
Master Thesis in ICT for Internet and Multimedia

A Privacy-preserving and
Communication-Efficient Federated Learning

solution for Industrial Applications

Master Candidate Supervisors

Mohammadreza Mohammadi Prof. Mauro Conti
Student ID 2005535 University of Padova, Italy

Dott. Sima Sinaei
RISE Research Institute of Sweden AB, Sweden

Co-supervisor

Dott. Ehsan Nowroozi
Bahçeehir University, Turkey

Academic Year
2022/2023

To my Wife
and my Family

Abstract

There has been a lot of interest in privacy-preserving federated learning because
of its potential to allow collaborative model training without compromising par-
ticipants’ privacy. When it comes to federated learning that respects users’ pri-
vacy, this thesis examines a wide range of possible protection and attack tactics.
First, I introduce the idea of privacy-protecting federated learning and discuss
its structure, benefits, and drawbacks. Differential privacy, secure aggregation,
and homomorphic encryption are only some of the defensive mechanisms I
cover next to keep participants’ information private. In addition, I look at the
attack methods, such as membership inference and model inversion, that poten-
tially jeopardize participants’ privacy in privacy-preserving federated learning.
I examine the result of model inversion attack and the measures taken to counter
them. In this thesis, I consider three distinct industrial use cases from the DAIS
project which will be used in real-world applications in a near future and imple-
ment a federated learning system for them while keeping in mind the need for
privacy in federated learning environments. As a further step, I suggest a new
client selection method based on each client’s amount of data to improve the
federated learning framework’s accuracy and the efficacy of its communications.
Also, I propose an innovative method, Parameter Randomization, to enhance the
privacy and communication efficiency of federated learning systems. By intro-
ducing these two approaches, this thesis gives a thorough explanation of the
field of privacy-preserving and communication-efficient federated learning and
emphasizes the need for robust defense and mitigation mechanisms to protect
participant privacy against attacks while keeping the accuracy of the models as
high as possible.

Sommario

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Challenges . 3
1.2 Problem Definition . 4
1.3 Contributions . 5
1.4 Thesis Organization . 7

2 Background 9
2.1 Chapter Overview . 9
2.2 Distributed Machine Learning (DML) 9

2.2.1 Vertical Scaling . 10
2.2.2 Horizontal Scaling . 11

2.3 Federated Learning . 12
2.3.1 Horizontal Federated Learning 15
2.3.2 Vertical Federated Learning 16
2.3.3 Federated Transfer Learning 17

2.4 Federated Learning aggregation methods 19
2.4.1 FedAvg . 20
2.4.2 FedProx . 20
2.4.3 FedKD (Federated Knowledge Distillation) 22

ix

CONTENTS

2.5 Privacy Attacks on Federated Learning 23
2.5.1 Threat Model . 23
2.5.2 Attacks Classification . 25

2.6 Defenses Strategies against Privacy Attacks 26
2.6.1 Differential Privacy . 26
2.6.2 Homomorphic Encryption 28
2.6.3 Secure Multiparty Computation (SMC) 29

2.7 Communication Efficient Federated Learning 30

3 Analysis of Industrial Use-cases 37
3.1 Methodologies . 37

3.1.1 Client Selection Strategy . 37
3.1.2 Parameter Randomization 38

3.2 Usecase 1: Speech Emotion Recognition 39
3.2.1 Use-case Explanation . 39
3.2.2 System Description . 40
3.2.3 System Design . 40
3.2.4 Threat Model . 41
3.2.5 Proposed Method: PFL-SER 42
3.2.6 Experimental Results . 43
3.2.7 Evaluation Results . 43
3.2.8 Parameter Randomization on Speech Emotion Recognition 48

3.3 Usecase 2: Fatigue Detection . 49
3.3.1 Use-case Explanation . 49
3.3.2 Dataset . 50
3.3.3 Tools . 51
3.3.4 Data pre-processing . 51
3.3.5 System model . 52
3.3.6 Attack Model . 52
3.3.7 Privacy-preserving federated fatigue detection 53
3.3.8 Experimental Setup . 53
3.3.9 Evaluation . 54
3.3.10 Results . 54
3.3.11 Parameter Randomization on Fatigue Detection 55

3.4 Usecase 3: Smart Grid System Anomaly Detection 56
3.4.1 Use-case Explanation . 56

x

CONTENTS

3.4.2 Dataset . 56
3.4.3 Performance Evaluation Metric 57
3.4.4 Experimental Setup . 58
3.4.5 Privacy-preserving ADA-FL with HE 59
3.4.6 Results and discussion . 59

4 Conclusions and Future Works 77

References 81

Acknowledgments 89

xi

List of Figures

2.1 Data Parallelism (Vertical Scaling) [13] 11
2.2 Model Parallelism (Horizontal Scaling) [13] 12
2.3 Federated Learning Steps [16] . 14
2.4 Different federated learning types [18] 31
2.5 Horizontal federated learning steps and architecture [18] 32
2.6 Vertical federated learning architecture [23] 32
2.7 Federated Transfer Learning architecture [3] 33
2.8 Framework of FedKD Algorithm [29] 34
2.9 An Instance of Model Inversion Attack [37] 35
2.10 Comparison of DLG (left) and iDLG (right) attacks on the LFW

face dataset [42] . 35
2.11 LDP (left) vs. CDP (right) [39] . 36

3.1 A schematic diagram of federated learning in SER applications. . 41
3.2 Performance evaluation on the convergence of PFL-SER mecha-

nism, (a) accuracy versus noise scale 𝜎, (b) accuracy versus failure
probability 𝛿, and (c) accuracy versus clipping threshold 𝐶. . . . 44

3.3 Evaluation of different client selection methods based on accuracy. 47
3.4 Privacy and accuracy trade-offs using noise scale 𝜎, attack effec-

tiveness by MSE, and PFL-SER model accuracy. 48
3.5 Parameter Randomization on SER: Effect of different number of

clusters on the training time of federated learning system. 49
3.6 Performance evaluation on the convergence of parameter ran-

domization method comparing to the normal SER federated learn-
ing system, (a) Accuracy, (b) Loss. 64

3.7 Performance evaluation on the Accuracy of Fatigue Detection-
Federated Learning mechanism with different noise scales (𝜎) . . 65

xi

LIST OF FIGURES

3.8 Performance evaluation on the Loss of Fatigue Detection-Federated
Learning mechanism with different noise scales (𝜎) 65

3.9 Privacy and accuracy trade-offs using noise scale 𝜎, attack ef-
fectiveness by MSE, and Fatigue Detection-Federated Learning
model accuracy. 66

3.10 Parameter Randomization on fatigue Detection: Effect of different
number of clusters on the training time of federated learning system. 67

3.11 Performance evaluation on the convergence of parameter ran-
domization method comparing to the normal fatigue detection
federated learning system, (a) Accuracy, (b) Loss. 68

3.12 Test data loss distribution for normal and anomaly data without
HE and threshold of 0.00243 . 69

3.13 Test data loss distribution for normal and anomaly data HE-128bit
and threshold of 0.0069 . 70

3.14 Test data loss distribution for normal and anomaly data HE-256
bit and threshold of 0.01126 . 71

3.15 Confusion matrix showing model performance. 72
3.16 AUC-ROC of the model . 72
3.17 Traning loss performance at server side Fig.11 Training loss at

client side . 73
3.18 Training loss at client side . 74
3.19 Execution time taken by LSTM-AE with varying HE encryption

keys in the proposed framework. 75

xii

List of Tables

3.1 Attack effectiveness versus noise scale 𝜎 and clipping threshold C 46
3.2 Simulation setup parameters . 54
3.3 Confusion Matrix . 57
3.4 Simulation setup parameters . 58
3.5 Comparison of the proposed framework based on MSD Approach

with threshold value . 61
3.6 Comparison of the proposed framework based on the MAD-Score

Approach . 62

xiii

List of Algorithms

1 Basic Federated Learning Algorithm 15
2 A typical VFL procedure . 18
3 FedAvg Algorithm . 21
4 Clients Selection Strategy (CSS) . 38
5 Parameter Randomization in federated learning 39

xvii

List of Code Snippets

xix

List of Acronyms

HE Homomorphic Encryption

SGD Stochastic Gradient Descent

SMC Secure multiparty computation

HFL Horizontal Federated Learning

VFL Vertical Federated Learning

FTL Federated Transfer Learning

DML Distributed Machine Learning

CSS Client Selection Strategy

FedAVg Federated Averaging

MI Model Inversion

DP Differential Privacy

DAIS Distributed Artificial Intelligent System

SER Speech Emotion Recognition

xix

1
Introduction

As a result of the development of big data, the quantity of data is no longer
the primary focus of our analysis. Protecting users’ personal information is a
pressing concern that must be addressed. Data leaks are never a minor issue,
and recently, data security has received more public attention [1]. The defense of
data security and privacy is being strengthened not just by individuals but also
by society and organizations. As of May 25, 2018, the General Data Protection
Rules (GDPR) [2] of the European Union came into force, with the stated goal
of protecting the privacy and security of users’ personal information. Opera-
tors must be upfront and honest with users about what they’re agreeing to in
terms of privacy, and they must never trick or pressure customers into giving
up their rights. As new laws and regulations of varying degrees are introduced,
they provide new challenges to the traditional data-processing approaches of
artificial intelligence. In order to train models, data are essential because they
are the foundation of AI. Yet, data is frequently organized in data islands, and
a straightforward solution to this problem is to process the data centrally. In
conventional machine learning, the performance and precision of models rely
on the resources of a single, centralized server, including its processing speed
and access to training data. In conclusion, traditional machine learning involves
collecting user input, storing it in a centralized location, and then using it in
training and testing to develop final machine learning models. Commonly used
machine learning techniques that rely on centralized data storage and process-
ing face several challenges, including issues related to computational power and
time. However, the most significant concern is the lack of security and privacy of

1

users’ data, which has often been overlooked. Federated Learning, as advocated
by, has lately arisen as a technical answer to similar problems [3]. When it comes
to sensitive data and heterogeneity, Federated Learning’s ability to decentralize
information from the server to end-devices while protecting user privacy is a
major benefit. Federated learning has emerged due to two main reasons: firstly,
the insufficient amount of data that can be stored on centralized servers due to
direct access restrictions, which is in contrast to traditional machine learning
approaches. Secondly, data privacy must be preserved; this is accomplished by
keeping private information off the server and instead using it locally, at the
edge, or at the client, where asynchronous network communication takes place.
This approach enables the use of the benefits of artificial intelligence that are
offered by machine learning models in various domains while preserving data
privacy. Also, instead of relying on a central server, processing resources are
dispersed among interested parties via iterative local model training on end-
devices. One of the most rapidly growing areas of machine learning recently,
federated learning takes a decentralized data method that promises to be in line
with new regulations protecting user information. In addition to privacy, fed-
erated learning extends machine learning advantages to smaller domains when
there is insufficient training data to develop a solo machine learning model [3].
To add, federated learning can let customers acquire a well-trained machine
learning model without requiring them to provide any data that could be con-
sidered sensitive to a centralized server. In intelligent IoT networks, for instance,
a large number of IoT devices may function as workers to connect with a server to
carry out neural network training. To be more precise, the aggregator initiates a
global model with initial learning parameters. The aggregator provides the cur-
rent model, and each worker updates the model based on its own dataset locally
using an appropriate method such as stochastic gradient descent (SGD), before
sending the result back to the aggregator. After collecting all of the updates
to individual models, the aggregator may construct a revised and enhanced
global one. By using the computational resources of distributed workers, the
aggregator has the potential to enhance training quality while reducing privacy
breaches for individual users. In the end, the local employees get the global up-
date from the aggregator and figure out their next local update until the global
training is finished [4]. Google introduced the concept of Federated Learning
in 2016 [5], when they first used Google Keyboard to cooperatively learn from
several Android phones [24]. As federated learning can be implemented on any

2

CHAPTER 1. INTRODUCTION

edge device, it might revolutionize crucial industries such as healthcare, smart
homes, and more. The most prominent instance of this is the worldwide effort
by researchers and doctors to develop a computer-based pandemic engine for
the identification of COVID-19 using chest x-rays. In transportation networks,
the automobiles might be programmed for autonomous driving and city route
planning, which is a fascinating prospect. Similarly, edge devices in different
houses may work together to generate context-aware rules for smart-home apps
leveraging a federated learning architecture [6].

1.1 Challenges

As federated learning is still in its infancy as a field of study, many aca-
demics from many different organisations are actively working to improve ex-
isting frameworks and ensure the privacy and security of user data inside feder-
ated learning. The introduction of a new technology and ecosystem often brings
about various technological ripple effects over time. Despite its promising fea-
tures, the implementation of federated learning requires extensive investigation
to ensure its security and privacy, as potential challenges may arise. So, we
may wonder what current and future security and privacy issues may arise as
a consequence of this technology’s widespread usage [3]. Some obstacles in
federated learning must be overcome in order to properly secure the privacy of
organizations and consumers. Along with security and privacy, communica-
tion overhead is a key barrier for the reasons listed below. Firstly, as federated
learning is taught iteratively, the amount of time it takes to learn, or the con-
vergence time, is influenced by both the optimization technique, such as the
number of training steps, and the federated learning parameter transmission
delay per training step. Second, millions of edge devices may perform federated
learning training, and each of those devices will need to repeatedly share the
federated learning parameters for its big dataset with a centralised server. As a
consequence, the time it takes for devices to train their local machine learning
models may be much longer than the time it takes for federated learning to
transmit parameters across a realistic network with limited computation and
communication capabilities. Hence, to train massive machine learning models
across millions of edge devices, we need a communication-efficient federated
learning framework that can significantly improve both convergence time and
model accuracy. [7].

3

1.2. PROBLEM DEFINITION

In summary, main challenges of federated learning can be categorized as follows
[1] [7]:

• Privacy protection: Given that federated learning is advocated as a way of
protecting user privacy when it comes to machine learning, it is necessary
to guarantee that the federated learning training model does not leak
sensitive user data.

• Inadequate data: Nevertheless, in a dispersed setting, the data available
on each mobile device may not be enough to train a model with good
performance, contrary to the requirements of classical machine learning.
However it might be pricey to gather all data in one place. As a result, for
federated learning to work, each device must collect data locally and train
its own model, which must then be uploaded to the server and merged
with the models of other devices to produce a single, global model.

• Statistical heterogeneity: There are numerous edge devices in a federated
setting, and the information they store may not be personally identifiable
(Non-Independent and Identically Distributed). This suggests that there
may be variations in the data distributions or features between devices.
Non-IID datasets might be difficult to use for model training because of
issues with data format homogeneity, such as those that arise when elec-
tronic medical records for various diseases are stored in separate places.

• Communication overhead: Both the huge number of parameters in com-
plicated models and the frequency with which clients and servers share
these parameters contribute to the communication cost in federated learn-
ing. Due to the increased quantity of data that must be sent between the
clients and the server, this may lead to high communication costs and
extended training durations.

• Device hardware heterogeneity: the fact that devices in a federated learn-
ing system may have different hardware configurations and processing
capabilities. This can lead to performance variations and compatibility is-
sues, as some devices may not be able to execute certain tasks or may take
longer to perform them. This heterogeneity must be taken into account
when designing federated learning algorithms to ensure that the system
is robust and can operate effectively across a diverse range of devices.

1.2 Problem Definition

Federated learning is commonly categorized as either vertical federated
learning (VFL) or horizontal federated learning (HFL). In HFL, all training data
remains on each user’s local device, and the server and clients work together
to develop a globally integrated model. In a standard supervised learning sce-
nario, HFL aims to identify the global model parameter that minimizes the loss

4

CHAPTER 1. INTRODUCTION

function 𝐿(𝜃), while each connected local client k seeks to identify the local
model parameter that minimizes the loss function 𝐿𝑘(𝜃). However, in HFL, the
training data (𝑥𝑘 , 𝑦𝑘) across multiple users k is non-independent and identically
distributed (Non-IID), which makes optimizing HFL more challenging. In fed-
erated learning, the training data is not independent and identically distributed
(IID), which is in contrast to conventional machine learning and distributed
learning. Another need of federated learning is a constant two-way flow of data
between the server and each client, including the global model and local up-
dated models for each client k. This indicates that the model size is proportional
to the federated learning communication costs, making it a primary research
topic to find ways to shrink models without sacrificing performance.
The training process for VFL is different from that of HFL, and it often requires
two kinds of clients: a "guest" client who has access to all training data labels,
and a "host" client who does not. Typically, a VFL system will consist of a single
guest client and many host clients. Each host client k generates an intermediate
result, 𝑧𝑘 , which is sent to the guest client so that the global loss function may
be constructed. In HFL, the guest client serves as the server and the local model
parameters k are transferred between the guest and host clients in place of the
intermediate output 𝑧𝑘 . To complicate matters further, in practice, training data
labels are often shared between a number of clients rather than a single one.
It calls for a rethinking and rebuilding of VFL learning algorithms and their
accompanying safety precautions.

