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1

Introduction

The aim of this thesis is to give an insight on the motivations as well as the applications

of the maximum entropy methods in Information Theory. Such techniques, altought

assuming different aspects, all apply the dogmatic principle of maximum entropy intro-

duced by the physicist Edwin Thompson Jaynes in 1957. After a brief recall of some

mathematical tools in chapter 2, we’ll introduce first heuristically, and then formally,

the motivation of the entropic approach, also showing with a famous example that such

approach is closely in agreement with nature: this is the true reason that motivates

the wide spectrum of application it finds. Subsequently, in Chapter 4 we’ll focus on

an apparently disjoint context, that of matrix completion, referring to the work of the

statistician Arthur P. Dempster who in 1972 with his ”Covariance Selection” theory

[4] gave rise to a whole stream of research in that field. We’ll observe that despite the

different formulation, Dempster’s work is nothing but an application of the maximum

entropy principle and what is even more interesting is that it opens the doors of a gen-

eral matrix completion approach, regardless of the origin of need of a completion, that

can come from 1) a lack of reliable information as well as 2) a goal of computational

saving. Finally, remaining in the contex of matrix completion we’ll threat a case of

the second type, which in turn comes with a different appearence with respect to that

presented at the end of the previous chapter but, again, applying the same original

idea.
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2

Preliminaries

We first recall some mathematical tools that will turn out to be useful for our aims.

2.1 Random vectors

Random vectors (rve) are the multivariate extension of random variables (rv). A rve

X = (X1, ..., Xn)T ∈ Rn is a map

X : Ω→ Rn, ω 7→ X(ω) = (X1(ω), ..., Xn(ω))T . (2.1)

The probability measure induced by X on Rn

P (X ∈ E), E ⊂ Rn, (2.2)

fully characterizes the rve X in a statistical sense. The distribution of X is in turn

characterized from the multidimensional cumulative distribution function (CDF)

FX(x1, ..., xn) = P (X1 < x1, ..., Xn < xn). (2.3)

Analysing the CDF we can distinguish among discrete, continuous and mixed rve. For

instance, consider the continuos case; in particular, the absolutely continuous CDFs

are a subclass of the continuous CDFs that admit the propability density function

(PDF) fX(x1, ..., xn). In his points of continuity, the PDF is obtained from the CDF

by derivation

fX(x1, ..., xn) =
∂n

∂x1...∂xn
FX(x1, ..., xn). (2.4)

3



2. PRELIMINARIES

The usefulness of the PDF is that, when it exists, it reduces the calculus of probability

to a multiple integration

P (X ∈ E) =

∫
...

∫
E
fX(x1, ..., xn) dx1...dxn. (2.5)

The PDF doesn’t always exist, as previously mentioned. In what follows, we’ll make

frequent use of the concept of mean vector and covariance matrix of a rve. The expected

value of X is the vector in Rn

E[X] = (E[X1], ..., E[Xn])T (2.6)

The covariance matrix (or simply covariance when it’s clear that we’re in a multidi-

mensional context) is the matrix in Rn×n

Σ = E[(X− E[X])(X− E[X])T ], (2.7)

in which the (i, j) element is σij = cov(Xi, Xj) i.e. the covariance between the ith and

the jth component of the rve. Obviously, when i = j we denote with σii the variance

of the ith component. The covariance matrix is symmetric (because cov(Xi, Xj) =

cov(Xj , Xi)) and positive definite, in fact for every a ∈ Rn

aTΣa = aTE[(X− E[X])(X− E[X])T ]a

= E[aT (X− E[X])(X− E[X])Ta]

= var(aTX) ≥ 0

(2.8)

where we used the linearity of expectation.

2.2 Multivariate normal distribution

A random vector X ∈ Rn is said to have a multivariate normal distribution if

1. every linear combination of its components Y = a1X1 + ... + anXn is normally

distributed

2. there exists a random l-vector Z whose components are indipendent standard

normal random variables, a n-vector µ and a n×l matrix A, such that X = AZ+µ.

