
3π2r2sn

ln2 (Cn)
(5.77)

To understand the significance of the beyond mean-field correction which accounts also for finite range
contribution in the following we consider the ratio between the beyond-mean field MQST critical value
and the mean-field one, namely

Ξc, 2D
Ξc, mf

≡ 1

1 +
K1(z0,n)−

(
1+z20+

3π2r2sn

ln2 (Cn)

)
z20

(5.78)
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Writing it in terms of the adimensional quantities γ and α the ratio is given by

Ξc, 2D
Ξc, mf

≡ 1

1 +
K1(z0,γ)−

(
1+z20+

3π2α2γ

ln2 (C∗γ)

)
z20

(5.79)

where C∗ = e2γ+1π and

K1(z0, γ) ≡
1

2

 (1 + z0)
2

1 + ln (1+z0)
ln (C∗γ)

+
(1− z0)

2

1 + ln (1−z0)
ln (C∗γ)

+
3π2α2γ

ln2 (C∗γ)

 1 + z0

1 + ln (1+z0)
ln (C∗γ)

3

+

 1 + z0

1 + ln (1+z0)
ln (C∗γ)

3
(5.80)

Looking at the pictures in Fig. 5.6 we can observe that as for the 2-dimensional beyond mean-field
Josephson frequency Ω, there are two distinct behaviours for the two ranges of gas parameter for which
the approximation used for calculating the expression for the chemical potential are valid. In the first
range, i.e. 0 ≤ γ ≲ 3 × 10−18, the correction are almost negligible. This is because the system has
a very low number density in this range, making the beyond-mean-field correction marginal. In the
second range instead, the contributes due to finite range contributes and Gaussian fluctuations are of
great significance. Similar to the scenario with a contact-like inter-atomic potential, the critical values
are higher for initial population imbalances closer to zero, at a fixed gas parameter γ and fixed ratio
α. This gives the plots of the ratio Ξc, 2D/Ξc, mf a concave shape, which becomes more pronounced for
smaller values of the ratio α. As shown in Fig. 5.5, when the ratio increases, the finite range correction
flattens the ratio Ξc, 2D/Ξc, mf , reducing the dependence of the ratio on the population imbalance.

Furthermore, with the increasing of the ratio α there is also an enhancing of the beyond mean-field
effects as the ratio is lower and lower than 1.

Additionally, comparing the two plots in Fig. 4.4 the effects of the finite range correction combined
with the Gaussian fluctuations ones are higher, i.e. the ratio is smaller, for higher values of the gas
parameter γ. This observation also holds true for the concavity at the same ratio α, as the concavity
decreases as the gas parameter increases. However, it’s important to note that the stronger corrections
for higher values of γ only apply at a fixed ratio α. In general, the ratio Ξc, 2D/Ξc, mf exhibits a stronger
dependence on α due to its quadratic dependence, while the dependence on γ is linear and logarithmic.

Figure 5.5: 2D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 2D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = (n1(0) −
n2(0))/(n1(0) + n2(0)) for different values of the ratio α = rs/as and the gas parameter γ = a2sn. For
both the plots α = 100 (red solid line), α = 20 (green dashed line) α = 4 (blue dotted line) and α = 1
(dark dash-dotted line).
(Left): Each curve as the gas parameter γ equal to the γmin presented in Tab.B.1.
(Right): Each curve as the gas parameter γ equal to the γmax presented in Tab.B.1.
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Figure 5.6: 2D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 2D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = (n1(0) −
n2(0))/(n1(0) + n2(0)) for different values of the ratio α = rs/as and the gas parameter γ = a2sn
(Top Left): At fixed α = 1, γ = 9.4 × 10−3 (red solid line), γ = 8.6 × 10−3 (green dashed line)
γ = 3 × 10−18 (blue dotted line) and γ = 0 (dark dash-dotted line). (Top Right): At fixed α = 4,
γ = 4.4 × 10−3 (red solid line), γ = 3.8 × 10−3 (green dashed line) γ = 3 × 10−18 (blue dotted line)
and γ = 0 (dark dash-dotted line). (Bottom Left): At fixed α = 20, γ = 1.1× 10−3 (red solid line),
γ = 8.2×10−4 (green dashed line) γ = 3×10−18 (blue dotted line) and γ = 0 (dark dash-dotted line).
(Bottom Right): At fixed α = 100, γ = 2 × 10−4 (red solid line), γ = 1.1 × 10−4 (green dashed
line) γ = 3× 10−18 (blue dotted line) and γ = 0 (dark dash-dotted line). In all the cases the last line
represent the mean-field case.
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5.3 D=1 case

The procedure to find the corrected Josephson frequency is analogous to the one used before. From
the corrected D = 1 energy density, accounting also for the finite range corrections, found in (3.103)

E =
1

2
g0n

2 − 2

3π

√
m

ℏ2
(g0n)

3
2

1− 2rsn
(5.81)

the Lagrangian density is given by

L =
2∑

k=1

(
ℏΦ∗

k(t)∂tΦk(t)−
1

2
g0|Φk(t)|4 +

2
√
mg30

3πℏ
|Φk(t)|3

1− 2rs|Φk(t)|2

)
+

+
J

2
(Φ∗

1(t)Φ2(t) + Φ∗
2(t)Φ1(t))

