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Abstract

La tecnica di campionamento è importante per risolvere il problema di
studiare la popolazione avendo a disposizione dei campioni.
Questo procedimento ha degli svantaggi e il principale è rappresentato dall’errore
di campionamento, che nasce proprio dal fatto di selezionare un’unita rapp-
resentativa al posto di prendere la popolazione intera.

Un campione affetto dall’errore porta ad una sovrarappresentazione o
sottorappresentazione della popolazione reale; infatti, i ricercatori trarranno
conclusioni non corrette sulle caratteristiche della popolazione studiata.
Praticamente ogni campione è affetto dall’errore di campionamento in quanto
è difficile ottenere un campione perfettamente randomizzato.

Il metodo di Monte Carlo è importante in questo tipo di analisi perché è
in grado di misurare l’errore presente in un campione e la performance degli
stimatori utilizzati.
In questo studio è importante avere a disposizione dei dati panel, i quali
permettono di osservare gli individui e le loro caratteristiche nel corso del
tempo.

Molti studi hanno dimostrato che l’errore è legato alla numerosità del
campione. Infatti, campioni piccoli hanno un errore elevato e al crescere del
campione l’errore decresce.
Questo è dato dal fatto che un campione più grande comprende un numero
elevato di individui e si avvicina di più all’intera popolazione.

Lo scopo di questo studio è quello di trovare il campione ideale per ot-
tenere una rappresentazione il più veritiera possibile della popolazione reale.
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Introduction

In many experiments it is impossible to study the entire population, be-
cause of the large number of subjects.
Therefore, the unique way to resolve this problem is to sample, so select a unit
from the population that is representative of the population and inference its
characteristics from it.

The main disadvantage of this process is the sampling error which is the
error that arises in a data collection process as a result of taking a sample
from a population rather than using the whole population.
The other type of error present in the study is the non-sampling error.
Both of them could be measured, but it is difficult to avoid them in inference
process.

A biased sample can lead to an over or underrepresentation of the corre-
sponding parameter in the population.
Almost every sample in practice is biased because it is practically impossible
to ensure a perfectly random sample.

Sampling error is correlated with sample size; indeed, a large sample size
has less sampling error respect a small sample size, in a study where the
population is the same and all the its characteristics are the same.
Bigger sample studies more subjects of the population and could represent
more characteristics of it.

In sampling method it is important to have a dataset that observe some
characteristics of entities across time. This is called panel data.
Its principle advantage is the fact that it includes time and individual varia-
tion which are unobservable in cross sections or aggregate time series.
Panel data is widely used to estimate dynamic econometric models. Many
economic issues are dynamic by nature and use the panel data structure to
study how these entities change from year to year.

In these type of analysis Monte Carlo simulation is an adequate method
to measure the sampling errors in samples and the performance of the esti-
mators.
The experiment starts with the identification of statistical distribution for
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Introduction

each input parameters.
Then, it draws random samples from each distribution, which then represents
the values of the input variables. For each set of input parameters, it gets a
set of output parameters.
Finally, it performs statistical analysis on the outputs to take the final deci-
sions and inference the characteristics of the population.

Monte Carlo simulation is applicable in many areas, such as mathematics,
statistical physics, finance, engineering, reliability analysis, physical sciences
and others.
In the study of this paper simple Monte Carlo is used to estimate the popu-
lation expectation by the corresponding sample expectation.
The sample values usually get a good enough idea of the error.

The following chapters of this paper is organized in this way: the first
chapter is about the sampling process and sampling error, the second chapter
explains panel data and its characteristics, then, the third chapter is about
Monte Carlo method and the last chapter explains specifically simple Monte
Carlo, a method used to estimate the sampling error, and presents some
case studies which demonstrate the utilization of this method for different
experiments.

8



Chapter 1

Sampling Error

1.1 Definition

Sampling is a process of selection of a sample for studying the inference
of the population and, therefore, be able to obtain an adequate description
of the population.
In many experiments it is impossible to study the entire population because
of the time, expense and a large number of individuals. For these reasons
it is necessary to sample, that is, select a unit of the population that is
representative of the whole population.

The steps in sampling process are the following:

1. Define the population

2. Identify the sampling frame

3. Select a sampling design

4. Determine the sample size

5. Draw the sample

A sample is expected to mirror the population from which it comes, however,
there is no guarantee that any sample will be precisely representative of the
population from which it comes.
In sample surveys, since inference is made about the entire population covered
by the survey on the basis of data obtained from only a part of the population,
the results are likely to be different than if a complete census was taken under
the same general survey conditions.

9



Chapter 1: Sampling Error

The sampling error is the error that arises in a data collection process as
a result of taking a sample from a population rather than using the whole
population.
The sampling error depends on factors such as the size of the sample, vari-
ability in the population, sampling design and method of estimation.
Further, even for the same sampling design, it can make different calculation
to arrive at the most efficient estimation procedure.

The most frequent cause of the sampling error is a biases sampling pro-
cedure. Every researcher must seek to establish a sample that is free from
bias and is representative of the entire population.
Another possible cause of this error is chance. The process of randomization
and probability sampling is done to minimize sampling process error but it
is still possible that all the randomized subjects are not representative of the
population.

The most common results of sampling error is systematic error wherein
the results from the sample differ significantly from the results from the entire
population.
Indeed, sampling error is one of the reason for the difference between an
estimate of a population parameter and the true, but unknown, value of the
population parameter.

Even non-sampling error can cause the results distorted and far from the
true value of the population.

Non sampling errors can be attributed to one or more of the following sources:

• Coverage error: it results from incomplete listing and inadequate cov-
erage of the population of interest

• Data response error: this error may be due to questionnaire design and
the characteristics of the question, misinterpretation of the questions
and different tendencies of different interviewers in explaining questions
or interpreting responses

• Non-response error: some respondents may refuse to answer questions,
some may be unable to respond, while others may be too late in re-
sponding

• Processing error: errors that may occur at various stages of processing
such as coding, data entry, verification

Non-sampling errors are difficult to measure. Many attempts have been made
to minimize the non-sampling errors. It tries to define more precisely the
samples and questionnaires are structured to avoid different interpretations.
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Chapter 1: Sampling Error

1.2 Measures of sampling and non-sampling er-
rors

1.2.1 Sampling error measures

Several samples may be subject to the same investigation but every es-
timate provides is different. The average estimate given by all the possible
sample estimates is the expected value.
An estimate of a sample survey is called precise if it is near the expected
value. The variability of the sample estimates with respect to its expected
value can be measured.

The variance of estimate is a measure of the precision of sample estimate
and is defined as the average of the squared difference of the estimates from
its expected value.
The standard error, defined as the square root of the variance, is a measure
of the sampling error in the same units as the estimate. The standard error
is a measure of precision in absolute terms.

The coefficient of variation is a measure of precision in relative terms.
With the use of the coefficient of variation it can compare the sampling error
of an estimate with that of another estimate.
The coefficient of variation is given by the following formula:

CV (X) =
S(X)

X
(1.1)

where X denotes the estimate and S(X) denotes the standard error of X.
Confidence interval can be constructed around the estimate using the esti-
mate and the coefficient of variation.

1.2.2 Non-sampling error measures

A census sample survey aims to obtain the exact value of the popula-
tion. Any difference between the expected value and the exact value of the
population is defined bias.
The accuracy of a survey estimate is determined by the joint effect of sam-
pling and non-sampling errors.
The response fraction, which is a measure of the data response rate, is the
proportion of the sales estimate which is based upon reported data.
The lower the coefficient of variation and the higher the response fraction,
the better will be published estimate.
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Chapter 1: Sampling Error

1.3 Types of sampling

1.3.1 Probability sampling

This method is important becuase it guarantees that the selection process
is completely randomized and without bias. Indeed, in it each individual has
the same chance to be selected for the experiments.

The main advantages of using this technique are the following:

• high accuracy of statistical methods after the simulation

• useful to estimate the population parameters bacause it is representa-
tive of the entire population

• reliable method to eliminate sampling bias

1.3.1.1 Simple random sampling

The random sampling is one of the most popular types of probability
sampling. All members are included in the list and the entire process is
performed in a single step where each subject can be selected independently
of the other members of the population.
There are many methods by which to perform random sampling. The sim-
plest method is the lottery. Then, another method may be to leave a com-
puter to execute the random sampling of the population.

This method can be considered as fair as each member has an equal chance
of being selected during sampling. Another key feature is the representation
of the population, then it is reasonable to make generalization from the results
of the sample back to the population.
If the sample is not representative of the population, the differences will be
defined random sampling error.

1.3.1.2 Stratified random sampling

This is a technique wherein the subjects are initially grouped into differ-
ent classifications such as age, socioeconomic status or gender. Researchers
usually use this method if they want to study a particular subgroup within
the population.
The researcher randomly selects the final list of subjects from the different
strata, so it must use the technique of simple random sampling within the
different strata.

12



Chapter 1: Sampling Error

It warrants more precise statistical outcomes than the simple random sam-
pling.
The layers are not to be overlaid so as not to grant the highest probability
of being selected to subjects at the expense of others.

This technique is used most when researchers want to study a specific
group or when they want to see the relationships between the different sub-
groups.
It is equipped with a statistical accuracy higher than simple random sam-
pling. It also requires a small sample size that can save time, money and
energy.
With this method the researchers can sample and analyze even the smallest
and most inaccessible subgroup in the population.

1.3.1.3 Systematic random sampling

Systematic sampling is a technique of random sampling which it can be
linkened to an arithmetic progression where the difference between any two
consecutive numbers is the same.

The main advantage of this method, which is frequently chosen by the re-
searchers, is its simplicity and, in addition, can be carried out manually. This
allows the researchers to add a degree of system into the random selection of
subjects.
Another advantage is the assurance that the population will be evenly sam-
ples.

1.3.1.4 Cluster random sampling

When it can not use the simple random sampling due to the size of the
population then it is used the technique of cluster random sampling.

The researcher takes several steps in gathering its sample population.
First, it identifies the boundaries.
Then, it randomly selects a number of identified areas. That it is important
that to all areas within the population is given an equal chance of being
selected.
Finally, the researcher can either include all the individuals within the se-
lected areas or it can randomly selects subjects from the identified areas.
The most common use of cluster in research is a geographical cluster.

The principle advantage of this technique is the fact of being economical,
simple and fast.
On the other hand, the main disadvantage is the fact of being less represen-
tative of the whole population.

13



Chapter 1: Sampling Error

The tendency of individuals within a cluster is to have common character-
istics, then with a sample cluster the researcher can get a cluster that is
overrepresented or underrepresented, so obtaining false results.
Consequently, this technique is subject to a high sampling error.

1.3.1.5 Multi-stage random sampling

This technique includes two different cases of sampling: proportional sam-
pling and disproportional sampling.
The first of them is made from layers that have the same sampling fraction;
instead, in the second case the sampling fraction varies from layer to layer.

The disproportional sampling is a technique used to address the difficul-
ties given by the analysis of stratified samples of unequal size.
Disproportional sampling allows the researcher to give a larger representation
to one or more subgroups to avoid underrepresentation of the said strata.
Generally, disproportional sample tend to be less accurate and reliable com-
pared to a stratified sample, since mathematical adjustments are done during
the analysis of the data.
This process increases the chance of encountering errors in data analysis. It
is less accurate in drawing conclusions from the results of such studies.

1.3.2 Non-probability sampling

In non-probability sampling, just the opposite of probability sampling,
members of the population do not have the same chance of being selected.
In this case, the sample studied does not fully represent the population of
interest and, therefore, the research results can not be used to draw general
conclusions and inference about the population.

The subjects, in fact, are selected on the basis of their accessibility and
according to the personal judgment of the researcher.
Proceeding in this way, an unknown proportion of the population was not
sampled and the sample is not the result of a randomized selection process.

Researchers choose this method when they are interested in certain pa-
rameters and not to the entire population.
Also, this technique likes because it is economical, simple and fast.

1.3.2.1 Convenience sampling

In this technique, subjects are selected for their accessibility and proximity
to the purpose of the researcher. In fact, the subjects are not representative
of the whole population, but were chosen because they are easier to recruit.