In words, every multivariate normal distribution is an affine transformation of the

so called normal standard multivariate.
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2.3 Entropy

Then, if the covariance matrix Σ is nonsingular, the PDF of X exists and can be

expressed analitically as

fX(x) = (2π)−n/2|Σ|−1/2 exp (−1

2
(x− µ)TΣ−1(x− µ)) (2.9)

We remark that, like in the unidimensional case, the multivariate normal distribution

is fully determined by its mean vector µ and covariance matrix Σ. Moreover, since a

normal distribution can be made zero mean subtracting its mean (which can be derived

by empirical experiments), we stress the fact that it’s the covariance matrix Σ which

characterizes the distribution, and observe that it’s the inverse of the covariance matrix

Σ−1 =

σ
11 · · · σ1n

...
. . .

...
σn1 · · · σnn

 (2.10)

that appears in the analytical expression of the distribution, were the σij are its com-

ponents.

2.3 Entropy

Entropy is a measure of randomness or, more precisely, unpredictability associated with

random vectors (univariate random variables are special cases of rve). The higher the

entropy, the smaller is our ability to predict events a priori: We say that high entropy

means that we gain (on the average) high information when an outcome occours, hence

we can think of this central concept as, in the end, a quantification of our ignorance

about random phenomena. In particular, the case in which our ignorance about a rve

is maximum is when its probability distribution is uniform over an interval i.e. every

outcome is equally likely and we have no further information about them before the

experiment.

Consider a discrete rve X ∈ Rn (the continuous case being anologuos) with a finite

sample space X of cardinality M and a valid probability mass function (PMF) for it,

which we indicate here and in what follows for the ease of notation (for both continuous

and discrete distributions), simply with p. A consistent entropy function H(p) on the

space of the probability distributions must satisfy the following properties:

1. if X is a.s. costants then H(p) = 0, otherwise H(p) > 0

5



2. PRELIMINARIES

2. if p∗ is uniform over its alphabet, i.e. p∗i = 1
M i = 1...M , then p∗ = argmaxH(p),

otherwise H(p) < H(p∗)

The above properties formalize the heuristic intuition we discussed previously. Now we

introduce the analytical form of entropy proposed by C.E. Shannon in 1952.

H(p) = −
M∑
i=1

pi log pi, (2.11)

where 0 log 0 = 0 by definition. Note that entropy is associated with a PMF and

does not depend on the sample space of the rve. This measure for the entropy of a

distribution satisfies at the properties we stated, in particular it has a unique global

maximum. Note that the base of the logarithm it’s not important, provided it’s greater

than 1: in statistical mechanics, base e is used, instead in Information Theory base 2

is preferred (so the entropy of a fair coin is 1 bit, the unit measure of the information)

2.3.1 Information divergence

We present now a very powerful instrument, introduced by Kullback and Leibler in

1951 [6]. Condider two valid probability distributions (again we focus on discrete

distributions: the continuous case can be treated substituting sums with integrals) p

and q with the only restriction that the support of p is rigorously contained in the

support of q

qi = 0⇒ pi = 0 ∀i (2.12)

The information divergence, or relative entropy or KL-index of q from p is defined to

be

D(p||q) =
∑
i

pi log
pi
qi

(2.13)

Note that D(·||·) does not induce a metric in the space of probability distributions since

it’s not symmetric and, most important, it does not satisfy the triangular inequality.

Nevertheless, it enjoyes two properties

1. D(p||q) ≥ 0,

2. D(p||q) = 0 if and only if p = q.
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2.4 Lagrange multipliers

Put in another way, we can see the information divergence as a pseudo-distance of p

from q, in some sense. The case in which q is a uniform distribution is interesting: if

so, as seen before, q is characterized by having maximum entropy among all possible

distributions with sample space of cardinality M and the smaller the divergence of q

from p, the higher the entropy of p. In fact observe that

D(p||q) =
M∑
i=1

pi log npi = log n+
M∑
i=1

pi log pi = Hmax −H(p) (2.14)

It’s easy to see that D(p||q)→ 0 when H(p)→ Hmax.

