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Abstract

In this thesis we elaborate on the modern techniques for the evaluation of Scattering Amplitudes in
Quantum Field Theory, and apply them to the calculation of µ−e−→ µ−e−γ at one loop in Quantum
Electrodynamics, within the Dimensional Regularization scheme. The corresponding Feynman dia-
grams contribute to the so called real-virtual term of the Next-to-Next-to-Leading-Order corrections
to µe→ µe scattering. Their calculation is crucial for a novel estimation of the leading Hadronic
corrections to the muon’s anomalous magnetic moment, which is the goal of the MUonE experiment,
recently proposed at CERN.
First, we review the theoretical background behind the contributions to the muon’s magnetic moment
and the connection with µ−e− scattering. Then, we elaborate on the algorithimic steps required by the
evaluation of multi-loop Feynman amplitudes, from the form-factor decomposition, to the reduction
onto a basis of Master Integrals, and, finally, to the calculation of the latter by means of the Dif-
ferential Equations method. We outline the modern frameworks based on Unitarity of the S-matrix,
which employ amplitude cuts to construct a decomposition onto Master Integrals in the Generalised
Unitarity framework. This includes Integrand-level Decomposition methods which take advantage of
the polynomial properties of Feynman amplitude integrands and offer a higher level of automation
for the calculation of complex amplitudes. Specifically we detail the more recent Adaptive Integrand
Decomposition and its automated code implementation AIDA used to carry out the calculations pre-
sented.
We illustrate the Momentum Twistor parametrisation for particle kinematics used by AIDA, and in-
troduce four and five-point twistor parametrisations suitable for our goals.
We present our results on the Master Integral decompositions of µ−e−→ µ−e− and µ−e−→ µ−e−γ

at one-loop, both considering massive and massless electrons, and finally we review the evaluation of
the Master Integrals for µ−e−→ µ−e− in the me→ 0 limit with Differential Equations.



Contents

Introduction 1

1 The muon’s intrinsic magnetic moment 5
1.1 Magnetic moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The anomalous magnetic moment of the muon . . . . . . . . . . . . . . . . 6
1.2 The Standard Model prediction of aµ . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 The QED contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The Electroweak contribution . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 The hadronic contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Extracting the leading hadronic contribution to aµ . . . . . . . . . . . . . . . . . . . 14
1.3.1 A novel approach: MUonE . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Methods for one-loop Feynman integrals 23
2.1 Dimensional Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 The D = 4−2ε prescription . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 The D = D‖+D⊥ prescription . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Tensor integral reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Passarino-Veltman tensor reduction . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 D-dimensional amplitude decomposition . . . . . . . . . . . . . . . . . . . 36

2.3 Master Integral Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Lorentz invariance identities . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Integration-by-parts identities . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Evaluating Master Integrals with Differential Equations . . . . . . . . . . . . . . . . 41
2.4.1 Differential equations in canonical form . . . . . . . . . . . . . . . . . . . . 43
2.4.2 The Magnus exponential method . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.3 General solution via Iterated Integrals . . . . . . . . . . . . . . . . . . . . . 47

3 Unitarity methods for one-loop amplitudes 50
3.1 Unitarity and the Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Unitary cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 The Feynman Tree Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Multiple cuts and Generalised Unitarity . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Integrand-level Decomposition methods 64
4.1 The OPP decomposition method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Parametric expansion of the residues . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Extension to D dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Integrand decomposition via Polynomial Division . . . . . . . . . . . . . . . . . . . 70
4.2.1 Integrand recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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Introduction

Fundamental particles and their interactions are at the very heart of all physical phenomena we expe-
rience. The form of these interactions and the way we describe them depend on the typical energies
at which they occur. One of the goals of Particle physics is to uncover and describe the interactions of
fundamental particles during the very early universe, in a state of extreme heat and density and, con-
sequently, very high energy. Describing the early universe through the behaviour of its constituents
may give the answer to the question of its very origin, which puzzled mankind for millennia.
Our best way to probe these conditions is through collision experiments carried out in particle accel-
erators at many locations worldwide. These experiments established two key concepts in high-energy
physics: that matter can be converted into energy and particles may be produced out of energy ac-
cording to Special Relativity, and that the outcome of any process of particle physics is probabilistic
in nature as Quantum Mechanics describes. These ideas are unified in the framework of Quantum
Field Theory (QFT) which is the foundation for the accepted modern theory of fundamental particles,
the Standard Model of Particle Physics (SM).

Quantum Field theory describes interactions between particles as the evolution of a particle field |i〉
via the so-called S-matrix, which encodes all the processes possible within the theory. In a collision
experiment one may wish to probe one specific outcome of the interaction, expressed as a specific
final particle field | f 〉. The transition matrix element 〈 f |S |i〉 represents the probability density for
the initial particles to interact in the specific fashion desired. In the language of QFT this transition
probability is expressed in terms of the so-called Feynman Amplitude M(i→ f ). The amplitude
squared is directly related to the scattering differential cross-section, the physical quantity of interest
which can be extracted from experimental data. Through experiment one can determine the Feynman
amplitude of a given process |i〉 → | f 〉 and, by extension, shed light on the validity of the underlying
Quantum Theory. To produce a theoretical prediction that can shed light on new physics, the objective
is then to evaluate the Feynman amplitude of a candidate process to very high precision.

An explicit expression for the Feynman amplitude is most often obtained by evaluating the S-matrix
in a perturbative series, where each term is a combination of the basic interactions of the theory and
carries powers of the coupling constant of the theory, which sets the perturbative order.
The mathematical expression of each term is represented pictorially by Feynman Diagrams, which
depicts the initial, final and intermediate particles as lines, whose intersections represent the basic
interaction blocks of the theory. Such diagrams look like tree-like graphs in the simpler cases with few
interactions, but as the perturbative expansion progresses they evolve into complex lattices, possibly
with so-called loops of internal particles.
Despite the external particles carrying very definite relativistic momenta (they are forced to lie on the
so-called mass shell), intermediate particles running in a loop evade this constraint and may have any
generic momentum, since they are inaccessible and subject to the Indetermination principle. These
loops lead to loop integrals that account for all the possible momenta running, and these constitute
the major difficulty in the evaluation of all but the simplest Feynman amplitudes.

The development of ground-breaking calculation techniques from the late ’90s and throughout the
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2000s [1, 2] was stimulated by the then-upcoming collision experiments at the Large Hadron Col-
lider, purpose-built by CERN to perform scattering experiments at energies between 100 GeV to
several TeV, with the goal of testing the validity of the Standard Model in this range.
For the first time in particle physics it became possible to carry out high-precision theoretical cal-
culations at Next-to-Leading Order (NLO) in perturbation theory in a fully-automated fashion [3–6],
particularly useful given the complexity and abundance of processes. During the so-called NLO Rev-
olution [7] most 2→ 3 particle interaction processes of interest to LHC physics were calculated, as
well as the first 2→ 4 and 2→ 5 particles interactions.

These theoretical achievements have enabled the validation of the Standard Model to very high degree,
most remarkably with the recent first detection of the Higgs Boson in 2012. Nevertheless there is
good evidence that the Standard Model is not the ultimate theory for high-energy physics since, to
give a few prominent examples, it does not include a description for the gravitational interaction nor
it provides an explanation for Dark Energy or conclusive candidates for Dark Matter.
Evidence for Beyond-the-Standard-Model (BSM) physics can be gathered by accurate measurements
of the discrepancies between the current model and experimental observations. The gyromagnetic
ratio aµ of the Muon µ is a prime candidate for studying BSM physics since it is one of the most
accurately measured quantities in particle physics and it already diverges from the SM prediction
by 3 ∼ 4 standard deviations. Determining the contribution of BSM physics relies on improving
the accuracy of the SM contributions , especially those coming from Hadronic physics. A recent
experimental proposal, MUonE [8], aims to extract a ∼ 1% estimate of these contributions from
measurements of the Hadronic corrections to µ±e− → µ±e− scattering to 10 parts-per-million [9],
an unprecedented level of accuracy.

The theoretical challenge is then to determine the Hadronic Leading Order contributions to µe scat-
tering with comparable precision. To this aim, the contributions due to Quantum Electrodynamics
(QED) alone need to be determined to Next-to-Next-to-Leading Order (NNLO) in perturbation the-
ory. Ground-breaking work has already been conducted on the two-loop virtual radiative corrections
[10–12].
In this thesis we take the first steps towards the calculation of the real-virtual one-loop radiative
corrections to this process, namely we examine the amplitudes for the process µ−e− → µ−e−γ at
one-loop, which constitute part of the NNLO contributions and are complementary to the aforemen-
tioned two-loop results.

This thesis work is organised as follows. In Chapter 1 we review the theoretical background behind
the gyromagnetic ratio of the muon aµ and the main contributions from the various sectors of the
Standard Model. We focus on the most uncertain contributions to the final result, namely the Hadronic
corrections given by the so-called Hadronic Vacuum Polarisation (HVP) function. We then describe
the novel theoretical ideas behind the proposed MUonE experiment, in particular how the HVP may
be extracted from the Hadronic contributions to the running of the QED coupling constant, and how
this can itself be extracted from µe→ µe scattering data.

In Chapter 2 we outline the principal theoretical techniques used for the computation of one-loop
Feynman amplitudes.
First, we introduce the concept of Dimensional Regularisation both in the D = 4− 2ε prescription
by ’t Hooft and Veltman [13] as well as the so-called D = D‖ + D⊥ prescription [14–16] which
entails splitting the D-dimensional space-time in a parallel space spanned by the independent external
momenta, and an orthogonal space spanned by the remaining vectors.
In the rest of the chapter we outline the three-step approach to the evaluation of Feynman amplitudes:

1. Tensor Decomposition of a generic loop Feynman amplitude as a linear combinations of a finite
number scalar loop integrals, effectively constituting an integral basis for the amplitude;
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2. reduction of this set of integrals to the minimal number of independent integrals, at this stage
called Master Integrals;

3. evaluation of the Master Integrals themselves

Long ago it was realised that, since Special Relativity constrains the form of the factors appearing
in the expression of a Feynman integral, it is possible to manipulate the integral and re-write it as a
sum of a finite number of scalar integrals. This can be done with the Passarino-Veltman method [17]
which we outline in this chapter, although more advanced techniques for obtaining a Scalar Integral
decomposition are introduced later on. We shall also touch on how the scalar integral decomposition
is affected by working in Dimensional Regularisation.
We then deal with the reduction of this set of integrals to the minimal basis of Master Integrals by tak-
ing advantage of remarkable relations between Feynman integrals, known as Lorentz-Invariance and
Integration-by-Parts identities. The former arise from the invariance of scalar integrals under Lorentz
transformations, the latter come from the D-dimensional divergence theorem. The Laporta algorithm
[18] is capable, given a set of scalar integrals, to identify a minimal basis of Master Integrals and
generate relations to map all elements to that basis. The size of the basis depends exclusively on
the nature of the problem (e.g. the external kinematics and number of loops) while the exact scalar
integrals are not uniquely defined. Many code suites implement this algorithm, such as KIRA [19]
and REDUZE [20].
Lastly, we describe the Differential Equations method [21, 22], which involves setting up coupled
systems of Differential Equations in the kinematic invariants whose solution yields an analytical ex-
pression for the Master Integrals in powers of ε . We introduce the concept of a system in the so-called
Canonical basis [23] and the Magnus Exponential [24] method used to obtain it, and lastly how it is
possible to construct the solution to the coupled systems algorithmically as a Dyson series of iterated
integrals and written in terms of the Goncharov (or Generalised) PolyLogarithms (GPLs) [25].

In Chapter 3 we introduce some of the powerful techniques developed in the last couple of decades
[1, 2] concurrently with the need for highly-precise and automatic evaluation codes to carry out the
complex theoretical calculations to be paired up with experiments at LHC.
These theoretical breakthroughs are founded upon a powerful consequence of the Unitarity property
of the S-matrix: the Optical Theorem. This essentially relates the imaginary part of a loop Feynman
amplitude to simpler amplitudes at a lower order in perturbation theory: the key idea is that by
severing a loop amplitude into two tree amplitudes in all the possible ways one basically obtains the
imaginary part of the loop amplitude itself. The act of severing an amplitude can be seen as the act
of turning intermediate particles into external states by applying on-shell conditions on them. This
procedure is formalised by the Cutkosky rule [1].
We briefly describe how these ideas can be put into practice in the Generalised Unitarity [26, 27]
scheme which takes advantage of Unitarity to expresses a whole loop Feynman amplitude in terms of
complete and partial cuts of simpler amplitudes [28], yielding a decomposition into scalar integrals in
a procedural way. These methods have also been extended and applied to Feynman loop amplitudes
in the framework of Dimensional Regularisation [29–37].

In Chapter 4 we introduce the related Integrand Decomposition technique [38–42] which, at one-loop,
can obtain virtually the same scalar-integral decomposition given by Generalised Unitarity without
the need to perform any integration. This approach is also known as the OPP method from the initials
of its creators: the key idea is to obtain an integrand level expression for the Feynman amplitude by
introducing so-called spurious terms which preserve the equivalence of the two expressions and which
vanish upon integration, restoring the original integral-level expression. This is done by parametrising
the loop momentum on a basis of external momenta and thence studying the numerator as the most
general polynomial in the kinematic variables, which entails identifying all the monomials that can be
written in terms of the amplitude’s denominators and simplified, and the remaining Irreducible Scalar
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Products (ISP) which make up the parametrisation. The simplified denominators are essentially inte-
grands of smaller scalar integrals, and thus a decomposition is obtained by resorting on the algebraic
properties of the integrand rather than computing a cut integral. We also describe how this method
can be made compatible with Dimensional Regularisation [1, 41, 43–45].
We finally highlight that Integrand-reduction methods are essentially equivalent to performing the
Polynomial Division between the numerator and any combination of denominators that defined the
original loop integral. The algebraic properties of the method lead to a re-formulation using general
results provided by Algebraic Geometry such as Multivariate Polynomial Division modulo Gröbner
bases [46, 47], which enabled the implementation of these ideas in yet more automated code suites
[47–49], suitable to extend the applicability of integrand methods to complex amplitudes and even
beyond the one-loop level.

In chapter 5 we briefly touch on the issues with the multi-loop extension of integrand-decomposition
methods, which revolve around the proliferation of ISPs arising from the most general parametrisation
of polynomials in the kinematic variables: many of these are spurious but do not vanish trivially as for
the one-loop case. The presence of ISPs which in fact are not independent leads to an over-abundance
of scalar integrals in the final decomposition, which is needlessly complicated.
We then detail Adaptive Integrand Decomposition [14, 16], a recent proposal to overcome these tech-
nical hurdles. It still is an algebraic integrand decomposition method, but formulated within the
D = D‖+D⊥ prescription for Dimensional regularisation. Building the most general parametrisation
for the integrands and their scalar products in this framework leads to remarkable simplifications,
namely that the spurious terms are parametrised by the variables belonging to the transverse space,
and it is possible to detect and remove them with efficient integration techniques limited to this sub-
space. We then outline its algorithmic implementation: the automatic code package AIDA [15] for
MATHEMATICA which is the main tool used in this thesis to obtain the Scalar Integral decomposition
of 2→ 3 amplitudes.

Chapter 6 is devoted to kinematics, or the parametrisation of the external momenta of Feynman am-
plitudes. One seeks to write amplitudes in terms of as few parameters as possible but, all the while,
it is desirable to have a formalism that encodes naturally properties such as momentum conservation.
We introduce the Momentum Twistor Formalism used by AIDA which solves all these requirements,
along with the Spinor-Helicity formalism upon which it is based.

In Chapter 7 we present our computations for µ−e−→ µ−e− scattering in QED , starting with cal-
culations at Leading-Order and Next-to-Leading Order done using the standard tools provided by the
MATHEMATICA package FEYNCALC[50, 51]. We then report the fully-analytical decomposition of
the Next-to-Leading order contributions done with AIDA: to apply this tool to the NLO one-loop
amplitudes with two mass scales we introduce novel twistor parametrisations for massive momenta
used to parametrise the kinematics, and show the resulting Master Integrals both in massive-electron
and in the massless-electron limits.
We then tackle the main goal of this thesis: the evaluation of the amplitudes for µ−e−→ µ−e−γ at
one-loop, part of the Next-to-Next-to-Leading Order radiative corrections. Once again we present a
twistor parametrisation for five-point kinematics with two mass scales, and detail the fully-analytical
decomposition result obtained with AIDA and, again, we provide results for the massless electron
limit for comparison. These constitute the first steps towards a complete, fully-analytical result for
these corrections.

Finally, in Chapter 8, we show a practical implementation of the theoretical techniques for the eval-
uation of Master Integrals with Differential Equations, obtaining an analytical expression for the
integrals of µ−e− scattering at NLO, namely one-loop four-point integrals in the me→ 0 limit, along
the lines of [10, 52]: this calculation may serve as a first step toward the study of the Master Integrals
for the massive-electron cases.
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Chapter 1

The muon’s intrinsic magnetic moment

1.1 Magnetic moments
The connection between orbiting charged particles and magnetic properties is well understood since
the days of classical electromagnetism. If one can define the orbital angular momentum of a particle
spinning about an axis as~l := m~r×~v then the resulting magnetic moment is1 :

~µl =
q

2m
~l (1.1)

From a quantum-mechanical perspective, elementary particles possess a quantised intrinsic angular-
momentum known as spin which generates itself a magnetic moment:

~µs =
q

2m
g
~σ

2
= µB g~Σ (1.2)

where we wrote the moment in terms of the spin-1
2 operator Σ (itself dependent in the Pauli matrices

σi, i = 1,2,3), the Bohr magneton µB := q
2m and the proportionality constant g.

Spin-1
2 particles obey the relativistic Dirac equation which naturally includes spin as a fundamental

property. Considering the coupling to an external electromagnetic four-potential and taking the non-
relativistic limit, this equation gives an explicit expression for the particle’s spin magnetic moment,
yielding in turn a prediction for the g-factor which turns out to be 2.

The Dirac equation is superseded by the frameworks of Quantum Field Theory (QFT) and Gauge
theory , which describe interactions between fundamental particles as mediated by the so-called gauge
bosons. In this framework, the electromagnetic coupling between spin-1

2 leptons (the class of particles
to which the muon belongs) and an external electromagnetic field is described by Feynman diagrams
with three external lines:

= + 1L + 2L + . . . (1.3)

1In this thesis natural units are employed, therefore factors of c and h̄ are omitted.
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CHAPTER 1. THE MUON’S MAGNETIC MOMENT

The shaded blob indicates a perturbative series of increasingly more complex internal processes. The
simplest process is the naı̈ve scattering of a muon and a photon, the so-called tree-level which is cap-
tured by classical scattering theory. The more complicated diagrams are instead inherently quantum-
mechanical in nature, and are collectively referred to as radiative corrections. They often involve
internal loops of particles as indicated, and each loop order entails more powers of the coupling con-
stant, which in the case of electromagnetism is the fine-structure constant α .

It is thus more convenient to work in terms of al = (gl−2)/2 ( where l = e, µ, τ), which is the
discrepancy of the factor from this value, known as anomaly. This effectively measures the anomaly
with respect to the ”classical” tree-level contribution arising directly from the higher-order correc-
tions. Given that the rest of the objects composing the definition of the intrinsic magnetic moment
are either fixed or well-known, the quantity al is often taken directly as a stand-in for the magnetic
moment itself, especially when referring to experiments and predictions. Radiative corrections can
involve processes typical of energies much higher than that of the external particles, since these cor-
rections are quantum-mechanical in nature and nothing in QFT restricts the four-momentum of the
particles which participate in some of them.
Accurate predictions and measurements of al can thus shed light on the fundamental interactions that
can play a role in the radiative corrections; the match between prediction and measurement serves as
verification of the validity of the Standard Model of fundamental interactions (SM) or as evidence for
new physics lying beyond.

The first al factor tackled was the electron’s, given the ease with which it can be produced and accel-
erated in cyclotrons and synchrotrons. The first accurate measurement of its magnetic moment was
performed in 1948 by Kusch and Foley [53] by studying the hyperfine splitting within atomic emis-
sion spectra, yielding ge = 2.00238(6). The lowest-order theoretical prediction given by Quantum
Electrodynamics (QED) was calculated by Schwinger [54]:

ge = 2
(

1+
α

2π

)
≈ 2.00232

→ ae =
α

2π
≈ 0.00116

(1.4)

This early result provided compelling evidence for the validity of QED as the QFT of electromag-
netic interactions, and energised research into techniques to compute higher-order corrections to ae
and test these predictions more and more accurately. The state-of-the-art measurement is to 0.22 ppb
[55], which matches the most accurate prediction for the QED correction [56]2.

1.1.1 The anomalous magnetic moment of the muon
The rest of the SM contributions to the electron’s anomalous magnetic, namely the Weak and Quan-
tum Chromodynamics (QCD) contributions, are highly suppressed since they are highly suppressed
at the energy scales typical of electronic processes.
The muon µ , on the other hand, is a lepton ∼ 206 times more massive than the electron. As such,
it participates in QED interactions with itself and indirectly with its lighter relative, as well as elec-
troweak interactions and QCD indirect contributions. Given the higher mass, the latter are important
in determining aµ and an accurate estimate must be given to assemble a complete prediction.
Moreover, a general study of a wide range of beyond-the-Standard-Model interactions (BSM) [57, 58]

2The theoretical correction is estimated up to order 10, which in terms of Feynman diagrams corresponds to a pertur-
bative expansion up to and including 5 loops.
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found that the expected sensitivity of some leptonic g-factor to new short-range interactions ought to
scale as follows:

δal

al
∼

m2
l

Λ2 (1.5)

Given that
(
mµ/me

)2 ≈ 4× 104, the muon is expected to be 40000 times more sensitive than the
electron to new BSM physics given the same experimental accuracy.
This feature of the muon’s magnetic moment make it a prime candidate to study not only the validity
of the Standard Model at high precision (given the smallness of the EW and QCD corrections, as we
shall see) but also new physics beyond.

As we mentioned, the muon’s magnetic moment arises from the coupling between its spin and an ex-
ternal magnetic field. This can be studied experimentally by studying the spin motion of a polarised
muon trapped in a homogeneous magnetic field, more precisely measuring the Larmor precession of
the spin direction ωS caused by its motion in the field and proportional to gµ [59]. Such an experiment
requires highly-polarised muons, and for a long time there was no known way to produce these in the
first place.
However, in 1957, the seminal discovery of Parity violations by the weak interactions [60] provided a
way to accomplish this. One can exploit the decay

(
π−→ ūd→W−→ µ− ν̄µ

)
since, due to parity

violation in the latter weak-mediated steps of the decay, the final muon’s handedness (and conse-
quently polarisation) is shown to be closely related to its electric charge [59]. Consequently, one can
collect the muons emitted in the direction of travel of the original pion using magnetic quadrupoles,
and even select the desired polarisation of muons with bending dipoles.
This decay, and the methodology outlined above, have been the basis of the experimental measure-
ment of aµ in many occasions. The most recent measure comes from the E821 experiment carried
out at the BNL [61, 62], their final result is:

aexp
µ = 116592091(63)×10−11 (1.6)

with a relative precision of 0.54 parts-per-million. The best SM theoretical prediction for aµ turns out
to be significantly different [63]:

aSM
µ = 116591776(44)×10−11 (1.7)

the discrepancy checks out at ∼ 4σ .

This large gap between theory and experiment points towards the existence of new unseen effects at
play, be BSM physics such as SuperSymmetry (SUSY) or new features of the current Standard Model.
Research is being conducted both to refine the experimental measurement and also to pinpoint more
accurately the Standard Model prediction. Two new experiments are underway: E989 at Fermilab
replicates the techniques of E821 but aiming to reduce the uncertainty by a factor 4, while E34 at J-
PARC will employ a different technique altogether, providing an important independent cross-check
of the measure.
Finally, the MUonE proposal aims to provide an independent determination of the leading hadronic
contributions to aSM

µ by using muon-electron scattering data, as will be detailed in section 1.3.1.

7



CHAPTER 1. THE MUON’S MAGNETIC MOMENT

1.2 The Standard Model prediction of aµ

The new experimental goals for measuring aµ must be paired up with equally sophisticated theoretical
predictions coming from the SM as established. This section is devoted to reviewing the main SM
contributions to aSM

µ and to comparing their importance to the final result.

The SM prediction of aµ is composed of several contributions:

aSM
µ = aQED

µ +aEW
µ +aHAD

µ (1.8)

We shall examine each term separately in the following. Figure 1.1 summarises the various contribu-
tions and is useful to compare their importance.

Figure 1.1: SM contributions to aµ compared against past and future experiments testing various contributions.
The red bars are relevant to aQED

µ , the brown ones to aHAD
µ and the green ones to aEW

µ . ”new physics” displays
actually the deviation

(
aexp

µ −aSM
µ

)
/aexp

µ . The grey bars indicate uncertainties, the two largest ones being
highlighted by red arrows [63].

1.2.1 The QED contribution
Quantum Electrodynamics provides the largest fraction of the contribution by far. It can be further
subdivided as follows [64]:

aQED
µ = A1 +A2

(
mµ

me

)
+A2

(
mµ

mτ

)
+A3

(
mµ

me
,

mµ

mτ

)
(1.9)

where A1 encompasses the contributions from diagrams involving solely the muon and the photon,
therefore identical to the corresponding A1 contribution to the electron’s magnetic moment from QED.
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CHAPTER 1. THE MUON’S MAGNETIC MOMENT

A2 and A3 correspond to diagrams involving two or all three kinds of leptons (e,µ ,τ) and are functions
of the mass ratios with the muon.
All contributions can be expanded out as a power series in α/π:

Ai = A(2)
i

(
α

π

)
+A(4)

i

(
α

π

)2
+A(6)

i

(
α

π

)3
+ . . . (1.10)

which enables us to write the QED contributions to the muon magnetic moment order-by-order:

aQED
µ = ∑

L
CL

(
α

π

)L

CL = A(2L)
1 +A(2L)

2

(
mµ

me

)
+A(2L)

2

(
mµ

mτ

)
+A(2L)

3

(
mµ

me
,

mµ

mτ

) (1.11)

In [64] a detailed review of the state-of-the-art estimates for these terms up to L = 5 is presented, here
we will highlight the main results:

• One-loop level

At one-loop the only diagram present is the vertex correction involving exclusively muons:

µ− µ−

γ

(1.12)

This corresponds to the Schwinger calculation, therefore C1 = A(2)
1 = 1

2 with A(2)
2 = A(2)

3 = 0.

• Two-loop level

At two loops nine diagrams are generated in QED. Seven of them are composed of muons and
photons only, comprising the A1 contribution, while the remaining two involve the vacuum-
polarisation of the virtual photon with a fermionic loop (respectively with an electron and a
tauon).
All these contributions were computed analytically; A(4)

1 was computed in [65, 66], while the
remaining two were obtained in [67] and are affected by uncertainties on the masses of the
particles involved:

A(4)
1 = 0.32847896557919378 . . . (1.13)

A(4)
2

(
mµ

mτ

)
= 1.0942583092(72) (1.14)

A(4)
3

(
mµ

mτ

)
= 0.000078079(14) (1.15)

9



CHAPTER 1. THE MUON’S MAGNETIC MOMENT

yielding the second coefficient:

C2 = 0.765857423(16) (1.16)

• Three-loop level

At three-loops more than 100 diagrams participate. The A(6)
1 contributions comprises 70 di-

agrams which were calculated in [68–76], while the A(6)
2 contribution comprises 36 vacuum-

polarisation diagrams as well as 12 light-by-light diagrams where an even number of photons
interact3 [77, 78]. Finally, for the first time the contribution A(6)

2 appears [79], which comprises
diagrams of all three massive leptons.
The results are:

A(6)
1 = 1.181241456587 . . . (1.17)

A(6)
2

(
mµ

me

)
= 22.86838000(17) (1.18)

A(6)
2

(
mµ

mτ

)
= 0.00036063(12) (1.19)

A(6)
3

(
mµ

me
,
mµ

mτ

)
= 0.00052776(10) (1.20)

yielding the third coefficient:

C3 = 24.05050982(28) (1.21)

• Four-loop level

The computation of the more than 1000 diagrams appearing at four loops has only been com-
pleted by employing numerical and Monte Carlo techniques, as only few diagrams are known
analytically. The term comprises 891 diagrams and has been computed by Laporta in [80],
while the remaining coefficients are estimated in [81]:

A(8)
1 = −1.912245764926 . . . (1.22)

A(8)
2

(
mµ

me

)
= 132.6852(60) (1.23)

A(8)
2

(
mµ

mτ

)
= 0.04234(12) (1.24)

A(8)
3

(
mµ

me
,
mµ

mτ

)
= 0.06272(4) (1.25)

the estimate of the fourth coefficient is then:
3Under the rules of QED, loop scattering amplitudes ought to be invariant under the application of the charge con-

jugation operator upon a diagram, corresponding to reversing the flow of charge along the internal fermionic lines. The
electromagnetic current flips sign as a result, and the whole amplitude will also flip sign in the case of odd-number of
internal fermionic lines (which corresponds to the case of odd-number of external photons). If the amplitude is to stay
invariant then the odd-photon amplitudes have to cancel out, this result is known as Furry’s theorem.
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C4 = 130.8734(60) (1.26)

• Five-loop level At this level more than 12000 diagrams appear. Their numerical evaluation was
performed in [82] and yields:

C5 = 751.917(932) (1.27)

The final value for the total QED contribution to the muon’s g-factor is given as:

aQED
µ = 116584718.859(.026)(.009)(.017)(.006)×10−11 (1.28)

The uncertainties are respectively related to the experimental errors in the measurement of α and
of the lepton masses, and to the numerical errors accumulated in the computation of the four- and
five-loop terms.

1.2.2 The Electroweak contribution
An important difference between the electroweak interactions and electromagnetism is the presence
of massive force carriers: the W and Z bosons. The factor

(
mµ/mW

)2 suppressed the electroweak
(EW) contribution to the g-factor beyond experimental uncertainty for a long time, although the BNL
experiment were able to measure aEW

µ with an uncertainty of about a third of the one-loop contribu-
tion.

• One-loop level

The one-loop electroweak diagrams involve the W and Z bosons, the neutrinos and the Higgs
boson H, as shown explicitly:

Z0

µ− µ−

γ

W

νµ

W

µ− µ−

γ

H

µ− µ−

γ

(1.29)

Their contributions was computed analytically in the 1970s [83–87], after it was confirmed that
non-abelian Gauge theories like the Electroweak model were renormalisable, and consists in
the following expression:

aEW
µ =

5
24π2

GFm2
µ√

2

[
1+

1
5
(
1−4sin2

θW
)
+O

(
m2

µ

m2
W,Z,H

)]
(1.30)

where GF is the Fermi weak decay constant and θW is the Weinberg angle. This formula is

accurate up to corrections of the order of
(

m2
µ

m2
W,Z,H

)
which are taken as negligible. This yields:
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a(2)EW
µ = (194.81±0.01)×10−11 (1.31)

the uncertainty comes mainly from the measurement of the Weinberg angle.

• Two-loop level

The contributing diagrams number in the hundreds. The diagrams can be thought of as the one-
loop diagrams augmented by vacuum polarisations, self-energies or vertex corrections com-
posed of various kinds of particles4. One therefore finds loops such as γWW ,γγZ,γZZ and
others. In addition, a few diagrams feature the quartic interaction between two W bosons, one
Z and the photon or two W and two γ . Present are also diagrams with hadronic quark loops
inserted in 2-loop electroweak diagrams (HEW). A few of these diagrams are:

γ

Z

µ− µ−

γ

W

νµ

WW

WZ

µ− µ−

γ

H

WW

Z
W

µ− µ−

γ

γ

quarks

Z

µ− µ−

γ

γ

µ

W

νµ

W

µ− µ−

γ

(1.32)

The leading-order two-loop contribution was obtained in 1992 in [89]. In there it was shown that
the diagrams containing a fermionic triangle loop yield at amplitude level a factor log

(
MW,Z/M f

)
with f indicating the kind of fermion in question. These factors, rather counter-intuitively, boost
the 2-loop contribution to the g factor to the same order as the 1-loop one but with an opposite
sign, thus diminishing greatly the electroweak contribution to the muon g−2.
In [90–92] the following value is given:

a(4)EW
µ = (−42.7(2)(1.8))×10−11 (1.33)

The first uncertainty is due to the precision in the value of the Higgs boson and t quark masses,
while the second arises from hadronic effects in quark loops.

1.2.3 The hadronic contribution
Naı̈vely, the strong interactions should influence the g-factor simply by augmenting the QED diagrams
with quark loops, the leading contribution (aHLO

µ ) being the hadronic vacuum polarisation (HVP) at

4It should be noted that there is no analogous of Furry’s theorem for the electroweak interactions. This is due to the
violation of parity [88] which, in turn, spoils charge-conjugation invariance and, by extension, the cancellation between a
triple-particle loop and its conjugate.
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leading order inserted in the internal photon propagator, represented by the first diagram of 1.34. The
second diagram shows the subsequent most important contribution, the so-called Hadronic light-by-
light scattering (HLbL). Additionally, HVP effects at higher orders have been computed but they are
at least 102 times smaller than the leading order effects [63].
The leading hadronic contributions are shown compared with all the other main contributions in figure
1.1, showing that the HVP and HLbL are also the main sources of uncertainty in aµ as a whole. This
uncertainty is due to the fact that giving a theoretical estimate for hadronic contributions is not at
all straightforward: at the energy scales typical of pair-production of the lightest hadrons, the quarks
interact at long range, and the QCD coupling becomes so strong that the perturbation-based methods
of QFT cannot be applied.

γ γ

µ− µ−

γ

HAD

γ γ
γ

µ− µ−

γ

HAD

(1.34)

There are various alternative ways to extract these contributions:

• HVP contributions can be extracted indirectly by examining the e+e− annihilation process. In
[93–95] these two seemingly-unrelated processes were related by a dispersion integral, a result
based on analyticity and unitarity 5 of the quantum scattering matrix S. We will detail this
method in the subsequent section.
The contribution is estimated as [63, 99, 100]:

a(1)HV P
µ = 6880.7±41.4×10−11a(1)HV P

µ = 6939±40×10−11 (1.35)

a(1)HV P
µ = 6932.7±24.6××10−11 (1.36)

where the uncertainties are dominated by experimental uncertainties on the (e+e−→ x) cross-
section.

• HLbL have been extracted by using the so-called Resonance Lagrangian Approach. This is
based on Chiral Perturbation theory (the Effective Quantum Field Theory of quark-confined
states in accordance with the Chiral symmetry of QCD) extended to higher energies and aug-
mented with vector resonances. They are estimated as [63]:

aHLbL
µ = (103±29)×10−11 (1.37)

Both these theoretical techniques can be compared with the bare-bones approach of Lattice QCD
(LQCD), that aims to obtain this contribution by directly calculating the path-integrals of the con-
fined quarks and gluons using the rules of high-energy QCD ([101] and references therein).
This technique is naturally all-inclusive regarding the hadronic processes but is limited by computa-
tional complexity, and therefore still lacking precision. To be competitive with the more traditional
approaches, the coming LQCD calculations aim to achieve a relative precision of sub-percent for
HVP processes and 10% for HLbL processes [63, 102]. The latter process is much more difficult
to compute in LQCD (being a four-point process instead of a two-point one) and its smaller overall
contributions means that a higher uncertainty is acceptable.

5Unitarity and the Optical theorem can be found in chapter 3.1. For dispersion relations applied to Feynman amplitudes
see, for example, [96–98].
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1.3 Extracting the leading hadronic contribution to aµ

This section is devoted to describing the techniques employed in the past to extract indirectly the
hadronic VP contribution to aµ at leading order, as mentioned previously, and subsequently to lay out
a novel method [8] that forms the basis of the proposed MUonE experiment [103].

A generic vacuum polarisation function is often denoted as Π
(
q2), and as a direct consequence of

causality it is analytical. Furthermore, for renormalisable QFTs such as the Standard Model, its
asymptotic behaviour at large momenta is regulated by the introduction of a counterterm which gen-
erates an analogous diagram, only with the special symbol

⊗
indicating the counterterm insertion in

place of the vacuum polarisation function:

γ γ

µ− µ−

γ

+
µ

γ

µ

γ

µ− µ−

γ

(1.38)

and only by considering the vacuum polarisation diagram together with its counterterm partner does
one have a ”complete” picture devoid of any unphysical divergences at large momenta. By imposing
that the loop correction be vanishing in the low-momentum transfer limit (consistency with the clas-
sical limit) this counterterm can be computed to be −Π(0).
Therefore in the following we shall consider the renormalised vacuum polarisation function6

Π
(
q2)= Π

(
q2)−Π(0) =

q2

π

∫
+∞

s0

ds
Im [Π(s)]

s(s−q2− iε)
(1.39)

and we wrote its spectral representation as it is both analytical and well-behaved at large momenta,
and s0 is the starting point of the lightest branch cut.

Let us now examine e+e− annihilation with a vacuum-polarisation insertion. Let us take its imaginary
part and apply the optical theorem, essentially writing down an analogous form of equation 3.6:

2Im

 e−

e+e+

γ γ
e−

 ∝ ∑
x

e−

e+

γ


2

(1.40)

This diagrammatic equation is basically saying that the imaginary part of the vacuum polarisation
function (up to coupling, momentum and spin factors coming from the rest of the amplitude) is related
to the cross-section of the process (e+e−→ γ → generic particles). We will consider the particular
case of (e+e−→ γ → hadrons), as our goal is to obtain the hadronic vacuum polarisation.

6It should be noted that, at this stage, we are dealing with a generic vacuum polarisation function, not specifically the
hadronic one.
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It is common practice to measure the hadron-production cross-section in units of the cross-section of
the process (e+e−→ γ → µ+µ−) in the massless muon limit. One then defines the Rγ (s) factor7,
which can be written as [63]:

Rγ (s) :=
σ (e+e−→ γ → hadrons)
σ (e+e−→ γ → µ+µ−)

=
σ (e+e−→ γ → hadrons)

4πα2

3s

(1.41)

where the cross-section (e+e−→ γ → µ+µ−) acts as a numerical normalisation factor.
Since the optical theorem relates the imaginary part of the vacuum-polarisation function to the hadron-
production cross-section, this can be re-expressed in terms of Rγ (s) and plugged into the dispersion
integral 1.39:

Π
(
q2)= Π

(
q2)−Π(0) =

αq2

3π

∫
+∞

4m2
π

ds
Rγ (s)

s(s−q2− iε)
(1.42)

It should be noted that the branch cut now starts at the π mass, given that the pions are the lightest
hadrons that can be produced out of a photon (specifically the process (γ → π− π+) has the lowest
threshold).

Let us now derive an expression for the HVP corrections to aHLO
µ . First we write down the Feynman

amplitude associated with the basic vertex correction of diagram 1.12:

p1

p1 +q

q p2

k

p2 +q (1.43)

−ie ū(p2)Γ
α (p1, p2)u(p1) =(

−ieµ
ε/2
)∫ dDq

(2π)D

−igαβ

q2 ū(p2)

[
γ

β
i
[(
/q+ /p2

)
+mµ

]
(q+ p2)

2−mµ

γ
α

i
[(
/q+ /p1

)
+mµ

]
(q+ p1)

2−mµ

γ
δ

]
u(p1)

(1.44)

where we used Dimensional regularisation8 to regulate the divergence.
To account for the hadronic vacuum polarisation we correct the internal photon propagator by insert-
ing the renormalised VP function as a multiplicative factor (the result corresponds to diagrams 1.38),
and thereafter we plug in the dispersion relation obtained above:

7Chapter 5.1 of Peskin & Schroeder provides an introduction to this ratio.
8we will introduce it properly in chapter 2.1
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−ie ū(p2)Γ
α (p1, p2)u(p1) =(

−ieµ
ε/2
)∫ dDq

(2π)D

−igαβ

q2

[
−Π

(
q2)] ū(p2)

[
γ

β
i
[(
/q+ /p2

)
+mµ

]
(q+ p2)

2−mµ

γ
α

i
[(
/q+ /p1

)
+mµ

]
(q+ p1)

2−mµ

γ
δ

]
u(p1)

(1.45)

−ie ū(p2)Γ
α (p1, p2)u(p1) =

(
−ieµ

ε/2
)

α

3π

∫
+∞

4m2
π

ds
s
Rγ (s)×

×

∫
dDq

(2π)D

−igαβ

q2− s
ū(p2)

[
γ

β
i
[(
/q+ /p2

)
+mµ

]
(q+ p2)

2−mµ

γ
α

i
[(
/q+ /p1

)
+mµ

]
(q+ p1)

2−mµ

γ
δ

]
u(p1)

(1.46)

where q2 at the numerator of 1.39 cancelled with the internal photon propagator. Meanwhile, within
the integral the photon has acquired a new propagator factor from the VP insertion: a massive one
with mass

√
s.

We will momentarily treat s as an infra-red regulating factor in the loop integral, which enables us to
carry out its textbook calculation. Let us remember that this fictitious mass is not really a regulator,
and so no limit s→ 0 will be taken.

−ie ū(p2)Γ
α (p1, p2)u(p1) =

α2

3π2

∫
+∞

4m2
π

ds
s
Rγ (s) ū(p2)

[
F1
(
k2,s

)
γ

α +
i

2mµ

F2
(
k2,s

)
σ

αβ
γβ

]
u(p1)

(1.47)

the result is expressed in terms of the Dirac and Pauli form factors F1,2. To find the g-factor one sends
k→ 0 and recalls that in this limit F1 (0,s) = 1 for consistency with the renormalisation conditions.
The F1 factor reproduces the tree-level contribution, therefore to find the anomaly one focusses on the
F2 (0,s) contribution. The standard way in literature to express such a result is:

aHLO
µ =

α2

3π2

∫
+∞

4m2
π

ds
s
Rγ (s)K(2)

µ (s)

K(2)
µ (s) =

∫ 1

0
dx

x2 (1− x)
x2 +(1− x)s/m2

µ

(1.48)

This formula relates the HVP contributions to the muon anomalous g− 2 to a factor Rγ (s), but it
could be extended to any kind of VP corrections, owing to the generality of the principles at its core.

The way to make practical use of this result would be to split the s-integral in two [59]:

aHLO
µ =

α2

3π2

[∫ scut

4m2
π

ds
s
Rexp

γ (s)K(2)
µ (s)+

∫
+∞

scut

ds
s
RpQCD

γ (s)K(2)
µ (s)

]
(1.49)

16



CHAPTER 1. THE MUON’S MAGNETIC MOMENT

The second integral represents the high-energy contribution from an energy threshold scut upwards;
in this region the known techniques of perturbative QCD (pQCD) would be reliable enough to com-
pute the Rγ factor analytically, and the range of validity of perturbation theory would set the energy
threshold itself.
The first integral is instead the low-energy portion below scut , and in which the Rγ factor could be
measured experimentally by annihilating e+e− pairs and measuring the relative cross-sections or cal-
culated by relying on LQCD.

