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Abstract

Old audio storing methods such as magnetic tapes have been obsolete for decades,
now more than ever with the advent of digital formats. The material stored on those
tapes, though, is still precious today as it was when it was recorded, and it is at
risk of being lost to time, as the materials degrade. The obvious solution to this
problem is to digitize these documents, which is a tedious and error-prone process
for any technician.

This study focuses on preventing one of those errors, which is reproducing the tape
using a playback speed different from the recording speed, leading to a very inaccu-
rate signal and a spoilage of the heritage associated to the original document.

Instead of analyzing the audio signal directly in the time domain, we opted to explore
the frequency domain, computing the spectrograms of the tapes and analyzing them
using convolutional neural networks. The approach gave promising results, and the
research showed that this is a valid way, worth exploring further.
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Chapter 1

Introduction

The rapid growth of the world wide web in the past decades has completely changed
the way we listen to music. Almost a hundred years ago the latest invention in
audio recording was the german Magnetophon, a huge reel-to-reel tape recorder that
used magnetic tapes to store soundwaves. Then cassette tapes and vinyls became
the norm, and the compact, more portable design was far more successful, making
musical records appear in every household.

In the 90s, the advent of digital media opened a whole new world of possibilities, with
the mediums becoming smaller and smaller while their capacities only got bigger.

Today, we don’t even have to own a copy of the record we want to listen to. As
streaming services have become the standard, a good internet connection is sufficient
to get access to pretty much every composition known to man. The thought that
one day we won’t be able to hear our favourite record never crosses our mind, as
digital media doesn’t fear the test of time. It hasn’t always been this way, though.

Active and Passive Preservation

In fact, older formats like open reel tapes are vulnerable to the degradation of the
medium over time [1], making it challenging to preserve the content inside them.
This act of preserving the audio memory can be done in two ways [2]: passively,
which consists in storing the documents in the most optimal environment possible,
slowing the degradation as long as we can. The second option is active preservation,
which involves migrating data onto new media.

Passive preservation only helps in delaying the inevitable, so the only long-term
solution is turning all the old archives that risk getting wiped into digital archives.
This would have the added benefit of making the access to the documents easier to
the general public, as it takes away the need for format-specific hardware. As we’re
going to see, though, the data transfer from a magnetic tape to a digital format is
subject to various types of errors, namely electronic, procedural and operative.

1



2 1.1. Centro di Sonologia Computazionale

1.1 Centro di Sonologia Computazionale

The task of preserving the cultural heritage associated with endangered audio doc-
uments has been one of the main objectives at Centro di Sonologia Computazionale
(CSC), the Sound and Music Computing Laboratory at the Department of Infor-
mation Engineering of the University of Padova.

For over two decades, the laboratory has been developing a framework for both
active preservation of historical sound material, in particular stored on magnetic
tapes, and enabling better access to it. Their achievements in the field sparked very
important collaborations with prominent European collections and archives such as
the Paul-Sacher-Stiftung in Basel, the Fondazione Arena di Verona, the Luigi Nono
Arhive in Venice, and the Historical Archive of the Teatro Regio di Parma. [3]

Methodology at CSC

The methodology for actively preserving the tapes involves, as said previously, the
digitisation of the material, but it’s not limited to that. Additional information
such as noise signals that characterize the recording system, signs of damage and
alterations on the carrier, notes on the container and other metadata must also be
preserved.

The process followed at CSC is composed of these steps:

1. Digitise the analog magnetic tapes into digital audio files, using lossless formats
and sufficient sample rates and bit resolutions1.

2. Record the playback head of the tape recorder, obtaining a high-resolution
video.

3. Listen back to the recording and note down any anomaly or irregularity in
the audio signal. Some irregularities are caused by damage on the tape, while
others may have been caused by a wrong configuration of the tape recorder,
such as setting a wrong equalization curve or an incorrect playback speed.

4. Watch the footage, locate and classify the irregularities found at the previous
step.

5. Collect all the metadata related to the tape, like photos of the damage on the
tape or annotations on the casing. An example is in figure 1.1.

The complete package of data and metadata is called a preservation copy.

The steps regarding finding and classifying the irregularities in the recording and
the footage have always been done by hand by technicians, but the latest advances
in the fields of artificial intelligence suggest that the process could be automated, in
order to aid professionals in the tedious task of detecting errors, thus saving a lot of
time.

1Generally, 96 kHz for sample rate and 24-bit resolution are sufficient
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Figure 1.1: Damaged and corrupted magnetic tapes, taken from [4]

Previous works at the University of Padova [4][5] have experimented applying ma-
chine learning computer vision techniques to analyze the video footage and detect
physical irregularities like splices, signs and various corruptions on the tape’s sur-
face, with promising results. The audio part, though, is still mostly unexplored.
This thesis will address one of the numerous problems that can occur in the digital
copy of a magnetic tape. Before diving in, though, it’s better to define where this
work falls in the grander scheme of things.

1.2 MPAI

Artificial intelligence has been a hot topic for the past two decades, and its reach
is only getting bigger by the day. It has entered our daily life with interactive
chatbots and voice assistants, improved computer vision applications in all kinds of
fields, from medical diagnosis to self-driving vehicles, and it also has been adopted
to predict the trends of financial markets.

All this variety in applications has made it so that every software project adopts its
own methodology, creating a multitude of frameworks that don’t share any inter-
operability between each other. If there was a common standard that governed the
structure of all these projects, it would improve the development process in terms
of time, money and user experience.

This lack of orchestration in the development of AI-based software products is the
main concern for the MPAI - Moving Picture, Audio and Data Coding by Artificial
Intelligence - project. Its goal is to create a set of standards for applications and
services that use AI at their core. Many areas are involved: autonomous vehicles,
AI for health data, context-based audio enhancement and more.

AI Workflows and modules

The MPAI standards have a flexible and modular structure, and are based on frame-
works denoted AIF (AI-Framework) which are built upon building blocks called AIM
(AI-Modules), each performing a specific task. The AIF orchestrates these modules
in order to perform more complex operations, and its input-output pipeline is de-
fined by the MPAI project, like can be seen in figure 1.2. It’s noteworthy that the
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Figure 1.2: MPAI AI Framework

Figure 1.3: ARP Framework

standard only what goes in and out of the pipeline, but what happens in between
with the modules is chosen by the developer.

As said before, MPAI standards cover several application and use cases. The active
preservation of magnetic tapes falls under the Context-Based Audio Enhancement
(MPAI-CAE) use case, more specifically the Audio Recording Preservation (ARP).
Figure 1.3 describes the pipeline of the ARP framework, where all the modules can
be seen.

The framework takes in input the digitized audio of the magnetic tape and the
video recording of the playback head of the recorder during the reproduction. After
processing, it produces in output preservation master files (a copy of the input) and
access copy files, which contain the final restored version of the audio.
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This thesis will describe an implementation of the Audio Analyser module using
artificial neural networks on spectrogram images extracted from the digitized tapes.
Among all the problems that can arise during the digitization process, this work will
aid in detecting irregularities between the original recording speed and the playback
speed used during reproduction. The next chapter will showcase the problem further,
then it will discuss a possible solution.





Chapter 2

Problem and Solution

Magnetic tapes can be recorded over different tape speeds: generally, the higher the
speed, the better the reproduction quality, but the more quantity of tape it requires
to record the same duration of audio. Hence, slower speeds help to conserve tape,
and are primarily used when audio quality is not the primary concern. However,
this variety comes with some possible technical problems, as explained next.

2.1 Irregularities in Playback and Recording Speed

During the digitization process, the tape recorder must be configured correctly,
because if the document gets reproduced at a speed which is different than the
recording speed, the digitized audio gets sped up or down and the quality plummets,
rendering conservation efforts virtually useless. Since the digitization is done for
hours and hours of audio material, it is not unusual to make this sort of mistake, so
we want to have a way of preventing it automatically via software.

Intuitively, if a digital sample gets sped up, then all the audio signal’s frequencies
will get transposed up in the frequency spectrum. More precisely, doubling the
reproduction speed will result in a transposition up one octave, quadrupling up two
octaves, and so on. Similarly for the inverse direction, slowing down a sample will
result in a transposition down the register.

This information suggests that the way to tell if a magnetic tape is being reproduced
incorrectly is looking into the frequency domain. But how is it possible to discern
between a violin playing a melodic line in the third octave, and another violin playing
the same melodic line in the second octave, and then being doubled in speed?

Obviously, a person could easily which is which, as the sped up version sounds very
unnatural and grating to the ear. Automating this task with software, though, is
not as straightforward.

7
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2.2 A Possible Solution

Since the goal is to be able to classify between regular and irregular samples, the
first thing that comes to mind is machine learning, in particular classifiers. A
lot of variables are at play: what kind of classifier to use, what features to extract,
what data to use for the training and testing, just to name a few.

A possible path to follow would be to extract numerical features from a Fourier
analysis of the audio signal and then create a dataset (labeled or unlabeled) which
is used to train a model, either with supervised learning techniques (decision trees,
logistic regression, etc) or unsupervised techniques like clustering. A list of possibil-
ities regarding what features to use can be found in Rodà et al.[6], in the frequency
domain analysis section.

It is also possible to represent signals in visual ways, for example using spectrograms,
to which we can apply computer vision machine learning techniques [7, 8], using the
images’ pixels as features. In recent years deep learning has been used extensively in
computer vision, most notably through the use of convolutional neural networks.
These networks automatically extract features from images using a series of filters,
and use those features to make predictions.

The goal of this thesis is to explore a possible approach: after digitizing the tape,
convert the audio to a spectrogram image and analyze it using convolutional neural
networks, which detect the sections in which the playback speed is incorrect, if there
are any. The timestamps of the irregularities are then written on a file and processed
accordingly. The computation of the spectrograms and the structure of the networks
are going to be presented next.

2.2.1 Spectrograms

A spectrogram can be defined as an intensity plot of the discrete Short-Time

Fourier Transform (STFT) magnitude. The discrete STFT is simply a sequence
of DFTs of windowed data segments, where the windows are usually allowed to
slightly overlap in time.

STFT (x[n])(m,ω) = X(m,ω) =
∞
∑

n=−∞

x[n]w[n−m]e−iωn

where x is the original signal to be transformed and w is a window function cen-
tered around zero. In this case, m is discrete while the frequency ω is continuous,
but in practical application the STFT is computed using the fast-fourier-transform
algorithm, so both variables are discrete and quantized.