2.4 Lagrange multipliers

The method of Lagrange multipliers provides a strategy for finding the maxima and

minima of a function subject to constraints. Note that in this section we move out

from the field of random phenomena to recall some results from Analysis, so that here

X ⊂ Rn is an open set and Γ ⊂ Rn is a constraint defined to be

Γ = {x ∈ Rn : g(x) = b} (2.15)

where b = (b1, ..., bm) is fixed and g : X → Rm is a C1 function of components

g = (g1, ..., gm) Let’s recall briefly the main results in this field of Analysis

Definition 1. A point x∗ ∈ Γ is said to be a relative maximum (resp. minimum)

constrained to Γ for a function f : X → Rn if it exists a neighborhood U of x∗ such that

f(x∗) ≥ f(x) (resp. f(x∗) ≤ f(x)) ∀x ∈ U ∩ Γ. A constrained maximum or minimum

is also called constrained extreme.

We’re now ready to state the main result of this section. Recall that x∗ ∈ Γ is said

to be a regular point of 2.15 if ∇g(x∗) 6= 0.

Theorem (on Lagrange multipliers) 1. Let x∗ ∈ Γ be a regular point of Γ of

constrained extreme for a function f : X → Rn differentiable in x∗. Then there exist

λ1...λm ∈ R such that

∇f(x∗) =

m∑
i=1

λi∇gi(x∗). (2.16)

In particular, λ1...λm are called the Lagrange multipliers for the constrained extreme

problem.
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2. PRELIMINARIES

It follows that constrained maxima and minima must be sought between the irreg-

ular points of the constraint, and the regular ones which satisfy 2.16. In particular, if

Γ is made only of regular points, the problem of constrained extreme consists in the

solution of the n+m system with n+m unknowns{
∂xjf(x1, ..., xn) =

∑m
i=1 λi∂xjg1(x1, ..., xn) j = 1, ..., n

gi(x1, ..., xn) = bi i = 1, ...,m
(2.17)

2.4.1 Lagrangian

The function L : X × Rm → Rn defined to be

L(x, λ) = f(x)− 〈λ,g(x)− b〉 = f(x1, ..., xn)−
m∑
i=1

λi[gi(x1, ..., xn)− bi] (2.18)

is called lagrangian of the constrained extreme problem. The following results follows

from the Lagrange multipliers theorem.

Corollary 1. Let f be a C1 function, having a local extreme contrained to Γ in x∗ and

let x∗ a regular point of Γ. Then there exist λ = (λ1, ..., λn) such that (x∗, λ) is a free

critical point for L

Proof. If x∗ ∈ Γ is a local constrained extreme for f , then there exists λ = (λ1, ..., λn) ∈
Rm such that x∗1, ..., x

∗
n, λ
∗
1, ..., λ

∗
n are solutions of the system 2.17. Because

∂xjL(x, λ) = ∂xjf(x1, ..., xn)−
m∑
i=1

λi∂xjg1(x1, ..., xn)

∂λiL(x, λ) = gi(x1, ..., xn)− bi

(2.19)

this is equivalent in stating that (x∗, λ) ∈ X × Rm is a free critical point for L.

The mathematical usefulness of the lagrangian is now clear: it reconducts a constrained

extreme problem to an unconstrained one.
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3

Introduction to maximum

entropy methods

In Information Theory, the maximum entropy principle is a postulate which states that,

in model fitting problems, when subject to known constraints (or incomplete informa-

tion) the probability distribution that best represents the current state of knowledge is

the one with the largest entropy.