≡L0 +
2
√
mg30

3πℏ

(
|Φ1(t)|3

1− 2rs|Φ1(t)|2
+

|Φ2(t)|3

1− 2rs|Φk(t)|2

) (5.82)

where L0 is the mean-field Lagrangian density and the second term arises from the beyond mean-field
calculation. The Lagrangian is thus

L = L0 +
2
√
mg30

3πℏL
1
2

(
|φ1(t)|3

1− 2rs
L |φ1(t)|2

+
|φ2(t)|3

1− 2rs
L |φ2(t)|2

)
(5.83)

where L0 represents the mean-field Lagrangian density, and the second term accounts for the beyond
mean-field calculation, taking into account quantum fluctuations.

Then, a Madelung transformation (2.7) is performed and the resulting Lagrangian is dependent
on the number of particle in each sites Nk

L = L0 +
2
√
mg30

3πℏL
1
2

 N
3
2
1 (t)

1− 2rs
L N1(t)

+
N

3
2
2 (t)

1− 2rs
L N2(t)

 (5.84)

which can be rewritten in terms of the total number of particles N and the population imbalance z as

L = L0 +

√
mg30N

3
2

3
√
2πℏL

1
2

[
(1 + z)

3
2

1− rsn(1 + z)
+

(1− z)
3
2

1− rsn(1− z)

]
(5.85)

Defining the adimensional common factor multiplying (1± z) at the denominators as

R ≡ −rsn =
1

2
χg0n (5.86)

as the opposite product between the constant rs and the number density.

5.3.1 Josephson Frequency

As before, one exploits the low population imbalance limit, namely z ≪ 1, that allows the following
expansion for the numerator

(1± z)
3
2 = 1± 3

2
z +

3

8
z2 +O(z3) (5.87)

and for the denominator

1

1 +R(1± z)
=

1

1 +R
∓ Rz

(1 +R)2
+

R2z2

(1 +R)3
+O(z3)

=
1

1 +R

(
1∓ Rz

1 +R
+

R2z2

(1 +R)2

)
+O(z3)

(5.88)
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Putting (5.88) and (5.87) together one obtains

(1± z)
3
2

1 +R(1± z)
=

1± 3
2z +

3z2

8

1 +R

(
1∓ Rz

1 +R
+

R2z2

(1 +R)2

)
+O(z3)

=
1

1 +R

(
1± 3

2
z ∓ Rz

1 +R
+

3z2

8
− 3Rz2

2(1 +R)
+

R2z2

(1 +R)2

)
+O(z3)

(5.89)

and the sum of the two contribution results in

(1 + z)
3
2

1 +R(1 + z)
+

(1− z)
3
2

1 +R(1− z)
=

1

1 +R

(
2 +

3z2

4
− 3Rz2

1 +R
+

2R2z2

(1 +R)2

)
+O(z3) (5.90)

Inserting it (5.85), one gets the Lagrangian in the low population imbalance limit, which is given by

L = L0 +

√
mg30N

3
2

3
√
2πℏL

1
2

1

1 +R

(
�2 +

3

4
z2 − 3Rz2

1 +R
+

2R2z2

(1 +R)2

)
(5.91)

where the first term in the parenthesis is disregarded since it is a constant. Factoring out 3z2/4 one
obtains

L = L0 +

√
mg30N

3
2

4
√
2πℏL

1
2

z2

1 +R

(
1− 4

R

1 +R
+

8

3

R2

(1 +R)2

)
(5.92)

Finally, the beyond mean-field Lagrangian in D = 1 case is given by

L =
Nℏ
2
zϕ̇−

(
UN2 + JN

4

)
z2 − JN

4
ϕ2 +

√
mg30N

3
2

4
√
2πℏL

1
2 (1 +R)

(
1− 4

R

1 +R
+

8

3

R2

(1 +R)2

)
z2 (5.93)

Therefore the Euler-Lagrangian equations are given by0 = Nℏ
2 ϕ̇−

(
UN2+JN

2

)
z +

√
mg30N

3
2

2
√
2πℏL

1
2 (1+R)

(
1− 4 R

1+R + 8
3

R2

(1+R)2

)
z

0 = −Nℏ
2 ż −

JN
2 ϕ

(5.94)

Similarly to the to the mean-field case, we can rearrange the equation to recover the Euler-Lagrange
equations of a harmonic oscillator, in factϕ̇ =

[
UN+J

ℏ −
√
mg30N

1
2

√
2πℏ2L

1
2 (1+R)

(
1− 4 R

1+R + 8
3

R2

(1+R)2

)]
z

ż = −J
ℏϕ

=⇒

{
ϕ̇+Ω2ϕ = 0

ż +Ω2z = 0
(5.95)

where

Ω ≡

√
1

ℏ2
(J2 + JUN)− J

√
g30nm√

2πℏ3(1 +R)