It is a very important representation of audio because human hearing is based on a
kind of real-time spectrogram encoded by the cochlea of the inner ear [9] [10]. The
spectrogram has been used extensively in the field of computer music as a guide
during the development of sound synthesis algorithms.
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Figure 2.1: Spectrograms of the same sample with three different scales

In practice, the y-axis of the plot represents the frequency, the x-axis the time and
the z-axis (the color) represents the intensity of the corresponding frequency at that
timestamp. The y-axis can use a variety of different scales, and for this thesis the
possible options considered are:

• Linear Scale: Every frequency interval occupies the same amount of space
on the y-axis. This results in the higher octaves occupying more space on the
plot.

• Logarithm scale: The frequencies are usually measured in decibels, where
every octave occupies the same amount of space on the y-axis.

• Mel scale: A different kind of logarithm scale is used on the y-axis:

mel(f) =

{

f if f ≤ 1 kHZ

2595log10(1 +
f

700
) if f > 1 kHz

For reference, on the mel scale 1000Hz match 1000mel.

The difference in the result using the three different scales can be seen at figure
2.1, where the frequencies were capped at a maximum of 20 kHz for simplicity and
the intensity is colored in grayscale. The difference in the space given to the lower
octaves is especially great in the linear and logarithm spectrograms. The question
to be answered is: what scale is more appropriate to detect irregularities? This will
be answered in the later chapters, in section 4.4.

When choosing what technologies to use for computing the spectrograms, there
are numerous options available, from simpler command-line interface tools to more
complex GUI programs like digital audio workstations. Since the goal is to create a
dataset of thousands of images, the task has to be automated, which is easier to do
with a CLI program.

For computing the linear and logarithm spectrograms the choice fell on SoX [11],
a great command-line tool written in C that, among several other functions, allows
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Figure 2.2: Model for one neuron

to compute spectrograms from audio files 1. SoX unfortunately doesn’t support mel
spectrograms, for which the Python module Librosa [12] was chosen. 2

2.2.2 Convolutional Neural Networks

Convolutional Networks, or CNNs, are a specialized type of artificial neural network
used for processing data which has a known, grid-like topology, like images. These
models have been tremendously successful in practical applications in different fields,
from face recognition to medical image analysis.

The structure of a CNN is the usual neural network structure: there’s an input
layer, composed by the pixels of the input image, then one or more hidden layers,
and an output layer at the end. Each layer is composed of neurons, each one of them
having some inputs, an output and an activation function. Neurons are connected
with each other with weighted links, each link having a weight w that measures how
important the link is to that neuron, like represented in figure 2.2.

During the training phase the network updates these weights at every iteration. The
most basic method to find the optimal weights is the gradient descent method, or
its stochastic variant.

After having propagated the input through all the layers, the network produces an
output, with which it makes a prediction on the input. This output is then fed to
a loss function L, which quantifies how wrong the predicted output is with respect
to the desired result3. Afterwards, the error is adjusted by modifying the weights w
using backpropagation, moving in the opposite direction of the gradient of L using
the chain rule. The gradient indicates the direction in which a function grows more
rapidly, so moving in the opposite direction reduces the error.

The name “convolutional network” implies that it makes use of a mathematical oper-
ation called convolution, which is a specialized kind of linear operation. Concisely,
convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers [13].

1SoX - Sound eXchange
2Librosa Docs
3A label in the classification task, or a real number in a regression task
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Convolution

In one dimension and in in the countinuous domain, the convolution operation be-
tween two functions x and w is defined as follows [13]:

s(t) =

∫

x(a)w(t− a)da

and it is typically denoted with an asterisk

s(t) = (x ∗ w)(t)

In convolutional neural networks terminology, the first argument, in our case x, is
referred to as the input, while the second argument as the kernel. The output is
sometimes called the feature map.

If we assume that the input and the kernel are two-dimensional and discrete, then
the convolution takes the form:

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n)

where I is the two-dimensional input (an image in our case) and K is a two-
dimensional kernel. An example of 2-D convolution can be seen in figure 2.3.

The convolution process is inspired by the biological process for visual analysis in
living organisms. The layer of neurons responsible for convolution divides the image
in several juxtaposed fragments, that are analysed to extract patterns that are sent
to the subsequent layers as feature maps.

The kernels (also called filters) are matrices, which are much smaller in dimensions
than the input images, and they contain numerical values. The convolution between
the input and the kernel produces some activation maps, regions in which some
features were found. The numerical values in the kernels change at every iteration
on the training set, because the network is learning how to recognise the features.
Furthermore, in order to reduce the dimensionality of the convolution’s output and
to avoid overfitting, CNNs use another type of layer, the pooling layer.

Pooling

A pooling operation replaces the output of the network at a certain location with a
summary statistic of the nearby outputs. For example, the max pooling operation
calculates the maximum output within a rectangular neighborhood. There are other
options, such as average pooling or a weighted average based on the distance from
the central pixel. An example of max and average pooling can be seen in figure 2.4.

Regardless of the choice of function, pooling helps in making the representation
approximately invariant to small translations of the input image. This essentially
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Figure 2.3: Example of 2-D convolution, taken from [13], page 334

Figure 2.4: Example of max and average pooling, taken from [14]
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means that if we translate the input by a small amount, the pooled outputs mostly
don’t change. This property helps if we care more about whether a certain feature
is present in the image, and not the location of said feature in the image.

These layers are almost always put after a convolutional layer, in order to reduce
the dimensionality of the input to pass to the next layers.

Activation Function

The most basic activation function which can be used in neural networks is the
sigmoid:

f(vk) =
1

1 + evk

where vk is the input at the k-th neuron.

In deep networks with many hidden layers, though, this activation function becomes
problematic. During the propagation phase, in fact, the weights get updated propor-
tionally to the partial derivative of the function with respect to the current weight
at every iteration. The derivative of the sigmoid function is typically less than 1,
so the chain rule causes the multiplication of many terms which are less than 1,
resulting in the degradation of the gradient in the layers far from the output. The
sigmoid has another problem: is tends to saturate towards the extremes (0 and 1),
which further contributes in the degradation of the gradient.

To avoid the problem another activation function is often used, called rectified

linear unit usually referred to as ReLu:

f(vk) = max(0, vk)

Such function saturates only when the input is less than 0, and it is also more
computationally efficient than the sigmoid.

Still, the sigmoid activation function is useful for binary classification when used in
the last layer, as the output can be converted to the label. Similarly, for classification
with more than two classes another function can be used, called softmax, which
is used to predict the probabilities associated with a multinoulli distribution. It is
defined as:

f(v)k =
exp(vk)

∑n

j=1
exp(vj)

Both the sigmoid and the softmax functions return a set of values between 0 and
1, one for each class, representing the probability that the input belongs to the
corresponding class. To produce the predicted label, just pick the highest one like
this:
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Predicted Label = argmax(v)

where v is the output of one of the two activation functions.

Loss Functions

There are several choices when it comes to loss functions, but for this work the
focus will be on cross-entropy, which is widely used when optimizing classification
models.

In a supervised training task, each labeled sample has a known class label with
probability 1 and probability 0 for all other labels. A neural network takes in
input a sample and outputs the probability of an example belonging to each class
label. Cross entropy can then be used to calculate the difference between the two
probability distributions.

In classification, there are the expected and predicted probabily distributions:

• Expected Probability: the known probability of each class label for an example
in the dataset, call it P

• Predicted Probability: the probability of each class label predicted by the
model, call it Q

So, we can estimate the cross-entropy for a single prediction as follows:

H(P,Q) = −
∑

x∈X

P (x)log(Q(x))

where each x ∈ X is a label that could be assigned to the sample, and P (x) will
be 1 for the known label and 0 for all other labels. When there are only two
possible classes, it’s called binary cross-entropy, while with more than two classes
categorical cross-entropy.

All in all, an example of a structure of a convolutional neural network can be found
in figure 2.5, where the convolution and pooling layers are followed by dense layers
right before the output layer, as it’s common practice.

Optimizers

It was previously stated that during the backpropagation phase, the algorithm moves
in the opposite direction than that of the gradient (for minimization problems). At
every step the movement is done with a certain step called learning rate, which is a
hyperparameter. A learning rate which is too small results in a very slow training
process that can often get stuck. On the other hand, taking too big of a step can
make the algorithm zig-zag around the optimal solution without ever reaching it.
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Figure 2.5: Example of structure of a CNN

There are several extensions of the stochastic gradient descent method that take care
of this problem by adopting an adaptive learning rate strategy, using momentum and
gradient forgetting factors. One of these implementations is called adam, invented
in 2014, which will be used in the training phase of the classifiers.

This optimizer doesn’t guarantee the convergence to the optimal point for all convex
objective functions, but it’s widely used for its strong performance in practice.

Regularization

Neural networks trained on relatively small datasets can overfit on the training data.
There are many adjustments that can be made to combat this, in a process called
regularization. This work will use dropout as the main method for decreasing
overfitting.

It consists in ignoring, or “dropping out” a certain number of layer outputs with a
certain probability. This is done on all or some of the hidden layers of the network,
and it has the effect of making the training process noisy, forcing nodes within a
layer to probabilistically take on more or less responsibility for the inputs.

Dropout simulates a sparse activation from a given layer, which interestingly, in
turn, encourages the network to actually learn a sparse representation [15] as a
side-effect.

Technologies Used

The chosen programming language for this work is Python, as it is by far the most
common in the machine learning and data analysis worlds, and it’s pretty much
become the industry standard. Its ease of use, clear syntax and huge number of
pre-written modules make it really easy to develop projects quickly and effectively.
Its data visualization libraries are also ubiquitous in data science.

For building and training neural networks, the two most prominent Python modules
are PyTorch, originally developed at Meta, and TensorFlow, developed at Google.
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The choice fell on TensorFlow, because of the ease of use given by the open-source
library Keras which provides a high-level, user-friendly Python interface for quickly
building and testing machine learning models.

Keras allows users to build complex neural networks modularly, just by adding the
chosen layers, loss, activation functions and optimizers as pre-built blocks, and it
also allows to generate and split datasets from a folder. At the end of the training,
the other modules that are going to be used arematplotlib and scikit-learn, which
will be dedicated to the visualization of the results and to measure the performance
of the models.

Approach: Two Classifiers

The approach is pretty simple: take several audio samples of digitised magnetic
tapes, with some samples being reproduced at the same speed that they’ve been
recorded with, and the others being reproduced incorrectly. Label the first “correct”
and the others “wrong”. Now compute the spectrograms for all of them, and extract
thousands of fixed-size windows from the spectrograms in order to make a binary
dataset.