Our focus in this project was on the HFL scenario, where we hoped to make a
difference in federated learning’s security and efficacy via better communication.
This work utilized differential privacy and homomorphic encryption techniques
to create a federated learning system that protects users’ privacy, and a novel ap-
proach called Parameter Randomization has been created to improve the system’s
communication efficiency. In addition, this thesis investigated a client selection
strategy to diminish the side effects of differential privacy approach, e.g. having
a private system with high accuracy.

1.3 Contributions

My whole Master’s thesis project’s goal was to build a communication-
efficient and privacy-preserving federated learning system for some real-world
applications, thus it primarily consists of two parts: one is cutting communica-

5

1.3. CONTRIBUTIONS

tion costs, and the other is improving the federated learning system’s degree of
privacy. In the following, you can find the contributions of this work.

• I have worked on three different Industrial use-cases of DAIS project [8],
including Speech Emotion Recognition (SER), Driver’s Fatigue Detection
(DFD) and Smart Grid System Anomaly Detection (SGSAD). DAIS (Dis-
tributed Artificial Intelligent System) is a pan-European initiative that de-
velops edge AI software and hardware components to provide quicker,
more secure, and energy-efficient data processing solutions. DAIS’ aim is
to enable trustworthy connectivity and interoperability by combining the
Internet of Things with Artificial Intelligence in a distributed edge sys-
tem for industrial applications. The project will include a wide range of
industry-driven use cases integrated into the application areas of Digital
Life, Digital Industry, and Smart Mobility.

• For federated learning to be successful, it must first and foremost safeguard
personal information, homomorphic encryption (HE) and differential pri-
vacy are two of the most important tools for providing privacy in the
federated learning systems. In this research, I sought to apply one of these
methods along with my proposed ideas to the above-mentioned use-cases
and analyze how changing parameters and methods affected the federated
learning system’s convergence, accuracy, and confidentiality. For each use
case, I implemented a specific strategy to fit its specific conditions and
characteristics.

• Depending on how much noise is introduced, an accuracy drop is usual
when we apply differential privacy to the client’s model parameters. In
order to prevent accuracy loss, I have examined the impact of client selec-
tion strategy (CSS) based on the volume of data provided by each client in
each training round to increase the federated learning system’s accuracy
and decrease the standard deviation of additive noise brought on by the
aggregation process.

• Federated learning requires users to exchange their local training model
parameters rather than real data in order to protect user privacy. In spite
of this, new research suggests that there are still privacy concerns with
federated learning. This is because the parameters submitted by each par-
ticipant in the initial training dataset might allow attackers to partly reveal
each participant’s training data [3]. These serious dangers in federated
learning may be categorized into a variety of inference-based attacks. In
this thesis, I considered Model Inversion Attack (MI-Attack) [9] to mea-
sure the privacy of federated learning systems before and after applying
privacy-preserving approaches (differential privacy and homomorphic en-
cryption). Then, I tried to diminish the side effects of those approaches by
proposing the client selection strategy (CSS) and parameter randomization
methods.

• In a basic federated learning implementation, every client must provide a
complete model back to the server after every round. Due to a number of
variables, this stage is probably the bottleneck of federated learning for big

6

CHAPTER 1. INTRODUCTION

models [10]. In order to address this problem, an innovative method called
Parameter randomization has been proposed. Depending on its various
settings, this method may significantly decrease the size of the shared
model parameters and also it may be effective for increasing the degree of
privacy of federated learning participants by allowing them to not share
their whole parameter space with a central server.

1.4 Thesis Organization

In Chapter 2, the preliminaries concept of federated learning, the aggrega-
tion algorithms, attacks categories, and defenses strategies will be discussed.
Then, in Chapter 3, the proposed methods, client selection strategy and parame-
ter randomization, will be explained and different federated learning models in
addition to their experimental results will be reported. Finally, in Chapter 4,
you can find some content about possible future works and conclusions of this
thesis.

7

2
Background

2.1 Chapter Overview

In this chapter, some brief descriptions of the preliminaries and background
of Federated Learning will be discussed. At first, Distributed Machine Learning
(DML) which is a root of federated learning will be described. Then, Hor-
izontal federated learning (HFL), Vertical federated learning (VFL) and Fed-
erated Transfer Learning (TFL) will be introduced which are the most used
types of federated learning. Additionally, different parameters aggregation ap-
proaches of federated learning server are explained. Then, some famous privacy
and security attacks on federated learning will be introduced. Consequently,
privacy-preserving defense algorithms and security-enhancement strategies for
federated learning will be described. Afterwards, you can find some informa-
tion about improving communication-efficiency of federated learning which is
a bottleneck for large models and plays a key role in industrial IoT applications.
At the end, a set applications of federated learning will be represented to give a
better insight to us about the conditions that federated learning is able to solve
the problems effectively.

2.2 Distributed Machine Learning (DML)

During the last several years, machine learning techniques have seen widespread
deployment in more sophisticated uses. Despite the emergence of several dif-

9

2.2. DISTRIBUTED MACHINE LEARNING (DML)

ferent strategies and technologies, the nature of the data models utilized is quite
similar. Basic operations on vectors, matrices, or tensors comprise the majority
of processing in machine learning tasks. In the huge computational sector, the
desire to improve such procedures has been a very active topic of study for
decades. Similar to other huge computational problems, there are two general,
distinct, and complementary techniques to speed up workloads: Vertical scal-
ing (scaling up), in which more resources are added to an existing node, and
horizontal scaling (scaling out), in which more nodes are added to the system,
are the two forms of scaling [11].

2.2.1 Vertical Scaling

The present surge of attention to scaling up machine learning models may
be ascribed in part to the emergence of devices and programming frameworks
that make it simple to harness the many forms of parallelism possible in many
learning algorithms. Concurrent computation of data samples or their features
is made simple by a variety of systems. Many learning methods that see data as
an arbitrary batch of instances and aggregate separate calculations over each of
them may now be easily parallelized. The proliferation of extremely big datasets
in many current applications has also heightened interest in large-scale machine
learning. Such datasets are frequently amassed on distributed database systems,
which motivates the introduction of learning algorithms that can be dispersed
effectively. Finally, the expansion of various sensors capable of performing real-
time prediction based on high-dimensional, complex feature representations
increases the requirement for parallel computing in machine learning/deep
learning applications. Speech recognition and optical object identification, for
example, are increasingly widespread in autonomous robotics and portable de-
vices. The profusion of distributed system solutions gives a variety of possibil-
ities for applying machine learning/deep learning models in order to increase
performance or the capacity to analyze extremely big datasets. Configurable
integrated circuits (e.g. FPGAs), GPUs, High-Performance Computing (HPC)
clusters linked by Ethernet/Internet, and virtual clusters rented from cloud
computing vendors are among these options [12].

10

CHAPTER 2. BACKGROUND

Figure 2.1: Data Parallelism (Vertical Scaling) [13]

2.2.2 Horizontal Scaling

Although there are numerous ways to enhance the processing capacity of a
single device for large-scale machine learning and deep learning tasks, there are
reasons to consider a scale-out architecture or a hybrid approach. One argument
in favor of using equipment is that it is more cost-effective, both in terms of the
initial investment and ongoing maintenance. Another advantage is that equip-
ment is more resilient to failure, as a single failure within a high-performance
computing (HPC) program can be mitigated through partial recovery. Addi-
tionally, using multiple devices results in increased cumulative I/O capacity
compared to a single device.[14]. Training machine learning algorithms re-
quires a lot of data, which can become a bottleneck for system performance.

11

2.3. FEDERATED LEARNING

One way to reduce the cost of input/output (I/O) on system performance is by
using horizontal scaling, which involves parallelizing reads and writes across
multiple servers, each with its own specialized I/O subsystem. Nevertheless,
not all machine learning algorithms work well in a distributed environment,
which might make horizontal scaling difficult. Methods like this work well for
highly parallel algorithms [11].

Figure 2.2: Model Parallelism (Horizontal Scaling) [13]

2.3 Federated Learning

Significant advances have been made in areas like natural language process-
ing as a result of using deep learning to extract information from digital data.

12

CHAPTER 2. BACKGROUND

Due in part to the availability of incredibly huge data sources for learning, re-
cent remarkable achievements in deep learning have become possible. So, there
is great promise in leveraging sensor data to train and fine-tune deep learning
models. Concurrently, many customers worry about their personal information
being shared without their consent. A lot of incidents of privacy leakage and
exploitation have proved that centralized data processing puts people’s privacy
at risk. Because Sensor nodes regularly gather data in private spaces, frequently
without the owners’ express knowledge, these issues are notably valid. As a re-
sult, sharing this information with a centralized node that might develop a deep
learning model is often not a choice. In other cases, local information processing
may be advantageous for purposes such as enhanced privacy of the local entity.
Concerns have been raised about our ability to train machine learning and deep
learning networks using the data collected by millions of Sensor nodes if that
data cannot be transported to a centralized repository [15]?
By decentralising data processing from a central node to end-devices and pro-
tecting privacy at the same time, federated learning allows artificial intelligence
to thrive in scenarios involving sensitive information and heterogeneous data.
Two key considerations led to the creation of this framework: (1) the lack of data
that can be transferred to a central server, as in traditional machine learning,
owing to restrictions like GDPR that ban direct access to user data, and (2) the
use of local data from edge devices (clients) to preserve data privacy, rather
than transmitting sensitive information to the central server, where network
asynchronous communication is leveraged. Ensuring data privacy provides
several benefits for the successful implementation of AI using machine learning
models across various industries. Additionally, by conducting multiple local
model training on local nodes, computing capacity is shared among all involved
parties, rather than relying solely on a centralized server. Moreover, federated
learning safeguards privacy while extending the reach of machine learning into
new areas where there is insufficient training data to create a machine learning
model. [3].
Figure 2.3 depicts a simplified four-step approach for delivering this kind of
privacy-preserving collaborative learning. The initial stage is for all clients to
get the initial global model instance𝑊 from the central server. The clients then
use stochastic gradient descent (SGD) to enhance the received model according
to their own local training data. Finally, all collaborating clients transfer their
locally enhanced models 𝑊𝑖 back to the server, where they are aggregated to

13

2.3. FEDERATED LEARNING

Figure 2.3: Federated Learning Steps [16]

produce a new global model (in reality, weight updates 𝑊 = 𝑊𝑛𝑒𝑤 −𝑊𝑜𝑙𝑑 may
be sent instead of whole models W, which is identical as long as all clients stay
synchronized). This process is continued until a specified convergence require-
ment is met. It is important to note that while using this approach, training data
never leaves the local devices since only model changes are exchanged [15].

Based on how data characteristics and samples are shared across participants,
federated learning may be classified as either horizontally federated learning
(HFL), vertically federated learning (VFL), or federated transfer learning (FTL)
[17]. Based on how data is distributed among numerous clients in the feature
and sample ID space, which may not be identical, we classify federated learning
as HFL, VFL, or FTL. The several federated learning frameworks for a two-client
setting are shown in 2.4.
In the following, you can find some variables that will be used to formulate
different types of federated learning.

• 𝐷𝑖 : Dataset of each participant 𝑖

• 𝑋: Feature space

• 𝑌: Label Space

• 𝐼: The sample ID space

• (𝑋,𝑌, 𝐼): A complete training dataset

14

CHAPTER 2. BACKGROUND

Algorithm 1 Basic Federated Learning Algorithm
Input: Number of iterations: T, Total Number of clients: N, Local minibatch

size: B, Initial global model: 𝑊𝐺
0

Output: federated learning trained model
Start:
The server broadcasts𝑊𝐺

0 and t = 1
for 𝑡 ≤ 𝑇 do

Client Side:
for all clients 𝑖 ∈ 𝑁 do

for each batch 𝑏 ∈ 𝐵𝑖 do
Compute gradient g (b)← ∇𝑤𝐿𝑖(𝑤 𝑖

𝑡 ; 𝑏)
Local model update 𝑤 𝑖+1

𝑡 ← 𝑤 𝑖
𝑡 + �̃�

end for
end for
Server Side:
Update the global model parameters
𝑊𝐺
𝑡+1←

∑𝐾
𝑖=1
|𝐷𝑖 |
|𝐷 |𝑊

𝑖
𝑡+1

Broadcast updated global model to clients
end for

2.3.1 Horizontal Federated Learning

Horizontal federated learning(HFL), also referred to as sample-based feder-
ated learning, is utilized when datasets have a common feature space but differ
in their sample space. (Figure 2.4 (a)). For instance, various hospitals may
maintain comparable sorts of data on different patients (e.g., epidemiological,
clinical, and genetic). If these entities decide to work together utilising federated
learning to create a machine learning model, we call this kind of arrangement
HFL. From a safety standpoint, a horizontal federated learning system needs au-
thentic users and protection against a trustworthy but nosy server. This means
that the only entity that may compromise users’ anonymity is the server itself.
Another security model that considers hostile users [19] was recently presented,
creating further privacy problems. Users in the federated learning system are
given access to the global model parameters after the convergence conditions
have been satisfied [18].
In summary, HFL can be formulated as:

𝑋𝑖 = 𝑋𝑗 , 𝑌𝑖 = 𝑌𝑗 , 𝐼𝑖 ≠ 𝐼 𝑗 ,∀𝐷𝑖 , 𝐷𝑗 , 𝑖 ≠ 𝑗 (2.1)

15

2.3. FEDERATED LEARNING

Figure 2.5 depicts a conventional layout for a federated horizontal learning
system. In this approach, k users with the same data type work together to
create a machine learning/deep learning model using a centralized server. The
training procedure is finished after all of the aforementioned four stages in
Figure 2.5 have been repeated until the loss function converges. Under this
paradigm, which is not tied to any specific machine-learning technique (SVM,
CNN, etc.), the final set of trained model parameters will be shared across all
users. In HFL, we consider all of the local clients are honest, however, we
may have a honest-but-curious global server. With this assumption, no privacy
leakage from any participant is expected [20].

2.3.2 Vertical Federated Learning

HFL application settings are restricted owing to practical considerations such
as secrecy between organizations with conflicting interests [21]. On the other
hand, VFL or feature-based federated learning is suitable (Figure 2.4 (b)) when
there are a lot of commonalities between the entities involved in the sample space
but significant differences between them in the feature space, i.e. when different
people have varied preferences for the characteristics of the same entries. An
instance of VFL can be a partnership between a bank and an e-commerce site
to discover individuals’ purchasing habits [21]. To create a model using data
from both entities collectively, VFL (Vertical Federated Learning) is employed
to combine diverse features from various entities and calculate the training
loss and gradients in a manner that preserves privacy. This kind of federated
method is known as federated learning because it allows all participants to build
a "common wealth" approach while maintaining their identical identities and
statuses. An honest but curious participant user is often considered in a vertical
federated learning system. For instance, in a two-party situation, only one of
the two parties is penetrated by an attacker, and the two parties do not have a
collision. According to the security definition, the attacker can learn just about
the compromised user and can learn nothing more about the other client than
what is already revealed via input and output. After the training phase, each
participant discards all other model parameters except those that are directly
related to their personal characteristics. Hence, cooperation between the two is
required to provide outcomes at the time of inference.

16

CHAPTER 2. BACKGROUND

In summary, VFL can be formulated as:

𝑋𝑖 ≠ 𝑋𝑗 , 𝑌𝑖 ≠ 𝑌𝑗 , 𝐼𝑖 = 𝐼 𝑗 ,∀𝐷𝑖 , 𝐷𝑗 , 𝑖 ≠ 𝑗 (2.2)

The architecture of a typical VFL paradigm illustrated in Figure 2.6. Users are
assumed to not be able to directly share information between themselves. In
order to protect the privacy of VFL system users, it is possible to include a third-
party organization. However, it is possible to design a VFL system without the
mentioned third-party entity.
VFL training has two main steps: 1-Entity Alignment and 2-Model Training.
Entity Alignment: The initial phase in a VFL system’s collaborative training
process is entity alignment. This is the process of mapping the entities (e.g.,
individuals or objects) in different organizations’ datasets to a common set of
identifiers. This is necessary for collaborative analysis because each organiza-
tion may use different identifiers or naming conventions for the same entities.
It requires careful consideration of data privacy and security issues, as well as
robust algorithms for entity matching and record linkage. Once entity align-
ment is performed successfully, the organizations can proceed with joint analysis
and machine learning tasks while maintaining the privacy of their respective
datasets.
Model Training: After entity alignment in vertical federated learning, the model
training phase involves training a machine learning model on the joint dataset
while preserving the privacy of the individual datasets. This is typically done
using cryptographic techniques such as secure multi-party computation or ho-
momorphic encryption. During model training, the data is kept decentralized,
and only model parameters are exchanged between the organizations. The goal
is to jointly learn a model that can make accurate predictions without revealing
sensitive information about the individual datasets. Once the model is trained,
it can be used for the prediction of new data while preserving the privacy of the
individual datasets. A generic VFL training method based on neural networks
employing stochastic gradient descent [22] is described in Algorithm 2.