The successful application of these theoretical techniques to actual measurements have come in spite
of several difficulties.
First, by relying on experimental data to obtain a value for Rγ , the theoretical uncertainty on the HLO
contribution is in fact experimental in nature. The prediction for Rγ is actually a compounded quantity:
one sets up the measurement of a particular hadronic channel (e+e−→ γ → particular hadrons) and
then gathers the contributions of all possible channels. This is known as exclusive measurement.
The employment of different experimental techniques, the difficulties in selecting the desired final
hadronic states and the comparison of systematic uncertainties [104] all worsen the overall accuracy
of the experimental prediction. The energy region [1.2;2.0]GeV is particularly problematic since
more than 30 decay channels contribute to Rγ , and although it accounts for only 20% of the final
HLO contribution it constitutes 50% of the uncertainty [63]. The low-energy limit below 1.0GeV
comprises π and ω-production channels, and also carries a large fraction of the uncertainty while
accounting for more than 3/4 of the total contribution.

1.3.1 A novel approach: MUonE
The simplest way to solve the problems with the previous approach is to set up an inclusive measure-
ment for HVP effects: a single process that can capture the contributions from all possible hadronic
states running in loops in a single measurement.
This may be achieved by a new proposal [8] recently put forth, building up on the previously-
established results to relate aHLO

µ to the hadronic contribution to the running of αQED in the space-like
region. If one switches the s and x integrations [105] in equation 1.48:

aHLO
µ =

α

π

∫ 1

0
dx(x−1)ΠHAD [t (x)]

t (x) =
x2m2

µ

(x−1)
< 0

(1.50)

the integral is expressed in terms of the renormalised HVP function with a space-like variable t, as
opposed to the time-like variable s of the previous relation.

Let us now take a look at the running of the QED coupling constant α , another well-understood effect
of radiative corrections. It is written down at a specified squared momentum transfer q2 in terms of α

measured at a different squared momentum transfer and the general VP function:

α
(
q2)= α (0)

1−∆α (q2)

−∆α
(
q2)= Re

[
Π
(
q2)] (1.51)
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∆α has various contributions coming from the various kinds of VP functions at play. ∆αQED, given
by the QED corrections to the photon propagator, is known up to at least three loops in perturbation
theory, and its contribution can be factorised from the whole running to isolate the hadronic contribu-
tion ∆αHAD.
The corrections to α ought to depend only on the real part of Π since the VP function can acquire
a non-vanishing imaginary part if q2 > 4m2

particle for some massive particle involved in the VP, in
accordance with the Optical Theorem. But if the transferred momentum q2 were to be space-like then
Π
(
q2) could safely be identified with its real part, since by the same unitarity-based reasoning the

imaginary part would vanish trivially in that kinematic region.

Based on these considerations, it is possible to lay out a procedure to measure the Hadronic VP cor-
rection to aµ by actually measuring the hadronic contribution to the running of α . One first measures
∆α with space-like square momentum transfer t, subtracts the known QED contribution and the result
( ∆αHAD (t) = Re

[
ΠHAD (t)

]
≡ΠHAD (t)) is then substituted for the HVP function in 1.50:

aHLO
µ =

α

π

∫ 1

0
dx(1− x)∆αHAD [t (x)] (1.52)

This is a very different approach, with an important advantage: the radiative corrections under ad-
visement keep the hadrons fully-virtual in an internal blob, as opposed to having final hadronic states
which can in general give rise to very complex children processes. This would provide a clean, inclu-
sive and independent cross-check as compared to the traditional approach.
The advantage of studying space-like momentum transfer over time-like is evident from figure 1.2.
The space-like momentum forbids resonances, which in turn makes the photonic VP function smooth
in its domain. On the contrary, the time-like region opens up the possibility for resonances, pair-
production and threshold behaviour that all cause spikes and troths in the VP function.

Figure 1.2: Left: Real part of the photon vacuum polarization (∆α
(
q2
)
) in the space-like and time-like region

(Black line: leptonic plus hadronic contributions; Red line: only leptonic contribution); Right: The integrand

(1− x)∆αHAD [t (x)]×105 as a function of x and t (x) =
x2m2

µ

(x−1) < 0 [103].

Measuring 1.52 entails measuring accurately α (t) in the space-like region by measuring the cross-
section of some physical process. An option could be Bhabha scattering (e+e−→ e+e−) which,
however, always entails an s-channel contribution in addition to the desired t-channel one:
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s

γ γ

e+

e−

e+

e−

+

tγ

γ

e+

e−

e+

e−

(1.53)

The contribution from the s-channel and the resonance effects which it entails may be minimised
by cleverly choosing the phase-space point of the colliding particles, in order to instead maximise
the contribution from the t-channel. Since the time-like channel cannot be completely suppresses, a
method of phase-space separation would be needed.
The insurmountable difficulty is related to accuracy: to be competitive with time-like measurements,
a space-like estimate of aHLO

µ must be given at an accuracy of ∼ 1% [8]. Given the peak value of
∆αHAD (10−3) the experimental precision in the cross-section measurement needs to be on the order
of 10−5 or 10 parts-per-million [9]. Currently, no existing e+e− collider can provide such a dauntingly
high level of accuracy.

A more practical alternative could be muon-electron scattering µ±e−→ µ±e−: not only is this pro-
cess exclusively t-channel and naturally all-encompassing of the hadronic corrections, but the required
precision could potentially already be achievable at existing facilities.

tγ

γ

e−

µ−

e−

µ−

(1.54)

In the diagram above we only depicted the process µ−e−→ µ−e− as it will be the principal focus of
this thesis, the partner process µ+e−→ µ+e− features virtually identical diagrams related by charge-
conjugation.
The experiment would take the form of a fixed-target collision [9]: a high-energy (150-200 GeV)
muon beam is already available at CERN’s North area and could be directed on a target of low-atomic-
number atoms9, enabling the measurement of the differential cross-section of muons scattering off the
electrons in the atomic orbitals. The MUonE experiment [103] aims to extract the running α (t) by
measuring the cross-section with a precision of ∼ 10 ppm to provide a ∼ 1% estimate of aHLO

µ , in
order to be competitive with the new upcoming g−2 experiments.

9The target needs to be thick enough to provide frequent scattering events in a reasonable time-frame, but not too
thick that the outgoing electrons are affected by atomic-scale phenomena. Choosing low-atomic number atoms would
minimise the the impact of multiple scattering and the background due to bremsstrahlung and pair production processes
[9]. The incident beam energy is much larger than the typical electron binding energy ∼ 10 eV , but since the scale of
electron-nucleus interactions should be the electron mass this may not mean that atomic physics is completely negligible
in this experimental set-up, even for light atoms. Further analysis is underway.
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Extracting ΠHAD (t) from the scattering cross-section at the level of accuracy sought by the MUonE
proposal requires a theoretical prediction of the µe cross-section up to at least next-to-next-to-leading
order (NNLO), encompassing both QED and hadronic contributions.

Hadronic contributions to µ−e− scattering

In the context of the MUonE experiment the relevant EW contributions to muon-electron scattering
are known. The main contributions are thus pure-QED diagrams and mixed QED-hadronic diagrams,
the latter entering the stage only at NLO.

Let us momentarily assume that the complete set of QED-governed amplitudes up to NNLO can be
computed in the space-like region. By subtracting their contribution to the µ−e− cross-section from
measured data the amplitudes containing hadronic VP contributions are isolated.
Evaluating these remaining amplitudes and comparing them with the subtracted data enables the
extraction of the hadronic VP, the goal of the MUonE experiment. In 1.55 they are laid out in five
distinct groups, where each diagram should be taken as a representative for a larger class of similar
diagrams:

a) is the same diagram of 1.54 and represents the only hadronic contribution at NLO, being thus the
leading contribution to the running of α . The contribution coming from ΠHAD (t) is accounted
for as a simple multiplicative factor in front of the tree-level electron-muon scattering cross-
section, in other words it can be factorised.

b) stands for the diagrams with a double vacuum-polarisation insertion, either two hadronic VPs
or one hadronic, one leptonic. They can be inserted either together along the same photon
propagator or one in each of the two diagrams that make up the squared amplitude. The VP
contribution is once again factorisable, this time the factor is ΠHAD (t)

[
ΠHAD (t)+ΠLEP (t)

]
up to combinatorial factors counting the diagrams.

c) represents the QED one-loop diagrams with a HVP insertion on the photon propagator. This
contribution is proportional to the factorised ΠHAD (t) and the one-loop integral in QED, which
can be computed with techniques described in chapter 2.

d) These are the real correction diagrams in QED, with an extra low-energy photon emitted as a
final particle, plus the HVP insertion. The contribution is once again factorised into the QED
cross-section and the VP factor ΠHAD (tl). We point the reader’s attention to the space-like
photon momentum tl whose definition depends on which external leg radiates the real photon.

e) One-loop QED corrections of box and triangle-type with a HVP insertion. Contrary to the cases
above it is not possible to factorise away the contribution of the HVP factor as the momentum
variable will depend in the loop momentum and ought to be integrated upon.

The NLO and NNLO (i-iii) contributions can be computed independently of the HVP function, which
is factorised in front, and in principle would enable one to extract the HVP itself by comparing the
result with the measured cross-section minus the QED contribution (alternatively one could use prior
experimental data for ΠHAD and obtain a numerical estimate for the µ−e− cross-section). The inclu-
sion of class (iv) amplitudes, a requirement for a full NNLO calculation of electro-muon scattering,
nullifies this procedure since extracting the HVP function from cross-section measurements is no
longer a matter of calculating a multiplicative factor.
This issue was solved (in the context of computing the hadronic corrections to e+e− scattering) by
writing ΠHAD (t) using the dispersion relation 1.42 within the class (iv) amplitudes, using time-like
measurements for the rγ factor and from there compute the whole amplitude as usual. This approach
was undertaken by Passera, Fael [106] and M.Vitti [107].
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︸ ︷︷ ︸
NLO

︸ ︷︷ ︸
NNLO (i)

︸ ︷︷ ︸
NNLO (ii)

︸ ︷︷ ︸
NNLO (iii)

︸ ︷︷ ︸
NNLO (iv)

(1.55)

An alternative approach [108] does away with dispersion relations and experimental inputs. One
could momentarily neglect the NNLO hadronic corrections altogether, compute the NLO + QED
amplitudes and obtain a first approximation for ΠHAD (t). The NNLO corrections are subsequently
switched back on, the approximate result is fed back in and the amplitudes computed (in [108] the
class (iv) amplitudes were treated using hyperspherical integration, which enables the use of HVP
data in the space-like region without resorting to any time-like input). This yields a corrected esti-
mate for the hadronic HVP function, and the cycle repeats until the approximation converges.
This technique uses space-like data exclusively and, paired up with results from the MUonE experi-
ment and lattice calculations, produces an estimate for aHLO

µ independent of any time-like inputs.

QED contributions to µ−e− scattering

At this point it should be evident that the aforementioned procedure to determine the hadronic VP
function hinges not only on precise experimental data, but also on an equally precise estimate of the
QED contribution up to NNLO which ought to be removed. A fully-analytical result is desirable, for
it would ensure complete freedom in analysing the kinematics of the process through Monte Carlo
simulations.
These corrections have not been fully determined yet. The NLO differential cross-section were cal-
culated in [109–111], with improvements and a full differential Monte Carlo result obtained in [112].
At NNLO some results can be re-cycled from NNLO Bhabha scattering [113–117] and from some
QCD processes [118, 119] , while [10–12] show the first results towards a complete NNLO µ−e−

evaluation, calculating the two-loop planar and non-planar Feynman diagrams (in particular, the loop
integrals were decomposed onto a so-called Master Integral basis, which will be introduced later on
in this thesis). It is important to mention that many of these NNLO results have been obtained in the
approximation me = 0 [10], which is physically justifiable (as µ− is ∼ 200 times more massive than
e−) and since it simplifies the evaluation of the Master Integrals.

This thesis focusses particularly on the QED NNLO real-virtual corrections to µ−e− scattering, i.e.
the process µ−e−→ µ−e−γ at one-loop, where the photon γ is produced as real radiation.
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(1.56)

These corrections comprise diagrams with five internal lines, the so-called pentagons, four-internal-
lines diagrams (boxes) with a photon radiated from the external legs and similar combinations of
possible loops and radiations.
The computation of their related Feynman amplitudes will be computed keeping track of both muon
and electron masses, in order to assess the importance of the electron mass contribution and, hope-
fully, ascertain that the assumption of massless electron is a good one.
In preparation for this task, the following chapters will be devoted to introducing some advanced
techniques employed in the evaluation of Feynman loop amplitudes.
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Chapter 2

Methods for one-loop Feynman integrals

Feynman Integrals and Regularisation

p3

p2

p1

pi

pn−1

pn

p3

p2

p1

pi

pn−1

pn

Figure 2.1: A generic n-point one-loop integral

Beyond tree-level, the standard techniques used to write out Feynman amplitudes given the rules of
the theory invariably lead to momentum integrals over a closed loop, internal to the related Feynman
diagram. One can isolate a loop momentum variable qµ , independent of the external particle mo-
menta, which is unbound.
This produces divergences in these loop integrals, which need to be treated somehow to produce
meaningful physical predictions.

A generic n-point one-loop integral like the one in figure 2.1, with incoming momenta pi obeying the
momentum-conservation relation ∑

n
i=1 pi = 0 is of the form:

In [N ] =

∫
d4q

(2π)4
N (q)

Da1
1 Da2

2 . . .Dan
n

(2.1)

The denominators Di are defined as:

Di = (q+ ri)
2−m2

i + iε (2.2)
ri = p1 + p2 + · · ·+ pi, rn = 0 (2.3)
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The powers a j are most often set to 1 (at least for the cases commonly encountered at one-loop), but
nothing forbids the same propagator from appearing twice in a diagram, and therefore the correspond-
ing amplitude denominator being raised to a higher power.
Based on this realisation, it is useful to define a topology (or sector) as an integral like 2.1 where all
powers a j are strictly positive integers. Different sectors are identified based on the distinct denom-
inators appearing within, rather than their the powers. Immediately one could define a number of
sub-topologies of each sector by setting one or more powers to zero, all the while making sure that
momentum conservation is not affected.
This operation is commonly referred to as pinching an internal propagator, and will play an important
role later on.

Integrals like these are often transpose from 4-dimensional Minkowski space to 4-dimensional Eu-
clidean space using a procedure known as Wick rotation.This has the effect of changing the sign of the
mass parameters in every inverse propagator. The now Euclidean integration measure can be written,
using 4-dimensional spherical coordinates, as:

d4q = q3dΩ3dq (2.4)

and the integration over the 3-dimensional solid angle can be performed immediately, yielding a nu-
merical pre-factor.
By naı̈ve dimensional analysis it is easy to see how an integral like 2.1 can diverge both in the ultra-
violet (UV) limit q→+∞ and in the infra-red (IR) limit q→ 0. If r is the rank, or highest power, in
q of the numerator N (q), then one has:

In ∼
∫

dq
q3+r

q2n (2.5)

If we define the integer quantity δ := 3+ r−2n then we have:

• for δ ≥ 0:

In ∼ qδ+1

which is UV-divergent;

• for δ =−1:

In ∼ log(q)

which is UV and IR-divergent and is known as log-divergent;

• for δ <−1:

In ∼ q−|δ |+1

which is IR-divergent.

Regularisation is in essence a mathematical prescription to momentarily remove the divergence, often
with the introduction of some artificial quantity known as the regulator.
Regulators often used include a cut-off Λ on the loop momentum, bounding an UV-divergent integral
from above. For infra-red divergences one could introduce an unphysical parameter λ , interpreted
as a fictitious mass, used to shift the infra-red pole so that the integral is no longer divergent at the
point q→ 0. Other techniques entail manipulating the loop propagators with parameters or power
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coefficients to alter their ultraviolet behaviour and make the integral finite; one of these is known as
Pauli-Villars.

These regulators are kept around until the very end of the calculation, at which point the divergent
parts of the integral in question will all depend on them10. The parameters are then removed with
appropriate limits (such as Λ→ +∞ and λ → 0) which bring back physical meaning to the object.
This is done at the very end of the calculation of a measurable quantity such as a cross-section; the
hope is that, if all the contributions have been accounted for and all ”bare” parameters have been
properly renormalised, there will be perfect cancellation of these divergences and the result will be
finite at either end.
This is indeed the case for theories such as QED.

2.1 Dimensional Regularisation
Dimensional regularisation is a more sophisticated regularisation technique, It amounts to promoting
the space-time in which the integrals are computed from 4 dimensions to D, where D is a continuous
complex variable, making the integral finite by dimensional arguments as a result. The dimension
should thus be sufficiently shifted from four to avoid all singularities. This dimensional replacement
affects not only the integration measure, but also the objects appearing at the numerator and denomi-
nator.
The integral is calculated in D dimensions to obtain an expression explicitly dependent on D, and
divergent in the D→ 4 limit.

The concept of a continuous dimension was introduced by Wilson and Fisher [120] for statistical
physics and then further developed by ’t Hooft and Veltman [13] in the context of the renormalisability
of non-abelian Yang-Mills theories where all other regularisation prescriptions failed. This technique
is advantageous for several reasons:

• since it preserves the character of all the objects in the theory and it avoids unphysical parame-
ters, it doesn’t spoil gauge symmetries crucial to the Standard Model;

• it separates the finite part of an integral from the divergent pole, and thus is naturally suited to
renormalisation schemes such as Minimal Subtraction (MS) and the related M̄S;

• it works equally well for UV and IR divergences

We shall now introduce two prescriptions used to carry out computations in dimensional regulari-
sation. We will need to distinguish between objects living in 4 and in generic D dimensions. D-
dimensional quantities will henceforth will be denoted with a bar. These prescriptions are applicable
to integrals at one loop or higher, and therefore are usually formulated in the generic case.

Let us write down, in D space-time dimensions, a generic n-point, l-loop Euclidean Feynman integral
with m internal lines11:

In,l
m [N ] =

∫
l

∏
j=1

dDq̄ j

(π)D/2
N (q̄i)

D̄1D̄2 . . . D̄m
(2.6)

10One could say that, in general, the resulting objects are meromorphic functions of the regulators, i.e. holomorphic
everywhere on the complex plane of each parameter except at certain points (poles) at which the physical limit is restored
and the result diverges as it used to.

11in case of ≥ 1 loops, the number of internal lines is in general not equal to the number of external ones
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where the numerator is a function of all the loop momenta q̄α
i , and where the denominators are kept

as arbitrary D-dimensional objects until we define a prescription.

2.1.1 The D = 4−2ε prescription
The key idea of this prescription is to split the D-dimensional space-time into a four-dimensional
sector and a remainder (a ”(−2ε)-dimensional” subspace).
The metric tensor shows this decomposition explicitly:

ḡαβ =

(
gαβ 0

0 g̃αβ

)
(2.7)

where gαβ is the usual space-time metric and g̃αβ is the euclidean metric of the rest of our space-time.
The trace over the two metrics are:

gαβ gαβ = 4 (2.8)

ḡαβ ḡαβ = D (2.9)

Lorentz vectors are similarly split:

v̄α = vα + ṽα (2.10)

Conventional practice is to keep the incoming particle momenta, external to the loop, strictly in four-
dimensional space. This is as per the original formulation of Dimensional Regularisation by ’t Hooft
and Veltman.
Therefore:

p̄α
i = pα

i (2.11)

Although this thesis will focus mainly on one-loop Feynman integrals we temporarily consider more
general integrals and assume an arbitrary number of loop momenta qi. These momenta are D-
dimensional and are split as follows:

q̄α
i = qα

i +µ
α
i (2.12)

where we introduced the vectors µα
i = q̃α

i that live in (−2ε)-dimensions.
The Dirac-γ matrices are not extended from their four-dimensional counterpart like the metric, but
instead defined conventionally using the Clifford Algebra:

{
γ̄

α , γ̄β

}
= 2ḡαβ (2.13)

γ̄
α

γ̄α = γ̄
α

γ̄
β ḡαβ =

1
2

(
γ̄

α
γ̄

β + γ̄
β

γ̄
α

)
ḡαβ = ḡαβ ḡαβ = D (2.14)

γ̄
α

γ̄
β

γ̄α = (2−D) γ̄
β (2.15)
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where we used the symmetry of the metric to compute the trace.
Other useful relations are:

Tr [1] = 2(D/2) (2.16)

ḡαβ g̃αβ =−2ε (2.17)

and the scalar products between the external and loop momenta, which make use of the orthogonality
between the 4-dimensional and the (−2ε)-dimensional sectors:

pα
i g̃αβ = 0 (2.18)

q̄i · q̄ j = qα
i qβ

j gαβ +µ
α
i µ

β

j g̃αβ = qi ·q j +µi j (2.19)

q̄2
i = q2

i −µ
2
i (2.20)

q̄i · p j = q̄α
i pβ

i gαβ = qi · p j (2.21)

where µi j = µi ·µ j.
These definitions enable us to write down explicitly the loop momentum lα

i and denominators Di of
integral 2.6 :

D̄i = l2
i +∑

j,k
αi jαikµ jk +m2

i + iε

lα
i = ∑

j
αi jqα

j +∑
j

βi j pα
j

(2.22)

the introduction of the α and β coefficients just means that the denominators can carry an arbitrary
combination of loop momenta and external momenta flowing through.

Finally, the i-th integration measure can be split between the four-dimensional and the (−2ε)-dimensional
sectors of our space-time: ∫

dDq̄i

(2π)D =

∫
d4qi

(2π)4

∫
d−2ε µi

(2π)−2ε
(2.23)

By virtue of orthogonality and the scalar products above, the extra-dimensional vector µα
i cannot

appear linearly at the denominator, but only quadratically through µi j, and the same can be said for
the numerator. This, in turn, means that for the integral over the (−2ε)-dimensional Euclidean space
one can employ spherical coordinates and immediately integrate over the solid angle. Thus, after
some work, 2.6 is rewritten as follows:

In,l
m [N ] = Ω

l
D

∫
l

∏
i=1

d4q j

∫
∏

1≤i≤ j≤l
dµi j Det

[
Gi j (µ1 . . .µl)

]D−5−l
2

N
(
qi,µi j

)
∏

m
k=1 D̄k

(
qi,µi j

) (2.24)

where Gi j = µi j is the gram matrix of the µα
i vectors and Ωl

D is the product of all the solid angles:
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Ωn =
2π

n+1
2

Γ
(n+1

2

)
Ω

l
D =

l

∏
i=1

Ωd−4−i

2πD/2

(2.25)

We will discuss various practical techniques to simplify and compute Feynman loop integrals and we
will often resort to writing the four-dimensional part of the loop momentum qi in terms of an arbitrary
basis E = {e1,e2,e3,e4}:

qµ

i =
4

∑
j=1

xi je
µ

j (2.26)

arbitrariness entails that for the time being we will not say anything about its properties. Parametrising
in this way the loop momenta within the integral yields:

In,l
m [N ] = Ω

l
DJ

∫
l

∏
i=1

4

∏
j=1

dxi j

∫
∏

1≤i≤ j≤l
dµi j Det

[
Gi j (µ1 . . .µl)

]D−5−l
2

N
(
qi,µi j

)
∏

m
k=1 D̄k

(
qi,µi j

) (2.27)

where J is the Jacobian of the parametrisation.

The gist of this discussion is that, by adopting a dimensional regularisation scheme with external
particles in four dimensions, one can represent a Feynman integral in D continuous dimensions as an
integral over a finite set of variables:

zzz = {x j1,x j2,x j3,x j4,µi j} , 1≤ i≤ j ≤ l (2.28)

and their total number is 4l+ l (l +1)/2 = l (l +9)/2. Moreover, the dependence of the integrand on
the whole set of variables turns out to be polynomial, which will play a crucial role later on.

2.1.2 The D = D‖+D⊥ prescription
An interesting and useful representation of Feynman integrals such as 2.27 can be obtained by a par-
ticular choice of basis E .
The starting point is to consider, among all the n external momenta pi, a subset of independent mo-
menta. In principle there would be n− 1 such vectors, having the one constraint of momentum
conservation. However in a 4-dimensional space-time one can have at most 4 independent vectors.
We therefore define the longitudinal space as the space spanned by one such subset of momenta. This
space has dimensions:

D‖ = min [4,n−1] (2.29)

and the remaining sector shall be spanned by vectors orthogonal to these momenta. These will span
the so-called transverse space of dimensions D⊥.
The metric of the combined space-time will once again be block-diagonal:
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ḡαβ =

(
gαβ

D‖
0

0 gαβ

D⊥

)
(2.30)

The trace over the two metrics are:

gαβ

D‖
gD‖ αβ = D‖ (2.31)

gαβ

D⊥
gD⊥ αβ = D⊥ (2.32)

In this new prescription we will still aim to keep the external momenta in 4 dimensions and split
the D-dimensional loop momenta, this time onto parallel and transverse components, and we will
introduce a new vector λ to span the transverse sector. It is understood that part of the transverse
components will correspond to the ones formerly labelled as µα

i , but since the space is now split
with reference to the independent external moments, some of the components formerly carried by the
four-dimensional qα

i will appear within λ α
i .

The E basis will therefore contain D‖ elements which span the parallel space (and therefore be related
to the independent external momenta) and between 1 and

(
4−d‖

)
transverse vectors defined to be

orthogonal to the former. An example of such a basis which is used multiple times in this thesis can
be found in appendix A.

The parametrisation of an arbitrary number of loop momenta in this parallel-perpendicular prescrip-
tion can be found in [14, 15]. Based on this we split qα

i as follows:

q̄α
i = qα

‖ i +λ
α
i (2.33)

with:

qα

‖ i =

D‖

∑
i=1

xi j eα
j (2.34)

λ
α
i =

4

∑
i=D‖+1

xi j eα
j +µ

α
i (2.35)

Once again some useful scalar product relations can be obtained:

q̄i · q̄ j = qα

‖ iq
β

‖ jgD‖ αβ +λ
α
i λ

β

j gD⊥ αβ = q‖ i ·q‖ j +λi j (2.36)

q̄2
i = q2

‖ i−λ
2
i (2.37)

q̄i · p j = q̄α
i pβ

i gαβ = q‖ i · p j (2.38)

where we introduced the symbol λi j:

λi j = λi ·λ j =
4

∑
k=D‖+1

xikx jk +µi j (2.39)
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We shall refer to the xi variables that parametrise the parallel components of q̄ as x‖ i and we will label
the remaining ones as x⊥ i.
Let us apply this new parametrisation for the loop momenta to the denominators of 2.6:

D̄i = l2
‖ i +∑

j,k
αi jαikλ jk +m2

i + iε

lα

‖ i = ∑
j

αi jqα

‖ j +∑
j

βi j pα
j

(2.40)

and from the scalar rules it is easy to see how the loop denominators are independent of the x⊥ com-
ponents, except for their contribution to λi j. This further reduces the number of variables needed to
parametrise an inverse propagator, from l (l +9)/2 to 4d‖+ l (l +1)/2 = l

(
l +2d‖+1

)
/2. How-

ever, the numerator can generally still depend on these components, but their dependence is once
more polynomial and it is in fact possible to easily integrate over these components, thanks to this
parametrisation.
The full procedure can be found in [14–16] and their appendices. In short, angular variables ΘΛ and
Θ⊥ are introduced, which depend exclusively on the external kinematic quantities, and the existing
transverse variables (x⊥ i and λi j) are mapped to polynomials in these variables:

λi j −→ P [λkk,sin(ΘΛ) ,cos(ΘΛ)] , i 6= j k = {1, . . . , l}
xi j −→ P [λkk,sin(Θ⊥,ΘΛ) ,cos(Θ⊥,θΛ)] , j ≥ D‖ k = {1, . . . , l}

(2.41)

The Feynman integral 2.27 can be thus rewritten as:

In,l
m [N ] = Ω

l
DJ

∫
l

∏
i=1

D‖

∏
j=1

dxi j

∫
l

∏
i=1

dλii λ

D⊥−2
2

ii

∫
d

l(l−1)
2 ΘΛ

∫
dl(4−D‖)Θ⊥

N
(
q‖ i,λi j,Θ⊥

)
∏

m
k=1 D̄k

(
q‖ i,λi j

)
(2.42)

where now the integration is performed over the longitudinal components x‖, the norm of the trans-
verse vectors λii, the angles ΘΛ related to the relative orientations of the transverse vectors and the
Θ⊥, which parametrise x⊥ i. J is the Jacobian of the variable change from q‖ to xi j.

The remarkable result is that the definition of the transverse angles ΘΛ,Θ⊥ (which depends on the
choice of four-dimensional basis) is influenced solely by the external kinematics, and not on the
specific denominators of the integral at hand.
The integration over the transverse variables, thanks to the mappings above, can be expressed as
spherical integrals of trigonometric functions:

∫
d

l(l−1)
2 ΘΛ =

∫
+1

−1
∏

1≤i< j≤l
d cosθi j

(
sinθi j

)(D⊥−2−i)∫
dl(4−D‖)Θ⊥ =

∫
+1

−1

4−D‖

∏
i=1

l

∏
j=1

d cosθ(i+ j−1) j
(
sinθ(i+ j−1) j

)(D⊥−1−i− j)

(2.43)
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Thanks to the polynomial dependence of any numerator on the transverse components, to the map-
pings and to the possibility of factorising each independent transverse parameter, it turns out that
integrating over the transverse space boils down to solving a number of factorised one-dimensional
trigonometric integrals of the type: ∫

+1

−1
d cosθ (sinθ)a (cosθ)b (2.44)

where a, b depend on D in a way fixed by the topology of the amplitude. Moreover, it is possible to
define a procedure [14, 16] to map any integral numerator in to a product of such simple trigonometric
integrals via an expansion on the so-called Gegenbauer Polynomials Cα

n cosθ and, at the same time,
exploit the properties of these polynomials to efficiently perform the integration of each term in the
expansion.
Appendices A.2 and A.3 of [15] present a collection of general results for one- and two- loop integrals
in various kinematic configurations, as well as the integrals over the transverse directions. Thanks to
these results, integrating over transverse components is usually never more difficult than looking
up the relevant case from such a list, which is particularly advantageous for automatic algorithms
employing this mathematical technology.

To conclude this section, we mention that in recent years the understanding of regularisation schemes
has been greatly advanced, and new prescriptions have been proposed. These include dimensional
schemes such as Four-Dimensional Helicity (FDH), its Four-Dimensional formulation (FDF) and
schemes designed to work strictly in four-dimensions such as FOUR-DIMENSIONAL REGULARISA-
TION (FDR). These new schemes have been developed both to broaden the theoretical foundations of
regularisation but also for best applicability to numerical and analytical automated tools. A compact
review and comparison of these and other schemes can be found in [121]

2.2 Tensor integral reduction
Let us go back to considering one-loop Feynman integrals. Once a Feynman integral is properly
regulated (using techniques such as the aforementioned Dimensional Regularisation) much of the
difficulty in calculating dimensionally-regulated integrals is actually given by the tensor structure of
the numerator. In the QFTs one most often encounters, it will contain one or more objects T µ1µ2...µr

i1,i2...in (q̄)
composed of products of various non-trivial tensor objects (such as the γµ matrices for spinors) and
kinematic objects with the loop D-dimensional vector q̄µ .
The generic integrals are of the form:

Iµ1µ2...µr
i1,i2...in =

∫
dDq̄

T µ1µ2...µr
i1,i2...in (q̄)

D̄i1D̄i2 . . . D̄n
(2.45)

D̄i are the inverse propagators, their explicit form is prescription-dependent as evidenced in 2.22 or
2.40. We also forwent any normalisation factors, momentarily.
As it turns out, in a renormalisable theory one does not encounter tensor objects of rank r greater than
the number of denominators:

r ≤ n
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Moreover, the external momenta live in 4-dimensional space-time and thus we have at any one time
at most four independent such vectors. Keeping this in mind, it can be shown [122] that integrals with
n≥ 5 can always be reduced into a combination of simpler integrals with fewer points.
Therefore the actual integrals one encounters are all of the following form:

Ii , Iµ

i =

∫
dDq̄

1 , q̄µ

D̄i

Ii j , Iµ

i j , Iµν

i j =

∫
dDq̄

1 , q̄µ , q̄µ q̄ν

D̄iD̄ j

Ii jk , Iµ

i jk , Iµν

i jk , Iµνρ

i jk =

∫
dDq̄

1 , q̄µ , q̄µ q̄ν , q̄µ q̄ν q̄ρ

D̄iD̄ jD̄k

Ii jkl , Iµ

i jkl , Iµν

i jkl , Iµνρ

i jkl , Iµνρσ

i jkl =

∫
dDq̄

1 , q̄µ , q̄µ q̄ν , q̄µ q̄ν q̄ρ , q̄µ q̄ν q̄ρ q̄σ

D̄iD̄ jD̄kD̄l

Let us, however, examine Iµ

i in detail. We can add and subtract rµ

i to the numerator:

∫
dDq̄

q̄µ

(q̄+ ri)2−m2
i
=

∫
dDq̄

(
q̄µ + rµ

i
)
− rµ

i

(q̄+ ri)2−m2
i
=−rµ

i Ii

The first term at the numerator yields a vanishing integral by symmetry arguments, and thus the result
is proportional to the scalar tadpole integral. Iµ

i is therefore always decomposed immediately.

The evaluation of these integrals is made much simpler by re-writing them as a linear combination of
simpler Scalar Integrals, with coefficients depending on the external kinematic objects of the problem.
This integral basis is sometimes referred to as a Master Integral basis, its elements are known as
Master Integrals (MIs)12, will be of the form:

Ii j...n =

∫
dDq̄

1
D̄iD̄ j . . . D̄n

(2.46)

Master-Integral reduction prescriptions are useful since they split a difficult task in two simpler steps:
one is able to carry out the rest of the physical calculation under advisement as simple momentum
traces and scalar products, leaving the MIs as ”black-box” objects to be evaluated separately.

2.2.1 Passarino-Veltman tensor reduction
The Passarino-Veltman method (PV) [17] is a long-standing tool to reduce tensor integrals as a sum
of scalar integrals.

12We will use the term Master Integrals to denote any set of integrals acting as a basis for a more complex integral.
More precisely it refers specifically to the minimal basis of integrals that describe a process. This is relevant because some
integrals can be related to others by identities or vanish outright, thus simplifying the expansion. We will say more about
this in later chapters.
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Let us describe the scheme with a few examples. If we take a generic rank-1 integral Iµ

i j...n, then we
expect this to transform as a four-vector under the Lorentz group. A basis for the vector space in which
this quantity lives is given by the independent four-momentum vectors pµ

i carried by the incoming
particles interacting through the diagram. Keeping in mind momentum-conservation, for n incoming
particles we will have n−1 four-momentum vectors at our disposal. We therefore decompose as thus:

Iµ

i j...n =
n−1

∑
α=1

pµ

αCα
n (2.47)

This sum encompasses all possible rank-1 tensors at our disposal given the independent external
momenta. The coefficient Bα

1 is called form factor, the superscripts (i j) indicate to which denominator
(and particle masses) the coefficient is related. Let us now contract 2.47 with one of the independent
vectors pβ :

Ii j...n · pβ =

∫
dDq̄

q̄ · pβ

D̄iD̄ j . . . D̄n
=

n−1

∑
α=1

GαβCα
n (2.48)

Gαβ is the (n−1)× (n−1) Gram matrix of independent momenta, whose entries are pα · pβ . Real-
ising that we can write pβ = rβ − rβ−1 we can decompose the dot product q̄ · pβ as a combination of
D-dimensional denominators and masses:

q̄ · pβ =
1
2

[
D̄β − D̄β−1−

(
r2

β
−m2

β

)
+
(

r2
β−1−m2

β−1

)]
(2.49)

This formula enables us to write out 2.48 in terms of simpler quantities. In detail, the two denom-
inator factors will cancel out with the respective ones present in the original integral, yielding two
scalar integrals with one fewer denominator, whereas the remaining constants will multiply the scalar
integral Ii j...n:

n−1

∑
α=1

GαβCα
n =

1
2

[
Ii j...��β ...n

− Ii j...��β−1...n +
(

r2
β−1−m2

β−1− r2
β
+m2

β

)
Ii j...n

]
(2.50)

This constitutes an (n−1)-dimensional system of equations in the unknown form factors. We can
extract all of them by multiplying by the inverse Gram matrix and summing over the columns:

Cα
n =

n−1

∑
β=1

G
−1
αβ

2

[
Ii j...��β ...n

− Ii j...��β−1...n +
(

r2
β−1−m2

β−1− r2
β
+m2

β

)
Ii j...n

]
(2.51)

For a rank-2 tensor the strategy is similar, the basis used to decompose the integral will now contain
all the independent rank-2 tensors that we can build, which are the 4-dimensional metric gµν and all
products of the (n−1) eternal momenta two-by-two, of which we have (n−1)2:
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Iµν

i j...n = gµνC00
n +

n−1

∑
α,β=1

pµ

α pν

β
Cαβ

n , Cαβ
n =Cβα

n (2.52)

Let us mention that we include only the 4-dimensional part of the metric, as opposed to the full D-
dimensional one, for consistency with the (n−1) external momenta, who live in the 4-dimensional
sector exclusively.

We now contract this with all the independent momenta, obtaining (n−1) equations:

pγ µ Iµν

i j...n = pν
γ C00

n +
n−1

∑
α=1

n−1

∑
β=1

G
(n−1)
γα pν

β
Cαβ

n (2.53)

where G(n−1)
βγ

is the (n−1)× (n−1) Gram matrix of external momenta.
The left-hand side is an integral with numerator q̄µ

(
q̄ · pγ

)
, which can be expanded similarly to 2.49,

obtaining:

pγ µ Iµν

i j...n =

∫
dDq̄

(
q̄ · pγ

)
q̄ν

D̄iD̄ j . . . D̄n
=

1
2

[
Iν
i j...�γ...n

− Iν

i j...��γ−1...n +
(

r2
γ−1−m2

γ−1− r2
γ +m2

γ

)
Iν
i j...n

]
(2.54)

which is a decomposition into rank-1 tensor integrals. Those can all be reduced using the previous
results, bearing in mind to plug in the correct particle momenta and, if needed, shift the loop momen-
tum variable; in the case of a rank-2 bubble, the decomposition will include rank-1 tadpoles, which
vanish by symmetry arguments.

After fully decomposing all tensor integrals down to the scalar MIs in each equation, one separates
all terms proportional to each pν

β
on the l.h.s to bring it in the same form of 2.53.

Then, in every equation, one collects all terms multiplying pν

β
for each value of the index β separately.

The result is (n−1) systems of equations in the variables Cαβ
n where beta is now fixed. It could be

shown by explicit calculation that each of these systems can be assembled in matrix form:

G
(n−1)
γα


Cα=1 β

n

Cα=2 β
n

...
Cα=n−1 β

n

=


Rβ

γ=1

Rβ

γ=2
...

Rβ

γ=n−1

 , β = 1,2 . . .n−1 (2.55)

where Rβ

γ is the collection of all terms proportional to pν

β
within pγ µ Iµν

i j...n.

We point out that these systems are not fully determined since the term Rβ

γ=β
in each system contains

C00
n . This last form factor is extracted by contracting 2.52 with the 4-dimensional metric.
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Expanding the l.h.s, we have the contraction of the 4-dimensional metric with q̄µ q̄ν , which yields the
projection of the loop momentum squared on the 4-dimensional coordinates, i.e. q2.
The numerator of the integrand is decomposed as follows, using 2.22:

Iµν

i j...ngµν =

∫
dDq̄

q2

D̄iD̄ j . . . D̄n
=

∫
dDq̄

D̄γ +m2
γ +µ2

D̄iD̄ j . . . D̄n
=
[
Iµ

i j...�γ...n
+m2

γ Iµ

i j...n + Iµ

i j...n
[
µ

2]] (2.56)

where Iµ

i j...n
[
µ2] denotes the n-point loop integral with µ2 at the numerator.

For the r.h.s:

gµν Iµν

i j...n = 4 C00
n +

n−1

∑
α,β=1

G
(n−1)
αβ

Cαβ
n =

n−1

∑
β=1

Rβ

β
(2.57)

where we plugged in each of the γ = β equations of 2.55.
From 2.57 C00

n can be extracted (recalling that each of the Rβ

β
terms contains it) and plugged into 2.55,

which are then solved to extract all coefficients in terms of scalar products and MIs.

It could be shown that, in general, the form factors belonging to the 4-dimensional metric will contain
an integral of the form Iµν ...

i j...n
[
µ2], which we showed explicitly for C00

n . These terms are known as
rational terms since they constitute the leftover part of the simplification of a 4-dimensional numerator
against a D-dimensional denominator i.e. a ratio of two incommensurable quantities. We will say
more about them shortly.

The PV procedure is readily generalised to reduce integrals of arbitrary rank (although still ≤ n), and
the final result is a decomposition onto the independent tensor objects available, each multiplied by
a coefficient Cαβ ...

n containing scalar Master Integrals Ii j.... Table 2.1 of [1] displays the full chain
of decomposition of each of the Cαβ ...

n coefficients down to the individual MIs. The Cαβ ...
n quantities

written here are denoted therein as: Aαβ ... for n= 1, Bαβ ... for n= 2 etc. and their A0 , B0 . . . functions
correspond to the MIs Ii , Ii j . . . .

It is then easy to morph this result into an expansion onto the MIs themselves, with coefficients
containing the tensor objects. The expansion takes the form:

Mn =

∫
dDq̄M(q) =

= ∑
i<<l

∫
dDq̄

ci jkl
4,0

D̄iD̄ jD̄kD̄l
+ ∑

i<<k

∫
dDq̄

ci jk
3,0

D̄iD̄ jD̄k
+∑

i< j

∫
dDq̄

ci j
2,0

D̄iD̄ j
+∑

i

∫
dDq̄

ci
1,0

D̄i
+R

(2.58)

where i << l simply fixes the ordering of whatever denominators are relevant to one given term in
the master integral series. We also notice the term R which encompasses the rational terms i.e. all
the integrals not reducible into scalar MIs.
Equation 2.58 can be represented pictorially, where a indicates a particular configuration of denomi-
nators i, j, . . . for brevity:

M1−loop
n = =∑

a
ca

4 +∑
a

ca
3 +∑

a
ca

2 +∑
a

ca
1 +R

(2.59)
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The scalar integrals with four, three, two and one internal lines are known respectively as box, triangle,
bubble and tadpole, in analogy with the shape of their respective diagrams. We now write them down
using the notation used by automatic code packages such as FEYNCALC[50, 51]:

A0
(
m2

1
)
=
−i(2µπ)4−D

π2

∫
dDq̄

1
q2−m2

1

B0
(

p2
1,m

2
1,m

2
2
)
=
−i(2µπ)4−D

π2

∫
dDq̄

1(
q2−m2

1
)(

(q+ p1)
2−m2

2

)
C0
(

p2
1, p12, p2

2,m
2
1,m

2
2,m

2
3
)
=
−i(2µπ)4−D

π2

∫
dDq̄

1(
q2−m2

1
)(

(q+ p1)
2−m2

2

)(
(q+ p2)

2−m2
3

)
D0
(

p2
1, p12, p23, p2

2, p2
3, p13,m2

1,m
2
2,m

2
3,m

2
4
)
=

−i(2µπ)4−D

π2

∫
dDq̄

1(
q2−m2

1
)(

(q+ p1)
2−m2

2

)(
(q+ p2)

2−m2
3

)(
(q+ p3)

2−m2
4

) (2.60)

where pi j :=
(

pi− p j
)2. These scalar integrals have been classified and computed explicitly by ’t

Hooft and Veltman [123]. There exist simpler version of these functions where several arguments are
either identical or zero outright, their explicit expressions end up being equally simpler.