3.1 Heuristic

For many decades it has been recognized through evidences in theoretic advancements

as in applicative results that the notion of entropy defines a kind of measure on the

space of the probability distributions, such that those of high entropy are in some sense

preferable over others. The justification for this was stated in a variety of intuitive

forms: higher entropy distribution represent more ”disorder”, they are ”smoother”,

”more probable”, ”less predictable”, ”they assume less”, according to Shannon’s inter-

pretation of entropy as an information measure. In all these keywords, the recurrent

idea is that in a model fitting task, given some incomplete informations, it seems the

best choiche to determine the model in a way that it allows the widest spectrum of

behaviors compatible with the constraints, and this is precisely what we’re accomplish-

ing when we maximize entropy taking into account any constraints: we choose a model

that describes the experimental evidences obtained, without (erroneously) unbalancing

it on specific behaviors according to inexistent grounds: it is well know that tending to

9



3. INTRODUCTION TO MAXIMUM ENTROPY METHODS

maximum entropy means tending to the uniform distribution, that is over all that of

complete ignorance.

3.1.1 Boltzmann’s dice

Suppose that n dice are thrown on a table. We are faced with the task of determining

the frequencies pi = ni
n i.e. ni, the number of dice showing face i. In absence of

any experimental evidence (no contraints) we’re led to choose a priori the uniform

distribution, which assigns pi = 1/6, i = 1, ..., 6. Indeed there’s no reason to think that

any face is more probable of any other or, put in another way, it would seems highly

irrational to make any other estimate than the uniform one. Suppose now we’re given

the following experimental evidence: the total number of spots showing is nα

6∑
i=1

ini = nα. (3.1)

Note that from (3.1) it follows that

6∑
i=1

i
ni
n

= α = E[X] (3.2)

where X is the random variable which denote the number of spots shown by one dice.

Consider the general case in which E[X] differs from 3.5, the well known expected value

of spots shown by a fair dice. Now the uniform distribution is not suitable to fit the

model. One way to proceed is to count the number of ways that n dice can fall so that

ni dice show face i. There are (
n

n1, ..., n6

)
=

n!

n1!...n6!
(3.3)

such ways, where (3.3) is the multinomial coefficient, which in combinatorics is the

number of ways in which an n-elements set can be partitioned in 6 disjoint sets each

having ni i = 1, ..., 6 elements. This macrostate is indexed by (n1, ..., n6) corresponding

to (3.3) microstates, each one having probability 1
6n . We wish to maximize (3.3) in

order to find the most probable macrostate, under the constraint (3.1). Using a crude

10



3.2 Formal approach

Stirling’s approximation, n! ≈ (ne )n, we find that(
n

n1, ..., n6

)
≈

(ne )n∏6
i=1(

ni
e )ni

=
nn

en

e−n
∏6
i=1 n

ni
i

=
nn∏6
i=1 n

ni
i

=

6∏
i=1

(
n

ni
)ni = exp(ln

6∏
i=1

(
n

ni
)ni) = exp(lnnn

6∏
i=1

1

nni
i

)

= exp(n lnn+ ln

6∏
i=1

1

nni
i

) = exp(n lnn−
6∑
i=1

ni lnni)

= exp(
6∑
i=1

ni lnn−
6∑
i=1

ni lnni) = exp[
6∑
i=1

ni(lnn− lnni)]

= exp(−
6∑
i=1

ni ln
ni
n

= exp[n(−
6∑
i=1

ni
n

ln
ni
n

)]

= exp[nH(
n1
n
, ...,

n6
n

)].

(3.4)

By the monotonicity of the exponential, under the constraint (3.1), maximizing (3.3)

is almost equivalent to maximize H(n1
n , ...,

n6
n ) i.e. the entropy of the distribution to

determine. Thus, the distribution of maximum entropy is the one that can be realized

in the greatest number of ways: since the only constraint we have is the mean value

of spot showing, determinig the frequencies (i.e. the PMF) taking into account such

a constraint but maximizig the entropy is a very good idea because in so doing our

model leaves open the wider set of behaviors. Moreover, for large n, the overwhelming

majority of all possible distributions compatible with our information have entropy very

close to the maximum and when n→∞ any frequency distribution other than the one

of maximum entropy become highly atypical of those allowed by the constraints. This

is the central results that come from Jaynes’ Concentration Theorem in [1].