2.3.3 Federated Transfer Learning

Training data generated by numerous organisations sharing the same feature
area is a limitation of traditional federated learning. It’s not always the case in the

17

2.3. FEDERATED LEARNING

Algorithm 2 A typical VFL procedure
Input: Learning rates 𝜂1𝑎𝑛𝑑𝜂2
Output: Model Parameters 𝜃1, 𝜃2, ..., 𝜃𝑘 ,𝜓𝑘

Start:
Users 1, 2, ..., 𝐾 initialize 𝜃1, 𝜃2, ..., 𝜃𝑘 ,𝜓𝑘
for 𝑡 ≤ 𝑇 do

Randomly sample a mini-batch of size 𝑥
for clients 𝑘 ∈ 𝐾 in parallel do

User 𝑘 computes 𝐻𝑘 = 𝑔𝑘(𝑥𝑘 , 𝜃𝑘); {/*Computing local model outputs*/}
User k send [𝐻𝑘] to Active user K

end for
Active user K updates 𝜓𝑡+1

𝐾 = 𝜓𝑡𝐾 − 𝜂1
𝜕𝑙
𝜕𝜓𝐾

{/*Computing gradients of global
module*/}
Active user K computes and sends 𝜕𝑙

𝜕𝐻𝑘
to all other users {/*Computing

gradients for each user*/}
for clients 𝑘 ∈ 𝐾 in parallel do

User k computes ∇𝜃𝑘 𝑙 = 𝜕𝑙
𝜕𝜃𝑘

{/*Computing gradients of local module*/}
User k updates 𝜃𝑡+1

𝑘 = 𝜃𝑡𝑘 − 𝜂2∇𝜃𝑘 𝑙 {/*Updating local model parameters*/}
end for

end for

actual world, especially in fields like finance and medicine. Federated Transfer
Learning (FTL) was suggested to address this flaw [24], [25]. It’s possible that
educational psychology was where the idea of transfer learning first originated.
C. H. Judd, a psychologist, proposed the generalization hypothesis of transfer,
which states that gaining more life experience leads to learning abilities that
may be used in other contexts. By extrapolating from one situation to another,
one might get insight in how to handle similar situations. The precondition for
transfer, according to this idea, is that there must be a relationship between two
learning processes. Since both the bicycle and the motorcycle are transportation
tools and may share some similar knowledge, in practice, someone who has
learned the bicycle may learn the motorcycle quicker than others. Keep in mind
that prior learning is not always helpful when applying it to new situations. If
there are few shared characteristics across the domains, information sharing may
not be effective. When it comes to language acquisition, for instance, practising
cycling won’t help us much [26]. When two datasets have dissimilar sample sizes
and feature spaces, federated transfer learning may be used to bridge the gap
between them [18]. As an example, think about two firms, one in Iran and the
other in Italy, both of which operate in the healthcare and insurance industries.

18

CHAPTER 2. BACKGROUND

Geographical constraints mean there is little overlap between the two groups’
target audiences. Despite this, there is only a little overlap between the two
companies in terms of feature space. Because of this, FTL is a great option for
a federated system that can provide results across the full sample and feature
space (Figure 2.4 (c)) [18].
In summary, FTL can be formulated as:

𝑋𝑖 ≠ 𝑋𝑗 , 𝑌𝑖 ≠ 𝑌𝑗 , 𝐼𝑖 ≠ 𝐼 𝑗 ,∀𝐷𝑖 , 𝐷𝑗 , 𝑖 ≠ 𝑗 (2.3)

The VFL architecture is restricted to datasets that overlap. However, we will
now explore federated transfer learning, which extends the coverage to the
entire sample space. Although the general architecture shown in Figure 2.6
remains unchanged, the manner in which users share intermediate computed
gradients is modified, as depicted in Figure 2.7. The goal of federated transfer
learning is to increase the precision with which predictions are made for labels
in the target domain by developing a common representation of the distinctive
features of numerous participants. Reducing the number of incorrect predic-
tions is made possible by using labels provided by the source-domain party. In
federated transfer learning, each participant gradient computations are handled
independently, unlike in VFL. Yet, during the inference phase, it is necessary for
both parties to independently calculate the prediction results [18].
After building the model, its performance can be assessed in real-world appli-
cations, and a long-term data recording method, like Blockchain, can be utilized
to maintain its efficacy. The model’s success is contingent on the contributions
made by data providers, and those organizations that offer more data will expe-
rience greater benefits. Through federated processes, the effectiveness of these
models is disseminated, thus incentivizing new organizations to join the data
federation.

2.4 Federated Learning aggregation methods

The priorities and architecture of federated learning determine which al-
gorithms are used to compute global model parameters from transferred local
parameters updates of users to the global server in each round of training. Set-
ting up this logic is essential since it handles users’ heterogeneity, differences in
updated sent parameters from each user, and communication problems. The two

19

2.4. FEDERATED LEARNING AGGREGATION METHODS

fundamental aims of the suggested aggregation strategies, which we shall ex-
plore in this section, are optimum client selection and communication-efficiency.
These mechanisms are utilized in various federated learning techniques for in-
tegrating, improving, optimizing, aggregating, and collaborating. In describing
aggregation algorithms, our focus is on HFL setting, i.e. in each round the
global server receives local models parameters and combines them to compute
an aggregated set of parameters and send back them to clients.
There is a baseline aggregation algorithm, FedAvg, introduced by Google [27]
on 2017 and there are various other algorithms proposed after FedAvg tried to
optimize a factor (s) of it. FedProx [28], FedKD [29], FedGEMS [30], FedMD [31]
and Scaffold [32] are some the famous aggregation algorithms which, in this
work, FedAvg, FedProx and FedKD will be explained to provide a better insight
of different optimizations of aggregation algorithms.

2.4.1 FedAvg

Google’s federated learning implementation presented the Federated Aver-
aging [27] technique (commonly known as FedAvg), which is based on the SGD
optimizer [3]. In studies of federated learning, FedAvg serves as a reference point
against which new approaches are evaluated. FedAvg controls training with a
centralised server that calculates the shared global model weights 𝑤𝑡 , where 𝑡 is
the communication round. However, local client training of the models is how
the real optimization is carried out [33]. Three important parameters determine
how much computing is done in FedAvg algorithm: 1- (𝐶), the amount of cus-
tomers that take part in each training epoch; 2- (𝐸), number of training iterations
performed by each client on their local dataset; and 3- (𝐵), the local minibatch
size that is utilized for client updates. To indicate that the whole local dataset is
handled as a single minibatch, we write 𝐵 = ∞. As a result, we may have 𝐵 = ∞
and 𝐸 = 1 as the special setting of this algorithm family, which is referred to
FedSGD. The number of local updates each round for a client with 𝑛𝑘 local data
samples is given by 𝑢𝑘 = 𝐸 𝑛𝑘𝐵 ; complete pseudo-code is provided in Algorithm
3.

2.4.2 FedProx

In the same way as FedAvg averages updates from a set of devices over time,
FedProx conducts local updates on certain devices at each round. To guarantee

20

CHAPTER 2. BACKGROUND

Algorithm 3 FedAvg Algorithm
Input: 𝐾: Number of users; 𝐵: the local minibatch size, 𝐸: the number of local

epochs, and 𝜂: the learning rate
Output: Updated weights 𝑤

START:
Initialize 𝑤0
for each 𝑡 = 1, 2, ... do
𝑚 ← 𝑚𝑎𝑥(𝐶.𝐾, 1)
𝑆𝑡 ← random set of 𝑚 users
for each user 𝑘 ∈ 𝑆𝑡 in parallel do
𝑤𝑘
𝑡+1← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝑤𝑡)

end for
𝑤𝑡+1← ∑𝐾

𝑘=1
𝑛𝑘
𝑛 𝑤

𝑘
𝑡+1

end for
END

ClientUpdate (𝑘, 𝑤𝑡):
START:
𝐵← split local dataset 𝐷𝑘 into batches of size 𝐵
for each local epoch 𝑒 from 1 to 𝐸 do

for batch 𝑏 ∈ 𝐵 do
𝑤 ← 𝑤 − 𝜂∇𝑙(𝑤; 𝑏)

end for
end for
return 𝑤 to global server
END

convergence, however, FedProx includes the following seemingly minor adjust-
ments that have led to significant experimental successes [28]. The first change
is Tolerating partial work. End-nodes in federated systems may have varying
degrees of processing power, network access, and battery life. Thus, it is not ac-
ceptable to require all nodes in FedAvg to do the same amount of work (i.e., local
training for the same number of local epochs (E)). FedProx generalizes FedAvg
by enabling various proportions of work to be completed locally across devices
depending on their accessible resources and then aggregating the incomplete
solutions delivered by the stragglers. Another important change in FedProx ap-
proach is Proximal Term. The negative effects of systems heterogeneity may be
mitigated by permitting different local epochs to be done across users, however
excessive local updates may (possibly) lead to method divergence as a result
of the heterogeneous data. A proximal term was proposed by FedProx to be

21

2.4. FEDERATED LEARNING AGGREGATION METHODS

added to the local subproblem in order to mitigate the effect of mutable local
updates. In addition to the local function 𝐹𝑘(.), each user also tries to minimise
the following function ℎ𝑘 .:

min
𝑤

ℎ𝑘(𝑤;𝑤𝑡) = 𝐹𝑘(𝑤) + 𝜇

2 ∥𝑤 − 𝑤
𝑡 ∥2 (2.4)

The proximal term has two positive aspects: In order to reduce statistical het-
erogeneity, (1) local updates are constrained to be more in line with the initial
(global) model without the requirement for a user-specified number of local
epochs. The system’s heterogeneity is accommodated for, since it permits the
safe absorption of varied amounts of local epochs [28].

2.4.3 FedKD (Federated Knowledge Distillation)

To describe this algorithm, Knowledge Distillation (KD) technique should
be explained first. KD is a strategy for transferring knowledge from a big
teacher model to a small student model [34], Model compression for better
network efficiency is KD’s primary focus. Considering N users who each keep
their sensitive data on their own local machine. The dataset on the i-th user
is referred to as 𝐷𝑖 . According to FedKD, each user maintains a local copy of
a shared student model 𝑆 with a parameter set Θ𝑆 and a huge local teacher
model 𝑇𝑖 with a parameter set Θ𝑇

𝑖 . The training of a machine learning model
in a federated learning environment is carried out by a group of users working
together, with the help of a central server. In the end, we want to have a model
that is reliable and productive, one that can protect users’ personal information
while keeping down their communication costs. Under the guidance of the
labelled local data and the knowledge distilled from one another, users in FedKD
simultaneously calculate the update of the local teacher model and the student
model for each global epoch of the FedKD algorithm. While various users
exchange and collaborate to learn the student model, the teacher models are
updated individually. The beneficial knowledge contained by the teacher model
may be used to instruct the student model since the local teacher models have
more complex structures than the student model. Also, the teacher model
may also profit from the knowledge distilled from the student model as the
student model can view the data on all users while the teacher model can
only learn from local data [34]. FedKD utilizes an adaptive mutual distillation

22

CHAPTER 2. BACKGROUND

framework to facilitate the reciprocal learning of a student and a teacher model
on each client. This approach avoids the direct communication of large models
between users and server. Instead, only the student model is shared by different
users and updated collaboratively to reduce communication costs. Through this
framework, each user’s teacher and student models learn from local data and
from each other, with the degree of knowledge distillation being determined by
the accuracy of the predictions made. [29]. Different steps of FedKD algorithm
illustrated in Figure 2.8.

2.5 Privacy Attacks on Federated Learning

The concept of federated learning has caught the attention of many organ-
isations that want to conduct substantial study on confidential data sets. Data
leakage from the deep learning model’s parameters is still possible, however
federated learning makes collaborative machine learning possible without shar-
ing datasets with a third party. Attacks against machine learning models often
target trained models, with the goal of analysing their parameters and learning
more about the underlying training data. Training data stored in the model pa-
rameters, therefore, has been shown to be vulnerable to a wide range of privacy
assaults [35]. generative adversarial network (GAN) reconstruction [36], model
inversion [37], and membership inference [38] are the three main categories of
privacy attacks on federated learning.

2.5.1 Threat Model

I initially provide a description of the threat models before going into the
attacks on federated learning. The threat models in federated learning may
generally be divided into the following types: 1- Internal vs external attacks
are classified depending on the nature of the adversary; 2- Semihonest against
malicious attacks are classified based on if the adversary will follow protocol
or not, and 3- Depending on the attack’s occurring phase, training phase and
inference phase should be contrasted.

1. Internal attacks vs. External attacks:

23

2.5. PRIVACY ATTACKS ON FEDERATED LEARNING

• Internal Attacks: The federated learning server or the federated
learning system’s users both have the potential to execute internal
attacks. As the server has access to each participant’s transferred
model parameters and each participant can view the global aggre-
gated parameters of federated learning system [39].

• External Attacks: When the federated learning model is imple-
mented as a service, attackers may also conduct external attacks by
eavesdropping in on the participants’ interactions with the federated
learning server [40].

2. Semi-honest vs. Malicious attacks:

• Semi-honest Scenario: Adversaries are seen to being passive or
honest-but-curious. Without departing from the federated learning
protocol, they attempt to find out the private details of other users.
The attackers can only examine the information they have already
been given, or the global model’s parameters [39].

• Malicious Scenario: An active or malicious attacker alters commu-
nications to intentionally depart from the federated learning protocol
while trying to discover the secret information of the other honest
parties. The attacker is able to launch extremely destructive attacks
in this situation [39].

3. Training Phase vs. Test Phase

• Training Phase Attacks: Attacks made during the training process
make an effort to understand, control, or damage the federated learn-
ing model itself. The validity of the learning process may be compro-
mised during the training step by the adversary using model poison-
ing attacks or data poisoning attacks to tamper with the gathering
of training datasets. Regarding the risk to privacy throughout the
training process, the adversary may also carry out a variety of infer-
ence attacks, e.g. membership inference attacks, on the parameters
that each participant has supplied or the parameters that have been
aggregated [39].

• Test Phase Attacks: Attackers won’t change the targeted model at
this phase; instead, they will query it to reveal some confidential data
or deceive it to reduce resilience by making false predictions. The
attacker’s knowledge of the model is a key factor in determining how
successful such attacks will be. In inference phase attacks, while the
attacker cannot see the model parameters themselves, they may see
the input and output pairs, allowing them to execute model theft
attacks and reconstruct model parameters. In addition, recently, it
has been proved that federated learning models similar to centralize
machine learning models are vulnerable to adversarial attacks during
the test phase [39].

24

CHAPTER 2. BACKGROUND

2.5.2 Attacks Classification

The analysis of gradients can lead to the revelation of sensitive personal
information, such as class representatives, membership, and attributes of a
specific portion of the training data. The situation becomes even more alarming
as malicious actors can infer the actual training images by deducing labels from
the shared gradients, even in the absence of prior knowledge of the training
data. In the following, the possible privacy leakages of federated learning are
described, taking into account the specific kind of sensitive data the adversary
is aiming to access [39], [41].

1. Inferring Class Representatives: In [19], a new active attack called GAN
attack against deep federated learning models were presented. A ma-
licious user in this attack has the ability to deliberately compromise any
other party. The adversarial user may train a GAN to produce prototype in-
stances of the intended private training data using the GAN attack, which
takes use of the federated learning learning process’ real-time nature. The
training data’s distribution seems to be mirrored by the produced samples.
The GAN attack, it should be emphasized, requires that the whole dataset
for training for a particular class originates from a single user, which im-
plies that the GAN-constructed samples are comparable to the training
samples only when all members of the class are similar. Model Inversion
[37] attack has similar assumptions to be effective in centralized machine
learning [39].

2. Membership Inference Attack: The goal of an inference attack is to ex-
trapolate information from the training set. The goal of the Membership
Inference attack [38] is to get data by first verifying that it is present in a
training set. The adversary takes use of the global model to learn about the
users’ respective training sets. When this occurs, we train the predictive
model to make predictions based on the original training examples and
use those predictions to extract information about the training data. The
neural network’s tendency to remember its training data leaves it open to
passive and active inference attack [3].

3. Property Inference Attack: A malicious party may infer specific qualities
of other users’ training data using either passive or active property infer-
ence attacks. It is assumed in property inference attacks that the attacker
has access to additional training data that has been appropriately labeled
with the target attribute [39]. For instance, inferring some information
about the genders of federated learning users by analyzing the gradients
is a kind of property inference attack.

4. Inferring Training Inputs and Labels: A method known as DLG (Deep
Leakage from Gradient) [41] is a novel study that has developed an opti-
mization approach capable of extracting both the training data and labels,
making it a particularly severe attack when compared to other methods.