14



Chapter 1: Sampling Error

This approach has many problems and criticism.
The problems are systematic errors that it gets from this sampling. Very
frequently the results significantly differ from the results of the entire popu-
lation.
A consequence of having systematic bias is obtaining skewed results.
Principle criticism is determined by the fact that the sample is not represen-
tative of the entire population then the results of the study can not speak
for the whole population and, therefore, it can not generalize and draw con-
clusions on the population. The results are not valid and truthful.
Some researchers use this technique only for its speed, for cost-effectiveness
and ease of finding the topics of study.

1.3.2.2 Consecutive sampling

Sequential sampling is a non-probability sampling technique wherein the
researcher picks a single or a group of subjects in a given time interval,
conducts his study, analyzes the results and, then, picks another group of
subjects if needed and so on.
This method of sampling is repetitive, as to correct analysis and refine the
search method was enough to make small changes and repeat the experiment.
This method is dependent on the researcher because only after conducting
the experiment for the first group of samples is possible to proceed with a
second group of samples.

There is very little effort in the part of the researcher when performing
this sampling technique. It is not expensive, not time consuming and not
workforce extensive.

After the experimets, the researcher can accept the null hypothesis or
refuse it and accept the alternative hypothesis. There is another possible
choice, that is represented by another experiments with another pool of sub-
jects.

The problems that arise from this technique are the non-representativeness
of the population and the sample is not obtained from a randomization. This
involves an ultra-low level of representativeness of this sampling technique.
Due to the aforementioned disadvantages, results from this sampling tech-
nique cannot be used to create conclusions and interpretations pertaining to
the entire population.

1.3.2.3 Quota sampling

Quota sampling is a non-probability sampling technique wherein the as-
sembled sample has the same proportions of individuals as the entire popu-
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Chapter 1: Sampling Error

lation with respect to known characteristics, traits or focused phenomenon.
The first step in non-probability quota sampling is to divide the pop-

ulation into exclusive subgroups. Then, the researcher must identify the
proportions of these subgroups in the population; this same proportion will
be applied in the sampling process.
Finally, the researcher selects subjects from the various subgroups while tak-
ing into consideration the proportions noted in the previous step.
The final step ensures that the sample is representative of the entire popu-
lation. It also allows the researcher to study traits and characteristics that
are noted for each subgroup.

It may appear that this type of sampling technique is totally representa-
tive of the population. In some cases it is not real. In fact, while sampling
some of the characteristics of the sample may be overrepresented.
In a study examining characteristics such as gender, religion and socioeco-
nomic status, the final results might give a misrepresentation of age, race,
level of instruction and other features.

1.3.2.4 Judgmental sampling

In this technique, the criteria by which the researcher takes its decisions
have the knowledge of the subjects to be analyzed and its professional judg-
ment.
The major use for this sampling is found in cases where a limited number of
individuals possesses the characteristic of interest for which it has to choose
a sample composed of a very specific group of people.

There is usually no way to evaluate the reliability of the expert or the
authority.
The best way to avoid sampling error brought by the expert is to choose the
best and most experienced authority in the field of interest.

From the description above, it can deduce that in this method the subjects
have not an equal chance of being selected, so it is not a random sampling.
The main consequence is the fact that it can not generalize and obtain an
inference of the entire population by the results of this sampling.

1.3.2.5 Snowball sampling

This method of sampling is used by researchers in cases where the study
sample is rare and is composed of a small subset of the population.
Snowball sampling is the proper technique to select the subjects difficult to
identify for analysis.
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After observing the initial subject, the researcher asks for assistance from
the subject to help him to identify people with similar trait of interest.

The chain referral process allows the researcher to reach populations that
are difficult to sample when using other sampling methods. The subjects
that the researcher can get are based on the topics previously observed.
In fact, the results obtained are distorted because the initial subjects tend
to suggest people who know.
Because of this, it is highly possible that the subjects share the same traits
and characteristics, thus, it is possible that the sample that the researcher
will obtain is only a small subgroup of the entire population.

Proceeding in this way, the researcher has little control over the selected
samples, but, on the other hand, someone would choose this technique be-
cause it is cheap, simple and convenient.

1.4 Sample size and sampling error

Sampling error is correlated with sample size; indeed, a large sample size
has less sampling error respect a small sample size, in a study where the
population is the same and all the its characteristics are the same.
Bigger sample studies more subjects of the population and could represent
more characteristics of it.
Aydemir and Borjas1 studied the attenuation bias in measuring the wage
impact of immigration because they wanted to demonstrate the role and the
importance of the sampling error [1].

The classical economic theory suggests that an increase in supply of im-
migrant workers has a negative impact on the relative price of labor of the
natives.
First, this impact is mitigated by the measurement errors present in the
analysis of data.
Also, the sampling error plays an important role in the studies that com-
monly are used to measure the impact on the wages of natives caused by
immigration.
In their analysis they used labor market data drawn from both Canada and
the United States to show that the attenuation bias is quite important in
empirical context of estimating the wage impact of immigration and adjust-
ing for the attenuation bias can easily double, triple, and sometimes even
quadruple the estimated wage impact of immigration.

1A. Aydemir and G.J. Borjas, Attenuation bias in measuring the wage impact of im-
migration, September 2010
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The attenuation bias becomes exponentially worse as the size of the sam-
ple used to calculate the immigrant share in the typical labor market declines.
They used large data files to try to conduct a very accurate and precise anal-
ysis. Eventually they were able to verify that also with samples of medium
and large is possible to achieve significant sampling errors and, therefore,
infer wrong conclusions on the economic impact of immigration.
Consequently, measurement errors have an important role and often contam-
inate the results of the experiments, so it has to try to reduce them as much
as possible and take account of them while it deduces the conclusions of the
experiments.
The sense of security that some researchers have in large microdata is not
true; in fact, many studies are extremely sensitive and easily influenced by
sampling errors.

1.5 Problems caused by sampling bias

A biased sample causes problems because any statistic computed from
that sample has the potential to be consistently erroneous.
It is almost impossible to get an unbiased sample and completely random,
so it gets an overrepresentation or underrepresentation of the characteristics
of the studied population.
If the error is small then the sample can be accepted and treated as a rea-
sonable approximation of a random sample.

Researchers could use a biased sample to produce false results to confirm
their studies, but in most cases those who get a biased sample attributes it
to a difficulty in obtaining a truly representative sample.
Some samples use a biased statistical design which nevertheless allows the
estimation of parameters. Some surveys require the use of sample weights to
produce proper estimates across all groups.
Provided that certain conditions are met, that the sample is drawn randomly
from the entire sample, these samples permit accurate estimation of popula-
tion parameters.

There is only one way to eliminate this error. This solution is to eliminate
the concept of sample and to test the entire population. In most cases this
is not possible.
Consequently, what a researcher must to do is to minimize sampling process
error. This can be achieved by a proper and unbiased probability sampling
and by using a large sample size.
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Chapter 2

Panel data models

The panel data, also known as time series longitudinal or transverse, are
a set of data where it is possible to observe the behavior of the same items
over time. These may be states, businesses or individuals.

The panel data is used monitor various types of time-varying, as cultural
factors, differences in business practices or variables that change over time,
but not between individuals.
They allow its to do an analysis at different levels to study multilevel or
hierarchical models.

Panel data is called balanced when all individuals are observed in all time
periods or unbalanced when the individual are not observed across all time,
but it is available data from some years, not all.

The principle advantages are the following:

• Time and individual variation in behavior unobservable in cross sections
or aggregate time series

• Observable and unobservable individual heterogeneity

• Rich hierarchical structures

• More complicated models

• Features that cannot be modeled with only cross section or aggregate
time series data alone

• Dynamics in economic behavior
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Chapter 2: Panel data models

2.1 Data structures

Time series and cross-sectional data are special cases of panel data that
are in one dimension only (one panel member or individual for the former,
one time point for the latter).

Time series data:

• Xt, t = 1, ...., T , univariate series, its path over time is modeled. The
path may also depend on third variables.

• Multivariate, their individual as well as their common dynamics is mod-
eled. Third variables may be included.

Cross sectional data:

• These data are observed at a single point of time for several individuals,
countries, assets. Xi, i = 1, . . . , N .

• The interest lies in modeling the distinction of single individuals, the
heterogeneity across individuals.

Pooling data refers to two or more independent data sets of the same
type.

Pooled time series:

• Return series of several factors, which are assumed to be independent
of each other, togheter with explanatory variables. The numbers of
sectors, N, is usually small. Observations are viewed as repeated mea-
sures at each point of time. So parameters can be estimated with high
precision due to an increased sample size.

Pooled cross sections:

• Mostly these type od data arise in surveys, where people are asked
about some arguments. This survey is repeated T times before elections
every week. T is usually small. So it has several cross sections, but
the persons asked are chosen randomly. Hardly any person of one cross
section is member of another one. The cross sections are independent.

20
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Panel data set has both a cross-sectional and a time series dimension, where
all cross section units are observed during the whole time period, like in this
formula:

Xit, i = 1, ..., N, t = 1, ..., T

where T is usually small.
The panel models analyze the same individual for several periods, instead

the pool sections perform repeated random selections of individuals. The
pooling model is appropriate if individuals are randomly selected in each
period.
Use of panel models in the study of securities observes the same title in
several periods, so it can see if a stock with high performance will continue
to have the same return in the next period or will change.
For these reasons, the panel model is more efficient and more appropriate
model of pooling model.

2.2 Static linear panel data model

The two basic models for the analysis of panel data are the fixed effects
model and the random effects model.
Panel data are most useful when it is suspect that the outcome variable
depends on explanatory variables. If such omitted variables are constant
over time, panel data estimators allow to consistently estimate the effect of
the observed explanatory variables.
The standard static model with i = 1,...,N, t = 1,...,T is

Yit = β0 + x′itβ + εit (2.1)

where x′it is a k dimensional vector of explanatory variables, without a con-
stant term, β0 the intercept is independent of i and t, β is independent of i
and t, εit the error, varies over i and t.
Individual characteristics (which do not vary over time) zi may be included

Yit = β0 + x′itβ1 + z′iβ2 + εit (2.2)

Two main problems of this model are endogeneity and autocorrelation in the
errors:

• Consistency/exogeneity : assuming iid errors and apppling OLS it gets
consistent estimates, if E(εit) = 0 and E(xitεit) = 0, if the xit are
weakly exogenous
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• Autocorrelation in the errors : since individual i is repeatedly observed
Corr(εi,s, εi,t) 6= 0, with s 6= t is very likely

Then, standard errors are misleading and OLS is inefficient.
Unobserved individual factors, if not all zi variables are available, may be
captured by ai.
It decomposes the error in

ε = ai + uit (2.3)

with uitiid(0, σ2
u), where uit has mean 0, is homoscedastic and not serially

correlated.
All individual characteristics, including all observed as well as all unobserved
ones, which do not vary over time, are summarized in the a′is.

2.2.1 Fixed effects model

In the fixed effects model, the individual-specific effect is a random variable
that is allowed to be correlated with the explanatory variables.
The standard fixed effects model is represented by the formula below:

Yit = ai + x′itβ + uit (2.4)

no overall intercept is included in (2.4).
Under FE consistency does not require, that the individual intercepts and
xit are uncorrelated. Only E(xituit) = 0 must hold.

The data are often divided into categories such as industries, states, fam-
ilies and, when in this case, it is appropriate to control the characteristics of
these categories.

When estimating a linear OLS have to worry about the unobservable
characteristics that may correlate with the variables included in the regres-
sion.
The phenomenon of omitted variables is very common and cause a problem
of endogeneity.
This problem could be solved with regressions with fixed effects because if
the unobservable characteristics do not vary over time, that is, are the fixed
effects, it will be possible to eliminate omitted variable bias.

In some cases, it might believe that its set of control variables is suffi-
ciently rich that any unobservable are part of regression noise, and therefore
omitted variable bias is nonexistent. But it can never be certain about un-
observable because they are unobservable.
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So fixed effects model are a nice precaution even if it thinks to might not
have a problem with omitted variable bias.
If the unobservable is not time-invariant then it still has omitted variable
bias. It may never be able to fully rule out this possibility.