3.2 Formal approach

The formal framework of any maximum entropy method (ME) was introduced by

Jaynes in [3] as follows. We discuss the univariate case for the ease of the treatment,

without loss of generality. Consider a rv X, its sample space X and the three entities:

1. a valid probability distribution p = {pi}i=1,...,n,
∑n

i=1 pi = 1;

2. a consistent entropy measure, for example that of ShannonH(p) = −
∑n

i=1 pi ln pi;

11



3. INTRODUCTION TO MAXIMUM ENTROPY METHODS

3. a set of linear constraints
∑n

i=1 pigr(xi) = ar, r = 1, ...,m.

Notice that althought widely used, Shannon’s entropy measure is not the only one:

what is really important is that we take a consistent measure for entropy, as discussed

in (2.3). Furthermore, we remark that the constraints must be linear: they are usually

moment constraints. We are faced with a constrained extreme problem (see 2.4) in

which we have to maximize entropy (i.e. a function) subject to a set of linear contraints

(that with a multidimensional notation we called Γ in (2.4)) The lagrangian (2.18) of

the problem is:

L(p1, .., pn, λ0, .., λm) = −
n∑
i=1

pi ln pi−(λ0−1)[

n∑
i=1

pi−1]−
m∑
r=1

λr[

n∑
i=1

pigr(xi)−ar] (3.5)

maximizing L, i.e. imposing{
∂piL = −(ln pi + 1)−

∑m
r=1 λrgr(xi)− (λ0 − 1) = 0 i = 1, ..., n

∂λrL = −(
∑n

i=1 pigr(xi)− ar) = 0 r = 1, ...,m
(3.6)

we obtain that

pi = exp[−(λ0 + λ1g1(xi) + ...+ λmgm(xi))] i = 1, ..., n (3.7)

while the equations on the partial derivatives in λr simply lead back to the constraints.

In order to determine the Lagrange multipliers, we substitute (3.7) into the contraints

equations to get the m + 1 (nonlinear) equation in m + 1 unknows system:{
eλ0 =

∑n
i=1 exp[−(λ1g1(xi) + ...+ λmgm(xi))]

are
λ0 =

∑n
i=1 gr(xi)exp[−(λ1g1(xi) + ...+ λmgm(xi))] r = 1, ...,m

(3.8)

that can find a solution via numerical methods. Again, we remark that the continu-

ous case can be treated symply by substituting sums with integrals: no convergence

problems arise, since entropy is a bounded, smooth functtion.

3.2.1 The minimun discrimination information principle

The minimun discrimination information principle (MDI) from Kullback extends the

framework introduced by Jaynes. Suppose we substitute the entropy measure as second

entity with the Information divergence (2.13). Now we seek a constrained minimum

instead of a maximum but what is really interesting is that now we have a fourth entity

12



3.2 Formal approach

in the new framework: the distribution q. From the MDI point of view, ME seeks to

determine that distribution p, out of those that satisfy the constraints, for which D(p||u)

is a minimum, with u denoting the uniform distribution. Kullback’s MDI extends this

concept. It seeks to minimize the relative entropy D(p||q), which means it seeks to

determine the distribution p that satisfies the constraints and is closest to a given

distribution q. This fourth entity, say a ”settable reference distribution” of maximum

entropy in absolute makes MDI more flexible than Jaynes’ ME and allows, as we will

see, interesting applications in contexts that seems not to have so much in common

with probability distributions.

13



3. INTRODUCTION TO MAXIMUM ENTROPY METHODS

14



4

Covariance Selection

We discuss now the covariance selection theory introduced by Dempster in [4].

4.1 The problem

Suppose we are faced with the task of fitting a model known to be described by a

multivariate normal distribution (2.9). Recall that the normal distribution has the

welcome property to be fully determined by its second order description, i.e. its mean

vector and covariance matrix, but actually only by the second one by reducing it to a

zero mean distribution. So the fitting procedure consists in determining the covariance

structure

Σ =

σ11 · · · σ1n
...