(
1− 4

R

1 +R
+

8

3

R2

(1 +R)2

)
(5.96)

is the corrected Josephson frequency and expressing it as a function of g, χ and n one has

Ω ≡

√
1

ℏ2
(J2 + Jg0n)−

J
√
2g30nm

πℏ3(2 + χg0n)
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2g0
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χg0n

2 + χg0n
+

8

3

(χg0n)2

(2 + χg0n)2

)] (5.97)

and remembering the definition of Rabi Frequency ΩR

Ω = ΩR

√√√√1 +
g0n

J

[
1− 1

π(2 + χg0n)

√
m

ℏ2
2g0
n

(
1− 4

χg0n

2 + χg0n
+

8

3

(χg0n)2

(2 + χg0n)2

)]
(5.98)
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Writing now the Josephson frequency as a function of the s-wave scattering length as and the s-wave
effective range rs one get

Ω = ΩR

√
1− 2ℏ2n

masJ

[
1− 1

π(1− rsn)
√
−asn

(
1 + 4

rsn

1− rsn
+

8

3

(rsn)2

(1− rsn)2

)]
(5.99)

and remembering the definition of the reference energy εs, the gas parameter γ, and defining the ratio
α in the 1-dimensional case as

ϵs ≡
ℏ2

ma2s
γ ≡ asn α ≡ rs

as
(5.100)

the Josephson Frequency can also be written as

Ω = ΩR

√
1− 2γ

εs
J

[
1− 1

π(1− αγ)
√
−γ

(
1 + 4

αγ

1− αγ
+

8

3

(αγ)2

(1− αγ)2

)]
(5.101)

Note that the gas parameter γ must be negative due to the presence of the inverse of the square
root of it. Analogously to the 3-dimensional case to acknowledge the degree of the beyond mean-
field correction to the mean-field Josephson frequency we are taking in account the ratio between the
corrected frequency and the mean-field one as a function of the strength parameter Ξ = −2γεs/J

Ω

Ωmf
=

√
1 + Ξ

[
1− 1

π(1−αγ)
√
−γ

(
1 + 4 αγ

1−αγ + 8
3

(αγ)2

(1−αγ)2

)]
√
1 + Ξ

(5.102)

Looking at the Fig. 5.7 one observes the following behavior: similarly to the case in which finite
range correction are not involved the correction is more significant at higher strength parameters Ξ.
When the strength parameters approach zero (Ξ → 0), the beyond mean-field correction becomes
irrelevant regardless of the ratio α, which means that for small values of Ξ the correction has a very
weak dependence on the finite range corrections. Conversely, for larger Ξ, the relative correction is
given by

Ω

Ωmf

∣∣∣∣∣
Ξ≫1

=

√
1− 1

π(1− αγ)
√
−γ

(
1 + 4

αγ

1− αγ
+

8

3

(αγ)2

(1− αγ)2

)
(5.103)

In Fig. 5.7, it is plotted the ratio Ω/Ωmf for different values of α at fixed gas parameter γ = −50. One
can observe that finite range corrections are more significant for higher magnitudes of |α|. Specifically,
for α < 0, the correction is greater than the one without considering finite range corrections (i.e., for
α = 0) as the ratio is lowered even more than the mean-field case, while the opposite is true for α > 0,
where the correction is lower than the α = 0 case, indeed in this case the Josephson frequency is closer
to the mean-field value when compared with those having α = 0 or the ones with negative α.

However, this behaviour is only present when the product between α and the gas parameter is tiny,
as one can see in Fig. 5.8, in which the pure finite range effects are pictured. The figure on the left
illustrate the behaviour described above: when αγ is positive (α < 0), then the finite range correction
is greater than one and so amplify the effect of correction driven by quantum fluctuations, vice versa
when αγ is negative (α > 0) then the quantum fluctuations effects are quietened down by the finite
range corrections. In either case the finite range correction is more important as the absolute value
|α| increases.

From the figure on the right in Fig. 5.8 instead one can observe the general behaviour of the finite
range correction. For high value of the product |αγ| the finite range correction is close to zero, in
particular if α > 0 the finite range correction approaches zero from below, while the opposite is true
for α < 0, since the finite range correction reaches the horizontal axis from above. Note that there
are two points in which the finite range correction is exactly zero, namely αγ = 3 ± 2

√
3. Therefore
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for high values of the product |αγ| the mean-field Josephson frequency is a good approximation
even accounting Gaussian fluctuations and finite range corrections, while for the particular value
aforementioned the mean-field Josephson frequency is even exact, since the finite range correction
cancels out the Gaussian fluctuations one. Furthermore, in αγ = 1 there is an asymptote, however
for the reasoning did in App.C the region near the asympote, where the finite range correction should
be really high, is not physical, since there aren’t couples of (α, γ) for which the approximation (3.102)
is valid. Finally, note that in the cases in which the finite range correction is negative the resulting
beyond mean-field Josephson frequency is greater than the mean-field one, like in the 3-dimensional
and 2-dimensional cases, however the total correction is small since the finite range one is close to
zero.