Then, the subfolder labeled “wrong” can be divided further to make a multi-class
dataset, with every class being the speed-up or slow-down factor of the reproduction
speed with respect to the recording speed. For example, a tape recorded at 7.5ips
and reproduced at 15ips will be labeled “double”, while if it was reproduced at
3.75ips it would be labeled “half”.

The most used recording speeds for magnetic tapes are 3.75ips, 7.5ips and 15ips, so
these will be the ones used for the thesis. All in all, there are four possible classes:

Recording Speed Playback Speed Label

3.75ips 7.5ips double
7.5ips 15ips double
7.5ips 3.75ips half
15ips 7.5ips half
3.75ips 15ips quadruple
15ips 3.75ips quarter

Table 2.1: Labels for multi-class classifier

Now there are two datasets, which can be used to train two classifiers: a binary
one, which guesses if a spectrogram image is irregular, and a multi-class one, which
quantifies the type of irregularity of an irregular image.

After having trained the models, we can use them to analyze new audio samples
in a similar way: take in input an audio sample, compute its spectrum and divide
it into fixed-size segments, then finally input the segments into the classifiers and
extract the timestamp of found irregularities.
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Dataset Creation

The processing, preparation and cleaning of data is arguably the most important
part of any machine learning application, as well as the most tedious and lengthy.
Usually datasets are huge tables filled with numerical and categorical values that
need to be filtered and corrected, but since we’re working with CNNs it’s only images
that will be dealt with. The main goal is having a set of images of the same size,
all properly labeled and ready to be fed to a model.

This chapter describes the nature of the data handled by the software, as well as
the manipulation that was done on it in order to generate an adequate dataset
for training the classifiers. The whole codebase was uploaded on GitHub, and the
repository can be accessed at this link.

3.1 Audio Dataset

The data on which the models were trained was made in the laboratory specifically
for this study: it consists of 300 audio samples of magnetic tapes being reproduced
using a reel-to-reel tape recorder and then digitised in WAV format, adding up to
around 90 minutes of material.

The samples include a wide variety of audio content, spanning from spoken word,
classical and opera music to more eclectic genres such as noise and electronic music,
using completely different instrumentation. This was done in order to expose the
models to a broad variety of possibilities, and make their generalization capabilities
better.

Each sample is divided in two phases: firstly, the tape is reproduced at the same rate
at which it was recorded, resulting in a “regular” phase. A switch then occurs, and
the tape gets reproduced at a speed different from the original one, resulting either
in a sped-up or slowed-down version of the audio sample. This change introduces a
ton of audio artifacts, which ideally the binary classifier will pick up on and label
as “irregular”.

17
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The possible recording-playback rates considered in this study are 3.75ips 1, 7.5ips
and 15ips. These three are by no means the only possibilities, but they are the most
common ones used in recordings. All the six possible combinations of these speeds
were included in the original dataset, which is summarised in table 3.1.

It is notable that labels “half” and “double” are assigned quite more samples than
the other two, making the dataset slightly unbalanced. It will be more clear after
the training results if this skew causes problems.

Recording Speed Playback Speed Label Samples Time

3.75ips 7.5ips Double 50 882s
7.5ips 15ips Double 50 787s
7.5ips 3.75ips Half 50 766s
15ips 7.5ips Half 50 786s
3.75ips 15ips Quadruple 50 1,105s
15ips 3.75ips Quarter 50 1,117s

Total 300 5,445s

Table 3.1: Summary of the audio dataset before preprocessing

3.2 Spectrogram Dataset

Convolutional Neural Networks work on fixed-size images: in this case, the images
are excerpts of the spectrograms computed from the audio samples. So, in order
to feed the CNNs the training data, the original dataset needs to be processed
accordingly. The pipeline is summarised in the steps below, which can be recreated
following the instructions written on the GitHub repository’s README.md file.

• Channel Separation: The samples were digitised in stereo format, and while
the two channels sound the same to the ear, they look slightly different in the
frequency domain. Thus, in order to enrich the dataset, the channels were
separated, creating a new collection of 600 samples.

• Spectral Extraction: Compute the spectrogram of each sample: each image
has fixed height and width proportional to the audio duration2. An example
can be seen at figure 3.1. While the difference between the two channels is
not that notable, it can still be seen right after the black band, where in the
right channel the glissando is slightly more prominent. Another example can
be seen in the close-up at figure 3.2, taken from another sample halving in
playback speed.

In the repository, the script that performs this step is src/wav2spec.py. The
images are saved in 8-bit grayscale format, so to minimize the storage space

1ips stands for ”inches per second”, which is the speed at which the tape rotates during the
recording-playback process

2In this case the height is fixed to 128 pixels, while the width has a resolution of 256pixels/s
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needed while carrying the same amount of information.

Figure 3.1: Spectrograms of the same sample doubling in playback speed, using a
linear scale on the y-axis. The black band corresponding to the speed change is

clearly visible

Figure 3.2: Close-up of glissando region, different from channel to channel

• Spectrogram Division: Each image has to be divided in two parts, but
the timestamp at which the switch occurs is not known a-priori. Some im-
age manipulations can be used to locate the black band in the spectrograms
and use its position to accomplish the goal. This task is assigned to script
src/divide.py in the repository. The script uses the OpenCV module to
apply a thresholding function and a morphological filter to isolate the region
of interest and store the relative x-coordinate. It then uses the coordinate to
cut the images in two and save the two halves separately.

• Spectrogram Segmentation: Extract multiple fixed-width segments from
each half: segments coming from the left of the band will be labeled “c” for
correct, while the others will be labeled “w” for wrong. This step is done by
script src/segment.py.

In this work segments were taken with a step of 128 pixels, starting with an
offset of 128 pixels to the right of the black band in order to skip the “glissando”
region, which in normal cases doesn’t occur and could lead to confusion during
the training of the classifiers.

At this point of the process, it’s still not clear how wide every segment should
be: theoretically, if the segments are thin then a spectrogram can be analyzed
more precisely, so is would seem the preferable choice. But since smaller images
carry less information, this could cause poor classification performances. After
trying out widths of 64px, 128px and 256px, the choice fell on the latter, as it
resulted in better performance. The reasoning goes more in depth in the next
chapter, where the training results are discussed.
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These steps have been recreated for all three possible scales, thus creating three
different datasets. It has to be noted that the speed change doesn’t always occur
near the middle of the sample, but rather it usually tends to happen in the latter
half of it, making the dataset unbalanced, as seen in table 3.2.

Label Samples

correct 12,222
wrong 6,429
Total 18,651

Table 3.2: Summary of the binary dataset for the first classifier

The subfolder labeled “w” can then be subdivided to make another dataset, which
will be used to train the second classifier. Depending on the filename, samples are
assigned four possible labels, which represent the speed change factor. The second
dataset is summarised in table 3.3

Recording Speed Playback Speed Label Samples

3.75ips 7.5ips double 956
7.5ips 15ips double 1,094
7.5ips 3.75ips half 677
15ips 7.5ips half 1,295
3.75ips 15ips quadruple 1,041
15ips 3.75ips quarter 1366

Total 6,429

Table 3.3: Summary of the dataset for the second classifier

Considerations

Again, the dataset is not completely balanced, as the labels “double” and “half”
are assigned more samples than the two other classes. A possible solution would be
applying some light random oversampling [16] on the “quadruple” and “quarter”
classes in order to level out the label counts, which has proven to a robust strategy.

It’s worth noting that no data augmentation was done on the initial data, which
is surely a possibility to explore in the future if the performance is not satisfactory
and if overfitting problems arise. Some options would be to digitise the same tapes
again but with slightly different configurations during the reproduction phase, for
example adjusting the gain of introducing some kind of noise signal.

The spectrograms images were kept as they were after being computed, and no fur-
ther preprocessing functions were applied to them using OpenCV or other software.
It’s possible that some transformations like increasing the contrast or doing some
thresholding could highlight some additional information inside the spectrum and
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help the classifiers learn more optimally. However, for the sake of simplicity and the
already high number of variables at play, the decision was to avoid doing any more
processing.





Chapter 4

Model Training

In the previous chapter it was mentioned how it wasn’t clear what shape the input
should have. This will be the first thing touched upon in this next part, along with
the quality measures used to choose the right size.

After settling for one size will come the training of all six classifiers (two for each of
the three scales) and then the comparison between the quality metrics.

The training process on thousands of images is computationally heavy, so I used
Google Colab to make use of powerful nVidia T4 GPUs which are available for free.
The training process can be replicated with the notebook model fit colab.ipynb,
which is suited for running in Google Colab1.

4.1 Network Configuration

The configuration for the CNNs was chosen through trial and error, as there is no
specific rule to follow to increase accuracy and avoid overfitting. The networks for
both classifiers have pretty much the same structure, apart from the last layer which
is responsible for outputting the predicted label:

• Three convolutional layers with kernel size 7x7, relu activation function
and padding set to “same” The first layer has 8 neurons, the second 16 and
the third 32.

• Each convolutional layer is followed by a max pooling layer with kernel size
5x5.

• One global average pooling layer.

• One dense layer of size 32 with relu activation function.

• One dropout layer with probability 0.3.

1It is suggested to save the archived datasets into Google Drive, to not have to manually upload
them to Colab each time an experiment has to be run.
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• One final dense layer:

– Binary classifier: 2 neurons, sigmoid activation function.

– Multi-class classifier: 4 neurons, softmax activation function.

• Optimizer: adam for both classifiers.

• Loss Function:

– Binary classifier: Binary Crossentropy.

– Multi-class classifier: Categorical Crossentropy.

Overall, the binary classifier has 32,930 total parameters and the multi-class one has
32,996.

All the models were trained for 30 epochs using a batch size of 20 images. The
training set accounted for 70% of the dataset, the validation set for 20% and the
testing set for the remaining 10%.

4.2 Quality Measures

Accuracy could be used as a measure of a classifier’s performance, but sometimes
this metric can be misleading, especially since the dataset is not balanced. The
chosen metrics are then precision, recall and f1-score. The formulas to compute
these sligthly vary in the binary and multi-class case.

In the binary case the confusion matrix looks like in table 4.1, while with more than
two classes like in table 4.2. In the tables the labels are numerical, but they can
easily be translated to our case.

Predicted

0 1

Actual
0 True Negative False Positive
1 False Negative True Positive

Table 4.1: Example of confusion matrix with two classes

Predicted

0 1 2 3

Actual

0 TN TN FP TN
1 TN TN FP TN
2 FN FN TP FN
3 TN TN FP TN

Table 4.2: Example of confusion matrix with four classes, in this case to compute
metrics for class 2
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• Precision: we denote as precision the fraction of positive detections reported
by the model that were correct. In formula,

P =
TruePositive

TruePositive+ FalsePositive

• Recall: the fraction of positive events that were rightfully detected

R =
TruePositive

TruePositive+ FalseNegative

• F1-score: can be interpreted as the harmonic mean of precision and recall,
where the best possible score is 1 and the worst is 0.

