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Introduction

Invariant theory is a classical subject in both algebra and geometry.
Especially after the introduction of projective coordinates at the beginning
of the nineteenth-century, mathematicians became interested in properties of
plane curves that were invariant after linear change of coordinates. As time
went on, they realized that such a property can be formulated as the invari-
ance under an action of a group, usually SLn or GLn. Since the geometric
objects were defined by polynomial equations, the problem turned out to be
the following one: given a “nice” action of a group G on the polynomial ring
S = k[x1, ..., xn], find the elements of S that are invariant under G. The
subalgebra of invariant elements is denoted SG, and they noted that in some
cases SG was finitely generated.
At the end of the century, one of the main problems was to find the invari-
ants of the natural action of SL2(C) on C[x0, x1]d, the so called “Problem of
invariants of binary forms of degree d”. A great contribution was given by
David Hilbert, who proved that the ring of invariants is finitely generated
in many cases, such as the one of binary forms. This led to the formulation
of Hilbert’s 14th problem, asking whether the ring of invariants is always
finitely generated: this was solved by Nagata in 1959, with a negative an-
swer. However, Nagata himself proved that the ring of invariants is always
finitely generated if we make a stronger assumption on the group G, that is,
if G is geometrically reductive.
Geometric invariant theory (GIT) is a method for constructing quotients for
the actions of algebraic groups on varieties and it is frequently used in the
context of moduli. The starting point is Nagata’s result, so that GIT is con-
cerned with the action of geometrically reductive groups. A moduli problem
is essentially a classification problem: we would like to classify geometric
objects up to some notion of equivalence. A key example is given by the
classification of degree d hypersurfaces in P

n up to projective equivalence,
which is the core of this thesis.
Given an action of an algebraic G on a variety X, the set of orbits cannot
be structured as a variety in general, because the action typically has non-
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closed orbits. However, we can relax our hypotesis of having an orbit space,
in order to get a quotient with better geometrical properties: this leads to
the definition of good quotient. Geometric invariant theory, as developed by
Mumford in [13], shows that for a linear action of a geometrically reductive
group on a projective variety X, there always exists an open subset U of the
variety and a good quotient for the action of G on U . Moreover, the quotient
is itself projective.
The thesis is divided into three chapters.

In Chapter 1 we give the definition and the main examples of algebraic groups
and discuss their actions on varieties. We present the notion of geometrically
reductive groups, which is of great importance in the context of GIT. Finally,
we give the statement and the proof of Nagata’s Theorem.

In Chapter 2 we first show how to construct GIT quotients in the affine
case, and we give some examples of explicit constructions. Then we focus
our attention on the projective case: this leads to the definitions of stable
and semi-stable points of a projective variety under a linear action of a ge-
ometrically reductive group. Finally, we present Hilbert-Mumford criterion,
a very useful tool in order to determine (semi-)stability of a point under a
given action. We give a proof of the criterion in the particular case where
the group is SLn.

The third chapter is the central part of the thesis. Here we study the natural
action of SLn+1 on the space of projective hypersurfaces of degree d in P

n,
which we denote by Hypd(n). This is precisely the moduli problem of the
classification of projective hypersurfaces up to projective equivalence.
First, we emphasize the role of smooth hypersurfaces, then we study in detail
some particular cases for small values of d and n using the Hilbert-Mumford
criterion. We start with the case of quadric hypersufaces in P

n and the one
of binary forms of degree d. Great emphasis is given to the case of plane
cubics, where we give a complete description of the stable and semi-stable
locus.
Then we deal with stability of plane quartics and cubic surfaces, from which
we can deduce that a breakdown in stability is always due to “bad” singu-
larities of the hypersurface.

The main references for this thesis are [11] and [15] for the results in the
first two chapters, while in the third chapter we mainly refer to [5], [12] and
[13]. Finally, for the last example where we deal with cubic surfaces, the
main references are [3] and [6].
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Notations and conventions

Throughout the thesis we fix an algebraically closed field k of any charac-
teristic, unless otherwise specified: for instance, in chapter 3 we will assume
char k 6= 2 when we study projective quadrics. By a variety, we mean a
separated prevariety over the field k, i.e. a ringed space (X,OX) where X is
irreducible and OX is a sheaf of k-valued functions, which admits an open
cover by finitely many affine varieties, such that the diagonal ∆ is closed in
X ×X. In particular, we always assume that varieties are irreducible.
If X is an affine variety, we will denote by A(X) (instead of OX(X)) its ring
of regular functions.