25

2.6. DEFENSES STRATEGIES AGAINST PRIVACY ATTACKS

This approach has the ability to recover the original data used for training a
deep learning model with exceptional accuracy, making it a serious threat
to data privacy. In a subsequent paper [42], the authors developed an an-
alytical method dubbed improved DLG (iDLG) to extract labels based on
the shared gradients and an investigation into the relationship between the
labels and the signs of the gradients. Differentiable models trained with
cross-entropy loss and one-hot labels are a common setup for classification
problems, and iDLG may be used to attack them.

To sum up, inference attacks in federated learning assume that the attackers
possess advanced technical skills and unlimited processing capabilities. There-
fore, most of these attacks rely on the fact that the adversarial players can be
selected during several iterations of the federated learning training phase to up-
date the global model. The need for gradient protection in federated learning is
emphasized by these inference attacks, which can be prevented by using various
privacy-preserving techniques discussed in the following section.

2.6 Defenses Strategies against Privacy Attacks

Although federated learning allows users to maintain their data local, current
research has proven it is ineffective in preventing known inference attacks from
being used to compromise the privacy of the underlying training data. The
model parameters that were transferred throughout the training phase and
the model’s outputs are nonetheless vulnerable to privacy leaks [43]. So, in
the following, I will discuss methods for preserving users’ privacy while they
are being trained. These methods enable the cooperative training of a model
amongst several users (i.e., participants) while maintaining the confidentiality
of each user’s dataset.

2.6.1 Differential Privacy

In federated learning, differential privacy [44], [45] can be used to protect the
privacy of the client’s data during model training. The basic approach is to add
noise to the model updates before sending them to the central server. The server
aggregates the noisy updates and returns an updated model to the clients. The
noise added to the updates ensures that no individual’s data can be inferred
from the model or the updates.
Differential privacy has been applied to a variety of federated learning scenar-
ios, including image classification, natural language processing, and health-

26

CHAPTER 2. BACKGROUND

care applications. Some recent works have proposed novel differential privacy
mechanisms specifically designed for federated learning, such as Federated Dif-
ferential Privacy (FDP) [5] and Differentially Private Stochastic Gradient Descent
(DP-SGD) [46]. Applications for DP may be separated into two groups:

• Central differential privacy (CDP), as described in [29], needs users to
trust the database administrator (i.e., the data curator) to protect their con-
fidentiality. After gathering data from people, CDP involves of injecting
random noise. The random noise is introduced to the dataset or to the
outputs of queries run against it [47].

• When people do not trust the data keeper, local differential privacy (LDP)
addresses CDP’s weaknesses and protects privacy. Users tamper and/or
encrypt their replies during data collecting before sending them to the
main server. Since each person uniquely perturbs his answer, LDP tech-
niques should be properly designed [48]. This is because the predicted
frequencies on the dataset may not be true [47].

In distributed data processing systems, (𝜖, 𝛿)-DP provides a decisive criterion
for privacy preservation. As 𝜖 > 0 implies that all outputs in a database have
distinct bounds on adjacent datasets 𝐷𝑖 and 𝐷′𝑖 , respectively, and 𝛿 implies that
the ratio of the probabilities for two adjacent datasets 𝐷𝑖 , 𝐷′𝑖 cannot be bounded
by 𝑒𝜖 after adding a privacy-preserving mechanism. Larger 𝜖 provides a clearer
distinction between neighbouring datasets, thus increasing the risk of privacy
violations when a 𝛿 is indeterminately calculated. Here is a formal definition of
DP.

Definition 1 ((𝜖, 𝛿)-DP [49]): A randomized mechanism 𝑀 : 𝑋 → 𝑅 with domain
𝑋 and range 𝑅 satisfies (𝜖, 𝛿)-DP, if for all measurable sets 𝑆 ⊆ 𝑅 and for any two
adjacent databases 𝐷𝑖 , 𝐷′𝑖 𝑖 ∈ 𝑋,

𝑃𝑟[𝑀(𝐷𝑖) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟[𝑀(𝐷′𝑖) ∈ 𝑆] + 𝛿. (2.5)

A Gaussian mechanism defined in [49] can be used for numerical data to
guarantee (𝜖, 𝛿)-DP. According to [49], we present the following DP mechanism
by adding artificial Gaussian noise. In order to ensure that the given noise
distribution 𝑛 ∼ 𝑁(0, 𝜎2) preserves (𝜖, 𝛿)-DP, where 𝑁 represents the Gaussian
distribution, we choose noise scale 𝜎 ≥ 𝑐Δ𝑠/𝜖 and the constant 𝑐 ≥ √

2𝑙𝑛(1.25/𝛿)
for ∈ (0, 1). In this result, 𝑛 is the value of an additive noise sample for data in
the dataset, 𝑠 is the sensitivity function given by 𝑠 = 𝑚𝑎𝑥𝐷𝑖 ,𝐷′𝑖 ∥𝑠(𝐷𝑖) − 𝑠(𝐷′𝑖)∥.

27

2.6. DEFENSES STRATEGIES AGAINST PRIVACY ATTACKS

2.6.2 Homomorphic Encryption

Homomorphic encryption is a powerful cryptographic technique that allows
computation to be performed on encrypted data without the need for decryp-
tion. This makes it an attractive tool for privacy-preserving federated learning,
where multiple parties collaboratively train a machine learning model without
sharing their sensitive data with each other. Federated learning entails a central
server overseeing the training process and collecting model updates from partic-
ipating clients. Homomorphic encryption offers a means of safeguarding model
updates against unauthorized access by encrypting them before transmission
to the server. By doing so, the server is unable to glean any insight into the
underlying data utilized by the clients, thus reinforcing data privacy and secu-
rity. There are two main types of homomorphic encryption: fully homomorphic
encryption (FHE) and partially homomorphic encryption (PHE). FHE allows for
arbitrary computations to be performed on encrypted data, but it is currently
too computationally expensive to be practical for most real-world applications.
PHE, on the other hand, supports only a limited set of operations (e.g., addition
and multiplication), but it is much faster and more efficient.

PHE, or partially homomorphic encryption, is a common technique em-
ployed in federated learning to protect the privacy of the client’s data. Specif-
ically, PHE is applied to encrypt the model updates generated by the clients
during the training process. Once encrypted, the server can aggregate and ma-
nipulate the updates without accessing the underlying raw data. This approach
ensures the confidentiality of the data and enables secure collaboration among
the parties involved in the federated learning process. The updated model can
be encrypted again and sent back to the clients for further training, without the
server ever seeing the unencrypted data.

One potential drawback of homomorphic encryption in federated learning
is that it can increase the communication and computation overhead. The
encryption and decryption operations are computationally expensive, and the
encrypted data is typically much larger than the original data. This can result
in slower training and higher resource usage. However, recent advances in
homomorphic encryption algorithms and hardware acceleration have made it
more feasible for practical use cases.

In conclusion, homomorphic encryption is a promising technique for privacy-
preserving federated learning. It allows multiple parties to train a machine

28

CHAPTER 2. BACKGROUND

learning model without revealing their sensitive data, and it can be used in
conjunction with other privacy-preserving techniques such as differential pri-
vacy and secure multi-party computation. However, it is important to carefully
consider the trade-offs between privacy and efficiency when choosing a specific
homomorphic encryption scheme for a given application.

2.6.3 Secure Multiparty Computation (SMC)

Secure multiparty computation (SMC) [50] is another cryptographic tech-
nique that can be used for privacy-preserving federated learning. It enables
multiple parties to jointly compute a function on their private inputs without
revealing their inputs to each other. This makes it a useful tool for federated
learning, where the clients may be unwilling or unable to share their data with a
central server or with each other. In SMC protocol, each party encrypts their in-
put using a secret key and shares the encrypted data with the other parties. The
parties then collaboratively compute the desired function on the encrypted data,
without decrypting it. The output of the computation is also encrypted and can
be revealed to each party without revealing the underlying inputs [51]. SMC
can be used for a variety of machine learning tasks, including model training,
prediction, and evaluation. For example, in federated learning, the clients can
use SMC to collaboratively train a machine learning model without revealing
their private data to each other or to the central server. One of the advantages
of SMC is that it can support a wide range of computation types, including
arithmetic, logic, and comparison operations. This makes it a powerful tool
for privacy-preserving computation in federated learning. Additionally, SMC is
highly customizable, and different SMC protocols can be designed to meet the
specific security and efficiency requirements of different applications. However,
SMC also has some limitations. One of the primary challenges is that it can be
computationally expensive, especially for large datasets or complex computa-
tions. The communication overhead can also be significant, as the parties need to
exchange many messages during the computation. These limitations can make
SMC impractical for some real-world federated learning scenarios.

In conclusion, secure multiparty computation is a promising technique for
privacy-preserving federated learning. It allows multiple parties to jointly com-
pute a function on their private data without revealing it to each other, and it

29

2.7. COMMUNICATION EFFICIENT FEDERATED LEARNING

can be used in conjunction with other privacy-preserving techniques such as
homomorphic encryption and differential privacy. However, it is important to
carefully consider the trade-offs between privacy and efficiency when choosing
a specific SMC protocol for a given application.

2.7 Communication Efficient Federated Learning

Communication efficiency is a critical factor in the performance of federated
learning systems. In federated learning, the clients exchange their local model
updates with a central server or with each other. The communication cost can
be high, especially when the number of clients is large or the models are com-
plex. Thus, improving the communication efficiency of federated learning is
an active area of research. One approach to improving the communication ef-
ficiency of federated learning is to reduce the amount of data that needs to be
communicated between the clients and the central server. This can be achieved
by compressing the model updates [52] or by using sparse updates [53], where
only the non-zero components of the update are transmitted. Another approach
is to use quantization [54] to reduce the number of bits used to represent the
model updates. To decrease the communication cost in federated learning, an
alternative method is to adopt local model training. This technique involves the
clients conducting multiple rounds of training before exchanging their model
updates with the central server. While it can help decrease communication over-
head, it can also increase the training time and the number of communication
rounds required to reach convergence.
To summarize, minimizing communication cost is a crucial aspect of feder-
ated learning systems. Several methods have been suggested to achieve this
goal, such as compressing models, using sparse updates, quantizing data, and
adopting local model training. These techniques aim to enhance scalability
and efficiency in federated learning systems. In the future, further research is
expected to improve the performance of federated learning algorithms and to
address scalability and efficiency issues.

30

CHAPTER 2. BACKGROUND

Figure 2.4: Different federated learning types [18]

31

2.7. COMMUNICATION EFFICIENT FEDERATED LEARNING

Figure 2.5: Horizontal federated learning steps and architecture [18]

Figure 2.6: Vertical federated learning architecture [23]

32

CHAPTER 2. BACKGROUND

Figure 2.7: Federated Transfer Learning architecture [3]

33

2.7. COMMUNICATION EFFICIENT FEDERATED LEARNING

Figure 2.8: Framework of FedKD Algorithm [29]

34

CHAPTER 2. BACKGROUND

Figure 2.9: An Instance of Model Inversion Attack [37]

Figure 2.10: Comparison of DLG (left) and iDLG (right) attacks on the LFW face
dataset [42]

35

2.7. COMMUNICATION EFFICIENT FEDERATED LEARNING

(a)

(b)

Figure 2.11: LDP (left) vs. CDP (right) [39]

36

3
Analysis of Industrial Use-cases

In this section, the main contributions of this thesis will be discussed. First,
we have the methodologies wherein two different approaches named: 1- Client
Selection Strategy (CSS) and 2- Parameter Randomization are explained. Then,
in separate sections, three different use cases of the DAIS project will be in-
troduced. According to the requirements of the project, A privacy-preserving,
communication-efficient federated learning system should be designed for each
of them.

3.1 Methodologies

3.1.1 Client Selection Strategy

Local model updates are collected iteratively from clients in federated learn-
ing. At each iteration, clients are usually selected by random selection (RS).
It has some drawbacks, such as long training or convergence times with het-
erogeneous clients. However, studies are being conducted to determine how
to select clients more effectively, which can improve system performance. In
order to increase the accuracy and training efficiency of the federated learning
system, we propose in this work a client selection technique called "CSS" that
is dependent on the sample size of each client. The bigger global datasets it
can supply for training can increase the model’s performance and lower the
standard deviation of additive noise brought on by the aggregation procedure
because this proposed technique chooses half of the candidates from a wider

37

3.1. METHODOLOGIES

pool of customers.

Algorithm 4 Clients Selection Strategy (CSS)
Input: Number of iterations: 𝑇, Clients list: 𝐿, Number of selected Clients: 𝐾
Output: Selected clients

for 𝑡 ≤ 𝑇 do
M = Sorted L in descending order by sample size
Select K/2 randomly from 𝑀0 to 𝑀𝑘
Select K/2 randomly from L

end for
Return K selected clients

Algorithm 4 show the CSS method used during each training round. At each
training round, clients with the biggest datasets are more probable to attend.
To have an unbiased client selection, we use half of the selections based on our
proposed method (line 3) and half based on random selection (line 4). Both
halves should not overlap.

3.1.2 Parameter Randomization

The effectiveness of federated learning systems depends heavily on commu-
nication efficiency. In federated learning, clients communicate with a central
server to share local model changes. The cost of communication may be con-
siderable, particularly if there are many users or complicated models. Hence,
enhancing the communication efficiency of federated learning is an important
field of study. One way that federated learning enhances communication effi-
ciency is by decreasing the quantity of data transferred between clients and the
global server.
I proposed a solution to increase the communication efficiency of federated
learning systems for the SER and DFD use cases that its name is Parameter Ran-
domization method.
The parameter randomization algorithm is shown in Algorithm 5. Using this
strategy, the amount of communication parameters may be decreased according
to the number of clusters. For the sake of explanation, let’s say the server has
decided to group the clients into 𝐶 clusters, and 𝑋 represents the amount of the
model parameters. In the conventional approach, each client needs to transmit
all of the 𝑋 model parameters to the server. However, in the parameter random-
ization method, each client only needs to send a random subset of size 𝑋/𝐶 of

38

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

its model parameters to the server. Hence, the communication efficiency of the
federated learning system is improved since less data needed to be sent between
the client and the server.

Algorithm 5 Parameter Randomization in federated learning
Input: Number of iterations: T, Total Number of clients: N, Selected Clients for

each round of training: 𝐾, Initial global model: 𝑊𝐺
0 , Number of clusters: 𝐶

Output: Communication Efficient federated learning trained model
Start:

1. The server broadcasts𝑊𝐺
0 and 𝑡 = 1

2. The server selects𝐾 ⊂ 𝑁 clients, Clusters them randomly into𝐶 clusters,
and assigns a set of random non-repetitive indices of parameters to each
cluster.

for 𝑡 ≤ 𝑇 do
Client Side:
for all Selected Clients 𝑖 ∈ 𝐾 do

client 𝑖 trains its local model
end for

Server Side:

1. The server gets the randomly selected parameters from the clients
of each cluster, aggregates them, and concatenates the aggregated
parameters of clusters together to create the whole parameter space.

2. The server broadcast the aggregated and concatenated global model
to clients.

3. The server selects 𝐾 ⊂ 𝑁 clients, Clusters them randomly into 𝐶 clus-
ters, and assigns a set of random non-repetitive indices of parameters
to each cluster.

end for

3.2 Usecase 1: Speech Emotion Recognition

3.2.1 Use-case Explanation

In this use case, our goal is to develop a distributed media recommendation
engine, which is to be leveraged by AI-based novel technologies. The recom-

39

3.2. USECASE 1: SPEECH EMOTION RECOGNITION

mendation system will have to work in a distributed and privacy-protecting
manner. Users devices will act as nodes that belong to a big cluster and run
pieces of the recommendation engine process so that personal data is processed
in the users device, not in the cloud, a sample architecture of the overall system
is illustrated below.
The use case has three main objectives:

• Developing a privacy-protecting mood-centric distributed media recom-
mendation engine leveraging novel distributed machine learning/deep
learning (federated learning) techniques running on edge clusters.

• Current mood of the user is recognized through a voice-based assistant
interacting with the user.

• Showing that the recommendation system works in a distributed and
privacy-protecting manner on DAIS components.

The first and foremost benefit is to make the recommendation engine dis-
tributed through federated learning techniques instead of a centralized media
recommendation. Secondly, media recommendations currently do not take into
account the users feelings. With this technology, media recommendations will
incorporate the current mood of the user. Furthermore, while making a media
recommendation, the system protects the privacy of the users, and does not
share the data, but instead processes the data where the data originated.

3.2.2 System Description

The purpose of this section is to describe the system design of federated
learning in SER applications 3.2.3, the threat model 3.2.4, the proposed PFL-SER
method 3.2.5, including algorithms design and the proposed client selection
strategy.

3.2.3 System Design

A federated learning approach involves training machine learning models
collaboratively across several clients over several iterations. In Fig. 3.1, the
federated learning system designed for SER application is comprised of clients,
such as mobile phones, laptops, and TV, denoted as {𝐶1, ..., 𝐶𝑛}. These clients are
responsible for performing speech emotion machine learning models without
sharing their speech data, denoted as {𝐶1, ..., 𝐶𝑛}, with the central server. As

40

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

illustrated in Fig. 3.1, the federated learning training process typically involves
three steps.