F1 =
2PR

P +R

These metrics can be computed for every class, but it’s also possible to compute
the averages for all classes to summarise the model’s quality with one global metric.
These are calledmacro averages for the unweighted mean andweighted averages

for the weighted mean.

4.3 Comparing Input Sizes

The height of the spectrograms was arbitrarily fixed at 128 pixels, and three pos-
sibilities were considered for the widths: 64, 128 and 256 pixels. The next part
compares the metrics achieved at the end of the training processes, using the linear
scale on the y-axis. The function sklearn.metrics.classification report was
used to calculate all the metrics.

Label Precision Recall F1

c 0.77 0.95 0.85
w 0.84 0.51 0.63

macro avg 0.81 0.73 0.74
weight avg 0.80 0.79 0.77
accuracy 0.79

Table 4.3: Metrics of the binary
classifier with 64 pixels width, linear

scale

Label Precision Recall F1

double 0.90 0.38 0.54
half 0.78 0.04 0.07

quadruple 0.75 0.69 0.72
quarter 0.29 0.98 0.45

macro avg 0.68 0.52 0.44
weight avg 0.71 0.45 0.40
accuracy 0.45

Table 4.4: Metrics of the multi-class
classifier with 64 pixels width, linear

scale

Tables 4.3 and 4.4 contain the results for the width of 64 pixels. The first table
is the summary for the binary model, while the second table is the summary for
the multi-class model. As can be seen, the models perform badly, especially the
multi-class one, which achieved a weighted recall of only 0.45 and a weighted f1
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score of just 0.40, making it safe to say that this width is not viable. In addition to
the quality metrics, the confusion matrix that the model achieved on the test set at
figure 4.1 is clearly a mess, since almost all “half” labels were predicted incorrectly.
In fact, the accuracy on the test set came at just 44.9% for the multi-class classifier,
and 78.6% for the binary one, which is not a satisfying result.

Label Precision Recall F1

c 0.93 0.97 0.95
w 0.95 0.87 0.91

macro avg 0.94 0.92 0.93
weight avg 0.94 0.94 0.94
accuracy 0.94

Table 4.5: Metrics of the binary
classifier with 128 pixels width,

linear scale

Label Precision Recall F1

double 0.96 0.95 0.96
half 0.98 0.98 0.98

quadruple 0.92 0.95 0.94
quarter 0.99 0.98 0.99

macro avg 0.96 0.97 0.97
weight avg 0.97 0.97 0.97
accuracy 0.97

Table 4.6: Metrics of the multi-class
classifier with 128 pixels width,

linear scale

The results for the width of 128 pixels are in tables 4.5 and 4.6. Doubling the input
width led to a great performance increase. The binary model has every metric over
0.9 except for the recall of the “wrong” class, which is 0.87. The multi-class model
performed even better, with every average being over 0.97. This is most certainly
a viable option, having a balanced combination of good performance and small size
for the images, reducing training time and computation loads. The confusion matrix
at figure 4.2 also looks much better, with the majority of the elements lying on the
main diagonal, as it ideally should be. The test accuracy went from 44.9% to 96.8%,
a night and day difference.

Label Precision Recall F1

c 0.98 0.96 0.97
w 0.92 0.95 0.94

macro avg 0.95 0.96 0.95
weight avg 0.96 0.96 0.96
accuracy 0.96

Table 4.7: Metrics of the binary
classifier with 256 pixels width,

linear scale

Label Precision Recall F1

double 1.00 0.98 0.99
half 0.97 0.97 0.97

quadruple 1.00 1.00 1.00
quarter 0.96 0.98 0.97

macro avg 0.98 0.98 0.98
weight avg 0.98 0.98 0.98
accuracy 0.98

Table 4.8: Metrics of the multi-class
classifier with 256 pixels width,

linear scale

In tables 4.7 and 4.8 the results for the width of 256 pixels can be seen. Doubling
the input size once more gave use a few percentage points in every metric, and the
weak recall for the “wrong” class went from 0.87 to 0.94, which is much better. In
addition, the accuracy on the test set was 95.9%. The confusion matrix at figure 4.3
is very similar to the previous case as well. Ultimately the latter 256px input width
was chosen in order to maximize accuracy, even though the 128px option would have
been a good choice as well.
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Figure 4.1: 64 pixels width Figure 4.2: 128 pixels width

Figure 4.3: 256 pixels width

Confusion matrices with different input sizes, linear scale

4.4 Comparing Scales

Having now fixed the input size, in this section the classifiers will be trained using
the three different scales and the same quality metrics as before will be used to
compare the performances.

In addition, some plots will show how the loss and the accuracy on validation and
training sets vary during the training process, to check for overfitting. At first glance,
if the two curves go hand-in-hand, then there shouldn’t be any.

Linear Scale

The training process of the binary model using the linear scale on the y-axis is
visualized in figure 4.4. The top half plots the accuracy as the epochs go on, while
the bottom one plots the loss.

The accuracy side looks really good, as the training and validation curves go hand-
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(a) Training of binary classifier,
linear scale

(b) Training of multi-class

classifier, linear scale

Figure 4.4: Plot of training phase of linear scale classifiers

in-hand. The loss for the binary classifier is slightly worse, and there seemed to be
a bit of overfitting in some epochs, but it subdues at the end.

The quality metrics for these two models were previously computed, and are con-
tained in tables 4.7 and 4.8. Up next, they will be compared to the logarithm and
mel ones to see how they stack up against each other.

Logarithm Scale

The plots of the training phase using the logarithm scale are shown in figure 4.5. The
accuracy doesn’t get as high as the linear case, both in the training and validation
curves. There seems to be close to no overfitting. The most striking metric is the
lower accuracy on the test set for the binary classifier, which came out at 83.9%
against the 95.9% of the previous model. The multi-class model, on the other hand,
performed better on the test set, with an accuracy of 98.5% against the 98% of the
linear case.

Regarding the other quality metrics, they can be seen at tables 4.9 and 4.10. Again,
for the binary model the precision, recall and f1 score are significantly lower for the
logarithm scale. In particular, the recall for the “wrong” class is went from 0.95 in
the binary-linear to 0.73 in the binary-logarithm. All the averages have a difference
of at least 0.12 as well.

Interestingly, the multi-class model performed almost exactly the same as the linear
case, with all the averages being equal.

Mel Scale

The plots of the training phase for the mel scale are contained in figure 4.6. The
curves look almost identical to the linear case, and again there is no apparent over-
fitting. The accuracy on the test set is the highest yet for the binary classifier,
at 97.4%, and for the multi-class one it’s comparable to the other two cases. The
quality metrics for the binary classifier are also the best among the three, with the
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(a) Training of binary classifier,
logarithm scale

(b) Training of multi-class

classifier, logarithm scale

Figure 4.5: Plot of training phase of logarithm scale classifiers

Label Precision Recall F1

c 0.87 0.89 0.88
w 0.76 0.73 0.75

macro avg 0.82 0.81 0.81
weight avg 0.84 0.84 0.84
accuracy 0.84

Table 4.9: Metrics of the binary
classifier with 256 pixels width,

logarithm scale

Label Precision Recall F1

double 0.97 0.98 0.98
half 1.00 0.98 0.99

quadruple 0.97 0.97 0.97
quarter 0.98 0.99 0.98

macro avg 0.98 0.98 0.98
weight avg 0.98 0.98 0.98
accuracy 0.98

Table 4.10: Metrics of the multi-class
classifier with 256 pixels width,

logarithm scale

averages gaining two percentage points over the linear case, and of course beating
the logarithm by a large margin. It is especially noteworthy how the precision for
the “wrong” class is 0.5 higher than the linear scale. The metrics for the multi-class
are also the best, although only by a tiny margin, as the averages are at most 0.01
higher than the other two.

4.4.1 Assessment

With this knowledge, the conclusion is that the linear and mel scale are both valid
options with respect to binary classification, while the logarithm scale seems more
unreliable. The big difference in the performance of the binary classifier could
suggest that the higher end of the frequency spectrum carries more information
about the irregularities, since the logarithm scale gives more space to the lower
octaves than the linear one. For the multi-class classification of the speed change
factor, all the scales seem viable, even though the mel one lands on top by a couple
percentage points in the average metrics.

It must be noted that these are results extracted on the test set, but sometimes
machine learning models perform really well on samples which are similar to the
training data but then fail to generalize well on new content.
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(a) Training of binary classifier,
mel scale

(b) Training of multi-class

classifier, mel scale

Figure 4.6: Plot of training phase of mel scale classifiers

Label Precision Recall F1

c 0.98 0.99 0.98
w 0.97 0.95 0.96

macro avg 0.97 0.97 0.97
weight avg 0.97 0.97 0.97
accuracy 0.97

Table 4.11: Metrics of the binary
classifier with 256 pixels width, mel

scale

Label Precision Recall F1

double 0.98 0.99 0.99
half 1.00 0.96 0.98

quadruple 0.98 1.00 0.99
quarter 0.97 1.00 0.98

macro avg 0.98 0.99 0.98
weight avg 0.99 0.98 0.98
accuracy 0.98

Table 4.12: Metrics of the multi-class
classifier with 256 pixels width, mel

scale

To see if there are relevant differences between the scales and if the models have
sufficient generalization, numerous tests will be ran on completely different data. A
new dataset of completely different samples will be appositely generated to try out
the models’ capabilities. This will be shown in the next chapter.
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Figure 4.7: Linear scale Figure 4.8: Logarithm scale

Figure 4.9: Mel scale

Confusion matrices with different scales, 256 pixels width





Chapter 5

Testing

This chapter is dedicated to measuring how well the classifiers react to new infor-
mation. In the previous chapter the metrics were attained on the test split that was
extracted from the initial dataset, but unfortunately the samples were pretty similar
among each other, so they cannot be taken for granted.

The metrics used will be the same as before: accuracy, precision, recall and F1 score,
in order to have a fair comparison with the results obtained in the last chapter. The
question to answer is if the new results are deemed satisfactory and whether these
models can be used in the final version of the software. There will also be some
considerations on how the results could be improved.

5.1 Test Dataset

Now that the models have been trained and that the Mel scale was chosen to be the
most appropriate to use in terms of metrics, the decision was to generate some new
samples of digitised tapes in order to see if the models perform well.