. . .
...

σn1 · · · σnn

 (4.1)

i.e. the set of parameters σij i, j = 1, ..., n. Tipically, we have a sample of m n-variate

observations x1, ...,xm and so an estimated n× n sample covariance matrix S derived

using the formula

S =
1

m

m∑
l=1

(xl − x̄)T (xl − x̄) (4.2)

where

x̄ =
1

m

m∑
l=1

xl. (4.3)

However, the computational ease with which the set of parameters can be estimated

should not lead us to obscure the unwisdom of such estimation from limited data.

Hence, we identify a subset of parameters whose reliability we trust from the data

15



4. COVARIANCE SELECTION

and look for a valid completion of the covariance structure. The insight that underlies

Dempster’s covariance selection is the principle of parsimony in parametric model fit-

ting, which suggests that parameters should be introduced only when the data indicate

they are required. Note that in (2.9) what appears is not the covariance matrix Σ but

its inverse Σ−1 so that parameters reduction may resonably be attempted by setting

certains σij to 0. Parameters reduction involves a tradeoff between benefits and costs:

annihilating a substantial number of parameters the amount of noise in a fitted model

due to estimation error is significantly reduced but, on the other hand, errors of mis-

specification are introduced because the null values are incorrect: every decision to fit

a model involves an implicit balance between these two kinds of errors.

4.2 A rule

Let I be a subset of the index pairs (i, j) with 1 ≤ i ≤ j ≤ n and J the set of

remaining pairs. Think about J as the set of entries whose reliability we trust and

I the complementary set of parameters. The formal rule that concretizes the insight

given in the previous section is the following.

Rule 1. Choose Σ̂ to be the positive definite symmetric matrix such that S and Σ̂ are

identical for index pairs (i, j) ∈ J while Σ̂−1 is identically 0 for index pairs (i, j) ∈ I.

This choice, which we name Dempster’s completion, may at first look less natural

than setting the unspecified elements of Σ to zero. It has nevertheless considerable

advantages compeared to the latter [4]. Dempster established the following far reaching

result.

Theorem 1. Assume that a symmetric, positive-definite completion of Σ exists. Then

there exists a unique Dempster’s Completion Σ0. This completion maximizes the en-

tropy

H(p) = −
∫
Rn

log(p(x))p(x)dx =
1

2
log(det Σ) +

1

2
n(1 + log 2π) (4.4)

among zero-mean Gaussian distributions having the prescribed elements σij, (i, j) ∈ J .

Thus, Dempster’s Completion Σ0 solves a maximum entropy problem, i.e., maxi-

mizes entropy under linear constraints [7].
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4.3 Link to the general framework

4.3 Link to the general framework

Dempster’s covariance selection revisits from a different point of view the former work of

Jaynes. In fact, instead of determining a probability distribution solving a constrained

extreme problem, he thought in terms of parameters reduction, but the underlying idea

is the same: given incomplete information on the model, a good way of fitting it is that

to leave open the wider spectrum of possible behaviors. This target is accomplished

in both cases even if they appear not to have so much in common (actually, it seems

that maximum entropy is a consequency in Dempster’s work instead of a goal). But

this is not the case. In fact, it can be easily seen that the incomplete information on

the covariance structure is nothing but a set of linear constraints on the distribution,

while the fact that it was assumed a priori for the distribution to be a (multivariate)

normal one is not restrictive as it can be shown that if the linear constraints are the

second order description (mean vector and covariance matrix) the maximum entropy

distribution is normal [5]. Finally, the fact that Rule 1 leads to the maximum entropy

normal distribution follows from Theorem 1 which summarizes Dempster’s Statistical

Theory.