A significant problem of this model is the fact of not being able to assess
the effect of the variables that have small variations within the group.
In fact, it serves repeated observations for each group and a reasonable
amount of variation of the main variables within each group.
If it is crucial that it learns the effect of a variable that does not show much
within-group variation, then it will have to forego fixed effects estimation.
But this exposes it to potential omitted variable bias.
There is no easy solution to this dilemma.

2.2.1.1 Estimators of fixed effects model

2.2.1.1.1 LSDV estimator

It can write the FE model using N dummy variables indicating the individ-
uals.

Yit =
N∑
j=1

αjdij + xitβ + uit, ai, uit ∼ iid(0, σ2
u (2.5)

with dummies dj, where dij = 1 if i=j, and 0 else.
The parameters can be estimated by OLS. The implied estimator for β is
called the LS dummy variable estimator, LSDV.
Instead of exploding computer storage by increasing the number of dummy
variables for large N the within estimator is used.

2.2.1.1.2 Within estimator, FE

The FE estimator forβ is obtained, if it uses the deviations from the individ-
ual means as variables.
The model in individual means is the following:

yi = ai + xiβ + ui (2.6)
Subtraction from yit = ai + xitβ + uit gives the results below:

yit − yi = (xit − xi)′β + (uit − ui) (2.7)
where the intercepts vanish. Here the deviation of yit from yi is explained.
The estimator for β is called the within or FE estimator. Within refers to
the variability among observations of individual i i.
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2.2.1.1.3 First difference estimator, FD

An alternative way to eliminate the individual effects ai is to take the first
differences, with respect of time, of the FE model:

yit − yi,t−1 = (xit − xi.t−1)′β + (uit − ui,t−1) (2.8)

FD allows correlation between xit and ui,t−2.
The FD estimator is slightly less efficient than the FE. FS looses one time
dimensions for each i. FE looses one degree of freedom for each i by using
yi, xi.

2.2.2 Random effects model

A random effect(s) model, also called a variance components model, is a
kind of hierarchical linear model.
It assumes that the dataset being analysed consists of a hierarchy of different
populations whose differences relate to that hierarchy.
In econometrics, random effects models are used in the analysis of hierarchical
or panel data when one assumes no fixed effects.
The random effects model is a special case of the fixed effects model.

Such models assist in controlling for unobserved heterogeneity when this
heterogeneity is constant over time and correlated with independent vari-
ables.
This constant can be removed from the data through differencing, for example
by taking a first difference which will remove any time invariant components
of the model.

There are two common assumptions made about the individual specific
effect, the random effects assumption and the fixed effects assumption.
The random effects assumption, made in a random effects model, is that the
individual specific effects are uncorrelated with the independent variables.
The fixed effect assumption is that the individual specific effect is correlated
with the independent variables.
If the random effects assumption holds, the random effects model is more
efficient than the fixed effects model.
However, if this assumption does not hold, the random effects model is not
consistent.

In a random effect model the unobserved variable are assumed to be
uncorrelated with all the observed variables. That assumption will often be
wrong but an RE model may still be desirable under some circumstances.
The model can be estimated by Generalized Least Squares (GLS) which is
in general more efficient than OLS.
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The formula below represents a random variable, which has the same variance
like the others:

ai ∼ (0, σ2
a)

yit = β0 + x′itβ + ai + uit, uit ∼ (0, σ2
a) (2.9)

The value ai is specific for individual i. The a’s of different individuals are
independent, have a mean of zero, and their distribution is assumed to be
not too far away from normality. The overall mean is captured in β0.

As long as E(xitεit) = E(xit(ai + uit)) = 0 the explanatory variables are
exogenous, the estimates are consistent.
In general, random effects are efficient, and should be used if the assumptions
underlying them are believed to be satisfied.
For random effects to work in the school example it is necessary that the
school-specific effects be uncorrelated to the other covariates of the model.
This can be tested by running fixed effects, then random effects, and doing a
Hausman specification test. If the test rejects, then random effects is biased
and fixed effects is the correct estimation procedure.

2.2.2.1 Estimation of random effects model, GLS

yit = β0 + x′itβ + ai + uit (2.10)

uit ∼ (0, σ2
a), ai ∼ (0, σ2

a)

where (ai + uit) is an error of 2 components:

• an individual specific component, which does not vary over time

• a remainder, which is uncorrelated with respect to i and t

• ai and uit are mutually independent, and independent of all xjs

As simple OLS does not take this special error structure into account, GLS
is used.
GLS is unbiased, if the x ’s are independent of all ai and uit.
The GLS will be more efficient than OLS in general under RE assumptions.
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2.3 Dynamic panel data models

Panel data is now widely used to estimate dynamic econometric models.
Its advantage over cross-section data in this context is obvious: it cannot
estimate dynamic models from observations at a single point in time, and it
is rare for single cross-section surveys to provide sufficient information about
earlier time periods for dynamic relationship to be investigated.

Its advantage over aggregate time series data include the possibility that
underlying microeconomic dynamics may be obscured by aggregation biases,
and the scope that panel data offers to investigate heterogeneity in adjust-
ment dynamics between different types of individuals.

Genuine panel data will typically allow more of the variation in the micro
data to be used in constructing parameter estimates, as well as permitting
the use of relatively simple econometric techniques.
Many economic issues are dynamic by nature and use the panel data structure
to understand adjustment. Examples: demand, dynamic wage equation,
employment models, investment of firms, etc.

The dynamic model with one lagged dependent without exogenous vari-
ables, |γ| < 1, is explaned in the formula below:

yit = γyi,t−1 + ai + uit, uit ∼ (0, σ2
a) (2.11)

In (2.11), γyi,t−1 depends positevely on ai.
There is an endogeneity problem. OLS and GLS will be inconsistent for
N →∞ and T fixed, both FE and RE.
The finite sample bias can be substantial for small T. If in addition T →∞,
it obtains a consistent estimator, but T is small for panel data.

2.3.1 Estimators for dynamic panel data

2.3.1.1 The first difference estimator (FD)

Using the first difference estimator (FD), which eliminates the ai’s

yit − yi,t−1 = γ(yi,t−1 − yi,t−2) + (uit − ui,t−1) (2.12)

is no help, since yi,t−1 and ui,t−1 are correlated even when T →∞.
It stays with the FD model, as the exogeneity requirements are less restric-
tive, and it uses an IV estimator.
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2.3.1.2 IV estimator, Anderson-Hsiao

Instrumental variable estimators, IV, have been proposed by Anderson-Hsiao,
as they are consistent with N →∞ and finite T.
Choice of the instruments for (yi,t−1 − yi,t−2):

• instrument yi,t−2 as proxy is correlated with (yi,t−1 − yi,t−2), but not
with ui,t−1 or uit, and so (uit − ui,t−1)

• instrument (yi,t−2 - yi,t−3) as proxy for (yi,t−1 - yi,t−2) sacrifies one more
sample period

2.3.1.3 GMM estimation, Arellano-Bond

The Arellano Bond (also Arellano-Bover) method of moments estimator is
consistent.
The moment conditions use the properties of the instruments

yi,t−j, j ≤ 2 (2.13)
to be uncorrelated with the future errors uit and ui,t−1. It obtains an increas-
ing number of moment conditions for t = 3, 4, . . . ., T.

t = 3 : E[(ui,3 − ui,2)yi,1] = 0

t = 4 : E[(ui,4 − ui,3)yi,2] = 0, E[(ui,4 − ui,3)yi,1] = 0

t = 5 : E[(ui,5 − ui,4)yi,3] = 0, E[(ui,5 − ui,4)yi,1] = 0

2.3.1.3.1 GMM estimation, Arellano-Bond, without x’s

Ignoring exogenous variables, for δyit = γδyi,t−1 + δuit

E[Z ′iδui] = E[Z ′i(δyi − γδyi,t−1)] = 0 (2.14)
The number of moment conditions are 1 + 2 +. . . ..+ (T-2).
The optimal matrix yielding as any efficient estimator is the inverse of the
covariance matrix of the sample moments.
The matrix can be estimated directly from the data after a first consistent
estimation step.
Under weak regularity conditions the GMM estimator is any normal for N →
∞ for fixed T, T > 2 using our instruments. It is also consistent for N →∞
and T →∞, though the number of moment conditions →∞ as T →∞.
It is advisable to limit the number of moment conditions.
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2.3.1.3.2 GMM estimation, Arellano-Bond, with x’s

The dynamic panel data model with exogenous variables is:

yit = xitβ + γyi,t−1 + ai + uit, uit ∼ iid(0, σ2
u) (2.15)

As also exogenenous x ’s are included in the model additional moment con-
ditions can be formulated:

• for strictly exogenous variables, E[xisuit] = 0 for all s, t
E[xisδuit] = 0

• for predetermined variables, E[xisuit] = 0 for s ≤ t
E[xi,t−jδuit] = 0, j = 1, . . . ., t-1

So there are a lot of possible moment restrictions both for differences as well
as for levels, and so variety of GMM estimators.
GMM estimation may be combined with both FE and RE.
Here also, the RE estimator is identical to the FE estimator with T →∞.

2.4 Panel data from time series of cross-sections

In many countries, there are few or no panel data, but there is a series of
independent cross-sections.
Several models that seemingly require the availability of panel data can also
be identified with repeated cross-sections under appropriate conditions.
This concerns models with individual dynamics and model with fixed individual-
specific effects.

The major limitation of repeated cross-sectional data is that the same
individual are not followed over time, so that individual histories are not
available for inclusion in a model. On the other hand, repeated cross-sections
suffer much less from typical panel data problems like attrition and nonre-
sponse.

In a seminal paper, Deaton [2] (1985)1 suggests the use of cohorts to
estimate a fixed effects model from repeated cross-sections.
A cohort is a group of individuals compounds in a fixed manner and can be
identified by the investigation.
The analyzes generate a sequence of random samples composed of people
from these cohorts, which must be large enough. From these primary results

1Angus Deaton, Panel data from time series of cross-sections
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it can get samples that generate a time series as they were panel data and,
from these data, it is possible to infer the behavior of cohorts in general.
The starting point of the analysis of Deaton considers linear economic rela-
tions that may contain the individual fixed effects, as also not contain them.
He argues that the same form of relationships existing in the population is
found in the population divided in cohorts.
In addition, if the population have additive individual fixed effects, these
same fixed effects will be found for the cohort population.

It is possible to use errors-in-variable estimators to consistently estimate
the population relationships.
This methodology was designed in response to a lack of panel data to make
an econometric analysis complete. Not for this reason it can be considered a
method that provides inferior results; in fact, every year it selects new sam-
ples and the representativeness of the population remains and is maintained
from year to year.
An important feature is the lack of friction problem in the population cohorts,
while in panel data this characteristic represents a huge problem.

Deaton does not support the theory according to which the panel data
are free of errors in the variables. In fact, for him the difference between
cohorts and panel data model is low.
The technique of cohorts has an important advantage, to recognize the error
of measurement from the start and to be able to control it well.

Another scholar, Ashenfelter (1983) has shown in the analysis made by
him on the elasticity of labor supply that the measurement errors have a
very important role and persistent over time, so it is difficult to come to the
truthful conclusions as they are affected by a large error.

Deaton did this first study mainly on linear models, and other scholars
have tried to extend his theory even on more complex models, such as non-
linear models and dynamic ones. Moffitt (1993) and Collado (1997) have
proposed an extension of the model of Deaton. They studied the dynamic
linear model.
The starting point of the two versions is the same: both claim that N →∞.
What changes is the idea of what happens to the cohorts as N increases.
Deaton said that if increases N then increases the number of cohorts, but the
size of the cohorts remains constant value.
Instead, Moffitt and Collado claim that increases if N then increases the size
of the cohorts, not their numbers.
This new approach can solve the problem of errors in variables which in
Deaton’s model was present.
The fixed effects estimator based on the pseudo panel of cohort averages
may provide an attractive choice, even when a lagged dependent variable is
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included in the model ( Verbeek and Vella, 2005).
Moffit and Collado did a Monte Carlo experiments and showed that the bias
that is present in the within estimator for the dynamic model using genuine
panel data is much larger than what is found for similar estimators employed
upon cohort aggregates.
Economic theory is very common to find to analyze models containing fixed
individual effects correlated with the explanatory variables.
On the other hand, however, often they lack the genuine panel data and,
therefore, the theory proposed by Deaton has a significant role in estimating
dynamic models and fixed effects models in the absence of the original panel
data.
These models are then solved by repeated cross-sections, but they also require
the identification conditions quite strong and difficult to estimate.