The new dataset consists of 100 audio samples that contain multiple speed changes
throughout a single file. This material will also be used to test the final version of
the software, so it is useful to see how the program will respond to different speed
changes. An example of a spectrogram is in figure 5.1.

Figure 5.1: Spectrogram of a tape recorded at 7.5ips and reproduced at the correct
speed, then 3.75ips and finally 15ips

In order to compare the performance obtained in the last chapter, the same metrics
need to be used, and for that labeled dataset is needed. Like for the previous exper-
iments, the samples were processed using the python scripts: divide the channels,
compute the spectrograms using the Mel scale, divide them and segment them. The
binary test set is summarised in table 5.1.
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Label Samples

correct 2,847
wrong 4,905
Total 7,752

Table 5.1: Summary of the binary test dataset

The subfolder of irregular images can then be subdivided to make the multi-class
test set, which is summarised in table 5.2.

Label Samples

double 2,105
half 1,540

quadruple 759
quarter 501
Total 4,905

Table 5.2: Summary of the multi-class test dataset

5.2 Performance On Test Dataset

The experiment can be recreated with the notebook model test.ipynb in the repos-
itory, and the README.md file also contains a Google Drive link to download the test
dataset. Table 5.3 contains the results for the binary classifier.

Label Precision Recall F1

c 0.70 0.93 0.80
w 0.95 0.77 0.85

macro avg 0.82 0.85 0.82
weight avg 0.86 0.86 0.83
accuracy 0.83

Table 5.3: Metrics of the binary
classifier on the test dataset

Label Precision Recall F1

double 0.82 0.73 0.77
half 0.94 0.63 0.76

quadruple 0.55 1.00 0.71
quarter 0.67 0.83 0.74

macro avg 0.75 0.80 0.74
weight avg 0.80 0.75 0.75
accuracy 0.75

Table 5.4: Metrics of the multi-class
classifier on the test dataset

As can be seen, there is a noteworthy performance drop from the previous exper-
iments. Nonetheless, the scores are still good: the averages are all above 0.82 (for
reference, previously they were all greater than 0.97). Strangely, for the “correct”
class the recall is much higher than the precision, while for the “wrong” class it’s
exactly the opposite. The F1 score, on the other hand, is more stable.

For the multi-class experiment, the results are in table 5.4. The difference is even
more noticeable, with a 20% drop in almost all metrics. The same pattern that
was present in the binary case emerges, where precision and recall are inversely
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proportional. The F1 score is, again, more stable and averaging 0.75, which is much
lower than the previous 0.98 but still at an acceptable level.

Figure 5.2 contains the confusion matrix for the multi-class model: it’s not surprising
that the classifier has a hard time discerning between the two speed-ups (double and
quadruple) and the two speed-downs (half and quarter), since their effect on the
frequency spectrum is very similar. On the other hand, it’s very strange that the
model often classifies samples labeled “half” (second row) as “double” and sometimes
as “quadruple”. This phenomenon doesn’t happen nearly as often in any other class.

Figure 5.2: Confusion matrix computed by the multi-class classifier on the test
dataset

This confusion between classes could have a number of different reasons: for sure
the training set wasn’t very balanced, and that can possibly cause bias for some
classes over others.

It could also be an overfitting problem, and in this case a different network con-
figuration maybe would work better. Adding some dropout layers and a batch
normalization layer is surely a possibility to explore in the future. Reducing the
number of trainable parameters through decreasing the amount of fully-connected
layers and their respective neuron count is also a viable option.

The mistakes made by the classifiers may also be caused by some “glissandi” regions
which made it into the dataset, even though they’re very few. Most of them were
skipped during the creation of the spectrograms, but the results could still be a
bit skewed. However, if that’s the case, in real magnetic tapes case studies these
glissandi are not present, so this problem wouldn’t persist.

Finally, it is also possible that, since different genres of music appear wildly different
in the frequency domain, the models perform well on some genres and badly on
others. The difference in the spectrograms can be appreciated in figure 5.3, where
the upper spectrogram was computed from a spoken word sample, the middle one
from an opera performance and the lower one is taken from a drum track.
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Figure 5.3: Mel spectrograms of different genres, where you can see the broad
variety in frequency responses

After doing some tests on the samples separately, it became apparent that the multi-
class model works better with opera music than with spoken word. In fact, in the
speech samples the class “double” gets very often mislabeled as “quadruple”, which
doesn’t happen as much in the other genres. This could be fixed by feeding the
models more of the “problematic” material, although it is not certain to work.

Some Considerations

It’s undeniable that there was a significant performance drop in the transition from
the initial samples to this new dataset. This is in fact very common, with some
machine learning models performing perfectly on the test-validation sets but not
learning anything on data never seen before.

The results should not invalidate the approach at all, in fact they are very promising:
considering the training samples used were just 300 and did not cover every genre,
and added in the fact that the structure of the networks is very simple, it’s fair to
predict that with proper adjustments the future research holds really good results.

It’s also worth noting that as of right now, the models make predictions on the
segments as if they are isolated from each other, without any kind of memory about
past predictions. When in the final version of the software the analyzed spectrogram
is scanned from left to right, there’s the possibility of externally influencing the
sigmoid and softmax activation functions in the last layer in order to take account
of the past predictions. An alternative would be to store all the predictions made
and analyze the resulting array in post, identifying the irregular regions with a bird’s
eye view. This would mitigate the errors made by the classifiers without needing to
improve the performance metrics so much.

The next step is to build a piece of software that uses these models to implement
the strategy described in chapter 2. The program will take as input an audio file
of a digitised tape and output all the time intervals which are deemed irregular, if
there are any. This will be described in the next chapter.
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Implementation

This chapter will describe the approach to the implementation of the audio analyzer
using the classifiers obtained previously. The complete code can be seen in script
src/main.py on the GitHub repository. Here the description will be done mostly
using pseudocode.

The objective is to create a CLI program with these parameters:

• Two required input arguments: audio sample stored in WAV format and the
scale to use when computing the spectrogram.

• Two optional arguments: resolution to use for the x-axis of the spectrogram
and the step used when classifying irregularities.

• Output: text file containing timestamps and nature of all found irregularities.

The pseudocode is detailed below:

1 # src/main.py

2

3 def analyze_speed(sample , scale , bin_model , multi_model , res , step)

:

4 create output folder

5

6 divide audio channels

7

8 for each channel:

9 create text file where to write the logs

10

11 bufferize channel , each buffer at most 60 seconds

12

13 for each buf_index , buf:

14 duration = get_duration(buf)

15 buf_start_time = buf_index * 60

16

17 # compute spectrogram using wav2spec

18 spectrogram = wav2spec(buf) # numpy array

19 height , width = spectrogram.shape [:2]

37
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20

21 if width < 256:

22 # audio too short to be analyzed

23 break

24

25 # scan the whole spectrogram and divide it in windows

26 window_width = 256

27

28 for i in range(0, width//step):

29 if i*step + window_width < width:

30 window = spectrogram [0 : height ,

31 i*step : (i*step)+window_width]

32

33 # classify the window

34 binary_label = argmax(

35 bin_model.predict(window))

36

37 if binary_label == 1:

38 # irregularity detected , get timestamp

39 time = buf_start_time + (duration*i*step /

width)

40

41 # classify the speedup factor

42 speedup_label = argmax(

43 four_classes_model.predict(window))

44

45 write irregularity on output logs

46

47

48 if __name__ == "__main__":

49 parse arguments

50

51 if not valid .wav file

52 exit program

53

54 if not valid scale

55 exit program

56

57 analyze_speed(

58 sample , scale , bin_model , multi_model , res , step)

The operation of dividing the audio in buffers is done in order to avoid filling up
too much memory. In fact, the digitized tapes are often dozens of minutes in length
and even systems with large amounts of RAM struggle upon loading them directly.
Moreover, computing a single spectrogram from a half-hour long sample using a
256px/s resolution will result in an image almost half a million pixels wide, which
is obviously not ideal.
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6.1 Future Developments

At lines 42-43 the prediction with the multi-class model is obtained. As of now
the program treats every image as isolated, without being influenced by previous
choices. This is not ideal, especially if the performance metrics are not amazing:
intuitively, if the past thirty segments were labeled “double”, then the next irregular
segment will probably be of the same label as well.

For this task, instead of simply taking the argmax, the softmax function could be
slightly modified to take in input some of the previously obtained predictions, so
when the model is especially undecisive between two or more labels, the decision
can be a more educated guess. For example, a possibility is to store in an array the
past 10 predictions and increase some of the softmax outputs accordingly by a small
ϵ. The natural question that arises is: how much should this ϵ be? Of course there’s
no way of answering without a lot of trial and error.

The same could be said about about the binary predictions, but the accuracy scores
for the first classifier are considerably better, so it seems unnecessary to influence
the sigmoid output function.

Another thing to note is the format of the log file: as of now it’s just a plain text file,
but in future developments the best thing to do would be to save the irregularities
in JSON format in order to better comply with the MPAI standard and be fully
integrated in the framework.





Chapter 7

Conclusion

The objective of the thesis was to explore the potential of artificial intelligence, more
specifically convolutional neural networks, in aiding the digitization of old magnetic
tape archives. It’s safe to say that the approach used shows great potential, not
only in preventing recording/playback speed irregularities but also in other audio
problems that arise during the tape reproduction.

For example, another important parameter to configure on the reel-to-reel recorder
is equalization. In fact, during recording, a pre-emphasis curve is applied to the
original signal to maximize signal-to-noise ratio, and this must be compensated
during the recording [17]. Discrepancies between the curve used during recording
and the one used in playback could also be detected by CNNs, but there needs to
be trials in the future to confirm it.

Additionally, sometimes the same tape gets used by multiple people in opposite
directions, so the technicians have to manually correct the rotation of the tape so
that the audio doesn’t get inverted. The use of neural networks for solving this
problem is being researched at CSC as of now.

Nevertheless, the current strategy certainly has much room for improvement, on
multiple fronts:

• The dataset has to be enlarged, because 300 samples cannot cover sufficient
musical variety, whether it’s about genre, harmony and melody, effects, etc...

• A data augmentation process to enrich the existing dataset is also a step in
the right direction, mainly through the introduction of noise or manipulating
the gain parameter.

• For this work a simple ad-hoc network structure was used, mainly to keep
things simple, as well as reducing training times for the six classifiers. This led
to good results, but there are several predefined networks such as GoogleNet
[18] that are more complex and therefore could detect patterns in the spectro-
grams that the current model doesn’t.

41
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• Other hyperparameters of the network like the optimizer, number of epochs
and batch size could influence the models’ generalization capabilities: a possi-
bility is the technique known as early stopping, in which the training process
stops if a certain number of iterations didn’t lead to improvements in train-
ing/validation loss.