Figure 5.7: 1D beyond mean-field relative correction to the Josephson Frequency.
In the plot is pictured the ratio between the beyond mean-field Josephson frequency Ω and the mean-
field one Ωmf as a function of the strength parameter Ξ = g0n/J for different values of the ratio
α = rs

as
: α = 0.001 (red solid line), α = 0.0001 (green dashed line) α = −0.0001 (blue dotted line) and

α = −0.001 (dark dash-dotted line). In all the cases the gas parameter is γ = asn = −50.

Figure 5.8: 1D Finite range correction 1
(1−αγ)

(
1 + 4 αγ

1−αγ + 8
3

(αγ)2

(1−αγ)2

)
as a function of the product

between the gas parameter γ = asn and the ratio α = rs/as (blue line/green line), the red line x = 1
represents the zeroes of the denominators present in the correction.
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5.3.2 Macroscopic Quantum Self Trapping

To determine the conserved energy, we consider the beyond mean-field Lagrangian in the D = 1 case,
given by

L =
Nℏ
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4
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2
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]
(5.104)

By analyzing the Lagrangian, we can determine the conserved energy, accounting for the corrections
arising from quantum fluctuations and finite range effects. The conserved energy is given by
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Imposing the inequality condition to have MQST (2.35), given by E(z0, ϕ0) > E(0, π), one gets
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and finally
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Defining the critical value Ξc, 1D as

Ξc, 1D ≡ 1 +
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or, alternatively, as a function of g0 and n
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√
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or, also, as a function of the gas parameter γ and the ratio α
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One obtains the same inequality condition of the mean-field case

Ξ > Ξc, 1D (5.111)
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However in this case the critical value is reached for larger values of Ξ since Ξc, 1D > Ξc, mf , namely
the beyond mean-field critical value Ξc, 1D is larger than the mean-field one, as in the case in which
the finite range corrections are not considered. To understand the beyond-mean field correction
importance is useful to consider the ratio between the beyond-mean field critical value Ξc, 1D and the
mean-field one Ξc, mf , which is given by

Ξc, 1D
Ξc, mf

=
1

1− 4
3π

1
z20

√
−γ

(
(1+z0)

3
2

1−γα(1+z0) +
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3
2

1−γα(1−z0) −
2

1−γα

) (5.112)

Examining Fig. 5.9, we can observe the behavior of the relative beyond-mean field correction in relation
to the mean-field MQST critical value for lower values of the ratio α. Similar to the 1-dimensional
beyond-mean field Josephson frequency, the correction arising from the finite range term in the inter-
atomic potential becomes more pronounced as the absolute value of the ratio |α| increases. Despite the
apparent opposite behavior due to the sign of α compared to the Josephson frequency, where higher
values of the ratio Ξc, 1D/Ξc, mf and lower values of Ω/Ωmf are associated with negative values of α,
the interpretation remains the same. Since in this case, Gaussian fluctuations increase the critical
parameter while decreasing the Josephson frequency. Hence, we can conclude that the finite range
contribution to the beyond-mean field correction works constructively with Gaussian fluctuations when
the ratio is negative (α < 0), indicating an attractive finite range correction. Conversely, when the
finite range correction to the repulsive contact-like inter-atomic potential is also repulsive (α > 0), the
finite range contribution to the beyond-mean field quantities Ω and Ξc, 1D acts destructively, reducing
the effects of quantum fluctuations and bringing the quantities closer to their mean-field value.

Moreover, the inclusion of finite range corrections does not change the concave shape of the ratio
Ξc, 1D/Ξc, mf . Specifically, Ξc, 1D/Ξc, mf remains lower for a low initial population imbalance z0 at a
fixed γ and α.

However, the aforementioned behavior holds true only for tiny values of the ratio α. For larger
values of |α| ≳ 1, the finite range correction dampens the beyond-mean field correction, and we retrieve
the mean-field critical value Ξc, mf . This is analogous to what we observe for the 1-dimensional beyond-
mean field Josephson frequency.

Figure 5.9: 1D beyond mean-field relative correction to the MQST critical value.
In the plot is pictured the ratio between the beyond mean-field MQST critical value Ξc, 1D and the
mean-field one Ξc, mf as a function of the initial population imbalance z0 ≡ z(t = 0) = z(t = 0) =
(n1(0)− n2(0))/(n1(0) + n2(0)) for different values of the ratio α = rs/as: α = 0.002 (red solid line),
α = 0.0002 (green dashed line) α = −0.0002 (blue dotted line) and α = −0.002 (dark dash-dotted
line). In all the cases the gas parameter is γ = asn = −100.



Conclusions

In this thesis, we have investigated the correction to the Josephson frequency in D = 0, 1, 2, 3 di-
mensions, considering quantum Gaussian fluctuations and finite range corrections to the inter-atomic
potential. Initially assuming a contact-like potential, we calculated the contact coupling constant g0
and the finite range correction coupling constant g2 in relation to the s-wave scattering parameters
as and rs for D = 1, 2, 3 (whose values are in the table below). We excluded D = 0 as there is no
scattering and, therefore, no finite range correction.