Let us briefly comment on the rational terms. The MI-basis of tadpoles, bubbles, triangles and boxes,
is a complete integral basis in 4 dimensions, and the presence of rational terms in D-dimensions
means that this basis is no longer complete in the case of dimensionally-regulated space-time. In [45]
these terms were investigated and classified into two categories: the R1 terms arise from the extra
dimensionality of the denominators and R2 from the dimensionality of the numerators13. These ra-
tional terms were, originally, handled separately from the main calculations, either computed directly
or reconstructed from tree-level amplitudes.

2.2.2 D-dimensional amplitude decomposition
The more modern approach is to adopt a more general view of Dimensional Regularisation: instead
of interpreting the D-dimensional space-time as a ”small extension” of a four-dimensional space-
time (i.e. D = 4− 2ε), it could instead be envisaged as a 5-dimensional space, with the familiar 4
dimensions augmented by an extra degree of freedom that encompasses the remaining sector.
In this way one can identify this fifth degree of freedom with µ2 itself, and this immediately enables
one to interpret integrals of the form Iµν ...

i j...n

[(
µ2)α

]
as distinct Master Integrals of their own right: the

former rational terms are thus automatically captured and accounted for, without any need for ad-hoc
techniques to deal with them separately.

At the very beginning of section 2.2 we remarked that in four space-time dimensions the number of
degrees of freedom restricted the MI basis to include up to 4-point integrals. By the same token,

13This classification of the rational terms was formalised in within the context of Integrand Decomposition, which will
be detailed in the following chapter.

36



CHAPTER 2. METHODS FOR 1-LOOP FEYNMAN INTEGRALS

in this peculiar view of D-dimensional space the basis should be extended to include 5-dimensional
Master Integrals, which we will henceforth call pentagons. We shall then amend 2.58 and write down
a D-dimensional Feynman amplitude parametrisation as follows [30, 40, 44]:

Mn =

∫
dDqA(q̄) =

= ∑
i<<m

C̄i jklmIi jklm + ∑
i<<l
C̄i jklIi jkl + ∑

i<<k
C̄i jkIi jk + ∑

i<< j
C̄i jIi j +∑

i
C̄iIi

(2.61)

=∑
a

ca
5 +∑

a
ca

4 +∑
a

ca
3 +∑

a
ca

2 +∑
a

ca
1

(2.62)

where i jk . . . are ordered partitions of the n external momenta grouped in sets of five, four, three etc.
depending on the particular integral in question.
According to our scheme, external momenta are strictly four-dimensional, therefore the D-dimensionality
of the MI coefficients occurs through q̄2 and, by extension, through µ2 alone and powers thereof. The
rank restriction mentioned previously still holds; for this reason bubbles and triangles will contain
at most contributions of µ2 while boxes will comprise µ2 and µ4, while tadpoles need to be purely
4-dimensional.

The newly-introduced pentagon integral should, intuitively, bring a scalar contribution as well as µ2

and µ4 terms. However, in [124] it was shown that the integrals Ii jklm [1], Ii jklm
[
µ2], Ii jklm

[
µ4] differ

from each other by q̄-independent factors that depend in the kinematic variables of the pentagon
in question and at most four-point integrals. Therefore any, but only one, of those three should be
selected as the representative pentagon Master Integral. For this discussion we shall pick the scalar
one for consistency with [30, 40], but in chapter 4.1.2 we will say more about this and make a different
choice.
These considerations enable us to write down 2.61 in terms of a new MI-basis:

Mn =

∫
dDqA(q̄) =

= ∑
i<<m

C̄i jklmIi jklm + ∑
i<<l

{
C[0]i jklIi jkl [1]+C

[2]
i jklIi jkl

[
µ

2]+C[4]i jklIi jkl
[
µ

4]}+
∑

i<<k

{
C[0]i jkIi jk [1]+C

[2]
i jkIi jk

[
µ

2]}+ ∑
i<< j

{
C[0]i j Ii j [1]+C[2]i j Ii j

[
µ

2]}+∑
i
CiIi

(2.63)

The integrals contributing factors of µ2 at the numerator can be dealt with by writing them as scalar
integrals in dimensions higher than D itself, via the so-called dimensional shift identities described in
appendix A of [26]:

ID
n
[
µ

2α
]
= ID+2α

n [1]
1

2α

α−1

∏
k=0

(D+4− k) (2.64)

Moreover it was realised long ago [125] that the scalar pentagon integral in D = 4 dimensions can be
written as a linear combination of five D = 4 box integrals. In [126] this result was found true also in
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D = 4−2ε up to order ε . For these reasons the pentagon term is usually omitted outright.

We thus arrive at the following parametrisation of the decomposed amplitude:

Mn =

∫
dDqM(q̄) =

= ∑
i<<l

{
C̃i jklID

i jkl +
D−4

2
C[2]i jklI

D+2
i jkl +

(D−4)(D−2)
4

C[4]i jklI
D+4
i jkl

}
+

∑
i<<k

{
C[0]i jkID

i jk +
D−4

2
C[2]i jkID+2

i jk

}
+ ∑

i<< j

{
C[0]i j ID

i j +
D−4

2
C[2]i j ID+2

i j

}
+∑

i
CiID

i

(2.65)

where C̃i jklm and C̃i jkl are modifications on the respective coefficients brought about by the shift iden-
tities, an explicit expression can be found in equations 3.11 and 3.12 of [30]. In this expression we
identify several higher-dimensional contributions that disappear in the D = 4 limit due to the vanish-
ing of their numerical coefficients. These correspond to none other than the rational terms that are
missed in the strictly four-dimensional calculation.

2.3 Master Integral Identities
In general, a Master Integral (MI) decomposition is not unique, and there exists more than one set of
MIs capable of representing the original amplitude.
Whenever a Feynman amplitude is to be decomposed it becomes desirable to have the result as simple
and compact as possible, in particular the final set of MIs should be the smallest and the easiest to
evaluate that one can reach given the amplitude.

This is hard to accomplish a priori, but can be made easier by some remarkable properties of Feynman
Integrals in Dimensional Regularisation. These integrals are a slightly more general version of 2.46:

Ii j...n (x1 . . .xK) =

∫
dDq̄

S1 . . .Sq

D̄iD̄ j . . . D̄n
(2.66)

where:

• the set of quantities {Si} represents the Irreducible scalar products (ISP) of the particular topol-
ogy, that is, the particular scalar kinematic quantities that cannot be written in terms of the
denominators that define the sector and simplified against them14. We say there are q distinct
terms, counting in also all the powers they can be raised to compatibly with rank restrictions;

• The variables x := {x1 . . .xK} are the kinematic invariants that parametrise the integral as a
whole (such as the particles’ masses or the Mandelstam invariants s, t), they depend in turn on
the external momenta of the Feynman amplitude pi;

2.3.1 Lorentz invariance identities
Scalar MIs such as those reached with Passarino-Veltman decomposition will be invariant under
Lorentz transformations, such as the following rotation of the external four-momenta:

14In chapter 4 we show how a generic collection of scalar products can be parametrised and simplified against the
denominators, leaving behind the ISPs.
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pµ

i → pµ

i +δ pµ

i = pµ

i +δω
µν piν (2.67)

where δωµν is the anti-symmetric infinitesimal Lorentz transformation tensor. Let us now impose
the invariance of a scalar integral such as 2.66 and manipulate the left-hand side:

Ii j...n (pi +δ pi) = Ii j...n (pi)

Ii j...n (pi +δ pi) = Ii j...n (pi)+∑
j

δω
µν

(
pν

j
∂

∂ pµ

j

)
Ii j...n (pi)≡ Ii j...n (pi)

this, plus the anti-symmetry of the tensor δωµν , results in the following identity:

∑
j

(
pν

j
∂

∂ pµ

j
− pµ

j
∂

∂ pν
j

)
Ii j...n (pi) = 0 (2.68)

Contracting this relation with all the possible anti-symmetric tensors pµ

i pν
j constructed from the n−1

independent external momenta, it is possible to obtain (n−1)(n−2) Lorentz-invariance identities
(LI).
Let us show this in the case of four-point scalar box integrals, where one has only three independent
momenta:

(
pµ

1 pν
2 − pµ

2 pν
1
)
∑

j

(
pν

j
∂

∂ pµ

j
− pµ

j
∂

∂ pν
j

)
Ii j...n (pi)

p1

p2

p4

p3

= 0

(
pµ

1 pν
3 − pµ

3 pν
1
)
∑

j

(
pν

j
∂

∂ pµ

j
− pµ

j
∂

∂ pν
j

)
Ii j...n (pi)

p1

p2

p4

p3

= 0

(
pµ

2 pν
3 − pµ

3 pν
2
)
∑

j

(
pν

j
∂

∂ pµ

j
− pµ

j
∂

∂ pν
j

)
Ii j...n (pi)

p1

p2

p4

p3

= 0

(2.69)

differentiating the scalar integrals with respect to the external momenta will raise the power of the
denominators in question and create new terms at the numerator, which depend on the momenta and
may be tensors. Some of these terms can be re-written in terms of the denominators and simplified,
leaving behind ISP terms that give in turn new scalar integrals: the result is an identity between
integrals of different topologies.

2.3.2 Integration-by-parts identities
These identities, first recognised in the eighties [127], are a consequence of the validity of Gauss’s
integral theorem in D dimensions. An integral of the type 2.66 is regularised and the dimensional
parameter D is continuous, therefore one can assume safely that it is convergent at the boundary of
the domain of the loop momentum.
If this is true then the integrand has to vanish at the very same boundary, at least rapidly enough to
ensure the overall integral converges. As a consequence, when integrating 2.46 by parts, no boundary
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term can be generated.
Gauss’s theorem expresses these facts as the vanishing of the following divergence integral:

Ii j...n =

∫
dDq̄

∂

∂qµ

[
vµ

i
D̄iD̄ j . . . D̄n

]
(2.70)

where ∂

∂qµ could in fact be a derivative with respect to any loop momentum if several were present,
and vµ

i could be any of the independent four-momenta under advisement: {q1, . . . ,ql, p1, . . . , pn−1}.
This operation will once again alter the power of the denominators and generate scalar product terms
at the numerator, which can be written in terms of the denominators themselves and simplified. The
resulting Integration-by-parts Identity (IBP) is then a relation between different scalar integrals, that
may correspond to some integral present in the MI decomposition of be completely novel; regardless,
a total of l (l +n−1) such identities can be generated for each scalar integral at hand.

A few examples

Let us first consider a scalar tadpole integral, the simplest Feynman integral conceivable. We drop the
bar notation for clarity: ∫

dDq
1

(q2−m2)
=

∫
dDq

1
D0

(2.71)

The only independent momentum available is qµ itself, using ∂µD0 = 2qµ we obtain:

0 =

∫
dDq

∂

∂qµ

[
qµ

D0

]
=

∫
dDq

[
D
D0
− 2q2

D2
0

]
=

∫
dDq

[
D−2

D0
+

2m2

D2
0

]
(2.72)

which entails an IBP identity between the two tadpole integrals:∫
dDq

1
D2

0
=−D−2

2m2

∫
dDq

1
D0

(2.73)

=−D−2
2m2

we represented the IBP diagrammatically by defining a dotted internal line as meaning a squared
denominator, and by representing a massive propagator with a thick line.

Let us now consider a scalar bubble:∫
dDq

1

(q2 )
(
(q− p)2−m2

) =

∫
dDq

1
D1D2

(2.74)
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This case is more involved as there are two denominators to be differentiated and two independent
vectors qµ , pµ . Choosing vµ = qµ and skipping through the calculations one gets:

0 =

∫
dDq

D−3
D1D2

−

∫
dDq

1
D2

=

∫
dDq

D−3
D1D2

−

∫
dDq

1
D0

(2.75)

where the last integral was written in terms of the tadpole of the previous example by applying a loop
momentum shift:q→ q+ p.
Using the previous IBP we define a new identity, and write it down diagrammatically:∫

dDq
1

D1D2
=−D−2

D−3
1

2m2

∫
dDq

1
D0

(2.76)

=−D−2
D−3

1
2m2

These examples make it clear how it is possible not only to reduce a set of Master Integrals into a
subset of truly independent MIs, but how some of these integrals are of a simpler topology than the
starting ones, which simplifies the overall result.

In a more realistic case, with several integrals up to boxes, the identities become ever more complex
and involve many integrals at once. The generation of IBP identities suitable to be applied to any
given case can be done automatically using the Laporta algorithm [18] which has been implemented
in several software suites which generate the IBP and LI identities, identify the integrals which yield
the simplest and most compact end result and calculate the substitution rules by solving the system
of identities for those integrals. Two examples of implementation of the Laporta algorithm are KIRA

[19] and REDUZE [20].

2.4 Evaluating Master Integrals with Differential Equations
After the decomposition onto Master Integrals has been obtained and optimised through the afore-
mentioned identities, the final step is to tackle the problem of their calculation. In a similar way to
what we did to derive IBPs, it is possible to generate sets of Differential Equations satisfied by the
MIs that can be solved to obtain an expression for the integral itself. This concept first appeared in
[21] and later extended to more general Differential Equation in any set of Mandelstam variables in
[22].

Let us start once again from an integral of the form 2.66 and write down the following:

pµ

j
∂

∂ pµ

k
Ii j...n (x) (2.77)

where pµ

i is one of the n−1 independent external momenta. The integral is expressed in terms of the
invariants x, using the chain rule this becomes:

pµ

j ∑
x∈x

∂x
∂ pµ

k
∂xIi j...n (x) = ∑

x∈x

(
pµ

j ·
∂x

∂ pµ

k

)
∂xIi j...n (x) (2.78)
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The quantity in parentheses can be written out explicitly knowing the ISPs of the topology, and the
result is a differential equation for the integral I:

∑
x∈x

(
pµ

j ·
∂x

∂ pµ

k

)
∂xIi j...n (x) = pµ

j
∂

∂ pµ

k
Ii j...n (x) (2.79)

If I (x) is a Master Integral, its differentiation with respect to the external momenta will produce
several different integrals all belonging to the same topology (since the powers of the denominators
can only rise or stay the same). These integrals can all be related to the MIs of that particular topology
by means of known IBP and LI identities.

The result is a system of first-order inhomogeneous differential equations between the Master Inte-
grals and their sub-topologies, of the form:

∂xI j (x) = ∑
k

AkIk (x)+∑
m

BmI′m (x) (2.80)

where ∂x ≡ ∂

∂x
for x ∈ x, I′ are the MIs of the sub-topologies of I and Ak,Bk are rational coefficients.

If we re-define I as a vector that includes all independent MIs and related sub-topologies (let us say
their number isN ), we can re-write the system compactly as a matrix system of differential equations:

∂xI (x,D) = Mx (x,D) I (x,D) (2.81)

where each Mx is a N ×N matrix.

Let us clarify a few points. First, the matrices Ml (x,ε) are in general block-triangular: IBP and LI
identities between MIs, as we saw, can send an integral into integrals of the same topology or, at most,
a sub-topology (This is because differentiation will never be able to generate a new denominator term).
The differential equations for a 1-pt MI will thus involve only 1-pt integrals, while 2-pt integrals may
be related to 1- and 2-pt integrals and so on, until the largest MI of the topology. The matrix is thus
organised in blocks for each distinct sector, and each block is triangular to reflect the structuring of
the sub-topologies. It is worth mentioning that they still have rational entries at this stage.
Then, in 2.81 we made explicit the D-dependence of the MIs since this system is exact in generic
D space-time dimensions. Ideally this is the condition in which one would solve the system, but in
practical applications one works with D = 4− 2ε , in order to be able to take the limit D→ 4. The
system is thus re-written in terms of the ε parameter:

∂xI (x,ε) = Mx (x,ε) I (x,ε) (2.82)

enabling one to expand the basis of MIs in powers of ε:

I j (x,ε) = ∑
k

Ik
j (x)ε

k (2.83)

The DE system is now in the series coefficients Ik
j (x), and its solution is made simpler since the ε-

dependence is decoupled. Additionally one can stop before obtaining the full series since one is often
only interested in the D→ 4 limit. Moreover, this would be in general a Laurent series but it can
be turned into a simpler Taylor series by choosing appropriate normalisations for the MIs that ensure
good convergence properties of the series coefficients.
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There exist automatic codes that are able to generate systems of Differential Equations given an input
list of Master Integrals. Amongst these a great tool is the software suite REDUZE [20] which (as
mentioned) is also capable of reducing a set of scalar integrals onto a Master Integral basis via the
generation and use of IBP relations, and then to set up the system of DEs to be solved separately.

2.4.1 Differential equations in canonical form
Finding a solution to the system is strongly dependent on the form of the matrices involved and their
dependency on both the kinematic variables and ε . First, one can always simplify the ε part by
expanding the MIs in power series and considering the Differential Equation order-by-order. Then, in
case of triangular systems, it is possible to determine each MI starting from the equation with just a
single matrix element and using methods such as Euler’s variation of constants, and then proceeding
in a bottom-up fashion re-cycling the previous solutions.

In the more general case of a non-triangular system of DEs the way forward is to find a suitable
transformation matrix capable of transforming the system in a triangular one. In other words, the goal
is to find a matrix B(x,ε) defined as:

I (x,ε) = B(x,ε) Ĩ (x,ε) (2.84)

which, defining M̃= B
−1 (x,ε) [M(x,ε)B(x,ε)−∂xB(x,ε)], yields a new triangular system:

∂xĨ (x,ε) = M̃(x,ε) Ĩ (x,ε)+S (x,ε) (2.85)

Once again this change of basis exploits the fact that, while the number of MIs and the sectors are
generally determined by the problem, the actual set of MIs is not unique.
It is possible to simplify even further the process of finding a solution by imposing a few more restric-
tions on the form of the DE system. In particular we wish to obtain a system of DEs in the so-called
ε-factorised form [23]:

∂xI (x,ε) = εMx (x) I (x,ε)+S (x,ε) (2.86)

The immediate advantage of this factorisation is that, expansing in powers of ε , the DEs only couple
the kth order coefficient to the (k−1)-th:

∂xIk (x) = Mx (x) Ik−1 (x) (2.87)

therefore at any stage the DEs become homogeneous, in the D→ 4 limit (i.e. ε → 0) they decouple
altogether and the solutions are constants, that depend on the boundary condition:

∂xI0 (x) = 0 =⇒ I0 (x)≡ I0 (x0) (2.88)

In the case of multiple invariants x the ε-factorised DEs can be combined into a total differential
equation:

dI (x,ε) = ε dA(x) I (x,ε) (2.89)

with ∂xA(x) = Mx (x). Expanding once again in powers of ε:
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dIk (x) = dA(x) Ik−1 (x) (2.90)

which is formally trivial to solve and can be written as an iterated integral along a path γ in x space:

Ik (x) =

∫
dMIk−1 (x) =

∫
dM . . .dM︸ ︷︷ ︸

k times

I0 (x0) (2.91)

If we re-package the ε-expansion using these expressions for the coefficients the solution becomes:

I (x,ε) = exp

[
ε

∫
dA

]
I (x0,ε) (2.92)

This template of solution is so far quite formal. To move towards a practical, iterative method of
finding a general solution is it convenient to assume that the matrix dA(x) only possesses, in any of
its entries, simple poles in the variables x, and to this end the kinematic variables may be re-defined,
shifted or rescaled.
The poles will be of the form 1

ηi
where ηi is any combination of the kinematic variables that yields a

simple pole. These quantities will form the kernel of the iterated integration, as we shall see, and if
the simple-poles condition is satisfied then the matrix dM(x) is in the so-called dlog form since, upon
integration, the simple poles give rise to logarithms:

A(x) =
k

∑
i=1
Milogηi (x) (2.93)

In this expression the new matrices Mi are constant and related to each ηi, known as letters of an
alphabet that defined the Differential Equation.
To summarise, one usually seeks DE systems that satisfy two requirements:

• The ε dependency can be factorised from the dependence on x within the system’s matrices
dM(x);

• The factorised matrices dM(x) only have simple poles, and can then be cast in dlog form

In this case one say that the system is in so-called Canonical form [23] and its solution can be com-
puted relatively easily through a Dyson series of iterated integrals, as we will see.
The first major hurdle is then to find the basis transformation B applied to the MI basis that can bring
the system in canonical form. There exist several ways to accomplish this, such as the Magnus expo-
nential method [128] which can be applied to a special class of DE systems and which we describe
next.

2.4.2 The Magnus exponential method
Let us consider a system of Master Integral DEs in a single kinematic variable x and seek to bring it
in canonical form. Let us assume for the moment that the matrix M in 2.82 is linear in ε , allowing
one to write the system in the following simple form:

∂xI (x,ε) =
[
M

0 (x)+ εM
1 (x)

]
I (x,ε) (2.94)
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Let us now perform the change of basis 2.84 and choose B(x) such that it constitutes a matrix solution
of the DE system at ε = 0:

∂xB(x) = M
0 (x)B(x) (2.95)

The change of basis has the effect of absorbing the ε-independent term, rendering the DE system at
once simpler and ε-factorised:

∂xĨ (x,ε) = ε
[
B
−1 (x)M1 (x)B(x)

]
Ĩ (x,ε) := εM̃

1 (x) Ĩ (x,ε) (2.96)

The problem is then to solve 2.95 for B, which is difficult in general.
In [128] the solution was written as a Magnus exponential [24]:

B(x) = eΩ[M0](x) = 1+Ω
[
M

0](x)+ 1
2!

Ω
[
M

0](x)Ω
[
M

0](x)+ . . . (2.97)

the linear operator Ω is itself given as the infinite sum:

Ω
[
M

0](x) = +∞

∑
i=0

Ωi
[
M

0](x) (2.98)

where each summand is an iterated integral of nested commutators of the kernel M0, the first three
terms being:

Ω1
[
M

0](x) = ∫ x

x0
dτ1M

0 (τ1)

Ω2
[
M

0](x) = 1
2

∫ x

x0
dτ1

∫
τ1

x0
dτ2
[
M

0 (τ1) ,M
0 (τ2)

]
Ω3
[
M

0](x) = 1
6

∫ x

x0
dτ1

∫
τ1

x0
dτ2

∫
τ2

x0
dτ3
[
M

0 (τ1) ,
[
M

0 (τ2) ,M
0 (τ3)

]]
+
[
M

0 (τ3) ,
[
M

0 (τ2) ,M
0 (τ1)

]]
This representation is useful since, usually, the nested commutators vanish after a number of steps
and thus the iteration is truncated.
The Magnus exponential can be put to practical use with the following procedure:

1. First we re-label the system’s matrix:

M(x,ε)≡ M(0) (x,ε) = M
0
(0) (x)+ εM

1
(0) (x) (2.99)

and we split M0
(0) (x) in its diagonal and off-diagonal parts:

M
0
(0) = D

0
(0)+N

0
(0) (2.100)
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2. we define a first change-of-basis matrix B1 using just the diagonal part of the system matrix:

B1 = eΩ

[
D

0
(0)

]
= e

∫ x
x0 dτ1D

0
(0)(τ1) (2.101)

since diagonal matrices commute with their integral the nested commutators all vanish and only
the first term survives. The transformed system matrix M(1) is then:

M(1) := B
−1
1
[
M(0)B1−∂xB1

]
(2.102)

This transformation absorbs away the diagonal part D0
(1), since a diagonal matrix commutes

with its integral:

D
0
(1) = B

−1
1

[
D

0
(0)B1−∂xB1

]
= B

−1
1 B1

[
D

0
(0)−D

0
(0)

]
= 0 (2.103)

thus the ε-free part of M0
(1) is fully non-diagonal i.e.:

M
0
(1) ≡ N

0
(1) (2.104)

3. We rotate away this term with a second Magnus transformation:

B2 = eΩ

[
N

0
(1)

]
= e

∫ x
x0 dτ1N

0
(1)(τ1)

M(2) := B
−1
2
[
M(1)B2−∂xB2

]
−→ M

0
(2) = 0→ M

0
(2) = B

−1
2

[
N

0
(1)B2−B2N

0
(1)

] (2.105)

This might not actually be doable in a single rotation as the kernel N0
(1) does not commute with

its own integral, but the leftover commutator may itself be rotated away, leaving behind nested
commutators and so on until the leftover commutators vanish (which they generally do after a
number of steps).
Therefore the matrix transformation that casts the system in the ε-factorised form 2.96 is
B= B1B2.

To handle the case of multiple kinematic variables x = {xi} , i = 1 . . .K, step 2 is done once on the
first system with matrixMx1 (0) and then repeated for each of theK systems, compounding the Magnus
transformations at each step. The same is done for step 3, and the final transformation B is then the
product of 2KMagnus exponentials.

The Magnus exponential can bring an ε-linear system in ε-factorised form, but says nothing about
how to find the linear system in the first place. No general method to achieve this form is available, in
practice this is done by trial and error using knowledge acquired through experience (i.e. that certain
classes of Master Integrals instead of others will yield this form), using IBP and LI identities to reach
a convenient MI basis and even rescaling some MIs by ε . Regardless of the methods employed,
finding an ε-linear system has proven possible in most known cases, and much easier than finding an
ε-factorised system right away without resorting to the Magnus method.
Still in [128] a strategy was laid out to apply the Magnus exponential method to DE systems which
are polynomial in ε .
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2.4.3 General solution via Iterated Integrals
Let us write down a generic canonical system of Differential Equations:

dI (x,ε) = ε dA(x) I (x,ε) (2.106)

We saw how the formal solution to this system can be written as a matrix exponential:

I (x,ε) = exp

[
ε

∫
γ

dA

]
I (x0,ε) (2.107)

This solution can be expanded as a Dyson series, which we write down for a single variable x:

I (x,ε) =

{
1+ ε

∫ x

dt1dA(t1)+ ε
2

∫ x

dt1dA(t1)

∫ t

1
dt2dA(t2)+ . . .

}
I (x,ε) (2.108)

where I (x0,ε) is a vector of boundary conditions to be fixed.
It is easy to prove that this is a solution by plugging it into equation 2.106 and examining it order-by-
order in ε:

ε∂x

∫ x

dt1dA(t1) = εdA(x) = εdA(x)×1

ε
2
∂x

∫ x

dt1dA(t1)

∫ t

1
dt2dA(t2) = ε

2dA(x)

∫ x

dt1dA(t1) = εdA(x)× ε

∫ x

dt1dA(t1)

(2.109)

where we simplified the boundary conditions for simplicity.

Let us now assume two kinematic variables x = {x,y}, we will then have two system matrices Mx,y =
Mx,y (x,y). For this reason, a general solution as a series in ε cannot be written straight away for
both variables as they are coupled at nearly all orders. The only viable way is to construct a solution
order-by-order in εk:

I (x,y,ε) =
{

B0 + εB1 (x,y)+ ε
2B2 (x,y)+ . . .

}
I (x,ε) (2.110)

• k=0 The presence of ε factorised means that the solution at this order is simply a constant, we
define it B0 := 1.

• k=1 We first integrate the Mx system in x, which produces a function of y as a constant term:

B1 (x,y) =

∫ x

dtMx (t,y)+C1 (y) (2.111)

and just like before one can verify that this satisfied the DE for x at this order in ε . We now
plug it into the y equation and pick order ε:

ε∂y

[∫ x

dtMx (t,y)+C1 (y)

]
= εMy (x,y)×B0 (= 1) (2.112)
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from which one determines the C function by integrating:

∂yC1 (y) = My (x,y)−∂y

∫ x

dtMx (t,y) (2.113)

• generic k By plugging in the general solution and extracting the k-th power of ε one finds:

∂x,yBk (x,y) = Mx,yBk−1 (x,y) (2.114)

once again we integrate first in the x variable:

Bk (x,y) =

∫ x

dtMx (t,y)Bk−1 (t,y)+Ck (y) (2.115)

and, similarly as before, we plug this in the y equation at order k and extract the constant term

∂yCk (y) = My (x,y)Bk−1 (x,y)−∂y

∫ x

dtMx (t,y)Bk−1 (t,y) (2.116)

By iterating these steps one can formally find the solution at any desired order in ε , although it
is customary to stop after only a few orders since, for the sake of physical calculations, one is
usually interested in the limit ε → 0.

Generalised Polylogarithms (GPLs)

This procedure entails repeated integrations of the matrices Mx in all their variables. At this point we
recall that systems in canonical basis are cast in dlog-form:

A(x) =
k

∑
i=1
Ailogηi (x) ⇔ M(x) = dA(x) =

k

∑
i=1
Mi

1
ηi (x)

(2.117)

The letters of the alphabet ηi (x) encapsulate all the difficulty in performing the iterated integrals. For
the sake of this discussion we assume that the alphabet is rational:

ηi (x) = ∏
x j∈x

(
x j−ω j

)
(2.118)

where each letter is factored with respect to each kinematic variable and a weight ω , that can depend
on all x variables except x j.
In this case the iterated integration structure can be expresses using Goncharov (or Generalised)
PolyLogarithms (GPLs) [25], defined as follows:

G
(
{ω1,ω2, . . . ,ωn} ,x j

)
=

∫ x j

dt
1

t−ω1
G({ω2, . . . ,ωn} , t) (2.119)

G
(
{0n} ,x j

)
=

1
n!

logn (x j
)

(2.120)
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where the number of weights n is the weight of the GPL and corresponds to the number of iterated
integrations over x that define it.

When one is dealing with a system of DEs cast as in [dlog˙form], it is easy to implement the strategy
described in the previous section, as integrating the system’s matrices simply involves acting on the
letters ηi (x) appearing therein while the matricesMi keep track of where they contribute in the system.
In the iterated solution, at order k > 1 in ε , after the first integration in x1 one will need to compute all
the ”constant terms” in the variables xi 6= x1 by differentiation, and thus one will require the derivative
of a GPL with respect to one of its weights. Without detailing the derivation we give the result [129]:

∂

∂xi
G
(
{~ω (xi)} ,x j

)
=

(
−∂ωk

∂xi

)
×

×
[(

1
ωk−ωk−1

)(
G
(
{ω1, . . . ,��ωk, . . . ,ωn} ,x j

))
−G

(
{ω1, . . . ,���ωk−1, . . . ,ωn} ,x j

)
+

(
1

ωk+1−ωk

)(
G
(
{ω1, . . . ,��ωk, . . . ,ωn} ,x j

)
−G

(
{ω1, . . . ,���ωk+1, . . . ,ωn} ,x j

))]
(2.121)

this formula is of course extendible to the case of multiple weights depending on xi.

Boundary conditions

The general solution, up to order εk, is only partially complete without the vector of boundary condi-
tions I (x0,ε), which contains the value of each Master Integral at the base integration kinematic point
x0. Usually the vector is itself written as a power series in ε:

I (x0,ε) = ∑
k=0

Ik
0ε

k (2.122)

where the highest order should be consistent with the order in ε chosen for the general solution; this
leaves each of the values Ik

0 to be determined, usually one MI at a time. The simplest way to do this is
to determine the value of the full solution at special kinematic points and fix the constants accordingly,
perhaps via direct integration if possible. An alternative approach is to impose a ”physical” regularity
condition for the solution at special kinematic points. Since often we deal with canonical systems built
via a Magnus rotation, some kinematic factors yielding unphysical singularities may be introduced
in the canonical solution, while they were not featured in the original set of MIs. Imposing that the
canonical solution is also regular at those pseudo-thresholds can provide a way to fix the boundary
conditions (that contribute to the canonical solution, not to the original one).
This is not always viable as, sometimes, the Magnus exponential introduces proper thresholds, that
is, singularities of the DE coefficients that are also physical singularities of the original integral. In
this case a way forward may be to exploit the differential equation for the MI under advisement: if
one of the coefficients in the DE provides a pseudo-threshold (a kinematic point where we know the
integral is regular while the coefficient diverges) this can be removed by re-scaling the canonical MI
by the inverse of this coefficient. The regularity of the re-scaled integral at the pseudo-threshold can
then be used to fix the boundary conditions order-by-order in ε .

We illustrated a few practical techniques often used but this is by no means an exhaustive treatment
on the determination of Boundary conditions. This should serve to convey that, despite fixing a single
value of the solution is in principle far easier than computing the full solution, the process is a tricky
and delicate one and, consequently, a single unified method is not currently available.
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Chapter 3

Unitarity methods for one-loop amplitudes

This chapter is dedicated to discussing a set of properties that Feynman amplitudes satisfy which all
descent from the so-called Optical Theorem. These properties give rise to some powerful techniques
for calculating Feynman amplitudes, which can be used to obtain scalar-integral decompositions in
an efficient and algorithmic way.

3.1 Unitarity and the Optical Theorem
In Quantum Mechanics the key object which governs the transitions between particle states and their
temporal evolution is the S (t) operator.
We shall focus on the unitarity property of this operator, which is heuristically related to the notion
that the probabilities of all possible outcomes of the evolution should add up to one.

More specifically, let us define with |i〉 the state of particles initially present. The particles in this
state will interact and the state as a whole will evolve according to the rules of the theory at hand. We
are interested in the probability that this state evolves in a particular final state | f 〉 as a result of the
interactions. To compute this we define the evolved state |OUT (t)〉 = S (t) |i〉, project this onto the
final state and square:

P(i, f ) = |〈 f |OUT (t)〉|2 = |〈 f |S (t) |i〉|2 = 〈i|S+| f 〉〈 f |S|i〉

Let us now consider {| f 〉}, the subset of our Fock space encompassing all possible outcomes of the
interaction. Logically, summing | f 〉 over this set entails considering all possible outcomes at once
and thus the probability must be one. Therefore:

1 = ∑
| f 〉∈{| f 〉}

〈i|S+| f 〉〈 f |S|i〉= 〈i|S+S|i〉

where we used the completeness of the set of final states.
Assuming 〈i|i〉 = 1 i.e. that the initial state is properly normalised, this entails S+S = 1 i.e. the S
operator is unitary. This can also be derived by expressing S as a time-evolution operator: S (t) =
e−iHt , and recalling that H is observable and thus hermitian.

In Quantum Field Theory the S operator is replaced with the S-matrix which cannot be expressed
as simply as in quantum mechanics, and is instead computed in perturbation theory as a Taylor-like
series of terms.
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We will therefore write:

S = 1+ iT (3.1)

The identity matrix represents the trivial evolution of a state into itself at a later point in space-time, i.e.
no interaction. T is known as transfer matrix and represents instead all the non-trivial contributions
to the evolution of a state into another. Unitarity gives us the following result:

1= S+S = 1+ i
(
T −T+

)
+T+T =⇒ i

(
T+−T

)
= T+T (3.2)

To understand the significance of this result we consider once again initial and final states |i〉 , | f 〉 and
compute the non-trivial transition matrix element between these. The l.h.s gives:

i〈 f |
(
T+−T

)
|i〉= i(〈i|T | f 〉)∗− i〈 f |T |i〉

while on the r.h.s we insert a complete set of intermediate states |x〉 :

1= ∑
x

∫
dΠx |x〉〈x|

dΠx = ∏
j∈ f

d3 p j

(2π)3
1

2E j

obtaining:

T+T = ∑
x

∫
dΠx 〈 f |T+ |x〉〈x|T |i〉 (3.3)

We now write out the transfer matrix element in momentum space in terms of the so-called Feynman
amplitude:

〈b|T |a〉= (2π)4
δ
(4) (pb− pa)M(a→ b)

and use it to re-write both sides of 3.2:

(2π)4
δ
(4) (p f − pi

)(
M( f → i)∗−M(i→ f )

)
= (3.4)

= ∑
x

∫
dΠx (2π)8

δ
(4) (p f − px

)
δ
(4) (px− pi)M( f → x)∗M(i→ x) (3.5)

We turned equation 3.2, which was an identity between transfer matrix elements, into a relation
between Feynman amplitudes which is known as the (generalised) Optical Theorem:
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2Im [M(i→ f )] = ∑
x

∫
dΠx (2π)4

δ
(4) (px− pi)M( f → x)∗M(i→ x) (3.6)

which can be represented pictorially:

2Im

〈i| | f 〉

= ∑
x

∫
dΠx (2π)4

δ
(4) (px− pi)

〈i| |x〉

〈x| | f 〉


(3.7)

In greater detail, we related the imaginary part of a Feynman amplitude to a product of tree-level
amplitudes, each corresponding to a diagram involving intermediate particle states. Remarkably, this
is also a relation between amplitudes at different orders of perturbation theory, as the order of the
l.h.s. of 3.6 must be higher than the intermediate amplitudes comprising the r.h.s by simple power-
counting.
This, as well as the theorem as a whole, holds true at all orders of perturbation theory.

It is easy to notice that, in order for 3.6 to be physically sensible, we need the intermediate lines |x〉 to
actually behave as external lines, i.e. we need the corresponding Feynman propagators to be on-shell.
On a related note, let us take a look at the structure of a Feynman propagator:

1(
p2

k−m2
k + iε

) = p2
k−m2

k− iε((
p2

k−m2
k

)2
+ ε2

)
Im

[
1(

p2
k−m2

k + iε
)]= −ε((

p2
k−m2

k

)2
+ ε2

)
As ε → 0, the imaginary part vanishes except when p2 = m2, i.e. when the propagator lies exactly
on-shell. This is obviously similar to the behaviour of δ

(
p2

k−m2
k

)
.

A 1-loop amplitude can be constructed as a complex analytical function of a complex variable s,
taken as the square of the centre-of-mass energy of a process. As we saw, the imaginary part of such
a function entails a constraint on its internal lines, corresponding to the energy threshold s0 for the
on-shell production of the lightest intermediate particles, in analogy to a decay process. Should the
threshold not be met, i.e. s < s0, then none of the intermediate states can be put on-shell and therefore
the amplitude is fully real.
The Feynman amplitude, by construction, can be analytically continued everywhere on the complex
plane of s via the Schwarz reflection principle for a complex function of a complex variable:

A∗ (s) = A(s∗)

which entails in turn, for s ∈ R, s≥ s0 :

2iIm [A(s)] = A(s)−A∗ (s) = A(s)−A(s∗)

And, immediately:
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Re [A(s+ iε)] = Re [A(s+ iε)]
Im [A(s+ iε)] =−Im [A(s− iε)]

Therefore, from the threshold s0 and above , we have a discontinuity between the upper and lower
halves of the plane, defining thus a so-called branch cut of the amplitude.

The key take-aways from this discussion, which are important for the remainder of the chapter, are:

• that the discontinuity across the branches of an amplitude can be identified with imaginary part
of the amplitude itself;

• that, by the Optical theorem, the imaginary part of an amplitude can be obtained by considering
all possible ways in which the amplitude can be ”severed” into two tree-level-like amplitudes;

• that the severing, or cutting of an amplitude corresponds to placing internal lines on-shell;

3.2 Unitary cuts
In [1] Cutkosky presented a re-formulation of equation 3.6 which explicitly shows the on-shellness of
the internal lines, as well as paving the way to make practical use of the generalised optical theorem.

Let us focus on the r.h.s. of 3.6, and consider the case of the intermediate state |x〉 being in fact a
multi-particle state, without loss of generality. The term dΠxδ (4) (px− pi) can be re-written as:

dΠxδ
(4) (px− pi) =

d3 p1 . . .d3 pl

(2π)3l 2E1 . . .2El
δ
(4)

(
l

∑
j=1

p j− pi

)
=

d3 p1 . . .d3 pl−1

(2π)3l 2E1 . . .2El
δ

(
l

∑
j=1

p0
j −Ei

)
(3.8)

where the δ 3 was used to collapse one of the 3-momentum integrations, leaving behind a δ over the
energy components of the 4-momenta. As previously stated, all particles in the intermediate state |x〉
are on-shell, therefore one could insert terms like δ

(
p0

j −E j

)
, j = 0, . . . , l−1 without changing the

overall integral:

dΠxδ
(4) (px− pi) =

d3 p1 . . .d3 pl−1

(2π)3l

δ
(

p0
1−E1

)
2E1

. . .
δ
(

p0
l−1−El−1

)
2El−1

δ

(
∑

l
j=1 p0

j −Ei

)
2El

(3.9)

We intentionally gathered these new deltas over the 2E j terms since these can be re-written using the
remarkable property of Dirac deltas:

∑
x j / f(x j)=0

δ
(
x− x j

)
f ′
(
x j
) = δ ( f (x)) (3.10)

where the function f
(
E j
)

would be E2
j =

(
p2

j −m2
j

)
in the rest frame of the particle, with an added

Θ

(
p0

j

)
in order to pick the positive-energy solution.
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By taking overall momentum conservation into account, the same substitution can be applied to the
last delta as well, obtaining:

dΠxδ
(4) (px− pi) =

d3 p1 . . .d3 pl−1

(2π)3l

(
p2

1−m2
1
)

Θ
(

p0
1
)
. . .
(

p2
l −m2

l
)

Θ
(

p0
l
)

=
d3 p1 . . .d3 pl−1

(2π)3l ∑
j∈|x〉

(
p2

j −m2
j
)

Θ
(

p0
j
) (3.11)

Thus we obtain a sum of delta functions of inverse propagators
(

p2
j −m2

j

)
, which runs over all the

intermediate particles within |x〉. This rewriting of the optical theorem highlights how the previously-
mentioned on-shellness of the internal particles is automatically encoded in the formalism, and not a
mere observation.

This also suggests that placing internal lines on-shell can be used as a tool to extract the imaginary
part of any loop amplitude. This important operation is known as cutting the corresponding line, and
the Cutkosky procedure provides a way to do this in practice [1]:

• Find all the possible ways to completely sever a loop amplitude in two, by placing internal lines
on-shell without violating momentum conservation.

• Perform the cut by means of the Cutkosky replacement rule:

1(
p2

j −m2
j + iε

) −→ (−2πi)δ
(

p2
j −m2

j
)

Θ
(

p0
j
)
= (−2πi)δ

(+)
(

p2
j −m2

j
)

(3.12)

• Extract the imaginary part of the loop amplitude by summing over all cut diagrams as per the
generalised optical theorem

This procedure is represented pictorially in equation 3.13, where the cuts are indicated by a dashed
line crossing the propagators being cut. The two portions would be tree-level diagrams in case of a
1-loop amplitude, but generally they would be more elaborate and containing loops. In 3.13 the two
blobs represent the sum of all possible diagrams connecting the initial (final, respectively) external
lines with the internal ones being cut, on a cut-by-cut basis.

2Im
[
Mloop

]
= ∑

cuts

〈i| | f 〉

 (3.13)

Two comments are in order. First, the Cutkosky rule is valid only for the cutting of scalar lines. In
general, one needs to write the particle’s propagator in the ”Klein-Gordon” form i.e. by highlight-
ing the 1

(p2
j−m2

j)
term. Whatever tensor structure (encoding spin or polarisation configurations) was

spoiled in the process will appear at the numerator of the propagator, and will be present as a multi-
plicative factor in the replacement rule.
Second, due to the presence of Θ

(
p0

j

)
, the cuts depend on the direction of momentum flow through

the cut line, they are thus directional.
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3.3 The Feynman Tree Theorem
So far we have used the term ”loop amplitude” rather loosely: it turns out that the procedure described
is applicable to a 1-loop amplitude being cut into a sum of tee-level ones.
The unitarity procedure can, however, be taken a step further and used to relate tree-level amplitude
to generic amplitudes at any loop level. The following discussion follows chapter 2 of [130].

