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Abstract

Simulazioni Fluide del Plasma nella Sorgente di Ioni Negativi - SPIDER

Federico Faustini

Università degli Studi di Padova

Il reattore a fusione nucleare ITER sarà riscaldato da fasci di neutri veloci generati dall’accelerazione
e neutralizzazione di ioni negativi, prodotti in un plasma accoppiato induttivamente in RF e che
si espande in una regione contenente un filtro magnetico. In questa tesi è presentato un modello
fluido bidimensionale autoconsistente della sorgente, basato su equazioni di continuità separate per
le differenti specie di particelle, l’equazione di Poisson per il potenziale di plasma e l’equazione di
bilancio energetico degli elettroni per la temperatura elettronica. Inoltre, i flussi di particelle sono
calcolati assumendo l’approssimazione “drift-diffusion”. Il metodo numerico, basato su uno schema
semi-implicito, utilizza l’approssimazione di volume finito e adotta una discretizzazione a 9 punti
in modo da prendere in considerazione l’anisotropia dovuta al campo magnetico. In più, il metodo
numerico è implementato da un codice in FORTRAN 95 (FSFS2D) che è stato testato in fase di
sviluppo l’anno scorso in una geometria semplificata rettangolare. Le simulazioni attuali tengono
conto di una geometria più accurata e realistica rispetto ai reali driver di SPIDER. È investigata
l’influenza del potenziale di bias, del campo magnetico, della pressione del gas neutro e della potenza
a radio-frequenza sulle proprietà del plasma e si instaura un confronto con i precedenti risultati in
geometria semplificata. Si mostra come la geometria più corretta di SPIDER fornisca risultati in
generale accordo con quelli ottenuti nel caso rettangolare con, tuttavia, significative differenze nella
regione del driver.

Fluid Simulations of the Plasma in the Negative Ion Source - SPIDER

Federico Faustini

University of Padua

The ITER fusion reactor will be heated by fast neutral beams generated by accelerating and neutral-
izing negative ions, produced in a RF inductively-coupled plasma and expanding through a region
featuring a magnetic filter. In this thesis a self-consistent two-dimensional fluid model of the source
is presented based on separate continuity equations for the different particle species, Poisson equation
for the plasma potential and the electron energy balance equation for the electron temperature. In
addition, the particle fluxes are calculated assuming the drift-diffusion approximation. The numeri-
cal method, based on a semi-implicit scheme, makes use of the finite volume approximation and the
9-points-discretization is exploited in order to take into account the anisotropy due to the magnetic
field. Furthermore, the numerical method is implemented in a FORTRAN 95 code (FSFS2D) which
was tested in the development phase on a simplified rectangular geometry during the last year. The
present simulations take into consideration a more realistic and accurate geometry with respect to the
real driver volumes in SPIDER. Influence of the bias potential, magnetic field, neutral gas pressure
and radio-frequency power on the plasma properties is investigated and compared with the previous
results in simplified geometry. It is shown that for the more correct SPIDER geometry results are
generally in agreement with the ones obtained from the rectangular case with however significant
differences in the driver region.
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Chapter 1

Introduction

SPIDER is the prototype of a negative ion source, built at the Consorzio RFX (Padua, Italy), in
which radio-frequency (RF) power is inductively coupled to the plasma [2]. The source is part of
the neutral beam injection (NBI) system [1] of the international fusion experiment ITER, still under
construction at the moment. As a matter of fact, the latter will be heated by fast neutral beams
generated by accelerating and neutralising negative ions produced by the source. Since the negative
hydrogen ions have a low binding energy, they are easily neutralised (stripping). For this purpose,
the aforementioned ion-beam source works at low gas pressure to reduce stripping losses, P ≃ 0.3 Pa,
though still enough to produce the plasma and negative ions.
The source also features a total of 8 driver volumes and an expansion chamber (EC), where a magnetic
filter (MF) is present [1, 19, 20]. The MF plays an important role in reducing the electron temper-
ature and the quantity of co-extracted electrons, resulting in a better source functioning [4]. On the
driver-opposite side of the EC, instead, the plasma grid (PG) is installed to be used as negative ion
extraction surface. A small amount of caesium is needed to enhance source performances [18].
Theoretical modelling is exploited to enrich the knowledge of the behaviour of the source discharge,
in a complementary way with respect to the experiments on the prototype. The two most common
approaches used for the main models of ITER sources, as reported in [20], are the particle-in-cell [5]
and the fluid [11] codes. Whereas the former is well-suited for a more precise description of heavy
particle dynamics and thus the negative ion extraction, as downside it cannot be easily implemented
in high plasma density and large volumes conditions and currently the driver region description is
strongly simplified.
The fluid plasma model implemented in the 2D code FSFS2D (Fluid Solver For Spider in 2D),
overviewed in this thesis as brief continuation of the work reported in [20], has the advantage that
it is not constrained by high plasma density or large volumes limits, although, on the other hand, it
neglects the negative ion extraction process. It provides, anyway, a clear and precise picture of the
physical phenomena which determine the evolution of plasma parameters. The presented model con-
sists in a self-consistent two-dimensional fluid description of the source based on separate continuity
equations for the different particle species. It employs Poisson equation for the plasma potential and
electron temperature is given by the electron energy balance. For this purpose the particle fluxes are
calculated in agreement with the drift-diffusion approximation [10].
The code numerical method is based on a semi-implicit scheme and assumes the finite volume approx-
imation. The 9-points-approximation is used to consider the anisotropy introduced by the presence of
the magnetic filter field. The FSFS2D code numerical stability and efficiency was tested during the
course of the development phase in a rectangular geometry [20], specifically a 51× 51 mesh grid.
The simulations presented in the following aim to take into account a more correct SPIDER geometry
with respect to the rectangular geometry considered in the simulations shown in [20]. Therefore, the
purpose of this thesis is to investigate the effects of this new configuration, alongside their influence
on the plasma parameters in the absence and in the presence of the magnetic filter.
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Chapter 2

Physical model

Figure 2.1: 3D representation of the
source and the 2D section as

integration domain [20].

The current model aims at representing a two-
dimensional section of SPIDER, cut through one of
the eight cylindrical-drivers axis, which also includes
a section of the expansion chamber, to which drivers
are connected. A schematic picture of the integration
domain may be found in fig. 2.1 and chapt. 5, fig. 5.3.
This physical description of the source considers a low
pressure hydrogen discharge with magnetised plasma,
which is restricted to a 2D-section plane. The model
assumes that the behaviour of each plasma species is
well-represented by a Maxwell-Boltzmann distribution,
considering high density and highly collisional plasmas.
Starting from that, continuity equations are solved for
the density of each particle species considered by the
model: electrons, three positive ion species [(1) H+ ,
(2) H+

2 , (3) H+
3 ], negative hydrogen ions (H−) and

finally atomic hydrogen (H); the density of the molec-
ular hydrogen (H2) is instead calculated from the state
equation of the ideal gas [20, 11]. Then the electron
temperature is obtained using the electron energy balance equation. The other neutral and ion species
are instead assumed with uniform gas temperatures [20, 11]. The electrostatic potential is calculated
from a Poisson equation, as reported in [11]. Finally, the model considers the drift-diffusion approxi-
mation to solve the equations of motion and calculate the different fluxes.

2.1 Equations of continuity

Introducing the distribution functions f(r,w, t) that characterise the behaviour of each particle species
in ionised-state gas, as function of the phase-space Ω = (r, w) and time t, where r stands for the
particle position in three-dimensional space and w for the respective particle velocity, the system may
be described by Maxwell-Boltzmann equations [10].

∂fa
∂t

+wa ·∇r fa +
Fa(r,w)

ma
· ∇w fa = Ca =

∑︂

b

Cab(fa, fb) (2.1)

Ca represent a collisional term, which in general depends on the distribution functions of the different
particle species. Integrating with respect to the particle velocity w, the continuity equation is found
for each of the N particle species.

2



2.1. DRIFT-DIFFUSION APPROXIMATION CHAPTER 2. PHYSICAL MODEL

∂na

∂t
+∇r · (nava) = Sa = Za − La ∀ a = 1, . . . , N , (2.2)

where density na(r, t) =
∫︁
fa(r,w, t)d3w, mean velocity va(r, t) = ⟨w⟩a = 1

na

∫︁
wfa(r,w, t)d3w

and particle flux Γa = nava are defined. Finally, Sa indicates the net number of particles of that
species created per unit of volume and time. Za and La distinguish respectively between creation and
destruction of particles.

n◦ Reaction React. type

1 e+H2 → H+
2 + 2e Ionis.