It also has to be noted that different reel-to-reel tape recorders have slight differ-
ences in frequency responses, so the spectrograms obtained from the samples used in
this thesis may look slightly different from the spectrograms obtained with another
machine. This means that maybe the models might not recognize patterns in im-
ages coming from other sources. A straightforward solution, again, is to include as
many samples as possible in the training set, even samples reproduced with different
recorders.

Speaking purely from a software development perspective, the code could be refac-
tored for better clarity and performance, as well as a better integration in the MPAI
standard. The part that needs most improvement is grouping together irregularities
in time intervals instead of writing each found irregularity individually.
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Appendix A

Code

A.1 Methods used for dividing spectrograms in

half

1 # src/vision.py

2

3 import cv2 as cv

4 import numpy as np

5 import os

6 import utils

7 import librosa

8 import skimage.io

9

10

11 def mel_spectrogram_image(y, sr , out , hop_length , n_mels ,

dimensions , save):

12 # use log -melspectrogram

13 mels = librosa.feature.melspectrogram(

14 y=y, sr=sr, n_mels=n_mels , n_fft=hop_length *4, hop_length=

hop_length , fmax =20000)

15 mels = np.log(mels + 1e-9) # add small number to avoid log(0)

16

17 # min -max scale to fit inside 8-bit range

18 img = scale_minmax(mels , 0, 255).astype(np.uint8)

19 img = np.flip(img , axis =0) # put low frequencies at the bottom

in image

20 img = cv.resize(img , dimensions , cv.INTER_LINEAR)

21

22 # save as PNG and return numpy array

23 if save == True:

24 skimage.io.imsave(out , img)

25

26 return img

27

28

29 """

45
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30 extract the spectrogram of an audio sample loaded with librosa.

load

31 """

32

33

34 def scale_minmax(X, min=0.0, max =1.0):

35 X_std = (X - X.min()) / (X.max() - X.min())

36 X_scaled = X_std * (max - min) + min

37

38 return X_scaled

39

40

41 def highlight_split(img , low_thresh =3, high_thresh =255, h_size=3,

v_size =20):

42 # threshold the original image and extract vertical lines using

vertical morphological operator

43 ret , thresh1 = cv.threshold(img , low_thresh , high_thresh , cv.

THRESH_BINARY)

44 verticalStructure = cv.getStructuringElement(

45 cv.MORPH_RECT , (h_size , v_size))

46 ret_img = cv.dilate(thresh1 , verticalStructure)

47

48 return ret_img

49

50

51 """

52 takes in input a spectrogram and highlights the split regions

53 returns an image of the same dimensions as the original , with

the ROI highlighted in black

54 """

55

56

57 def find_splits(img):

58 height , width = img.shape [:2]

59 list_splits = []

60 i = 0

61

62 for j in range(0, height -1):

63 # start from the last seen black column if already

encountered

64 if len(list_splits) > 1:

65 i = list_splits [-1][-1]

66

67 while (i < width):

68 # found a black pixel: append x coordinate at the end

of the ROI

69 if not (img[j][i].any()):

70 start_roi = i

71

72 while (not (img[j][i]).any() and i < width):

73 i += 1

74

75 end_roi = i

76
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77 list_splits.append ([start_roi , end_roi ])

78 break

79

80 i += 1

81

82 return list_splits

83

84

85 """

86 takes in input a thresholded image (pixels are either 0 or 255)

87 returns a list of lists , with every list being an interval of x

coordinates that make a black band

88 """

89

90

91 def divide_half(img , filename , middle , left_path , right_path):

92 height , width = img.shape [:2]

93

94 left_roi = img[0:height , 0: middle [0]]

95 right_roi = img[0:height , middle [1]: width -1]

96

97 left_filename = left_path + "c_" + filename

98 right_filename = right_path + "w_" + filename

99

100 cv.imwrite(left_filename , left_roi)

101 cv.imwrite(right_filename , right_roi)

102

103 return [left_roi , right_roi]

104

105

106 """

107 takes in input an image and the middle region and saves the two

halfs in separate files

108 middle = list of two x coordinates , which mark the start and

the end of the middle region

109 """

110

111

112 def segment(img , step , window_width , multiple , offset):

113 height , width = img.shape [:2]

114 ret_list = []

115

116 if multiple == False:

117 window = img [0: height , offset:offset+window_width]

118 ret_list.append(window)

119 else:

120 for i in range(0, width//step):

121 if offset + i*step + window_width < width:

122 window = img [0: height , offset + i *

123 step:offset +(i*step)+window_width]

124 ret_list.append(window)

125

126 return ret_list

127
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128

129 """

130 takes in input an image (numpy array) and divides it into

segments

131 returns a list that contains all the segments

132

133 multiple: boolean value. if set to false , only save the first

segment of the image

134 offset: how many pixels from the left to use as starting point

135 """

136

137

138 def compute_segments(in_paths , out_paths , step , window_width ,

multiple , offset):

139 if len(in_paths) == 0:

140 return

141

142 if len(in_paths) != len(out_paths):

143 print(

144 f"Length of input list is {len(in_paths)} while length

of output list is {len(out_paths)}")

145 return

146

147 for i, in_path in enumerate(in_paths):

148 for (root , dirs , files) in os.walk(in_path , topdown=True):

149 for filename in files:

150 if filename.endswith(’.png’):

151 img = cv.imread(os.path.join(in_path + filename

))

152

153 seg_list = segment(

154 img , step , window_width , multiple , offset)

155 for j, seg in enumerate(seg_list):

156 out_name = out_paths[i] + \

157 filename [0:-4] + "_" + str(j) + ".png"

158 seg = cv.cvtColor(seg , cv.COLOR_RGB2GRAY)

159 cv.imwrite(out_name , seg)

160

161

162 """

163 in_paths: list of input folders

164 out_paths: list of output folders

165 multiple: boolean value. if set to false , only save the first

segment of the image

166 offset: how many pixels from the left to use as starting point

(used to skip most of the glissando region)

167 """



Chapter A. Code 49

A.2 Script used for computing the spectrograms

1 # src/wav2spec.py

2

3 import os

4 import sys

5 import numpy as np

6 import argparse

7 import subprocess

8 import librosa

9

10 import utils

11 import vision

12

13

14 def wav2spec(sample , scale , out_path , width_res =256):

15 if not out_path.endswith("/"):

16 out_path = out_path + "/"

17 if not os.path.isdir(out_path):

18 utils.create_folder(out_path)

19

20 # create spectrogram ’s filename

21 out_name = sample.split("/")

22 out_name = out_path + out_name [-1]. split(".")[0] + ’.png’

23

24 duration = round(librosa.get_duration(filename=sample), 2)

25 if duration < 1:

26 print(f"file {sample} is too short. Skipping to next one.."

)

27 return

28

29 # mel -spec

30 if scale == "mel":

31 y, sr = librosa.load(sample , sr=None)

32

33 vision.mel_spectrogram_image(

34 y, sr , out_name , hop_length =512, n_mels =128, dimensions

=(int(duration*width_res), 128), save=True)

35

36 else:

37 width = str(duration*width_res)

38 height = str (128)

39

40 # lin -spec

41 if scale == "lin":

42 subprocess.call([

43 ’sox’,

44 sample ,

45 ’-n’, ’spectrogram ’,

46 ’-y’, height ,

47 ’-x’, width ,

48 ’-r’,

49 ’-m’,

50 ’-R’, ’0:20k’,
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51 ’-o’, out_name ,

52 ])

53

54 # log -spec

55 elif scale == "log":

56 subprocess.call([

57 ’sox’,

58 sample ,

59 ’-n’, ’spectrogram ’,

60 ’-y’, height ,

61 ’-x’, width ,

62 ’-r’,

63 ’-m’,

64 ’-L’,

65 ’-R’, ’0:20k’,

66 ’-o’, out_name ,

67 ])

68

69 return out_name

70

71

72 if __name__ == "__main__":

73 parser = argparse.ArgumentParser(

74 description="Convert .wav file(s) to .png spectrograms")

75

76 # required argument: audio sample

77 parser.add_argument(’-i’, ’--input’, type=str ,

78 help=""" Path to the audio sample(s) to

analyze. It can be either

79 a folder or a single file """)

80

81 # required argument: output folder

82 parser.add_argument(’-o’, ’--output ’, type=str ,

83 help=""" Path in which to store the output.

If it doesn’t exist , it

84 will be created """)

85

86 # required argument: scale

87 parser.add_argument(’-s’, ’--scale’, type=str ,

88 help=""" What scale to use on the y-axis of

the spectrogram.

89 possible options are ’log ’, ’mel’ or ’lin’

""")

90

91 # optional arguments: resolution of x-axis (pixels per second)

92 parser.add_argument(’-w’, ’--width’, nargs=’?’, type=int ,

default =256,

93 help="What resolution to use on the x-axis ,

in pixels/s. Default is 256.")

94

95 args = parser.parse_args ()

96

97 in_path = args.input

98 out_path = args.output
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99 scale = args.scale

100 width_res = args.width

101

102 # check validity of scale parameter

103 if scale not in ["log", "mel", "lin"]:

104 print(

105 f"{scale} is not a valid scale option , see wav2spec.py

-h for help. Exiting program")

106 sys.exit (1)

107

108 if in_path.endswith(".wav"):

109 wav2spec(sample=in_path , scale=scale ,

110 out_path=out_path , width_res=width_res)

111

112 elif os.path.isdir(in_path):

113 sample_list = utils.collect_audio_files(in_path)

114

115 if len(sample_list) == 0:

116 print(f"{in_path} doesn ’t contain any .wav samples.

Exiting program.")

117 sys.exit (1)

118

119 for sample in sample_list:

120 wav2spec(sample=sample , scale=scale ,

121 out_path=out_path , width_res=width_res)

122

123 else:

124 print(f"{in_path} is neither a .wav file , nor a folder.")