A bit of polology
Let us consider the following integral: ∫

dx
f (x)

x− x0
(3.14)

It is not immediately clear how to deal with the divergence at the pole x = x0. One possible procedure
entails the analytical continuation of the variable x to the complex plane. Complex integrals are
performed as contour integrals, in this case the contour would be shaped like a semi-circle where the
base corresponds to the integral over the real x-axis, while the circle part is taken at |x|=+ inf. Since
this contour intersects the pole x0, one could deform the contour to avoid it, but it is easier to shift the
pole by a small amount ε along the imaginary axis:∫

dx
f (x)

x− x0± iε
(3.15)

Figure 3.1 is a representation of the two possibilities:

Figure 3.1: Different prescription for regulating complex integrals. Left is the deformation of the integration
contour on the plane. Right is the pole shift along the imaginary axis.

The iε prescription is the one adopted to regulate the mass pole for Feynman propagators in the
coordinate representation.

Depending on which half of the complex plane the circle at infinity lies in, shifting the pole up or down
will entail a difference. From Cauchy’s Residue theorem this is exactly the residue of the integrand,
which in this case is the value of f at the pole x0:∫

dx
f (x)

x− x0 + iε
=

∫
dx

f (x)
x− x0− iε

+2πi f (x0) (3.16)
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which can be written as:

∫
dx f (x)

[
1

x− x0 + iε

]
=

∫
dx f (x)

[
1

x− x0− iε
+2πiδ (x− x0)

]
⇒ 1

x− x0 + iε
=

1
x− x0− iε

+2πiδ (x− x0)

(3.17)

This last equation provides a way to switch between one method of regulating simple poles to another,
by means of the residue theorem.

We now move on to considering Feynman propagators, themselves possessing simple poles lying at
the mass of the particle:

ΠF (p) =
i

q2−m2 + iε
=

i

(p0)
2−ω2

q + iε
=

i
(p0−ωp + iε )(p0 +ωp− iε)

(3.18)

where we put ourselves in the particle’s rest frame. Let us also define the advanced Feynman propa-
gator:

ΠA (p) =
i(

p0−ωq + iε
)
(p0 +ωp + iε)

(3.19)

Figure 3.2: Pole placement for the Feynman propagator (right) and the advanced propagator (left)

It should now come natural to write down a relation between the two propagators like equation 3.17:

ΠA (q) =
i

(p0 +ωp + iε)
1(

p0−ωq + iε
) = i

(p0 +ωp + iε)

[
1

(p0−ωp− iε )
+2πiδ

(
p0−ωp

)]
=

= ΠF (p)−2π
δ
(

p0−ωp
)

2ωp
= ΠF (p)−2πδ

(
q2−m2)

Θ
(

p0)
(3.20)

where in the second line we took p0 = ωp and then used 3.10 once again. We thus arrive at:

ΠA (p) = ΠF (p)−2πδ
(+)
(

p2−m2) (3.21)

Let us now consider the following integral:
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∫
d4q

(2π)4 ΠA (p−q)ΠA (p) = 0 (3.22)

This integral is computed by analytical-continuation in the complex plane of q0, and we recall that it
is up to us to choose how to define the integration contour. The two advanced propagators, as we have
seen, both have poles lying entirely in the upper half of the complex plane. If we then choose to close
the contour in the bottom half of the plane, which we always can, then this integral trivially vanishes.
However, by plugging in 3.21:

∫
d4q

(2π)4 ΠA (p−q)ΠA (p)

=

∫
d4q

(2π)4

[
ΠF (p−q)−2πδ

(+)
(
(p−q)2−m2

)][
ΠF (p)−2πδ

(+)
(

p2−m2)]
=

∫
d4q

(2π)4

[
ΠF (p−q)ΠF (p)−2πδ

(+)
(
(p−q)2−m2

)
ΠF (p)−

− 2πδ
(+)
(

p2−m2)
ΠF (p−q)+(2π)2

δ
(+)
(
(p−q)2−m2

)
δ
(+)
(

p2−m2)]= 0

(3.23)

from which:

∫
d4q

(2π)4 ΠF (p−q)ΠF (p) =∫
d4q

(2π)4

[
2πδ

(+)
(
(p−q)2−m2

)
ΠF (p)+2πδ

(+)
(

p2−m2)
ΠF (p−q)−

− (2π)2
δ
(+)
(
(p−q)2−m2

)
δ
(+)
(

p2−m2)]
(3.24)

These are scalar integrals containing Feynman denominators, and therefore can be interpreted as fully-
fledged Feynman amplitudes. Moreover, in light of the Cutkosky rule, we can give a diagrammatic
representation of this equation:

= +

︸ ︷︷ ︸
single cut

+

︸ ︷︷ ︸
double cut

(3.25)

Recalling that the complete cut of the amplitude, labelled ”double cut” in 3.25, corresponded only to
the imaginary part of the whole loop amplitude, equation 3.25 provides then a way to compute the
whole amplitude in terms of cut amplitudes [28].

This is a remarkable result, especially since it generalises without issues to any amplitude of any com-
plexity and loop order 15. The only difference would be the increased complexity, as more complex

15This comes because no matter how many advanced propagators we use to begin the argument, they would all have
their poles in the upper half of the complex plane, and thus nothing would change logic-wise.
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amplitudes can be cut multiple times and there are many ways to cut such amplitude once, twice etc.
This result is known as Feynman Tree Theorem, let us briefly delve into the meaning behind this name.
We have previously shown that a cut one-loop amplitude can be expressed as a sum of tree-level am-
plitudes, integrated over the phase-space of all16 the momenta flowing through the lines being cut.
Heuristically, one could say that a l-loop amplitude can then be analogously expressed as a sum of at
most (l−1)-loop amplitudes. These can then be further decomposed until only tree-level amplitudes
make up the full expression, plus the phase space integrals.

A few final comments are in order:

• First, cutting an amplitude as per the Feynman Tree theorem may lead to a slightly different
result than simply applying the Cutkosky rule, namely the arguments of the Θ-functions may
differ. One should always recall that, while the Cutkosky replacement comes from the general
principle of unitarity, the Tree theorem stems from the manipulation of a regularisation pre-
scription and the result thus depends on the steps taken to obtain it.

• Let us now perform a single cut on a four-point box integral:

−→ (3.26)

The application of a Cutkosky replacement on the cut denominator entails, of course, that said
denominator disappears from the amplitude. Effectively a cut operation turns a box topology
into a triangle diagram, which is one of its sub-topologies. This is effectively a pinching oper-
ation that ”brings together” the two external legs adjacent to the cut propagator, as represented
by the double-line flowing into the triangle vertex.
This also means that this new external line carries the sum of the four-momenta of the two
former external lines; this is a direct consequence of the presence of the Dirac delta, plus mo-
mentum conservation which is preserved by the cut.

3.4 Multiple cuts and Generalised Unitarity
So far we have dealt with (one)-loop amplitudes in two different ways:

1. by decomposing the tensor integrals appearing therein onto a suitable basis of simpler integrals
à la Passarino-Veltman;

2. by writing down a complicated loop amplitude as a sum of simpler amplitudes by cutting pro-
gressively more and more internal lines using the Cutkosky rule, as per the Feynman tree theo-
rem;

The two techniques can be combined as the tree theorem is applicable even in the case of a 1-loop am-
plitudeM1−loop which has already been manipulated with a reduction prescription such as Passarino-
Veltman. Such amplitude will be expressed as a sum of MIs like equation 2.59 where the coefficients
are rational functions of momentum variables.
Performing unitary cuts on a MI-decomposition then reduces to cutting the MIs themselves, leaving

16It is worth noting that these phase-space integrals arise exactly because the internal lines now behave like they were
external, just like any ordinary tree-level amplitude. They are thus totally unrelated to the integration over the loop
momentum, which is technically encompassed within the definition of the amplitude itself.
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the coefficients alone. At each stage j propagators are cut, and the corresponding integrals that con-
tain them will receive a Dirac δ from the Cutkosky rules, until all denominators in every integral have
been cut.

There is one seemingly simple feature which will prove immensely useful shortly: by performing
multiple unitary cuts of some internal Feynman propagators not all integrals appearing in the decom-
position can survive. Naı̈vely, this happens because the insertion of Dirac δ s brought about by the
Cutkosky rules kill off the integrals which do not have the correct denominators. This entails that the
more cuts we perform, the more decomposition terms we rid ourselves from and the simpler each cut
integral becomes.

Let us see this in action in a simple four-dimensional example: let a 1-loop amplitude be decomposed
in the fashion of equation 2.59, which we re-iterate here:

M1−loop
n = = ∑

a
ca

4 +∑
a

ca
3 +∑

a
ca

2 +∑
a

ca
1

(3.27)

where we neglected the rational terms for simplicity. Let us now perform multiple cuts over this
expression. We first cut a generic ξ denominator, then another one η , then ζ and finally χ:

=+∑
ξ

cξ

4 +∑
ξ

cξ

3 +∑
ξ

cξ

2 + cccξ

1

= ∑
ξ η

cξ η

4 +∑
ξ η

cξ η

3 + cccξ η

2

= ∑
ξ ηζ

cξ ηζ

4 + cccξ ηζ

3

= cccξ ηζ χ

4 (3.28)

It is evident that by cutting more internal lines fewer and fewer terms contribute to the full cut am-
plitude. At each stage the sums run over the cuts, and gather all the integrals of a certain topology
which possess the precise denominators being cut. By what we argued, if one performs a j-cut then
only one single j-point integral will survive.
In this sense, multiple unitary cuts act as projectors, since cutting an amplitude projects it onto the
diagrams that are compatible with the multiple cut, while the rest are killed off by the cuts them-
selves. Cuts used in this way are known as generalised unitary cuts, and give rise to the scheme of
Generalised Unitarity which takes advantage of this property to extract iteratively all coefficients.
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One first performs a quadruple cut, all integrals with ≤ 3 denominators will vanish automatically,
while only the box with exactly the denominators being cut survives, and it is then possible to extract
its coefficient. By cycling through and cutting all combinations of four denominators one extracts all
the box coefficients. One then moves down to the triple-cut level and, since all the box coefficients
are known, it is possible to extract all triangles in the same way, and so on.
The Generalised Unitarity prescription thus creates a triangular system where in each equation a
different coefficient is extracted ,recycling the knowledge of all the previous ones, as shown in figure
3.29.

= cξ ηζ χ

4
extract−−−→ cξ ηζ χ

4

= ∑
ξ ηζ

cξ ηζ

4 + cξ ηζ

3
extract−−−→ cξ ηζ

3

= ∑
ξ η

cξ η

4 +∑
ξ η

cξ η

3 + cξ η

2
extract−−−→ cξ η

2

= ∑
ξ

cξ

4 +∑
ξ

cξ

3 +∑
ξ

cξ

2 + cξ

1
extract−−−→ cξ

1

(3.29)

This is just an outline of the method. To understand more precisely the tasks at hand at each step of
the process, let us take a closer look at a quadruple cut of a scalar box integral:

I4 =
q

q + p1

q + p1 + p2

q − p4

p1

p2

p4

p3

=

∫
d4q

1
D1D2D3D4

(3.30)

We take the external particles as massless for simplicity, and we temporarily forgo the application of
dimensional regularisation.
First, one parametrises the loop momentum qµ using a four-momentum basis E = {e1,e2,e3,e4} as
follows:
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qµ =
4

∑
i=1

xie
µ

i (3.31)

For the basis we impose the following requirements:

e2
i = 0

(e1 · e3) = (e1 · e4) = 0
(e2 · e3) = (e2 · e4) = 0
(e1 · e2) =−(e3 · e4)

We shall use such a basis again later on, and we defer its explicit derivation to appendix A. Suffice it
to say for the moment that the vectors e1,2 are linear combinations of two of the independent external
momenta, for instance p1,2, which belong to the external legs bordering the inverse propagator Di.
Vectors e3,4 are then constructed to be orthogonal to the previous two, in order to satisfy the criteria.
As required by the Cutkosky rules, all four propagators need to be placed on-shell simultaneously
by imposing Di = 0 , i = 1 . . .4. Since all propagators contain the loop momentum, the on-shell
conditions are actually four equations that constrain the four xi parameters in the qµ expansion. To
find the solution, one first re-parametrises the inverse propagators in terms of the new variables:

D1 = q2 = 2(x1x2− x3x4) p1 · p4

D2 = (q+ p1)
2 = 2(x1x2− x3x4 + x2) p1 · p4

D3 = (q+ p1 + p2)
2 = (q+P12)

2 = 2(x1x2− x3x4) p1 · p4 +2(x1 p1 ·P12 + x2 p4 ·P12 + x3e3 ·P12 + x4e4 ·P12)

D4 = (q− p4)
2 = 2(x1x2− x3x4− x1) p1 · p4

where P12 = (p1 + p2).
the same change of variables is performed upon the integration measure, yielding:

d4q = (p1 · p4)
2 dx1dx2dx3dx4 (3.32)

It is possible to pack the four xi variables into a single vector ~x, and by the same token define the
vector function D = (D1,D2,D3,D4) = D(~x) : R4→ R

4.
Then one can use the result:

δ
4(+) (D(~x)) = ∑

~x0∈Sol.

1∣∣∣Det ∂Di
∂x j

∣∣∣
∣∣∣
~x=~x0

δ
4 (~x−~x0) (3.33)

which evidently comprises all four Cutkosky replacements at once. The presence of δ 4 (~x−~x0) makes
the cut integral trivial to compute:

Cut4 [I4] = (p1 · p4)
2

∑
~x0∈Sol.

1∣∣DetJi j
∣∣∣∣∣~x=~x0

DetJi j = Det
∂Di

∂x j
= 16(p1 · p4) [x3e3 ·P12− x4e4 ·P12]

(3.34)
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One then needs to find all solutions to the cut conditions, compute the determinant on those and sum
all results. One could prove that, for this simple case, there exist two such solutions. It is important
to mention that, in general, the solution corresponds to a complex loop momentum.

To determine the box coefficient c4, however, one needs to compute the quadruple cut of A1−loop
n

present on the l.h.s. of the first line of 3.29. It is possible to re-cycle the first line of 3.34, since a
quadruple cut of a one-loop diagram reduces it to the product of four tree-level amplitudes with all
particles on-shell. I.e.

Cut4
[
M1−loop

n

]
=

1

2 3

4

=

∫
d4~x(p1 · p4)

2Mtree
1 Mtree

2 Mtree
3 Mtree

4 δ
4(+) (D(~x))

We recall that the internal denominators are not part of the tree-level amplitudes, as their external lines
are treated as on-shell particles, thus the tree-level amplitudes are separate from the delta functions
This integral yields:

Cut4 [I4] = (p1 · p4)
2

∑
~x0∈Sol.

Atree
1 Atree

2 Atree
3 Atree

4∣∣DetJi j
∣∣ ∣∣∣

~x=~x0

DetJi j = Det
∂Di

∂x j

(3.35)

The coefficient can then be extracted immediately:

c4 =
Cut4

[
M1−loop

n

]
Cut4 [I4]

(3.36)

since many factors in the expressions of both cut quantities match, the final expression is simply de-
pendent on the tee-level amplitudes, evaluated at all solutions of the cut conditions.

Since we are cutting at amplitude level this term may encompass an arbitrary number of diagrams to
be cut, depending on the theory at hand. Luckily, in some cases, symmetry relations originating from
either the kinematics or the group properties of the theory may simplify the computation of the cut
integrals to just a few distinct calculations.

The subsequent steps are more involved for several reasons: first, the cut conditions are no longer
sufficient to fully constrain the loop momentum, and thus after the application of the cutting rules
some of loop momentum parameters are left over as variables, which need to be integrated upon.
Moreover it is not immediately trivial how to separate the contribution from the higher-point coeffi-
cients extracted previously from the amplitude under examination. For instance, in the case of a triple
cut, one expects a triangle contribution (in fact, a single triangle per every cut configuration) plus
box contributions that share the propagators being cut, which correspond to triangles with a vertex
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split open into a new internal line. This is true for all the lower cuts, and at each step separating the
pure triangle, bubble and tadpole contributions from the rest is the only way to isolate the coefficient.
Finally, this is repeated for every possible permutation of four, three, two or one denominators being
cut, and every coefficient is extracted.
In [35] the different contributions to the triangle were separated by treating the integration over the
leftover parameter t as a complex integral along some contour in the complex plane; by employing
partial-fractioning techniques the integrand is split into terms containing the residues of the poles at
finite t and terms at t =+∞, as it was realised that the former contributed to all the boxes and therefore
the latter had to correspond to the triangle.

Generalised D-dimensional Unitarity

Restricting the integral decomposition to four dimensions, as we saw in section 2.2.2, means that
rational terms will be missed from the expansion, therefore it is desirable to perform the full de-
composition and cutting procedure in D-dimensions. On the other hand, the various diagrams that
comprise an amplitude produce tree-level amplitudes that ought to be computed to determine the co-
efficients. Historically, Generalised Unitarity was employed to perform NLO calculations in Quantum
Chromodynamics (QCD) in preparation for the high-energy experiments to be carried out at the Large
Hadron Collider. Within this framework the most compact and efficient way to compute tree-level
Feynman amplitudes is to use the Spinor-Helicity formalism (described in chapter 6.2), which does
not extend well to D-dimensions [35]

To generalise the method from D = 4 dimensions to generic D, one first needs some method to extract
the µ dependence from the coefficients, as evidenced in 2.63. The D-dimensional loop momentum
can be written as:

q̄2 = q2−µ
2 = 0 (3.37)

=⇒ q2 = µ
2 (3.38)

i.e. treating the D-dimensional loop momentum as massless is formally equivalent to replacing the
momentum with a four-momentum with mass µ2. This effectively corresponds to assigning a uniform
mass to all internal lines. This procedure was used in [26, 27] within the framework of Generalised
Unitarity.

Next, the cut conditions are solved using the fictitious µ2 mass parameter in the same fashion as the
four-dimensional case, and the cut integrals are performed splitting the D-dimensional measure as in
2.23. The µ2 variable itself is treated as complex, and since the denominators themselves are now µ-
dependent one can study the pole structure of the integrand and extract contributions coming from the
rational terms, using the same techniques employed for the loop variables for the lower-cut integrals.

Methods such as these were employed in the handling of quadruple [29, 30], triple [30–32], double
[33, 34] and single [35–37] cut integrals for Generalised Unitarity within the framework of Dimen-
sional Regularisation.
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Chapter 4

Integrand-level Decomposition methods

Computing cut integrals and separating the contributions to the cut amplitude from boxes, triangles,
bubbles and tadpoles to extract the decomposition coefficients, as prescribed by Generalised Unitarity,
proved a difficult task, requiring the development of advanced theoretical techniques and lengthy
calculations.
The fact that the integral coefficients are rational functions of kinematic invariants and the external
momenta spurred new research towards purely algebraic procedures that can bypass any integration.

This chapter is devoted to introducing techniques applied at the integrand level, in 4-dimensions at
first , that enable the reconstruction of the cut-constructible terms of a generic amplitude in an efficient
way. This method is based on two key ideas [41]:

• studying the most general polynomial structure of the integrand in the kinematic and loop vari-
ables;

• studying the pole structure of the integrand itself when evaluated numerically at a phase-space
point corresponding to one of the cut solutions (that place all propagators on-shell);

These novel techniques are still built upon the key result developed in section 2.2: that any n-point
1-loop integral with a tensor structure can be decomposed onto a basis of scalar Master Integrals:

M1−loop
n

∫
d4qM(q) = ∑

i<<l

∫
d4q

ci jkl
4,0

DiD jDkDl
+ ∑

i<<k

∫
d4q

ci jk
3,0

DiD jDk
+∑

i< j

ci j
2,0

DiD j
+∑

i

∫
d4q

ci
1,0

Di

(4.1)

which can be rewritten more compactly using the compact notation for the master integrals of equation
2.46: ∫

d4qA(q) = ∑
i<<l

ci jkl
4,0 Ii jkl + ∑

i<<k
ci jk

0 Ii jk +∑
i< j

ci j
2,0Ii j +∑

i
ci

1,0Ii (4.2)

we recall that this expression is valid in D = 4 dimensions.

4.1 The OPP decomposition method
One of the first Integrand Decomposition Methods was formulated by Ossola, Papadopoulos and
Pittau in [38, 39] and later expanded in [40, 44]; this technique is known today as the OPP method.
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In this description of the procedure we shall follow the formalism of [4, 42].

The first step is to obtain an integrand-level equivalent of equation 4.2. If we naı̈vely drop the inte-
gral sign we neglect all the integration constants coming from each of the scalar integrals, therefore
spoiling the equality:

Mn (q) 6= ∑
i<<l

ci jkl
4,0

DiD jDkDl
+ ∑

i<<k

ci jk
0

DiD jDk
+∑

i< j

ci j
2,0

DiD j
+∑

i

ci
1,0

Di

We could, however, introduce ad-hoc functions f s
i jk... (q) which restore the integrand-level equality:

Mn (q) = ∑
i<<l

ci jkl
4,0 + f s

i jkl

DiD jDkDl
+ ∑

i<<k

ci jk
0 + f s

i jk

DiD jDk
+∑

i< j

ci j
2,0 + f s

i j

DiD j
+∑

i

ci
1,0 + f s

i

Di

these functions define the so-called spurious terms, which should vanish upon integrating over the
loop momentum to recover 2.58:

f s
i jk... (q)

DiD jDk . . .
=⇒

∫
d4q

f s
i jk... (q)

DiD jDk . . .
= 0

we can package all terms at each numerator into a single quantity ∆i jk... (q):

Mn (q) = ∑
i<<l

∆i jkl

DiD jDkDl
+ ∑

i<<k

∆i jk

DiD jDk
+∑

i< j

∆i j

DiD j
+∑

i

∆i

Di
(4.3)

We have thus promoted the loop-integral expression for an n-point amplitude into an integrand-level
one. As evident, this expansion is in fact a multi-particle pole expansion of the amplitude’s integrand,
as placing any of the virtual particles on their mass-shell means computing the amplitude right on a
pole of the integrand function.
If we now multiply 4.3 by all the propagators DiD jDk . . . we obtain:

Nn (q) := ∑
i<<l

∆i jkl ∏
η 6=i, j,k,l

Dη + ∑
i<<k

∆i jk ∏
η 6=i, j,k

Dη +∑
i< j

∆i j ∏
η 6=i, j

Dη +∑
i

∆i ∏
η 6=i

Dη (4.4)

From this we can see that, by putting the internal propagators on-shell by applying unitary cuts, the
∆i jk... quantities are none other than the residues of the complex integrand function computed at the
poles defined by the cuts themselves.

The OPP method is essentially a machinery to extract all the ∆s recursively. We first perform a four-
fold cut on the box diagram and set Di, j,k,l = Dl ≡ 0; only the term corresponding to the box residue
survives:

Nn (q) = ∑
i<<l

∆i jkl ∏
η 6=i, j,k,l

Dη

∆i jkl = Res(i jkl)

[
Nn (q)

D1 . . .Dn

]
And it is now apparent how ∆i jkl is the residue of the diagram after placing the i, j,k, l propagators
on-shell. This way it’s possible to extract all the box residues, the number of which depends on how
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many box diagrams appear in the original decomposition. Next we place only Di, j,k = 0, two terms
now survive, but knowing all the ∆i jkls from the previous cuts we isolate the next residue:

Nn (q)− ∑
i<<l

∆i jkl ∏
η 6=i, j,k,l

Dη = ∑
i<<k

∆i jk ∏
η 6=i, j,k

Dη

∆i jk = Res(i jkl)

[
Nn (q)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl

]

By cutting twice and then only once, and subtracting all the previous steps, we isolate the last residues:

Nn (q)− ∑
i<<l

∆i jkl ∏
η 6=i, j,k,l

Dη − ∑
i<<k

∆i jk ∏
η 6=i, j,k

Dη = ∑
i< j

∆i j ∏
η 6=i, j

Dη

∆i j = Res(i jkl)

[
Nn (q)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl
− ∑

i<<k

∆i jk

DiD jDk

]

Nn (q)− ∑
i<<l

∆i jkl ∏
η 6=i, j,k,l

Dη − ∑
i<<k

∆i jk ∏
η 6=i, j,k

Dη −∑
i< j

∆i j ∏
η 6=i, j

Dη = ∑
i

∆i ∏
η 6=i

Dη

∆i = Res(i jkl)

[
Nn (q)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl
− ∑

i<<k

∆i jk

DiD jDk
−∑

i< j

∆i j

DiD j

]

The final system of equations that yield the residues is triangular:

∆i jkl = Res(i jkl)

[
Nn (q̄)

D1 . . .Dn

]
∆i jk = Res(i jk)

[
Nn (q̄)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl

]

∆i j = Res(i j)

[
Nn (q̄)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl
− ∑

i<<k

∆i jk

DiD jDk

]

∆i = Res(i)

[
Nn (q̄)

D1 . . .Dn
− ∑

i<<l

∆i jkl

DiD jDkDl
− ∑

i<<k

∆i jk

DiD jDk
−∑

i< j

∆i j

DiD j

]
(4.5)

and it shouldn’t be surprising that it looks formally very similar to the one found at amplitude level in
3.29: generalised Unitarity is at the very core of both prescriptions. We will say more about how the
coefficients are obtained in practice using these equations later on in this chapter.

4.1.1 Parametric expansion of the residues
First, we require an explicit way to compute the ∆s. This is done by parametrising the residues in
terms of scalar products of loop-momenta and the independent external momenta with each other
and constant terms such as the masses [4, 42, 49]. However, not all quantities constructed from such
scalar products can appear in the parametrisation.
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If any of the residues in 4.3 contains a term proportional to one of the inverse propagators in the
same term (e.g. if ∆i jk contained a term ∝ Di, j,k) then the inverse propagator would simplify with
itself at the denominator, and the resulting term should actually contribute to the constant term in the
parametrisation of the residue with one fewer denominator. We say that any object re-expressible in
terms of some Di is not an Irreducible Scalar Product (ISP) useful for the parametrisation.
By a similar token q2 cannot appear in the parametrisation, for it can be written as:

q2 = Di +m2
i − r2

i −2q · ri

and therefore the q2 contribution splits into a contribution to another scalar product, a constant term
and a constant term for the residue with one fewer denominator.
Moreover, the scalar products (q · pi) are also decomposed as:

q · pi = q · (ri− ri−1) ∝ Di−Di−1 + const

The way to find the valid ISPs is to parametrise the loop momentum qµ in a convenient way, specifi-
cally onto a basis of four massless vectors {eµ

i } constructed ad-hoc for each cut:

(q+ pi)
µ =

1
(e1 · e2)

(
x1eµ

1 + x2eµ

2 + x3eµ

3 + x4eµ

4
)

(4.6)

The basis is very similar to the one employed in section 3.4 which, once again, is constructed in
appendix A. We will just re-iterate the properties of such a basis:

e2
i = 0

(e1 · e3) = (e1 · e4) = 0
(e2 · e3) = (e2 · e4) = 0
(e1 · e2) =−(e3 · e4)

The ISPs will then be all the scalar products (q · ei) and powers thereof, for all the eis not constructed
from independent external momenta. Each power of an ISP entails a factor qµ and since, once again,
the rank of the numerator of the integrand should satisfy r ≤ n, so should the powers of the ISPs in
the parametric expansion.
The exact identity of the ISPs varies on a cut-by-cut basis and we will take a look at them separately.

Let us also notice that, thanks to the properties of the chosen basis:

(q · e1) = x2 (4.7)
(q · e2) = x1 (4.8)

(q · e3) =−x4 (4.9)
(q · e4) =−x3 (4.10)

showing that the xi quantities are directly related to the ISPs themselves via projection. A parametri-
sation onto ISPs therefore is equivalent to a parametrisation onto polynomials of the xi, as we can
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write down formally:

Nn (q) = Nn (x1,x2,x3,x4) = ∑
j1, j2, j3, j4

c j1 j2 j3 j4x j1
1 x j2

2 x j3
3 x j4

4

j1 + j2 + j3 + j4 ≤ rmax

(4.11)

where rmax is the maximum allowed rank given the number of denominators of the integrand being
reduced.

In appendix B we derive explicitly the most general parametrisation of the residues for the four,three,two
and one-point loop integrals on the solution of their respective maximal cuts, using the aforementioned
loop parametrisation and rank restrictions:

∆i jkl = c4,0 + c4,1x4

∆i jk = c3,0 + c3,1x4 + c3,2x2
4 + c3,3x3

4 + c3,4x3 + c3,5x2
3 + c3,6x3

3

∆i j = c2,0 + c2,1x1 + c2,2x2
1− c2,3x4 + c2,4x2

4− c2,5x3 + c2,6x2
3− c2,7x1x4− c2,8x1x3

∆i = c1,0 + c1,1x1− c1,2x2− c1,3x3− c1,4x4 (4.12)

Switching once again to integral level, only the c j,0 coefficients survive within the residues, and thus
we recover the scalar integral decomposition 4.2

Sampling the residues
Once the explicit form of the residues in term of the loop momentum parameters, we can trace the
steps of the OPP procedure described above. At each step the residues are isolated by cutting a set
number of propagators to be on shell, this operation creates a system of cutting equations whose so-
lution constrains the xi coefficients.
Once this is done, the cut integrand is evaluated several times, as many times as there are coeffi-
cients to be fixed, at different phase space points that are compatible with the solutions to the cutting
equations. In the case of the box residue the cutting conditions are enough to fully constrain all four
parameters, and as mentioned in the previous chapter there exist two solutions provided that we com-
plexify the loop momentum. This enables us to sample twice the residue, and to use these two values
to invert the parametric form of the box residue to extract the two coefficients c4,0 and c4,1. This
procedure is known as fit on the cut.
Of course, in the case of lower cuts, there are not enough cutting equations to fully constrain the
variables, one can only find relations between them. On the one hand this is convenient as the number
of sampling to perform grows with the number of coefficients to be fixed, but this then calls for a
systematic approach to choosing the sample points. An efficient way is the so-called discrete Fourier
Transform (DFT) method, applied to the OPP algorithm in [41].

4.1.2 Extension to D dimensions
As we have seen for Passarino-Veltman decomposition, the OPP method can produce integrands
which yield divergent integrals, and thus are regulated by switching to the D-dimensional picture.
This produces rational termsR1 andR2 as a result, which are missed in the four-dimensional deriva-
tion just like it occurs in Generalised Unitarity, these terms must then be written down by some other
method to obtain a complete result. TheR2 terms can be derived by introducing appropriate Feynman
rules, while theR1 terms can be extracted by highlighting the µ2 dependence in the OPP coefficients
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with a mass shift: m2
i → m2

i − µ2 [45]. These methods are also well-suited to be automatised, and
have been implemented along with the OPP method in the public code CUTOOLS [3].

In [40, 43] the OPP method was re-formulated and extended into a full D-dimensional integrand
decomposition method, allowing to determine the complete set of contributions at once . The first
difference from the 4-dimensional case is the presence of the additional degrees of freedom in the
loop momentum q̄µ given by the µ component. The kinematic quantities that parametrise the cut
residues will now be of the form (q̄ · pi) but, since the external momenta pi are 4-dimensional, they
are not capable of picking out the extra component (since the metric of our D-dimensional space is
block-diagonal).
Therefore µ2 is a completely independent quantity, and constitutes a new variable to be inserted in
the parametrisation. Moreover, µ can only enter the parametrisation through q̄2 and thus only even
powers of µ will be allowed.
This new parameter implies, in turn, that now at most five propagators can be placed on-shell simul-
taneously; in just four dimensions this system would have been over-constrained and hence we never
considered a pentagon diagram in the decomposition. Equation 4.3 then becomes:

Mn (q̄) = ∑
i<<m

∆̄i jklm

D̄iD̄ jD̄kD̄lD̄m
+ ∑

i<<l

∆̄i jkl

D̄iD̄ jD̄kD̄l
+ ∑

i<<k

∆̄i jk

D̄iD̄ jD̄k
+∑

i< j

∆̄i j

D̄iD̄ j
+∑

i

∆̄i

D̄i
(4.13)

The parametrisation of the residues is carried out in D-dimensions just as we have shown explicitly
for the four-dimensional case. The result turns out to be [4, 40, 131]:

∆̄i jklm = c5,0µ
2

∆̄i jkl = c4,0 + c4,1x4,v +µ
2 (c4,2 + c4,3x4,v +µ

2c4,4
)

∆̄i jk = c3,0 + c3,1x4 + c3,2x2
4 + c3,3x3

4 + c3,4x3 + c3,5x2
3 + c3,6x3

3 +µ
2 (c3,7 + c3,8x4 + c3,9x3)

∆̄i j = c2,0 + c2,1x1 + c2,2x2
1− c2,3x4 + c2,4x2

4− c2,5x3 + c2,6x2
3− c2,7x1x4− c2,8x1x3 + c2,9µ

2

∆̄i = c1,0 + c1,1x1− c1,2x2− c1,3x3− c1,4x4 (4.14)

First, the tadpole residue cannot have any µ2 dependence by rank restrictions, and therefore is identi-
cal to the 4-dimensional case.
We then point the reader’s attention to the pentagon residue: by recycling some of the results of
our four-dimensional calculations one could easily see that the only candidates for ISPs at this level
would be a constant term plus µ2 and µ4 terms. However it was mentioned in the previous discussion
on D-dimensional integral decomposition that at integral level these three contributions differ only
by boxes and q̄-independent terms. Still in [124] it was shown that the equivalence of the pentagon
MIs translates at integrand level to an equivalence in the parametrisation of the cut residue between a
constant and any term

(
µ2)α , for they can be related by reducible terms.

It is then a good choice to keep µ2 as the single representative of this class of ISPs since this way the
pentagon residues vanishes trivially in the 4-dimensional limit.17

By integrating equation 4.13 with the residue parametrised as above, and discarding all the spurious
terms one obtains [4]:

17The reason for this is related to the aforementioned fact that in the D→ 4−2ε limit the pentagon integral is related
to box functions. As it turns out, this gives rise to cancellations between all the boxes appearing in the MI expansion,
which may lead to instabilities when evaluating numerically the results [124]. Parametrising the pentagon residue with µ2

ensures the pentagon vanishes in this limit, while still being an advantageous parametrisation for identifying the lower-
point residues.
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Mn =

∫
dDqM(q̄) =

= ∑
i<<l

{
C̃4,0ID

i jkl−
D−4

2
C4,2ID+2

i jkl +
(D−4)(D−2)

4
C4,4ID+4

i jkl

}
+

∑
i<<k

{
C3,0ID

i jk−
D−4

2
C3,7ID+2

i jk

}
+ ∑

i<< j

{
C2,0ID

i j +C2,1Ji j +C2,2Ki j−
D−4

2
C2,9ID+2

i j

}
+∑

i
C1,0ID

i

(4.15)
which is very similar to equation 2.65, with the exception of the additional bubble integrals Ji j, Ki j:
these are added in manually to make the bubble-residue ∆̄i j more numerically-stable should the ex-
ternal kinematics cause a 2×2 Gram determinant to vanish [39].
We highlight that even with this monomial parametrisation the pentagon integral disappears, and that
all higher-dimensional integrals (which are the result of dimensional-shift identities) all acquire coef-
ficients (D−4) which vanish in the D→ 4 limit.

Finally the OPP method of extracting the residues is performed in exactly the same fashion as the
4-dimensional case, with the exception of an additional step added to extract the pentagon residue.
Let us lay out the procedure:

∆̄i jklm = Res(i jklm)

[
Nn (q̄)

D̄1 . . . D̄n

]
∆̄i jkl = Res(i jkl)

[
Nn (q̄)

D̄1 . . . D̄n
− ∑

i<<m

∆i jklm

D̄iD̄ jD̄kD̄lD̄m

]

∆̄i jk = Res(i jk)

[
Nn (q̄)

D̄1 . . . D̄n
− ∑

i<<m

∆i jklm

D̄iD̄ jD̄kD̄lD̄m
− ∑

i<<l

∆i jkl

D̄iD̄ jD̄kD̄l

]

∆̄i j = Res(i j)

[
Nn (q̄)

D̄1 . . . D̄n
− ∑

i<<m

∆i jklm

D̄iD̄ jD̄kD̄lD̄m
− ∑

i<<l

∆i jkl

D̄iD̄ jD̄kD̄l
− ∑

i<<k

∆i jk

D̄iD̄ jD̄k

]

∆̄i = Res(i)

[
Nn (q̄)

D̄1 . . . D̄n
− ∑

i<<m

∆i jklm

D̄iD̄ jD̄kD̄lD̄m
− ∑

i<<l

∆i jkl

D̄iD̄ jD̄kD̄l
− ∑

i<<k

∆i jk

D̄iD̄ jD̄k
−∑

i< j

∆i j

D̄iD̄ j

]
(4.16)

and we recall that at every step one should compute the integrand at a phase space point q̄ that satisfies
the cutting equations relevant to that step. The system of equations will be in the xi parameters plus
the value of µ2, which can only be fully constrained on the quintuple cut. Once again, the sampling
of the residues should be done as many times as there are coefficients to be fixed.

This D-dimensional method was implemented in the code suite SAMURAI [4], which was later ex-
tended to include arbitrary-rank integrands (such as those potentially appearing in non-renormalisable
Effective Quantum Field Theories) into the package XSAMURAI [131, 132].

4.2 Integrand decomposition via Polynomial Division
Amplitude reduction methods at the integrand level are advantageous since they turn an integral prob-
lem into an algebraic one, since the integrand is a rational function of polynomials of kinematic
variables.
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The reliance of this procedure on the algebraic manipulation of polynomials pointed toward a re-
formulation of the D-dimensional integrand decomposition procedure in the language of algebraic
geometry [46, 47], which in turn enabled the generalisation of this class of methods beyond one-loop
level [48, 133].
We remark that we now drop the barred notation for D-dimensional quantities as we shall no longer
be working with four-dimensional Feynman integrals.

Let us re-write equation 4.3 in a compact form:

Ii1...im (q) =
s

∑
k=0

∑
j1... jk

∆ j1... jk
D j1 . . .D jk

(4.17)

where s is generally less than the number of denominators m of the original amplitude, and as we
say is typically equal to 4 or 5. This formula was derived from Lorentz Invariance of the amplitude
(through Passarino-Veltman decomposition) and its multi-pole properties, as we saw.

From a purely algebraic perspective, this relation is simply the result of a multivariate polynomial
division between the numerator of the integrand and all the subsets of denominators {D j1 . . .D jk}
formed by the denominators of the amplitude; the terms ∆ j1... jk can then be interpreted as the remain-
der of the division.
The remainder should therefore be irreducible with respect to the set of denominators { j1 . . . jk} and
not contain any terms which can be re-written (and simplified) in terms of the denominators them-
selves. Another desirable property is universality in the loop variables, which would make the whole
procedure suitable for integrands of arbitrary complexity, arbitrary external legs and kinematics.

A simple example

Let f and g be two functions of the variable x. Let us perform the (univariate) division between them:

f (x)
g(x)

= q(x)+
r (x)
g(x)

where q(x) is the division’s quotient and r (x) its remainder, and it necessarily holds true that Deg [r]≤
Deg [g]. The idea is then to write out f directly as the sum of a contribution proportional to g itself
plus a remainder:

f (x) = q(x)g(x)+ r (x) (4.18)

doing this is entirely equivalent to performing the polynomial division. This can be immediately
connected to the Cauchy Residue Theorem if we take g(x) := (x− x0):

f (x)
(x− x0)

= q(x)+
r0

(x− x0)

where r0 is the residue of f over the (simple) pole x0.

4.2.1 Integrand recurrence
For the remainder of this section we shall employ Dimensional Regularisation in the D = 4− 2ε

prescription detailed in section 2.1.1. We recall that with this prescription a Feynman integral can be
parametrised in terms of the l (l +9)/2 variables zzz of equation 2.28. We shall use these variables to
parametrise the numerator, the remainders as well as the denominators.
For any set of denominators {Di1 . . .Dim} we define the Ideal Ji1...im:

71



CHAPTER 4. INTEGRAND-LEVEL DECOMPOSITION METHODS

Ji1...im = 〈Di1 . . .Dim〉 :=

{
m

∑
k=1

hk (zzz)Dik (zzz)
/

hk (zzz) ∈ P [zzz]

}
(4.19)

i.e. the set of all possible polynomials in the variables zzz (belonging to the polynomial ring P [zzz]) that
can be formed as a linear combination of denominators.
Let us now imagine to perform the multivariate polynomial division if the integrand’s numerator
against the denominators:

Ni1...im (zzz) =Qi1...im (zzz)+∆i1...im (zzz) (4.20)

where ∆i1...im (zzz) is the aforementioned remainder18 of the polynomial division between the numera-
tor and the set of denominators, while Qi1...im (zzz) is the quotient of said division, which necessarily
belongs to the ideal as:

Qi1...im (zzz) =
m

∑
k=1

Ni1...ik−1ik+1...im (zzz)Dik (zzz) (4.21)

Let us inset these definitions in the original expression for the integrand:

Ii1...im (zzz) =
m

∑
k=1

Ni1...ik−1ik+1...im (zzz)Dik (zzz)
Di1 . . .Dim

+
∆i1...im (zzz)
Di1 . . .Dim

=
m

∑
k=1
Ii1...ik−1ik+1...im (zzz)Dik (zzz)+

∆i1...im (zzz)
Di1 . . .Dim

(4.22)

It is now evident how Dik present in the quotient part of the numerator, by cancelling against the
respective term at the denominator, generates a new integrand expression but with one fewer denom-
inator, which corresponds to the integrand of a sub-diagram which can be further decomposed. This
reduction procedure can be iterated until any further polynomial divisions are not possible. The result
will comprise exclusively the remainder terms over the denominators, which is equivalent to a MI
decomposition once we integrate over the zzz variables.

4.2.2 Division modulo Gröbner bases
In describing the simple ideas behind this application of Polynomial division we glossed over some
mathematical minutiae which we will briefly mention here.

1. In practice, division between polynomials is done by identifying the highest degree monomial
in both the dividend and the divisor, dividing them to obtain the quotient, subtracting quotient
times divisor to obtain the remainder and re-iterating over it until the remainder is lower in
degree than the divisor.
A straightforward univariate example is x2 +4x divided by x−1:

18By no coincidence we use the same notation of the OPP residues, but we are not yet able to identify them as such.
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x2

x
= x x2 +4x− x(x−1) = 5x

5x
x

= 5 5x−5(x−1) = 5

=⇒ x2 +4x = (x−1)(x+5)+5

In the multivariate case there can be monomials of equal degree in different variables, and the
result may not be unique if there is no consistent way to choose which monomials to divide first.
The simplest choice is a lexicographic ordering of the variables, to resolve any ambiguities.
With x � y it is meant that x ought to be considered of higher order than y and thus should be
given priority in ambiguous cases.

2. In the more complex case of a multivariate polynomial p(x,y) divided by two polynomials
p1 (x,y) and p2 (x,y) one also needs to specify the order of the divisors, and the results can
change dramatically.
As an example, let p(x,y) := x2y3− 2x2y , p1 (x,y) := xy2− 2x and p2 (x,y) := y3− 1. Let us
define a lexicographic ordering x� y and divide first by p1 and then by p2:

x2y3

xy2 = xy x2y3−2x2y− xy
(
xy2−2x

)
= 0

=⇒ p(x,y) = xy p1 (x,y)

as we can see there is no remainder, and therefore p(x,y) must belong to the ideal generated
by p1 and p2 (this could have been immediately noticed). Let us now keep the lexicographic
ordering but invert the polynomial divisor order:

x2y3

y3 = x2 x2y3−2x2y− x2 (y3−1
)
=−2x2y+ x2

=⇒ p(x,y) = x2 p2 (x,y)+ x2 (y−1)

producing a completely different result, namely a remainder appears from the division of a
polynomial which should belong to an ideal (and thus be exactly divisible).
This ambiguity is problematic for the decomposition of amplitude integrals, since a simple
difference in ordering the denominators entails the non-uniqueness of the remainder; this in
turn makes it impossible to unambiguously pick the terms belonging to the ideal J which yield
sub-topology integrands.