2 e+H2 → 2H + e Diss.
3 e+H2 → H +H− Diss. att.
4 e+H → H+ + 2e Ionis.
5 H +H+

2 → H2 +H+ Char. exch.
6 e+H+

2 → H +H+ + e Diss.
7 e+H+

3 → H+
2 +H− Ion-pair pr.

8 H2 +H+
2 → H +H+

3 Part. exch.
9 H+ +H− → 2H Mut. nuet.
10 H+

2 +H− → H2 Mut. nuet.
11 H+

3 +H− → 1
2H2 + 3H Mut. nuet.

12 e+H− → H + 2e Elec. att.
13 e+H+

3 → 2H +H+ + e Diss.
14 H2 +H+ → H+

3 + hν Rad. ass.
15 e+H+

2 → 2H Diss. rec.
16 e+H+

3 → 3H Diss. rec.
17 e+H+

3 → H +H2 Diss. rec.
18 H +H− → H2 + e Neut. det.
19 H2 +H− → H +H2 + e Neut. det.
20 H +H− → 2H + e Neut. det.
21 H2 +H+ → H +H+

2 Char. exch.
22 e+H → H− + hν Rad. att.

Table 2.1: Reactions accounted by the model.

The collisional term in (2.1) is zero when integrated
over velocity, but not for collisions creating or de-
stroying particles of the given species. For low pres-
sure gas, Za is mainly associated with electron ion-
isation whereas La with recombination, which is
often negligible. Sa assumes the general form of
Sa =

∑︁
bNbnibnjbkb, with nib and njb the colliding

particle species density, Nb the number of particles
produced in the event and kb a rate coefficient [11].
The model fallows the more detailed plasma kinetic
description given by J. Santoso [16].

As a matter of fact, hydrogen admits 6 ground-state
forms: molecular and atomic hydrogen, three pos-
itive and one negative ions. There are also many
electronically and vibrationally excited, meta-stable
and transitional states which may contribute to the
plasma chemistry of the system, but they are not
considered in the model. All the reactions contribut-
ing to the particle balances are listed in the table 2.1
following [20]. These include ionisation and dissoci-
ation of molecules, dissociation of H+

2 and H+
3 ions,

dissociative recombination of H+
2 ions, heavy parti-

cle collisions, ionisation of atoms and H− destruc-
tion. Due to the difficulty of solving H2 continuity
equation, which would entail precise knowledge of
SPIDER pumping system and geometry, nH2

is directly obtained from the state equation of the ideal
gas, with the assumption of uniform neutrals temperature [20].

2.2 Equation of motion & drift-diffusion approximation

Multiplying (2.1) by maw and integrating over velocity, the momentum conservation equation is
obtained for each vector component.

∂(manava,i)

∂t
+

3∑︂

j=1

∂(m⟨nawa,iwa,j⟩)
∂xj

− na Fa,i =

∫︂
mawa,iCad

3w ∀ i = 1, 2, 3 (2.3)

Then, the velocity ua = w−va is defined. Since the integration is over velocity and na is not affected
and mixed-velocity term may be rearranged in ⟨wa,iwa,j⟩ = va,iva,j + ⟨ua,iua,j⟩. The pressure tensor

is defined as P
(a)
ij = nama⟨uiuj⟩ and, after few manipulation, the equation (2.3) can be reformulated

as follows [10, 7, 3].

ma
∂nava

∂t
+mva(∇r · (nava)) +mana(va ·∇r)va +∇r · P̂ a − naFa = Ra =

∫︂
mauaCad

3w (2.4)
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2.2. DRIFT-DIFFUSION APPROXIMATION CHAPTER 2. PHYSICAL MODEL

In this case, Ra stands for the change of momentum of the particle of a given species due to collisions
with other particle species.
Using (2.2) in (2.4), the equation of motion (a = 1, . . . , N) is obtained [3].

mana
∂va
∂t

+mana(va ·∇r)va +∇r · P̂ a = naFa +Ra −maSava (2.5)

The force Fa, in addition to the usual contribution from the Lorentz force, may also contain other
effects related e.g. to RF heating [7], which are labelled in the following as “Fadd”. Furthermore,
Ra indicates the rate of momentum transfer per unit volume due to both elastic and non-elastic
collisions. It also can be written as a function of the difference between the mean velocities of the
a-species particles and of the other particle species [3]. Since in weakly ionised plasma collisions with
neutrals are dominant (vneut = 0) and the mean velocity of the newly created or destructed particles in
pair creation due to ionisation is negligible compared to va, it is assumed that Ra only depends on va
and not on the differences with the mean velocity of the other particle species, as a first approximation.
Finally, supposing that the pressure tensor is diagonal (scalar pressure Pa), the equation of motion
can be rewritten in the following form [7].

mana
∂va
∂t

+mana(va ·∇r)va +manaν˜︁ava = naFa −∇rPa , (2.6)

where the overall collision frequency, which considers the particle generation processes, is written as
ν˜︁a =

∑︁
j

mj

ma+mj
njνaj +

Sa

na
, with the collision frequency νaj between species a and j. From the scalar

pressure, the temperature of each particle species is also defined: Pa = na e Ta, with e being the
elementary charge. The gas pressure is then defined by the neutral species as Pg = e Tg (nH + nH2

)
[11]. Note that, unless explicitly stated, all temperatures are expressed in volts (V ).

Drift-diffusion approximation. As main assumption of the model, it is supposed that the inertial
terms in (2.6) can be neglected due to their modest contribution in comparison with collisions [20].
Therefore, according to the shortness of the diffusive time scale, acceleration ∂va

∂t
and inertial term

(va ·∇r)va are considered negligible and (2.6) can provide an expression for the flux.

Γa = nava =
na

maν˜︁a
Fa −

1

maν˜︁a
∇rPa (2.7)

This can be rearranged as reported, e.g. for electrons, in [7]; the particle species subscript a will be
omitted for simplicity as well as subscript r for ∇ operator. The last convention will be followed
from this point onwards. The following equation, as illustrated in [7], offers also a definition for the
mobility tensor µ̂.

Γ ≡ µ̂

µ
G =

(G+ µB ×G+ µ2(B ·G)B)

1 + (µB)2
, (2.8)

with G and µ, which are respectively the drift-diffusion flux and the scalar mobility coefficient without
the magnetic field and defined as fallows for F = q(E + v ×B) + Fadd, which also accounts for the
additional contribution term Fadd due to the RF-heating.

G = nµ
q

|q|E − neD

|q|

Å

∇n

n
+

∇T

T

ã

+ n
µ

|q|Fadd , (2.9)

where D ≡ µT for Einstein’s equation and µ =
|q|
mν˜︁ , with q being the particle charge.

For the neutral species, fluxes are instead calculated as diffusion fluxes, according to their uniform
temperature [11]: Γa = −Da∇na, where Da is the (scalar) diffusion coefficient.
Assuming the magnetic filter field to have the form described in [11] (B = (0, 0, Bz) is perpendicular
to the integration domain plane z = 0), the mobility tensor takes the following form with anisotropic
off-diagonal components.

µ̂ =

Ö

µ
1+µ2B2

z

q
|q|

µ2Bz

1+µ2B2
z

0

− q
|q|

µ2Bz

1+µ2B2
z

µ
1+µ2B2

z
0

0 0 µ

è

(2.10)
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2.2. ENERGY AND POISSON EQUATIONS CHAPTER 2. PHYSICAL MODEL

Therefore, when there is no magnetic field µ becomes just a multiple of the identity tensor. However, in
the presence of the field, inside the expansion chamber the mobility perpendicular to B is considerably
reduced due to the fact that the so-called Hall term (adimensional), µBz, assumes remarkably high
values, even greater than 100 in the case, for instance, of electrons. That implicates a severe reduction
in perpendicular transport [7]. In particular, it also affects the electron thermal conductivity with a
strong decrease, given that the latter is defined as χ̂e =

5
2D̂e =

5
2 µ̂eTe [20].

2.3 Energy balance and Poisson equation

Assuming the force in (2.1) to be of the form F = q(E+v×B), multiplying the Maxwell-Boltzmann
equation by 1

2maw
2 and integrating over velocity, after a few manipulation and supposing that the

pressure tensor is diagonal, the energy conservation equation is expressed according to [3].