The technique of cohorts resembles the technique of instrumental vari-
ables, in which instruments are taken as indicators of the group.
An important issue in both the static and dynamic models is the validity and
relevance of the instruments that are used to construct the cohorts.
The instruments must be valid and relevant to the analyzed model to get an
instrumental variables estimator consistent.
It may happen that even in the presence of valid instruments and theoretically
relevant to the model, the latter suffer the problem of weak instruments and,
therefore, obtain the estimators with low yields (Bound, Jaeger and Baker,
1995).

A necessary condition for consistency of most estimators is that all ex-
ogenous variables exhibit genuine time-varying cohort-specific variation.
The cohorts have the exogenous variables that change differentially over time.
This requirement will be satisfied in empirical applications because estima-
tion error in the reduced form parameters may hide collinearity problems.
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Monte Carlo method

3.1 Definition

It is an econometric technique based on repeated random sampling and,
for the fact of relying on expressing random, it can not predict the results
that may be obtained from the simulation.
The results from the experiment data, later, are subjected to a statistical
analysis to derive the conclusions.

Monte Carlo methods are mainly used in three distinct problem classes:
optimization, numerical integration and generating draws from a probability
distribution.
It uses mathematical models and mathematical expressions to describe differ-
ent studies that can be done with this simulation in different fields of study,
such as the natural sciences and engineering.
First, it has to define the inputs of the model, which, through the use of
various mathematical formulas, leads to obtaining one or more outputs.
The input parameters for the models depend on various external factors.
Realistic models are subject to risk from the systematic variation of the
input parameters. An effective model should take into consideration the
risks associated with various input parameters.
Monte Carlo simulation support the researcher in the analysis of the risks
associated with the input, to be able to select the most consistent variables
for the model studied.

The order in which the simulation is performed is the following:

1. define a domain of possible inputs

2. generate inputs randomly from a probability distribution over the do-
main
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3. perform a deterministic computation on the inputs

4. aggregate the results

In the first step, it identifies a statistical distribution which will be selected
from all the inputs.
Later, in the second step, the inputs are obtained in a random way from the
distribution.
In the third step, it analyzes the outputs that have been obtained to be able
to reach some conclusions on the initial hypothesis of the study.
In the last part it puts together the results obtained to compare them with
other results from different random samples to being able to draw final con-
clusions.

Monte Carlo simulation does not always require truly random numbers to
run, in fact, for many techniques, it can use pseudo-random sequences that
make it easier to test and run the simulation.
The main feature is the unpredictability, that is, the results is not known in
advance.
Instead, the characteristic necessary to make a enough good simulation is
having a pseudo-random sequence that is seems random.
Testing that the numbers are uniformly distributed or follow another desired
distribution when a large enough number of elements of the sequence are con-
sidered is one of the simplest, and the most common ones. Weak correlations
between successive samples is also often desirable.
Pseudo-random number sampling algorithms are used to transform uniformly
distributed pseudo-random numbers into numbers that are distributed ac-
cording to a given probability distribution.
To summarize, the characteristics of a good Monte Carlo simulation are the
following:

• the pseudo random number generator has a certain characteristics

• the pseudo- random number generator produces values that pass tests
for randomness

• there are enough samples to ensure accurate results

• the proper sampling technique is used

• the algorithm used is valid for what is being modeled

• it simulates the phenomenon in question
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A variant of the simulation itself is the quasi - Monte Carlo methods
in which random sampling are used for low discrepancy sequences as this
ensures a faster convergence than Monte Carlo simulation using random or
pseudo-random sequences.
The principle disadvantages of this method are two: first, it might be difficult
to evaluate the best and worst case scenarios for each input variable; second,
decision making tends to be difficult as well, since it is considering more than
one scenario.

3.2 History

The Monte Carlo method has a long history. In statistics it was called
model sampling and used to verify the properties of estimates by mimicking
the settings for which they were designed.
W.S. Gosset (1908) did some simulations on finger measurement from 3000
criminals and derived some analytical results, that it is what is now called
the t-student distributions.
Sampling was also used by physicists. Hammersley and Handscomb (1964)
describe some computations done by Kelvin (1901) on the Boltzmann equa-
tion.
Primitive idea of random sampling is found in method of Buffon who made an
experiment observing a random sequence of needles on a floor and counting
the fraction of needles That touch the line between two planks.
One of the most famous early uses of MC simulation was by Enrico Fermi
in 1930, when he used a random method to calculate the properties of the
newly-discovered neutron.
The Monte Carlo method acquired this name from the famous Casino of
Monte Carlo and became an important method in physics for the study of
atomic weapons, in the 1940s - 1950s.
Many of the problems studied had a deterministic origin. By now it is stan-
dard to use random sampling on problems stated deterministically but early
on that this was a major innovation, and was even considered to be part of
the definition of a Monte Carlo method.

From the 1950s, there are many papers and many studies were done
using the Monte Carlo method to tackle different problems in different fields
of study.
Metropolis (1953) showed for the first Markov chain Monte Carlo method to
study the relative position of the atoms and calls it the Metropolis algorithm.
Tocher and Owen (1960) describe the GSP software for discrete event sim-
ulation of queues and industrial processes. In 1977, Boyle used the Monte
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Carlo simulation to solve problems related to financial options and the choice
of portfolio.
Gillespie, in the same year, used this method to study completely different
topic. He studied the chemical reactions in which the number of molecules
is too small to which not even the differential equations are able to analyze
them accurately.
Efron’s (1979) bootstrap uses Monte Carlo sampling to give statistical an-
swers with few distributional assumptions. Kirkpatrick (1983) utilized Monte
Carlo method for optimizing very nonsmooth functions.
Indeed Kajiya (1988) used it for draw a path tracing for graphical rendering.
Tanner and Wong (1987) use Monte Carlo algorithms to cope with problems
of missing data.
German and Gelfand (1990) and others researchers used the Monte Carlo
method to solve the Bayesian statistical problems.
There are many other studies in which this method has found application
and has enabled a solution to many problems before unsolved.

Even the quasi-Monte Carlo method has its own history and was created
at about the same time as the real Monte Carlo simulation. In fact, the term
was invented by Richtmyer in 1952, which considered proposing a Monte
Carlo simulation in which the sequence is more uniform than truly random.

3.3 Methodology

The following steps are typically performed for Monte Carlo simulation:

1. Static model generation
The starting point of the simulation is to develop a model that is as
close as possible to a real scenario. Then, the use of mathematical
formulas allows starting from the values of the inputs, process them
and obtain the outputs.

2. Input distribution identification
In this step it is important to identify the distribution that governs all
inputs and, to do this, there are several statistical procedures. The
input variables have a risk component that is added to the model, and
is important to lower the risk as much as possible.

3. Random variable generation
After identifying the distribution in the second step, now it can get a
set of random numbers. One set of random numbers, consisting of one
value for each of the input variables, will be used in the deterministic
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model, to provide one set of output values. It then repeats this process
by generating more sets of random numbers, one for each input distri-
bution, and collect different sets of possible output values. This is the
core of Monte Carlo simulation.

4. Analysis and decision making
The simulation provides many outputs, but they are not definitive; in
fact, they must be subjected to a statistical analysis. Finally, it is
possible to draw final conclusions and have a statistical confidence of
the results obtained.

3.3.1 Identification of input distribution

First, it is necessary to discuss the procedure for identifying the input
distributions for the simulation model, often called distribution fitting.
The probability distribution determines the outcomes of random variables
and, also, the probability with which these can occur. In fact, if the random
variables obtained discrete values, then the distribution that governs them is
called discrete probability distributions.

Fitting routines provide a way to identify the most suitable probability
distribution for a given set of data.
This method uses historical data on particular input parameters and, with
mathematical methods, sit the data to discrete or continuous distribution.
The probability distribution is identified by the input parameters, which
generate the input data.
For the technique of fitting data to distributions there are several methods
by which it can run it.

3.3.1.1 Methods for distribution fitting

3.3.1.1.1 Method of maximum likelihood (ML)

ML estimation (MLE) is a popular statistical method used to make in-
ference about parameters of the underlying probability distribution from a
given data set.
If the data drawn from a particular distribution are independent and identi-
cally distributed (iid), then this method can be used to find out the param-
eters of the distribution from which the data are most likely to arise.
Let θ be the parameter vector for f, which can be either a probability mass
function for discrete distribution or a probability density function for contin-
uous distributions.
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Let the sample drawn from the distribution be x1, x2, . . . , xn then the likeli-
hood of getting the sample from the distribution is given by

L(θ) = fθ(x1, x2, ...., xn|θ) (3.1)

given the parameters of this distribution formula, it can be defined as the
probability density function of the date.
In MLE, it tries to find the value of the θ so that the value of L(θ) can be
maximized. To achieve this it must consider the log of the function and this
is called loglikelihood.
The MLE method can be seen as unconstrained nonlinear optimization prob-
lem.
It shall be represented in the following formula:

MaxLL(θ) =
n∑
i=1

lnfθ(xi|θ), θ∈Θ (3.2)

For some distribution, this optimization problem can be theoretically
solved by using differential equations.
MLE method is by far the most used method for estimating the unknown
parameters of a distribution.
The most important features of this method are two:

1. The bias in the MLE tends to infinity as the number of samples, then
it can define asymptotically unbiased.

2. The MLE has the lowest mean squared error between the unbiased
estimators, so it is a method asymptotically efficient.

3.3.1.1.2 Method of moments (ME)

In the method of moments trying to equate sample moments with un-
observable population moments, to get some of the estimates of population
characteristics such as mean, variance, and the median.
In some cases, ME estimators can be calculated very easily and quickly on
the difference of the likelihood equations that are very complex.
ME estimators can be considered as a first approximation to the problem of
study, which, then, will be analyzed by the method MLE.
These are two complementary methods. Between the two, MLE method
provides a better estimate of distribution parameters, as it has a greater
chance to get close to the quantities to be estimated.
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3.3.1.1.3 Nonlinear optimization

Another method to estimate the unknown parameters of the distributions
is the non-linear optimization.
Different objective functions can be used for this purpose, such as: min-
imizing one of the goodness-of-fit- statistics, minimizing the sum-squared
difference from sample moments or minimizing sum-squared difference from
the sample percentiles.
The value of the parameter depends on the algorithm chosen to solve the
nonlinear optimization problem.
This method is typically less efficient and often takes more time.

3.3.2 Random variable generation

The second step in the simulation, after identifying the distribution that
governs the input parameters, is to generate random numbers. They repre-
sent the specific values of the variables.
The most common methods to generate random numbers from discrete and
continuous distributions are two: inverse transformation method and boot-
strapped Monte Carlo.

3.3.2.1 Generating RV’s from a distribution function

3.3.2.1.1 Inverse transformation method

The inverse transformation method provide the most direct route for gen-
erating a random sample from a distribution.
This method is described by a mathematical process. It is used in the reverse
of probability density function (PDF) for continuous distributions or reverse
of probability mass function (PMF) for discrete distribution.
Then, the random numbers between 0 and 1 are converted to random value
for the input distribution.
Let X is a continuous random variable that follows the PDF function, defined
by f . F denotes the cumulative probability distribution function for the
variable X and is continuous and strictly increasing (0, 1). F−1 denotes the
inverse of the function F.
The two steps from which to get a random number X from the PDF function,
f are defined as follow:

• Generate U ∼ U(0, 1)

• Return X = F−1(U)
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Since 0 ≤ U ≤ 1, F−1 (U) always exists.
The inverse transformation method can also be used when X is discrete. For
discrete distribution, if p(xi) is the probability mass function, the cumulative
PMF is given by:

F (x) = P (X ≤ x) =
∑
xi<x

p(xi) (3.3)

This method can be applied to different types of functions, not just the one
that is continuous or discrete.
Indeed, it may also apply to functions that are formed from a mixture of the
two functions above explained.