D g0 g2

3 4πℏ2as
m

πℏ2
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2 −4πℏ2
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1
ln (Λ2a2se

γ)
π2ℏ2
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ln2 (Λ2a2se
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1 − 2ℏ2
mas

− ℏ2
2mrs

Next, we examined the mean-field Josephson junction, which is influenced by two significant quan-
tities. In the low population imbalance limit, the population imbalance z(t) follows the equation of
motion of a harmonic oscillator, and the oscillation frequency, known as the Josephson frequency
Ωmf , depends on the strength parameter Ξ ≡ UN/J . The critical value for Macroscopic Quantum
Self Trapping (MQST) is the threshold above which MQST occurs. The mean-field expressions for
these quantities are given by

Ωmf =
J

ℏ
√
1 + Ξ Ξc, mf ≡ 1 +

√
1− z20 cosϕ0
z20/2

To go beyond the mean-field values of these quantities, we replaced the mean-field energy density in
the Lagrangian density with energy densities accounting for Gaussian fluctuations and finite range
corrections.
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)
By doing so, we obtained new terms in the expressions for the Josephson frequency and the

critical value of MQST in D = 1, 2, 3. However, for D = 0, the quantities remained unchanged. These
corrections, denoted by KΩ,:rs and KΞc,:rs , driven by Gaussian fluctuations and finite range effects,
represent the original contributions of this work and can be expressed as follows:

Ω =
J

ℏ
√
1 + ΞKΩ, rs Ξc =

1 +
√
1− z20cosθ0

z20/2 +KΞc, rs

(5.113)

77



78CHAPTER 5. JOSEPHSON JUNCTION: BEYONDMEAN-FIELDWITH FINITE RANGE RESULTS

D KΩ, rs

3 1 +
8
√

2a3sn√
π(1+2πa2srsn)

2

(
1− 8

3
2πa2srsn

1+2πa2srsn
+ 8

5
(2πa2srsn)

2

(1+2πa2srsn)
2

)
2 1− 3

2 ln (Cn) +
1

ln2 (Cn)
+
∑+∞

ℓ=1 Cℓ
(

2π2r2sn

ln2 (Cn)

)ℓ (
(ℓ+2)(ℓ+1)

2 − (2ℓ+1)(2ℓ+3)
2 ln (Cn) + (2ℓ+1)(ℓ+1)

ln2(Cn)

)
1 1− 1

π(1−rsn)
√
−asn

(
1 + 4 rsn

1−rsn + 8
3

(rsn)2

(1−rsn)2

)

D Ξc, rs

3 2
√
2

15π2

√
m
ℏ2

3
g

3
2
0 n

1
2

(
(1+z0)

5
2

[1+2πa2
srsn(1+z0)]2

+ (1−z0)
5
2

[1+2πa2
srsn(1−z0)]2

− 2
(1+2πa2

srsn)
2

)
2 1

4

[
(1+z0)2

1+
ln (1+z0)
ln (Cn)

+ (1−z0)2

1+
ln (1−z0)
ln (Cn)

− 2(1 + z20) +
∑∞

ℓ=1 Cℓ
(

2π2r2sn

ln2 (Cn)

)ℓ(
(1+z0)ℓ+2[

1+
ln (1+z0)
ln (Cn)

]2ℓ+1 + (1−z0)ℓ+2[
1+

ln (1−z0)
ln (Cn)

]2ℓ+1 − 2

)]
1 −

√
2

3π

√
m
ℏ2 g

1
2
0 n

− 1
2

(
(1+z0)

3
2

1−rsn(1+z0)
+ (1−z0)

3
2

1−rsn(1−z0)
− 2

1−rsn

)

Ignoring the finite range correction, while the 3-dimensional and 2-dimensional cases the Joseph-
son junction is higher than the mean-field value, in the 1-dimensional case we observe an opposite
behaviour. In particular the beyond mean-field correction grows as the gas parameter (γ = aDs n)
increases in the first two cases while is smaller and smaller in the last case. Vice versa, a common
behaviour of the three cases is the one depending on the strength parameter Ξ, in fact the Gaussian
fluctuation corrections are increased for larger strength parameter.

Instead, the MQST critical value dependence on the gas parameter is the opposite of the one
observed for the Josephson frequency in each dimension. Increasing the gas parameter the beyond
mean-field critical value is smaller than the mean-field one in the 3-dimensional and 2-dimensional
cases, while it is higher for the 1-dimensional case. Furthermore for higher population imbalance the
correction is greater in D = 3, 2 and lower in D = 1.