∂

∂t

Å

mana

2
v2a +

3

2
naeTa

ã

+

3∑︂

i=1

∂

∂ri

ïÅ

mana

2
v2a +

5

2
naeTa

ã

va,i

ò

+

+∇ · ha = qanaE · va +Ra · va +Qa ,

(2.11)

with the flux density of heat ha = nama⟨u
2
a

2 w⟩ and Qa =
∫︁ mau

2
a

2 Cad
3w as collisional power generated

by collisions between particles of different species.

For this purpose, it is possible to define a temperature even though the gas is not in thermal equilib-
rium, in a coordinate system such that va = 0: Pa = naeTa(r, t) =

ma

3 ⟨(w − va)
2⟩ [3].

Limiting the equation to electrons and assuming that for collisional particles the heat flux takes the
form he = −e ne

5
2D̂e∇Te (for unmagnetised particles the diffusion tensor D̂e = µ̂eTe shall be replaced

by the scalar diffusion coefficient De = µeTe), the expression for the electron energy balance equation
is derived as reported in [7], in which the 1

2mev
2
e directed kinetic energy term is negligible with respect

to the other ones due to small value of me.

3

2

∂neTe

∂t
+

5

2
∇ · (neTeve − neD̂e∇Te) = neE · ve +

1

e
Qe +

1

e
PRF (2.12)

For the electron energy balance equation, the additional term PRF represents the RF-power deposition
averaged over a RF-cycle as explained in [20].
The collisional power term Qe = −P coll

e is usually negative and it consists of two parts which take
into account respectively the different inelastic collision processes such as excitation and ionisation
and the elastic energy transfer [7]. The main processes that lead to energy loss considered by the
model are ionisation of atomic or molecular hydrogen, dissociation of hydrogen molecules, dissociative
attachment, ion-pair production, excitation of H and H2 and elastic collisions of atoms and molecules
(all included in P coll

e ) [11], see tab. 2.1.
From this equation, Te can be computed, whereas the temperatures of the other particles species are
assumed uniform and constant as mentioned. In particular, the gas temperature Tg = 700K and the
ion temperature Ti = 1000K are taken in all presented further simulations.

Poisson equation for the potential. Finally, the equation to determine self-consistently the elec-
tric field is the Poisson equation which is presented in [20, 11, 7].

∇2Φ = − e

ϵ0

(︄
3∑︂

i=1

ni − ne − nH−

)︄
, (2.13)

with the i = 1, 2, 3 index standing for the three different positive hydrogen ions. E = −∇Φ is
the dc electric field generated by the spatial gradient of the plasma potential and ϵ0 the vacuum
permittivity [20].

5



2.4. BOUNDARY CONDITIONS CHAPTER 2. PHYSICAL MODEL

2.4 Boundary conditions

These fluid equations are solved in a spatial domain which includes closed boundaries, i.e. the physical
walls. For this reason it is necessary to appropriately formulate a set of wall-flux boundary conditions
to take into account the physical processes occurring when particles come to and interact with the
walls. In this model the same prescription given in [20, 11] has been followed, distinguishing particles
coming and going away from the walls with a net perpendicular flux to the walls: nv⊥ = êwall · Γ =
nvwall − Γwall. Both vwall and Γwall are positive by definition and indicate respectively the effective
wall loss speed of particles towards the wall and the flux of particle reflected or created at the wall
and coming into the plasma. Regarding the potential, the boundary conditions set conventionally the
potential of the metallic walls to zero, with respected to which the plasma grid positive bias potential
is also given [11, 20]. In particular, the negative ion extraction at the plasma grid is beyond the
purpose of this model, thus the boundary conditions for H− ions at the PG is simplified [11]. The
expression for the H− flux perpendicular to the plasma grid is made of a flux term towards the PG
and another one accounting for the accumulation of ions. On the other hand, for the other metallic
walls, since no negative hydrogen ions are generated, the H− flux is assumed to be zero [11].
The general form of the flux coming from one of the walls is given by Γw = pnvw +

∑︁
k γknkvw,k,

where p stands for the reflection probability and γk for the probability of creation as consequence of
collision between particles of the species k [7] (γ plays a rather important role for H−, considering
the negative ions creation at the plasma grid, γH− ≡ Y ). The model implements the same boundary
conditions and prescriptions given in papers [11, 8, 7] and here they are briefly summarised.
The boundary condition of the potential:

Φ|boundary=
{︄
0 wall

ΦPG PG
. (2.14)

Introducing the thermal velocity of the species a as vth,a =
√︂

8eTa|V
πma

, the orthogonal versor to the

boundary surface êb and indicating the 3 positive hydrogen ions by the index j = 1, 2, 3, the conditions
to be imposed for the fluxes are:

êb · Γe =
1

4
v(th)e ne , (2.15)

êb · ΓH− =

{︄
0 wall

−1
4Y v

(th)
a na +

1
4v

(th)
H−

nH− PG
, (2.16)

êb · Γj =

{︄
nj(µ̂j ·E) · êb + 1

2v
(th)
j nj , (êb ·E) > 0

1
4v

(th)
j nj , (êb ·E) ⩽ 0

, (2.17)

êb · Γa =

{︄
1
4γv

(th)
a na wall

1
4(γ + Y )v

(th)
j nj PG

. (2.18)

Defining he as the electron energy flux , the boundary condition for equation (2.12) is the following.

êb · he =
5

2
eTe(êb · Γe) (2.19)
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Chapter 3

Numerical method

The fluid equations presented above are solved numerically by the FORTRAN 95 FSFS2D code. In
order to take into account the time evolution of the physical quantities described by these equations
throughout the two-dimentional domain, the derivatives in the equations are approximated by the
finite difference method, which requires all the quantities to be evaluated in a discrete set of positions
in space and points in time [20].

3.1 Time integration of the fluid equations

The purpose of the code is finding the numerical solution of the system of generalised convection-
diffusion equations presented in the previous chapter. Each of those equations assumes the form that
can be expressed as follows.

ρ
∂f

∂t
+∇ · Γ ≡ ρ

∂f

∂t
+∇ · (wf − D̂ ·∇f) = S (3.1)

with f as the unknown plasma parameter function, ρ as a scalar function which becomes ρ = 1 for
the continuity equations, ρ = 3

2ene for the electron energy balance equation and ρ = 0 for Poisson
equation.

In those fluid equations transport coefficients and sources couple with each other resulting in strong
non-linearity and therefore a proper time discretisation must be implemented.
In the following the upper index k shall refer to the tk point in time at which quantities are known
and explicitly calculated, whereas the implicit evaluation of the unknown quantities at the next time
step, tk+1 = tk + ∆t, will be indicated with k + 1 [9]. The discrete position on the grid at which
functions will be computed is shown as p lower index in the following discretisation of equation (3.1).
The upper indices kρ, kw, kf , kD and kS are relative to the respective quantity and may assume the
value of k (explicit) or k + 1 (implicit).

ρ
kρ
p fk+1

p − ρkpf
k
p

∆t
+∇ · (wkwfkf − D̂

kD ·∇fkf )|p= SkS
p (3.2)

where the transport and source terms can be evaluated either explicitly at tk or implicitly at tk+1.
The first approach might be simpler to implement but can cause numerical fluctuations or instabilities
for large time steps. On the contrary, the implicit one does not give rise to those instabilities but
it is usually hard to achieve. The current code treats the function f in the transport term always
following the implicit approach because otherwise the restrictive “Courant-Friedrichs-Lewy” condition
[12] should be applied to the time step in order to guarantee convergence of the finite differences
method, as reported in [9]. This is due to the coupling of the equations and for this reason semi-
implicit schemes are often implemented to avoid it. However, for transport coefficients and sources
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3.1. EQUATION DISCRETISATION CHAPTER 3. NUMERICAL METHOD

the explicit one is preferred because of the difficulty of handling implicitly the particle densities in
the source term. In the transport term, the electric field explicit treatment involves a very severe
time step condition with high plasma density, as formalised in [9]. It is also shown in [9, 7] that
a semi-implicit method, instead of a fully implicit one, can be used to accomplish convergency and
stability for relatively large time steps.
Finally, an iteration loop is used at each time step to ensure the convergence of the solution of this
system of equations that might be highly non-linear due to the equations coupling. Here the upper
index i indicates the iteration counter.