Figure 3.1: A schematic diagram of federated learning in SER applications.

• Step 1: Model initialization and distribution.

• Step 2: Local training, sharing the trained model with the server and then
updating the server.

• Step 3: Clients parameters aggregation.

Repeat steps 2-3 until the global loss function converges or an acceptable
degree of accuracy is reached.

3.2.4 Threat Model

The server is trusted to be trustworthy throughout this use-case. There
are, however, honest-but-curious clients and external adversaries who target
clients’ private information. Federated learning requires the server and clients
to share the intermediate parameter 𝑊𝑖 and the global parameter 𝑊𝐺, despite
the fact that in this setup the client’s copy of the individual dataset 𝐷𝑖 remains
on the client’s local machine. As demonstrated by model inversion attacks [37],
which require only "black-box" access to a trained model in order to reconstruct
private information. The adversary with black-box access is believed to have

41

3.2. USECASE 1: SPEECH EMOTION RECOGNITION

prior knowledge of a label created by the model parameters 𝑊𝐺 or 𝑊𝑖 , such
as an emotion label or a unique identification, and to seek to "reconstruct"
characteristics or voice data on the client corresponding with that label. Using
this strategy, the attacker has a chance of recreating the voice data of every
person in the training set. Those whose voice recordings are used for training
purposes may feel violated by this.

3.2.5 Proposed Method: PFL-SER

According to the previous section, sharing the model update parameters be-
tween clients and server can leak private training data. The honest-but-curious
client 𝑗 can reconstruct training private data of clients 𝑖 by conducting model
inversion attacks with limited knowledge. In order to prevent model inver-
sion attacks, we provide a new method in this study called "Private Federated
Learning in Speech Emotion Recognition" (PFL-SER) that combines Local Dif-
ferential Privacy (LDP) with Stochastic Gradient Descent (SGD). In order to
maintain anonymity, we include Gaussian noise into the parameters of the lo-
cal training model. By retaining the model’s convergence and performance,
as well as offering extremely appealing privacy safeguards, this method may
minimize the amount of noise introduced to the gradients. Thereafter, we’ll go
more into differential privacy, the algorithmic architecture of PFL-SER, and the
client-selection method.

Algorithms Design

To generate noise for the client before delivering local model parameters,
PFL-SER makes use of LDP based on SGD. In order to optimize the federated
learning algorithm’s privacy and convergence, we intend to limit the impact
of individual clients’ training data during the training phase, particularly in
the SGD computation inspired by [46]. Basically, gradients are computed for
each batch size, but before averaging them out, each gradient is clipped at
a predetermined threshold 𝐶. When the average is calculated, the clipping
threshold is used to add calibrated noise. The approach safeguards privacy
while preserving convergence and speed in gradients.

Algorithm 1 shows the PFL-SER with the LDP mechanism. Initially, the
server broadcasts the initial global model 𝑤𝐺

0 to 𝑘 selected clients. Then during
that time slot 𝑡, each client 𝑖 ∈ 𝑘 trains his/her own local dataset 𝐷𝑖 by mini-

42

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

mizing the loss function ∇𝐿𝑖 . The gradient 𝑔(𝑏) for each client is calculated by
each 𝑏 ∈ 𝐵𝑖 . To bound the gradient contribution of each 𝑏, we clip each gradient

in the ∥𝐿∥2; i.e., the gradient vector 𝑔(𝑏) is replaced by 𝑔(𝑏)/𝑀𝑎𝑥(1, ∥𝑔(𝑏)∥2
𝐶
)

for a clipping threshold 𝐶. This clipping ensures that if ∥𝑔∥2 ≤ 𝐶, then 𝑔 is
preserved, whereas if ∥𝑔∥2 ≥ 𝐶, it gets scaled down to be of norm 𝐶 [46]. After
clipping the gradient, we take the average of all gradients in 𝐵 and add a scaled
Gaussian noise 𝑁 𝑖

𝑡 ∼ 𝑁(0, 𝜎2
𝑖 𝐶

2) to the client side to achieve LDP.
After receiving the noisy local model parameter 𝑤 𝑖

𝑡+1 from selected clients,
the server aggregates these parameters using the FedAvg algorithm to obtain
the federated model 𝑤𝐺

𝑡+1. The federated model 𝑤𝐺
𝑡+1 is then updated and sent

back to all local clients for further training.

3.2.6 Experimental Results

We discuss the industrial use case, the simulation environment, and the pub-
licly available dataset that were all part of our evaluation here. In the next sub-
section, we’ll discuss how to construct experiments to assess PFL-efficacy, SER’s
how CSS affects PFL-SER efficiency, how to test PFL-SER robustness against
attacks, and how to strike a good balance between privacy and precision.

3.2.7 Evaluation Results

We illustrate the effect of different DP settings on accuracy and study the
system’s convergence to draw conclusions about PFL-SER’s performance. In the
following setting for Fig. 3.2, the number of selected clients is 𝐾 = 51, and the
number of training epochs is 𝑇 = 120. More specifically, we demonstrate the
effect of noise scale 𝜎 on accuracy in Fig. 3.2 (a), the impact of failure probability
𝛿 variation on accuracy in Fig. 3.2 (b), and clipping threshold 𝐶 and its effect on
accuracy in Fig. 3.2 (c).

Based on the results presented in Fig. 3.2 (a), When T, the total number
of training epochs, is increased, the rate of improvement in accuracy slows
down until it stabilizes. This pattern suggests that the PFL-SER technique tends
towards convergence over time. Additionally, an increase in the noise scale (𝜎)
leads to slower convergence since a higher noise scale implies stronger privacy
protection with a larger amount of injected noise during the training process. A
significant increase in the noise scale, such as 𝜎 = 10, can result in an unstable

43

3.2. USECASE 1: SPEECH EMOTION RECOGNITION

(a)

(b)

(c)

Figure 3.2: Performance evaluation on the convergence of PFL-SER mechanism,
(a) accuracy versus noise scale 𝜎, (b) accuracy versus failure probability 𝛿, and
(c) accuracy versus clipping threshold 𝐶.

44

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

system without convergence. In Figure 3.2 (b), the impact of 𝛿 on accuracy is
evaluated. Unlike 𝜎, a higher value of 𝛿 results in faster convergence, less privacy
protection, and higher accuracy. For instance, when 𝛿 = 10−3, it achieves the
highest accuracy compared to other values because it sacrifices more privacy to
maintain utility.

In Fig. 3.2 (c), we demonstrate the effect of various clipping thresholds
𝐶 on the accuracy of the PFL-SER method. Thus, because of the impact on
sensitivity, we are compelled to increase the amount of noise in the parameters
as we increase 𝐶. This means that for our technique, 𝐶 should be between 1.0
and 2.0 for fast convergence and good accuracy.

System performance may be affected by a number of variables, including but
not limited to those unrelated to the DP itself, such as the choice of clients. Con-
sequently, we proposed the CSS method, which selects the client according to
the explanations provided in Section 3.1.1. A further comparison was made be-
tween the CSS method and random selection (RS) in federated learning systems
on both PFL-SER and its non-LDP counterparts (federated learning-SER).

In Fig. 3.3, when 𝜎 = 1.0, 𝐶 = 2, 𝛿 = 10−5 and 𝐾 = 51, we applied the CSS and
RS method on the PFL-SER and federated learning-SER methods. According to
Fig. 3.3, when the PFL-SER system utilized the CSS method for selecting clients,
the result showed a significantly improved accuracy from 0.60 to 0.70 in compar-
ison with the RS method. With CSS, half of the clients are selected from a larger
pool, which allows a larger global dataset to be used for training, increasing
the model’s accuracy and reducing additive noise standard deviations. When
these two methods of client selection are applied to the federated learning-SER
system, the accuracy of the system is not significantly affected. Thus, an efficient
client selection strategy will improve the system’s performance and mitigate the
negative effects that differential privacy may have on the system’s accuracy.

Moreover, we evaluate the PFL-SER method against privacy-related attacks
by implementing model inversion attacks [37], which are capable of reconstruct-
ing the private dataset from the model parameters and labels. Moreover, the
system takes into account active and passive attack configurations with black-
box access. During an attack, the adversary may see the victim’s local model
parameters and its output. Yet, in a passive attack, the attacker has access to the
model’s output and just the global parameters.

By comparing the reconstructed data to the original private data, we can
quantify the attack’s success in the federated learning system and provide an

45

3.2. USECASE 1: SPEECH EMOTION RECOGNITION

Table 3.1: Attack effectiveness versus noise scale 𝜎 and clipping threshold C

46

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

Figure 3.3: Evaluation of different client selection methods based on accuracy.

estimate in terms of Mean Squared Error (MSE). Table 3.1 compares the effective-
ness of the attack when implemented into PFL-SER and federated learning-SER
systems. The adopted federated learning setting is 𝐾 = 7, 𝐶 = [1, 2, 4], and
𝛿 = 10−5. According to Table 3.1, when the noise scale 𝜎 is equal to 1.0, the
amount of MSE is close together in PFL-SER and federated learning-SER. The
MSE increases significantly with an increase in noise scale 𝜎 and clipping thresh-
old 𝐶, which implies that attack effectiveness is declining, which proves that our
proposed PFL-SER method works as expected. It has been shown that active at-
tacks are more powerful than passive attacks in model inversion attack settings
for reconstructing the private data of specific clients, and the value of MSE for
active attacks is lower than that for passive attacks on the same noise scale.

The PFL-SER method relies on the LDP mechanism to maintain privacy,
while the noise scale has a negative impact on learning performance metrics
such as accuracy. To preserve privacy in PFL-SER systems without sacrificing
accuracy, it may be necessary to consider a trade-off between privacy and accu-
racy. Fig. 3.4 illustrates the trade-off between the noise scale 𝜎 and the accuracy
of PFL-SER. In this setup, 𝐾 = 7, 𝐶 = 1, and 𝛿 = 10−5. When the noise scale
𝜎 is between [3.0 − 5.0], and the accuracy of the PFL-SER is near 62%, there
is a possibility of reaching the trade-off. This noise scale allows the PFL-SER
system to preserve the privacy of the SER application against model inversion

47

3.2. USECASE 1: SPEECH EMOTION RECOGNITION

Figure 3.4: Privacy and accuracy trade-offs using noise scale 𝜎, attack effective-
ness by MSE, and PFL-SER model accuracy.

attacks without compromising its accuracy. In order to preserve privacy against
a passive attack, the noise scale can be near 𝜎 = 3.0, while to preserve privacy
against an active attack, the noise scale can be higher than 𝜎 = 3.0 and lower
than 𝜎 = 5.0 to reach a reasonable approach and trade-offs.

3.2.8 Parameter Randomization on Speech Emotion Recogni-
tion

By applying Parameter Randomization to SER, we can cut down on the
number of training-phase parameter swaps. In federated learning, the number
of clusters might vary from one to as many as the total number of users (full
clustering-each client is a cluster). Figure 3.5 shows that when the number of
clusters is increased, training time decreases. Parameter randomization is in-
triguing since it has no negative effect on the SER federated learning system’s
accuracy. In addition, the server and any possible snoops cannot use the seg-
mented parameter space to undertake reconstruction attacks since clients do not
exchange their whole parameter spaces. Furthermore, As you can see in Figure
3.6 (a) and Figure 3.6 (b), the parameter randomization approach has the same
behavior as the normal SER federated learning system.

48

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

Figure 3.5: Parameter Randomization on SER: Effect of different number of
clusters on the training time of federated learning system.

3.3 Usecase 2: Fatigue Detection

3.3.1 Use-case Explanation

A frequent cause of fatalities on the road is driver fatigue and sleepiness.
Drivers in the transportation and logistics sectors are often required to make
lengthy trips, which contributes to fatigue. This use case and demonstration
seek to address this issue by detecting driver weariness in a distributed way.
Machine Learning-based systems might identify fatigue or sleepiness based
on various information sources such as video/images, physiological or vehicle
data. These solutions may be effective in reality, but they depend largely on
personal data from drivers, which presents the second difficulty, data privacy.
The aim of this use case is to provide a machine learning solution that addresses
both challenges while adhering to current regulations such as the General Data
Protection Regulation (GDPR). For privacy reasons, the suggested solution must
not send user information to a remote server or out of the car where it may be
used by a centralized machine learning system. Models for machine learning

49

3.3. USECASE 2: FATIGUE DETECTION

are trained in a dispersed fashion across several devices. Personal information
about drivers is kept in the vehicle, while only models are uploaded or shared
in the cloud or across devices. The American Automobile Association projects
that in 2021, drowsy driving will account for 9.5% of all incidents. The purpose
of this use case is to test a prototype that might reduce fatigue-related traffic
deaths. This use case’s overarching goal is to find a way to forecast when a
driver needs a break while keeping the driver’s data private. As a result, when
it comes to distributing the training of machine learning models among vehicles
while maintaining individual privacy, the Federated Learning solution is the
clear winner.

3.3.2 Dataset

We have made use of the UTA-RLDD developed by scientists at the University
of Texas in Arlington [55, 56]. It is one of the more complete datasets for fatigue
detection through facial features. The collection comprises of about 30 hours
of RGB video of 60 healthy volunteers and each video is tagged by the subjects
themselves as one of three states: alert, low vigilance and sleepy. The three
states are based on the Karolinska Sleepiness Scale (KSS) [57] which is a scale
from 1 to 10 of drowsiness levels ranging from Extremely Alert to Extremely
Sleepy. There is one video per state and per subject which makes a total of 180
videos, each about 10 minutes long. All participants were instructed to record
three separate videos of themselves sleeping, awake, and awake but drowsy
using a smartphone or camera (of any make or model). The three classes were
explained to the participants as follows:

• Alert (label 0 in UTA-RLDD): the range 1-3 on the KSS. To explain this
state, subjects "were informed that being alert meant they were entirely
conscious so they could easily drive for long time" [56].

• Low Vigilant (label 5 in UTA-RLDD): level 6 or 7 on the KSS. This state
"corresponds to subtle cases when some signals of sleepiness is seen, or
sleepiness is present however no effort to keep alert is required. While
subjects could possibly drive in this state, driving would be discouraged"
[56].

• Drowsy (label 10 in UTA-RLDD): level 8 or 9 on the KSS. This state "means
that the subject needs to actively try to not fall asleep" [56].

50

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

3.3.3 Tools

To simulate a federated learning scenario, we used Pytorch [58] together
using the free and open-source AĲack framework, which can simulate attacks
on a simulated machine learning system in order to ensure the system’s security
and privacy [59]. The system architecture for this use case consists of a server and
18 clients. Communication between the server and clients is facilitated through
a Client interface. The server selects a client to teach and communicates training
instructions to it via the network. When receiving these directives, the client runs
the code included inside one of the Client methods in order to train the neural
network. The real setup for federated learning includes the server defining the
aggregation approach, the total number of epochs, and the number of clients
that take part in the training and assessment process. Instead, while training
and assessing the model, each client uses data from his own environment.

3.3.4 Data pre-processing

We have used a preprocessed version of the dataset [56] constructed by
hackenjoe and available at [60]. In this section we describe in detail these pre-
processing steps. Only a certain number of frames from each video is extracted.
More precisely, 240 frames per video per fatigue condition from 18 individuals
were extracted. For each movie, beginning at the three-minute mark and contin-
uing to the finish, a single frame is taken at a time using the OpenCV package.
So, each person gets access to a dataset that contains 720 total frames: 240 from
the awake condition, 240 from the intermediate state, and 240 from the sleepy
state. Dlib [61] is used to extract 68 facial landmarks from each frame. In this
work, the facial landmarks associated with the eyes and mouth are the most
significant. The following characteristics are employed in the neural network’s
training and assessment:

• EAR (Eye Aspect Ratio): This is a measure of eye proportions, which is
smaller when the eyes are closed than when they are open. The rationale
for including EAR as feature is than drowsiness often induces frequent
blinking and half shut eyes.

• MAR (Mouth Aspect Ratio): The ratio between the height and breadth of
the mouth is a metric that has been used in sleepiness detection systems.
Drowsiness, in theory, may be identified by monitoring for changes in the
MAR over time, since this is how facial expressions like yawning alter
when one is tired.

51

3.3. USECASE 2: FATIGUE DETECTION

• PUC (Pupil Circularity): This metric evaluates how perfectly round one’s
pupils are. The hypothesis was that, like the EAR, drowsiness would lead
to a lessening of the circularity of the pupils.

• MOE (Mouth aspect ratio Over Eye aspect ratio): To calculate MOE, divide
MAR by EAR.

It seems sense to equalize characteristics across subjects given that there may
be persistent variances in the sizes of people’s eyes and mouths, for example. To
this end, we’ve utilised the features from the first three frames of the alert state to
calculate the mean and standard deviation of each feature for each participant,
and then used these values to normalise each feature on an individual basis.
When this is done, the feature set will have eight features: the core features and
their normalized counterparts. At this point the dataset is composed of 12240
training points (240 entries for each of the three states, for each participant). The
data is further split in local datasets, one for each subject.