Including also the finite range corrections there are plenty of interesting behaviours. First of all,
one can observe that in all the dimensional cases (D = 3, 2, 1), the finite range contribution to the
beyond mean-field correction is higher when the absolute value of the ratio α = rs/as increases. In the
2-dimensional case there is an independence on the sign of the ratio α, which comes from the quadratic
dependence on rs of the 2-dimensional g2. However, in the 3-dimensional and 1-dimensional cases,
the finite range contributions have a different effect on the beyond mean-field quantities depending
on the sign of the ratio α. These contributions can either amplify or reduce the overall contribution,
introducing a sign-dependent behavior. In particular, if the finite range correction to the repulsive
contact-like potential is positive (α > 0), the effect of quantum fluctuations is mitigated by the finite
range correction. Conversely, if the finite range correction to the repulsive contact-like potential is
negative (α < 0), the finite range correction amplifies the corrections arising from quantum fluctua-
tions. In the 1-dimensional case, the statement holds true, but with a caveat. When the product of
the ratio α and the gas parameter γ is small, the finite range contributions to the beyond mean-field
terms exhibit the expected behavior, where they amplify or reduce the quantum fluctuation contribu-
tions. However, for higher values of this product, an interesting phenomenon occurs. The finite range
contributions become such that they cancel out with the quantum fluctuation contributions resulting
in an approximation that closely matches the mean-field result.

Concerning further research, it would be intriguing to study the system at finite temperature,
taking into account the correction due to thermal Gaussian fluctuations. Additionally, a more in-depth
analysis of the 2-dimensional beyond mean-field Lagrangian, considering all finite range contributions
beyond the first one, would provide a deeper understanding of the system’s behavior.

In summary, this thesis has contributed to the understanding of the correction to the Josephson
frequency and the MQST critical value in different dimensions, incorporating quantum Gaussian
fluctuations and finite range corrections. The results obtained pave the way for future investigations
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and open up exciting possibilities for exploring the system’s behavior under additional conditions and
considering higher-order corrections.
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Appendix A

3D perturbative expansion and gas
parameter limits

A perturbative approach is necessary to find the expression of the chemical potential µ as a function
of the 3-dimensional number density n (3.30), namely
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starting from the relation (3.29), given by
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It is convenient to work with adimensional quantities, in particular the gas parameter γ, the ratio α
and the chemical potential per energy reference ν, which are defined as

γ ≡ a3sn (A.3)

α ≡ rs
as

(A.4)

and

ν ≡ µ
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(A.5)

Then, expressing the constant coupling g0 and χ as a function of α and ν
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and multiplying each side of the equation (A.2) for the cube of s-wave scattering length a3s one has

a3sn = a3sµ
ν

4πµa3s
− a3s

4

3π2

(mµ
ℏ2
) 3

2 1

(1 + αν)2
+ a3s

16

15π2

(mµ
ℏ2
) 3

2 αν

(1 + αν)3

γ =
ν

4π
− 4

3π2
ν

3
2

(1 + αν)2
+

16

15π2
αν

5
2

(1 + αν)3

γ =
ν

4π

(
1− 16

3π

ν
1
2

(1 + αν)2
+

64

15π

αν
3
2

(1 + αν)3

) (A.8)

87



88 APPENDIX A. 3D PERTURBATIVE EXPANSION AND GAS PARAMETER LIMITS

To find an expression for ν then we do some approximations

ν = 4πγ
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and this equation is the analogue of the (A.1), written in terms of adimensional variables. Note that
these approximations are valid only if the following inequality is satisfied

−0.1 <
32

3
√
π

γ
1
2

(1 + 4παγ)2
− 512

√
π

15

αγ
3
2

(1 + 4παγ)3
< 0.1 (A.10)

Unfortunately, this inequality is analytical in the gas parameter γ and in α, only for α = 0, in other
words when the finite range correction is disregarded. In this case, setting α = 0, one has the following
inequality, with the left inequality always satisfied

−0.1 <
32

3
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π
γ

1
2 < 0.1 (A.11)

Therefore in the case of a contact-like inter-atomic potential the gas parameter is bounded from above

γ <
9π

102400
≃ 2.8× 10−4 (A.12)

Since including the finite range correction give us a non analytical inequation, to find the domain of
the gas parameter in which the approximation used above holds we consider the graphs in Fig. A.1
and Fig. A.2.

Figure A.1: Suitable γ = a3sn parameter as a function of α = rs/as.

The blue regions represent solutions of the inequality −0.1 < 32
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3
2
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The left figure focuses on high values of the gas parameter γ, while the right focuses on smaller ones.
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Figure A.2: Logarithmic plot of suitable γ = a3sn parameter as a function of α = rs/as.

The blue region represents solutions of the inequality −0.1 < 32
3
√
π

γ
1
2

(1+4παγ)2
− 512

√
π

15
αγ

3
2

(1+4παγ)3
< 0.1,

the γ axis is in logarithmic scale.