ρ
i+1,kρ
p f i+1,k+1

p − ρkpf
k
p

∆t
+∇ · (wi,kwf i+1,kf − D̂

i,kD ·∇f i+1,kf )|p= Si,kS
p (3.3)

3.2 Discretisation of generalised convection-diffusion equation

The code performs the computational calculations on a two-dimensional Cartesian non-uniform grid,
consisting of a fixed number of points in each direction, on which the finite difference method is ex-
ploited. For the divergence operator the control volume method [13] is used. The method involves
the so-called control volumes defined around each grid point and whose corners lie in the middle of
the other points of the grid. Equation (3.1) is therefore integrated over this control volume exploiting
Gauss’s theorem and the resulting volume and surface integrals are approximated by simple quadra-
tures. Then, the discretisation imposes the conservation of the flux on the above-mentioned Cartesian
grid and a linear system of equations is obtained from the initial discretised differential equations. In
this case the lower indices represent x and y coordinates of the mesh at which quantities are evaluated,
following the convention that xi+1 = xi +∆x and yj+1 = yj +∆y. For each point of the grid (xi, yj)
the following linear equation is obtained.

A1
ijfi,j+1 +A2

ijfi+1,j+1 +A3
ijfi+1,j +A4

ijfi+1,j−1+

A5
ijfi,j−1 +A6

ijfi−1,j−1 +A7
ijfi−1,j +A8

ijfi−1,j+1 +A9
ijfi,j = Rij ,

(3.4)

 0

 1

 2

 3

 4

 0  1  2  3  4

j+1

Grid cell

Control volume

j

j-1

i+1ii-1

X

Y

Γxi-1/2,j

Γxi,j+1/2

Γxi+1/2,j

Γxi,j-1/2

Figure 3.1: Numerical cell.

where A1
ij , . . . , A

9
ij , Rij are coefficients. This way the value of

f at each point of the mesh is associated to the other 8 neigh-
bouring points (9-points method). By imposing A2

ij = A4
ij =

A6
ij = A8

ij = 0 also the 5-points method approximation is de-
rived as a particular case of the 9-points scheme, although only
in the absence of drifts, when the diffusion tensor is isotropic, it
is applicable (see section 5.1.3). As a matter of fact, only the 9-
points scheme is exploitable with the magnetic field, although it
might present some numerical issues resulting in point-to-point
fluctuations using “SPIDER-geometry” meshes [20] as the one
presented in chapter 5.
Drift-diffusion fluxes are instead discretised following the
Patankar scheme [13] and evaluated at the sides of each con-
trol volume as in fig. 3.1. To guarantee the stability of the
method the discretisation is made on a staggered mesh in which the vectorial quantities are evaluated
in points that are half-shifted in both directions with respect to the grid points.
Finally, the scheme presented in [6] and based on the 9-points method is used to address some numer-
ical issues regarding the anisotropy of the electron transport in the presence of a curved magnetic field.
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3.2. LINEAR SYSTEMS METHODS CHAPTER 3. NUMERICAL METHOD

Modified Poisson equation. The Poisson equation results to be highly coupled with charged
particle equations and it would be subjected to severe time step constraints that can be avoided
including into the equation a semi-implicit prediction of the space charge density [20, 7]. This way,
the plasma sheath emerging from the simulations stretches out from the walls towards the plasma for
a few grid cells (its width is lower-bounded by grid spacing), whose length can be many times the
real thickness of the physical sheath taking into account the physical condition of the system under
consideration. However, this method gives a self-consistent description of the plasma potential of
the system up to the sheath, which is the important point [7]. In this model the equation is further
modified considering the time derivative of potential, which is an “artificial” term that stabilises the
solution-finding process.

Φk+1 − Φk

β∆t
− ϵ0∇ · ((1̂+ χ̂) ·∇Φk+1) =

= −e(2nk
e − nk−1

e ) +
∑︂

i

qi(2n
k
i − nk−1

i )− ϵ0∇ · (χ̂ ·∇Φk) , with β ≫ 1
(3.5)

3.3 Methods for linear systems

The finite volume discretisation of the partial differential equations introduced before leads to a large
number of linear equations to be solved and therefore the overall efficiency of the program is greatly
affected by the efficiency of the particular method used to solve those linear equations, which have
the form: Ax = b, where A and b are respectively a matrix and a vector of coefficients. However,
for the cases treated by the model, the coefficient matrix has usually a structure in which non-zero
values are in only five or nine diagonals depending on the method used and therefore much memory
and resources are saved. The principal methods used to solve these linear systems are the direct
ones, which execute a predetermined number of steps, and the iterative ones, that aim at interactively
approximating the solution better and better in a non-predetermined number of operations. Iterative
methods are the most efficient for sets of a large number of equations as in the case presented. Among
the direct approaches, it must be mentioned, for instance, the Gaussian elimination method.
On the other hand, regarding the iterative methods, the code implements three of them: the GM-
RES (General Minimalised Residual) and BiCGSTAB (Bi-Conjugate Gradient Stabilised) solvers, and
incomplete factorisation scheme with the MSI (Modified Strongly Implicit) procedure [9].

3.4 Validation of the numerical approach

As illustrated in [20], using the presented method for the Poisson equation, time steps up to 1000
times larger than the characteristic time of the system can be used to obtain convergent steady-state
solutions in a reasonable computational time. Furthermore, the physical model and the numerical
approach implemented in the code have been tested on some simplified problems to examine overall
convergence, for instance, in highly anisotropic conditions (presence of a magnetic field). It is shown
that if the field lines are set to cross the integration domain border, efficient and fast convergence may
be obtained. Also, plasma neutrality outside the plasma sheath emerged from simulations conducted
in these simplified test cases. The same paper indicates how the corners of the two lateral vacuum
zones alongside the driver can cause some local numerical issues when a SPIDER-like geometry is
used instead of a rectangular one. Finally, it has been found out that in the presence of the mag-
netic field and the correspondent drifts, some irregularities in plasma parameters near the boundaries
and difficulties in convergence arose. For this matter, mobility coefficients have been artificially al-
tered, increasing the values of the diagonal elements with respect to the off-diagonal ones in some
circumstances [20] (see paragraph 5.1.3).
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Chapter 4

Description of the FSFS2D code

The FSFS2D (Fluid Solver For Spider in 2D)
code is written in FORTRAN 95 and is composed
of 9 source files and 10 modules. A brief list of
the source files is presented below, see tab. 4.1
and 4.2. The same code is used in [20].

Some input files must be defined by the user in
order to run the code. HTABLE 1D.DAT is the first
input file and contains tables necessary to calcu-
late the rate coefficients used in the code.

The code run is controlled by a certain number
of input parameters which are read from the file
InputPar.dat.

The results are written to the file Outputfile.dat.
This file has then to be renamed to Inputfile.dat
when a run is started from an already saved result.

The results of simulations in a formatted form are
finally written to the file Results.dat. This is the
main output file and it is complemented by some
smaller output files with profiles of some parame-
ters .

n◦ File name Contents

1 fsfs v1.f90 progr. fluidsolver-2d

2 Arrays.f90 module arrays

3 // module inputpar

4 // module inputdata

5 Constants.f90 module constants

6 Physics.f90 module physics

7 RF heat.f90 module rf-heat

8 MatrixVector.f90 module matrix vector

9 Numerics.f90 module numerics

10 Sparse9.f90 module sparse9

11 utilities.f90 module utilities

Table 4.1: Contents of the files.

n◦ Description

1 Main workflow, contains solver loop.

Dentition of main variables and
2

its dimensions.

3 Reads input parameters.

Reads input data, initialisation
4

of the program.

Definition of some constants
5

used in other modules.

Definition of transport coefficients,
6

sources, velocities, etc...

7 Calculates the RF field.

Sparse implementation of
8

matrix-by-vector products.

Collection of linear iterative solvers
9

and some preconditioners.

Contains routines for storage and
10

manipulation of large sparse matrices.

Some useful routines which
11

are solution independent.

Table 4.2: Description of contents of the files.

10



Chapter 5

Simulation results

The aim of the following analysis is to test the FSFS2D code in a more correct SPIDER geometry
with respect to the rectangular one used in [20] and to understand how this change can influence
the plasma parameters alongside the MF topology, the gas pressure, the plasma potential applied to
the PG and the RF heating power. Therefore, for this purpose a 51×51 points mesh is introduced,
which is addressed as “mesh 2”, in place of the mesh used for the previous simulations in rectangular
geometry, which will be called “mesh 1”.