4.3.1 Generalization to Matrix Completion Problems

Dempster’s Covariance Selection is in conclusion just one, although if really important,

task of matrix completion. Here the original problem is the unwisdom affecting collected

data: this is the reason for which we start with a subset of entries of the matrix and need

to find a valid completion. As we will see in the following chapter, this entropic approach

is well suited in other matrix completion contexts. We’ll focus on a different original

problem, that of reducing a significant computational burden. Observe in Theorem 1

that maximizing entropy of a normal distribution is equivalent, apart from constant

factors and considering the monotonicity of the logarithm, to extremizing det Σ: we

can think about every symmetric, positive-definite matrix as the covariance structure

of a multivariate normal distribution and apply Rule 1 to it. Furthermore, M. Pavon

and A. Ferrante proved in [7] that symmetry and positive-definiteness are not necessary

since the constrained extremization of the determinant only involves the positive part

of the matrix. Hence such approach can be extended really to every matrix, also in the

rectangular case.
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5

Quasi-Newton methods

In numerical analysis, Newton’s method is an algorithm for finding successively better

approximations to the roots of a smooth, real valued function. The idea of the method

is as follows: one starts with an initial guess which is reasonably close to the true root,

then the function is approximated by its tangent line (which can be computed using

the tools of calculus), and one computes the x-intercept of this tangent line (which

is easily done with elementary algebra). This x-intercept will typically be a better

approximation to the function’s root than the original guess, and the method can be

iterated.

5.1 Newton’s step

Consider for the ease of exposition the unidimensional case. Let’s X ⊂ R a compact

set, f : X → R a differentiable function that takes values in R. Suppose we have some

current approximation for the position of one root, say xn. Then the formula for a

better approximation xn+1 is derived as follows from the definition of the derivative

f ′(xk) =
∆y

∆x
=
f(xk)− 0

xk − xk+1
k ≥ 0 (5.1)

Then by use of simple algebra we get

xk+1 = xk −
f(xk)

f ′(xk)
k ≥ 0 (5.2)

We should start with some arbitrary initial value x0: the closer to the root, the better.

In absence of any intuition about where the zero might lie, we could spread out different
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5. QUASI-NEWTON METHODS

initial possibilities in a reasonably small interval appealing to the intermediate value

theorem.

5.1.1 Minimization and maximization problems

Newton’s method can be easily extended to maxima and minima problems: actually,

it’s sufficient to ask for f to be twice differentiable, and look for the roots of its first

derivative, according to Fermat’s theorem on stationary points

xk+1 = xk −
f ′(xk)

f ′′(kn)
k ≥ 0 (5.3)

5.1.1.1 The multivariate case

In a multivariate context (by far the most interesting case, where we’ll concentrate in

the next section), i.e. X ⊂ Rn, f : X → R and under the hypotesis f ∈ C2, (5.3)

becomes

xk+1 = xk − [Hf(xk)]
−1∇f(xk) k ≥ 0 (5.4)

where ∇f(xk) and Hf(xk) are respectively the gradient and the Hessian matrix of f

at xk.

5.2 Approximation

In the execution of the algorithm, the most expensive part (computationally speaking) is

finding, storing and inverting the Hessian. Quasi-Newton methods seek to approximate

the Hessian matrix (or its inverse) for the kth step by accumulating information from

the preceding steps using only first derivatives (or they finite-difference approximation)

[8]. Consider the second order Taylor expansion

f(xk + ∆xk) ≈ f(xk) +∇f(xk)
T∆xk +

1

2
∆xkHf(xk)∆xk, ∆xk = xk+1−xk. (5.5)

Taking the gradient on both sides respect to ∆xk, we get

∇f(xk + ∆xk) ≈ ∇f(xk) +Hf(xk)∆xk. (5.6)

Let Bk be an approximation of Hf(xk) (B0 is usually taken to be the identity). In QN

one employs the Newton’s step (5.4) with Hf(xk) := Bk imposing in view of (5.6) the

secant equation

∇f(xk + ∆xk) = ∇f(xk) +Bk∆xk. (5.7)
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5.2 Approximation

In more than one dimension, the secant equation is under determined. Various methods

are used to find a symmetric Bk+1 closest (according to some metric) to the current

approximation Bk and satisfying (5.7). The underlying idea in all QN is that of avoiding

to calculate the Hessian for every Newton’s step, approximating it by rank one (or even

rank two) updates specified by gradient evaluations. Historically, remarkable examples

of QN are the DFS formula from Davidon–Fletcher–Powell (the first updating scheme

proposed), BFGS from Broyden–Fletcher–Goldfarb–Shanno and the SR1 (Symmetric

Rank 1) method.