This last problem was solved by introducing the polynomial division modulo a Gröbner basis [46,
47].
Given an ideal J on a ring of polynomials P [zzz], a Gröbner basis is a set of polynomials G (zzz) =
{g1 (zzz) . . .gn (zzz)} that generates J and such that, given a monomial ordering for the variables within
zzz, the multivariate polynomial division of any p(zzz) ∈ P [zzz] is unique.

Ji1...im = 〈gi1 . . .gin〉 :=

{
n

∑
k=1

h̃k (zzz)gik (zzz)
/

h̃k (zzz) ∈ P [zzz]

}
(4.23)

This definition does not detail how to practically compute a Gröbner basis given the Ideal; there exist
automated algorithms that accomplish just that, but describing their workings is well beyond the scope
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of this thesis.
We now perform the polynomial division of the numerator modulo this Gröbner basis, to obtain:

Ni1...im (zzz) =Qi1...im (zzz)+∆i1...im (zzz) (4.24)

Qi1...im (zzz) =
n

∑
k=1

Γk (zzz)gk (zzz) (4.25)

where the quotient is written in terms of the new basis, and by its virtue the remainder ∆ is now
uniquely determined. Of course, since the elements of the Gröbner basis belong to the Ideal, one
could write them on the basis of denominators and recover the the recurrence relation 4.22.

This enables the integrand to be completely decomposed as previously explained, but thanks to the
use of a Gröbner basis the remainder terms are now both unique and irreducible (with respect to the
denominators).
Now we are allowed to unambiguously associate each remainder ∆i1... jk with a set of denominators
{Di1 (zzz) . . .Dik(zzz)} and, using the language of Cauchy’s theorem, refer to the remainder as the residue
over a pole corresponding to the multiple cut Di1 (zzz) = · · ·= Dik (zzz) = 0.

After setting up the machinery to reduce integrands into residues and sub-topologies, one could nat-
urally ponder whether there exist some condition under which the integrand produces no residue at
all, and is instead completely reducible. The properties of Ideals over polynomial rings enable the
formulation of the following principle [47]:

Theorem 1 (Reducibility Criterion). If a multiple cut Di1 (zzz) = · · · = Dik (zzz) = 0 has no solution,
any integrand = Ii1...ik associated to it is completely reducible.

By virtue of this result, each and every residue must be associated to a set of solutions to the cut-
ting equations. Moreover, if this number of solutions is finite, then the cutting equations describe a
so-called maximum cut; an example of this would be the quadruple cut of a box in four dimensions,
discussed earlier in this chapter. In D-dimensions the maximum cut is the quintuple cut D1 . . .D5 = 0
which, as stated, admits a single solution.
The reducibility criterion serves as proof that in D-dimensions all one-loop amplitudes can be re-
duced to diagrams ranging from tadpoles up to at most pentagons, as solving a system of ≥ 6 cutting
equations in only five variables zzz = {x1,x2,x3,x4,µ

2} cannot have a solution.

Let us apply this method to a generic one-loop amplitude:

MD
i1...ir =

∫
dDq
πD/2

N (q)
Di1 . . .Dir

(4.26)

Adopting the D = 4− 2ε prescription, the integrand can be parametrised in terms of the variables
zzz = {x1,x2,x3,x4,µ

2}. The denominators are quadratic polynomials of zzz in the form of equation 2.22,
while the numerator shall be the most generic polynomial in these parameters:

N (zzz) = ∑
~j∈J

a~j x j1
1 x j2

2 x j3
3 x j4

4
(
µ

2) j5

J :=
{
~j = ( j1, j2, j3, j4, j5)

/
j1 + j2 + j3 + j4 +2 j5 ≤ r

} (4.27)
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the sum runs over the 5-tuples of exponents that define the single monomials in the parametrisation
of the numerator. The total degree in the parameters equals the overall degree in the loop momentum,
which is constrained not to exceed the number of denominators since we are dealing with renormal-
isable Quantum field Theories.
One then defines a lexicographic ordering such as x1 ≺ ·· · ≺ x5 = µ2, can use their Gröbner bases
generator of choice and could perform the multivariate polynomial division modulo this basis.
The result matches exactly equation 4.14 [47], and we point out that polynomial division automat-
ically produces the so-called spurious terms required to verify the integrand-level equality with the
amplitude, but which vanish upon being integrated due to Lorentz symmetry. In other words, the
parametrisation previously obtained (through term-by-term evaluation of all candidate Irreducible
Scalar Products) is now performed automatically from the expression of the most general polynomial
consistent with rank-restrictions.
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Chapter 5

Adaptive Integrand Decomposition

The integrand decomposition method has been crucially important in the automation of loop calcu-
lations of processes at NLO, its four-dimensional and D-dimensional formulations have been imple-
mented in several code packages such as CUTOOLS [3], SAMURAI [4], XSAMURAI [131, 132] and
NINJA [5]. The re-formulation in the language of algebraic geometry has enabled the prospective
extension of the method beyond one-loop order, mainly since the parametrisation and identification
of residues can be applied to integrands of much greater complexity thanks to the properties of cut-
associated Gröbner bases.
The full implementation of this method into a flexible, automated multi-loop package has, unfortu-
nately, been hindered by a few technical caveats:

• The complexity of the calculation depends heavily on the choice of parametrisation zzz and its
lexicographic ordering, since they influence directly the form of the Gröebner basis and any-
thing that depends on it. The most advantageous parametrisation is not immediately obvious
case-by-case.

• Beyond one-loop the notion of a spurious term is not as well-defined as for the one-loop case: it
becomes possible to have ISPs at integrand level which are not present in the original amplitude
integral but still do not naı̈vely integrate to zero like spurious terms should.

• A unique MI basis generally does not exist, and the final expansion into MIs reached through a
particular decomposition process is usually not the most compact possible. Given the expected
complexity of the results beyond one-loop, this aspect becomes of crucial importance. The
result could of course be simplified further by constructing and applying identities between the
MIs themselves (the IBP and Lorentz-invariance identities described in section 2.3); these are
however relations between integrals, and cannot be used to shorten the reduction calculations
since they simply do not hold at integrand level.
The choice of loop parametrisation zzz, once again, is important in determining how suited the
final result is to a further simplification into the simplest basis of MIs.

5.1 Preliminaries
To address these issues, it was proven very advantageous to formulate the integrand decomposition
method employing the D = D‖+D⊥ prescription for dimensional regularisation, described in section
2.1.2. The idea is to maximally-simplify the reduction algorithm by parametrising the loop variables
with regard to the external kinematic variables on an integrand-by-integrand basis, which this pre-
scription naturally implements.
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This new approach has been formalised as the Adaptive Integrand Decomposition method [14–16],
where adaptive refers to the ad hoc choice of variables based on the kinematics at hand .

As we discussed, the defining feature is the splitting between the so-called parallel space spanned by
the subset of independent external momenta and the space orthogonal to the external momenta. This
leads to parametrising the loop momenta in terms of l (l +9)/2 variables:

zzz = {x‖ i,x⊥ i,λi j} i, j = 1 . . . l (5.1)

where both sets of x parameters parametrise the formerly four-dimensional part of the loop momenta
while the λi js describe the (−2ε)-dimensional part plus scalar products between x⊥ is.
As was seen, the denominators do not depend on x⊥ and their dependency on the orthogonal space
enters exclusively through λi j. This is already an advantageous choice since reducing the number of
variables that parametrise the denominators will simplify the polynomial ring generated by them and,
by extension, the Ideal. Following this choice of variables, the integrand can be written as:

Ii1...im
(
x‖ i,x⊥ i,λi j

)
=

Ni1...im
(
x‖ i,x⊥ i,λi j

)
Di1
(
x‖ i,λi j

)
. . .Dim

(
x‖ i,λi j

) (5.2)

This parametrisation of the integrand highlights the purely-polynomial dependence on the transverse
components. This will enable them to be integrated away easily, as mentioned in section 2.1.2.

In section 4.1.1 we showed how the difference of two one-loop denominators is linear in the loop
momentum, up to scalar products with external momenta. Having m denominators at our disposal,
one can always build at least m independent difference equations and build a system , which can be
solved to fix the parameters of the loop momentum itself.
This picture holds regardless of the parametrisation. It is, however, simplified by applying the
D = D‖+D⊥ prescription, since19 the linearity in the loop momentum entails that this system is
independent of λ11 = λ 2 (as well as the entirety of the perpendicular space). For this reason one can
consider an (m−1)-equations system and solve it to express x‖ in terms of differences of denomina-
tors. λ 2 can then be extracted directly from the expression of one of the denominators.

Beyond one-loop it is generally not possible to determine all x‖ variables as they outnumber the
independent difference equations. One then distinguishes between those than can be expressed in
terms of denominators and those that remain undetermined. The former are labelled as xRSP

‖ i since,
recalling that the x variables will parametrise all the scalar products between the external and loop
momenta, they correspond to the Reducible scalar products; the latter are labelled as xISP

‖ i and represent
the physical Irreducible scalar products, as we will see more clearly shortly.
Then, one sorts the denominators in partitions defined according to their dependency on the loop
momenta or combinations thereof. A representative denominator is chosen for each partition and then
the variables λi j are extracted from it.

To summarise, the advantage of applying the D = D‖+D⊥ prescription adapted to the external kine-
matic configuration is many-fold. Firstly, the number of variables parametrising the whole integrand
is reduced since the polynomial Ideal generated by the denominators is independent of x⊥, and the
numerator depends on them only polynomially. For these reasons, these parameters can be treated as
constants and dealt with separately. Second, fixing all the remaining parameters (which is equivalent
to solving the cutting equations) is as simple as solving a linear system of difference equations.

19We momentarily focus on the one-loop case for simplicity.
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The solutions of these linear equations enable us to define a set of substitution rules:xRSP
‖ i −→ P

[
Dik , xISP

‖ i

]
λi j −→ P

[
Dik , xISP

‖ i

] (5.3)

which highlights how the variables {xRSP
‖ i , λi j} are expressed as polynomials in the denominators and

the irreducible parameters xISP
‖ i .

If we plugged this set of substitutions into the numerator of the integrand at hand, the result would
be a sum of terms polynomial in the variables Dik , xISP

‖ i . Those terms that contain only ISP-variables
would gather to form a residue-like term, while those containing products of denominators would
simplify with the denominators down below and produce sub-topology-like terms, still dependent on
xISP
‖ i . The moniker ”physical ISP” mentioned previously refers to this fact: that after applying the

linear relations these parameters are the only irreducible ones, which are thus left over as part of the
integrand expansion.

If one instead proceeded as described in section 4.2, by defining the lexicographic ordering λi j ≺ x‖ i,
computing the Gröbner bases and then running through the polynomial division recurrence algo-
rithm, it could be shown that the polynomials in the Gröbner bases would be analogously linear in the
{xRSP
‖ i , λi j}. Thus it can be shown that the end result of the polynomial division is identical to the one

obtained via the linear relations 5.3.
The biggest advantage of the adaptive parametrisation is, therefore, that one can outright avoid the
computation of the Gröbner bases and instead seek to build up the system of linear difference equa-
tions, solve it to obtain the substitution rules for the reducible parameters and, essentially, reduce the
integrand without actually performing any polynomial division.

5.2 The Divide-Integrate-Divide (DID) procedure
The integrand decomposition method can be greatly simplified by taking advantage of the results dis-
cussed above, namely the existence of linear substitution rules that render the Gröbner bases obsolete
and the possibility to integrate away the transverse components separately.
This new scheme is known as Adaptive Integrand Decomposition [14–16], which carries out the de-
composition by iterating a three-step approach called Divide-Integrate-Divide (DID):

• Division: the first step is to write down the numerator in terms of the parameters {x‖ i, x⊥ i, λi j}
and to plug in the linear relations 5.3, obtaining:

Ni1...im
(
x‖ i, x⊥ i, λi j

)
=

m

∑
k=1
Ni1...ik−1ik+1...im

(
xISP
‖ i , x⊥ i

)
Dik +∆i1...im

(
xISP
‖ i , x⊥ i

)
(5.4)

we highlight that the linear relations remove all dependence on the {xRSP
‖ i , λi j} parameters,

separating the sub-topology and cut-associated residue terms in the process, and also that the
transverse parameters are left untouched. As we mentioned, it could be shown that this result is
equivalent to computing the Gröbner basis G, performing the multivariate polynomial division
and re-writing the quotient in terms of the denominators through the expression of G itself.

• Integration: at this stage the x⊥ i parameters enter the decomposed numerator polynomially
and, taking advantage of the properties of the D = D‖+D⊥ prescription, can be integrated
away in a single step. The integration is performed on the residue only by mapping x⊥ i into
polynomials of the angular parameters Θ⊥:

x⊥ i −→ P
[
λi j, sinΘ⊥, cosΘ⊥

]
(5.5)
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and then integrating over these. The result is a residue free of explicit transverse components
and, by extension, spurious terms, at the expense of additional terms of the space-time dimen-
sions D.
There is also some dependence on the transverse components implicit in the λi j which is re-
introduces at this step, and which is taken care of next.

• Second division: The residues represented in this way have no explicit dependence on the
x⊥ i, i.e. no spurious terms. They do, however, still depend on λi j as a result of the spurious
integration step, and from equation 5.3 these variables do not constitute ISPs and are instead
reducible further. By applying the linear relations a second time on the integrated residue, one
obtains:

∆
int
i1...im

(
xISP
‖ , λi j

)
=

m

∑
k=1
N int

i1...ik−1ik+1...im

(
xISP
‖ i

)
Dik +∆

′
i1...im

(
xISP
‖

)
(5.6)

where ∆
′
i1...im

(
xISP
‖

)
are completely free of both denominators, transverse components of left-

over λi js, and thus constitute the true residue terms.

All sub-topology terms, corresponding to the lower-cut integrands, are collected and the algorithm
is re-iterated over them, at every instance removing all spurious terms and producing the residues
associated with the cut.

The result is the full integrand decomposition into scalar integrands (written in the more general
multi-loop case):

Mi1...ir =
m

∑
k=0

∫
l

∏
j=1

dDq j

πD/2 ∑
j1... jk

∆
′
j1... jk

(
xISP
‖

)
D j1 . . .D jk

(5.7)

where the first sum is over the multiple cuts (or, equivalently, the number of surviving inverse propa-
gators) and the second sum encompasses all the possible ways to perform a (m− k)-uple cut.

5.3 Adaptive Integrand Decomposition at one-loop
At this point we would like to interpret the workings of the Adaptive approach to integrand decompo-
sition at one-loop with the previous approach discussed in chapter 4.1.2. Starting from an integrand
like 5.2 parametrised in the D = D‖+D⊥ prescription we wish to see what happens to the n-point
residues at each step of the DID algorithm, paying attention in particular to which variables are needed
to capture their full polynomial properties.
Table 5.1 from [14, 16] details the result of each step. The first division yields a parametrisation anal-
ogous to 4.14, perhaps not so evidently since in the AID framework the distinction between µ2 and
the four-dimensional parameters is mixed amongst all variables. The second step removes all the spu-
rious components from the variables, reducing all their non-vanishing contributions to powers of λ 2.
The pentagon residue vanishes at this stage as it should, this time since it is parametrised in terms of
fully-spurious variables which are integrated away. This result matches closely 4.15 if one identifies
the contributions from powers of λ 2 with the higher-dimensional integrals. The second division has
the effect of sending all power-of-λ 2 contributions to rank zero numerators and lower-point integrals.
The second division can then be interpreted as a backwards-implementation of the dimensional shift
identities at integrand level.
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Figure 5.1: Residue parametrization for irreducible one-loop topologies. The first column indicates the residue
under advisement, equivalently the integral it will belong to upon integration. The second column defines the
set of variables τ ≡

{
x‖ i,λi j

}
that parametrise the denominators. The third, fourth and fifth columns show

the residue parametrisation after, respectively, the first division, the integration, and the second division. Also
written out are the number of said variables at each step [14, 16].

A practical example

Let us see a simple application of the reduction procedure to a rank-2, three-point one-loop integral
[15]:

I123 =

∫
dDq
πD/2

(q · p1)(q · p2)+4(q · ε12)(q · ε21)

(q2−m2)
(
(q+ p1)

2−m2
)(

(q+ p1 + p2)
2−m2

) (5.8)

where we can identify the three denominators as, respectively, D1, D2, D3, and for simplicity we let
pα

1,2 be massless four-vectors. Also we define (p1 + p2)
2 = 2p1 · p2 := s12 ≡ s.

εα
i j are transverse polarisation vectors taken to be orthogonal to both external momenta: εi j · pk = 0.

These can be defined using the spinor-helicity formalism of chapter 6.2:

ε
α
12 :=

[2|1]√
2

ε
α
+ (p1, p2) (5.9)

ε
α
21 :=

〈2|1〉√
2

ε
α
− (p1, p2) (5.10)

Accordingly, they satisfy the following:

εi j · εi j = 0

ε12 · ε21 =−
[2|1]〈2|1〉

2
=

s12

2
=

s
2

(5.11)

Let us first define the D = D‖+D⊥ prescription in this case. From the external kinematics it is clear
that there are only 2 independent momenta, thus D‖ = 2. The loop momentum is then parametrised
accordingly:
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qα = qα

‖ +λ
α (5.12)

qα

‖ = x1 pα
1 + x2 pα

2 (5.13)

λ
α = x3eα

3 + x4eα
4 +µ

α (5.14)

where the transverse vectors could be defined as eα
3,4 = εα

12± εα
21. The integral is then parametrised

according to the set of variables zzz = {x1,x2,x3,x4,λ
2}:

I123 =

∫
dDq
πD/2

x1x2 (p1 · p2)
2 +4 [(x3e3 + x4e4) · ε12] [(x3e3 + x4e4) · ε21]

D1D2D3

=

∫
dDq
πD/2

x1x2 (p1 · p2)
2 +(ε12 · ε21)

2 [x3− x4] [x3 + x4]

D1D2D3

= s2

∫
dDq
πD/2

x1x2 + x2
3− x2

4
D1D2D3

(5.15)

and so are the three denominators:

D1 = sx1x2 +λ
2−m2

D2 = s(x1 +1)x2 +λ
2−m2

D3 = s(x1 +1)(x2 +1)+λ
2−m2 (5.16)

where, thanks to the orthogonality of the parallel and orthogonal spaces, the denominators actually
only depend on τ := {x1,x2,λ

2}.
We now build difference equations between the denominators to obtain expressions linear in τ:

D1 = sx1x2 +λ
2−m2

D2−D1 = sx2

D3−D1 = s(x1 + x2 +1) (5.17)

this is a system of equations linear in the three variables which is easily solved:


x1→

D3−D2− s
s

x2→
D2−D1

s

λ
2→ (D2−D1)(D2−D3)

s
+D2 +m2

(5.18)

where the solutions have been written as substitution rules.
Let us now execute the DID algorithm:
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• Division: We first plug into the integrand of 5.15 the substitutions 5.18 and perform the poly-
nomial division:

s2 x1x2 + x2
3− x2

4
D1D2D3

→
(D3−D2− s)(D2−D1)+ s2 (x2

3− x2
4
)

D1D2D3

=
1

D1
− 1

D2
− D2 + s

D1D3
+

1
D3

+
s

D2D3
+

s2 (x2
3− x2

4
)

D1D2D3

=
1

D1
− 1

D2
+

1
D3
− (q+ p1)

2−m2 + s
D1D3

+
s

D2D3
+

s2 (x2
3− x2

4
)

D1D2D3
(5.19)

• Integration: Integrating the last term in the integrand over the transverse coordinates x3 and
x4 the spurious components vanish, but it can be shown that one non-vanishing contributions
remains:

s2

∫
dDq
πD/2

(
x2

3− x2
4
)

D1D2D3
→− 2s

D−2

∫
dDq
πD/2

λ 2

D1D2D3
(5.20)

• Second division: We further decompose this last integrand by re-applying 5.18:

− 2s
D−2

λ 2

D1D2D3
→− 2

D−2
(D2−D1)(D2−D3)+ s

(
D2 +m2)

D1D2D3

=− 2
D−2

[
− 1

D3
− 1

D1
+

1
D2

+
D2 + s
D1D3

+
sm2

D1D2D3

]
=

2
D−2

[
1

D1
− 1

D2
+

1
D3
− (q+ p1)

2−m2 + s
D1D3

− sm2

D1D2D3

]
(5.21)

We now put everything together and re-write the original integral, which we recall was rank-2, three-
point:

I123 =

∫
dDq
πD/2

{
D

D−2

[
1

D1
− 1

D2
+

1
D3

]
−

D
(
m2− s

)
D−2

[
1

D1D3

]
+ s
[

1
D2D3

]
− 2s

D−2

[
1

D1D2D3

]}

− D
D−2

∫
dDq
πD/2

[
(q+ p1)

2

D1D3

]
(5.22)

which is explicitly reduced into a series of scalar (rank-0) one-,two- and three-point integrals with
rational coefficients, as well as a rank-2 two-point integral. It is evident how one iteration of the
procedure has lowered the complexity of all contributions to the original integral.
This procedure was computed by applying the DID-algorithm ”on the triple cut”, by which it is meant
that (all) three denominators were encompassed in the procedure. We recall that this is equivalent to
performing the multivariate polynomial division of the numerator on the triple cut solution D1 =D2 =
D3 = 0. The full reduction to scalar integrals only now entails repeating this procedure from the top
on the lower-point non-scalar integrals, of which there is only one in this case.
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5.4 AIDA: ADAPTIVE INTEGRAND DECOMPOSITION ALGORITHM

AIDA [15] is a MATHEMATICA implementation of the Adaptive Integrand Decomposition and its
DID algorithm, suitable for one and two-loop integrand decompositions, used to generate some of the
main results of this thesis work. Here we shall give a brief outlook of its logic and operations.

Inputs

The algorithm expects as an input a list of square amplitudes, which correspond to cross-interferences
of Feynman diagrams with common external kinematics. This is the usual case for many physical pro-
cesses at the loop level where different types of diagrams participate.
Alternatively one may feed in a list of non-interfered amplitudes, so long as they do not contain un-
contracted tensor indices. Consider for example the QED-regulated process of the photonic vacuum-
polarisation at the 2-loop level:

I1 I2 I3 (5.23)

Figure 5.2: The three diagrams that correct the photonic vacuum polarisation at two loops in QED.

In this case the amplitude would possess some naked Lorentz indices corresponding to the external
photons. In order to generate a valid input for AIDA one can contract the amplitude with a suitably-
chosen tensor such as a transverse polarisation operator.
The input amplitudes may be generated in several ways, such as using the MATHEMATICA packages
FEYNARTS [134]and FEYNCALC [50, 51]

We will continue with this example to illustrate the operation of AIDA [15], where lk = ∑
l
1=1 αkiqi+

∑
n−1
1=1 βki pi is the momentum that flows in the k− th propagator. The input is thus the list:

I =
{
I1 , I2 , I3

}
(5.24)

where every amplitude is represented in terms of the numerator, the loop propagators and their powers,
as follows:
Int[1]

{Num[1], {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}},

{1, 1, 1, 1,1}}

Int[2]

{Num[2], {{q1, m2}, {-p + q1, m2}, {q2, m2}, {p - q1 + q2, 0}}, {1, 2, 1, 1}}

Int[3]

{Num[3], {{q1, m2}, {-p + q1, m2}, {q2, m2}, {p - q1 + q2, 0}}, {1, 2, 1, 1}}

where the powers of two, of course, come since in the second and third diagrams a fermionic propa-
gator is repeated twice.
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Grouping

The first operation performed by the algorithm is known as grouping, as it entails gathering together
amplitudes that can be reduced simultaneously later on.
The grouping re-arranges the input list as follows:

I =
⋃
k

Gk , Gk =
{
IGk

1 , IGk
2 , . . . , IGk

m

}
(5.25)

The grouping is performed by identifying all amplitudes that can be obtained by pinching one or
more internal lines of other amplitudes. The largest amplitude, from which all other amplitudes in the
group are obtained by repeated pinching, is referred as the parent integrand. In the notation above,
the parent integrand corresponds to IGk

1 and is represented internally as:

IGk
1 =

{
N Gk

1 ,
{

D1, . . . ,D j

}
,
{

max
Gk

(a1) , . . . ,max
Gk

(a j)
}}

(5.26)

evidently encompassing all denominators present in the sub-topologies of Gk . One should note that
the parent integrand may not actually correspond to one of the original amplitudes, but instead could
be defined from scratch specifically to yield the other amplitudes by pinching its internal lines. In this
case, its numerator would be initialised to zero.
In order to bring two amplitudes in a single group in a practical sense it may be necessary to re-
define the loop momentum by a shift. At one loop the momentum q is shifted by a combination of
the external momenta flowing in through the external lines, but beyond 1-loop the shifting may also
involve the other loop momenta.

Let us illustrate the process taking as an example the amplitudes of figure 5.2. It is immediately ev-
ident that I2 and I3 differ only by the direction of momentum flow and thus are virtually the same
amplitude. Therefore AIDA would merge the two numerators and define a new integrand I23 with
the same set of loop denominators.
Then the algorithm would try to shift the loop momenta of this combined integrand to write its de-
nominators in terms of those of I1. This can be done with the shift:

{
q1→−q1

q2→ q2− p

I1, however, cannot be the parent integrand since one of the denominators of I23 is squared. The
parent integrand IG1 is then defined from scratch, and the resulting group is:

G =
{
IG1 , IG2 = I1 , IG3 = I23

}
(5.27)

with:
IntG[1]

{0, {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 2, 1, 1, 1}}

IntG[2]

{Num[1], {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 1, 1, 1,1}}

IntG[3]

{Num[2] + Num[3],

{{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}},

{1, 2, 1, 0, 1}}
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Next, the algorithm analyses the structure of the amplitudes, group-by-group, to extract all the infor-
mation required to build the adaptive parametrisation.

First, for every parent integrand, the list of denominators is arranged into a so-called graph, which is
a list of vertices connected by denominators.
A sub-graph is generated by merging two adjacent vertices, which corresponds to cutting the propa-
gator in-between; the algorithm seeks all possible ways to do this, which corresponds to completely
defining the cut structure of the integrand. Using the graph formalism enables AIDA to immediately
reconstruct the momentum flow after each cut.
Every sub-graph and all of their information are encoded in a topology as such:

T1...m =
{
Num ,

{
q1, q2

}
,
{

p1, . . . pm

}
,
{{

D1, . . .Dm1

}
,
{

Dm+1, . . .Dm1+m2

}
,
{

Dm1+m2, . . .Dm

}}}
(5.28)

This object contains information on the loop momenta (2, in this example), the external kinemat-
ics and all the denominators, grouped together based on which loop momenta they depend on:
q1, q2, q1±q2. The numerator is left as a place holder variable for the moment.
For each topology, the algorithm constructs a D = D‖+D⊥ parametrisation using the stored infor-
mation on the topology’s external momenta. This is then used to parametrise all denominators, and
subsequently to construct and solve the system of linear relations expressing {xRSP

‖ i , λi j} in terms of
loop denominators, to be used later on. We recall that this corresponds precisely to computing the
solution to the cut conditions that produce the topology in question.

At this step, the algorithm associates each integrand to one of the topologies via the definition of a
cut:

Cuta1...am
1...m =

{
N a1...am

1...m{{
1, . . . ,m1

} {
m1 +1, . . . ,m1 +m2

}
,
{

m1 +m2, . . . ,m
}}

,{
a1, . . . ,am1,am1+1, . . . ,am1+m2,am1+m2+1, . . . ,am

}} (5.29)

where the denominator indices and the related exponents are taken from the associated topology, and
where the numerator is given by the specific integrand. All topologies not paired with an integrand
are initialised with zero numerator.

A generic cut can always receive a contribution to its numerator from the reduction of a larger topol-
ogy during the execution of the DID procedure. Therefore the final step in the initialisation phase is
to determine which cuts may contribute to which other cuts and sort them accordingly. The cuts are
then organised into Jobs, where the first job contains only the cut associated with the parent integrand,
which could theoretically contribute to all subsequent cuts, while all the other jobs contain a set of
cuts which depend on the previous calculations but that would never contribute to each other. This
enables AIDA to be parallelised.
The job structure generated for the previous example is as follows:
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Job[1]

{Cut[{{1, 2}, {3, 4}, {5}}, {1, 2, 1, 1, 1}]}

Job[2]

{Cut[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]}

Job[3]

{Cut[{{2}, {3, 4}, {5}}, {0, 2, 1, 1, 1}], Cut[{{1, 2}, {4}, {5}}, {1, 2, 0, 1, 1}],

Cut[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}], Cut[{{1, 2}, {3, 4}}, {1, 2, 1, 1, 0}]}

Job[4]

{Cut[{{2}, {3, 4}, {5}}, {0, 1, 1, 1, 1}],

Cut[{{1}, {3, 4}, {5}}, {1, 0, 1, 1, 1}], Cut[{{1, 2}, {4}, {5}}, {1, 1, 0, 1, 1}],

Cut[{{1, 2}, {3}, {5}}, {1, 1, 1, 0, 1}], Cut[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]}

Job[5]

{Cut[{{2}, {4}, {5}}, {0, 2, 0, 1, 1}], Cut[{{2}, {3}, {5}}, {0, 2, 1, 0, 1}],

Cut[{{2}, {3, 4}}, {0, 2, 1, 1, 0}], Cut[{{1, 2}, {5}}, {1, 2, 0, 0, 1}],

Cut[{{1, 2}, {4}}, {1, 2, 0, 1, 0}], Cut[{{1, 2}, {3}}, {1, 2, 1, 0, 0}]}

Job[6]

{Cut[{{3, 4}, {5}}, {0, 0, 1, 1, 1}], Cut[{{2}, {4}, {5}}, {0, 1, 0, 1, 1}],

Cut[{{2}, {3}, {5}}, {0, 1, 1, 0, 1}], Cut[{{2}, {3, 4}}, {0, 1, 1, 1, 0}],

Cut[{{1}, {4}, {5}}, {1, 0, 0, 1, 1}], Cut[{{1}, {3}, {5}}, {1, 0, 1, 0, 1}],

Cut[{{1}, {3, 4}}, {1, 0, 1, 1, 0}], Cut[{{1, 2}, {5}}, {1, 1, 0, 0, 1}],

Cut[{{1, 2}, {4}}, {1, 1, 0, 1, 0}], Cut[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]}

Job[7]

{Cut[{{2}, {5}}, {0, 2, 0, 0, 1}],

Cut[{{2}, {4}}, {0, 2, 0, 1, 0}], Cut[{{2}, {3}}, {0, 2, 1, 0, 0}]}

Job[8]

{Cut[{{4}, {5}}, {0, 0, 0, 1, 1}], Cut[{{3}, {5}}, {0, 0, 1, 0, 1}],

Cut[{{2}, {5}}, {0, 1, 0, 0, 1}], Cut[{{2}, {4}}, {0, 1, 0, 1, 0}],

Cut[{{2}, {3}}, {0, 1, 1, 0, 0}], Cut[{{1}, {5}}, {1, 0, 0, 0, 1}],

Cut[{{1}, {4}}, {1, 0, 0, 1, 0}], Cut[{{1}, {3}}, {1, 0, 1, 0, 0}]}

The cuts that are initialised to the input amplitudes are:

Cut[{{1, 2}, {3, 4}, {5}}, {1, 2, 1, 1, 1}]

Cut[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]

Cut[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}]

DID algorithm execution

Finally the algorithm proceeds to apply the DID procedure to each job, one by one starting from the
top. The numerator of each job is gathered together with all existing contributions to that particular
topology that might have appeared from the reduction of previous jobs.
The algorithm builds the adaptive parametrisation, solves the cut and finds the substitution rules.
These are then plugged into the amplitude belonging to the parent topology, thus performing the first
division. A set of substitution routines perform the transverse-space integration, simply looking for
the relevant kinematic configuration in a table of known results as mentioned. The division routine is
called once again and, finally, the results are distributed to the relevant places. All the quotients are
passed over to the relevant lower-cut integrands as numerators, while the leftover term is returned as
the residue of the cut ∆1 . . .ma1...am .

This procedure is applied to each cut of the job at hand (possibly in parallel), and every job is handled
one after the other until all that is left are the non-vanishing residues associated to every integral.
It is important to mention that the final list of integrals will often contain ”spurious integrals” that
are either vanishing or can be related to one another upon shifting the loop momentum variable. If
the integral vanishes then the residue ought to be discarded, while if two integrals are really identical
their residues are merged. This situation arises because of the symmetries of the quantities involved
in the Integrand decomposition method. Therefore, from the standpoint of Integrand decomposition,
all the integrals that survive this simplification step should be regarded as independent.
For instance, the result of running the DID algorithm over the above list of jobs produces the following
list of residues:
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Δ[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]

Δ[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}]

Δ[{{2}, {3, 4}, {5}}, {0, 1, 1, 1, 1}]

Δ[{{1}, {3, 4}, {5}}, {1, 0, 1, 1, 1}]

Δ[{{1, 2}, {4}, {5}}, {1, 1, 0, 1, 1}]

Δ[{{1, 2}, {3}, {5}}, {1, 1, 1, 0, 1}]

Δ[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Δ[{{2}, {3}, {5}}, {0, 2, 1, 0, 1}]

Δ[{{1, 2}, {5}}, {1, 2, 0, 0, 1}]

Δ[{{1, 2}, {3}}, {1, 2, 1, 0, 0}]

Δ[{{3, 4}, {5}}, {0, 0, 1, 1, 1}]

Δ[{{2}, {4}, {5}}, {0, 1, 0, 1, 1}]

Δ[{{2}, {3}, {5}}, {0, 1, 1, 0, 1}]

Δ[{{2}, {3, 4}}, {0, 1, 1, 1, 0}]

Δ[{{1}, {4}, {5}}, {1, 0, 0, 1, 1}]

Δ[{{1}, {3}, {5}}, {1, 0, 1, 0, 1}]

Δ[{{1}, {3, 4}}, {1, 0, 1, 1, 0}]

Δ[{{1, 2}, {5}}, {1, 1, 0, 0, 1}]

Δ[{{1, 2}, {4}}, {1, 1, 0, 1, 0}]

Δ[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]

Δ[{{2}, {5}}, {0, 2, 0, 0, 1}]

Δ[{{2}, {3}}, {0, 2, 1, 0, 0}]

Δ[{{2}, {5}}, {0, 1, 0, 0, 1}]

Δ[{{2}, {3}}, {0, 1, 1, 0, 0}]

Δ[{{1}, {5}}, {1, 0, 0, 0, 1}]

Δ[{{1}, {3}}, {1, 0, 1, 0, 0}]

Δ[{{1}, {3, 4}}, {1, 0, 1, 1, 0}]

Δ[{{1, 2}, {5}}, {1, 1, 0, 0, 1}]

Δ[{{1, 2}, {4}}, {1, 1, 0, 1, 0}]

Δ[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]

Δ[{{2}, {5}}, {0, 2, 0, 0, 1}]

Δ[{{2}, {3}}, {0, 2, 1, 0, 0}]

Δ[{{2}, {5}}, {0, 1, 0, 0, 1}]

Δ[{{2}, {3}}, {0, 1, 1, 0, 0}]

Δ[{{1}, {5}}, {1, 0, 0, 0, 1}]

Δ[{{1}, {3}}, {1, 0, 1, 0, 0}]

where the associated integral can easily be read off. It turns out that this list can be reduced to the
following list of independent residues:

Δ[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]

Δ[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}]

Δ[{{1, 2}, {3}, {5}}, {1, 1, 1, 0, 1}]

Δ[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Δ[{{2}, {3}, {5}}, {0, 2, 1, 0, 1}]

Δ[{{1, 2}, {3}}, {1, 2, 1, 0, 0}]

Δ[{{1}, {3}, {5}}, {1, 0, 1, 0, 1}]

Δ[{{2}, {3}, {5}}, {0, 1, 1, 0, 1}]

Δ[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]

Δ[{{2}, {3}}, {0, 2, 1, 0, 0}]

We mention that AIDA also offer the possibility of running a simplified decomposition algorithm:
instead of solving the cutting equations for all possible cuts, obtaining the substitution rules and
running the DID algorithm job-by-job it only solves the largest cut present, constructs a single table
of substitutions based on it and only performs the first division on each numerator. Based on what we
said in section 5.3 this will entail more spurious integrals present in the final decomposition that will
need to be simplified either by dimensional-shift relations or by the Integration-by-parts (IBP) and
Lorentz-invariance identities of section 2.3, but in return the computational cost is much reduced.

In conclusion we stress once more that nothing in the Integrand decomposition method guarantees that
the final list of integrals is the minimal Master integral basis, since relations between integrals exist
solely at integral-level, and their workings cannot be captured and accounted for by integrand-level
reduction methods. Therefore, as a final simplification step, one should feed the output to dedicated
codes that generate and apply IBP and Lorentz-invariance identities between the Master Integrals. To
this end, AIDA is engineered in a flexible way, its results are adaptable to be fed to the automated IBP
codes such as KIRA and REDUZE through the use of interfaces within the MATHEMATICA framework.
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Chapter 6

N-point kinematics

A physical quantity is said to possess n-point kinematics if it is a functions of n external momenta that
sum up to zero by momentum conservation. Feynman amplitudes, loop integrals and the integrands
that appear in the aforementioned decomposition procedures naturally possess n-point kinematics.
The kinematics determine the independent variables upon which physical quantities depend.
This chapter is devoted to introducing some possible ways to parametrise quantities in n-point kine-
matics.

6.1 Mandelstam variables
In D = 4 the dependence on the external momenta most often comes in the form of contractions with
gµν , i.e. scalar products. These, in turn, are labelled either by kinematic invariants such as masses or
by the so-called Mandelstam variables:

m2
i := p2

i

si j :=
(

pi + p j
)2 (6.1)

Not all these variables are independent. Given n external momenta, if momentum conservation is to
be enforced, the independent external momenta should not be n, but (n−1) instead. It follows that
the distinct pairings of different momenta pi and p j that we could construct are (n−1)(n−2)/2.
Meanwhile we also have the on-shell conditions p2

i = m2
i . For the (n−1) independent momenta this

amount to a simple change of variable. Given that the leftover momentum is written in terms of
the others by momentum conservation, its on-shell condition acts as a constraint on the independent
momenta.
By this logic, the actual independent Mandelstam variables are:

(n−1)(n−2)
2

−1 =
n(n−3)

2
(6.2)

From n = 6 and above, one ought to have at least five independent momenta and one momentum-
conservation relation. However, in four dimensional space-time, the number of linearly-independent
vectors is at most four. Consequently any 5×5 Gram matrix Gαβ that can be constructed by choosing
any 5 external momenta has vanishing determinant.
Given n total momenta, let us choose 4 independent ones and set them aside. The distinct ways to
pair up the remaining (n−4) are then (n−4)(n−5)/2. This is also the number of vanishing Gram
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determinants, and thus the number of constraints that reduce the number of independent Mandelstam
variables.
After discarding the extra Mandelstams, the final number of independent variables is:

n(n−3)
2

− (n−4)(n−5)
2

=
(6n−20)

2
= 3n−10 (6.3)

Let us compare the two formulas for varying n in a table:

n n(n−3)/2 3n−10
3 0 -
4 2 2
5 5 5
6 9 8
7 14 11
8 20 14

this makes clear how, from 6-point kinematics on, momentum-conservation plus the on-shellness
condition are no longer enough to determine the minimal set of Mandelstam variables.

For the familiar four-point kinematics the two independent Mandelstams can be defined as: s :=
(p1 + p2)

2, t := (p1 + p4)
2 in the case of incoming external momenta. A third Mandelstam variable

u := (p1 + p3)
2 could be defined, but is related to the others by the relation:

s+ t +u =
4

∑
i=1

m2
i (6.4)

Beyond four-point amplitudes, one usually speaks of generalised Mandelstam variables. In the case
of five-point kinematics a common choice for the five parameters is the following set of cyclic Man-
delstam variables [135–138] :

s12, s23, s34, s45, s51

si j :=
(

pi + p j
)2

= 2pi p j
(6.5)

where the last relation is valid in the massless case. The non-cyclic Mandelstams can be related to
these by the following relations [136]:

si,i+2 = si+3,i+4− si,i+1− si+1,i+2 (6.6)

6.2 Spinor-Helicity Formalism
The Spinor-Helicity formalism is an alternative representation for massless four-momenta. It is based
on writing down the kinematics on the so-called helicity basis, built upon the massless Dirac equa-
tion. This formalism is often advantageous compared to the ordinary momentum representation since
helicity is a conserved quantity along fermionic lines, and since it enables to exploit gauge-invariance
effectively by choosing an appropriate representation for polarisation states.
In this appendix we shall present the basic definitions and identities [2, 136, 139] of which we shall
make use later on in this chapter, as well as elsewhere in this thesis.
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Helicity

The helicity operator is defined as the projection of a particle’s spin operator onto the direction of
motion, defined by normalising the particle’s four-momentum:

p̂µ :=
pµ

|p|
(6.7)

h(p̂) :=
1
2

Σ · p̂ (6.8)

as an operator, it commutes with the Hamiltonian and is thus well-defined.

Chirality

Let us now consider the Dirac equation in momentum space for both a fermion and its anti-particle of
four-momentum pµ

i : (
/pi +mi

)
u(pi) = 0 (6.9)(

/pi−mi

)
v(pi) = 0 (6.10)

It is evident how, in the massless limit mi→ 0 there is no difference between the particle and antipar-
ticle solutions, which can thus be identified.
We introduce the two Chiral projectors P± := 1

2

(
1+ γ5), these are used to write down the two solu-

tions of the massless Dirac equation, as well as the conjugate ones:

u± (pi) := P±u(pi)

v± (pi) := P∓v(pi)

ū± (pi) := ū(pi)P∓
v̄± (pi) := v̄(pi)P±

These are known as left- and right- handed chiral spinors.