Figure 5.1: Representation of mesh 1.
The two lateral driver regions are
shown in white for comparison with

mesh 2 but the points inside them were
included in the integration domain.

The two meshes have the same number of points in each di-
rection but the lateral regions of the driver are to be con-
sidered excluded from the mesh 2, since they are besides the
driver walls in SPIDER geometry. The non-homogeneous dis-
tributions of points of the two meshes are different from each
other in both directions: mesh 1 is symmetric with respect to
the integration domain centre with closer steps near the walls
(hi/hi+1 = 1.1 [20]), whereas the more complicated mesh 2 dis-
tribution of points aims at reflecting and adapting to the more
correct SPIDER geometry, as it is displayed in fig. 5.1 and
fig. 5.2, respectively (more details on the grid construction
are given in section 5.1.3). In both cases, the model assumes
a RF heating source applied only in the whole driver region
(x ∈ [0 cm, 14 cm], y ∈ [−14 cm, 14 cm]). The power delivered
to the plasma is proportional to electron density (PRF = ne·ϵRF ,
where the energy gain per electron ϵRF is a constant).

Figure 5.2: Representation of mesh 2.
The lateral regions in this case are
excluded from the simulations.

Phenomena such as the self-consistent coupling of the RF coil
with the driver plasma and the local plasma conductivity are
neglected, at least at the current stage of development. Re-
gardless of specific mesh, in this model the PG is considered
as a solid surface which is positively biased with respect to the
source walls and put in contact with plasma (see figure 5.3).
Concerning the charged particle species, the ions are treated as
unmagnetised, whereas the electrons might be instead strongly
magnetised. This is due to the fact that the ratio between the ion
cyclotron frequency and the respective collision frequency [14]
is lower than one in most of the source at the typical discharge
conditions under which the simulations have been conducted.
As a matter of fact, this model of hydrogen discharge at low
pressure operates at the typical SPIDER test-bed operational
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Figure 5.3: Schematic 2-D representation of
the integration domain of the negative ion

source as in SPIDER. The plasma grid (PG)
and the magnetic filter (MF) perpendicular
to the integration domain are also marked.

Mesh 2 excluded regions have
y˜︁b = x˜︁b = 0.14 m.

conditions: for reference, ∼ 0.3 Pa of pressure, a power of
50 kW and a MF field strength up to 3mT [17].
Finally, it must be specified that, although the energy bal-
ance of neutrals and positive ions might be an important
matter, it is not currently considered in the model follow-
ing the recommendation from [11].

5.1 Simulation results in “mesh 2” -
SPIDER geometry

5.1.1 Results without magnetic field

First simulations without magnetic field were performed.
In order to investigate the response of the plasma to the
main discharge parameters, input parameters have been
individually scanned starting from the reference case:
RF heating power PRF=30 kW/m, PG potential
ΦPG=5 V and constant and uniform gas pressure
P≡ Pg=0.3 Pa.
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|B|= 0 mT , mesh 2.

Figure 5.4: Reference case plots:
PRF = 30 kW/m, ΦPG = 5 V ,

P = 0.3 Pa, |B|= 0 mT , mesh 2.

Overall behaviour, |B|= 0 mT . The following 2-
dimensional plots in fig. 5.4 provide a first overview of
the simulated source behaviour at the reference plasma pa-
rameters in the absence of the magnetic field. The graphs
of the electron density and, in particular, of the potential
reveal that the new integration domain geometry preserves
the symmetry of the solution with respect to the y = 0
line (top-down symmetry), symmetry which is however
broken along the x = 0.20 m axis (left-right symmetry).
As a matter of fact, the removal from the integration do-
main of the vacuum lateral zones beside the driver region
introduces an element of asymmetry that can be clearly
noticed. These lateral areas are not indeed represented as
a part of the spatial integration domain of the simulation
and therefore marked as blank rectangles. Moreover, the
potential plot might suggest that the two corners marking
the division between the driver and the expansion regions
could be exposed to a great gradient of the potential due
to their sharp geometry and any extensive and deep anal-
ysis of the neighbouring zones, which is not the scope of
this thesis, should pay close attention to their influence
over the proper local numerical convergence of the code.
The electron temperature plot denotes instead quite a sig-
nificant uniformity of Te, with marginally higher values in
the driver region where the RF power is delivered.

Power scan. The results of the power scan without magnetic field are shown in 5.5. It is to be
noted that resulting plasma parameters have been plotted along two orthogonal lines, as indicated
beneath the graphs and marked with 2 red lines in figures 5.1 and 5.2. The scan explored the power
range between PRF = 10 kW/m and PRF = 50 kW/m, keeping unchanged the other parameters of
the reference case. It is notable that the electron temperature is depending on the PRF and quite
uniform along both axes although the heating power is applied exclusively in the driver region. This
is related to the high electron thermal conductivity.
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Figure 5.5: Plasma parameters for different
values of PRF , |B|= 0 T, mesh 2.

It appears also evident that electron temperature de-
creases by a factor of 2.5 as PRF increases up to
50 kW/m. That is to be attributed most proba-
bly to the fact that higher heating power allows a
greater number of ionising processes which brings to
an increase of the electron density. In this regard,
ne changes significantly by varying the power, about
2 orders of magnitude, reflecting a non-linear depen-
dency of ne on the provided power. The peak of ne

slightly moves along the x-axis toward the PG for
higher values of power. It has been also found that
steady-state convergent solutions exist only for values
of PRF at least greater than 8 kW/m but lower than
52 kW/m. Finally, the change of the potential asso-
ciated to the increasing power indicates that its gra-
dient (|E|= |−∇Φ|) is reduced by the power at the
walls, which is associated to the variation in the elec-
tron density rather than the electron velocity which is
proportional to

√
Te.
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Figure 5.6: Plasma parameters for different
values of P , |B|= 0 T, mesh 2.

Pressure scan. The results for increasing levels of
gas pressure are presented in the graphs 5.6 and range
from P = 0.2 Pa to P = 0.6 Pa. The other parameters
are the same as in the reference case. Higher values of
gas pressure lead to a greater electron density in partic-
ular in the central region, although the increase seems
to saturate for larger pressures. Instead, the electron
temperature behaviour is such that Te is reduced by
the increased gas pressure. Finally, the potential tends
to saturate at lower values for increasing gas pressure.

PG potential scan. The plots obtained letting the
PG potential vary from 0 V to 50 V , keeping un-
changed the other parameters, are displayed in figure
5.7. It is clear that electron temperature is poorly af-
fected by the change of the bias potential at the plasma grid, since the resulting range of temperature
variation is not greater than 1 eV . A slightly lower temperature in the expansion chamber with respect
to the driver region is visible.
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Figure 5.7: Plasma parameters for different
values of ΦPG, |B|= 0 T, mesh 2.

However, these differences are quite small, never more
than 0.5 eV , and are barely noticeable in the previous
scans. On the other hand, ne increases in particular
along the x-axis in the expansion region for higher val-
ues of PG potential. The potential too shows a clear
asymmetry along the x-direction due to the variation
of PG bias potential, but the strength of the electric
field, which is |E|= |−∇Φ|, increases for smaller values
of PG potential near the plasma grid and, vice versa,
is greater at the increasing of ΦPG in the driver region.
It is possible to see weak fluctuations in the temper-
ature graphs: this numerical effect will be addressed
separately in section 5.1.3, where it is compared to
cases involving meshes with slight changes to avoid this
problem.
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5.1.2 Effect of the magnetic field

Spatial distributions of the plasma parameters display a vertical asymmetry in the experiments con-
ducted on SPIDER: this is caused by E × B-drifts associated to the decrease of plasma potential
at the source and it is induced by the magnetic filter, MF [11]. The shape and intensity of the
MF strongly affect the magnitude of the asymmetry and therefore the plasma parameters. Hence,
the following simulations take into account the presence of the magnetic field B. In SPIDER, the
MF field is produced in order to reduce the electron temperature and the quantity of plasma elec-
trons before the PG. Consequently, the magnetic field has a rather complicated 3-D structure with
a strong component in the z-direction. In order to simplify the problem, an idealised B-field of the
form B = (Bx, By, Bz) = (0, 0, −BMF ) is assumed in the current model. Note that the integration
domain in figure 5.3 lies on the z = 0 plane. An analytic form of the MF profile is thus assumed
instead of having the code reading as input the real MF configuration from a file [20, 11]. The BMF

analytic form is postulated to be a Gaussian one with the maximum Bmax at the xMF position and
the width of σMF = 7 cm:

BMF = Bmax · exp
ñ

−1

2

Å

x− xMF

σMF

ã2
ô

.