5.2.1 Entropy approach

Consider now the case where f is a strongly convex function, i.e.

Hf(xk) > αIn, ∃α > 0, ∀k > 0, (5.8)

in this case, Bk should be positive definite. Recall from section 2.3.1 the definition of

relative entropy and its interpretation. In the case of two multivariate normal distri-

butions p, q with covariance matrixes respectively P,Q (2.13) has a close form

D(p||q) =

∫
log

p(x)

q(x)
dx

=

∫
log{|P |

−1/2

|Q|−1/2
exp[−1

2
xT (P−1 −Q−1)x]}p(x)dx

=

∫
log |PQ−1|−1/2 + [−1

2
xT (P−1 −Q−1)x]}p(x)dx

=
1

2
log |P−1Q|+

∫
1

2
xT (Q−1 − P−1)xp(x)dx

=
1

2
[log |P−1Q|+

∫
tr(Q−1 − P−1)xxT p(x)dx]

=
1

2
[log |P−1Q|+ tr(Q−1 − P−1)

∫
xxT p(x)dx]

=
1

2
[log |P−1Q|+ tr(Q−1 − P−1)P ]

=
1

2
[log |P−1Q|+ tr[(Q−1P )− In]]

=
1

2
[log |P−1Q|+ tr(Q−1P )− n].

(5.9)

Notice that D(p||q) uniquely depends on the covariance matrixes P,Q and so, with an

abuse of notation, we introduce

D(P ||Q) =
1

2
[log |P−1Q|+ tr(Q−1P )− n]. (5.10)
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5. QUASI-NEWTON METHODS

that can be thought as a (pseudo) metric between (symmetric and positive definite)

matrixes.

This result gives rise to an important application of MDI of section 3.2.1, which we

know to be a refinement of the original ME. Consider the minimization problem

minD(Bk+1||Bk) (5.11)

subject to the linear constraint

Bk+1∆xk = ∇f(xk+1)−∇f(xk). (5.12)

Here we are faced with the task of finding the nearest matrix Bk+1, i.e. the update

of the current approximation of the Hessian, according to the generalized entropic

approach of section 4.3.1, using the current approximation Bk and satisfying the linear

constraint given by the secant equation (5.12). The lagrangian of the problem is

L(Bk+1, λk+1) =
1

2
[log |B−1k+1Bk|+tr(B

−1
k Bk+1)−n]+λTk+1[Bk+1∆xk−∇f(xk+1)+∇f(xk)]

(5.13)

Imposing δL(Bk+1, λk+1, δB) = 0 for all δB we get

(Bk+1)
−1 = B−1k + 2∆xkλ

T
k+1. (5.14)

This is the step on which it’s possible to construct iterative schemes to update cyclically

B−1k+1 and λk. Note that in (5.14) (Bk+1)
−1 is a rank one update of B−1k , just like any

conventional QN.

The maximum entropy approach shows in this application all its versatility: we’re not

considering a model fitting task but an optimization one. We should not forget anyway

that what underlies (5.10) is a (pseudo) metric defined on the space of probability

distributions and the matrixes involved in D(·||·) must be thought as the covariance

matrixes of multivariate normal distributions: not by chance at the beginning of this

section we posed as condition for the function f to be strongly convex in the region of

interest, this allows the Hessian to gain positive-definiteness, in addition to symmetry,

that’s a property held by every Hessian matrix.
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