A major advantage is the fact it can use this method to generate random
numbers also from truncated distributions, so it gets the cumulative PMF
function with discrete jumps.

One disadvantage, however, is to not be able to implement this method
in case of miss in closed-form of inverse CDF for a distribution.
This disadvantage can be overcome by adopting another method proposed by
Devroye, in 1986, which proposes an iterative method with which to evaluate
the function in the absence of a closed-form.

The method of reverse transformation is the method most used to gen-
erate random numbers, but it is not the only one known. In fact, there are
other important methods, such as composition method, convolution method
and acceptance-rejection method (Law and Kelton, 1995).

3.3.2.2 Generating RV’s from a Data set: Bootstrapped Monte
Carlo

If it is studying particular distributions, as non-convex or multimodal, or
where the problem is represented by scarcity of data, then it can not get an
underlying distribution for an input variable.
In this case it has only a few historical value for the input variable.
The method described above can not be fine, in fact, the method boot-
strapped Monte Carlo simulation is the right one to be used in these cases
to generate random numbers.
Bootstrapped simulation can be a highly effective tool in the absence of a
parametric distribution for a set of data.
The implementation of the method consists in repeatedly sample the original
dataset to choose one of the data points from the set.
For bootstrapped MC simulation, one has to still use an uniform RNG, specif-
ically an RNG to generate integer random numbers among the indices of an
array, which is being used for storing the original datasets.
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For many datasets, this method provides good result for simulation pur-
poses. However, it does not provide general finite sample guarantees and has
a tendency to be overly optimistic.
A criticism of this method is its simplicity, as many method using assump-
tions made formally, however in the bootstrapped method assumptions are
formed when undertaking the bootstrap analysis.

The results obtained by this method can run into a problem of endogene-
ity, because there is a correlation in repeated observations and, because of
this, false statistical inference could be drawn.

3.3.3 Monte Carlo simulation output analysis

The results of Monte Carlo simulation, to be meaningful, must be sub-
jected to statistical analysis.
There are several model formula to be applied for each set of random numbers
generated for each of the random variable to reach a final result for the output
variables.
Aggregating the output values into groups by size and displaying the values
as a frequency histogram provides the approximate shape of the probability
density function of an output variable.

The output values can be used in different ways: they can be aggre-
gated into empirical distribution or can be fitted to a probability distribution,
which, then it can calculate the theoretical statistics.
To increase the accuracy of the output is important to compute many simu-
lations, because the higher the number, the better then the approximations
of distributional shape and the expected value of the variable.

3.3.3.1 Formulas for basic statistical analysis

The main formulas used to make a basic statistical analysis of the output
values are listed below.
They are used to draw the final conclusions and infer the characteristics of the
real population, starting from simulated samples. For this they are formulas
which belong to sample statistics.
Let assume that it has N values for each of the output parameters, each value
represented as xi, i = N .

The most important and meaningful formulas to interpret the output variable
are the following:

Mean(x) x =
1

n

∑
i

xi
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Standard deviation(s) s =

√
1

N − 1

∑
(xi − x)2

V ariance(s2) s2 =
1

N − 1

∑
(xi − x)2

Skewness Sk =
∑ (xi − x)3

(N − 1)s3

Kurtosis Ku =
∑ (xi − x)4

(N − 1)s4
− 3

Coefficientofvariability CF =
s

x

Minimum(xmin) xmin = minixi

Maximum(xmax) xmax = maxixi

Range Width RW = xmax − xmin

Mean standard error MSE =
s√
n

3.4 Application areas for Monte Carlo simula-
tion

3.4.1 Monte Carlo simulation in mathematics and sta-
tistical physics

Perhaps the most important use of the Monte Carlo method is in math-
ematics and physics. It has found a solution for complex multi-dimensional
partial differentiation and integration problems.
In the context of solving integration problems, MC method is used for simu-
lating quantum systems, which allows a direct representation of many-body
effects in the quantum domain.

Monte Carlo methods are mainly used in three problem classes, which
are integration, optimization and inverse problems. All these techniques are
explained below.
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3.4.1.1 Monte Carlo integration

In mathematics, Monte Carlo integration is a technique for numerical
integration using random numbers.
It is a particular Monte Carlo method that numerically computes a definite
integral and is particularly useful for higher-dimensional integrals.
The special feature of this method that differentiates it from the others is
the fact that the points at which the integrand is evaluated are chosen in
a random way; indeed, in other methods, the integrand are evaluated at a
regular grid.

There are different methods to perform a Monte Carlo integration, such
as uniform sampling, stratified sampling, importance sampling, sequential
Monte Carlo and mean field particle methods.
Monte Carlo integration employs a non-deterministic approach: each real-
ization provides a different outcome.
The final outcome is given by an approximation of the correct value which
is within the errors bars obtained by outcome.
The problem Monte Carlo integration addresses is the computation of a mul-
tidimensional definite integral, explains in the following formula:

I =

∫
Ω

f(x)dx (3.4)

in (3.4) Ω, a subset of Rm has volume expressed by the formula:

V =

∫
Ω

dx (3.5)

The naive Monte Carlo approach is to sample points uniformly on Ω: given
N uniform samples, I can be approximated by the following formula:

I ≈ QN ≡ V
1

N

N∑
i=1

f(xi) = V (f) (3.6)

This is because the law of large numbers ensures that:

limN→∞QN = I (3.7)

Given the estimation of I from QN , the error bars of QN can be estimated
by the sample variance using the unbiased estimate of the variance:

V ar(f) ≡ σ2
N =

1

N − 1

N∑
i=1

(f(xi)− (f))2 (3.8)
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which leads to

V ar(QN) =
V 2

N2

N∑
i=1

V ar(f) = V 2V ar(f)

N
= V 2σ

2
N

N
(3.9)

As long as the sequence (σ2
1, σ

2
2, σ

2
3, .....) is bounded, this variance decreases

asymptotically to zero as 1/N.
The estimation of the error of QN is thus given by:

δQN ≈
√
V ar(QN = V

σN√
N

(3.10)

which decreases as 1√
N
.

The biggest advantage of this technique is the fact that the result does not
depend on the numbers of dimensions of the integral, while, in many deter-
ministic methods, the results depends on the dimension.
A feature common to the MC method and deterministic methods is the fact
that the estimate of the error is not a strict error bound.
The random sampling, therefore, can lead to an underestimate of the error
since it may not include all important features.

The literature has discussed very much the cases in which Monte Carlo
simulation is used to improve the error estimates.
The two techniques that best address this problem are the stratified sampling,
where the regions are divided into sub-domains, and importance sampling,
where sampling is made from non-uniform distributions.
In the next two paragraphs these two techniques are best explained.

3.4.1.1.1 Recursive stratified sampling

Recursive stratified sampling is used for the analysis of a multidimensional
integrals.
In fact, it is divided into several recursion steps and, for each step, Monte
Carlo algorithm is used for calculating the integral and error.

If the error estimate is larger than the required accuracy the integration
volume is divided into sub-volumes and the procedure is recursively applied
to sub-volumes.
In multidimensional integral the numbers of sub-volumes grow too quickly,
so it is not possible to use the simple strategy called dividing by two.

The stratified sampling algorithm wants to be able to reduce the error
and, therefore, get more effective sampling.
It can obtain this by focusing on regions where the variance of the function
is largest, so to reduce the wide variance proceed dividing the volume and
subdivision should bring most dividends.
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3.4.1.2 Importance sampling

Importance sampling is another technique that is used to reduce the vari-
ance.
The starting point is to emphasize the values of the input random variables
that have more impact on the parameters.
Then, it samples more these more important values and, by doing so, it gets
to reduce the variance of the estimator.

The fundamental issue in implementing importance sampling simulation
is the choice of the biased distribution which encourages the important values
of the input variables.
Choosing a good biased distribution is the core part of importance sampling.
It must pay attention to the choice of the distribution, because if it chooses
a biased distributions then it will get a biased estimator by simulation.
However, the simulation outputs are weighted to correct for the use of the
biased distribution, and this ensures that the new importance sampling es-
timator is unbiased. These weights are given by the likelihood ratio, such as
derivative of the underlying distribution with respect to the biased distribu-
tion (Radon and Nikodym).
Consider X to be the sample and f(X)

g(X)
to be the likelihood ratio, where f

is the probability density (mass) function of the desired distribution and
g is the probability density (mass) function of the biased/proposal/sample
distribution.
Then the problem can be characterize by choosing the sample distribution g
that minimizes the variance of the scaled sample:

g∗ = mingV arg

(
X
f(X)

g(X)

)
(3.11)

It can be shown that the following distribution minimizes the above variance:

g∗(X) =
|X|f(X)

f |x|f(x)dx
(3.12)

In the (3.22),It is easy to see that when X ≥ 0, this variance becomes 0.

3.4.1.3 Optimization

A very common method used for random numbers in Monte Carlo simu-
lation is optimization.
It is used to minimize or maximize functions that have a large numbers of
dimensions in their respective vectors.
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There are many problems which could be resolved with this technique:
minimize the number of moves in a computer chess program, solve particle
problems by exploring large configuration space, minimize distance travel in
the traveling salesman problem, etc.

This last problem is maybe the most famous problem of optimization and
is defined like a conventional optimization problem.
Assuming to know all the distances between each destination point, the pur-
pose of the issue is to find the possible travel choice with the lowest total
distance.
However, let’s assume that instead of wanting to minimize the total distance
traveled to visit each desired destination, it wanted to minimize the total
time needed to reach each destination.
This assumption is not acceptable because travel time is uncertain (traffic,
time of day, etc. . . ), so it is necessary to proceed with simulation-optimization
to achieve the solution to this problem.
First, through the use of a probability distribution, it has to understand time
it could spend to go from one point to another.
Then, taking account the uncertainty linked to time travel, it optimizes its
travel decisions to identify the best path to follow.

3.4.1.4 Inverse problems

The definition of inverse problem is supported by the definition of proba-
bility distribution.
The last model obtained by measuring the observable parameters and com-
bines the information submitted previously obtained with those just ob-
tained.

In the general case, the theory that links the data to the model param-
eters, defined posterior probability, is nonlinear, it may by multimodal or
some moments may not be defined.
Accepting a maximum likelihood model like final outcome is not possible,
because in inverse problems it wish to have information on the resolution
power of the data.

Due to a large number of model parameters is difficult to apply an in-
spection of the marginal probability densities.
This can be accomplished using an efficient Monte Carlo method, even in
cases when there is not available an explicit formula for the distribution.
So, the solution to this problem is given by the possibility to generate in a
pseudo-randomly way a large collection of models according to functional the
posterior probability distribution and, then, to display the models so that the
properties of the model likelihood conveyed to the researchers.
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Based on the importance sampling method it can get to do an analysis
of inverse problems with complex information and data obtained in advance
and distributed according to an arbitrary noise distribution. This is possible
starting by the algorithm of Metropolis and generalize it for analysis possibly
highly nonlinear.

3.4.2 Monte Carlo simulation in finance

Financial analysts use Monte Carlo simulation quite often to model various
scenarios.

3.4.2.1 Real options analysis

In the analysis of real options, Monte Carlo simulation is important for
the calculation of net present value (NPV) of projects.
The input variables , that are characterized by uncertainty, are used in
stochastic model to run Monte Carlo.
Then, from the analysis of the outputs, it is possible to deduce the average
NPV of the project, its volatility and other sensitivities.

3.4.2.2 Portfolio Analysis

It is possible to used Monte Carlo simulation also in problems of portfolio
evaluation.
For each simulation, it obtained the value of the instruments components the
portfolio and the value of the portfolio.
Then, after collecting the values of many simulations, it is possible to com-
bined them in a histogram and deduce the characteristics of the portfolio
from this representation.