That said, the next simulations have been performed starting from the case with the same plasma
parameters as the reference case of the previous paragraphs scans: RF-heating power PRF = 30 kW/m,
gas pressure P = 0.3 Pa, PG potential Φ = 5 V and with different strength and position of the B-field
maxima. The first calculations are aimed at investigating the influence of the MF field maximum
position on plasma parameters and next the effect of the intensity of the field is analysed.

MF position. To analyse the effects of the change in position of the maximum of the B-field profile,
the starting reference case was taken at xMF = 0.20 m and Bmax = 4 mT . The scan gradually
proceeded towards xMF = 0.27 m by steps of 0.01m at a time. The computations converged up to
the case of xMF = 0.26 m and did not admit a steady solution for xMF ⩾ 0.27 m. A solution to that
has been found by changing the minimum value that a certain parameter in the code labelled as “TT”
might take. As a matter of fact, for |B|> 0 and low temperatures, diffusion might be too low, leading
to numerical problems. A parameter TT is consequently introduced in the FSFS2D code, such that if
Te ⩾ 2 eV ⇒ TT = 1, and TT increases strongly for Te < 2 eV .

More exactly TT is defined as TT = min

{︄
Å

max{2 eV, Te}
Te

ã4

, a

}︄
,
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Figure 5.8: Bz profiles for different
values of xMF .

where a = 103 was used in all previous simulations.
The solution to the problem consists in lowering it to
102, which means setting the minimum value that TT
can take to 102 instead of 103. TT is used as a multi-
plicative factor, if temperature is too low, purposely in-
serted in to diffusion coefficient De to create “artificial
diffusion” which is needed for the numerical method to
correctly work. The reason of that lies in the fact that
great variations of |B| give great changes of De in min-
imal distances: within 3 or 4 points in the mesh it de-
creases by 3 orders of magnitude and therefore the dif-
fusion equations are numerically difficult to be solved.
Indeed, one may note that the decreasing |B| field low-
ers µe (mobility coefficient) and Te, but De ∝ µe Te.
The TT recalibration is thus strictly related to the Bz

field profile and functional to these cases (from xMF = 0.27 m to xMF = 0.39 m). Once operated
this change, the results for fixed Bmax = 4 mT , σMF = 7 cm and higher xMF have been found for all
considered xMF range. Corresponding Bz profiles are presented in figure 5.8. The simulations results
for selected xMF positions are shown in fig.5.9.
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Figure 5.9: Plasma parameters for different
values of xMF , Bmax = 4 mT , PRF = 30 kW/m,

P = 0.3Pa, ΦPG = 5V , mesh 2.

It turned out that potential is weakly affected by the
position of the B-field maximum: a slight shift of Φ
maximum towards the PG as xMF increases is just no-
ticeable. On the other hand, ne seems to follow the
MF as it moves towards the driver, increasing its peak
up to two times when the field enters more deeply into
the driver. Also the electron temperature profiles are
quite influenced by the change in xMF position. It
is indeed quite reduced in the expansion chamber and
near its walls when the MF is closer to the driver re-
gion, although the temperature inside the driver region
itself and immediately before the PG remains almost
unchanged.
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Figure 5.10: Bz profiles for different
values of Bmax.

Varying B-field intensity. The results having the
Bmax varying up to 7.4 mT are shown in fig. 5.11. The
position of the B-field maximum is fixed at xMF =
0.27 m, see fig. 5.10. The other plasma parameters
have the same fixed values as the reference case in sec.
5.1.1: PRF = 30 kW/m, ΦPG = 5V and P = 0.3Pa.

Fig. 5.11 shows that the increase of the magnetic
field induces a growth in electron density, from
∼ 9 · 1017 m−3 to ∼ 20 · 1017 m−3 and a slight shift
of the peak toward the driver region. A little y-axis
profile asymmetry of ne may be seen, weakly growing
with the Bmax value. Regarding the electron temper-
ature, the plots indicate a considerable diminution of

the temperature in the expansion chamber as much as PG is approached; Te is instead almost unaf-
fected in the driver region. A reduction is also observed close to the expansion chamber walls along
y-axis, with some irregularities that can be attributed to some numerical issues in the definition of the
boundary conditions, especially for y = −0.20 m, which may be solved by a finer mesh resolution.
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Figure 5.11: Plasma parameters for different
values of Bmax, mesh 2.

It results that potential is weakly affected by the vari-
ation of the intensity of the field, with a little growth
in asymmetry as the field increases. Moreover, the po-
tential is reduced more significantly for larger values of
position along the y-axis and its profile along this axis
presents a marked drop close to the wall, in particular
as the intensity of the field grows.

Overall behaviour, Bmax = 4 mT . In the figure
5.12, plots analogous to those in 5.4 can be seen. This
time, reference case plasma parameters are set at the
same values as in section 5.1.1, but magnetic filter is
now considered with the following parameters: Bmax =
4 mT and xMF = 0.39 m. The same values of B-field
are used in the power, pressure and potential scans
shown in the next paragraphs. Note, that the value of xMF has been chosen in accordance with the
value used for mesh 1 [20]. The 2-D plots show important effects of the B-field on plasma parameters.
The top-down symmetry of the electron density is broken due to the presence of drifts as illustrated also
in the previous paragraph. Moreover, the peak of ne increases from ∼ 8 · 1017 m−3 to ∼ 15 · 1017 m−3

with the MF; the value of the potential maximum is instead lower in the presence of the B-field.
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Bmax = 4 mT , mesh 2.

Figure 5.12: Reference case plots:
PRF = 30 kW/m, ΦPG = 5 V , P = 0.3 Pa,
xMF = 0.39 m Bmax = 4 mT , mesh 2.

An important change is observed for the electron tem-
perature that drastically drops around the position of
x = 30 cm, with a consequent reduction in electron ther-
mal conductivity1. It should be highlighted that the drop
in temperature occurs more distant from the PG (and
therefore xMF ) along the lateral walls of the chamber with
respect to smaller y-coordinate positions. This means that
Te falls for lower values of x on the walls of the EC.

Bmax = 4 mT , RF power scan. The three scans
from section 5.1.1 have been repeated to check the in-
fluence of the MF on the plasma parameters at fixed
xMF = 0.39 m and Bmax = 4 mT , using the same other
parameters as in the reference case (see section 5.1.1). The
power scan shows similar results with respect to the anal-
ogous one with |B|= 0, although the simulations provided
convergent solutions only for PRF between 14 kW/m and
47.5 kW/m (only cases with PRF values analogous with
mesh 1 are presented in fig. 5.13 for further compar-
isons in section 5.2). Electron density increases and its
peak shifts toward the PG with a significant gradient near
it as the power raises, Te instead drops notably close
to the PG, in particular for lower values of power.
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Figure 5.13: Plasma parameters for PRF scan,
Bmax = 4 mT , mesh 2.

Bmax = 4 mT , pressure scan. The results for the
scan at different levels of gas pressure (other reference
parameters are not changed) are presented in figure
5.14 and reveal a similar behaviour with respect to the
ones in the absence of magnetic field. The increase
of pressure induces a greater electron density and a
slight shift to the driver region with a general satura-
tion effect for ne, Φ and Te. Φ tends to be reduced for
higher pressure just like electron temperature, which
is reduced significantly at the plasma grid and weakly
along y-axis close to y = 0.20 m. The range of pres-
sure values within which the computations give self-
consistent solutions is between 0.225 Pa and 0.6 Pa,
although only the results corresponding to the analo-
gous cases in mesh 1 are shown.
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Figure 5.14: Plasma parameters for P scan,
Bmax = 4 mT , mesh 2.