125 sys.exit (1)



52 A.3. Main audio analyzer script

A.3 Main audio analyzer script

1 # src/main.py

2

3 import os

4 import sys

5 import numpy as np

6 import argparse

7

8 import utils

9 import vision

10 from wav2spec import wav2spec

11

12 import cv2 as cv

13 from scipy.io import wavfile

14 import librosa

15

16

17 def analyze_speed(sample , scale , binary_model_path ,

four_classes_model_path , width_res , step):

18 from keras.models import load_model

19

20 # load the keras classifiers

21 binary_model = load_model(binary_model_path)

22 four_classes_model = load_model(four_classes_model_path)

23

24 # speedup corresponding to the label output by the second

classifier

25 speedup_dict = {

26 0: "double",

27 1: "half",

28 2: "quadruple",

29 3: "quarter"

30 }

31

32 # create output folder

33 out_path = os.path.dirname(os.path.realpath(’__file__ ’)) + "/

output/"

34 utils.create_folder(out_path)

35

36 # read audio sample

37 fs, data = wavfile.read(sample)

38

39 # sample is mono

40 if len(data.shape) == 1:

41 data.shape = (data.shape[0], 1)

42

43 # for each channel:

44 for i in range(0, data.shape [1]):

45 log_filename = out_path + "output -ch" + str(i) + ".txt"

46 with open(log_filename , ’w’) as log_file:

47 log_file.write(f"Filename: {sample }\n")

48 print(f"Created file {log_filename}")

49
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50 # create folders where to save the separate audio and

segmented spectrograms

51 channel_path = out_path + "ch" + str(i) + "/"

52 segments_path = out_path + "segments_ch" + str(i) + "/"

53 utils.create_folder(channel_path)

54 utils.create_folder(segments_path)

55

56 # save audio of channel

57 channel_filename = channel_path + "ch" + str(i) + ".wav"

58 wavfile.write(channel_filename , fs , data[:, i])

59

60 # load audio of channel and get the duration

61 y, sr = librosa.load(channel_filename , offset =0.0, duration

=None)

62 duration = round(librosa.get_duration(filename=sample), 2)

63 with open(log_filename , ’a’) as log_file:

64 log_file.write(f"Duration: {duration}s\n")

65

66 # save spectrogram and load it into numpy array

67 spec_name = wav2spec(channel_filename , scale , channel_path ,

width_res)

68 spectrum = cv.imread(spec_name , cv.IMREAD_GRAYSCALE)

69 height , width = spectrum.shape [:2]

70

71 if width < 256:

72 print("The audio file is too short to be analyzed")

73 break

74

75 # settings for the scanning of the spectrogram

76 offset = 0

77 window_width = 256

78

79 # scan the whole spectrogram and divide it in windows (

segments)

80 for i in range(0, width//step):

81 if offset + i*step + window_width < width:

82 window = spectrum [0: height , offset+i *

83 step:offset +(i*step)+window_width

]

84 window = np.expand_dims(window , axis =0)

85

86 # classify the window

87 binary_label = np.argmax(

88 binary_model.predict(window , verbose =0))

89

90 if binary_label == 1: # irregularity detected

91 timestamp = round(duration * (i * step) / width

, 2)

92

93 # classify the speedup factor

94 speedup_label = np.argmax(

95 four_classes_model.predict(window , verbose

=0))

96 print(
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97 f"Segment {i}, time: {str(timestamp)}s,

speedup: {speedup_dict[speedup_label ]}")

98 with open(log_filename , ’a’) as log_file:

99 log_file.write(

100 f"Segment {i}, time: {str(timestamp)}s,

speedup: {speedup_dict[speedup_label ]}\n")

101

102 # save the windows for manual analysis

103 vision.compute_segments ([ channel_path], [segments_path],

step=step ,

104 window_width=window_width , multiple

=True , offset=offset)

105

106

107 if __name__ == "__main__":

108 script_path = utils.get_script_path ()

109 models_path = os.path.dirname(script_path) + "/models/"

110

111 # parse input arguments

112 parser = argparse.ArgumentParser(

113 description=""" Analyze a digitised magnetic audio tape and

detect discrepancies

114 between the recording speed and the playback speed.""")

115

116 # required arguments: audio sample

117 parser.add_argument(’-i’, ’--input’, type=str ,

118 help=’Path to the WAV audio sample to

analyze.’)

119

120 # required arguments: scale for y-axis

121 parser.add_argument(’-s’, ’--scale’, type=str ,

122 help=""" Which scale to use for the y-axis

of the spectrogram. Also switches to the

123 correct model to use for the classification

. Valid choices are ’log ’, ’lin’ and ’mel.""")

124

125 # optional arguments: resolution of x-axis (pixels per second)

126 parser.add_argument(’-w’, ’--width’, nargs=’?’, type=int ,

default =256,

127 help="What resolution to use on the x-axis ,

in pixels/s. Default is 256.")

128

129 # optional arguments: step

130 parser.add_argument(’-j’, ’--jump’, nargs=’?’, type=int ,

default =64,

131 help="What step to use for the scanning of

the spectrum. Default is 64 pixels.")

132

133 # read the input parameters and check for correctness

134 args = parser.parse_args ()

135 sample = args.input

136 scale = args.scale

137 width_res = args.width

138 step = args.jump
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139

140 if not (sample.endswith(".wav")):

141 print("The input file is not a .wav file.")

142 sys.exit (1)

143

144 if not (scale in [’lin’, ’log’, ’mel’]):

145 print("The scale chosen is not valid. See main.py -h for

information.")

146

147 # define paths to models

148 binary_models = {

149 ’lin’: models_path + "model -binary -lin/",

150 ’log’: models_path + "model -binary -log/",

151 ’mel’: models_path + "model -binary -mel/"

152 }

153

154 four_classes_models = {

155 ’lin’: models_path + "model -4c-lin/",

156 ’log’: models_path + "model -4c-log/",

157 ’mel’: models_path + "model -4c-mel/"

158 }

159

160 analyze_speed(

161 sample , scale , binary_models[scale], four_classes_models[

scale], width_res , step)
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A.4 Jupyter Notebook for training the models

1 # notebooks/google_fit_colab.ipynb

2

3 # Import files from Google Drive

4 from google.colab import drive

5 drive.mount("/content/drive")

6 !tar -xzf drive/MyDrive/dataset -binary -complete -separatechannels.

tar.gz

7

8 import os

9 import numpy as np

10 import shutil

11 import math

12 import random

13

14 def delete_folder(path):

15 for filename in os.listdir(path):

16 file_path = os.path.join(path , filename)

17 try:

18 if os.path.isfile(file_path) or os.path.islink(

file_path):

19 os.unlink(file_path)

20 elif os.path.isdir(file_path):

21 shutil.rmtree(file_path)

22 except Exception as e:

23 print(’Failed to delete %s. Reason: %s’ % (file_path , e

))

24

25 def create_folder(path , overwrite=True):

26 if not os.path.exists(path):

27 os.makedirs(path)

28 print(f"Created folder {path}")

29 else:

30 if overwrite == False:

31 print(f"Couldn ’t substitute folder because overwrite is

set to False")

32 else:

33 delete_folder(path)

34 print(f"Substituted folder {path}")

35

36 """

37 inputs: in_paths ---> list of input paths , where every path

corresponds to a different label

38 out_paths ---> names of training , validation and test

folders , in this order

39 ratios ---> what fraction of the dataset goes into

training , validation and testing

40 seed ---> seed used for randomization

41 """

42 def create_dataset(in_paths , labels , out_paths , ratios , seed):

43 if len(ratios) != 3 or len(out_paths) != 3:

44 print("Output configuration is wrong")

45 return
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46

47 if np.sum(ratios) > 1.0:

48 print("Sum of ratios must be less than 1")

49 return

50

51 for out_path in out_paths:

52 create_folder(out_path)

53 for label_index , in_path in enumerate(in_paths):

54 # label = in_path.split(’/’)[-2]

55 label = labels[label_index]

56

57 for (root , dirs , files) in os.walk(in_path , topdown=True):

58 # number of elements in each split

59 n_train = math.floor(ratios [0] * len(files))

60 n_valid = math.floor(ratios [1] * len(files))

61 n_test = len(files) - (n_train + n_valid)

62

63 train_files = []

64 valid_files = []

65 test_files = []

66

67 # create list of random indexes and shuffle it

68 indexes = list(range(0, len(files)))

69 random.Random(seed).shuffle(indexes)

70

71 for j in range(0, len(files)):

72 index = indexes[j]

73 if j < n_train:

74 train_files.append(files[index ])

75 elif n_train <= j < n_train + n_valid:

76 valid_files.append(files[index ])

77 else:

78 test_files.append(files[index ])

79

80 for i, out_path in enumerate(out_paths):

81 create_folder(out_path + label + "/")

82

83 if i == 0:

84 for filename in train_files:

85 shutil.copyfile(in_path + filename ,

out_path + label + "/" + filename)

86 elif i == 1:

87 for filename in valid_files:

88 shutil.copyfile(in_path + filename ,

out_path + label + "/" + filename)

89 else:

90 for filename in test_files:

91 shutil.copyfile(in_path + filename ,

out_path + label + "/" + filename)

92

93 # Create the binary dataset split

94 # For the one with four classes , see next cell

95

96 correct_segments = "/content/dataset/c/"
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97 wrong_segments = "/content/dataset/w/"

98 labels = [’c’, ’w’]

99

100 in_paths = [correct_segments , wrong_segments]

101

102 train_path = "/content/training -set/"

103 validation_path = "/content/validation -set/"

104 test_path = "/content/test -set/"

105

106 create_dataset(in_paths=in_paths , labels=labels , out_paths =[

train_path , validation_path , test_path], ratios =[0.7 , 0.2, 0.1],

seed =2023)

107

108 # Create the dataset with four classes

109

110 wrong_segments = "/content/dataset/w/"

111 new_dataset_path = "/content/dataset -4 classes/"

112

113 labels = [’double ’, ’half’, ’quadruple ’, ’quarter ’]

114

115 create_folder(new_dataset_path , overwrite=True)

116

117 in_paths = []

118

119 for label in labels:

120 create_folder(new_dataset_path + label + "/")

121 in_paths.append(new_dataset_path + label + "/")

122

123 # add spectrograms to subdirectories depending on the name of the

file

124 for (root , dirs , files) in os.walk(wrong_segments , topdown=True):

125 for filename in files:

126 if "3,75 ips_to15ips" in filename:

127 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’quadruple ’ + "/" + filename)

128 elif "15ips_to3 ,75 ips" in filename:

129 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’quarter ’ + "/" + filename)

130 elif "3,75ips_to7 ,5ips" in filename:

131 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’double ’ + "/" + filename)

132 elif "7,5 ips_to15ips" in filename:

133 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’double ’ + "/" + filename)

134 elif "15ips_to7 ,5ips" in filename:

135 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’half’ + "/" + filename)

136 elif "7,5ips_to3 ,75 ips" in filename:

137 shutil.copyfile(wrong_segments + filename ,

new_dataset_path + ’half’ + "/" + filename)

138

139 train_path = "/content/training -set/"

140 validation_path = "/content/validation -set/"

141 test_path = "/content/test -set/"
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142

143 create_dataset(in_paths=in_paths , labels=labels , out_paths =[

train_path , validation_path , test_path], ratios =[0.7 , 0.2, 0.1],

seed =1998)

144

145 # Define model structure

146 # For the binary model select last layer with sigmoid activation.