6.2.1 Massless fermion representation
The spinor-helicity formalism exploits the wave equation for chiral massless fermions to construct
an alternative representation for momenta and spinor products. We now define the angle and square
brackets, which indicate different chirality states:

|i〉 := u+ (pi) = v− (pi)

|i] := u− (pi) = v+ (pi)

〈i| := ū− (pi) = v̄+ (pi)

[i| := ū+ (pi) = v̄− (pi)

and the massless Dirac equation becomes:

/pi |i〉= 0

/pi |i] = 0

〈i|/pi = 0

[i|/pi = 0

(6.11)

Inner products of spinors are written as:
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〈i| j〉 := ū− (pi)u+
(

p j
)

[i| j] := ū+ (pi)u−
(

p j
)

and satisfy the following symmetry relations:

〈i|i〉= [i|i] = 0
〈i| j] = [i| j〉= 0

〈i| j〉=−〈 j|i〉
[i| j] =− [ j|i]

By using the Gordon identity, one can express the four-momentum pµ

i in terms of spinors:

pµ

i =
1
2
〈i|γµ |i] = 1

2
[i|γµ |i〉 (6.12)

and, in turn, the outer product between spinors:

|i〉 [i|= 1
2

(
1+ γ

5
)
/pi |i]〈i|= 1

2

(
1− γ

5
)
/pi

The spinor outer product satisfies useful relations such as:

• charge conjugation:

[i|γµ | j〉= 〈 j|γµ |i] (6.13)

• the Fierz identity:

[i|γµ | j〉 [k|γµ |l〉= 2 [i|k]〈l| j〉 (6.14)

• the Schouten identity:

〈i| j〉〈k|l〉+ 〈i|k〉〈 j|l〉+ 〈i|l〉〈 j|k〉= 0
[i| j] [k|l]+ [i|k] [ j|l]+ [i|l] [i| j] [ j|k] = 0

(6.15)

Let us now set to work on an explicit representation for the angle and square brackets. Both of
them are solutions to the massless Dirac equation and, therefore, can be represented either as a single
four-component Dirac spinor or in terms of 2-component Weyl spinors:

|i〉= u+ (pi) = λα (pi) , α = 1,2
〈i|= ū− (pi) = λ

α (pi) , α = 1,2

|i] = u− (pi) = λ̄
α̇ (pi) , α̇ = 1,2

[i|= ū+ (pi) = λ̄α̇ (pi) , α̇ = 1,2 (6.16)

the usual convention for undotted indices is to regard upper indices as row indices and lower indices
as column ones, and doing the inverse for dotted indices.
The indices are raised and lowered as customary in 2-component notation:
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λ
α = ε

αβ
λβ

λ̄
α̇ = ε

α̇β̇
λ̄

β̇

λα = εαβ λ
β

λ̄α̇ = ε
α̇β̇

λ̄
β̇

with:

ε
αβ = ε

α̇β̇ =

(
0 1
−1 0

)
εαβ = ε

α̇β̇
=

(
0 −1
1 0

)
and the inner products of spinors can be expanded in components:

〈i| j〉= λ
α

ηα = ε
αβ

λβ ηα = η1λ2−λ1η2

[i| j] = λ̄α̇ η̄
α̇ = ε

α̇β̇
λ̄

β̇
η̄

α̇ = λ̄
1̇
η̄

2̇− η̄
1̇
λ̄

2̇ (6.17)

In the Weyl representation the Dirac γ-matrices are decomposed in terms of the Pauli matrices σ
µ

αβ̇
:

σ
0
αβ̇

=

(
1 0
0 1

)
, σ

1
αβ̇

=

(
0 1
1 0

)
, σ

2
αβ̇

=

(
0 −i
i 0

)
, σ

3
αβ̇

=

(
1 0
0 −1

)
(6.18)

we can contract these with a four-vector pµ and obtain:

pµσ
µ

αβ̇
=

(
p0− p3 −

(
p1− ip2)

−
(

p1 + ip2) p0 + p3

)
(6.19)

If we compute the determinant of this matrix we find:

Det
[

pµσ
µ

αβ̇

]
= pµ pµ = p2 (6.20)

Since the momenta are massless, the determinant vanishes and thus the matrix is rank-1. It can
therefore be written as the outer product of two Weyl spinors:

pµσ
µ

αβ̇
= λα λ̄

β̇
(6.21)

and this yields an explicit expression for both the chiral and anti-chiral spinors, i.e. angle and square
brackets:

|i〉= λα (pi) =


√

p0
i + p3

i

p1
i +ip2

i√
p0

i +p3
i

 [i|= λ̄α̇ (pi) =

(√
p0

i + p3
i ,

p1
i−ip2

i√
p0

i +p3
i

)
(6.22)

Proving this is straightforward, keeping in mind p2
i = 0.

One could contract 6.19 with (σ̄ν)α̇β = ε α̇ γ̇εβδ σν

δ γ̇
and, with some 2-component algebra, obtain a

representation for the momentum pµ

i in terms of spinors:

92



CHAPTER 6. N-POINT KINEMATICS

λ̄α̇ (pi)(σ̄
µ)α̇β

λβ (pi) = 2pµ

i (6.23)

which is basically the Gordon identity in 2-component notation.

Given the Fierz Identity for Pauli matrices: σ
µ

αβ̇
(σ̄ µ)α̇β = δ α̇

α δ
β̇

β
we can express kinematic invariants

in terms of spinors:

si j = 2pi · p j =
1
2

λ̄α̇ (pi)(σ̄
µ)α̇α

λα (pi) λ̄
β̇

(
p j
)
(σ̄ µ)β̇β

λβ

(
p j
)

= λα (pi)λ
α
(

p j
)

λ̄α̇

(
p j
)

λ̄
α̇ (pi)

=⇒ si j = 〈i| j〉 [ j|i]

(6.24)

where si j :=
(

pi + p j
)2 is a generalised Mandelstam variable.

One final comment is in order: any four-momentum pµ

i can be re-constructed just from the knowl-
edge of the two spinors of opposite helicity |i〉,|i] by virtue of equation 6.12, although the resulting
four-vector is in general complex.
Moreover, the spinor-helicity formalism encodes the on-shell condition (p2

i = 0) naturally by con-
struction.

6.2.2 Massless vector boson representation
Using the same formalism one can construct a representation for massless chiral vector bosons,
namely for their polarisation vectors:

ε
µ

+ (pi, q) :=−〈i|γ
µ |q]√

2 [qi]

ε
∗µ
+ (pi, q) :=

〈q|γµ |i]√
2〈qi〉

ε
µ

− (pi, q) :=
[i|γµ |q〉√

2〈qi〉

ε
∗µ
− (pi, q) :=− [q|γµ |i〉√

2 [qi]

The four-vector qµ

i is an auxiliary reference vector.
In this representation, the polarisation vectors behave as they should:

(ε±) = ε∓ ε± · ε± = 0 ε± · ε∓ =−1 (6.25)

ε
µ

+ε
ν
++ ε

µ

−ε
ν
− =−gµν +

pµ

i qν + pν
i qµ

pi ·q
(6.26)

One could prove that, given two choices for such a vector aµ , bµ the difference between two polari-
sation vectors constructed using them is proportional to pµ

i itself.
On the grounds of the invariance of Feynman amplitudes under the gauge transformation εµ (pi)→
εµ (pi)+αi p

µ

i , one can claim that the choice of reference vectors used in the helicity representation
is completely arbitrary.
Moreover, these definitions are fit for representing transverse polarisation vectors since, by virtue of
6.11, they are orthogonal to the momentum:

ε± (pi, q) · pi = 0 (6.27)
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6.2.3 Little-group scaling
One final noteworthy feature of the spinor-helicity formalism is the invariance of equation 6.12 under
the following re-scaling transformation of the spinors:

|i〉 −→ ti |i〉
|i]−→ t−1

i |i]
(6.28)

This re-scaling is a transformation that leaves invariant the four-momentum of an on-shell particle: in
the language of group theory such transformations are known as Little group transformations.
The parameter ti is in fact a complex phase eiθi , this is because the little-group scaling needs to
preserve the reality of the four-momentum pµ and therefore the relation |i]∗ = |i〉.
Similarly, relation 6.21 is defined up to complex-phase transformation of the spinors therein. This
re-scaling is of course just the little group action upon massless particles which, by definition, leaves
momenta invariant.

The formalism of spinor-helicity has been implemented in the MATHEMATICA package S@M [140],
enabling the use of complex-spinor algebra and the manipulation and numerical evaluation of spino-
rial objects.

6.3 Momentum twistors
As we showed previously, quantities that possess n-point kinematics such as scattering amplitudes
depend on (3n−10) parameters, where this number is the by-product of general requirements such
as on-shellness, momentum conservation and the dimension of space-time (through the vanishing of
Gram determinants).
The Mandelstam variables, however, are nothing more than a labelling standard for these parameters,
written in terms of external momenta. The influence of the aforementioned formal properties is only
reflected in the number of independent Mandelstams.

A more sophisticated formalism, encoding naturally these generic features, would go a long way
towards optimising the handling and computation of scattering amplitudes.
In the case of Adaptive Integrand Decomposition this is immediately obvious, as the application of the
D = D‖+D⊥ regularisation prescription depends explicitly on the external kinematics. Moreover, the
new variables parametrising the kinematics will turn out to be ratios of momentum-related quantities.
The simple fact that these new parameters are rational objects is highly-desirable for the sake of
numerical stability of the AID algorithm.

In this section we shall detail the construction of this novel formalism, following [135, 141–143].

6.3.1 Dual variables
Our starting point is to study momentum conservation by adopting a ”geometrical” perspective. Let us
consider 6 four-momenta

(
pµ

1 , . . . , pµ

6

)
under the condition p1 + · · ·+ p6 = 0. By plotting the vectors

sequentially, the conservation condition entails that these form a closed loop:
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p6

p1

p2

p5

p4

p3

y6

y1

y2

y5

y4

y3

Figure 6.1: Relationship between the momentum four-vectors, arranged in a closed loop to represent momen-
tum conservation, and the dual coordinates.

This contour can be described either by its edges (the four-momenta) or just as well by the vertices
(y1, . . . ,y6). These coordinates can be interpreted as being dual to the momenta: by defining a dual
space the momentum contour lying in pµ -space generates an analogous lattice in this new space,
represented by the coordinates

(
yµ

1 , . . . ,y
µ

6

)
.

They are related to the original momenta by the relation:

pµ

i = (yi− yi+1)
µ (6.29)

These coordinates are not ordinary space-time coordinates, in particular they possess mass-dimension
1. Momentum conservation in p-space is expressed in dual space with the periodicity condition on
these coordinates: yn+1 ≡ y1. The dual coordinates thus embed momentum conservation naturally.

Let us now consider the more involved case of a four-point two-loop Feynman diagram:

p1 p4

p2 p3y3

y1

y2 y4
y5 y6

We defined six dual coordinates, corresponding to the four external momenta (p1, . . . , p4) and the two
loop momenta q,k.
Let us write down the Feynman integral corresponding to this topology, i.e. neglecting the numerator:∫

dDk dDl
πD/2

1

k2 (k+ p1)
2 (k+ p1 + p2)

2 l2 (l− k)2 (l + p1 + p2)
2 (l− p4)

2 (6.30)
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The dual-coordinate representation of this integral is obtained by writing the four external momenta
and the loop momenta, respectively, as:

pµ

i = (yi− yi+1)
µ

kµ = (y5− y1)
µ

lµ = (y6− y1)
µ

(6.31)

and by defining the dual-space counterparts of the Mandelstam variables, which correspond to dis-
tances in dual space:

y2
i j :=

(
yi− y j

)2 ≡
(

pi + pi+1 + · · ·+ p j−1
)2 (6.32)

∫
dDx5 dDx6

πD/2
1

(y5− y1)
2 (y5− y1 + y1− y2)

2 (y5− y1 + y1− y2 + y2− y3)
2× (6.33)

× 1

(y6− y1)
2 (y6− y1 + y1− y2 + y2− y3)

2 (y6− y1 + y1− y4)
2 (6.34)

=

∫
dDx5 dDx6

πD/2
1

y2
51y2

52y2
53y2

61y2
65y2

63y2
64

(6.35)

where, in performing the change of variables, we exploited the shift-invariance of the measures. This
shows how a Feynman integral parametrised in terms of dual variables depends only on the distances
y2

i j.

Let us highlight a point related to the final remark of section 6.2.1. From figure 6.1, starting from
a set of n dual coordinates (y1, . . . ,yn) the set of n momenta can be immediately extracted since
pµ

i = (yi− yi+1)
µ .

The reverse is not true, since in fact figure 6.1 conceals an important feature of the dual coordinates:

Figure 6.2: Similar to figure 6.1, except now the definition of the dual coordinates depends directly on an
arbitrary vector Q.
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Figure 6.2 makes it clear how the knowledge of n four-momenta is by itself not sufficient to define the
dual coordinates unambiguously: their ultimate position in dual space will inevitably be defined up to
translations by a vector Q. The key point is that Q is arbitrary, and so there is an inherent freedom in
defining the dual coordinates. Regardless of the ambiguity, the parametrisation is a good one as long
as it yields back the correct set of four-momenta.

6.3.2 Twistor parametrisation
Our goal now is to give a spinorial representation of the dual coordinates. We proceed by contracting
the relation pµ

i = (yi− yi+1)
µ with Dirac γ-matrices20, introducing a massless spinor |i〉 and using the

Dirac equation:

/pi |i〉=
(
/yi−/yi+1

)
|i〉= 0 (6.36)

and defining the new spinor variable through the so-called incidence relation

|ξi] := /yi |i〉= /yi+1 |i〉 (6.37)

The newly-introduced spinors can be written in two-component notation:

|i〉= λα (pi)≡ (λi)α

|ξi] = ξ
β̇

i =−(yi)µ
(σ̄ µ)β̇α (λi)α

(6.38)

Let us now write down an identity and manipulate it with a little two-component algebra:

yν
i = (yi)µ

η
µν = (yi)µ

η
µν 2〈i|i−1〉

2〈i|i−1〉

= (yi)µ

2ηµν (λi)
α (λi−1)α

2〈i|i−1〉
= (yi)µ

(λi)
α
[
2ηµνδ

β

α

]
(λi−1)β

2〈i|i−1〉
= (yi)µ

(λi)
α [σ µ σ̄ν +σν σ̄ µ ]β

α
(λi−1)β

2〈i|i−1〉

= (yi)µ

(λi)
α (σ µ)

αγ̇
(σ̄ν)γ̇β (λi−1)β

+(λi)
α (σν)

αγ̇
(σ̄ µ)γ̇β (λi−1)β

2〈i|i−1〉

= (yi)µ

(λi)
α

εαδ εγ̇ η̇ (σ̄
µ)η̇δ

εβρε γ̇ χ̇ (σν)
ρχ̇

(λi−1)β
+(λi)

α (σν)
αγ̇

(σ̄ µ)γ̇β (λi−1)β

2〈i|i−1〉

= (yi)µ

−(λi)
α

εαδ (σ̄
µ)η̇δ

εβρδ
χ̇

η̇
(σν)

ρχ̇
(λi−1)β

+(λi)
α (σν)

αγ̇
(σ̄ µ)γ̇β (λi−1)β

2〈i|i−1〉

= (yi)µ

+(λi−1)β
εβρ (σν)

ρη̇
(σ̄ µ)η̇δ (λi)

α
εαδ +(λi)

α (σν)
αγ̇

(σ̄ µ)γ̇β (λi−1)β

2〈i|i−1〉

= (yi)µ

−(λi−1)
ρ (σν)

ρη̇
(σ̄ µ)η̇δ (λi)δ

+(λi)
α (σν)

αγ̇
(σ̄ µ)γ̇β (λi−1)β

2〈i|i−1〉

=
(λi−1)

ρ (σν)
ρη̇

[
−(yi)µ

(σ̄ µ)η̇δ (λi)δ

]
− (λi)

α (σν)
αγ̇

[
−(yi)µ

(σ̄ µ)γ̇β (λi−1)β

]
2〈i|i−1〉

=⇒ yν
i =
〈i|σν |ξi−1]−〈i−1|σν |ξi]

2〈i−1|i〉
(6.39)

20since we are dealing with massless two-component spinors we really mean Pauli σ -matrices, as mentioned in the
previous section.
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The last expression defines a map between coordinates, useful to perform changes of variables:

{yi}→ {Zi} :=

{(
(λi)α

(ξi)
β̇

)}
=

{(
|i〉
|ξi]

)}
(6.40)

The new four-component variables Zi are known as Momentum twistors.

The twistors enjoy special properties owing to their definition. First, they manifest Poincaré symmetry
by construction. Then, from the incidence relation, under the little-group scaling of the spinors 6.28
they transform linearly:

Zi =

(
|i〉
|ξi]

)
−→

(
ti |i〉
ti |ξi]

)
= tiZi (6.41)

Tracing these steps backwards, we can say that a linear re-scaling of the twistors Zi leaves the inci-
dence relation invariant and, by extension, the relation between twistors and momenta.
For this reason the twistors are defined projectively [141] up to the phase ti, and thus they enjoy a
U (1) symmetry (where the parameter is ti itself). Being there n spinors to re-scale there will actually
be n×U (1) symmetry groups.

The n four-momenta will obey momentum conservation (since the twistor variables inherit the prop-
erties of the dual variables), and the spinor-helicity formalism will ensure the on-shell condition.
By a similar token, the momentum twistors show the same ambiguity/freedom in the definition of
their components of the dual variables. For this reason writing down n twistors really corresponds to
determining 4n components, which are collectively called twistor variables.

The 4n twistor variables are not all independent because of the symmetry relations they must obey:
10 constraints are generated by Poincarè symmetry, as well as n constraints from the n U (1) phase
rotations.
The final degrees-of-freedom count is then:

4n−10−n = 3n−10 (6.42)

which is precisely the same number of free-parameters necessary to describe n-point kinematics (n≥
4), in the case of massless external momenta.
These twistor variables can however be chosen in many ways, giving rise to different parametrisations.

Starting from n momentum twistors (Z1, . . . ,Zn) one can re-construct the associated n four-momenta
from the knowledge of |i〉 and the following definition:

[i|= 〈i+1|i〉 [ξi−1|+ 〈i|i−1〉 [ξi+1|+ 〈i−1|i+1〉 [ξi|
〈i− i|i〉〈i|i+1〉

(6.43)

and finally taking advantage of the Gordon identity 6.12 to define each momentum.

4-point twistor parametrisation

Four momentum twistors (Z1,Z2,Z3,Z4) are completely defined by 3×4−10 = 2 twistor variables,
which we label (z1,z2). One possible parametrisation [139] can be chosen as:
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(Z1 Z2 Z3 Z4) =

(
|1〉 |2〉 |3〉 |4〉
|ξ1] |ξ2] |ξ3] |ξ4]

)
=


1 0 1

z1

1+z2
z1z2

0 1 1 1
0 0 −1 −1
0 0 0 1

 (6.44)

This parametrisation fixes the square brackets |i] as:

(
|1] |2] |3] |4]

)
=

(
−1 −z1 z1 0
1 1 z1z2 −z1z2

)
(6.45)

from 6.17, yields the following replacement rules for spinor products:

{
〈1|2〉 → −1, [2|1]→−z [1] , 〈1|3〉 → −1, [3|1]→ z1 (1+ z2) ,

〈1|4〉 → −1, [4|1]→−z1z [2] , 〈2|3〉 → 1
z1
, [3|2]→ z2

1z [2] ,

〈2|4〉 → 1+ z2

z1z2
, [4|2]→−z2

1z [2] , 〈3|4〉 → 1
z1z2

, [4|3]→ z2
1z2

}
(6.46)

By recalling si j = 〈i| j〉 [ j|i] one writes the generalised Mandelstam variables in terms of twistors:

s≡ s12 = 〈1|2〉 [2|1] = z1

t ≡ s14 = 〈1|4〉 [4|1] = z1z2
(6.47)

and from this it is possible to parametrise the twistors in terms of the Mandelstam variables:

z1 ≡ s

z2 ≡
t
s

(6.48)

This result is not surprising: at the four-point level the situation is straightforward enough that using
two Mandelstam variables is apparently just as good as employing the more sophisticated twistor
technology. Parametrising with twistors, however, encodes naturally all the kinematic properties that
would need to be checked forcibly if one chooses the Mandelstam picture.

As stated, this is not the only possible parametrisation at 4-point. An alternative one [135, 136]
provides an even more straightforward connection between the twistor variables and the Mandelstams.

5-point twistor parametrisation

Five-point momentum twistors (Z1,Z2,Z3,Z4,Z5) are completely defined by 3× 5− 10 = 5 twistor
variables, which we label (z1, . . . ,z5). One possible twistor parametrisation is [139]:
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(Z1 Z2 Z3 Z4 Z5) =

(
|1〉 |2〉 |3〉 |4〉 |5〉
|ξ1] |ξ2] |ξ3] |ξ4] |ξ5]

)
=


1 0 1

z1

1+z2
z1z2

1+z3(1+z2)
z1z2z3

0 1 1 1 1
0 0 0 z4

z2
1

0 0 1 1 1− z5
z4

 (6.49)

This parametrisation fixes the square brackets |i] as:

(
|1] |2] |3] |4] |5]

)
=( z5

z4
−1 −z1 z1

z1z2z3z5
z4

− z1z2z3z5
z4

1 0 z1z4 z1 (z2z3− z4 (1+ z3)) z1z3 (z4− z2)

)
(6.50)

and the spinor products:{
〈1|2〉 → −1, [2|1]→−z [1] , 〈1|3〉 → −1, [3|1]→ z1 (1+ z4− z5) ,

〈1|4〉 → −1, [4|1]→−z [1] (−z2z [3]+ (1+ z3)(z4− z5)) ,

〈1|5〉 → −1, [5|1]→−z1z [3] (z2− z4 + z5) , 〈2|3〉 →
1
z1
, [3|2]→ z2

1z [4] ,

〈2|4〉 → (1+ z2)

(z1z2)
, [4|2]→ z2

1 (z2z3− (1+ z3)z [4]) ,

〈2|5〉 → (1+ z3 + z2z3)

(z1z2z [3])
, [5|2]→−z [1]2 z3 (z2− z4) ,

〈3|4〉 → 1
(z1z2)

, [4|3]→ z2
1 ((1+ z3)z4 + z2z [3] (−1+ z5)) ,

〈3|5〉 → (1+ z3)

(z1z2z [3])
, [5|3]→−z [1]2 z3 (z4 + z2 (−1+ z5)) ,

〈4|5〉 → 1
(z1z2z [3])

, [5|4]→ z2
1z2z3z5

}
(6.51)

The five independent Mandelstam variables chosen previously in this chapter are:

s12 = 〈1|2〉 [2|1] = z1

s23 = 〈2|3〉 [3|2] = z1z4

s34 = 〈3|4〉 [4|3] =
z1 (z4 (1+ z3)+ z2z3 (−1+ z5))

z2

s45 = 〈4|5〉 [5|4] = z1z5

s51 = 〈5|1〉 [1|5] = z1z3 (z2− z4 + z5)

(6.52)

Alternative twistor parametrisations of five-point kinematics are possible, such as those presented in
[136, 144].
A generic template for n ≥ 5 can be defined [139, 145]. These twistor parametrisations, along with
all the tools required to write kinematics and scalar products in their terms, have been implemented
in a MATHEMATICA package T@M [146] which relies on the aforementioned S@M for the spinor-
helicity technology.
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Chapter 7

The NNLO real-virtual corrections to
muon-electron scattering

In the final sections of chapter 1 it has been made clear how the Quantum Electrodynamics corrections
to muon-electron scattering µ±e−→ µ±e− are of crucial importance to the MuonE experiment, and
that these corrections must be evaluated up to NNLO in perturbation theory to be consistent with the
desired experimental accuracy.

A full NNLO estimate of µe scattering is still missing, since the process has generally been the sub-
ject of little attention from the theoretical standpoint. Historically the focus was on the QED NLO
differential cross-section [109–111] (a full differential Monte Carlo result was obtained in [112]) and
on the inclusion of the Electroweak sector [147–149]. Some of the two-loop NNLO corrections to
Bhabha scattering in QED [113–117] can be applied to muon-electron scattering, as can some of the
diagrams participating in heavy-to-light quark decay [118] and tt̄-production [119] .
The first steps towards the full NNLO QED corrections were the calculations of planar and non-planar
two-loop Feynman diagrams [10–12], which constitute the fully-virtual radiative corrections at this
order in perturbation theory. For these calculations Integration-by-parts-identities [18, 150] were em-
ployed to identify 65 Master Integrals which were computed using the Differential equations method
[128, 151]. As mentioned, these calculations were carried out in the massless-electron approximation
me = 0 [10].

This thesis will focus on the NNLO real-virtual corrections, that is, µe→ µe at one-loop with a real
photon radiated in the final states21. The various kinds of diagrams that participate are represented
in 7.34. The square amplitudes to be computed correspond to these diagrams interfered with the four
tree-level real-radiation diagrams of 7.18.
In preparation for the task of computing the NNLO corrections, some preliminary work was done at
LO and NLO orders to acquire familiarity in carrying out automatic computations in Quantum Field
Theory and to re-obtain some known results.

We will study muon-electron scattering with the following labelling convention for the particles’
momenta:

µ
− (p4)+ e− (p1)−→ µ

− (−p3)+ e− (−p2) (7.1)

in this convention all momenta are defined positively as incoming.

21These are distinct from the fully real corrections with no loops but two photons radiated from a tree-level diagram.
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We will mention here that all the Feynman diagrams relevant to a process at a given loop order and
their relative Feynman square amplitudes have been computed using the MATHEMATICA packages
FEYNARTS [134] and FEYNCALC [50, 51] in combination.

7.1 Calculations with FEYNCALC

FEYNCALC is a useful tool to generate Feynman amplitudes and perform calculations with them.
It supports basic one-loop calculation capabilities through its implementation of Passarino-Veltman
(PV) decomposition and the evaluation of the scalar function generated. For consistency with higher-
order calculations, all the square amplitude including the tree-level one have been calculated in D
space-time dimensions, and furthermore we keep track of the electron’s mass me in addition to the
muon’s mµ .

7.1.1 Leading Order
At leading order (LO) the only amplitude present (labelled withM0) is represented by the tree-level
muon-electron scattering diagram:

p1

p4

p2

p3

γ

e−

µ−

e−

µ−

:= iM0 (7.2)

With this particular labelling of particles the usual Mandelstam variables are written as:

s := (p1 + p4)
2 t := (p1 + p2)

2 u := (p1 + p3)
2 (7.3)

this definition is of course compatible with 6.4.
The Leading order contribution is then the contraction of the leading-order amplitude with itself, with
a 1

4 factor to account for the average over the initial spin states of the e− and µ:

χ0 :=
1
4
M0M∗

0 =

e4
[
(D−2) t2 +4

(
m2

e +m2
µ − s

)2
+4st

]
t2 (7.4)

We also write down the D→ 4 limit of this quantity, useful for future reference. This simply corre-
sponds to setting D to 4 since there are no divergent terms:

χ
′
0 :=

1
4
M0M∗

0
D→4

=

e4
[

2t2 +4
(

m2
e +m2

µ − s
)2

+4st
]

t2 (7.5)

Setting me = mµ = 0 replicates the well-known formula:

χ
′
0

me=mµ=0
= 2e4

(
s2 +u2)

t2 (7.6)
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7.1.2 Next-to-leading Order
At Next-to-leading order (NLO) the virtual corrections comprise six amplitudes: two vertex correc-
tions (VCµ ,VCe), two boxes (one planar Box and one crossed Boxx) and two vacuum-polarisations
(V Pe,V Pµ ). In figure 7.7 we listed these contributions and drawn their respective Feynman diagram
and also introduced the labelM1 for their collective amplitude.

iM1 = iMVC µ

1 + iMVC e
1 + iMBox

1 + iMBoxx
1 + iMV Pe

1 + iMV P µ

1

= + + +

+ + (7.7)

One then calculates the interference between these amplitudes and the tree-level amplitude, and since
interferences are basically cross-products there should be a ×2 factor in addition to 1

4 .
Appendix C reports the lengthy results, evaluated using the built-in FEYNCALC Passarino-Veltman
functions. To compress slightly the resulting expressions, we applied the following identity between
PV functions (which is really an Integration-by-parts identity):

B0(0,ml,ml)→
(D−2)A0(ml)

2ml
(7.8)

Therein one can notice that the VP contributions correspond to the LO contribution times a factor that
accounts for the bubble insertion, and that this insertion is identical in form between the muon and
electron VP, differing only in the mass variable.

Additionally, a test of the renormalisability of Quantum Electrodynamics has been preformed using
FEYNCALC. The goal was, more specifically, to introduce counterterm diagrams and verify the can-
cellation of all ultra-violet (UV) divergences present at this level. Such divergences are given by the
vacuum-polarisation diagrams (VP) and the vertex-correction diagrams(VC, also called ”triangle di-
agrams”).
This can be seen by feeding the results of appendix C to the FEYNCALC function PaXEvaluateUV,
which evaluates the PV scalar integrals and keeps only the ultraviolet-divergent contribution, express-
ing it in terms of the divergent object ∆UV ∼ 1

εUV
and the numerical factors γ and log(4π)22:

22These come from the explicit evaluation of Feynman loop integrals using Dimensional regularisation, as detailed
in many textbooks. They are kept for compatibility with various different renormalisation schemes, as some define the
counterterms ad-hoc to cancel the term proportional to ∆UV only while others also cancel out everything proportional to
these numerical factors.
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[
2× 1

4
MVC µ

1 M∗
0

]
|UV = 2e2 (∆UV + γ− log(4π))χ

′
0,[

2× 1
4
MVC e

1 M∗
0

]
|UV = 2e2 (∆UV + γ− log(4π))χ

′
0,[

2× 1
4
MBox

1 M∗
0

]
|UV = 0[

2× 1
4
MBoxx

1 M∗
0

]
|UV = 0[

2× 1
4
MV Pe

1 M∗
0

]
|UV = − 8

3
e2 (∆UV + γ− log(4π))χ

′
0,[

2× 1
4
MV P µ

1 M∗
0

]
|UV = − 8

3
e2 (∆UV + γ− log(4π))χ

′
0 (7.9)

Both the VP and the VC ultra-violet can be expressed in terms of the LO contribution in the D→ 4
limit. The two boxes do not bring any UV divergences but they do have an infra-red (IR) pole, as do
the triangle corrections (since, by power-counting, it turns out they are log-divergent). We will say
more on this shortly.

To cancel these divergences we introduce counterterm amplitudes, labelled by N . They are repre-
sented by the following Feynman diagrams:

iN1 = iNVC µ

1 + iNVC e
1 + iNV Pe

1 + iNV P µ

1

= + + e + µ

(7.10)

the last two diagram look identical, and we made explicit that one is a counter to the electron VP
diagram and the other is for the muon.
The interference amplitudes for these diagrams are computed in exactly the same way as any ordinary
Feynman diagram, provided one treats the counterterm insertions as brand-new interaction vertices
and applies the correct Feynman rule. Using the rules listed in appendix D we get:

2× 1
4
NVC µ

1 M∗
0 =

[
2
(√

ZAZeZψ −1
)

χ0
]
|l=µ

2× 1
4
NVC e

1 M∗
0 =

[
2
(√

ZAZeZψ −1
)

χ0
]
|l=e

2× 1
4
NV Pe

1 M∗
0 = [2(ZA−1)χ0] |l=e

2× 1
4
NV P µ

1 M∗
0 = [2(ZA−1)χ0] |l=µ

(7.11)
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The label l indicates which mass parameters should be fed into the expression for the counterterms.
All four interferences are basically a counterterm insertion on top of the LO contribution, this shouldn’t
come as a surprise.

Cancellation of UV divergence for Vacuum-Polarisation

All the counterterm square amplitude was taken and the renormalisation parameters Zi rewritten as
detailed in appendix D: Zi = 1+αδi where α is a dummy parameter that we set to 123 and where the
δ are replaced with their explicit expressions, specifying the lepton l as e or µ given the diagram with
which they were paired.

The subtraction between the vacuum-polarisation diagram and the related counterterm diagram was
evaluated with PaXEvaluateUV, and it was verified that the result yielded zero, indicating that no
UV-divergent objects survive as expected.
The subtraction was then re-evaluated with PaXEvaluate to obtain explicitly the finite part of the PV
functions, which constitutes the contribution to the cross-section of the renormalised VP diagrams.
We list the resulting expression valid for both l = e,µ , with the tree-level square amplitude χ0 factored
out:

2× 1
4

(
MV Pl

1 M∗
0−NV Pl

1 M∗
0

)
=−

8e2
(

t(12m2
l +5t)+3

√
t(t−4m2

l )(2m2
l + t) log

(√
t(t−4m2

l )+2m2
l−t

2m2
l

))
9t2 χ0

(7.12)

These expressions have been cross-checked with the results obtained by M.Vitti [107]. While we
used the built-in PaXEvaluate function of FEYNCALC to compute explicitly the scalar integrals, his
results have been evaluated first by using the IBP-identity 7.8 and then using the explicit expressions
for the PV functions given in appendix B of [107].
To compare the results we defined a phase-space point PSpoint for the mass parameters and the Man-
delstam variables:

PSpoint :=
{

t =
1√
13

, s =
1√
17

, m2
e =

1
206

, m2
µ = 1

}
(7.13)

The comparison was then performed, and perfect agreement was found.

Cancellation of UV divergence for Vertex-correction

By looking at the Feynman rule D.4 for the vertex correction, one has several renormalisation con-
stants multiplied together. However one should only keep terms linear in the counterterms δi at this
order. This is the reason for writing the renormalisation constants as Zi = 1+αδi: one can expand
the counterterm amplitude in powers of the parameter α and keep the first order terms, thus picking
out the single powers of δi. This issue is of course not present for the VP counterterm amplitude.

The procedure is thus to expand in α , keep the first order terms, set α = 1 and plug in the counterterm
definitions. Once this is done the amplitude can computed with PaXEvaluateUV as before.
Strangely, the result found was not zero as expected, but instead:

23α should be interpreted as a parameter identifying a single power of a counterterm, and not the fine-structure constant
of QED. Its role becomes clear when evaluating the triangle corrections.
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[
2× 1

4

(
MVC l

1 M∗
0−NVC l

1 M∗
0

)]∣∣∣
UV

=−4e2
χ0 (7.14)

for both triangle amplitudes l = e, µ .
However it was found that the subtraction would yield zero if the vertex counterterm amplitude was
rescaled by 1

3 prior to subtracting it. We attributed this to a mislabelling of the poles by FEYNCALC

upon computing the δe counterterm: by computing the Feynman amplitude for the divergent vertex
loop D.4, extracting the F1 form-factor coefficient, obtaining its PV decomposition and evaluating its
divergent parts respectively with PaXEvaluateUV and PaXEvaluateIR we get:


[

2× 1
4
MVC l

1 M∗
0

]∣∣∣
F1,UV

=− e2

16εUV[
2× 1

4
MVC l

1 M∗
0

]∣∣∣
F1, IR

=− e2

8εIR

(7.15)

and we see that the IR-divergent term is twice the UV-divergent one. Since the δe counterterm is
obtained by extracting the F1 term from the whole triangle loop, tensor-decomposing it and enforcing
the cancellation with the counterterm amplitude, it is possible that the final expression for the coun-
terterm encompasses part of the IR poles in addition to the UV ones, and this corresponds to 2

3 of the
vertex counterterm so defined.

Once again we evaluated the subtracted vertex square amplitudes and compared our results with ob-
tained by M.Vitti [107]. For this we removed the artificial factor 1

3 from the counterterm, hoping that
any leftover IR pole would find a correspondent in the expressions of [107].
For the divergent C0 triangle PV integrals we used explicit expressions from [152], however we
couldn’t just plug in the given expressions since in there the calculations for the IR-divergent PV
functions were done using a fictitious photon mass λ → 0 as a regulator, while we sought to work in
Dimensional Regularisation as much as possible.
Luckily, equation 4.13 of [153] provides a way to relate this kind of regulator to the regulator produced
by the Dimensional regularisation prescription:

log
(
λ

2)→ rΓ

ε
+ log

(
µ

2)+O (ε) (7.16)

and where rΓ is a constant that enters the normalisation of the scalar integrals, in this case it is set to
1.
The subtraction was once again evaluated at the same numerical phase-space point:

2× 1
4

(
MVC l

1 M∗
0−NVC l

1 M∗
0

)
= (0.904713log(µ)−0.0552893)e6 (7.17)

this shows cancellation of all divergent poles, but some numerical factors are left over, possibly due
to discrepancies between the expressions for the PV integrals employed.

Let us briefly touch on the IR divergences. These can come either from the q→ 0 limit of Feynman
loop integrals with the correct power-counting, but they can come also from the integration over the
external particles’ momenta in the case of a so-called soft particle. This is exactly the case of real
radiation processes where a photon could be emitted at very low energy and not be detected, but still
affect the overall amplitude.
For µ − e-scattering at NLO, the IR poles coming from loop integrals are due to box and triangle
diagrams, as mentioned, while those from real corrections are given by the cross-products of the
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amplitudes in 7.18 with each other, complex-conjugated (which results in 16 square amplitudes). We
highlight that these are five-point processes as a result of the presence of the extra photon.

iMreal
1 = + + + (7.18)

The cancellation of all IR divergences entails evaluating both the infra-red limit of the PV functions
as well as the phase-space integrals of the real-correction square amplitudes, in the soft photon limit.
This task requires different mathematical techniques to the ones employed for loop integrals, and thus
goes beyond the scope of this thesis.

7.2 Calculations with AIDA
The MATHEMATICA package AIDA is a sophisticated tool to decompose loop amplitudes onto a
basis of scalar Master Integrals (MIs), by employing the Adaptive Integrand Decomposition algorithm
iteratively, as detailed in chapter 5. This package was used as the main tool to compute the NNLO
real-virtual amplitudes, in particular their MI-decomposition.

All interference amplitudes to be fed into AIDA are computed using FEYNCALC.

7.2.1 Next-to-leading Order
In preparation for tackling the task of reducing the real-virtual NNLO amplitudes of µ−e scattering,
we first applied AIDA to compute the MI expansion of the NLO amplitudes 7.7 interfered with the
tree-level amplitude, thus approaching the results of the previous section from a different angle. This
was done to acquire familiarity with its usage and the mathematical techniques it employs.

7.2.1.1 Massive Electron case

Grouping

In section 5.4 the grouping procedure was detailed, mentioning in particular that the topologies are
grouped together based on the external legs and whether topologies can be obtained as a pinching of a
larger parent topology. These notions are relative to the loop and not the whole amplitude, as external
leg factors and non-loop propagators do not influence the loop integral.
In the case of the NLO amplitudes, the relevant information on the topologies is given by the loop
diagrams 7.7 since they are interfered with non-loop amplitudes.

The grouping step gave four groups as output. Two correspond to the planar and crossed box ampli-
tudes, independent of one another, while the other two encompass the vertex-correction and vacuum-
polarisation diagrams, for the electron and muon loop separately.
These corrections are grouped together since the VP loop can be seen as a pinching of the vertex loop.
Let us show this for the electronic vertex loop, although it is true regardless of the particle running in
the loop since, as far as AIDA is concerned, they only differ by the labelling of a mass parameter:
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p3 + p4

p1 p2

D4

D1

D2

−→

p1 + p2

p3 + p4

D4D2
(7.19)

As evident from the diagram above, along one leg the momentum flowing into the loop is a sum
p3 + p4. This is an example of a parent diagram where the loop has fewer external legs than the
amplitude as a whole. As we shall see, the twistor parametrisation is built from the four-momenta
external to the amplitude while the substitution rules for the DID algorithm are constructed form the
momenta external to the loop. When these two do not match, as in the case above, the substitution
rules will be unable to re-write and simplify many terms at the numerator, which are then carried over
and needlessly increase the computational cost of the calculation.

Since an automated interface between amplitude-generation suites like FEYNCALC and the AIDA
package has not yet been developed it is necessary to intervene manually to avoid these issues. Re-
ferring to the example above, the solution is to interpret the parent triangle as a single cut of a box
integral as shown in 3.26, and doing this in reverse enables the integral to be interpreted correctly by
AIDA.
The fix is then to identify the missing denominator D3 and multiply and divide the triangle amplitude
by it, in order not to change the overall amplitude but still technically turn it into a box loop:

p3 + p4

p1 p2

D4

D1

D2

−→

p1

p4

p2

p3

D4

D3

D2

D1

×D3 (7.20)

Twistor parametrisation

As mentioned in chapter 6.3, the AID procedure employs the Momentum Twistor formalism to re-
write the external momenta and, at the same time, encode all the important properties of the external
kinematics.
First we should identify exactly how many variables are required to describe the kinematics at hand.
Having four external momenta we shall require 3× 4− 10 = 2 kinematic variables, but we should
also account for the two masses which define the on-shellness of said momenta.
We therefore need four independent parameters.

Attempting to parametrise this four-point massive kinematics using twistors immediately highlights
one complication: the twistor formalism requires strictly massless external momenta, while in this
occasion we seek to keep all particles as massive.
The issue can be resolved by writing the massive momenta in terms of two massless ones: a massless
momentum has two free components, therefore two of them can span the four free components of a
massive momentum.
We will therefore have:
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p1 = l1 + l2
p2 = l3 + l4
p3 = l5 + l6
p4 = l7 + l8 (7.21)

where we defined eight massless momenta, labelled l1− l8. This replacement has a pictorial inter-
pretation as the ”opening up” of the massive external legs (represented by thick lines), originating a
diagram that can be seen as the cut of an opt diagram:

p1

p4

p2

p3

−→

l2

l7

l3

l6l8 l5

l1 l4

(7.22)

This turns the issue of parametrising four massive momenta into parametrising eight massless ones.
This is readily done using the tools within the MATHEMATICA package T@M, and a map from the
eight massless momenta to 3×8−10 = 14 distinct twistor variables is generated.

The task now is to narrow down these 14 twistor variables to only 4 independent ones, as required by
the actual kinematics. This is done by setting up a system of 10 constraints on the massless momenta
l1− l8, to find expressions for 8 twistor variables in terms of the remaining six.
Two such constraints arise naturally from requiring that p2

1 = p2
2 and p2

3 = p2
4 since they represent the

same particles. These entail two constraints on the massless momenta, once the re-definitions above
are plugged in.
We then impose the on-shellness of these momenta, i.e. p2

1 = m2
e and p2

3 = m2
µ : although this does not

actually add any new information (as the momenta already did not square to zero), it is a re-labelling
in terms of two mass scales which is appropriate given that two of the parameters defining the external
kinematics are the masses themselves.
We can impose more constraints by choosing a pair of massless momenta i, j, define their spinors of
both chiralities and write down the following expressions in spinor-helicity formalism:

{〈
li|l j
〉
= 0[

li|l j
]
= 0

(7.23)

which are essentially orthogonality relations. We can impose these two constraints on any pair of
external momenta i, j so long as:

• i 6= j, as the contrary follows trivially from the spinor-helicity relations and thus doesn’t add
any information;

• i, j do not parametrise the same massive momentum (e.g. 〈l1|l2〉 would be invalid), as this
would spoil the independence of all the components of the massive momentum itself24;

• i ∈ {1,2,3,4} and j ∈ {5,6,7,8} or the other way around, in order to ensure that the incoming
massive momenta are independent of each other (and same for the outgoing ones);

24At least more than is already done by the on-shellness relations.
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We therefore require four pairs of such constraints,to build the necessary eight remaining constraints.
The twelve constraints are then gathered, written in terms of the twistor variables and the system is
solved, which yields the expression of twelve twistor variables in terms of two independent ones plus
the two masses.

One final aspect to keep in mind is that these expressions ought to be strictly rational functions of the
independent twistors and the masses, and should not contain any square roots within.
This is for the sake of numerical stability and consistency: square-root functions are essentially Taylor
expansions and therefore introduce some noise when evaluated numerically, this might mean that
objects that ought to cancel out exactly might instead give a very small value (such as 10−15).

We set up a procedural search for a twistor parametrisation that would satisfy all these requirements,
by cycling through all the allowed pairings of momenta i, j and discarding all those that could not
yield a solvable system. The final parametrisations were checked by hand, and in the end we selected
{{2,6} ,{3,7} ,{4,6} ,{4,8}}, which gave the most compact expression of the constrained parame-
ters in terms of the four independent variables

{
z3,z7,m2

e ,m
2
µ

}
.

It would perhaps be desirable to re-label the remaining two twistor variables in terms of more familiar
quantities such as the Mandelstams s, t, but we were unable to add their definitions without finding
square roots in the final parametrisation.