Bmax = 4 mT , PG potential scan. The graphs of
the results of the simulations for different values of PG
potential are in fig. 5.15 (other input parameters cor-
respond to the reference case). Compared to the cases
without the MF, the electron density appears much in-
creased by greater potentials that make its peak move
toward the PG. Also Φ is decisively increased for grow-
ing values of ΦPG especially in the expansion chamber.
The electron temperature is lower for increasing PG
potential values in both driver region and expansion
chamber, but the trend changes just next to the PG
where the opposite is true. Conversely, along the y-
axis it is weakly influenced by PG potential but tiny

1 To be noted that χ̂e = 5

2
µ̂eTe [20, 7], see section 2.4
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Figure 5.15: Plasma parameters for ΦPG scan,
Bmax = 4 mT , mesh 2 and mesh 2 new.

reduction as ΦPG increases, limited to values strictly
less than ΦPG = 40V . From this values upwards simu-
lations gave problematic solutions near the upper bor-
der of the expansion chamber, that will be later ad-
dressed (the results corresponding to the last two values
of PG potential have been calculated using a different
mesh, “mesh 2 new”, see next section for details).

5.1.3 Mesh changes due to the presence of
the magnetic field

As mentioned before, a slightly modified mesh 2 has
been used for the last two cases of the PG poten-
tial scan with the MF. This was necessary in or-
der to obtain a convergent solution for ΦPG = 40V
or above. So as to discuss these changes, a more
precise description of mesh 2 (fig. 5.2) is required.
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Figure 5.16: Representation of the source seen
as y-bands.

Mesh 2, points along x-axis. The following pa-
rameters are defined: the total mesh x-axis length
lx, the driver region x-axis length dd,x, the expansion
chamber x-axis length de,x.
The number of points along x-direction in the driver
region is Nd,x = Ntot,x · dd,x/lx. Analogously, for the
expansion chamber EC it is Ne,x = Ntot,x −Nd,x.
The density of points is symmetrical with respect to
x = dd,x/2 in the driver: greater density near the wall
and at the contact region between driver zone and EC.
In the EC points along x axis are symmetrical with re-
spect to the middle of the expansion zone, preserving
the continuity of the mesh step at the interface between
the driver region and the expansion chamber.

Mesh 2, points along y-axis. The source can be
divided along the y-axis in a central region (Y-DB) and
a couple of lateral regions (Y-LECB and Y-UECB).

Figure 5.17: Representation of
the “mesh 2 new”.

The code requires the Y-DB number of points (Nd,y) to
be defined and then it calculates the correspondent Y-
DB distribution, symmetrical with respect to the line
y = 0. Finally, the code computes the Y-LECB and
Y-UECB symmetrical distribution using Ntot,y − Nd,y

points, with clear meaning of the symbols. The pro-
gram also fixes the border conditions to have continu-
ity in the regions between the three bands and lower
density in the middle of Y-DB and each Y-LECB and
Y-UECB separately.

Mesh 2 new. A new mesh is now defined, that shall
be called “mesh 2 new”, with the same overall config-
uration principles but few little changes.
In the mesh 2 the Y-LECB and Y-UECB regions have
a number of points proportional to their length, but in
“mesh 2 new” if the number of points along the y-axis
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in at least one of the two lateral bands is less than Ntot/5, then the number is set to Ntot/5 in each of
them, whereas 3Ntot/5 points will be assigned to the Y-DB. Some simulations are shown to illustrate
the results with the use of “mesh 2 new”.
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Figure 5.18: Comparison mesh 2 - mesh 2 new,
Bmax = 4 mT , PRF = 30 kW/m, ΦPG = 5V ,

P = 0.3 Pa, xMF = 39 cm.
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Figure 5.19: Comparison mesh 2 - mesh 2 new,
Bmax = 4 mT , PRF = 30 kW/m, ΦPG = 5V ,

P = 0.3 Pa, xMF = 39 cm.
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Figure 5.20: Plasma parameters for high PG
potential mesh 2 new, Bmax = 4 mT ,

PRF = 30 kW/m, P = 0.3 Pa,
ΦPG = 5V , xMF = 0.39 m.

Figs. 5.18 and 5.19 show that with “mesh 2 new” the
code produces the same results as with mesh 2 in the
cases for which a steady-state solution is obtained with
the latter. To be accurate, for the case xMF = 0.27 m,
the electron temperature near the upper wall in the EC
appears slightly higher when mesh 2 new is employed
(fig. 5.19). However, for higher values of ΦPG, conver-
gent solutions can be found only with the mesh 2 new
due to the mentioned numerical instability (fig. 5.20).

It should be noted, that numerical methods using high
order schemes, although giving at least theoretically
better approximations, can lead to some sort of oscil-
lation tendencies [15]. To show this behaviour, a 5-
points-scheme simulation with mesh 2 and no B-field
has been performed (instead of a 9-points-scheme one,
as described in chapter 3), and no oscillation was found
in electron temperature profiles, fig. 5.21.
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Figure 5.21: Comparson 9&5-points-scheme,
Bmax = 0 mT , PRF = 30 kW/m,

ΦPG = 5V , P = 0.3 Pa.

As a matter of fact, not only the 9-points-scheme
should give better results, but if B-field is present the
5-points one can not even be used.
However, in the absence of the magnetic field there are
no corresponding drifts and consequently no mixed par-

tial derivatives of the form ∂2f
∂x∂y

must be numerically
calculated. Thus, the 5-points-scheme is exploitable.
It comes out, at least in the current implementation
of the numerical method, that 5-points-scheme ensures
more numerical stability.

5.1.4 3-dimensional plots in mesh 2

On page 19, some 3-dimensional graphs are displayed
just as reference, giving a general overview and a bet-
ter comparison between the cases already illustrated in
figures 5.4 and 5.12.

18



5.1. “MESH 2” - SPIDER CHAPTER 5. SIMULATION RESULTS

Figure 5.22: ne 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa,
|B|= 0 mT , mesh 2.

Figure 5.23: Φ 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa,
|B|= 0 mT , mesh 2.

Figure 5.24: Te 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa,
|B|= 0 mT , mesh 2.

Figure 5.25: ne 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa, xMF = 0.39 m

Bmax = 4 mT , mesh 2.

Figure 5.26: Φ 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa, xMF = 0.39 m

Bmax = 4 mT , mesh 2.

Figure 5.27: Te 3D plot, PRF = 30 kW/m,
ΦPG = 5 V , P = 0.3 Pa, xMF = 0.39 m

Bmax = 4 mT , mesh 2.
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5.2 Comparisons between different geometries

The results presented in the section 5.1 (above) are here briefly compared to those computed using
the mesh 1 (fig. 5.28). The parameters of the reference cases from which the scan results have been
obtained are the same as those employed with mesh 2 (see sec. 5.1.1): including the applicable
magnetic filter with Bmax = 4 mT , xMF = 0.39 m and σMF = 7 cm.

5.2.1 Mesh 1 - cases without B-field
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(a) ne 2D plot,
Bmax = 4 mT ,

mesh 1.
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(b) Φ 2D plot,
Bmax = 4 mT ,

mesh 1.
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(c) Te 2D plot,
Bmax = 4 mT ,

mesh 1.

Figure 5.28: Reference case plots:
PRF = 30 kW/m, ΦPG = 5 V , P = 0.3 Pa,

|B|= 0 mT , mesh 1.
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Figure 5.29: Plasma parameters for
RF power scan, |B|= 0 mT , mesh 1.
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Figure 5.30: Plasma parameters for
pressure scan, |B|= 0 mT , mesh 1.
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Figure 5.31: Plasma parameters for
PG potential scan, |B|= 0 mT , mesh 1.

The maps in fig. 5.28 illustrate the represen-
tative steady-solution without B-field: both ne

and Φ differ from those in fig. 5.4 (mesh 2) pre-
senting a perfect symmetry in both directions.
In addition, heat can be seen transferred also
into the regions, labelled as “VZs”, that were
empty in mesh 2 (they are here marked for ref-
erence). Moreover, fig. 5.29 shows a symmetric
ne profile along x-axis, contrary to the asym-

metry observed for mesh 2 due to imposed vacuum regions. In contrast to mesh 1, the power scan of
mesh 2 gives ne profile along y-direction decreasing sharply in the shadow of the VZs, as if slightly
screened from the power source by the VZs (see e.g. fig. 5.5). It is noticeable also that the temperature
tends to saturate as a function of PRF , which may be due to numerical issues. In general, mesh 1 Te

seems overall slightly lower in each of the 3 scans, e.g. in mesh 1 for P = 0.6 Pa, Te ∼ 12 eV in spite
of Te ∼ 15 eV recorded for mesh 2. Also, in fig. 5.31 at ΦPG = 50 V , ne peak is remarkably lower: in
mesh 1 nmax

e ≲ 14 · 1017 m−3, whereas nmax
e ∼ 16 · 1017 m−3 in mesh 2.
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5.2.2 Mesh 1 - case with B-field
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(a) ne 2D plot,
Bmax = 4 mT ,

mesh 1.
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(b) Φ 2D plot,
Bmax = 4 mT ,

mesh 1.
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(c) Te 2D plot,
Bmax = 4 mT ,

mesh 1.