Otherwise , select the softmax one

147

148 from keras.layers import Dense , Conv2D , MaxPooling2D ,

GlobalAveragePooling2D , Dropout , AveragePooling2D

149 from keras import models

150

151 my_model = models.Sequential ()

152 my_model.add(Conv2D(8, (7, 7), activation=’relu’, padding=’same’,

input_shape =(128 , 256, 1)))

153 my_model.add(MaxPooling2D ((5, 5), padding=’same’))

154

155 my_model.add(Conv2D (16, (7, 7), activation=’relu’, padding=’same’))

156 my_model.add(MaxPooling2D ((5, 5), padding=’same’))

157

158 my_model.add(Conv2D (32, (7, 7), activation=’relu’, padding=’same’))

159 my_model.add(MaxPooling2D ((5, 5), padding=’same’))

160

161 my_model.add(GlobalAveragePooling2D ())

162

163 my_model.add(Dense (32, activation=’relu’))

164 my_model.add(Dropout (0.2))

165

166 my_model.add(Dense(4, activation=’softmax ’))

167 # otherwise my_model.add(Dense(2, activation=’sigmoid ’))

168

169

170 # Compile the model

171 # For the binary model , select the binary_crossentropy loss

function , otherwise the categorical_crossentropy

172

173 from tensorflow.python.keras.callbacks import EarlyStopping ,

ModelCheckpoint

174 es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=1,

patience =30)

175 mc = ModelCheckpoint(’model/’, monitor=’val_accuracy ’, mode=’max’,

verbose=1, save_best_only=True)

176 cb_list = [es , mc]

177

178 my_model.compile(optimizer=’adam’, loss=’categorical_crossentropy ’,

metrics =[’accuracy ’])

179 # otherwise my_model.compile(optimizer=’adam ’, loss=’

binary_crossentropy ’, metrics=[’accuracy ’])

180

181 # Training

182

183 import cv2

184 import numpy as np
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185 from tensorflow.keras.preprocessing.image import ImageDataGenerator

186

187 batch_size = 20

188 data_generator = ImageDataGenerator(preprocessing_function=None)

189 train_generator = data_generator.flow_from_directory(’/content/

training -set’,

190 target_size =

(128, 256),

191 batch_size=

batch_size ,

192 color_mode=’

grayscale ’,

193 class_mode=’

categorical ’)

194

195 validation_generator = data_generator.flow_from_directory(’/content

/validation -set’,

196 target_size =

(128, 256),

197 color_mode=’

grayscale ’,

198 batch_size=

batch_size ,

199 class_mode=’

categorical ’)

200

201 n_train = len(train_generator.filenames)

202 n_valid = len(validation_generator.filenames)

203

204 history = my_model.fit(

205 train_generator ,

206 epochs =30,

207 steps_per_epoch = n_train //batch_size ,

208 validation_data=validation_generator ,

209 validation_steps=n_valid // batch_size ,

210 callbacks=cb_list

211 )

212

213

214

215 # Testing

216 # The test ouputs the fraction of the test samples which have been

correctly classified

217

218 from keras.models import load_model

219 import numpy as np

220

221 model = load_model(’model ’)

222

223 # generate data for test set of images

224 test_generator = data_generator.flow_from_directory(

225 ’/content/test -set/’,

226 target_size =(128, 256),

227 color_mode=’grayscale ’,
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228 batch_size =1,

229 class_mode=’categorical ’,

230 shuffle=False)

231

232 filenames=test_generator.filenames

233 n_test = len(filenames)

234

235 # obtain predicted activation values for the last dense layer

236 test_generator.reset()

237 pred=model.predict(test_generator , verbose=1, steps=n_test)

238

239 # determine the maximum activation value for each sample

240 predicted_class_indices=np.argmax(pred ,axis =1)

241 actual_labels=test_generator.labels

242 class_labels = list(test_generator.class_indices.keys())

243

244 # determine the test set accuracy

245 match =[]

246 for i in range(0, n_test):

247 match.append(predicted_class_indices[i]== actual_labels[i])

248

249 acc = str(match.count(True) / n_test * 100) [0:4]

250 print(f"The model predicted accurately {acc}% of the samples")

251

252 # Plotting the results

253 import matplotlib.pyplot as plt

254

255 fig , axs = plt.subplots (2)

256 title = "Test Accuracy = " + acc + "%"

257 fig.suptitle(title)

258 axs [0]. plot(history.history[’accuracy ’], color=’r’)

259 axs [0]. plot(history.history[’val_accuracy ’], color=’b’)

260 axs [1]. plot(history.history[’loss’], color=’r’)

261 axs [1]. plot(history.history[’val_loss ’], color=’b’)

262

263 axs [0]. set_ylim ([.3, 1.1])

264 axs [0]. set_xticks(range(0, len(history.history[’accuracy ’]), 5))

265 axs [1]. set_xticks(range(0, len(history.history[’accuracy ’]), 5))

266

267 axs [0]. set_ylabel(’Accuracy ’)

268 axs [1]. set_ylabel(’Loss’)

269

270 axs [1]. set_xlabel(’Epoch’)

271 axs [0]. legend ([’Train’, ’Validation ’], loc=’upper left’)

272 axs [1]. legend ([’Train’, ’Validation ’], loc=’upper right’)

273 plt.savefig("plot.png", dpi =300)

274

275 # For the model with four classes , plot the confusion matrix

276 from sklearn.metrics import confusion_matrix

277

278 conf_matrix = confusion_matrix(y_true=actual_labels , y_pred=

predicted_class_indices)

279

280 fig , ax = plt.subplots(figsize =(4.5, 4.5))
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281 ax.matshow(conf_matrix , cmap=plt.cm.Blues , alpha =0.7)

282

283 for i in range(conf_matrix.shape [0]):

284 for j in range(conf_matrix.shape [1]):

285 ax.text(x=j, y=i,s=conf_matrix[i, j], va=’center ’, ha=’

center ’, size=’large’)

286

287 plt.xlabel(’Predicted labels ’, fontsize =14)

288 plt.ylabel(’Actual labels ’, fontsize =14)

289 ax.xaxis.set_ticklabels ([’’, ’double ’, ’half’, ’quad’, ’quarter ’])

290 ax.yaxis.set_ticklabels ([’’, ’double ’, ’half’, ’quad’, ’quarter ’])

291 plt.title(’Confusion Matrix ’, fontsize =14)

292 plt.savefig("confusion_matrix.png", dpi =300)

293 plt.show()
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A.5 Jupyter Notebook for testing the models

1 # notebooks/model_test.ipynb

2

3 # binary model

4 from keras.models import load_model

5 import numpy as np

6 from tensorflow.keras.preprocessing.image import ImageDataGenerator

7 data_generator = ImageDataGenerator(preprocessing_function=None)

8 from sklearn.metrics import classification_report

9

10 model = load_model("../ models/model -binary -mel")

11

12 # generate data for test set of images

13 test_generator = data_generator.flow_from_directory(

14 "/home/lorenzo/Pictures/test -dataset/binary -seg/",

15 target_size =(128, 256),

16 color_mode=’grayscale ’,

17 batch_size =1,

18 class_mode=’categorical ’,

19 shuffle=False)

20

21 filenames=test_generator.filenames

22 n_test = len(filenames)

23

24 # obtain predicted activation values for the last dense layer

25 test_generator.reset()

26 pred=model.predict(test_generator , verbose=1, steps=n_test)

27

28 # determine the maximum activation value for each sample

29 predicted_class_indices=np.argmax(pred ,axis =1)

30 actual_labels=test_generator.labels

31 class_labels = list(test_generator.class_indices.keys())

32

33 # determine the test set accuracy

34 match =[]

35 for i in range(0, n_test):

36 match.append(predicted_class_indices[i]== actual_labels[i])

37

38 acc = str(match.count(True) / n_test * 100) [0:4]

39 print(f"The model predicted accurately {acc}% of the samples")

40 print(classification_report(actual_labels , predicted_class_indices)

)

41

42

43

44 # multiclass model

45

46 model = load_model("../ models/model -4c-mel")

47

48 # generate data for test set of images

49 test_generator = data_generator.flow_from_directory(

50 "/home/lorenzo/Pictures/test -dataset /4c-seg/",

51 target_size =(128, 256),
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52 color_mode=’grayscale ’,

53 batch_size =1,

54 class_mode=’categorical ’,

55 shuffle=False)

56

57 filenames=test_generator.filenames

58 n_test = len(filenames)

59

60 # obtain predicted activation values for the last dense layer

61 test_generator.reset()

62 pred=model.predict(test_generator , verbose=1, steps=n_test)

63

64 # determine the maximum activation value for each sample

65 predicted_class_indices=np.argmax(pred ,axis =1)

66 actual_labels=test_generator.labels

67 class_labels = list(test_generator.class_indices.keys())

68

69 # determine the test set accuracy

70 match =[]

71 for i in range(0, n_test):

72 match.append(predicted_class_indices[i]== actual_labels[i])

73

74 acc = str(match.count(True) / n_test * 100) [0:4]

75 print(f"The model predicted accurately {acc}% of the samples")

76 print(classification_report(actual_labels , predicted_class_indices)

)

77

78

79

80 # plot confusion matrix

81

82 from sklearn.metrics import confusion_matrix

83 import matplotlib.pyplot as plt

84

85 conf_matrix = confusion_matrix(y_true=actual_labels , y_pred=

predicted_class_indices)

86

87 fig , ax = plt.subplots(figsize =(4.5, 4.5))

88 ax.matshow(conf_matrix , cmap=plt.cm.Blues , alpha =0.7)

89

90 for i in range(conf_matrix.shape [0]):

91 for j in range(conf_matrix.shape [1]):

92 ax.text(x=j, y=i,s=conf_matrix[i, j], va=’center ’, ha=’

center ’, size=’large’)

93

94 plt.xlabel(’Predicted labels ’, fontsize =14)

95 plt.ylabel(’Actual labels ’, fontsize =14)

96 ax.xaxis.set_ticklabels ([’’, ’double ’, ’half’, ’quad’, ’quarter ’])

97 ax.yaxis.set_ticklabels ([’’, ’double ’, ’half’, ’quad’, ’quarter ’])

98 plt.title(’Confusion Matrix ’, fontsize =14)

99 plt.savefig("confusion_matrix.png", dpi =300)

100 plt.show()
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