3.4.2.3 Option analysis

Monte Carlo simulation can be used for analyzing the prices of different
types of option.
From a simulation, it obtained various price path for the underlying share
for options on equity.
Then, these paths are subjected to statistical analysis to deduce final con-
clusions.

This simulation can be used, also, for studying some characteristics of
bonds and bond options.
In this case, Monte Carlo simulation is useful to analysis the uncertainty of
the annual interest rate.
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3.4.2.4 Personal financial planning

MC methods are used for personal financial planning, simulating the over-
all market to find the probability of attaining a particular target balance for
the retirement savings account.

3.4.3 Monte Carlo simulation in reliability analysis and
six sigma

Reliability analysis is useful for evaluating cycle costs, cost-effectiveness
of the products and many others problems.
In the reliability analysis, the starting point is the evaluating of failure dis-
tribution.
Then, random numbers are generated for these distribution.
Finally, the output results are statistically analyzed to calculate the proba-
bility of these failure events.

Six sigma, indeed, is a business management strategy, which has the goal
to identify and remove the causes of defects and errors in business processes.
Six-sigma principles can be applied to various industries, including manufac-
turing, financial and software.
Monte Carlo simulation is used to analyzing many problems in this areas:
to identify optimal strategy in selecting projects, providing probabilistic es-
timates project cost benefits, creating virtual testing grounds in later phases
for proposed process and product changes, predicting quality of business pro-
cesses, identifying defect-producing process steps driving unwanted variation.

3.4.4 Monte Carlo simulation in engineering

Monte Carlo methods are used in many engineering studies because it
could solve the interactive, co-linear and non-linear behavior of the processes.
More precisely, it is widely used for sensitivity analysis and quantitative
probabilistic analysis in process design.

Below, it represents the main use of Monte Carlo in different engineering
areas:

• In microelectronics engineering, Monte Carlo methods are applied to
analyze correlated and uncorrelated variations in analog and digital
integrated circuits.

• In geostatistics and geometallurgy, Monte Carlo methods underpin the
design of mineral processing flowsheets and contribute to quantitative
risk analysis.
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• In wind energy yield analysis, the predicted energy output of a wind
farm during its lifetime is calculated giving different levels of uncer-
tainty.

• Impacts of pollution are simulated and diesel compared with petrol.

• In Fluid Dynamics where the Boltzmann equation is solved for finite
Knudsen number fluid flows using the Direct Simulation Monte Carlo
method in combination with highly efficient computational algorithms.

• In autonomous robotics, Monte Carlo localization can determine the
position of a robot. It is often applied to stochastic filters such as
the Kalman filter or Particle filter that forms the heart of the SLAM
(Simultaneous Localization and Mapping) algorithm.

• In telecommunications, when planning a wireless network, design must
be proved to work for a wide variety of scenarios that depend mainly on
the number of users, their locations and the services they want to use.
Monte Carlo methods are typically used to generate these users and
their states. The network performance is then evaluated and, if results
are not satisfactory, the network design goes through an optimization
process.

• In reliability engineering, one can use Monte Carlo simulation to gen-
erate mean time between failures and mean time to repair for compo-
nents.

• In signal processing and Bayesian inference, particle filters and sequen-
tial Monte Carlo techniques are a class of mean field particle methods
for sampling and computing the posterior distribution of a signal pro-
cess given some noisy and partial observations using interacting empir-
ical measures.

3.4.5 Monte Carlo in Physical sciences

Monte Carlo methods are very important in computational physics, phys-
ical chemistry, and related applied fields, and have diverse applications from
complicated quantum chromodynamics calculations to designing heat shields
and aerodynamic forms as well as in modeling radiation transport for radia-
tion dosimetry calculations.
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Below, there are a list of the main areas of uses of this method for different
physical sciences:

• In statistical physics Monte Carlo molecular modeling is an alternative
to computational molecular dynamics, and Monte Carlo methods are
used to compute statistical field theories of simple particle and polymer
systems.

• QuantumMonte Carlo methods solve the many-body problem for quan-
tum systems.

• In experimental particle physics, Monte Carlo methods are used for
designing detectors, understanding their behavior and comparing ex-
perimental data to theory.

• In astrophysics, they are used in such diverse manners as to model
both galaxy evolution and microwave radiation transmission through a
rough planetary surface.

• Monte Carlo methods are also used in the ensemble models that form
the basis of modern weather forecasting.

3.4.6 Monte Carlo in computational biology

Monte Carlo methods are used in various fields of computational biology
and for studying biological systems such as genomes, proteins, or membranes.
Computer simulations allow us to monitor the local environment of a partic-
ular molecule to see if some chemical reaction is happening for instance.

In this case, Monte Carlo is very important because it can conduct some
physical experiments that it was not possible to execute before, such as break-
ing bonds, introducing impurities at specific sites, changing the local/global
structure, or introducing external fields.

Monte Carlo methods are used in various fields of computational biology
and for studying biological systems such as genomes, proteins, or membranes.

3.4.7 Monte Carlo in applied statistics

In applied statistics, Monte Carlo methods are generally used for solve
two types of situations:

1. Real data often do not have classical distributions, so they could not
be analyzed with simple statistics analysis. In this case, Monte Carlo
simulation is a technique that under realistic data is able to compare
competing statistics for small samples.
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2. In presence of very efficient and impossible to compute tests such as
permutation test, only Monte Carlo simulation is able to provide an
implementation.

Monte Carlo methods can also be defined like a compromise between
approximate randomization and permutation tests, where the first one is
based on a specific subset of all permutations while, the second one, is based
on a specific numbers of randomly drawn permutations.
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Chapter 4

Monte Carlo for estimation of
sampling errors

4.1 Theory of simple Monte Carlo

A problem, which is studied a lot in statistics, is to infer the characteristics
of a population from analyzing samples.
Simple Monte Carlo tries to do exactly that, in fact, it aims to estimate a
population expectation when it has sample expectation.

Below it is presented the accuracy of this method, so, it is used the laws
of large numbers and the central limit theorem for derive confidence intervals
of the sample mean from the sample data values.

4.1.1 Accuracy of simple Monte Carlo

First, it starts with a variable Y and, from its distribution, it is necessary
to generate random and independent values defined as Y1, . . . ..,Yn.
To obtain the average of these values is applied the following formula:

µ =
1

n

n∑
i=1

Yi (4.1)

as the estimates of µ.
From this calculation it obtains the estimate of the mean, then it gets to
know the expected value of the random variable Y, as it observed that from
the following formula: µ = E(Y ).
The random variable Y is defined in this way: Y=f(X), where the random
variable X has a probability density function p(x) or it can be considered as
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a discrete random variable with a probability mass function called p and f
is a function defined by real values.

For some problems it is easier to work with expectations while for other
tasks it is simpler to work directly with the integrals.
Here it is possible to apply the simple Monte Carlo because the Y is defined
by Y = f (X) and it is a quantity expressed by a real number or by a vector.
The laws of large numbers is one of the theorem used to explain simple Monte
Carlo.

The assumptions from which is then possible to construct a mathematical
model are the following:

• Y is a random variable for which µ = E(Y ) exists

• the generated values of Y, Y1, . . . , Yn, are iid (independent and identi-
cally distributed) have the same distribution of Y

Then, the law of large numbers has two versions: weak law of large num-
bers and the strong law of large numbers.
The first one tells that the chance of missing by more than E goes to 0 and
is represented by the formula below:

limn→∞P (|µn − µ| ≤ ε) = 1 (4.2)

holds for any ε > 0.
Instead, the strong law of large numbers, is more complex and tells more
respect the first one.

P (limn→∞|µn − µ| = 0) = 1 (4.3)

Both the laws of large numbers shows that Monte Carlo will be able to
achieve its principle purpose, to get the error as small as possible.
None of the laws, however, indicates how large n must be to achieve this, and
does not indicate whether the error is low in the given samples Y1, ...., Yn.

To improve the analysis just described, it must place the assumption that
Y has a finite variance, for which V ar(Y ) = σ2 <∞
In IID sampling, µn is a random variable and it has its own mean and vari-
ance.
Monte Carlo is unbiased if the expected value of µn is equal to µ.
This is verify in the formula below:

E(µn) =
1

n

∑
E(Yi) = µ (4.4)
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The variance is represented by the formula below:

E((µn − µ)2) =
σ2

n
(4.5)

From it, it has to deduce that the result is better with increased sample size
and worse with increased variance.
So, the error of the samples is lower when the samples become larger.
The root mean squared error (RMSE) is given from the formula below:√

E((µn − µ)2) =
σ√
n

(4.6)

A disadvantage of the Monte Carlo method is that it can not be used for
problems that require a high precision.
This weakness in certain cases does not represent a big problem because they
require only a rough estimate of µ in order to decide what action to take.
In other cases, however, it represents a bigger problem and for prevents this
obstacle is necessary to put some idealized assumptions, such as specific
distributional forms.

The principle advantage of Monte Carlo is that it is greater than closed
form estimates because it can put more real world complexity into the com-
putations and it is useful when closed forms are unavailable.
Simple Monte Carlo is most competitive in high dimensional non-uniform
problems.

4.1.2 Error estimation

Monte Carlo method is very important in studies of error estimation. The
sample values obtained from the simulation expressed a very good idea of
the error µn − µ.

From the central limit theorem (CLT), it also know that the µn − µ has
approximately a normal distribution with mean 0 and variance σ2

n
.

The average squares error is given by the variance.
It is easy to estimate sigma from the sample values and the formula used for
the estimation are the following two:

s2 =
1

n

∑
(Yi − µn)2 (4.7)

σ2 =
1

n

∑
(Yi − µn) (4.8)

From this estimation, it is evident that µn has mean µ and variance s√
n
.
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A variance estimate s gives the order of the error which is s√
n
.

IID central limit theorem (Chung, 1974):"Let Y1, Y2, . . . ., Yn be independent
and identically distributed random variables with mean and finite variance
σ2 > 0. Let µn = 1

n

∑
Yi. Then for all z 3 R

P

(√
n
µn − µ
σ

≤ z

)
→ Φ(z) (4.9)

as n→∞".
This theorem is useful in Monte Carlo simulation because it can produce an
approximate confidence interval that is almost always used.
It had the necessity to know the value of σ but, when it is not available, it
can be substitute by the value of s, the estimate of σ.

4.1.3 Random sample size

Simple Monte Carlo is based on random sample size.
The initial assumptions for the simulation is that it samples X1, . . . , Xn inde-
pendently. Its interest is in X that satisfy the following condition: E(f(X)).
Another assumption for the model is that it focus only on those X that
satisfy the condition Xi ∈ A for some set A.
This is represented in the system below:

NA =
∑

Ai (4.10)

where

Ai =

{
1 Xi ∈ A
0 else

The observations, na, are obtained from the distribution of X given X=A,
so the density distribution of na is pA(x) = p(x)1X∈A/

∫
A
p(x)dx.

The objective of this study is to get the value of µA = E(f(X)|X ∈ A).
The estimate of its is given by the following formula:

µA =
1

nA

n∑
i=1

AiYi (4.11)

The estimate of its variance is expressed by the formula below:

s2
A =

1

nA − 1

n∑
i=1

Ai(Yi − µA)2 (4.12)

54



Chapter 4:Monte Carlo for estimation of sampling errors

In order to estimate these values it is necessary to assume that na is large
enough to be able to get reasonable estimates.

4.1.4 Estimating ratios

Sometimes it is useful to evaluate and focus on the ratio of two jointly
distributed random variables X and Y.
The ratio estimator is defined in this way: θ = E(Y )

E(X)
, may be more accurate

than an ordinary estimator sampled from p.
The most natural way to estimate θ is to be sampled several pairs of random
variables (X, Y) from their distributions and apply the following formula:

θ̂ =
Y

X
(4.13)

In (4.13) X = 1
n

∑
Xi and Y = 1

n

∑
Yi.