Chapter 1

Actions of algebraic groups

In this chapter we will introduce the notion of algebraic group and discuss
the actions of algebraic groups on varieties, which will allow us to construct
quotients for these actions. Finally, we will define geometrically reductive
groups and give a proof of Nagata’s Theorem, which asserts that under a
rational action of a geometrically reductive group on a finitely generated k-
algebra, the subalgebra of invariants is always finitely generated.
The main references here are [11] (Sections 3.1 and 3.2) and [15] (Sections
3.1 and 3.2)

1.1 Algebraic groups

Definition 1.1.1. An algebraic group is a group G together with a structure
of a variety such that the maps

G×G→ G
(g, g′) 7−→ gg′

G→ G
g 7−→ g−1

are morphisms of varieties. A homomorphism of algebraic groups is a map
which is both a group homomorphism and a morphism of varieties.

Definition 1.1.2. An action of an algebraic group G on a variety X is a
morphism

G×X → X

such that g(g′x) = (gg′)x and 1x = x for any g, g′ ∈ G and for any x ∈ X.

5



CHAPTER 1. ACTIONS OF ALGEBRAIC GROUPS 6

Remark. Just a matter of notation: if x is any point in the variety X, we
denote by O(x) the orbit of the point x, where O(x) = {gx : g ∈ G}.
Moreover, we denote by Gx the stabiliser of x.
Gx = {g ∈ G : gx = x} is a closed subgroup of G, since Gx = σ−1

x (x), where
σx is the following morphism

σx : G→ X
σx(g) = gx

We recall that a point x (subset W ) of X is invariant under G if gx = x
(gW = W ) for all g ∈ G.

Definition 1.1.3. If G is an algebraic group acting on the varieties X and Y ,
then we say that a morphism φ : X → Y is a G-morphism if φ(gx) = gφ(x)
for all g ∈ G, x ∈ X.
In the particular case when G acts trivially on Y , the morphism φ is said to
be G-invariant. Equivalently, we can say that a morphism is G-invariant if
and only if it is constant on orbits.

Examples. • GL(n) is the standard example of an algebraic group.
Indeed, GL(n) = {(xi,j, t) ∈ kn

2+1 : det(xi,j)t− 1 = 0}.
Hence, GL(n) = V (f) where f = det(xi,j)t− 1 and it is an affine vari-
ety.
Moreover, the group operation GL(n) × GL(n) → GL(n) and the in-
verse map GL(n) → GL(n) are polynomial maps.
In fact, if (X, Y ) ∈ GL(n)×GL(n) then (XY )i,j = Σkxik ykj and this
is a polynomial. The case of the inverse is analogous, just recall the
formula for the inverse of a matrix using the cofactor matrix.
Hence these maps are morphisms of affine varieties, as desired.
The group GL(1) = k∗ is usually denoted by Gm.

• SL(n) is of course a closed subgroup of GL(n), hence it is an algebraic
group.
In general, we say that an algebraic group isomorphic to a closed sub-
group of GL(n) for some n is a linear algebraic group.

• The additive group k is an algebraic group, since the underlying variety
is the affine line and the operations of sum and opposite are clearly
polynomial maps. This group is usually denoted by Ga.
It is a linear algebraic group, since we have the following embedding in
GL(2)

a 7−→

(

1 a
0 1

)

.
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Definition 1.1.4. Let G be an algebraic group acting on a variety X. The
pair (Y, φ) is a categorical quotient for the action of G on X if Y is a variety
and φ : X → Y is a G-invariant morphism which is universal, that is, any
G-invariant morphism f : X → Z factors uniquely through φ, i.e. there
exists a unique morphism h : Y → Z such that f = h ◦ φ, where Z is any
variety.
Moreover, if the preimage of each point y ∈ Y is a single orbit, we say that
(Y, φ) is an orbit space.

Remark. GL(n) acts in a natural way on kn. Hence, if we are given an
homomorphism of algebraic groups ρ : G→ GL(n) we obtain an action of G
on kn given by gv = ρ(g)v for any v ∈ kn. The homomorphism ρ is called
a rational representation of G, and the corresponding action on kn a linear
action.

Assume that G is an algebraic group acting on a variety X. Then we get
an induced action of G on A(X), where A(X) is the ring of regular functions
on X, in the following way: if f ∈ A(X) we define f g by

f g(x) = f(gx)

It is immediate to see that the properties of an action are satisfied, hence in
particular f 7−→ f g is a k-algebra automorphism for any g ∈ G.