From the graphs, particularly the logarithmic one, it can be observed that the range of γ in which
the approximation does not hold is not only bounded from below, but also from above. When consid-
ering positive ratios, α > 0, the lower limit is raised while the upper limit is lowered. As a result, for
sufficiently high ratios, (α ≳ 46)all values of the gas parameter become suitable for the perturbative
approach used above. On the other hand, for negative ratios α < 0, both the upper and lower limits
are lowered. However, it should be noted that the forbidden region shrinks as α decreases.
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Appendix B

2D perturbative expansion and gas
parameter limits

To find the expression of the chemical potential µ as a function of the number density n a perturbative
calculations are involved as follow. Let’s first concentrate in the case of a contact-like potential, setting
for the moment the s-wave effective range rs equal to zero (rs = 0) in the equation of the 2-dimensional
number density retrieved from the corresponding Grand Potential (3.66), i.e.
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(B.1)

Since we want to work with adimensional quantities, we define the gas parameter γ

γ ≡ a2sn (B.2)

and the ratio between the chemical potential µ and the reference energy εs
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which is related to µ/ε0 in such a way that
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Hence the equation (B.1) becomes
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We want to write ν as a function of γ, therefore
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However there is still the dependence on ν on the second logarithm in the denominator, and thus an
approximation is required
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The range in which the approximation is valid is given by the following inequalities

−0.1 <
− ln

(
ln
(

4
e(2γ+1)ν

))
ln
(
e(2γ+1)πγ

) < 0.1 (B.8)

which solutions are found graphically using the plot in Fig. B.1 where the approximation is valid if
0.01283 ≲ γ ≲ 0.01421 or 0 ≤ γ ≲ 3× 10−18.

Figure B.1: Suitable γ = a2sn parameter for the approximation of the adimensional chemical potential
ν in logarithmic scale.
The blue solid line represent the exact expression of the adimensional chemical potential ν as a function
of the gas parameter γ, i.e. ν = −4πγ/ ln

(
e2γ+1ν/4

)
; while the green dashed line represents the

approximated chemical potential, namely ν = −4πγ/ ln
(
e2γ+1πγ

)
. The red regions represent portion

of the solution of the inequality −0.1 < − ln
(
ln
(
4/(e(2γ+1)ν)

))
/ ln

(
e(2γ+1)πγ

)
< 0.1. The points in

the graph correspond to the boundary of the domain in which the approximation is appropriate.
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Including also the finite range corrections, the chemical potential µ is given by (3.77), namely
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For simplicity in the following we limit to consider only the first finite range contribution, i.e. k = 2,
which gives
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and rewriting it in adimensional quantities, upon defining the ratio α as
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one has, multiplying the LHS and the RHS for the s-wave scattering length a2s

ma2sµ

ℏ2
= − 4πa2sn

ln
(
µ
ε0

) − 36π3r2sa
4
sn

2

a2s ln
3
(
µ
ε0

)
ν = − 4πγ

ln
(
e2γ+1ν

4

) − 36π3α2γ2

ln3
(
e2γ+1ν

4

)
= − 4πγ

ln
(
e2γ+1ν

4

)
1 +

9π2α2γ

ln2
(
e2γ+1ν

4

)


(B.12)

From the above equation we can rewrite the term below substituting the expression for ν

ln

(
e2γ+1ν

4

)
= ln

(
e2γ+1πγ

)
− ln ln

4

e2γ+1ν
+ ln

1 +
9π2α2γ

ln2
(
e2γ+1ν

4

)


= ln
(
e2γ+1πγ

)
1 +

− ln ln 4
e2γ+1ν

+ ln

(
1 + 9π2α2γ

ln2
(

e2γ+1ν
4

)
)

ln (e2γ+1πγ)


(B.13)

which can be approximated to

ln

(
e2γ+1ν

4

)
≃ ln

(
e2γ+1πγ

)
(B.14)

only if the following inequalities are satisfied

−0.1 <

− ln
(
ln
(

4
e(2γ+1)ν

))
+ ln

(
1 + 9π2α2γ

ln2
(

e(2γ+1)ν
4

)
)

ln
(
e(2γ+1)πγ

) < 0.1 (B.15)

If the inequalities above are satisfied then the approximated expression for the adimensional chemical
potential ν is given by

ν = − 4πγ

ln (e2γ+1πγ)

(
1 +

9π2α2γ

ln2 (e2γ+1πγ)

)
(B.16)
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As for the contact-like case, the solutions of the inequalities were obtained graphically. While 0 ≤ γ ≲
3 × 10−18 remains a valid solution for the inequalities, the range 0.01283 ≲ γ ≲ 0.01421 is no longer
valid. However, there still exists a solution within the range γmin ≲ γ ≲ γmax. The boundaries of these
ranges for selected values of α are presented in Table B.1, and the corresponding range is illustrated
in Fig. B.2.

α γmin γmax

1 8.58× 10−3 9.43× 10−3

4 3.76× 10−3 4.37× 10−3

20 8.17× 10−4 1.12× 10−3

100 1.09× 10−4 1.97× 10−4

Table B.1: Boundaries of suitable value of γ for certain α.

Figure B.2: Suitable γ = a2sn parameter for the approximation of the adimensional chemical po-
tential ν for α = 1 (top left), α = 4 (top right), α = 20 (bottom left) and α = 100 (bot-
tom right). The blue solid line represent the exact expression of the adimensional chemical po-
tential ν as a function of the gas parameter γ, while the green dashed line represents the ap-
proximated chemical potential. The red regions represent portion of the solution of the inequality
−0.1 <

[
− ln

(
ln
(
4/(e(2γ+1)ν)

))
+ ln

(
1 + 9π2α2γ/ ln2

(
e(2γ+1)ν/4

))]
/ ln

(
e(2γ+1)πγ

)
< 0.1.