The main problem of using Monte Carlo in this estimation is given from
the fact that E(θ̂) 6= θ, with the consequence of having to estimate a confi-
dence interval for θ to obtain an estimate of the variance of θ.
The confidence interval for f(E(X), E(Y)) is centered on f(XY ), where f(x,y)
= y/x.
This problem becomes unimportant for large n.

The delta method solves this problem because it can approximate the
mean and the variance of θ.
This method is based on Taylor expansion of f, which can be a smooth
function of one, two or more means.
It is possible to simplify the formula for estimation of ratio estimator arriving
to the following formula:

1

n

E((Y − θX)2

µ2
x

(4.14)

Instead, the estimation of f(x, y) = y
x
s simplify in this formula below:

E(θ̂ − θ) =
1

nµ2
x

(θσ2
x − ρσxσy) (4.15)

The confidence interval for θ ignores the bias, so the bias is 0 while the RMSE
is of order 1√

n
.

Another method that can be used, in place of delta method, is the Fieller
solutions (Fieller, 1954).
He started the analysis from a different definition of ratio estimator where
θ = E(Y )

E(X)
as E(Y − θX) = 0.
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For any candidate value θ it can make a confidence interval Iθ for E(Y −θX).
Then the confidence interval for θ is (θ|0 ∈ Iθ).

Between the two methods, the delta method is simpler so many researcher
use it for the ratio estimation.

4.1.5 When Monte Carlo fails

Monte Carlo method is very robust, but there are some cases where also
it could fail.
There is no one problem until µ = E(Y ) exists and the expected value is
finite, so E(|Y |) <∞.

The problems start when mu might not exist. In a problem with µ =∞,
it has P (µn → ∞) = 1 by the law of large numbers. But when all of the xi
are always finite, then P (µn =∞) = 0 for all n.

In the other case, when E(|Y |) =∞ then it is possible that E(Y ) = +∞
or E(Y ) = −∞ or that E(Y) is not even defined as a member of [−∞,∞].
The latter case arises when E(max(Y, 0)) = E(max(−Y, 0)) =∞.

A infinite means could often arises in situations of ratio estimation, be-
cause µ = E( Y

X
) might not exist because (

Y
X can become larger for small X,

not just large Y.
In ratios, for µ to be finite it ordinarily need the mean of the numerator to
be finite and the denominator should not have a positive density at 0.
Small changes in the distribution of the denominator can turn a problem
with finite expected ratio into one with infinite expected ratio.

In some cases µ could be infinite without show it, but in the St. Peters-
burg paradox it is important to show from the beginning that µ is infinite.

Another situation in which Monte Carlo fails is when the variance is
infinite, but the µ is finite.
If E(|Y |) <∞ and V ar(Y ) =∞ then it is still possible to estimate µ = E(Y )
and get a confidence for it.
With Monte Carlo methods it has many ways to reformulate the problem,
preserving the finite expectation while obtaining a finite variance. Impor-
tance sampling is one such method.
Only mathematical analysis can determine if some moments exist. Monte
Carlo could give an indication on µ, but µ could fail to exist because of small
region of space. This happens when importance sampling is poorly applied.
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4.2 Case studies

4.2.1 Measuring the extent of small sample biases

Many models, unfortunately, are potentially biased because of sampling
error when group sizes are small (Deaton, 1985).
Other results from literature suggests that sampling error is not a problem in
practice when there are at least 100 or 200 observations per group (Verbeek
and Nijman, 1992, 1993).

Paul J Devereux 1, in this paper, shows that these conclusions are not
necessarily correct. He uses synthetic cohorts to solve problems within un-
observable factors, that are time-invariant.
This approach is often uses in labor supply estimation and other areas of
labor economics.
In fact, he investigates small sample biases in the context of two synthetic
cohort applications: intertemporal labor supply model for men and a female
labor supply model.

The purpose of his studies is to compare the estimates of samples ran-
domly selected for examining the extent of small sample biases.
For this kind of problem he used Monte Carlo simulation, which quantify
biases in a precisely way and permit him to obtained an estimate of group
sizes necessary to make biases negligible.

A further goal of this paper is to examine the performance of possible
indicators of small sample bias in synthetic cohort models.
He has used and compared different estimators, which are EWALD (efficient
Wald estimator), EVE (errors in variables estimator), UEVE (unbiased er-
rors in variables estimator), LIML (limited information maximum likelihood
estimator).

4.2.1.1 Case 1: Intertemporal male labor supply

The analysis involves starting with very large group sizes. The men are
divided into 6 evenly divided 5-year birth cohorts.
There are in total 90 groups and on average 9818 observations per group.
He reports results for the following percentages of the sample: 1%, 2%, 5%,
10% and 20%. He carries out 1000 replications.

He carries out a Monte Carlo simulation based on the above application.
All estimators considered are consistent as group sizes go to infinity with the
number of groups fixed.

1P. J. Devereux, Small sample bias in synthetic cohort models of labor supply, University
college Dublin, May 2006
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With such large groups, one would expect the sample means to be close to
the population means and small sample bias to be small.
Indeed, there is very small sample bias in EWALD. This estimator is sensitive
to sample size, so with smaller samples the bias increases.
The other estimators, instead, are more robust to small sample bias. EVE
is biases in finite sample, so its estimates tend to decrease as the group sizes
increase.

The output of the simulation confirms that huge group sizes are sufficient
to get approximately unbiased estimates.
Indeed, EWALD estimator is almost unbiased in the samples of 10000.
The estimates for the smaller samples imply average biases of 88% for the
group of 100, 47% for the groups of 200, 19% for the groups of 500, 10% for
the groups of 1000 and 5% for the groups of 2000.

In contrast to EWALD, LIML and UEVE perform quite well in terms of
bias in both small and large samples.

4.2.1.2 Case 2: Female labor supply model

In the studies of female labor supply, many researches treat wages as
exogenous or use age or education as instruments for wages.
In cases where wages are related to taste for work, then cross-sectional esti-
mations produce inconsistent estimates of wages and income.
He grouped married working women aged between 20 and 50 by birth cohort
and by education into 8 groups.
For education groups, he split the sample between women with high school or
less, and women with more than high school. There are in total 110 groups
and on average 4533 observations per group.

He carries out a Monte Carlo simulation for this application.
The results from randomly generating average group sizes of 200, 500, 1000
and 2000 suggests that there is clear evidence of small sample bias in the
EWALD estimator.
Indeed, in groups of 200 the bias is 28%, in groups of 500 it is 23%, in groups
of 1000 it is 18% and in groups of 2000 it is 13%.
Even with 4533 observations per group there is substantial small sample
bias in the EWALD estimator. Some results also suggest that the EWALD
estimate may be biased in the full sample.
The latter estimator has coverage rate equal to zero, which mislead the re-
searcher into believing that the income elasticity is very small.

The others estimators, LIML and UEVE perform well in terms of median
bias, particularly LIML is better when group sizes are very small.
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UEVE is superior to EVE and EVE2, in terms of both median bias and
median absolute error.

From the results of these two applications, it is evident that it is re-
quired thousands of observations per group before small sample biases can
be ignored in estimation.
Sampling error leads one to underestimate intertemporal labor supply elastic-
ities for men, and conclude that the income response of female labor supply
is zero or tiny when in fact it is quite large.

4.2.2 Measuring sampling error from an artificial pop-
ulation

The purpose of this paper 2 is to examine the relationship and correla-
tion between immigration and crime, analyzing European recent immigration
waves.
The data used for studies derived from surveys, so they are affected by sam-
pling errors which are responsible of attenuation bias in empirical estimates.
It is proposed some methods to decrease the attenuation bias; indeed, models
with fixed effects have small sampling error and models with instrumental
variables have practically zero errors.

Monte Carlo simulation is used to demonstrate and calculate the size of
samples necessary for eliminate sampling errors and to obtained an unbiased
estimation of the parameters.
The starting point of the simulation is to define population model. In this
paper, it studies an artificial population of 10 million of individuals, divided
in 100 regions.
It wants to study panel model, so this population is analyzed for 4 years,
and, for each year, the immigration shares increases because of a random
positive immigration shock.
Then, it draws 500 random sampling with different sampling rates and for
both models, fixed effect and instrumental variables, it estimates the coeffi-
cient of interest Beta and standard error.

The aim of Monte Carlo is to measure the presence of attenuation bias
in samples selected randomly and of different sizes, for region/year cells of
different sizes.
From fixed effects estimation, it is possible to observe that with low sampling
rate the attenuation bias can be large.

2Luca Nunziata, Immigration and crime: evidence from victimization data, March 2015
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Precisely, with sampling rate of 5/1000 the bias is 52%, with sampling rate
of 1/100 the bias is 35% and with sampling rate of 3/100 the bias is 15%.

The SSIV model gives better results than the fixed effects model; indeed,
even for very low sampling rate the attenuation bias is very small.
The results show that with sampling rate equal to 1/1000 the bias is lower
than 5%.

This study confirms that the fixed effects estimates may be subjected to
an attenuation bias.
However, even if the data are affected by sampling error, it will be possible
to measure the effects of immigration on crime victimization or perception.
The empirical results show that an increase in immigration share involves an
increase of crime perception and of fear of crime of natives.

4.2.3 Monte Carlo for proving the consistency of non-
parametric poolability tests

Jin and Su (2013)3 propose a nonparametric poolability test for large di-
mensional semiparametric panel data models with cross-section dependence.
This test requires an estimation of heterogeneous regression relationship and
the test statistics have an asymptotic normal distributions under both hy-
pothesis, such as poolability and a sequence of Pitman local alternatives.

In their paper, they prove the consistency of the test with Monte Carlo
simulation. Indeed, they show that the test performs well in finite sample.
In addition, they suggest a bootstrap method as an alternative way to obtain
the critical values.

Economic theory cannot tell if the regression is homogenous, so it is useful
to conduct a test to verify this property.
In the case when it could accept this hypothesis, then it could be possible to
estimate a single homogenous relationship more efficiently because the cross
section data are pool together.
Indeed, a large literature has been developed to test structural stability of
economic relationships over time or equality of regression functions over in-
dividuals.
The lack of these test consists in the number of nonparametric regression
curves; in fact, this test verify only the case of fixed number, but it is not
known what could happen when the number increases over the sample size.

In this paper they try to test all possible cases and resolve some ques-
tions. So, they analyze both heterogeneous and homogenous nonparametric

3S. Jin and L. Su, A nonparametric poolability test for panle data models with cross
section dependence, Singapore management university, 2013
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regressions when both the cross-section dimension and the time dimension
are large. Indeed, they consider a nonparametric test for poolability in the
model.
They find that it is possible to obtain large gains when the regression rela-
tionship is homogenous and use it in the following estimation procedure.

There are many differences between their test and others, because their test
have some particular characteristics:

• their test is a nonparametric test for homogeneity or poolability of
nonparametric regression relationships

• their test is designed to test for poolability in large dimensional panel
data models with cross-section dependence

• in their test the number of regression curves must tend to infinity suf-
ficiently fast to ensure that the proxy error is asymptotically negligible
in the tests

They conduct a Monte Carlo simulation because they want to compare
the sample performance of their tests with some other tests.
They analyze three tests of poolability:

1. Test which assumes unobservable common factors and unknown func-
tional relationship

2. Test which assumes unknown functional relationship, but does not as-
sume unobservable common factors

3. Test which assumes linear functional relationship, but does not assume
unobservable common factors

For the normal critical values based tests, they consider two sample sizes
for n=50 and 100.
They consider T=20, 30, 40, 50 when n =50 and T = 25, 50, 75, 100 when n
= 100. In each scenario the number of replications is 1000 for the size study
and 500 for the power study.

For the bootstrap version of the test, they suggest using a conditional
bootstrap method to obtain the bootstrap p-values.
In this case, they use B0200 bootstrap resamples for each replications.

From the first analyze, the tests perform reasonably well, in fact the
results from the empirical levels of 5% and 10% tend to be similar when n
and T are large.

61



Chapter 4:Monte Carlo for estimation of sampling errors

Test 1 can be oversized for smaller value of T, while test 3 can be undersized
for some value of n and T.
The last test always rejects the null hypothesis of homogenous regression
functional relationship.