Integrand reduction and Master Integrals

After expressing all the momenta and scalar products in the amplitudes in terms of the independent
twistor variables, the four topologies were reduced using the DID algorithm. For the first two groups
the largest MIs found corresponded to the parent boxes themselves, while for the latter two the largest
MIs corresponded to the scalar triangles defining the loop itself. The results were then fed to the
reduction code KIRA which applied IBP and LI identities to simplify the list of Master Integrals
output by AIDA.
The Master Integrals will be listed group-by-group, and represented by ”abstract” Feynman diagrams
which only serve to depict the topology of the denominators and the momenta flowing through them
in relation to the external kinematics. Internal lines are drawn as a thin line when they represent a
massless propagator, a thick line for the electron’s mass and a double line for the muon’s mass. Each
family is defined by their set of denominators, which we specify using KIRA’s notation:
[Propagator momentum, Propagator mass].
For clarity we chose not to attach the denominator labels to the integral lines in each diagram, but
given the external kinematics and the type of line it is easy to assign the correct labelling in a given
diagram.

G1

1 - [ k1 , 0 ]

2 - [ k1 + p4 , mu2 ]

3 - [ k1 + p3 + p4 , 0 ]

4 - [ k1 + p2 + p3 + p4 , me2 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.24)
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G2

1 - [ k1 , me2 ]

2 - [ k1 + p2 , 0 ]

3 - [ k1 + p2 + p4 , mu2 ]

4 - [ k1 + p2 + p3 + p4 , 0 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.25)

G3

1 - [ k1 , 0 ]

2 - [ k1 + p3 , mu2 ]

3 - [ k1 + p2 + p3 , mu2 ]

4 - [ k1 + p1 + p2 + p3 , mu2 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.26)

G4

1 - [ k1 , 0 ]

2 - [ k1 + p2 , me2 ]

3 - [ k1 + p2 + p3 , me2 ]

4 - [ k1 + p2 + p3 + p4 , me2 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.27)

7.2.1.2 Massless electron limit

We now use AIDA to obtain a scalar integral decomposition of the NLO amplitudes in the massless
electron limit. Immediately it should be noted that this calculation needs to be done from scratch,
as the simple act of setting the electron’s mass to zero is incompatible with the previous twistor
parametrisation and, additionally, it produces numerical divergences.

Grouping

the number of distinct groups identified by AIDA is now only three as opposed to the previous four:
in the me→ 0 limit the electron’s vertex and vacuum-polarization diagrams turn out to be obtainable
as cuts of the planar box, and therefore they can be incorporated as sub-topologies of the the first
group.
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Twistor parametrisation

The twistor parametrisation is simplified in this case. We require the usual 3×4−10 = 2 parameters
plus a single mass scale, bringing the total to three. Moreover we only need to parametrise the two
massive four-momenta for the muon in terms of massless ones, as the electron momenta p3,4. The
momentum definitions are as follows:

p1 = l1
p2 = l2
p3 = l3 + l4
p4 = l5 + l6

(7.28)

We generate a 6-pt twistor parametrisation, writing the six li momenta in terms of 3× 6− 10 = 8
variables. Subsequently we introduce five constraints to narrow down the variables: the lone relation
p2

3 = p2
4 (the other one previously present is already satisfied) and two pairs of spinor orthogonality

relations {{4,2} ,{6,2}}.
This time it was possible to re-write the three twistor variables in terms of kinematic quantities, using
the on-shellness condition forp2

3 and the definitions of the Mandelstam variables s, t:


p2

3 = m2
µ

(p1 + p4)
2 = s

(p3− p4)
2 = t

(7.29)

The final set of independent variables is then
{

m2
µ ,s, t

}
. We remark that these variables are still

applied following the underlying twistor parametrisation, whose advantages are still being exploited
to the fullest while making the result more familiar-looking.

Integrand reduction and Master Integrals

Just like before the parametrised amplitudes were fed to AIDA and the reduction performed, and
the final list of scalar integrals was then simplified using KIRA. The first family involves mush the
same Master Integrals compared to the previous results, with the difference that they now possess a
single mass scale within, while the second and third families are described by fewer integrals this time.

G1

1 - [ k1 , 0 ]

2 - [ k1 + p4 , mu2 ]

3 - [ k1 + p3 + p4 , 0 ]

4 - [ k1 + p2 + p3 + p4 , 0 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.30)
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G2

1 - [ k1 , 0 ]

2 - [ k1 + p2 , 0 ]

3 - [ k1 + p2 + p4 , mu2 ]

4 - [ k1 + p2 + p3 + p4 , 0 ]

p1

p4

p2

p3

p1

p4

p2

p3

(7.31)

G3

1 - [ k1 , 0 ]

2 - [ k1 + p3 , mu2 ]

3 - [ k1 + p2 + p3 , mu2 ]

4 - [ k1 + p1 + p2 + p3 , mu2 ]

p1

p4

p2

p3

p1

p4

p2

p3

p1

p4

p2

p3

(7.32)

7.2.2 Next-to-next-to-leading Order
We tackle for the first time the process µ−e−→ µ−e−γ , where the momentum labelling convention
will stay unchanged with the exception of introducing a massless momentum p5 to describe the real
photon.
The real-virtual corrections to µ− e scattering at NNLO comprise 44 diagrams. The four depicted in
7.33 are essentially VP corrections with the real photon coming from one of the two loop propagators,
both cases are represented by the same diagram:

×2 ×2 (7.33)

All of these diagrams have a fermion loop with odd-numbered internal lines and, as it turns out, each
one differs from its similar only by the direction of charge flow within the loop. By Furry’s theorem
they cancel each other out at amplitude level, and thus they can then be immediately discarded.
The NNLO amplitudeM2 is composed by 40 non-cancelling diagrams, in 7.34 we write out the full
NNLO amplitude but we explicitly draw only half of the diagrams, in particular those where the real
photon is radiated from one of the muon legs:

113



CHAPTER 7. NNLO REAL-VIRTUAL CORRECTIONS TO MUON-ELECTRON SCATTERING

iM2 = + + ×2 + ×2 +

×2 + ×2 + ×2 + ×2 +

×2 + ×2 + ×2 + (crossing)

(7.34)

Once again, for most cases the photon may be radiated from more than one location, resulting in a
similar but distinct diagram; we represented this by the ×2 label for brevity .

The remaining 20 diagrams, represented by (crossing), need not be evaluated explicitly since they can
be related to the diagrams above by performing the label swaps

(
mµ ↔ me, p1↔ p4, p2↔ p3

)
. This

is a crossing symmetry transformation that can relate two distinct topologies of Feynman amplitudes,
this is made even more apparent by flipping the resulting diagram vertically to keep the configuration
of external particles and momenta visually consistent throughout.
We show this explicitly with an example:

1

4

2

5

3

crossing symmetry−−−−−−−−−−→

4

1

3

5

2

flip vertically−−−−−−−→

1

4

2

5

3

(7.35)

The crossing symmetry can be applied before or after the amplitude reduction with AIDA to the same
effect, we thus take advantage of this to halve the number of amplitudes to be reduced.

7.2.2.1 Massive electron case

Grouping

AIDA gathered the 20 amplitudes 7.34 into five groups, two of which have the planar and crossed
pentagons as their respective parent topologies, two which have boxes as parent and the last one with
a parent triangle amplitude.
The latter three groups have a parent topology with less than five legs coming into the loop, and thus
need to be handled in much the same way as done for the NLO amplitudes, only this time they are
written as cuts of pentagons in accordance with the external kinematics.
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Twistor parametrisation

The same considerations for the twistor parametrisation given earlier apply in this case, only this time
the external leg number is 5 so we require 3× 5− 10 = 5 parameters plus the two masses, bringing
the total to 7.
Having four massive and one massless momenta, one introduces 9 massless momenta and generates
a 9-point twistor parametrisation using T@M, with 3× 9− 10 = 17 free twistor variables. Much
like before, one can reduce this number to 7 using the two constraints p2

1 = p2
2, p2

3 = p2
4 and four

pairs of spinor orthogonality relations, plus two on-shellness relations so that two of the independent
parameters will be the masses m2

e and m2
µ .

We were, unfortunately, unable to generate any good parametrisation in this way since all of the
systems of equations tested would either have no solution or never converge to an explicit solution.

We devised an alternative method to construct a valid parametrisation from scratch, by expressing the
massive momenta in the following way:

p1 = (1− x) l1 + xl2
p2 = xl1 +(1− x) l2
p3 = (1− y) l3 + yl4
p4 = yl3 +(1− y) l4
p5 = l5 (7.36)

The momenta are expressed in terms of five massless momenta l1 . . . l5. Each massive momentum is
expressed in terms of two massless ones, in a combination determined by the mixing parameters x,y.
The way the mixing is defined ensures that all momenta are independent of each other, and that the
electron and muon momenta respectively square to the same values as they should.
This parametrisation thus ”hard-codes” all the features we require and naturally contains seven vari-
ables: five twistor variables and the two mixing parameters. We only need to re-express two of these
in terms of the two masses, without the need to add any ad-hoc constraints.

The final variables extracted are
{

z2,z4,z5,x,y,m2
e ,m

2
µ

}
, and once again we did not express anything

in terms of the Generalised Mandelstams in order to avoid square roots.

Integrand reduction and Master Integrals

The integrand reduction was performed not with the full DID algorithm, but instead with the sim-
plified version of AIDA which only computes the cut solutions to the quintuple cut (the largest one
present in this case) and plugs them in without integrating in transverse space. This choice was im-
posed by computational hardware constraints.
As shown in chapter 5.3 this entails a proliferation of scalar integrals present in the resulting de-
composition, beyond what is necessary to capture the 5-point amplitude. This lengthy list of Scalar
Integrals was reduced using the IBP reduction code KIRA to the lists reported here, which are Master
Integrals in D-dimension.
Most prominently the integral decomposition features two scalar pentagons, one planar and one
crossed, belonging to two different topologies. We stress that the pentagon is only a master integral
in D dimensions and its contribution vanishes either in the limit D→ 4−2ε or upon the integration
over the transverse space. This can be fixed by means of a dimensional-shift identity able to map the
pentagon onto scalar boxes up to order ε , which would be used to distribute the pentagon residue onto
the box contributions.
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G1

1 - [ k1 , 0 ]

2 - [ k1 + p4 , mu2 ]

3 - [ k1 + p4 + p5 , mu2 ]

4 - [ k1 + p3 + p4 + p5 , 0 ]

5 - [ k1 + p2 + p3 + p4 + p5 , me2 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.37)

G2

1 - [ k1 , me2 ]

2 - [ k1 + p2 , 0 ]

3 - [ k1 + p2 + p4 , mu2 ]

4 - [ k1 + p2 + p4 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p4 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.38)

G3

1 - [ k1 , 0 ]

2 - [ k1 + p2 , me2 ]

3 - [ k1 + p2 + p3 , 0 ]

4 - [ k1 + p2 + p3 + p4 , me2 ]

5 - [ k1 + p2 + p3 + p4 + p5 , me2 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.39)
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G4

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p1 + p2 + p3 , mu2 ]

5 - [ k1 + p2 + p3 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.40)

G5

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p3 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.41)

7.2.2.2 Numerical reduction of the Massive electron case

We sought to verify how many of the above integrals would not have been present had we carried
out an AIDA reduction with the full DID algorithm. We were able to do this by running a numerical
decomposition: after the (unchanged) momentum twistor parametrisation was fixed we assigned nu-
merical values to the three twistor variables and the x,y parameters, keeping the masses explicit. The
numbers were chosen as fractions of prime numbers to ensure numerical independence between them
and thus have little physical meaning, but this is not important for the sake of determining the final
Master Integrals and the application of IBP identities.
The AIDA decomposition features much fewer scalar integrals and, as expected, the pentagons were
missing altogether. We still fed the results to KIRA as we expected not all these scalar integrals to be
Master Integrals, and indeed a few disappeared.
The final lists of Master Integrals end up being identical to the simplified analytical case detailed
previously minus the two pentagons, showing that the simplifications done in AIDA can be amended
using IBPs and dimensional-shift relations.

G1

1 - [ k1 , 0 ]

2 - [ k1 + p4 , mu2 ]

3 - [ k1 + p4 + p5 , mu2 ]

4 - [ k1 + p3 + p4 + p5 , 0 ]

5 - [ k1 + p2 + p3 + p4 + p5 , me2 ]
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p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.42)

G2

1 - [ k1 , me2 ]

2 - [ k1 + p2 , 0 ]

3 - [ k1 + p2 + p4 , mu2 ]

4 - [ k1 + p2 + p4 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p4 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.43)

G3

1 - [ k1 , 0 ]

2 - [ k1 + p2 , me2 ]

3 - [ k1 + p2 + p3 , 0 ]

4 - [ k1 + p2 + p3 + p4 , me2 ]

5 - [ k1 + p2 + p3 + p4 + p5 , me2 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.44)

G4

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p1 + p2 + p3 , mu2 ]

5 - [ k1 + p2 + p3 , 0 ]
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p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.45)

G5

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p3 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.46)

7.2.2.3 Massless electron limit

Grouping

We then considered the me → 0 limit of the 20 amplitudes 7.34. In this limit the absence of the
electron mass entails that some multiple cuts end up giving essentially the same result: for this reason
AIDA identified only four topology groups as the former group G3 is fully encompassed within group
G1 below.

Twistor parametrisation

To parametrise this case we require 3× 5− 10 = 5 parameters plus a single mass, bringing the total
to 6. The momentum twistor parametrisation was constructed using the double-massive one as a
template. We introduced five massless momenta l1 . . . l5 and a single mixing parameter y, given that
we only have two massive momenta to write down, and parametrised the external kinematics as
follows:

p1 = l1
p2 = l2
p3 = (1− y) l3 + yl4
p4 = yl3 +(1− y) l4
p5 = l5 (7.47)

This is essentially equivalent to setting x = 0 in the parametrisation used for the massive case, there-
fore all the desired features present previously translate naturally.
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The final 6 variables used are
{

z1,z2,z3,z5,y,m2
µ

}
, the extra twistor variable present is due to the lack

of the on-shellness condition for the electron.Once again we did not express anything in terms of the
Generalised Mandelstams in order to avoid square roots.

Integrand reduction and Master Integrals

Once again the AIDA reduction wasp performed using the simplified version of the algorithm, and
the scalar integral decomposition was once more simplified with KIRA. In addition to the missing
integral family we also find that the first two families feature fewer Master Integrals compared to the
analytical massive case.

G1

1 - [ k1 , 0 ]

2 - [ k1 + p4 , mu2 ]

3 - [ k1 + p4 + p5 , mu2 ]

4 - [ k1 + p3 + p4 + p5 , 0 ]

5 - [ k1 + p2 + p3 + p4 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.48)

G2

1 - [ k1 , 0 ]

2 - [ k1 + p2 , 0 ]

3 - [ k1 + p2 + p4 , mu2 ]

4 - [ k1 + p2 + p4 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p4 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.49)
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G3

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p1 + p2 + p3 , mu2 ]

5 - [ k1 + p2 + p3 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5 (7.50)

G4

1 - [ k1 , 0 ]

2 - [ k1 + p1 + p2 + p3 + p5 , mu2 ]

3 - [ k1 + p3 , mu2 ]

4 - [ k1 + p3 + p5 , mu2 ]

5 - [ k1 + p2 + p3 + p5 , 0 ]

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

p1

p4

p2

p3

p5

(7.51)

121



Chapter 8

Evaluation of massive one-loop 4-point
Master Integrals with Differential Equations

In this chapter we illustrate in practice the methods detailed in chapter 2.4, from the generation of a
canonical system of Differential Equations for Master Integrals to writing down the general solution
with boundary conditions. The goal is to evaluate the Master Integrals for one-loop 4-point diagrams
for µ−e−-scattering in the massless electron limit25. The complete lists of Master integrals were
shown in section 7.2.1.2.
For consistency with the results shown in section 5 of [10] and chapter 2.8 of [52] we will modify the
external momentum labelling to the following:

µ
− (p1)+ e− (p2)−→ µ

− (p4)+ e− (p3) (8.1)

explicitly shown for the massive box below:

p1

p2

p4

p3

q+ p1

q+ p1 + p2

q

q+ p4

with the following definitions for the Mandelstam variables:

{
s = (p1 + p2)

2

t = (p2− p3)
2 (8.2)

Moreover it will prove convenient to introduce a peculiar normalisation for the Feynman integral
measure:

d̃Dq :=− i16π2

Γ(1+ ε)

(
m2

µ

4πµ2

)ε

dDq

(2π)D (8.3)

25Handling the presence of a second mass scale complicates matters considerably.
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where µ is the scale parameter in dimensional regularisation.

First we examine the first family of integrals 7.2.1.2, which we recall describes the decomposed QED
box-loop diagram originally present. Despite this being a perfectly good basis of Master Integrals
to that aim, experience tells that this basis is ill-suited to be solved with the Differential Equations
method. Much preferable is to use IBP relations on 7.2.1.2 to rotate the decomposition onto the
following basis of Master Integrals {T1, . . . ,T5}:

p1

p4

p2

p3

T1
p1

p2

p4

p3

T2
p1

p2

p4

p3

T3
p1

p2

p4

p3

T4
p1

p2

p4

p3

T5

(8.4)

where dots indicate a denominator raised to the power 2. The automatic code REDUZE is capable of
performing IBP-reduction onto a set of integrals and write the end result onto a basis specified by the
user, as in this case.
One might wonder whether we ought not to encompass in the calculation the Master Integrals appear-
ing in the families 7.2.1.2 and 7.2.1.2. In fact, however, the entire third family of Master Integrals
can be obtained from these by means of IBP relations, while the two crossed diagrams of the sec-
ond family can be obtained from these still by applying a crossing relation generated by REDUZE

itself: essentially re-defining the Mandelstam invariant t is all that is needed to obtain those crossed
amplitudes.

8.1 System of Differential Equations in canonical form
The systems of differential equations are set up in the independent kinematic invariants of the problem
which, as shown in the previous chapter, can be taken as

{
m2

µ ,s, t
}

. Once again we used REDUZE to

generate the three systems of Differential Equations relating the Master Integrals ~T = {T1, . . . ,T5}.
In fact only two systems are needed to solve the problem: Feynman integrals are homogeneous func-
tions of their kinematic invariants, with an ε-dependent exponent determined by power-counting:

T
(

λ s, λ t, λm2
µ

)
= λ

α(ε)T
(

s, t, m2
µ

)
(8.5)

thus Euler’s homogeneous functions theorem provides a relation between the systems of differential
equations, decreasing the number of independent systems by one:

(
s∂s + t∂t +m2

µ∂m2
µ

)
T
(

s, t, m2
µ , ε

)
= α (ε)T

(
s, t, m2

µ , ε

)
(8.6)

We are then going to solve the two systems:

∂s~T (s, t, ε) = Ms (s, t)~T (s, t, ε) ∂t~T (s, t, ε) = Mt (s, t)~T (s, t, ε) (8.7)

where the matrices are generated as ε-linear form the start:
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Ms =



0 0 0 0 0

− ε

(m2
µ−s)s

(
1
s −

2
s−m2

µ

)
ε− 1

s 0 0 0

0 0 0 0 0
0 0 0 0 0

m2
µ+s

(m2
µ−s)4+st(m2

µ−s)2 −
2s(m2

µ+s)
(m2

µ−s)4+st(m2
µ−s)2 −

−2m2
µ+2s+t

(m2
µ−s)3+st(m2

µ−s)
(4m2

µ−t)ε
(m2

µ−s)3+st(m2
µ−s)

(2m2
µ t+2st)ε

2((m2
µ−s)3+st(m2

µ−s))
+ 1

m2
µ−s



Mt =



0 0 0 0 0
0 0 0 0 0
0 0 − ε

t −
1
t 0 0

1
t(t−4m2

µ )
0 1

t−4m2
µ

t−2m2
µ

(4m2
µ−t)t

− 4m2
µ ε

(4m2
µ−t)t

0

s
(m2

µ−s)t((m2
µ−s)2+st)

− 2s2

(m2
µ−s)t((m2

µ−s)2+st)
m2

µ−s

t((m2
µ−s)2+st)

(m2
µ+s)ε

t((m2
µ−s)2+st)

(
s

(m2
µ−s)2+st

− 1
t

)
ε− 1

t


These matrices are first brought in canonical form using two Magnus exponential rotation matri-
ces, and at the same time the Master Integrals are rescaled by appropriate powers of ε to remove
their ε-poles. The Magnus rotations also change the basis of master integrals from {T1, . . . ,T5} to
{I1, . . . ,I5}:

{I1, I2, I3, I4, I5} ≡

εT1, −sεT2, −tεT3, −
tε2
√

4m2
µ − t

√
−t

T4, tε2(s−m2
µ)T5

 (8.8)

At this point it is also convenient to perform a change of variables, from {s, t} to the dimensionless
{x,y}:


s−→−xm2

µ

t −→−(1− y)2

y
m2

µ

(8.9)

The two systems of differential equations are then manifestly ε-factorisable:

∂x~I (x, y, ε) = εMx (x, y)~I (x, y, ε) ∂t~I (x, y, ε) = εMy (x, y)~I (x, y, ε) (8.10)
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Mx =


0 0 0 0 0
−1 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
2 4 0 0 −2

 1
1+ x

+


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 1
x

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 −1 1

 1
x+ y

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 1 1

 y
1+ xy

My =


0 0 0 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 2 0 −2

 1
−1+ y

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0

 1
1+ y

+


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
1 0 −1 0 0
1 2 0 0 0

 1
y

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 −1 1

 1
x+ y

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 1 1

 x
1+ xy

where we wrote the Mx,y matrices in dlog form, identifying the matrices Mi belonging to each letter
ηi (x,y). One can notice how matrices which happen to be identical across Mx and My also multiply
the partial derivative of the same dlog(ηi (x,y)), only with respect to different variables.

Since the system is canonical and all letters are clearly rational, the solution may be given as detailed
in chapter 2.4.3, namely as a Dyson series evaluated with Generalised Polylogarithms.
The iterated integrals have been computed manually up to order ε2. The general solution then is of
the form:

~I (x, y, ε) =
(
1+ εB

1 (x, y)+ ε
2
B

2 (x, y)
) ~I0 (ε) (8.11)

where each component of the vector of boundary conditions is written as:

I0
k (ε) =

2

∑
j=0

ε
j
ξ (k, j) (8.12)

In appendix E we write out explicitly the matrix product of the general solution with the boundary
conditions, keeping terms up to order 4 in ε .

8.2 Boundary conditions
Keeping these results in mind, the goal is now to derive physically-sensible relations and use them to
fix the boundary-condition coefficients ξ (k, j). To do this one will require a tool to evaluate GPLs
numerically, we used the MATHEMATICA notebook attached to [154].
We examine one Master-Integral at a time:
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• For I1 we take advantage of the fact that it is computable analytically with Feynman parameters
and, using the specific normalisation given in 8.3, it is simply 1. Looking at E.3, to enforce this
condition it is sufficient to choose:


ξ10 = 1
ξ11 = 0
ξ12 = 0

(8.13)

• For the one-mass bubble I2 we can recall the relation I2 = −sT2 up to the ε-rescaling. In the
limit s→ 0 T2 is evidently regular and thus I2 vanishes trivially by its definition. This limit
corresponds to x→ 0, which also shrinks the integration bounds of all Polylogarithms, making
them vanish. Looking at E.4, to enforce the vanishing of I2 when x→ 0 it is enough to set all
boundary coefficients to zero:


ξ20 = 0
ξ21 = 0
ξ22 = 0

(8.14)

• The t-channel scalar bubble I3 is also computable analytically with Feynman parameters giving,
using our normalisation convention:

− t
(
1− ε

2
ζ2
)

(8.15)

where ζ2 is the Riemann Zeta function evaluated at s = 2, which is ζ2 =
π2

6 . To fix the boundary
conditions we then need to take E.5 and fix the coefficients so that it matches the above result
order-by-order in ε . The result is simply:


ξ30 = 1
ξ31 = 0

ξ32 =−
π2

6

(8.16)

• For I4 ∼ −
t
√

4m2
µ−t√
−t T4 we can use the regularity of T4 at t → 4m2

µ , which kills off the square
root factor. This limit corresponds to y→−1 and x generic, and at this phase-space point the
boundary conditions need to ensure that I4 vanishes order-by-order in ε .
Looking at the expressions E.6 (after having set all previous conditions) the required definitions
are:


ξ40 = 0
ξ41 = 0

ξ42 = G({0,0},−1)−2G({0,1},−1) =−2π2

3

(8.17)

• For I5 ∼ t(s−m2
µ)T5 it would be natural to try and set a condition for either t → 0 or s→ m2

µ

but, as it turns out, the box integral T5 is not regular in either of these thresholds.
Let us take a look at the differential equations in dlog form; let us then choose a letter η , pick
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the differential equations proportional to dlog(η) and multiply both sides by the letter itself: if
the limit η → 0 corresponds to a regularity point for T5 and all the other integrals appearing
therein we have found a pseudo-threshold for the original equation, then the differential η dI5
would vanish safely and we could construct a boundary condition from the right-hand side of
the DE.
We shall choose η = x+ y in the limit x =−1

2 ,y =
1
2 since this corresponds to the phase-space

point s = −t =
m2

µ

2 , regular for each of the Ti. We then extract the differential equation for I5
corresponding to this letter:

[(x+ y)dI5]x=− 1
2 ,y=

1
2
= 0 = [−I1−2I2−I3−I4 +I5]x=− 1

2 ,y=
1
2

(8.18)

On the right the only unknowns are the BC coefficients of I5, and we set them so that the entire
right-hand side vanishes order-by-order in ε:



ξ50 = 2
ξ51 = 0

ξ52 = 2G
(
{−1},−1

2

)
G({0},−1)−4G

(
{−1},−1

2

)
G({1},−1)+4G

(
{−1,−1},−1

2

)
−2G

(
{0,−1},−1

2

)
−2G({1,0},−1)+4G({1,1},−1)− 5π2

6
=−5π2

6
(8.19)

Let us write the final solution:



I1 =1

I2 =− εG({−1},x)+ ε
2(2G({−1,−1},x)−G({0,−1},x))

I3 =1+ ε
2
ζ2

I4 =ε
2
(
−2π2

3
−G({0,0},y)+2G({0,1},y)

)
I5 =2+ ε(−2G({−1},x)+G({0},y)−2G({1},y))

+ ε
2
(
−5π2

6
−2G({−1},x)G({0},y)+4G({−1},x)G({1},y)

)
(8.20)

This result matches perfectly the preliminary results in [52]. To take this one step further and
reproduce the final results of both [52] and [10] the above expressions need to be simplified
using algebraic identities between the Polylogarithm functions known as Shuffle Algebra.
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Conclusions

In this thesis we reviewed the Standard Model contributions to the muon’s anomalous magnetic mo-
ment, focussing on the theoretical framework behind the Leading Hadronic corrections and its pos-
sible determination through µ±e− → µ±e− scattering. In this context, our goal was to advance
the state-of-the-art results in muon-electron scattering at Next-To-Next-To-Leading Order by eval-
uating the real-virtual corrections at one-loop given by the process µ−e− → µ−e−γ in Quantum-
Electrodynamics.
We thus introduced the powerful Unitarity-based methods used to compute loop Feynman amplitudes
able to produce a decomposition onto Scalar Integrals by means of unitary cuts, with attention to
the extension to the Dimensional Regularisation framework. We showed that simple but general un-
derlying principles govern the kinds of integrals that can appear in the decomposition, and that the
form of these Master Integrals is universal at one loop, regardless of the complexity of the Feynman
amplitude at hand.
Thereafter we outlined the remarkable properties that Feynman integrals satisfy, namely the IBP rela-
tions that are able to map integrals onto one another and identify the minimal basis of Master Integrals,
and the Differential Equations method which allows the determination of each Master Integral as the
solution of a coupled system of differential equations in the kinematic invariants.
We continued our discussion on decomposition methods by describing Integrand-level schemes such
as the OPP method which obtain decompositions by performing polynomial divisions, and their con-
nection to advanced mathematical techniques such as Algebraic Geometry. The generality of these
ideas is key to applying these methods beyond the one-loop level
We described in detail the Adaptive Integrand Decomposition technique and its implementation, the
AIDA package. This unitarity-based method enhances the previous integrand methods by using the
external momenta as a basis to parametrise the loop momentum, and the remarkable simplification
that follow enable the automatic identification and removal of spurious terms at one-loop and beyond.
Given the importance of the external momenta to this algorithm, we introduced the powerful math-
ematical languages of spinor-helicity and momentum twistors, which allow and efficient parametri-
sation of the kinematics with the optimal number of variables and encode naturally four-momentum
conservation.

We then put all the aforementioned theoretical tools to work on muon-electron scattering. First we
re-evaluated the known Leading-Order and Next-To-Leading Order virtual contributions, verifying
the ultra-violet pole cancellations at one-loop crucial to the renormalisability of QED.
We then evaluated the Master Integrals for the one-loop Next-To-Leading Order contributions with
the AIDA package, for which we developed approaches to interface the package with amplitude-
generation code suites such as FEYNCALC, as well as novel twistor parametrisations for four-point
massive kinematics in both the single mass case and for two masses. In the massless electron approx-
imation we evaluated the five planar Master Integrals with the Differential Equations method with
Magnus exponentials, obtaining the final expressions in terms of Goncharov Polylogarithms up to
order 2 in ε .
We then applied all the expertise learned in these applications and took the first steps in the eval-
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uation of the amplitudes for µ−e→µ−e−γ at one-loop, which constitute part of the Next-To-Next-
To-Leading Order contributions to muon-electron scattering. This calculation is among the first
fully-analytical five-point, one-loop amplitude decompositions with two mass scales, a testament to
the power of the Adaptive Integrand Decomposition technique. Once again we developed twistor
parametrisation for both the single and double mass cases and, applying IBP relations, identified the
Master integrals. For these runs we used the simplified version of the Adaptive Integrand Decompo-
sition algorithm due to computational constraints and therefore expected the final set of integrals not
to correspond to the minimal basis, not in the least for the presence of scalar pentagon integrals. By
means of a numerical reduction with the full algorithm we identified the actual set of Master Integrals
and confirmed that the pentagon is the only spurious integral present in the fully-analytical result.
Future work will no doubt be oriented on the completion of our preliminary work, mainly towards
the evaluation of the Master Integrals identified by us with methods such as Differential Equations.
Despite the fact that for the five-point amplitudes studied the Master Integral ought to comprise at
most four-point functions, the effect of the radiated real photon is to change the momentum flow
along the internal propagators, and may entail that results for the four-point Master Integrals may not
be recycled so easily.

This work is a further step in the direction of the complete analytical evaluation of µ−e→µ−e− scat-
tering at Next-To-Next-To-Leading Order. This process may lead to the most accurate and inclusive
estimate of the anomalous magnetic moment of the muon to date, one of the gold standards currently
available to probe the effects of Beyond-the-Standard-Model physics.
Finally, the importance of the quest for ever-higher precision calculations in Quantum Field Theory
cannot be overstated, for it is only with continual advancements on the theory side that experimental
data can be properly understood, a fundamental step in the validation of any theory in high-energy
physics.
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Appendix A

Construction of a massless basis for loop
momenta

In multiple situations throughout this thesis we find it convenient to parametrise qµ , the strictly four-
dimensional part of a D-dimensional loop momentum q̄µ in terms of massless vectors eµ

i :

qµ =
4

∑
i=1

xie
µ

i (A.1)

where the massless vectors can be chosen to satisfy certain criteria:

e2
i = 0

(e1 · e3) = (e1 · e4) = 0
(e2 · e3) = (e2 · e4) = 0
(e1 · e2) =−(e3 · e4)

Such a basis can be constructed as detailed in [38, 131, 155], and here we shall walk through the steps
of its construction.

First, we prove that two massless four-momenta eµ

12 can always be obtained from two massive ones.
The task at hand is, given two massive vectors Kµ

12, to write them as a linear combination of the two
massless ones as:

(
K1
K2

)
=

(
a b
c d

)(
e1
e2

)
(A.2)

This equation must be inverted, recalling that the inverse of a non-singular matrix is the adjugate
matrix divided by the determinant:

(
e1
e2

)
=

1
(ad−bc)

(
d −b
−c a

)(
K1
K2

)
(A.3)

we plug these expressions for eµ

12 in their masslessness condition:
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0 = e2
1 =

(
dK1−bK2

(ad−bc)

)2

⇒ d2K2
1 +b2K2

2 −2bdK1 ·K2 = 0 (A.4)

0 = e2
2 =

(
−cK1 +aK2

(ad−bc)

)2

⇒ c2K2
1 +a2K2

2 −2acK1 ·K2 = 0 (A.5)

We solve the first equation for d:

d =
2bK1 ·K2±

√
4b2 (K1 ·K2)

2−4b2K2
1 K2

2

2K2
1

=
b

K2
1

[
K1 ·K2±

√
4b2 (K1 ·K2)

2−4b2K2
1 K2

2

]
:=

b
K2

1
γ±

Analogously we solve the second one and obtain:

c =
a

K2
1

γ±

the non-singular determinant condition forces us to choose different signs for the γs, we therefore
pick:

d =
b

K2
1

γ+ (A.6)

c =
a

K2
1

γ− (A.7)

It is possible to check explicitly that the following relations are true:

γ++ γ− = 2K1 ·K2 (A.8)

γ+γ− = K2
1 K2

2 (A.9)

using these and the expressions for c and d lets us re-write the determinant:

ad−bc = ad
(

1− bc
ad

)
= ad

(
1− γ−

γ+

)
= ad

(
1−

K2
1 K2

2
γ2
+

)
:= adβ (A.10)

We define for subsequent simplicity r1,2 :=
K2

1,2
γ+

. Using all these relations we write the massless
vectors:

eµ

1 =
1

adβ

(
dKµ

1 −bKµ

2
)
=

1
aβ

(
Kµ

1 − r1Kµ

2
)

(A.11)

eµ

2 =
1

adβ

(
−cKµ

1 +aKµ

2
)
=

1
dβ

(
Kµ

2 − r2Kµ

1
)

(A.12)
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Both a and d are arbitrary parameters, so we set them to 1, obtaining the final expression for eµ

12:

eµ

1 =
1
β

(
Kµ

1 − r1Kµ

2
)

(A.13)

eµ

2 =
1
β

(
Kµ

2 − r2Kµ

1
)

(A.14)

Finally we simplify the scalar product between them using β = 1− r1r2:

e1 · e2 =
1

β 2

(
K1 · k2− r1K2

2 − r2K2
1 + r1r2K1 ·K2

)
=

1
β 2

((
γ++ γ−

2

)(
1+

γ−
γ+

)
−2γ−

)
(A.15)

=
γ+

2β 2

(
1−2

γ−
γ+

+
γ2
−

γ2
+

)
=

γ+

2β 2 (1− r1r2)
2 (A.16)

=
γ+

2
(A.17)

To complete the basis we need a way to define the other two vectors. We wish to represent massless
momentum vectors and therefore we can re-cycle the spinor-helicity representation of polarisation
vectors:

eµ

3 =
1
2
〈e1|γµ |e2] (A.18)

eµ

4 =
1
2
〈e2|γµ |e1] (A.19)

which are orthogonal to both e1,2 as required.

As evident, the entire basis is defined according to two massive vectors. In the context of parametris-
ing a loop momentum within a Feynman amplitude, the natural choice for these vectors is to pick two
massive vectors from the external kinematics of the diagram as done in section 4.1.1.
If the kinematics contains less than two independent momenta this is not possible, and K12 can only
be chosen arbitrarily.
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Parametric expansion of Integrand
Decomposition residues on the cut solutions

In this appendix we derive explicitly the parametrisation of the ∆s appearing in the integrand decom-
position relation 4.4 in terms of Irreducible Scalar Product (ISP) in the four-dimensional case.

Let us recap some results derived in chapter 4.1: any term proportional or expressible in terms of the
denominators Di, j,k will not constitute an ISP, and it was immediately shown how q2 and the scalar
products q · pi cannot appear in the parametrisation by this token.
To find the ISPs we shall parametrise the loop momentum qµ as follows:

(q+ pi)
µ =

1
(e1 · e2)

(
x1eµ

1 + x2eµ

2 + x3eµ

3 + x4eµ

4
)

(B.1)

the loop momentum is expanded onto a basis of four massless vectors {eµ

i } which satisfies the fol-
lowing:

e2
i = 0

(e1 · e3) = (e1 · e4) = 0
(e2 · e3) = (e2 · e4) = 0
(e1 · e2) =−(e3 · e4)

such a basis can be constructed as detailed in appendix A.
Thanks to the properties of the chosen basis:

(q · e1) = x2 (B.2)
(q · e2) = x1 (B.3)

(q · e3) =−x4 (B.4)
(q · e4) =−x3 (B.5)

A parametrisation onto ISPs therefore is equivalent to a parametrisation onto polynomials of the xi:

Nn (q) = Nn (x1,x2,x3,x4) = ∑
j1, j2, j3, j4

c j1 j2 j3 j4x j1
1 x j2

2 x j3
3 x j4

4

j1 + j2 + j3 + j4 ≤ rmax

(B.6)
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where rmax is the maximum allowed rank given the number of denominators of the integrand being
reduced.

We shall now consider four,three,two and one-point integrand in succession and derive the most gen-
eral parametrisation of their residues, taking advantage of the cut conditions that need to be satisfied
as per the OPP method, and we will also identify the ISPs.

The four-point residue

q+ p2

q+ p2 + p3

q− p1

q
p2

p3

p1

p4

In a box diagram only three external momenta out of four are independent, we choose p4 =−(p1 + p2 + p3).
Moreover we choose p1,2 to construct e1,2.
As for the remaining two massless vectors, it is convenient in this case to combine them as follows
[49] to define two new auxiliary vectors

vµ = (p3 · e4)eµ

3 +(p3 · e3)eµ

4 (B.7)

vµ

⊥ = (p3 · e4)eµ

3 − (p3 · e3)eµ

4 (B.8)

where vµ can be shown to be a combination of p1,2,3 and vµ

⊥ is orthogonal to all of them.

We have:

v2 =−2(p3 · e3)(p3 · e4)(e1 · e2)

v2
⊥ = 2(p3 · e3)(p3 · e4)(e1 · e2)

(v · v⊥) = 0

We now express e3,4 in terms of the new vectors:

eµ

3 =
vµ + vµ

⊥
2(p3 · e4)

eµ

4 =
vµ − vµ

⊥
2(p3 · e3)

Before rewriting qµ in this new basis, let us list the cut conditions under which the residue is to be
parametrised:

q2 = 0

(q− p1)
2 = 0

(q+ p2)
2 = 0

(q+ p2 + p3)
2 = 0

=⇒

(x1x2− x3x4)
1

(e1 · e2)
= 0

−(q · p1) = 0
(q · p2) = 0

(q · p3)+(p2 · p3) = 0

where we used the general properties of the {eµ

i } basis.
From the first we deduce x1x2 = x3x4 and from the second and third:
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q · e1,2 = 0 =⇒ x1,2 = 0

And therefore x1x2 = x3x4 = 0.

We now rewrite B.1:

(q+ pi)
µ =

1
(e1 · e2)

(
x1eµ

1 + x2eµ

2 +

[
x3

2(p3 · e4)
+

x4

2(p3 · e3)

]
vµ +

[
x3

2(p3 · e4)
− x4

2(p3 · e3)

]
vµ

⊥

)
(B.9)

Given that the first two quantities x1,2 in fact vanish, we immediately infer that (q · e1,2) cannot appear
in the parametrisation and are not ISPs. Let us therefore project the loop momentum onto the auxiliary
vectors:

(q · vµ) = [x3 (p3 · e3)+ x4 (p3 · e4)](
q · vµ

⊥
)
= [−x3 (p3 · e3)+ x4 (p3 · e4)]

Only
(
q · vµ

⊥
)

is an ISP, as the other auxiliary vector is a combination of the external momenta. To
examine any potential other ISP, let us square these two:

(q · vµ)2 =
[
x2

3 (p3 · e3)
2 + x2

4 (p3 · e4)
2 +2x3x4 (p3 · e3)(p3 · e4)

]
(
q · vµ

⊥
)2

=
[
x2

3 (p3 · e3)
2 + x2

4 (p3 · e4)
2−2x3x4 (p3 · e3)(p3 · e4)

]

=⇒
(
q · vµ

⊥
)2

= (q · vµ)2

where we used x3x4 = 0. This proves that any higher power of
(
q · vµ

⊥
)

can be written as reducible
scalar products, and therefore is not an ISP.

If we define new parameters associated to the new vectors we introduced:

(q · vµ) := x3,v(
q · vµ

⊥
)

:= x4,v

then we can finally write down the parametrised box residue in a simple form:

∆i jkl = c4,0 + c4,1 (q · v⊥) = c4,0 + c4,1x4,v (B.10)

This expression plugs into 4.3. Let us then integrate the box-residue term of 4.3 over the loop mo-
mentum (as one would do to retread back to the integral level) to see that the ISP term generates a
spurious term.

136



APPENDIX B. PARAMETRIC EXPANSION OF INTEGRAND DECOMPOSITION RESIDUES
ON THE CUT SOLUTIONS

∫
dDq

∆i jkl

DiD jDkDl
= c0Ii jkl + c3,0vµ

⊥Iµ

i jkl = c4,0Ii jkl + c4,1vµ

⊥
[
A4 pµ

1 +B4 pµ

2 +C4 pµ

3
]

= c0Ii jkl

where we tensor-decomposed Iµ

i jkl and recalled that vµ

⊥ is by definition orthogonal to all independent
external momenta.

The three-point residue

q+ p2

q− p1

q

p2

p3

p1

There are only two independent external momenta in this case. We begin by listing the cut conditions:

q2 = 0

(q− p1)
2 = 0

(q+ p2)
2 = 0

=⇒

x1x2 = x3x4

−(q · p1) = 0
(q · p2) = 0

and, once again, x1,2 = 0 and thus x3x4 = 0.
Since e3,4 are all independent of the two external momenta used to construct e1,2, we immediately
have two ISPs:

(q · e3) =−x4

(q · e4) =−x3

The cross-product (q · e3)(q · e4) is proportional to x3x4 and therefore trivially not an ISP.
The ISPs are then (q · e3,4) and all their powers, except for the cross-products. The expanded residue
is:

∆i jk = c3,0 + c3,1 (q · e4)+ c3,2 (q · e4)
2 + c3,3 (q · e4)

3 + c3,4 (q · e3)+ c3,5 (q · e3)
2 + c3,6 (q · e3)

3

= c3,0 + c3,1x4 + c3,2x2
4 + c3,3x3

4 + c3,4x3 + c3,5x2
3 + c3,6x3

3

Let us integrate over the loop momentum:

∫
dDq

∆i jk

DiD jDk
=

= c0Ii jk +
[
c3,4eµ

3 + c3,0eµ

4
]

Iµ

i jk +
[
c3,5eµ

3 eν
3 + c3,2eµ

4 eν
4
]

Iµν

i jk +
[
c3,6eµ

3 eν
3 eρ

3 + c3,3eµ

4 eν
4 eρ

4
]

Iµνρ

i jk

and list the (formal) tensor decomposition formulas that should be applied:
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Iµ

i jk ' pµ

1 + pµ

2

Iµν

i jk ' gµν +
2

∑
i, j=1

pµ

i pν
j

Iµνρ

i jk '
2

∑
i=1

(
gµν pρ

i +gνρ pµ

i +gρµ pν
i
)
+

2

∑
i, j,k=1

pµ

i pν
j pρ

k

We thus have many contractions like (e3,4 · p1,2) which all vanish by orthogonality, as well as gµνeµ

3,4eν
3,4,

which vanish by the massless condition.
Once again, the ISP terms are all spurious.