3.3.5 System model

For the system model, we use a model called Multi-Layer Perceptron (MLP)
classifier, which is implemented using Pytorch.The aggregation method selected
by the servers is the default method, i.e., FedAvg.

In this application, the model architecture has four completely linked layers
(sometimes called dense layers) with respective sizes of 256, 128, 64, and 3.
Apart from the final output layer, which utilizes a sigmoid activation function
to generate a probability distribution across the three classes (alert, drowsy,
and sleeping), all preceding layers use the ReLU activation function. Extracted
features from the mouth area of the face picture serve as input to the model,
while a projected class label serves as the output.

3.3.6 Attack Model

To prove the viability of our approach, we used a model inversion attack
(MIA) as an example of an attack. To violate someone’s privacy, one may use a
model inversion attack, which entails recreating the secret dataset that was used
to train a trained neural network. The attacker makes a prediction for the target
variable by feeding the training model into the MIA model. That is to say, the
MIA can provide a representative and varied sample that adequately charac-
terises each class in the confidential information, providing a clear example of

52

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

an attack on the confidentiality of the characteristics. The MIA can identify the
person even the face of the target person is blurred [37]. We examined the MIA
attack in our fatigue detection settings in the federated learning setup.

3.3.7 Privacy-preserving federated fatigue detection

To incorporate privacy into the federated learning process, we introduce
Gaussian noise to the model updates and apply gradient clipping. This approach
guarantees a certain degree of Differential Privacy, which is determined by the
level of noise added. [46]. In more detail:

• To limit the impact of individual training points in a minibatch on gradient
computations and the resultant updates to model parameters, one must set
a maximum sensitivity for each gradient. For this purpose, it is possible
to clip the gradients at each training point.

• The clipped gradients are sampled and mixed with random Gaussian noise
to provide some degree of differential privacy.

There are three privacy-specific hyperparameters in this setting:

• Norm clipping: each gradient’s highest Euclidean (L2) norm, which is
used to update model parameters. This hyperparameter is used to limit
how sensitive the optimizer is to specific training points.

• Noise multiplier: how much noise is taken as a sample during training
and multiplied by gradients. To be more precise, it is the clipping norm as
a fraction of the standard deviation.

• Micro-batches: each batch of data is split into smaller units called micro-
batches. The default setting is that each micro-batch contains a single
training example. With this, gradients can be clipped per-example instead
of being averaged over the minibatch. In turn, this minimizes utility and
lessens the (negative) impact of clipping on the gradient’s signal. The
size of micro-batches can be increased to contain more than one training
example, which will reduce computational overhead.

Moreover, there is the learning rate parameter, which is already present in
the scenario without differential privacy.

3.3.8 Experimental Setup

This subsection describes the simulated environment in which the proposed
federated learning based fatigue detection system is tested. For the simulation,
we utilised the 12-hour long UTA-RLDD dataset. We design a fully connected

53

3.3. USECASE 2: FATIGUE DETECTION

network for federated learning system in such a way that there will be 18 clients.
The clients in the federated learning setup correspond to the participating sub-
jects in the dataset and the local data on a client are precisely the datapoints
associated with a given subject. This will result in a local datasets of size 720.
The detailed network parameters are given in Table 3.2. The model inversion
attack was carried out using the following settings: lambda = 0.1 and iteration
= 1000. As the gradients of the trained model’s output serve as the input for
the MIA, an attacker who manipulates the input may predict the model’s result.
The final product is a set of samples that can be accurately categorised as the
specified target label.

Table 3.2: Simulation setup parameters

Network architecture Fully connected network
Total no. of datasets 12240

No. of all clients 18
No. of clients for training 14
No. of clients for testing 4

No. of samples for each client 720

3.3.9 Evaluation

Here, we take a look at how well the suggested federated learning model
for fatigue detection can protect users’ privacy. Specifically, the accuracy of the
system is what we use to evaluate its performance in our case. The model’s
accuracy statistic reveals how reliably it makes predictions. With 14 clients
utilized for training and 4 for testing, the total number of samples is 720.

Each federated learning client’s accuracy is calculated after each communi-
cation cycle, and the results are then averaged. Using a batch size of 64 and a
learning rate of 0.0001, the model was trained using 2160 training points. This
federated learning configuration proposes using a global epoch of 100 and a
local epoch of 1.

3.3.10 Results

We used federated learning and the differential privacy method to perform
fatigue detection while still protecting user privacy. When discussing Gaussian
mechanisms and differential privacy, a certain degree of noise is associated

54

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

with a specific value for the privacy parameters (𝜖, 𝛿). The number of epochs,
noise multiplier, batch size, and the number of training data points all affect the
privacy parameter 𝜖. We held the delta constant at 10−6 and manipulated the
standard deviation of the extra noise, 𝜎, between 0.5 and 7.

As was predicted, model performance diminishes as the variance of the noise
injected in the gradient updates increases. If you look at 3.7, you can see how
well the federated learning process for fatigue detection performs under varying
levels of noise (𝜎). Adding too much noise can quickly degrade the average test
accuracy showing the aforementioned trade-off between privacy and accuracy
in the context of differential privacy.

We analyzed how well a federated learning mechanism for fatigue detection
fared under different noise conditions (𝜎). This is seen in Fig. 3.8. This demon-
strates that the level of privacy achieved may be compromised in exchange for
greater levels of accuracy when dealing with varying noise levels.

Equally, we use a graph to illustrate the trade-off between privacy and accu-
racy when varying the noise level, the efficacy of an attack when using the Mean
Square Error (MSE) approach, and the accuracy of a federated learning model
based on fatigue detection. In Fig. 3.9, we can see that the accuracy decreases
as we increase the noise levels (i.e., 𝜎) while the MSE increase as we increase
the noise levels. We use MSE as reconstruction error because it is one of the
popular reconstruction loss function that indicates whether the specific attack
works well or not in the proposed scenario. The best value of 𝑠𝑖𝑔𝑚𝑎 is shown in
Fig. 3.9, where the accuracy and MSE overlap. By extrapolating the result from
Fig. 3.9, we may determine the best value for 𝑠𝑖𝑔𝑚𝑎. With an MSE of 6.85 and
an accuracy of 64%, the sweet spot for 𝑠𝑖𝑔𝑚𝑎 is about 1.

3.3.11 Parameter Randomization on Fatigue Detection

To lessen the burden of exchanging so many parameters during training, we
use Parameter Randomization on the fatigue detection use-case. In federated
learning, the number of clusters might vary from one to as many as the total
number of users (full clustering-each client is a cluster). Figure 3.10 shows
that the training time decreases as the number of clusters rises. Fascinatingly,
randomizing parameters does not reduce the accuracy of the federated learning
system for detecting fatigue, but it does increase the variability across individual
instances. The server and snoopers are also unable to use reconstruction attacks

55

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

on the fragmented parameter space since clients do not communicate their whole
parameter space. Furthermore, As you can see in Figure 3.11 (a) and Figure 3.11
(b), The parameter randomization strategy behaves similarly to a conventional
federated learning system for fatigue detection.

3.4 Usecase 3: Smart Grid System Anomaly Detec-
tion

3.4.1 Use-case Explanation

Many sensors and IoT devices are used by the smart electric grid system
to gather information on the electricity flowing through the grid’s substations.
Traditionally, substations’ energy data would be sent to a cloud or edge device,
where it would undergo analysis and interpretation. There is a risk that this
method might result in serious data abuse, data manipulation, or privacy breach.
In this article, we introduced a methodology for spotting outliers in the indus-
trial data collected by remote terminal units stationed in the smart electric grid’s
substations. The system for spotting outliers relied on LSTM autoencoders, and
it used both Mean Standard Deviation (MSD) and Median Absolute Deviation
(MAD) methods. In order to keep the substations’ data secure, we use a tech-
nique called federated learning (FL). To avoid providing sensitive information to
a central server, FL allows energy providers to jointly train the shared AI model.
Unfortunately, the suggested architecture still has flaws in terms of security and
privacy because of the subpar quality of the localised models that are exchanged.
To ensure that user information remains secure inside our proposed framework,
we have used Paillier-based homomorphic encryption.

3.4.2 Dataset

In this part, we evaluate the effectiveness of the proposed method by applying
it to a synthetic industrial dataset created with a general behavior of an electric
grid node in mind. We filtered the dataset by deleting duplicates to make
sure the information was distributed fairly. Our method involves just training
the model on typical data and then labeling it as anomalous everything that
doesn’t conform to the norm. This contributes to the model’s enhanced ability
to correctly identify and recognize outliers. This allows us to identify previously

56

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

unseen anomalies or threat patterns. As such, it was a labeled dataset. There are
a total of 1378 data points in the simulated scenario. We did this by separating
the data into a "train" set and a "test" set. The majority of the data (1240 samples)
is found in the "train" dataset, whereas just 138 samples appear in the "test"
dataset (or 10% of the total). In addition, during the testing step, we created and
added 100 artificial anomaly samples.

3.4.3 Performance Evaluation Metric

In the proposed ADA-FL framework, for performance evaluation, we use
metrics such as Accuracy, Precision, Recall as well as F1-score that is similar
to other machine learning research. For expressing these metrics, we need to
consider some common parameters such as True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) for the anomaly detection pro-
cess. Based on the above parameters, we present the confusion matrix with four
different combinations of predicted and actual values that is used to determine
the performance of a model. The confusion matrix is given in Table 3.3.

Table 3.3: Confusion Matrix

Predicted Values
normal anomaly

True Values normal TN FP
anomaly FN TP

According to [62], the ROC curve is a visual depiction of the balance between
a machine learning model’s true-positive rate (TPR) and false-positive rate (FPR)
across various thresholds, with TPR on the y-axis and FPR on the x-axis. The
area under the ROC curve (AUC) is a statistical metric used to evaluate the
efficacy of an ML model. It indicates the model’s ability to correctly categorise
observations into positive and negative groups. Improved performance may be
shown in an AUC-ROC that is larger. AUC-ROC is a helpful statistic for assessing
model correctness since it offers a credible visual depiction of the performance of
the proposed model. The AUC is computed as shown in the following equation:

𝐴𝑈𝐶𝑅𝑂𝐶 =
∫ 1

0

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 𝑑

𝐹𝑃
𝑇𝑁 + 𝐹𝑃 (3.1)

57

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

3.4.4 Experimental Setup

Our simulation is executed on a machine that has an Intel Core i7-11800H
processor, an Nvidia GeForce RTX 3050 graphics card with 4 GB GDDR6 of
video memory, and a total of 16.0 GB of RAM. To construct the models compu-
tationally, we use Python 3.8 and Pytorch 1.12.1.
Our method for federated learning includes a global server hosted in the Cloud
and three separate clients. For locally trained models, each client has access to
413 training data samples. During the training phase of the neural network-
based approaches, we use ADAM optimizer with a learning rate of 0.001 to
provide a level playing field. A batch size of 8 is used alongside a local epoch
of 5, and a global epoch of 70. For federated learning, we employ FedAvg as an
aggregate technique. We compare the outcomes of the proposed framework us-
ing two distinct methods of assessment. The MSD technique is the first method
of assessment, while the MAD score is the second. We use homomorphic en-
cryption with 128-bit key and 256-bit key to protect the privacy of the smart grid
system.

Table 3.4: Simulation setup parameters

FL Network 1-Server and 3- clients
Evaluation Approach MAD-score, MSD approach

Model Type LSTM-AutoEncoder
Aggregation Method FedAvg

Loss Function MSE loss
Epochs Local epochs: 5 Global Epochs: 70

For this simulation, we use the aforementioned data collection. Due to the
small size of the dataset, we restrict the number of federated learning clients
to three. During the federated learning process, FL clients utilise their locally-
available dataset to train a centralised global model by exchanging model pa-
rameters with the global server. Each client has a local dataset of the same size
with which to train the model, and the training set is dispersed evenly and at
random among the three clients. We use the whole testing set as a benchmark
against which to evaluate the global model created. In addition, our federated
learning scenario has each client do five local gradient update epochs before
sending the learned model to the cloud server for aggregation. The cloud server
then performs seventy global epochs.

58

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

3.4.5 Privacy-preserving ADA-FL with HE

To protect the privacy of the federated learning system, this section explores
how Homomorphic Encryption may be put into practice. We deployed HE with
a pair of key sizes, 128 bits, and 256 bits. For this, we use Paillier homomor-
phic encryption for additive cases in our simulation that was obtained from
the PHE (Partially Homomorphic Encryption) library in Python. The additive
homomorphic encryption computation is much faster than multiplicative com-
putation, which is suitable for the devices in the Fog layer. Each FL clients
encrypt the data received from the RTUs before sending it to the Cloud to per-
form cipher text calculation. The Cloud computes the additive operation in its
ciphertext without knowing the contents of the data. We discuss the results
obtained from our simulation in anomaly detection based on AE using a feder-
ated learning framework. Simulated results from the proposed framework are
then analyzed using LSTM autoencoder methods to determine its efficacy. The
experimental setup details how we utilize three FL clients and a single server
to test out homomorphic encryption, which we employ to keep the FL clients’
data secure. We mainly used the MSD and MAD-score techniques to evaluate
the performance of our proposed LSTM-AE-based architecture.

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑀𝑆𝐷 = 𝑀𝐸𝐴𝑁(𝑀𝑆𝐸 − 𝐸𝑟𝑟𝑜𝑟𝑠) + (3 ∗ 𝑆𝑇𝐷(𝑀𝑆𝐸 − 𝐸𝑟𝑟𝑜𝑟𝑠)) (3.2)

We show the results of several simulations we ran, both with and without
encryption (using 128-bit and 256-bit homomorphic keys).

3.4.6 Results and discussion

We present the distribution of normal and anomaly test data losses in terms
of MSE loss for MSD approach. Fig. 3.12 shows the test data loss distribution of
normal and anomaly data before implementing the homomorphic encryption
technique. The results show that the reconstruction error or the MSE losses are
exceptionally low. In the figure, the blue line represents the threshold (0.00243)
which is common to both normal and anomaly results. The test data samples
which are greater than the threshold value are detected as an anomaly (i.e., the
right side of the threshold are anomalies).

Fig. 3.13 shows the test data loss distribution of normal and anomaly data
after implementing the homomorphic encryption i.e., HE-128bit key. The MSE

59

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

loss slightly increases for normal and anomaly data due to encryption and
decryption mechanism. Similarly, Fig. 3.14 illustrates loss distribution of normal
and anomaly data while implementing HE-256-bit key with threshold value of
0.01126. It is obvious that the MSE loss increase as compared with HE-128bit
and non-HE mechanism. The performance metrics such as Recall, Precision,
Accuracy, and F1-score also decreases with the implementation of homomorphic
encryption as given in Table 3.5.

Our findings demonstrate that our system performs better without the use
of homomorphic encryption. Reconstruction errors are less and the threshold
value is lower for the HE-128 bit key compared to the HE-256 bit key. Moreover,
the HE-128-bit key has a higher Recall value i.e., 79% whereas the HE-256bit key
has a lower recall value of only 70% as can be seen in Table IV. As Recall is one of
the important metrics, this shows that the HE-128-bit key provides better perfor-
mance than the HE-256-bit key. If we compare the HE scenario with the non-HE
scenario, it is obvious that the HE scenario has an overall worse performance.
This is because of extra computation overhead operations on the encrypted data.
This additional overhead leads to increased computation time resulting in de-
creased performance metrics. In addition, homomorphic encryption can also
introduce errors or noise into the data, which can further degrade the perfor-
mance of anomaly detection algorithms. This is because the algorithms rely on
accurate and precise data to identify anomalies, and any errors or noise in the
data can lead to false positives or false negatives. So, if we implement homo-
morphic encryption in the suggested framework, there is a trade-off between the
performance and privacy of the system. Fig. 3.15 shows the model performance
using a confusion matrix. The confusion matrix indicates that there are 138
normal test data samples, which is 10% of the training dataset. And in addition
to them 100 data samples are abnormal samples. The proposed model was able
to correctly identify a total of 91 data samples as anomalies among 100 abnormal
data samples i.e., it can correctly identify 91% of anomalies. The model correctly
identified 125 data samples out of 138 total normal test data samples, i.e., it
can correctly identify 90.58% of normal data. However, the proposed model
incorrectly identified 13 data samples as anomaly i.e., FP while it incorrectly
identified 9 anomalous samples as normal i.e., FN.
We showed the performance of the proposed model by using AUC-ROC curve
in Fig. 3.16 This curve displays the trade-off between the TPR and FPR of the
proposed model. The figure displays the ROC curves for the LSTM-AE model

60

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

implementing non-HE, 128-bit HE, and 256-bit HE. The LSTM-AE model with
different homomorphic encryption strategies is represented by respective colors,
where the anomalies are detected based on the test datasets. The results show
that model with non-HE performs better with a high value of TPR and a low
value of FPR and on the flipside, the model implementing HE-256-bit key has
degraded performance. The ROC curve shows that the model performance im-
plementing HE-128bit lies in between non-HE and HE-256. Fig. 3.17 evaluates
the training loss performance on the server side. The server training loss takes
some iteration to converge the loss. Similarly, Fig. 3.18 shows the training loss
performance on the clients’ side. The training loss performance on the client
side converges significantly as compared to the server. The training loss of each
of the three clients converges at around 2 to 3 epochs with a learning rate of
0.001 showing better performance of the proposed framework.