Figure 5.32: Reference case plots:
PRF = 30 kW/m, ΦPG = 5 V , P = 0.3 Pa,
xMF = 0.39 m Bmax = 4 mT , mesh 1.
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Figure 5.33: Plasma parameters for
RF power scan, Bmax = 4 mT , mesh 1.
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Figure 5.34: Plasma parameters for
PG potential scan, Bmax = 4 mT , mesh 1.
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Figure 5.35: Plasma parameters for
pressure scan, Bmax = 4 mT , mesh 1.

In fig. 5.32 the first two plots (ne and Φ) ex-
hibit a little asymmetry with respect to the
x = 0.2 m line, induced by the MF. The latter
is predominantly deformed in correspondence
of xMF = 0.39 m, just like for mesh 2, see fig.
5.12. On the other hand, mesh 1 Te map shows
a clearer, sharper, drop for MF maximum po-
sition compared to the mesh 2 one, especially
along the EC walls. Once again, it is recognis-
able that Te is overall higher (∼ 1 eV on aver-
age) in both directions at fixed scan parameters

for mesh 2, if compared to mesh 1, see fig. 5.33 to 5.35. This may be associated to the fact that in
the former case the heat is transferred only to the EC and not also to the VZs. The same differences
in behaviour between mesh-1 and mesh-2 cases can be spotted for ne and Te in the power scan, in
analogy to the corresponding result without B-field. On the other hand, mesh 1 Φ and Te profile
shapes result to strongly agree to those of mesh 2. Concerning the potential scan, mesh 1 might turn
out to be more numerically stable along y-axis for y ∼ 0.2 m: there Te keeps being relatively high
with just a tendency to lower close to the upper wall (y > 0) for higher values of ΦPG. Mesh 2 showed
instead some issues for ΦPG = 40 V and 50 V , with a significant Te drop. Finally, pressure scan
reported lower ne peaks at fixed P for mesh 1, but slightly higher Φ gradient (so E-field values) at the
EC walls with respect to mesh 2 correspondent case.
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5.2. DIFFERENT GEOMETRIES CHAPTER 5. SIMULATION RESULTS

5.2.3 Comparisons between mesh 1 and mesh 2 in the driver region

In this paragraph, a further profile comparison between the two meshes is presented. As a matter of
fact, all the previous profile plots represented plasma parameters as a function of one spatial coordinate
at fixed value of the other, y = 0 m in one case and x = 0.2 m for the other one. Therefore, the y-
profiles with fixed x = 0.2 m referred only to the EC whereas the plots along the y = 0 line displayed
the driver region just for the first 14 cm. In order to better compare the behaviour of those quantities
in the driver region, the following profiles have been made along the x = 0.07 m line, as indicated by
the vertical blue lines in fig. 5.1 and fig. 5.2. For this purpose, it has been chosen to represent and
compare ne and Te at x = 0.07 m profiles for the above-mentioned reference cases with the magnetic
field or in the absence of it, both for mesh 1 and mesh 2.
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Figure 5.36: ne and Te driver
profiles (x = 0.07 m),

Bmax = 0 mT and Bmax = 4 mT ,
mesh 1 and mesh 2 comparisons.

Electron density, driver region. The plots on the
left-hand side of fig. 5.36 show the electron density with
the MF (lower one) and without MF (upper one) in the
middle of the driver region and in parallel to the y-axis.
It must be pointed out that the real driver region is the
one defined for values of y between y1 = −0.14 m and
y2 = 0.14 m. The intervals outside this range corre-
spond to the vacuum zones (VZs), in which only mesh
1 plots show non-zero values of electron density due to
the fact that simulations conducted in the simplified
rectangular geometry included the VZs as parts of the
integration domain. As a matter of fact, the symmet-
ric shape of the electron density profile observed for
mesh 1 is analogous to the shape exhibited in the EC2,
although the value of the maximum is considerably re-
duced, whether the MF is present or not. The reason
of that is found in fig. 5.28a, showing that electron
density is much grater in the centre of the EC. To the
other hand, the profiles for mesh 2 totally drop at the
limits of the driver region. It is interesting to notice
also that in general ne is a little lower with respect to
the case with mesh 1.

Electron temperature, driver region. Analogously to density, electron temperature shows a
rapid drop close to the driver walls for mesh 2, whereas Te is almost uniform along the x = 0.07 m
line of mesh 1. However, despite the fact that mesh-1-ne is overall higher with respect to the results
of the other mesh, for the electron temperature is true the opposite: Te computed in mesh 2 is some
1 eV greater than Te in mesh 1 inside the driver region and falls to zero outside of it. Finally, the
presence of the magnetic filter does not alter particularly the shape of the profiles, besides slightly
lowering them, in agreement with the fact that the MF is not intended to penetrate into the driver
region as reported in [20].

2 See the right-hand side of fig. 5.29 and fig. 5.33.
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Chapter 6

Conclusions

A self-consistent fluid model description of a low-pressure discharge has been presented within a two-
dimensional section of one of the eight driver volumes, including the expansion chamber, that make
up SPIDER negative ion source. This model employs different continuity equations for each of the
particle species involved with the assumption of the drift-diffusion approximation for particle fluxes.
Electron temperature is obtained by the electron energy balance equation whereas the neutral species
and ions are assumed to have uniform and constant temperatures. Finally, the electrostatic coupling
between electrons and ions is described by the Poisson equation. The numerical method is based on
finite volume approximation and 9-point discretisation on a two-dimensional staggered mesh is used
in order to take into account the anisotropy due to the magnetic field. The modified Poisson equation
is numerically solved by means of a semi-implicit prediction of the space charge density for every mesh
point [7, 11]. The model and the numerical method have been implemented in the FORTRAN 95
code FSFS2D and tested in a simplified rectangular geometry [20].

The work behind this thesis consisted of using the code to simulate and examine the behaviour of
the plasma parameters in the source, in particular, the plasma potential, electron temperature and
density for different values of RF-power, pressure and PG bias potential. These simulations have been
performed for the first time in a more realistic SPIDER geometry and mesh, considering the vacuum
zones outside the driver. This study provides an important insight of the physics of the source and
gives indications for further improvements of the model and code applications.

The code predictions for the electron density, the plasma potential and the electron temperature in
SPIDER geometry show general correspondence to the physical expectations and other simulations [7,
11, 20]. The results also suggest an overall agreement between the plasma parameter profiles obtained
with the SPIDER mesh and the previous simulations with the rectangular mesh. However, it should be
said that some numerical instability and convergency issues have been faced in the case of SPIDER-like
mesh, e.g. at high PG potential (ΦPG ≳ 40 V ) in the presence of the magnetic filter field. This gave
space and opportunity for a further development and improvement of the mesh in order to overcome
some instabilities and enhance convergence efficiency, as presented for the new mesh, labelled “mesh
2 new”. Moreover, overall physically consistent and stable numerical results are noticed in the driver
region where most of the differences between the results with the two meshes were expected to occur.
For instance, a uniform temperature in the driver region for the SPIDER mesh is shown, both in the
presence and in the absence of the MF, with a sharp drop in the lateral vacuum zones, whereas using
the rectangular mesh no distinction is made for these different regions in temperature profiles. In
general, lower electron temperatures can also be observed for the SPIDER-like geometry with respect
to the rectangular case. On the other hand, in the presence of the MF field, the temperature reduction
still takes place close to the PG in SPIDER geometry, even though, the drop is not as clear and sharp
as it was in the results of the rectangular mesh, in particular near the walls of the expansion chamber.

The future work and developments might take in consideration the comparison of the results presented
above to the experimental data taken directly from the physical source through a campaign of mea-
surements. Also, an implementation of the RF-inductive field description accounting for the coupling
with fluid equations is expected to be developed and implemented in the near future [20].
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