The two-point residue
q

q− p1

p1 p2

Now only one external momentum is independent, therefore we need some arbitrary 4-vector K2 to
construct the massless basis. We choose this so that (p1 · e2) = 0.
We list the cut conditions:

q2 = 0

(q− p1)
2 = 0 =⇒

x1x2 = x3x4

−(q · p1) = 0

We have x2 = 0 and therefore x1x2 = x3x4 = 0

We can construct e1,2 so that one of (q · e1,2) is an ISP, but obviously not both. The cut conditions
compel us to choose the latter and therefore the first ISPs are:

(q · e2) = x1

(q · e3) =−x4

(q · e4) =−x3

Powers of these are also ISPs,up to degree 2.
Let us examine the cross products:

(q · e2)(q · e3) =−x1x4

(q · e2)(q · e4) =−x1x3

(q · e3)(q · e4) = x3x4

By the cut conditions the last cross-product vanishes and is not an ISP.

The parametrised residue is then:
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∆i j = c2,0 + c2,1 (q · e2)+ c2,2 (q · e2)
2 + c2,3 (q · e3)+ c2,4 (q · e3)

2+

+ c2,5 (q · e4)+ c2,6 (q · e4)
2− c2,7 (q · e2)(q · e3)− c2,8 (q · e2)(q · e4)

= c2,0 + c2,1x1 + c2,2x2
1− c2,3x4 + c2,4x2

4− c2,5x3 + c2,6x2
3− c2,7x1x4− c2,8x1x3

Integrating:

∫
dDq

∆i j

DiD j
=

= c2,0Ii j +
[
c2,1eµ

2 + c2,3eµ

3 + c2,5eµ

4
]

Iµ

i j +
[
c2,2eµ

2 eν
2 + c2,4eµ

3 eν
3 + c2,6eµ

4 eν
4 +C2,7eµ

2 eν
3 + c2,8eµ

2 eν
4
]

Iµν

i j

the tensor decompositions to be used are, in this case:

Iµ

i j ' pµ

1

Iµν

i j ' gµν + pµ

1 pν
1

By the orthogonality and masslessness properties of the basis one sees how the ISP terms are all
spurious.

The one-point residue

p1 q

This time we are forced to construct the basis from scratch, having no independent external momenta
available. We choose two arbitrary vectors to do so.
The only cut condition in this case is:

q2 = 0
=⇒

x1x2 = x3x4

This is simply a constraint on these quantities, as in this case we have no further cut conditions that
kill one of the xi quantities.
Having not used any external momentum vector to build the basis we have the full complement of
ISPs :

(q · e1) = x2

(q · e2) = x1

(q · e3) = x4

(q · e4) = x3
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No higher powers of these are allowed since they would exceed the allowed rank. The parametrisation
is then, simply:

∆i = c1,0 + c1,1 (q · e1)+ c1,2 (q · e2)+ c1,3 (q · e3)+ c1,4 (q · e4)

= c2,0 + c2,1x1− c1,2x2− c1,3x3− c1,4x4

By integrating we find:

∫
dDq

∆i

Di
= c1,0Ii +

[
c1,1eµ

1 + c1,2eµ

2 + c1,3eµ

3 ++c1,4eµ

4
]

Iµ

i

As Iµ

i vanishes trivially, we have proved that the ISPs are spurious.

Let us summarise the resulting parametrised residues:

∆i jkl = c4,0 + c4,1x4,v

∆i jk = c3,0 + c3,1x4 + c3,2x2
4 + c3,3x3

4 + c3,4x3 + c3,5x2
3 + c3,6x3

3

∆i j = c2,0 + c2,1x1 + c2,2x2
1− c2,3x4 + c2,4x2

4− c2,5x3 + c2,6x2
3− c2,7x1x4− c2,8x1x3

∆i = c1,0 + c1,1x1− c1,2x2− c1,3x3− c1,4x4 (B.11)
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Appendix C

Complete NLO Virtual corrections to µ-e
scattering

We report here in their entirety the the virtual NLO corrections to muon-electron scattering computed
in FEYNCALC, which correspond to the interferences of the 1-loop amplitudes with the lone tree-level
amplitudeM0. The square amplitudes have been decomposed using the FEYNCALC implementation
of Passarino-Veltman reduction, which also uses the letters A,B,C,D to refer to one-,two-,three-,four-
point PV-functions respectively.

2× 1
4
MV Pe

1 M∗
0 =

∗

(C.1)

=− 4π2e2

(D−1)t
χ0
(
c1B0(t,m2

e ,m
2
e)+ c2A0(m2

e)
)

where:

c1 = ((D−2)t +4m2
e)

c2 =−2(D−2)

2× 1
4
MV P µ

1 M∗
0 =

∗

(C.2)

=− 4π2e2

(D−1)t
χ0

(
c1B0(t,m2

µ ,m
2
µ)+ c2A0(m2

µ)
)

where:

c1 = ((D−2)t +4m2
µ)

c2 =−2(D−2)
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2× 1
4
MVC µ

1 M∗
0 =

∗

(C.3)

=
2π2e6

t2(4m2
µ − t)

(
c1B0(m2

µ ,0,m
2
µ)+ c2B0(t,m2

µ ,m
2
µ)+ c3C0(m2

µ ,m
2
µ , t,m

2
µ ,0,m

2
µ)+ c4A0(m2

µ)
)

where:

c1 = 4
(
−4t2(s− (D−2)m2

µ)− (D−2)t3−4t
((

m2
e
)2−2s(m2

e +2m2
µ)+

(
m2

µ

)2
+ s2

)
+8m2

µ(m
2
e +m2

µ − s)2
)

c2 =−
(

4t
(
(D−7)

(
m2

e
)2−2m2

e((D−3)m2
µ +(D−7)s)+(D−7)

(
m2

µ

)2
−2(D−11)m2

µs+(D−7)s2
)

+4(D−7)t2(s− (D−2)m2
µ)+(D−7)(D−2)t3 +32m2

µ(m
2
e +m2

µ − s)2
)

c3 = 2
(

8
(

m2
µ

)2
−6m2

µt + t2
)(

(D−2)t2 +4(m2
e +m2

µ − s)2 +4st
)

c4 = 8(D−2)
(
(m2

e +m2
µ − s)2 + t(s−m2

e)
)

2× 1
4
MVC e

1 M∗
0 =

∗

(C.4)

=
2π2e6

t2(4m2
e− t)

(
c1B0(m2

e ,0,m
2
e)+ c2B0(t,m2

e ,m
2
e)+ c3C0(m2

e ,m
2
e , t,m

2
e ,0,m

2
e)+ c4A0(m2

e)
)

where:

c1 = 4
(
−4t2(s− (D−2)m2

e)− (D−2)t3−4t
((

m2
e
)2−4m2

es+(m2
µ − s)2

)
+8m2

e(m
2
e +m2

µ − s)2
)

c2 =
(

4t
(
(D−7)

(
m2

e
)2−2m2

e((D−3)m2
µ +(D−11)s)+(D−7)(m2

µ − s)2
)
+

4(D−7)t2(s− (D−2)m2
e)+(D−7)(D−2)t3 +32m2

e(m
2
e +m2

µ − s)2
)

c3 = 2
(

8
(
m2

e
)2−6m2

et + t2
)(

(D−2)t2 +4(m2
e +m2

µ − s)2 +4st
)

c4 = 8(D−2)
(
(m2

e +m2
µ − s)2 + t(s−m2

µ)
)
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2× 1
4
MBox

1 M∗
0 =

∗

(C.5)

=
π2e6

t

(
c1B0(m2

µ ,0,m
2
µ)+ c2B0(m2

e ,0,m
2
e)+ c3B0(s,m2

e ,m
2
µ)+ c4B0(t,0,0)

+c5C0(m2
e ,m

2
e , t,0,m

2
e ,0)+ c6C0(m2

µ ,m
2
µ , t,0,m

2
µ ,0)

+c7C0(m2
e ,m

2
µ ,s,m

2
e ,0,m

2
µ)+ c8D0(m2

e ,m
2
e ,m

2
µ ,m

2
µ , t,s,0,m

2
e ,0,m

2
µ)
)

where:

c1 =
4m2

µ

(4m2
µ − t)

(
(m2

e)
2−2m2

e(m2
µ + s)+(m2

µ − s)2
)

(
4(D−2)(m2

e +m2
µ − s)

((
m2

e
)2−2m2

e(m
2
µ + s)+(m2

µ − s)2
)
−2t

(
(m2

e−m2
µ)(

(D−2)m2
e +(5D−14)m2

µ)−2(D−2)m2
es+4(D−3)m2

µs+(D−2)s2
)

+(3D−8)t2(m2
e−m2

µ + s)
)

c2 =
4m2

e

(4m2
e− t)

(
(m2

e)
2−2m2

e(m2
µ + s)+(m2

µ − s)2
)

(
2t
(
(5D−14)

(
m2

e
)2−4(D−3)m2

e(m
2
µ + s)− (D−2)(m2

µ − s)2
)

+4(D−2)(m2
e +m2

µ − s)
((

m2
e
)2−2m2

e(m
2
µ + s)+(m2

µ − s)2
)
− (3D−8)t2(m2

e−m2
µ − s)

)
c3 = 2

(
−
(3D−8)t(m2

e−m2
µ − s)(m2

e−m2
µ + s)

(m2
e)

2−2m2
e(m2

µ + s)+(m2
µ − s)2

−2(D−2)(m2
e +m2

µ − s)

)

c4 =
2

(t−4m2
e)(4m2

µ − t)

(
2t2((D−2)s− (5D−14)(m2

e +m2
µ))

+32(D−2)m2
em2

µ(m
2
e +m2

µ − s)+16(D−4)m2
em2

µt +(3D−8)t3
)

c5 =
1

4m2
e− t

(
−8t

(
(D−2)

(
m2

e
)2

+(D−4)m2
em2

µ − (D−8)m2
es−2(m2

µ − s)2
)

+8t2(s− (D−3)m2
e)+(3D−8)t3−64m2

e(m
2
µ − s)(m2

e +m2
µ − s)

)
c6 =

1
4m2

µ − t

(
8t
(

s((D−8)m2
µ −4m2

e)+(m2
e +m2

µ)(2m2
e− (D−2)m2

µ)+2s2
)

+8t2(s− (D−3)m2
µ)+(3D−8)t3−64m2

µ(m
2
e− s)(m2

e +m2
µ − s)

)
c7 =−2(Dt +8s)(m2

e +m2
µ − s)

c8 = (−m2
e−m2

µ + s)
(
(3D−8)t2 +16(m2

e +m2
µ − s)2 +8st

)
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2× 1
4
MBoxx

1 M∗
0 =

∗

(C.6)

=
π2e6

t

(
c1B0(m2

e ,0,m
2
e)+ c2B0(m2

µ ,0,m
2
µ)+ c3B0(2m2

e +2m2
µ − s− t,m2

e ,m
2
µ)

+c4B0(t,0,0)+ c5C0(m2
e ,m

2
e , t,0,m

2
e ,0)+ c6C0(m2

e ,m
2
µ ,2m2

e +2m2
µ − s− t,m2

e ,0,m
2
µ)

+c7C0(m2
µ ,m

2
µ , t,0,m

2
µ ,0)+ c8D0(m2

e ,m
2
e ,m

2
µ ,m

2
µ , t,2m2

e +2m2
µ − s− t,0,m2

e ,0,m
2
µ)
)

where:

c1 =
4m2

e

(4m2
e− t)

(
(m2

e)
2−2m2

e(m2
µ + s+ t)+(−m2

µ + s+ t)2
)

(
2t
(
(D−6)

(
m2

e
)2

+4m2
e(3(D−3)m2

µ +(D−1)s)−5(D−2)(m2
µ − s)2

)
+(D−4)t3

+4(D−2)(m2
e +m2

µ − s)
((

m2
e
)2−2m2

e(m
2
µ + s)+(m2

µ − s)2
)

+t2((24−7D)m2
e−D(m2

µ +5s)+8(m2
µ + s))

)
c2 =

4m2
µ

(4m2
µ − t)

(
(m2

e)
2−2m2

e(m2
µ + s+ t)+(−m2

µ + s+ t)2
)

(
2t
(
−5(D−2)

(
m2

e
)2

+2m2
e(6(D−3)m2

µ +5(D−2)s)+(m2
µ − s)((D−6)m2

µ +5(D−2)s)
)
+(D−4)t3

+4(D−2)(m2
e +m2

µ − s)
((

m2
e
)2−2m2

e(m
2
µ + s)+(m2

µ − s)2
)
+ t2((8−D)m2

e +(24−7D)m2
µ +(8−5D)s)

)
c3 =−

2

(m2
e)

2−2m2
e(m2

µ + s+ t)+(−m2
µ + s+ t)2(

t
(

3(D−4)
(
m2

e
)2

+m2
e((26D−72)m2

µ +8s)+(m2
µ − s)(3(D−4)m2

µ +(3D−4)s)
)
+(D−4)t3

+2(D−2)(m2
e +m2

µ − s)
((

m2
e
)2−2m2

e(m
2
µ + s)+(m2

µ − s)2
)
−2t2((3D−10)(m2

e +m2
µ)+2s)

)
c4 =

2
(t−4m2

e)(4m2
µ − t)

(
2t2((3D−10)(m2

e +m2
µ)+(D−2)s)+32(D−2)m2

em2
µ(m

2
e +m2

µ − s)

+16(8−3D)m2
em2

µt +(4−D)t3
)

c5 =−
1

4m2
e− t

(
8t
(
(D+18)

(
m2

e
)2

+(D+12)m2
em2

µ − (D+16)m2
es+2(m2

µ − s)2
)

+8t2((2D+3)m2
e +2m2

µ −3s)−3Dt3 +64m2
e(m

2
e +m2

µ − s)(2m2
e +m2

µ − s)
)

c6 =−2(m2
e +m2

µ − s− t)((D−8)t +16m2
e +16m2

µ −8s)

c7 =
1

4m2
µ − t

(
−8t

(
(D+12)m2

em2
µ +(D+18)

(
m2

µ

)2
− (D+16)m2

µs+2
(
m2

e
)2−4m2

es+2s2
)

+8t2((2D+3)m2
µ +2m2

e−3s)−3Dt3 +64m2
µ(m

2
e +m2

µ − s)(m2
e +2m2

µ − s)
)

c8 = (−m2
e−m2

µ + s+ t)
(

3Dt2 +16(m2
e +m2

µ − s)2−16t(m2
e +m2

µ)+24st
)
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Appendix D

Feynman rules for counterterm diagrams

The bare QED Langrangian can be written as:

LQED = LREN +LCT (D.1)

where26:

LREN = ψ̄
(
i/∂ −m

)
ψ− 1

4
FµνFµν − eψ̄γ

µ
ψAµ

LCT =
(
Zψ −1

)
ψ̄
(
i/∂ −Zmm

)
ψ− (ZA−1)

1
4

FµνFµν −ZeZψZ1/2
A eψ̄γ

µ
ψAµ

and where sometimes the renormalisation constants in front of the interaction term are compacted into
z1. LCT is a lagrangian that produces so-called counterterm diagrams whose amplitudes are meant to
be paired up with ”regular” loop Feynman amplitudes in order to offset their unphysical divergences
if present.

To deal with counterterm insertions in FEYNCALC we used a custom interaction model, QEDW,
developed for FEYNARTS and FEYNCALC by William J. Torres Bobadilla. We draw here the coun-
terterm Feynman diagrams associated to the divergent loop diagrams for a generic lepton l and we list
the Feynman rules generated.
All the Feynman rules depend on three renormalisation factors Zi , i = e,m,A,Ψ, associated to the
four objects that need to be redefined in order for them to be ”physical” expressions, as opposed to
representing ”bare” quantities that we are unable to measure.

−→

−→ −iml (Zm−1)Zψ

(D.2)

This expression is actually obtained by applying the massive Dirac equation for the lepton on the
output given by FEYNCALC.

26For the purposes of this appendix we neglect the Gauge-Fixing term.
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−→

−→ i(ZA−1)
(
kµkν −m2

l gµν
)

(D.3)

where k is the photon’s four-momentum.

−→

−→ ieγ
µ
(√

ZAZeZψ −1
)

(D.4)

and it is worth reminding that this counterterm is meant to be paired up only with the F1 contribution
to the whole triangle loop27.

As it is often done in literature, these factors are re-written as Zi = 1+αδi where the δi , i = e,m,A,ψ
are the counterterms proper, and where α should be interpreted as a parameter identifying a single
power of a counterterm, and not the fine-structure constant of QED.

Once a renormalisation prescription has been set up, these terms receive an explicit expression.
For the calculations in chapter 7 we shall use the following definitions derived in the on-shell renor-
malisation scheme, and have been simplified by applying once again 7.8:

δe −→
π2(D−2)e2A0(m2

l )

3m2
l

(D.5)

δm −→−
π2(D−2)(D−1)e2A0(m2

l )

2(D−3)m2
l

(D.6)

δA −→−
2π2(D−2)e2A0(m2

l )

3m2
l

(D.7)

δψ −→−
π2(D−2)(D−1)e2A0(m2

l )

2(D−3)m2
l

(D.8)

the only PV function appearing is the tadpole A0, defined and normalised as reported at the end of
chapter 2.2.1. These expressions are of course independent of the lepton particle under advisement,
provided their electro-magnetic charge is always equal to e.

27This can be seen in equation 1.47, if one neglects the Hadronic VP function insertion.
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Appendix E

Detailed results for massive one-loop 4-point
Master Integrals

In this appendix we write down explicitly the general solution to the systems of Differential Equations
set up in chapter 8. As mentioned, the solutions have been computed running manually through the
procedure detailed in chapter 2.4 up to second order in the ε expansion.
The general form of the solution is, once again:

~I (x, y, ε) =
(
1+ εB

1 (x, y)+ ε
2
B

2 (x, y)
) ~I0 (ε) (E.1)

where the B objects are 5× 5 matrices whose entries contain Generalised Polylogarithms28 up to
weight 2 , and where each component of the vector of boundary conditions ~I0 is written as:

I0
k (ε) =

2

∑
j=0

ε
j
ξ (k, j) (E.2)

Each integral is written as the matrix product of the B matrices with the boundary conditions vector,
with explicit coefficient variables, expanded up to order ε2. These expressions will be useful in
determining the ξ (k, j) coefficients themselves.

I1 = ε×
p1

p4

p2

p3

= ξ (1,0)+ εξ (1,1)+ ε
2
ξ (1,2) (E.3)

I2 = m2
µxε×

p1

p2

p4

p3

= ξ (2,0)+ εc1 + ε
2c2 (E.4)

where:

c1 =ξ (1,0)(−G({−1},x))−2ξ (2,0)G({−1},x)+ξ (2,0)G({0},x)+ξ (2,1)
c2 =2ξ (1,0)G({−1,−1},x)−ξ (1,0)G({0,−1},x)−ξ (1,1)G({−1},x)

+4ξ (2,0)G({−1,−1},x)−2ξ (2,0)G({−1,0},x)−2ξ (2,0)G({0,−1},x)
+ξ (2,0)G({0,0},x)−2ξ (2,1)G({−1},x)+ξ (2,1)G({0},x)+ξ (2,2)

28Their definition is given in relation 2.119.
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I3 =
m2

µ(y−1)2ε

y
×

p1

p2

p4

p3

= ξ (3,0)+ εc1 + ε
2c2 (E.5)

where:

c1 =(ξ (3,0)G({0},y)−2ξ (3,0)G({1},y)+ξ (3,1))
c2 =2(ξ (3,0)G({0,0},y)−2ξ (3,0)G({0,1},y)−2ξ (3,0)G({1,0},y)+4ξ (3,0)G({1,1},y)

+ξ (3,1)G({0},y)−2ξ (3,1)G({1},y)+ξ (3,2))

I4 =
m2

µ

(
y2−1

)
ε2

y
×

p1

p2

p4

p3

= ξ (4,0)+ εc1 + ε
2c2 (E.6)

where:

c1 =ξ (1,0)G({0},y)−ξ (3,0)G({0},y)+2ξ (4,0)G({−1},y)−2ξ (4,0)G({1},y)+ξ (4,1)
c2 =2ξ (1,0)G({−1,0},y)−2ξ (1,0)G({1,0},y)+ξ (1,1)G({0},y)−2ξ (3,0)G({−1,0},y)
−ξ (3,0)G({0,0},y)+2ξ (3,0)G({0,1},y)+2ξ (3,0)G({1,0},y)−ξ (3,1)G({0},y)
+4ξ (4,0)G({−1,−1},y)−4ξ (4,0)G({−1,1},y)−4ξ (4,0)G({1,−1},y)+4ξ (4,0)G({1,1},y)
+2ξ (4,1)G({−1},y)−2ξ (4,1)G({1},y)+ξ (4,2)

I5 =
m4

µ(x+1)(y−1)2ε2

y
×

p1

p2

p4

p3

= ξ (5,0)+ εc1 + ε
2c2 (E.7)

where:

c1 =ξ (5,1)+ξ (1,0)
(
−G

({
−1

y

}
,x
)
−G({−y},x)+2G({−1},x)

)
+ξ (2,0)

(
−2G

({
−1

y

}
,x
)
−2G({−y},x)+4G({−1},x)

)
−ξ (3,0)

(
G
({
−1

y

}
,x
)
.+G({−y},x)+G({0},y)−2G({1},y)

)
−ξ (4,0)

(
−G

({
−1

y

}
,x
)
.+G({−y},x)+G({0},y)

)
+ξ (5,0)

(
G
({
−1

y

}
,x
)
+G({−y},x)−2G({−1},x)+G({0},y)−2G({1},y)

)
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c2 =+ξ (5,2)+
(

G({0},y)G
({
−1

y

}
,x
)
−G({0},y)G({−y},x)−8G({−1,−1},x)+2G

({
−1,−1

y

}
,x
)

+2G({−1,−y},x)−G({0,0},y)+4G
({
−1

y
,−1

}
,x
)
−G

({
−1

y
,−1

y

}
,x
)

−G
({
−1

y
,−y

}
,x
)
+4G({−y,−1},x)−G

({
−y,−1

y

}
,x
)
−G({−y,−y},x)

)
ξ (1,0)

+

(
2G({−1},x)−G

({
−1

y

}
,x
)
−G({−y},x)

)
ξ (1,1)

−2
(

8G({−1,−1},x)−2G({−1,0},x)−2G
({
−1,−1

y

}
,x
)
−2G({−1,−y},x)

−4G
({
−1

y
,−1

}
,x
)

G
({
−1

y
,0
}
,x
)
+G

({
−1

y
,−1

y

}
,x
)

+G
({
−1

y
,−y

}
,x
)
−4G({−y,−1},x)+G({−y,0},x)+G

({
−y,−1

y

}
,x
)
+G({−y,−y},x)

)
ξ (2,0)

+

(
4G({−1},x)−2G

({
−1

y

}
,x
)
−2G({−y},x)

)
ξ (2,1)+(2G({−1},x)G({0},y)

−3G
({
−1

y

}
,x
)

G({0},y)−G({−y},x)G({0},y)−4G({−1},x)G({1},y)+4G({1},y)G
({
−1

y

}
,x
)

+4G({1},y)G({−y},x)+2G
({
−1,−1

y

}
,x
)
+2G({−1,−y},x)−G({0,0},y)+4G({0,1},y)

+4G({1,0},y)−8G({1,1},y)−G
({
−1

y
,−1

y

}
,x
)
−G

({
−1

y
,−y

}
,x
)
−G

({
−y,−1

y

}
,x
)

−G({−y,−y},x))ξ (3,0)+
(
−G({0},y)+2G({1},y)−G

({
−1

y

}
,x
)
−G({−y},x)

)
ξ (3,1)

+

(
2G({−1},x)G({0},y)−G

({
−1

y

}
,x
)

G({0},y)−G({−y},x)G({0},y)+2G({−1},y)G
({
−1

y

}
,x
)

−2G({1},y)G
({
−1

y

}
,x
)
−2G({−1},y)G({−y},x)+2G({1},y)G({−y},x)−2G

({
−1,−1

y

}
,x
)

+2G({−1,−y},x)−2G({0,−1},y)−G({0,0},y)+2G({0,1},y)+2G({1,0},y)+G
({
−1

y
,−1

y

}
,x
)

−G
({
−1

y
,−y

}
,x
)
+G

({
−y,−1

y

}
,x
)
−G({−y,−y},x)

)
ξ (4,0)+

(
−G({0},y)+G

({
−1

y

}
,x
)

−G({−y},x))ξ (4,1)+
(
−2G({−1},x)G({0},y)+G

({
−1

y

}
,x
)

G({0},y)+G({−y},x)G({0},y)

+4G({−1},x)G({1},y)−2G({1},y)G
({
−1

y

}
,x
)
−2G({1},y)G({−y},x)+4G({−1,−1},x)

−2G
({
−1,−1

y

}
,x
)
−2G({−1,−y},x)+G({0,0},y)−2G({0,1},y)−2G({1,0},y)+4G({1,1},y)

−2G
({
−1

y
,−1

}
,x
)
+G

({
−1

y
,−1

y

}
,x
)
+G

({
−1

y
,−y

}
,x
)
−2G({−y,−1},x)+G

({
−y,−1

y

}
,x
)

+G({−y,−y},x))ξ (5,0)+
(
−2G({−1},x)+G({0},y)−2G({1},y)+G

({
−1

y

}
,x
)
+G({−y},x)

)
ξ (5,1)
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MA thesis. Università degli Studi di Padova, Dipartimento di Fisica e Astronomia “Galileo
Galilei”, 2018.

[53] P. Kusch and H. M. Foley. “The Magnetic Moment of the Electron”. Phys. Rev. 74 (3 1948),
pp. 250–263. DOI: 10.1103/PhysRev.74.250. URL: https://link.aps.org/doi/10.
1103/PhysRev.74.250.

[54] Julian Schwinger. “On Quantum-Electrodynamics and the Magnetic Moment of the Elec-
tron”. Phys. Rev. 73 (4 1948), pp. 416–417. DOI: 10.1103/PhysRev.73.416. URL: https:
//link.aps.org/doi/10.1103/PhysRev.73.416.

[55] D. Hanneke, S. Fogwell, and G. Gabrielse. “New Measurement of the Electron Magnetic Mo-
ment and the Fine Structure Constant” (2008). DOI: 10.1103/PhysRevLett.100.120801.
eprint: arXiv:0801.1134.

[56] Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio. “Tenth-Order
QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant”
(2012). DOI: 10.1103/PhysRevLett.109.111807. eprint: arXiv:1205.5368.

[57] W.S. Cowland. “On Schwinger’s theory of the muon”. Nuclear Physics 8 (1958), pp. 397 –
401. ISSN: 0029-5582. DOI: https://doi.org/10.1016/0029-5582(58)90171-8. URL:
http://www.sciencedirect.com/science/article/pii/0029558258901718.

[58] G. F. Giudice, P. Paradisi, and M. Passera. “Testing new physics with the electron g-2” (2012).
DOI: 10.1007/JHEP11(2012)113. eprint: arXiv:1208.6583.

[59] Fred Jegerlehner and Andreas Nyffeler. “The Muon g-2” (2009). DOI: 10.1016/j.physrep.
2009.04.003. eprint: arXiv:0902.3360.

153

https://doi.org/10.1088/1126-6708/2008/05/004
arXiv:0802.1876
arXiv:0802.1876
https://doi.org/10.1007/JHEP09(2012)042
arXiv:1205.5707
https://doi.org/10.1016/j.physletb.2012.09.053
https://doi.org/10.1016/j.physletb.2012.09.053
arXiv:1205.7087
https://doi.org/10.1007/JHEP11(2011)014
arXiv:1107.6041
arXiv:1107.6041
https://doi.org/10.1103/PhysRevD.87.085026
arXiv:1209.4319
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
arXiv:1601.01167
https://doi.org/10.1103/PhysRev.74.250
https://link.aps.org/doi/10.1103/PhysRev.74.250
https://link.aps.org/doi/10.1103/PhysRev.74.250
https://doi.org/10.1103/PhysRev.73.416
https://link.aps.org/doi/10.1103/PhysRev.73.416
https://link.aps.org/doi/10.1103/PhysRev.73.416
https://doi.org/10.1103/PhysRevLett.100.120801
arXiv:0801.1134
https://doi.org/10.1103/PhysRevLett.109.111807
arXiv:1205.5368
https://doi.org/https://doi.org/10.1016/0029-5582(58)90171-8
http://www.sciencedirect.com/science/article/pii/0029558258901718
https://doi.org/10.1007/JHEP11(2012)113
arXiv:1208.6583
https://doi.org/10.1016/j.physrep.2009.04.003
https://doi.org/10.1016/j.physrep.2009.04.003
arXiv:0902.3360


BIBLIOGRAPHY

[60] T. D. Lee and C. N. Yang. “Question of Parity Conservation in Weak Interactions”. Phys. Rev.
104 (1 1956), pp. 254–258. DOI: 10.1103/PhysRev.104.254. URL: https://link.aps.
org/doi/10.1103/PhysRev.104.254.

[61] G. W. Bennett. “Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7
ppm” (2004). DOI: 10.1103/PhysRevLett.92.161802. eprint: arXiv:hep-ex/0401008.

[62] Muon, Collaboration, : and G. W. Bennett. “Final Report of the Muon E821 Anomalous Mag-
netic Moment Measurement at BNL” (2006). DOI: 10.1103/PhysRevD.73.072003. eprint:
arXiv:hep-ex/0602035.

[63] Fred Jegerlehner. “Muon g-2 Theory: the Hadronic Part” (2017). DOI: 10.1051/epjconf/
201816600022. eprint: arXiv:1705.00263.

[64] M. Passera. “The Standard Model Prediction of the Muon Anomalous Magnetic Moment”
(2004). DOI: 10.1088/0954-3899/31/5/R01. eprint: arXiv:hep-ph/0411168.

[65] A. Petermann. “Fourth order magnetic moment of the electron”. Helv. Phys. Acta 30 (1957),
pp. 407–408.

[66] Charles M. Sommerfield. “Magnetic Dipole Moment of the Electron”. Phys. Rev. 107 (1
1957), pp. 328–329. DOI: 10.1103/PhysRev.107.328. URL: https://link.aps.org/
doi/10.1103/PhysRev.107.328.

[67] H.H. Elend. “On the anomalous magnetic moment of the muon”. Physics Letters 20.6 (1966),
pp. 682 –684. ISSN: 0031-9163. DOI: https://doi.org/10.1016/0031-9163(66)91171-
1. URL: http://www.sciencedirect.com/science/article/pii/0031916366911711.

[68] J. A. Mignaco and E. Remiddi. “Fourth-order vacuum polarization contribution to the sixth-
order electron magnetic moment”. Il Nuovo Cimento A (1965-1970) 60.4 (1969), pp. 519–
529. ISSN: 1826-9869. DOI: 10.1007/BF02757285. URL: https://doi.org/10.1007/
BF02757285.

[69] R. Barbieri and E. Remiddi. “Sixth order electron and muon (g-2)/2 from second order vac-
uum polarization insertion”. Physics Letters B 49.5 (1974), pp. 468 –470. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370- 2693(74)90638- 8. URL: http://www.
sciencedirect.com/science/article/pii/0370269374906388.

[70] R. Barbieri and E. Remiddi. “Electron and muon 12(g-2) from vacuum polarization inser-
tions”. Nuclear Physics B 90 (1975), pp. 233 –266. ISSN: 0550-3213. DOI: https://doi.
org/10.1016/0550- 3213(75)90645- 8. URL: http://www.sciencedirect.com/
science/article/pii/0550321375906458.

[71] R. Barbieri, M. Caffo, and E. Remiddi. “A sixth order contribution to the electron anoma-
lous magnetic moment”. Physics Letters B 57.5 (1975), pp. 460 –462. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370- 2693(75)90268- 3. URL: http://www.
sciencedirect.com/science/article/pii/0370269375902683.

[72] S. Laporta and E. Remiddi. “The analytic value of the light-light vertex graph contributions
to the electron g-2 in QED”. Physics Letters B 265.1 (1991), pp. 182 –184. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370- 2693(91)90036- P. URL: http://www.
sciencedirect.com/science/article/pii/037026939190036P.

[73] S. Laporta. “Analytical value of some sixth-order graphs to the electron g−2 in QED”. Phys.
Rev. D 47 (10 1993), pp. 4793–4795. DOI: 10.1103/PhysRevD.47.4793. URL: https:
//link.aps.org/doi/10.1103/PhysRevD.47.4793.

154

https://doi.org/10.1103/PhysRev.104.254
https://link.aps.org/doi/10.1103/PhysRev.104.254
https://link.aps.org/doi/10.1103/PhysRev.104.254
https://doi.org/10.1103/PhysRevLett.92.161802
arXiv:hep-ex/0401008
https://doi.org/10.1103/PhysRevD.73.072003
arXiv:hep-ex/0602035
https://doi.org/10.1051/epjconf/201816600022
https://doi.org/10.1051/epjconf/201816600022
arXiv:1705.00263
https://doi.org/10.1088/0954-3899/31/5/R01
arXiv:hep-ph/0411168
https://doi.org/10.1103/PhysRev.107.328
https://link.aps.org/doi/10.1103/PhysRev.107.328
https://link.aps.org/doi/10.1103/PhysRev.107.328
https://doi.org/https://doi.org/10.1016/0031-9163(66)91171-1
https://doi.org/https://doi.org/10.1016/0031-9163(66)91171-1
http://www.sciencedirect.com/science/article/pii/0031916366911711
https://doi.org/10.1007/BF02757285
https://doi.org/10.1007/BF02757285
https://doi.org/10.1007/BF02757285
https://doi.org/https://doi.org/10.1016/0370-2693(74)90638-8
http://www.sciencedirect.com/science/article/pii/0370269374906388
http://www.sciencedirect.com/science/article/pii/0370269374906388
https://doi.org/https://doi.org/10.1016/0550-3213(75)90645-8
https://doi.org/https://doi.org/10.1016/0550-3213(75)90645-8
http://www.sciencedirect.com/science/article/pii/0550321375906458
http://www.sciencedirect.com/science/article/pii/0550321375906458
https://doi.org/https://doi.org/10.1016/0370-2693(75)90268-3
http://www.sciencedirect.com/science/article/pii/0370269375902683
http://www.sciencedirect.com/science/article/pii/0370269375902683
https://doi.org/https://doi.org/10.1016/0370-2693(91)90036-P
http://www.sciencedirect.com/science/article/pii/037026939190036P
http://www.sciencedirect.com/science/article/pii/037026939190036P
https://doi.org/10.1103/PhysRevD.47.4793
https://link.aps.org/doi/10.1103/PhysRevD.47.4793
https://link.aps.org/doi/10.1103/PhysRevD.47.4793


BIBLIOGRAPHY

[74] S. Laporta. “The analytical value of the corner-ladder graphs contribution to the electron (g
- 2) in QED”. Physics Letters B 343.1 (1995), pp. 421 –426. ISSN: 0370-2693. DOI: https:
//doi.org/10.1016/0370-2693(94)01401-W. URL: http://www.sciencedirect.
com/science/article/pii/037026939401401W.

[75] S. Laporta and E. Remiddi. “Progress in the analytical evaluation of the electron (g - 2) in
QED; the scalar part of the triple-cross graphs”. Physics Letters B 356.2 (1995), pp. 390 –
397. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(95)00822-3. URL:
http://www.sciencedirect.com/science/article/pii/0370269395008223.

[76] S. Laporta and E. Remiddi. “The analytical value of the electron (g - 2) at order α3 in QED”.
Physics Letters B 379.1 (1996), pp. 283 –291. ISSN: 0370-2693. DOI: https://doi.org/
10.1016/0370-2693(96)00439-X. URL: http://www.sciencedirect.com/science/
article/pii/037026939600439X.

[77] S. Laporta. “The analytical contribution of the sixth-order graphs with vacuum polarization in-
sertions to the muon (g-2) in QED”. Il Nuovo Cimento A (1965-1970) 106.5 (1993), pp. 675–
683. ISSN: 1826-9869. DOI: 10.1007/BF02787236. URL: https://doi.org/10.1007/
BF02787236.

[78] S. Laporta and E. Remiddi. “The analytical value of the electron light-light graphs contri-
bution to the muon (g-2) in QED”. Physics Letters B 301.4 (1993), pp. 440 –446. ISSN:
0370-2693. DOI: https://doi.org/10.1016/0370-2693(93)91176-N. URL: http:
//www.sciencedirect.com/science/article/pii/037026939391176N.

[79] Andrzej Czarnecki and Maciej Skrzypek. “The muon anomalous magnetic moment in QED:
three-loop electron and tau contributions” (1998). DOI: 10.1016/S0370-2693(99)00076-3.
eprint: arXiv:hep-ph/9812394.

[80] Stefano Laporta. “High-precision calculation of the 4-loop contribution to the electron g-2 in
QED” (2017). DOI: 10.1016/j.physletb.2017.06.056. eprint: arXiv:1704.06996.

[81] Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio. “Complete Tenth-
Order QED Contribution to the Muon g-2” (2012). DOI: 10.1103/PhysRevLett.109.
111808. eprint: arXiv:1205.5370.

[82] Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio. “Tenth-Order
QED Contribution to the Electron g−2 and an Improved Value of the Fine Structure Con-
stant”. Phys. Rev. Lett. 109 (11 2012), p. 111807. DOI: 10.1103/PhysRevLett.109.111807.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.109.111807.

[83] Roman Jackiw and Steven Weinberg. “Weak-Interaction Corrections to the Muon Magnetic
Moment and to Muonic-Atom Energy Levels”. Phys. Rev. D 5 (9 1972), pp. 2396–2398. DOI:
10.1103/PhysRevD.5.2396. URL: https://link.aps.org/doi/10.1103/PhysRevD.
5.2396.

[84] I. Bars and M. Yoshimura. “Muon Magnetic Moment in a Finite Theory of Weak and Elec-
tromagnetic Interactions”. Phys. Rev. D 6 (1 1972), pp. 374–376. DOI: 10.1103/PhysRevD.
6.374. URL: https://link.aps.org/doi/10.1103/PhysRevD.6.374.

[85] G. Altarelli, N. Cabibbo, and L. Maiani. “The Drell-Hearn sum rule and the lepton magnetic
moment in the Weinberg model of weak and electromagnetic interactions”. Physics Letters
B 40.3 (1972), pp. 415 –419. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-
2693(72)90833-7. URL: http://www.sciencedirect.com/science/article/pii/
0370269372908337.

155

https://doi.org/https://doi.org/10.1016/0370-2693(94)01401-W
https://doi.org/https://doi.org/10.1016/0370-2693(94)01401-W
http://www.sciencedirect.com/science/article/pii/037026939401401W
http://www.sciencedirect.com/science/article/pii/037026939401401W
https://doi.org/https://doi.org/10.1016/0370-2693(95)00822-3
http://www.sciencedirect.com/science/article/pii/0370269395008223
https://doi.org/https://doi.org/10.1016/0370-2693(96)00439-X
https://doi.org/https://doi.org/10.1016/0370-2693(96)00439-X
http://www.sciencedirect.com/science/article/pii/037026939600439X
http://www.sciencedirect.com/science/article/pii/037026939600439X
https://doi.org/10.1007/BF02787236
https://doi.org/10.1007/BF02787236
https://doi.org/10.1007/BF02787236
https://doi.org/https://doi.org/10.1016/0370-2693(93)91176-N
http://www.sciencedirect.com/science/article/pii/037026939391176N
http://www.sciencedirect.com/science/article/pii/037026939391176N
https://doi.org/10.1016/S0370-2693(99)00076-3
arXiv:hep-ph/9812394
https://doi.org/10.1016/j.physletb.2017.06.056
arXiv:1704.06996
https://doi.org/10.1103/PhysRevLett.109.111808
https://doi.org/10.1103/PhysRevLett.109.111808
arXiv:1205.5370
https://doi.org/10.1103/PhysRevLett.109.111807
https://link.aps.org/doi/10.1103/PhysRevLett.109.111807
https://doi.org/10.1103/PhysRevD.5.2396
https://link.aps.org/doi/10.1103/PhysRevD.5.2396
https://link.aps.org/doi/10.1103/PhysRevD.5.2396
https://doi.org/10.1103/PhysRevD.6.374
https://doi.org/10.1103/PhysRevD.6.374
https://link.aps.org/doi/10.1103/PhysRevD.6.374
https://doi.org/https://doi.org/10.1016/0370-2693(72)90833-7
https://doi.org/https://doi.org/10.1016/0370-2693(72)90833-7
http://www.sciencedirect.com/science/article/pii/0370269372908337
http://www.sciencedirect.com/science/article/pii/0370269372908337


BIBLIOGRAPHY

[86] W.A. Bardeen, R. Gastmans, and B. Lautrup. “Static quantities in Weinberg’s model of weak
and electromagnetic interactions”. Nuclear Physics B 46.1 (1972), pp. 319 –331. ISSN: 0550-
3213. DOI: https://doi.org/10.1016/0550-3213(72)90218-0. URL: http://www.
sciencedirect.com/science/article/pii/0550321372902180.

[87] Kazuo Fujikawa, Benjamin W. Lee, and A. I. Sanda. “Generalized Renormalizable Gauge
Formulation of Spontaneously Broken Gauge Theories”. Phys. Rev. D 6 (10 1972), pp. 2923–
2943. DOI: 10.1103/PhysRevD.6.2923. URL: https://link.aps.org/doi/10.1103/
PhysRevD.6.2923.

[88] Friedrich Jegerlehner. “The Anomalous Magnetic Moment of the Muon”. Springer Tracts
Mod. Phys. 274 (2017), pp.1–693. DOI: 10.1007/978-3-319-63577-4.

[89] T.V. Kukhto, E.A. Kuraev, A. Schiller, and Z.K. Silagadze. “The dominant two-loop elec-
troweak contributions to the anomalous magnetic moment of the muon”. Nuclear Physics B
371.3 (1992), pp. 567 –596. ISSN: 0550-3213. DOI: https://doi.org/10.1016/0550-
3213(92)90687-7. URL: http://www.sciencedirect.com/science/article/pii/
0550321392906877.

[90] Andrzej Czarnecki, Bernd Krause, and William J. Marciano. “Electroweak corrections to the
muon anomalous magnetic moment” (1995). DOI: 10.1103/PhysRevLett.76.3267. eprint:
arXiv:hep-ph/9512369.

[91] Andrzej Czarnecki, Bernd Krause, and William J. Marciano. “Electroweak Fermion-loop
Contributions to the Muon Anomalous Magnetic Moment” (1995). DOI: 10.1103/PhysRevD.
52.R2619. eprint: arXiv:hep-ph/9506256.

[92] Andrzej Czarnecki, William J. Marciano, and Arkady Vainshtein. “Refinements in electroweak
contributions to the muon anomalous magnetic moment” (2002). DOI: 10.1103/PhysRevD.
67.07300610.1103/PhysRevD.73.119901. eprint: arXiv:hep-ph/0212229.
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