Appendix C

1D perturbative expansion and gas
parameter limits

Also in the 1-dimensional case, a perturbative approach is necessary to find the expression of the
chemical potential µ as a function of the 1-dimensional number density n (3.102), namely

µ(n) = g0n− g0
π

(m
ℏ2
) 1

2 (g0n)
1
2

1 + χg0n
+

2g0
3π

(m
ℏ2
) 1

2 χ(g0n)
3
2

(1 + χg0n)2
(C.1)

starting from the relation (3.101), given by

n(µ) =
µ

g0
+

1

π

(m
ℏ2
) 1

2 µ
1
2

1 + χµ
− 2

3π

(m
ℏ2
) 1

2 χµ
3
2

(1 + χµ)2
(C.2)

As done in the D = 3 case, since it is more convenient, we work with adimensional quantities, in
particular the gas parameter γ, the ratio α and the chemical potential per energy reference ν, which
are defined as

γ ≡ asn (C.3)

α ≡ rs
as

(C.4)

and

ν ≡ µ

εs
=
µma2s
ℏ2

(C.5)

Then, expressing the constant coupling g0 and χ as a function of α and ν

g0 ≡ − 2ℏ2

mas
= −2µas

ν
(C.6)

and the parameter χ is the same of the D = 3 case, indeed

χ ≡ 4m

ℏ2
g2
g0

=
m

ℏ2
asrs = α

ν

µ
(C.7)

and multiplying each side of the equation (C.2) for the s-wave scattering length as one has

asn(µ) = −asµ
ν

2µas
+ as

1

π

(mµ
ℏ2
) 1

2 1

1 + αν
− as

2

3π

(mµ
ℏ2
) 1

2 αν

(1 + αν)2

γ = −ν
2
+

1

π

ν
1
2

1 + αν
− 2

3π

αν
3
2

(1 + αν)2

γ = −ν
2

(
1− 2

π

1√
ν(1 + αν)

+
4

3π

α
√
ν

(1 + αν)2

) (C.8)
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To find an expression for ν then we do some approximations

ν = −2γ

(
1− 2

π

1√
ν(1 + αν)

+
4

3π

α
√
ν

(1 + αν)2

)−1

≃ −2γ

(
1 +

2

π

1√
ν(1 + αν)

− 4

3π

α
√
ν

(1 + αν)2

)
≃ −2γ

(
1 +

√
2

π

1√
−γ(1− 2αγ)

− 4
√
2

3π

α
√
−γ

(1− 2αγ)2

) (C.9)

and this equation is the analogue of the (C.1), written in terms of adimensional variables. Note that
these approximations are valid only if the following inequality is satisfied

−0.1 <

√
2

π

1√
−γ(1− 2αγ)

− 4
√
2

3π

α
√
−γ

(1− 2αγ)2
< 0.1 (C.10)

Unfortunately, also this inequality is analytical in the gas parameter γ and in α, only for α = 0, in
other words when the finite range correction is disregarded. In this case, setting α = 0, one has the
following inequality, with the left inequality always satisfied

−0.1 <

√
2

π

1√
−γ

< 0.1 (C.11)

Therefore in the case of a contact-like inter-atomic potential the gas parameter is bounded from below
by

γ < −200

π2
≃ −20.3 (C.12)

Since including the finite range correction give us a non analytical inequation, to find the domain of
the gas parameter in which the approximation used above holds we consider the graphs in Fig. C.1
and Fig. C.2.

Figure C.1: Domain of γ = asn parameter as a function of the ratio α = rs/as.

The green region represents the solution of the inequality −0.1 <
√
2
π

1√
−γ(1−2αγ)

− 4
√
2

3π
α
√
−γ

(1−2αγ)2
< 0.1

The left figure focuses on high values of the ratio α, while the right focuses on smaller ones. The red
lines represents the hyperbolas 2αγ = 1.
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Figure C.2: Logarithmic plot of suitable |γ| = |asn| parameter as a function of α = rs/as.

The green region represents solutions of the inequality −0.1 <
√
2
π

1√
|γ|(1−2α|γ|)

− 4
√
2

3π

α
√

|γ|
(1−2α|γ|)2 < 0.1,

the γ axis is in logarithmic scale. The red lines represents the hyperbolas 2α|γ| = 1. The substitution
of γ with |γ| is necessary to take the logarithmic scale of the gas parameter axis, since γ is negative.

From the logarithmic graph, it can be observed that when considering positive ratios, α > 0, the
the domain of |γ| is bounded from below and the limit drops as α increases. On the other hand,
for negative ratios α < 0, we observe a similar behaviour but there is also a thin strip of permitted
value of |γ| for smaller value of the parameter. The strip thins out and goes down as the value of α
decreases. Therefore for α < 0 also some tiny value of the gas parameter |γ| are admitted.

Note that, as shows the red line representing the hyperbolas 2αγ = 1 in Fig. C.1 and 2α|γ| = −1
in Fig. C.2 no values close to the zeroes of the denominator 1− 2αγ are admitted.
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