Table 3.5: Comparison of the proposed framework based on MSD Approach
with threshold value

Model HE Recall Precision Accuracy F1-Score Threshold

LSTM-AE
Non-HE 93% 94% 93% 93% 0.00243
HE-128 79% 86% 82% 80% 0.00693
HE-256 70% 80% 74% 70% 0.01126

The detailed comparison of LSTM-AE based on various performance metrics
with MSD evaluation approach is given in the table below. Table 3.5 compares
the proposed framework for the MSD approach with HE using various encryp-
tion keys as a privacy-preserving technique. The standard measurements for
measuring performance, such as the threshold values, are used to make the
comparison. While assessing the efficacy of the suggested ADA-FL framework’s
AE model, the Recall performance parameter is crucial. The Recall metric min-
imizes the number of false negative predictions, in other words, we want to
make sure that all the data samples that are anomalous (TP) are correctly de-
tected because missing an anomaly (FN) can have a significant consequence for
the proposed system. From the table, it is obvious that the LSTM-AE models
perform better without the HE strategy. Even if we select the HE-128 bit key for
preserving the privacy of the system, LSTM-AE has a higher Recall percentage
of 79% as well as less reconstruction error threshold than HE-256 bit. F1-score is
one of the most commonly used metrics for evaluating the model. The F1-score
balances precision and recall, offering a single value that shows the model’s

61

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

overall performance. The HE-128 bit has F1-score of 80% while HE-256bit has
70% as can be seen in Table 3.5. Similarly, Table 3.6 compares the proposed

Table 3.6: Comparison of the proposed framework based on the MAD-Score
Approach

Model HE Recall Precision Accuracy F1-Score

LSTM-AE
Non-HE 81% 89% 84% 83%
HE-128 71% 85% 76% 72%
HE-256 68% 82% 73% 67%

framework based on the MAD-score approach with the LSTM-AE model. The
comparison is based on standard performance evaluation metrics considering
different homomorphic encryption strategies. From the table, it can be seen
that LSTM-AE performs better without homomorphic encryption. However,
the performance of LSTM-AE slightly degrades when the HE-128-bit key and
HE-256-bit key are implemented in the proposed framework. The HE-128bit key
has a recall value of 71% and an F1-score of 72% which is slightly higher than
that of the HE-256bit, which has a Recall value of 68% and an F1-score of 67%.
Similarly, the HE-128 bit performs better than HE-256bit in terms of Precision
and Accuracy with values 85% and 76% respectively. This is due to the fact that
LSTM-AE consists of a higher number of parameters space and these parameters
can change a bit during the encryption and decryption process.
Moreover, from Table 3.5 and Table 3.6, we can see that the MSD approach
can detect anomalies effectively by considering Recall, Precision, Accuracy, and
F1-score compared to the MAD score approach. Even while implementing the
homomorphic encryption, the anomaly detection performance of MSD is better
than that of the MAD score approach.
We analyzed the computation cost of implementing HE in the proposed frame-

work using LSTM-AE. We compare the results by using 128-bit key, 256-bit keys,
and without homomorphic encryption in the proposed framework. The result of
computation time taken by the LSTM-AE methods with varying HE encryption
keys is given in Fig. 3.19 The execution time taken to perform LSTM-AE without
implementing HE is 29.61s. The execution time taken to perform LSTM-AE with
implementing HE-128bit is 1387s and HE-256bit is 4662s. In practice, there is a
trade-off between performance and computation time. A higher key length pro-
vides a superior level of protection against various attacks. On the other hand,
using a higher key length incurs a computational overhead, causing slower en-

62

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

cryption and decryption times, as well as higher memory requirements. In
general, key length should be chosen depending on a trade-off between security
and performance needs. A higher key length, such as 256 bits, may be more
appropriate if a high degree of privacy and security is desired. If performance
is required, a shorter key length, such as 128 bits, may suffice.

63

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

(a)

(b)

Figure 3.6: Performance evaluation on the convergence of parameter random-
ization method comparing to the normal SER federated learning system, (a)
Accuracy, (b) Loss.

64

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

0 20 40 60 80
Epochs

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra
cy

Accuracy

Non-DP
DP - = 0.5
DP - = 1.0
DP - = 3.0
DP - = 5.0
DP - = 7.0

Figure 3.7: Performance evaluation on the Accuracy of Fatigue Detection-
Federated Learning mechanism with different noise scales (𝜎)

0 20 40 60 80
Epochs

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Lo
ss

Loss
Non-DP
DP - = 0.5
DP - = 1.0
DP - = 3.0
DP - = 5.0
DP - = 7.0

Figure 3.8: Performance evaluation on the Loss of Fatigue Detection-Federated
Learning mechanism with different noise scales (𝜎)

65

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

0 1 2 3 4 5 6 7
Sigma

35

40

45

50

55

60

65

70

75

Ac
cu
ra
cy

Accuracy
MSE

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

M
SE

Figure 3.9: Privacy and accuracy trade-offs using noise scale 𝜎, attack effective-
ness by MSE, and Fatigue Detection-Federated Learning model accuracy.

66

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

Figure 3.10: Parameter Randomization on fatigue Detection: Effect of different
number of clusters on the training time of federated learning system.

67

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

(a)

(b)

Figure 3.11: Performance evaluation on the convergence of parameter random-
ization method comparing to the normal fatigue detection federated learning
system, (a) Accuracy, (b) Loss.

68

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

(a)

(b)

Figure 3.12: Test data loss distribution for normal and anomaly data without
HE and threshold of 0.00243 .

69

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

(a)

(b)

Figure 3.13: Test data loss distribution for normal and anomaly data HE-128bit
and threshold of 0.0069 .

70

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

(a)

(b)

Figure 3.14: Test data loss distribution for normal and anomaly data HE-256 bit
and threshold of 0.01126 .

71

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

Figure 3.15: Confusion matrix showing model performance.

Figure 3.16: AUC-ROC of the model

72

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

Figure 3.17: Traning loss performance at server side Fig.11 Training loss at client
side

73

3.4. USECASE 3: SMART GRID SYSTEM ANOMALY DETECTION

Figure 3.18: Training loss at client side

74

CHAPTER 3. ANALYSIS OF INDUSTRIAL USE-CASES

Figure 3.19: Execution time taken by LSTM-AE with varying HE encryption
keys in the proposed framework.

75

4
Conclusions and Future Works

There is a lot of room for growth in the study of federated learning, which is
still a relatively new academic discipline. Federated learning has been dissected
in this thesis, from its structure to its pros and cons. Some future lines of inquiry
that might build upon the findings in this thesis are discussed below.

Explore the effects of various communication protocols on federated learning
as a potential field for future study. For the time being, most federated learning
approaches depend on master servers to coordinate the learning. Recent studies,
nevertheless, have looked at decentralized methods that can make federated
learning more scalable and reliable. Consequently, in the future, we may look at
other communication protocols for federated learning, such as blockchain-based
methods.

Improving the efficiency and effectiveness of federated learning algorithms
is another crucial area for future study. Given the dispersion and variety of data
sources, federated learning may be more difficult than conventional machine
learning. Consequently, it is crucial for the success of federated learning to build
more robust and adaptable algorithms that can manage these issues. Creating
novel methods for model compression, regularisation, and transfer learning are
all possible outcomes.

The legal and ethical ramifications of federated learning might be investi-
gated in further studies. Data privacy and security can be improved by federated
learning since it allows for cooperation between numerous parties without the
need to share data. On the other hand, it prompts concerns about data privacy,
security, and responsibility. Consequently, in the future, researchers may look

77

at the moral and legal consequences of federated learning and provide solutions
to these problems.

The term "adversarial attacks" is used to describe an adversary’s deliberate
attempt to undermine a federated learning system’s reliability by tampering
with its data or model parameters. Federated learning is a distributed learning
system in which several clients or devices work together to train a single shared
model without transmitting or storing any underlying raw data. An attacker
in such a setup has the option of either attacking the clients or the server. It
is possible to use the defense ideas to prevent adversarial attacks and attack’s
transferability from [63], [64] and [65]. These ideas has satisfactory results on
decentralized deep learning and there is a possibility to have also good results in
federated learning learning to build secure models against adversarial attacks.

Lastly, federated learning has numerous possible uses in many different in-
dustries, including medicine, finance, and the Internet of Things. Hence, further
study might examine the unique needs and difficulties of adopting federated
learning in these areas, and then design and execute appropriate responses.

To sum up, federated learning is a fascinating and fruitful area with several
open research questions. There are several potentials for future studies to expand
and improve the methodologies given in this thesis, and the research presented
here provides the groundwork for further exploration of the problems and
opportunities of federated learning.

Because of its promise to provide privacy-preserving and decentralized train-
ing of models, federated learning, a novel and promising method of machine
learning, has gained favor in recent years. The scope, structure, benefits, and
drawbacks of federated learning have all been examined throughout this thesis.

Findings from this thesis’s study point to the promise of federated learn-
ing as a solution to some of the most pressing issues plaguing conventional
machine learning today, including data privacy, data dissemination, and data
heterogeneity. Using federated learning, many parties may work together on
training models without compromising their privacy or security. This allows
them to pool their expertise while still protecting their personal information.

The communication overhead and the requirement for strong communica-
tion protocols are two of the key obstacles of federated learning. Furthermore,
the quality of the model may be compromised by the participants’ varying
degrees of access to resources.

In spite of these obstacles, this thesis shows that federated learning may be as

78

CHAPTER 4. CONCLUSIONS AND FUTURE WORKS

effective as, and even more so than, centralized methods. In addition, federated
learning may pave the way for previously unimaginable uses, such as in tailored
medicine and at the network’s periphery with edge computing.

Finally, the thesis demonstrated that federated learning is a viable alterna-
tive to standard machine learning that may address some of the most pressing
problems with the latter. Notwithstanding the need for greater study to over-
come the existing obstacles, federated learning has the potential to offer a more
decentralised and privacy-preserving approach to data analysis, which might
significantly impact the way machine learning models are trained.

79

References

[1] Chen Zhang et al. “A survey on federated learning”. In: Knowledge-Based
Systems 216 (2021), p. 106775. issn: 0950-7051. doi: https://doi.org/10.
1016/j.knosys.2021.106775. url: https://www.sciencedirect.com/
science/article/pii/S0950705121000381.

[2] Jan Philipp Albrecht. “How the GDPR Will Change the World”. In: Euro-
pean Data Protection Law Review 2 (2016), pp. 287–289.

[3] Viraaji Mothukuri et al. “A survey on security and privacy of federated
learning”. In: Future Generation Computer Systems 115 (2021), pp. 619–640.
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2020.10.
007. url: https://www.sciencedirect.com/science/article/pii/
S0167739X20329848.

[4] Dinh C. Nguyen et al. “Federated Learning for Internet of Things: A
Comprehensive Survey”. In: IEEE Communications Surveys Tutorials 23.3
(2021), pp. 1622–1658. doi: 10.1109/COMST.2021.3075439.

[5] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative
Machine Learning without Centralized Training Data.https://ai.googleblog.
com/2017/04/federated-learning-collaborative.html.

[6] Priyanka Mary Mammen. Federated Learning: Opportunities and Challenges.
2021. doi: 10.48550/ARXIV.2101.05428. url: https://arxiv.org/abs/
2101.05428.

[7] Mingzhe Chen et al. “Communication-efficient federated learning”. In:
Proceedings of the National Academy of Sciences 118.17 (2021), e2024789118.
doi: 10.1073/pnas.2024789118. eprint: https://www.pnas.org/doi/
pdf/10.1073/pnas.2024789118. url: https://www.pnas.org/doi/abs/
10.1073/pnas.2024789118.

81

https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://doi.org/10.1109/COMST.2021.3075439
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.48550/ARXIV.2101.05428
https://arxiv.org/abs/2101.05428
https://arxiv.org/abs/2101.05428
https://doi.org/10.1073/pnas.2024789118
https://www.pnas.org/doi/pdf/10.1073/pnas.2024789118
https://www.pnas.org/doi/pdf/10.1073/pnas.2024789118
https://www.pnas.org/doi/abs/10.1073/pnas.2024789118
https://www.pnas.org/doi/abs/10.1073/pnas.2024789118

REFERENCES

[8] DAIS (Distributed Artificial Intelligent System). https://dais-project.
eu/.

[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion
Attacks That Exploit Confidence Information and Basic Countermea-
sures”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. CCS ’15. Denver, Colorado, USA: Associa-
tion for Computing Machinery, 2015, pp. 1322–1333. isbn: 9781450338325.
doi: 10.1145/2810103.2813677. url: https://doi.org/10.1145/
2810103.2813677.

[10] Jakub Konený et al. Federated Learning: Strategies for Improving Communi-
cation Efficiency. 2016. doi: 10.48550/ARXIV.1610.05492. url: https:
//arxiv.org/abs/1610.05492.

[11] Joost Verbraeken et al. “A Survey on Distributed Machine Learning”.
In: ACM Comput. Surv. 53.2 (Mar. 2020). issn: 0360-0300. doi: 10.1145/
3377454. url: https://doi.org/10.1145/3377454.

[12] Ron Bekkerman, Mikhail Bilenko, and John Langford. “Scaling up Ma-
chine Learning: Parallel and Distributed Approaches”. In: Proceedings of
the 17th ACM SIGKDD International Conference Tutorials. KDD ’11 Tutorials.
San Diego, California: Association for Computing Machinery, 2011. isbn:
9781450312011. doi: 10.1145/2107736.2107740. url: https://doi.org/
10.1145/2107736.2107740.

[13] Distributed Machine Learning Part 2 Architecture.https://www.studytrails.
com/2021/02/10/distributed-machine-learning-2-architecture/.
Accessed: 2023-01-24.

[14] Michael Ferdman et al. “Clearing the Clouds: A Study of Emerging Scale-
out Workloads on Modern Hardware”. In: SIGPLAN Not. 47.4 (Mar. 2012),
pp. 37–48. issn: 0362-1340. doi: 10.1145/2248487.2150982. url: https:
//doi.org/10.1145/2248487.2150982.

[15] Felix Sattler et al. “Robust and Communication-Efficient Federated Learn-
ing From Non-i.i.d. Data”. In: IEEE Transactions on Neural Networks and
Learning Systems 31.9 (2020), pp. 3400–3413. doi: 10.1109/TNNLS.2019.
2944481.

[16] Federated learning. https : / / en . wikipedia . org / wiki / Federated _
learning. Accessed: 2023-01-25.

82

https://dais-project.eu/
https://dais-project.eu/
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.48550/ARXIV.1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454
https://doi.org/10.1145/2107736.2107740
https://doi.org/10.1145/2107736.2107740
https://doi.org/10.1145/2107736.2107740
https://www.studytrails.com/2021/02/10/distributed-machine-learning-2-architecture/
https://www.studytrails.com/2021/02/10/distributed-machine-learning-2-architecture/
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://en.wikipedia.org/wiki/Federated_learning
https://en.wikipedia.org/wiki/Federated_learning

REFERENCES

[17] Shuyue Wei et al. “Efficient and Fair Data Valuation for Horizontal Feder-
ated Learning”. In: Federated Learning: Privacy and Incentive. Ed. by Qiang
Yang, Lixin Fan, and Han Yu. Cham: Springer International Publishing,
2020, pp. 139–152. isbn: 978-3-030-63076-8. doi: 10.1007/978- 3- 030-
63076-8_10. url: https://doi.org/10.1007/978-3-030-63076-8_10.

[18] Qiang Yang et al. “Federated Machine Learning: Concept and Applica-
tions”. In: ACM Trans. Intell. Syst. Technol. 10.2 (Jan. 2019). issn: 2157-6904.
doi: 10.1145/3298981. url: https://doi.org/10.1145/3298981.

[19] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. “Deep Mod-
els Under the GAN: Information Leakage from Collaborative Deep Learn-
ing”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. Dallas, Texas, USA: Association
for Computing Machinery, 2017, pp. 603–618. isbn: 9781450349468. doi:
10.1145/3133956.3134012. url: https://doi.org/10.1145/3133956.
3134012.

[20] Le Trieu Phong et al. “Privacy-Preserving Deep Learning via Additively
Homomorphic Encryption”. In: IEEE Transactions on Information Forensics
and Security 13.5 (2018), pp. 1333–1345. doi: 10.1109/TIFS.2017.2787987.

[21] Yong Cheng et al. “Federated Learning for Privacy-Preserving AI”. In:
Commun. ACM 63.12 (Nov. 2020), pp. 33–36. issn: 0001-0782. doi: 10.1145/
3387107. url: https://doi.org/10.1145/3387107.