For the bootstrap version of the three tests, they find that the bootstrap
p-values based test outperforms the normal critical values based test in that
the empirical level of the bootstrapped test is quite close to the nominal level
for both test, 1 and 2.
The bootstrapped test is severely oversized for all combinations of n and T.
In fact, the empirical level of the bootstrapped test seems fine for test 1 when
n = 50, but it is identically zero when n=100.

The main findings are the following:

• the bootstrap version of the test tends to be more powerful than the
normal-critical-values-based test

• as T increases, the power of the test tends to increase; for fixed T, but
increasing n, the power is not necessarily increasing, so the larger is n,
the more heterogenous is the regression relationship

• as the degree of heterogeneity increases the power of the test increases
rapidly

4.2.4 Monte Carlo for estimation of optimal IV estima-
tors

Mandy and Martins-Filho 4 focus their studies on the structure of the
error covariance matrix and on the instrument design because they want to
demonstrate the asymptotic equivalence between FGLS IV (feasible gener-
alized least squares instrumental variable) and GLS IV (generalized least
squares instrumental variable).

They provide sufficient conditions that permit this equivalence and apply
them to stationary dynamic systems with stationary VAR errors.
The sufficient conditions allow them to expand the class of IV estimators,
that enable the use of lagged endogenous variables, despite the presence of
of VAR errors in the dynamic system.
The use of new instrumental variables improved the asymptotic efficiency, so
also small-sample efficiency is improved as well.

4D.M. Mandy and C. Martins-Filho, Optimal IV estimation of systems with stochas-
tic regressors and VAR disturbances with applications to dynamic systems, Econometric
review, 2001
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Monte Carlo experiments compares optimal FGLS IV estimators with
each other and with other proposed by other researchers in the literature.
From the simulation it is possible to observe the asymptotic properties of
the estimators, such as T increases from 20 to 40 and to 80, they obtain less
disperse and better centered estimates for all parametric specifications.
The major distinction between the estimators is with smallest T, so T=20.
Then, more the sample size increase, more the estimators become similar in
performance.

With larger first-step of instrumental variable set, also, they obtain better
dispersion and centrality of all estimators, but the improvement is modest
and is more important for small sample size.

Finally, from the analyses of their outputs, they note that introducing ad-
ditional IVs when constructing FGLS IV estimators is beneficial both asymp-
totically and in small samples.
Indeed, the benefits of additional IVs diminish as the number of IVs expands.

4.2.5 Monte Carlo for measuring the powerful of tests
in small and medium sized samples

In this paper5, it is studied a generalized panel data model with random
effects and first-order spatially correlated residuals.
These models are tested using Lagrange multiplier and likelihood ratio tests.
Monte Carlo simulation measures the powerful of tests for these restricted
specifications even in small and medium sized samples.

The recent literature on spatial panels distinguishes between two different
spatial autoregressive error processes.
One is based on fact that the spatial correlation occurs only in the error term
and does not take place in individual effects.
The other one is based on fact that the same spatial error process is applicable
to both individual effects and error term.

The model studied in this paper is a generalized spatial error model that
allows the spatial correlation for both individual effects and error term, which
may have different spatial autoregressive parameters.
They used a MLE (maximum likelihood estimator), where the assumption is
to consider the individual effects random.
They want to test three different hypothesis given by some restrictions on
their generalized model; indeed, they are interested to obtain the Anselin
model, the KKP model and simple random effects model.

5B.H. Baltagi, P. Egger. And M. Pfaffermayr, A generalized spatial panel data model
with random effects, 2013
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For each of them, they derive the corresponding LM and LR tests.
Monte Carlo simulation is used here for measure and compare the size

and power performance of these three hypothesis.
The cross-sectional and time dimensions are N =50, 100 and T = 3, 5, 10.
The proportion of the variance due to the random individual effects takes
the value θ = 0.25, 0.50, 0.75. In total this gives 882 experiments.
For each experiment, they calculate the three LM and LR tests, using 2000
replications.
They testing the simple random effects model without spatial correlation and,
instead, Anselin model and KKP model are testing in small and medium sized
samples.

The three LM and LR tests perform reasonably well and things improves
is the number of observations increases.
Both the size and the power of the LM test improve as the sample size
increases, especially as N becomes larger.
With small samples and small signal to noise ratio, there is no gain using
robust LM than the non-robust ones.
The robust test size is more off the nominal size than this is the case for the
nonrobust test size.
The correction factors of the LM statistics deflate the nonrobust test statis-
tics.
With oversized LM tests, the corresponding correction factors would adjust
the test size towards the nominal size.
There is no systematic over-rejection in the samples considered so that the
correction factors lead to even more undersized tests.
Problems with such correction factors in small samples also accrue to the use
of higher moments of the disturbances which can not be estimated without
bias in small samples (Teuscher, 1994).

They find, from this study, that the LM tests are easy to calculate and
their power is reasonably high for all three tests considered.
Under normal disturbances the LM tests are properly sized and powerful
even in small samples.
Furthermore, under normal disturbances, the power of LM tests matches that
of the corresponding LR tests.

In conclusion, the power of the tests increases with the relative importance
of the individual effects’ variance as a proportion of the total variance, as well
as with increasing N and T.
They are robust to non-normality of the error term and sensitive to the
specification of the weight matrix.
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4.2.6 Monte Carlo for verifing the finite-sample proper-
ties of estimators in small samples

Drukker, Egger and Prucha (2013) 6 study a spatial-autoregressive model
with autoregressive disturbances which is useful for endogeneous regressors.
They propose a joint test of zero spatial interactions in the dependent vari-
able, the exogenous variables and the disturbances.
For these analysis they used two estimation approach, such as a two-step
generalized method of moments (GMM) and instrumental variable approach
(IV).

Spatial models, in previous literature, are based only on spatial spillovers
in the dependent variable, whtch has also an endogenous weighted average.
This model is commonly referred to as spatial-autoregressive model, SAR
(Cliff and Ord, 1973, 1981).
The combined spatial autoregressive model with spatial autoregressive resid-
uals is often referred to as SARAR ( Anselin and Florax, 1995).

In this paper, they started their analysis from a generalized method of
moments (GMM) and instrumental variables (IV) estimation for systems of
linear equation developed by Kelejian and Prucha.
Then, they obtain the distribution of the regression parameters and the con-
sistent estimator; indeed, they derive the joint limiting distribution of the
IV estimators and of GMM estimators and the consistent estimators for the
variance-covariance matrix.

In their study Monte Carlo is used to verify the finite-sample properties
of the estimators, IV and GMM estimators, in small samples.
The experiments is organized that from each observation of each variable is
subtracting the corresponding sample average and, then, dividing that results
by sample standard deviation.
For sample size, n, each vector of normalized observations are twice under-
neath each other and is drawn the first n values of these normalized variables.
The set of normalized observations on these variables is fixed in repeated
samples in their Monte Carlo runs.

From the results of Monte Carlo simulation they could deduce that a good
approximation of small-samples distributions is given by derived large-sample
distribution of their estimators.
Furthermore, small-sample biases of the estimators are small for each of the
parameters, the means of the estimated standard deviations of the parameter
estimators over the Monte Carlo repetitions are close to the actual standard

6D. M. Drukker, P.Egger and I.R. Prucha, On two-step estimation of spatial autore-
gressive model with autoregressive disturbances and endogenous regressors, 2013
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deviations and their estimators and their large-sample approximation to its
distribution work well for the considered experiments.

4.2.7 Monte Carlo for studying the performance in fi-
nite samples of instruments selection procedure

This study considers the instrumental variable (IV) estimation of spatial
autoregressive (SAR) models with endogenous regressors in the presence of
many instruments 7.
This kind of analysis, where the number of instruments increases with the
sample size, has attracted a lot of attention in the IV estimation of instru-
ments.
From this research it is possible to obtain the asymptotic distribution of the
two-stage least squares estimator and to deduce a procedure to correct the
bias, using an leading-order of many instruments bias.

Monte Carlo simulation is useful here to study the performance in finite
samples of the instruments selection procedure.

Analyzing the outputs of the experiments they could deduce the following
conclusions:

• the instrument selection reduces median absolute deviation and disper-
sion

• the instrument selection improves coverage probability

• the instruments selection reduces median bias of the 2SLS; in fact, the
bias-correction procedure could reduces many-instruments bias. Choos-
ing the number of instruments tends to raise precision and lower dis-
persion of the 2SLS, but when instruments are equally important, in-
strument selection may be less useful for the 2SLS (Donald and Newey,
2001)

• the instrument selection improves precision of the 2SLS estimator with
only moderate sample size such as n=490

• the instruments selection leads to smaller bias, better precision and
more reliable inference when there are some instruments more impor-
tant than others

7X. Liu and L. Lee, Two-stage least squares estimation of spatial autoregressive models
with endogenous regressors and many instruments, 2013
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4.2.8 Monte Carlo for for studying finite sample prop-
erties of estimators

Several recent studies have focused on the estimation of panel data under
cross-sectional dependence 8, which is common in economic data.
In panel data modeling it is also important to have a correct specification in
the conditional mean.

This study extends the method to nonparametric estimation in large pan-
els under multifactor cross-sectional dependence that are based on random-
effects specification.
The estimator is applicable to both static and dynamic panels.

Monte Carlo simulation studies the finite sample properties of the pro-
posed estimator.

They compare three estimators in the simulation:

1. local constant regression

2. local linear estimation

3. the MGCCE, where the slope estimator is obtained by averaging esti-
mates from all cross-sectional units (Pesaron, 2006)

In simulations, they discard the first 100 observations, take different val-
ues with n = 50, 100, 200 and T = 50, 100, 200.
The number of replications is 1000.

The efficiency gain of using nonparametric estimator increases with sam-
ple size.
The local linear estimator also has a clear advantage over the local constant
estimator, while MGCCE is outperformed by two nonparametric estimators
in all sample sizes.
The MGCCE is almost unbiased, while the bias of the local linear estimator
is small and decreases as sample size increases.

Monte Carlo simulation demonstrate that the estimators proposed here
produce very good results for models with high degrees of heterogeneity and
dynamics.
Furthermore, it is evident that the proposed method has good finite sample
properties and that the efficiency loss of this nonparametric method decreases
as sample size increases.

8Xiao Huang, Nonparametric estimation in large panels with cross-sectional depen-
dence, Kannesaw state university, 2013
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Conclusions

This paper explains the importance and the role of sampling error in the
inference process, because a biased sample leads researchers to take wrong
deductions on real population.
It is evident that the sampling error is inversely correlated with the sample
size. In fact, with increasing sample size, the sampling error decreasing.

The case studies presented in this paper discuss different types of analysis;
in fact, in some papers, Monte Carlo is used to estimate the extent of small
sample biases in samples randomly selected and, in other papers, it is used
for testing the performance of the estimators and the consistency of the tests
in finite samples.

From the empirical results it is possible to deduce some conslusions:

1. it is required thousands of obervations per group before small sample
biases can be ignored

2. in fixed effect models are present small sampling error so they may be
subjected to an attenuation bias, while instrumental variables models
have a bias practically zero

3. nonparametric poolability tests (Jin and Su, 2013) for large panel data
performs well in finite samples; in fact, the larger is the numerosity of
the sample, the more heterogenous is the regression relationship and
as the degree of heterogeneity increases then the power of the test
increases rapidly

4. the power of tests increases with increasing N and T

5. the instruments selection reduces the bias in finite samples, indeed
choosing the number of instruments tends to raise precision and lower
the disperion of the estimators

It is impossible to eliminate the sampling error completely. The only way
is to sampling whole the population, but this is impossible.
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It is important to measure this bias and consider it when take some decisions
and deduce the characteristics of the population.
Monte Carlo permits to understand the importance of the error and to decide
which estimarors are better to obtain more reliable estimates.

Monte Carlo method is used in many other areas of study. In this paper
are presented the other uses, but it is analyzed only the estimation of errore.
It permits the analysis and resolve many difficult probems that other methods
can not solve.
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