[22] Li Wan et al. “Privacy-Preservation for Gradient Descent Methods”. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’07. San Jose, California, USA: Association
for Computing Machinery, 2007, pp. 775–783. isbn: 9781595936097. doi:
10.1145/1281192.1281275. url: https://doi.org/10.1145/1281192.
1281275.

[23] Yang Liu et al. Vertical Federated Learning. 2022. doi: 10.48550/ARXIV.
2211.12814. url: https://arxiv.org/abs/2211.12814.

[24] Sudipan Saha and Tahir Ahmad. Federated Transfer Learning: concept and
applications. 2020. doi: 10.48550/ARXIV.2010.15561. url: https://
arxiv.org/abs/2010.15561.

83

https://doi.org/10.1007/978-3-030-63076-8_10
https://doi.org/10.1007/978-3-030-63076-8_10
https://doi.org/10.1007/978-3-030-63076-8_10
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1145/3387107
https://doi.org/10.1145/3387107
https://doi.org/10.1145/3387107
https://doi.org/10.1145/1281192.1281275
https://doi.org/10.1145/1281192.1281275
https://doi.org/10.1145/1281192.1281275
https://doi.org/10.48550/ARXIV.2211.12814
https://doi.org/10.48550/ARXIV.2211.12814
https://arxiv.org/abs/2211.12814
https://doi.org/10.48550/ARXIV.2010.15561
https://arxiv.org/abs/2010.15561
https://arxiv.org/abs/2010.15561

REFERENCES

[25] Yang Liu et al. “A Secure Federated Transfer Learning Framework”. In:
IEEE Intelligent Systems 35.4 (2020), pp. 70–82. doi: 10.1109/MIS.2020.
2988525.

[26] Fuzhen Zhuang et al. “A Comprehensive Survey on Transfer Learning”.
In: Proceedings of the IEEE 109.1 (2021), pp. 43–76. doi: 10.1109/JPROC.
2020.3004555.

[27] Brendan McMahan et al. “Communication-Efficient Learning of Deep Net-
works from Decentralized Data”. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by Aarti Singh and
Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR,
20–22 Apr 2017, pp. 1273–1282. url: https://proceedings.mlr.press/
v54/mcmahan17a.html.

[28] Tian Li et al. Federated Optimization in Heterogeneous Networks. 2018. doi:
10.48550/ARXIV.1812.06127. url: https://arxiv.org/abs/1812.
06127.

[29] Chuhan Wu et al. “Communication-efficient federated learning via knowl-
edge distillation”. In: Nature Communications 13.1 (Apr. 2022). doi: 10.
1038/s41467-022-29763-x. url: https://doi.org/10.1038%2Fs41467-
022-29763-x.

[30] Sĳie Cheng et al. FedGEMS: Federated Learning of Larger Server Models via
Selective Knowledge Fusion. 2021. doi: 10.48550/ARXIV.2110.11027. url:
https://arxiv.org/abs/2110.11027.

[31] Daliang Li and Junpu Wang. FedMD: Heterogenous Federated Learning via
Model Distillation. 2019. doi: 10.48550/ARXIV.1910.03581. url: https:
//arxiv.org/abs/1910.03581.

[32] Viraaji Mothukuri et al. “A survey on security and privacy of federated
learning”. In: Future Generation Computer Systems 115 (2021), pp. 619–640.
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2020.10.
007. url: https://www.sciencedirect.com/science/article/pii/
S0167739X20329848.

[33] Adrian Nilsson et al. “A Performance Evaluation of Federated Learning
Algorithms”. In: Proceedings of the Second Workshop on Distributed Infrastruc-
tures for Deep Learning. DIDL ’18. Rennes, France: Association for Comput-

84

https://doi.org/10.1109/MIS.2020.2988525
https://doi.org/10.1109/MIS.2020.2988525
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.48550/ARXIV.1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://doi.org/10.1038/s41467-022-29763-x
https://doi.org/10.1038/s41467-022-29763-x
https://doi.org/10.1038%2Fs41467-022-29763-x
https://doi.org/10.1038%2Fs41467-022-29763-x
https://doi.org/10.48550/ARXIV.2110.11027
https://arxiv.org/abs/2110.11027
https://doi.org/10.48550/ARXIV.1910.03581
https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1910.03581
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848

REFERENCES

ing Machinery, 2018, pp. 1–8. isbn: 9781450361194. doi: 10.1145/3286490.
3286559. url: https://doi.org/10.1145/3286490.3286559.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in
a Neural Network. 2015. doi: 10.48550/ARXIV.1503.02531. url: https:
//arxiv.org/abs/1503.02531.

[35] Malhar S. Jere, Tyler Farnan, and Farinaz Koushanfar. “A Taxonomy of
Attacks on Federated Learning”. In: IEEE Security Privacy 19.2 (2021),
pp. 20–28. doi: 10.1109/MSEC.2020.3039941.

[36] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. “Deep Mod-
els Under the GAN: Information Leakage from Collaborative Deep Learn-
ing”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. Dallas, Texas, USA: Association
for Computing Machinery, 2017, pp. 603–618. isbn: 9781450349468. doi:
10.1145/3133956.3134012. url: https://doi.org/10.1145/3133956.
3134012.

[37] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion
Attacks That Exploit Confidence Information and Basic Countermea-
sures”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. CCS ’15. Denver, Colorado, USA: Associa-
tion for Computing Machinery, 2015, pp. 1322–1333. isbn: 9781450338325.
doi: 10.1145/2810103.2813677. url: https://doi.org/10.1145/
2810103.2813677.

[38] Reza Shokri et al. Membership Inference Attacks against Machine Learning
Models. 2016. doi: 10.48550/ARXIV.1610.05820. url: https://arxiv.
org/abs/1610.05820.

[39] Lingjuan Lyu et al. “Privacy and Robustness in Federated Learning: At-
tacks and Defenses”. In: IEEE Transactions on Neural Networks and Learning
Systems (2022), pp. 1–21. doi: 10.1109/TNNLS.2022.3216981.

[40] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to Federated Learning: A
Survey. 2020. doi: 10.48550/ARXIV.2003.02133. url: https://arxiv.
org/abs/2003.02133.

85

https://doi.org/10.1145/3286490.3286559
https://doi.org/10.1145/3286490.3286559
https://doi.org/10.1145/3286490.3286559
https://doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/MSEC.2020.3039941
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.48550/ARXIV.1610.05820
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820
https://doi.org/10.1109/TNNLS.2022.3216981
https://doi.org/10.48550/ARXIV.2003.02133
https://arxiv.org/abs/2003.02133
https://arxiv.org/abs/2003.02133

REFERENCES

[41] Ligeng Zhu, Zhĳian Liu, and Song Han. “Deep Leakage from Gradients”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach
et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.
neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-

Paper.pdf.

[42] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved Deep
Leakage from Gradients. 2020. doi: 10.48550/ARXIV.2001.02610. url:
https://arxiv.org/abs/2001.02610.

[43] Stacey Truex et al. “LDP-Fed: Federated Learning with Local Differential
Privacy”. In: Proceedings of the Third ACM International Workshop on Edge
Systems, Analytics and Networking. EdgeSys ’20. Heraklion, Greece: Associ-
ation for Computing Machinery, 2020, pp. 61–66. isbn: 9781450371322. doi:
10.1145/3378679.3394533. url: https://doi.org/10.1145/3378679.
3394533.

[44] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Proceedings of the Third Conference on Theory of Cryptogra-
phy. TCC’06. New York, NY: Springer-Verlag, 2006, pp. 265–284. isbn:
3540327312. doi: 10.1007/11681878_14. url: https://doi.org/10.
1007/11681878_14.

[45] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: Theory
and Applications of Models of ComputationTAMC. Vol. 4978. Lecture Notes
in Computer Science. Springer Verlag, Apr. 2008, pp. 1–19. url: https:
//www.microsoft.com/en-us/research/publication/differential-

privacy-a-survey-of-results/.

[46] Martin Abadi et al. “Deep Learning with Differential Privacy”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, Oct. 2016. doi: 10.1145/2976749.2978318. url: https:
//doi.org/10.1145%2F2976749.2978318.

[47] Ahmed El Ouadrhiri and Ahmed Abdelhadi. “Differential Privacy for
Deep and Federated Learning: A Survey”. In: IEEE Access 10 (2022),
pp. 22359–22380. doi: 10.1109/ACCESS.2022.3151670.

[48] Raef Bassily et al. “Practical Locally Private Heavy Hitters”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran

86

https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://doi.org/10.48550/ARXIV.2001.02610
https://arxiv.org/abs/2001.02610
https://doi.org/10.1145/3378679.3394533
https://doi.org/10.1145/3378679.3394533
https://doi.org/10.1145/3378679.3394533
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145%2F2976749.2978318
https://doi.org/10.1145%2F2976749.2978318
https://doi.org/10.1109/ACCESS.2022.3151670

REFERENCES

Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper/
2017/file/3d779cae2d46cf6a8a99a35ba4167977-Paper.pdf.

[49] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differ-
ential privacy”. In: Foundations and Trendső in Theoretical Computer Science
9.3–4 (2014), pp. 211–407.

[50] Fattaneh Bayatbabolghani and Marina Blanton. “Secure Multi-Party Com-
putation”. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’18. Toronto, Canada: Association
for Computing Machinery, 2018, pp. 2157–2159. isbn: 9781450356930. doi:
10.1145/3243734.3264419. url: https://doi.org/10.1145/3243734.
3264419.

[51] Keith Bonawitz et al. Practical Secure Aggregation for Federated Learning on
User-Held Data. 2016. doi: 10.48550/ARXIV.1611.04482. url: https:
//arxiv.org/abs/1611.04482.

[52] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. “FedBoost:
A Communication-Efficient Algorithm for Federated Learning”. In: Pro-
ceedings of the 37th International Conference on Machine Learning. Ed. by Hal
Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Re-
search. PMLR, 13–18 Jul 2020, pp. 3973–3983. url: https://proceedings.
mlr.press/v119/hamer20a.html.

[53] Pengchao Han, Shiqiang Wang, and Kin K. Leung. “Adaptive Gradient
Sparsification for Efficient Federated Learning: An Online Learning Ap-
proach”. In: 2020 IEEE 40th International Conference on Distributed Comput-
ing Systems (ICDCS). 2020, pp. 300–310. doi: 10.1109/ICDCS47774.2020.
00026.

[54] Mohammad Mohammadi Amiri et al. Federated Learning With Quantized
Global Model Updates. 2020. doi: 10.48550/ARXIV.2006.10672. url: https:
//arxiv.org/abs/2006.10672.

[55] Reza Ghoddoosian, Marnim Galib, and Vassilis Athitsos. “A Realistic
Dataset and Baseline Temporal Model for Early Drowsiness Detection”.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (2019), pp. 178–187.

[56] UTA-RLDD. https://sites.google.com/view/utarldd/home. Real Life
Drowsines Dataset, accessed: 2022-10-20.

87

https://proceedings.neurips.cc/paper/2017/file/3d779cae2d46cf6a8a99a35ba4167977-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3d779cae2d46cf6a8a99a35ba4167977-Paper.pdf
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.48550/ARXIV.1611.04482
https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482
https://proceedings.mlr.press/v119/hamer20a.html
https://proceedings.mlr.press/v119/hamer20a.html
https://doi.org/10.1109/ICDCS47774.2020.00026
https://doi.org/10.1109/ICDCS47774.2020.00026
https://doi.org/10.48550/ARXIV.2006.10672
https://arxiv.org/abs/2006.10672
https://arxiv.org/abs/2006.10672
https://sites.google.com/view/utarldd/home

REFERENCES

[57] Torbjörn Åkerstedt and Mats Gillberg. “Subjective and Objective Sleepi-
ness in the Active Individual”. In: International Journal of Neuroscience 52.1-
2 (1990). PMID: 2265922, pp. 29–37. doi: 10.3109/00207459008994241.
eprint: https://doi.org/10.3109/00207459008994241. url: https:
//doi.org/10.3109/00207459008994241.

[58] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W.
2017.

[59] Koukyosyumei. AĲack: Security and Privacy Risk Simulator for Machine
Learning. 2022. url: https://github.com/Koukyosyumei/AIJack.

[60] hackenjoe. Advanced Drowsiness Detection. Last commit October 19 2021.
2021. url: https://github.com/hackenjoe/Advanced_Drowsiness_
Detection.

[61] Davis E. King. “Dlib-ml: A Machine Learning Toolkit”. In: Journal of Ma-
chine Learning Research 10 (2009), pp. 1755–1758.

[62] Rakesh Shrestha et al. “Machine-Learning-Enabled Intrusion Detection
System for Cellular Connected UAV Networks”. In: Electronics 10.13 (2021).
issn: 2079-9292. doi: 10.3390/electronics10131549. url: https://www.
mdpi.com/2079-9292/10/13/1549.

[63] Mauro Barni et al. On the Transferability of Adversarial Examples Against
CNN-Based Image Forensics. 2018. arXiv: 1811.01629 [cs.CR].

[64] Ehsan Nowroozi et al. Demystifying the Transferability of Adversarial Attacks
in Computer Networks. 2022. arXiv: 2110.04488 [cs.CR].

[65] Ehsan Nowroozi et al. SPRITZ-1.5C: Employing Deep Ensemble Learning for
Improving the Security of Computer Networks against Adversarial Attacks. 2022.
arXiv: 2209.12195 [cs.CR].

88

https://doi.org/10.3109/00207459008994241
https://doi.org/10.3109/00207459008994241
https://doi.org/10.3109/00207459008994241
https://doi.org/10.3109/00207459008994241
https://github.com/Koukyosyumei/AIJack
https://github.com/hackenjoe/Advanced_Drowsiness_Detection
https://github.com/hackenjoe/Advanced_Drowsiness_Detection
https://doi.org/10.3390/electronics10131549
https://www.mdpi.com/2079-9292/10/13/1549
https://www.mdpi.com/2079-9292/10/13/1549
https://arxiv.org/abs/1811.01629
https://arxiv.org/abs/2110.04488
https://arxiv.org/abs/2209.12195

Acknowledgments

At this time, I’d want to thank everyone who has helped me out with this
study.

Before anything else, I want to express my gratitude to my wife and my family
for their unending love and encouragement while I pursued my academic goals.
The presence of my family and friends has been the driving force behind my
accomplishments, and I will be eternally thankful to them.

My supervisors, Dr. Sima Sinaei, Dr. Ehsan Nowroozi, and notably Profes-
sor Mauro Conti, deserve my sincere gratitude for their excellent advice, assis-
tance, and knowledge. Their guidance has been crucial to my development as
a researcher and scholar. Their understanding, encouragement, and insightful
criticism have been invaluable to me as I’ve worked to hone my craft.

Furthermore, I am grateful to the University of Padua and the SPRITZ Security
and Privacy Research Group for allowing me to pursue my academic interests.
The academic environment, with its resources and facilities, has been essential
to my success.

To the RISE Research Institute of Sweden AB, I am thankful for the chance
to contribute to the DAIS project. Having worked with the firm and the great
people, I have obtained great experience and insight into research.

Lastly, I’d want to express my gratitude to everyone who helped with this
study effort. Without their help, this study would not have been feasible. Their
involvement and input were crucial.

89

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Challenges
	Problem Definition
	Contributions
	Thesis Organization

	Background
	Chapter Overview
	Distributed Machine Learning (DML)
	Vertical Scaling
	Horizontal Scaling

	Federated Learning
	Horizontal Federated Learning
	Vertical Federated Learning
	Federated Transfer Learning

	Federated Learning aggregation methods
	FedAvg
	FedProx
	FedKD (Federated Knowledge Distillation)

	Privacy Attacks on Federated Learning
	Threat Model
	Attacks Classification

	Defenses Strategies against Privacy Attacks
	Differential Privacy
	Homomorphic Encryption
	Secure Multiparty Computation (SMC)

	Communication Efficient Federated Learning

	Analysis of Industrial Use-cases
	Methodologies
	Client Selection Strategy
	Parameter Randomization

	Usecase 1: Speech Emotion Recognition
	Use-case Explanation
	System Description
	System Design
	Threat Model
	Proposed Method: PFL-SER
	Experimental Results
	Evaluation Results
	Parameter Randomization on Speech Emotion Recognition

	Usecase 2: Fatigue Detection
	Use-case Explanation
	Dataset
	Tools
	Data pre-processing
	System model
	Attack Model
	Privacy-preserving federated fatigue detection
	Experimental Setup
	Evaluation
	Results
	Parameter Randomization on Fatigue Detection

	Usecase 3: Smart Grid System Anomaly Detection
	Use-case Explanation
	Dataset
	Performance Evaluation Metric
	Experimental Setup
	Privacy-preserving ADA-FL with HE
	Results and discussion

	Conclusions and Future Works
	References
	Acknowledgments