Lemma 1.1.1. Let G be an algebraic group acting on a variety X, let W
be a finite-dimensional vector subspace of A(X)(let us recall that A(X) is a
k-algebra, hence in particular a vector space over k). Then

a) if W is invariant, the action of G on W is given by a rational repre-
sentation,

b) W is contained in a finite-dimensional invariant subspace of A(X).

Proof. a) Let f1, ..., fn be a basis of W . Since W is invariant, f gi ∈ W .
Hence we can write in a unique way

f gi =
n
∑

i=1

ρij(g)fj (∗)

where ρij(g) ∈ k. The map g 7−→ (ρij(g)) defines a group homomor-
phism ρ : G→ GL(n).
Moreover, the action of G on W is given by

(
n
∑

i=1

λifi)
g =

n
∑

i=1

n
∑

j=1

λiρij(g)fj
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We have to show that ρ is a morphism. Since the fi are linearly in-
dependent, there exist x1, ..., xn ∈ X such that det(fj(xk)) 6= 0. Let
A = (ajk) := (fj(xk)). Then by the equation (∗) we get

(ρi1(g), ..., ρin(g)) = (fi(gx1), ..., fi(gxn))A
−1.

This implies that for any i, j the function ρij is regular on G.

b) Again, let f1, ..., fn be a basis of W . Let W ′ be the subspace of A(X)
generated by the f gi , for any i = 1, ..., n and for any g ∈ G. Since
W ⊆ W ′ and W ′ is invariant by construction, it is enough to show that
W ′ is finite dimensional.
Let us define Fi ∈ A(G×X) by Fi(g, x) = fi(gx).
Since A(G×X) = A(G)⊗kA(X), we can write each Fi as a finite sum

Fi =
k
∑

j=1

Gij ⊗Hij

for suitable Gij ∈ A(G), Hij ∈ A(X). Let W ′′ be the subspace of A(X)
generated by the Hij. Then W

′′ is finite-dimensional.
Since

f gi (x) = Fi(g, x) =
k
∑

j=1

Gij(g)Hij(x)

we have f gi ∈ W ′′ for any i and g. Hence W ′ ⊂ W ′′ and so W ′ is
finite-dimensional.

The previous lemma may suggest the following definition.

Definition 1.1.5. Let G be an algebraic group and R a k-algebra. A rational
action of G on R is a map

R×G→ R
(f, g) 7−→ f g

such that

1) f gg
′

= (f g)g
′

and f 1 = f for all f ∈ R, g, g′ ∈ G

2) the map f 7−→ f g is a k-algebra automorphism of R for all g ∈ G
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3) every element of R is contained in a finite-dimensional invariant sub-
space on which G acts by a rational representation.

Remark. Given a rational action of G on a finitely generated k-algebra R,
it makes sense to ask if the subalgebra

RG = {f ∈ R : f g = f ∀g ∈ G}

is finitely generated too. The answer is negative in general as shown by
Nagata (see [14]), but it is true if we make a stronger assumption on the
group G, as we will see soon.
This question also has a geometrical meaning: assume that X is an affine
variety and that (Y, φ) is a categorical quotient for the action of G on X.
By definition of a categorical quotient, a morphism X → k factors uniquely
trough φ if and only if it is constant on orbits. This is equivalent to require
that

φ∗ : A(Y ) → A(X)

is an isomorphism between A(Y ) and A(X)G. Thus, if Y is affine, then
A(X)G must be finitely generated.

By Lemma 1.1.1, given an action of an algebraic group on kn we have an
induced rational action of G on k[x1, ..., xn]. In this sense, we can speak of
invariant polynomials.

Definition 1.1.6. A linear algebraic groupG is geometrically reductive (resp.
linearly reductive) if, for every linear action of G on kn and every invariant
point v of kn, v 6= 0, there exists an invariant homogeneous polynomial f of
degree ≥ 1(resp. = 1) such that f(v) 6= 0.

There is another definition of reductivity, which is given in algebraic
terms.

Definition 1.1.7. A linear algebraic group G is unipotent if every non-trivial
linear representation ρ : G→ GLn has a non zero G-invariant point.
A linear algebraic group is reductive if the unipotent radical of G (which is
the maximal connected unipotent normal subgroup of G) is trivial.

Let us summarise the main results relating these three notions of re-
ductivity in the following theorem, whose proof is beyond the scope of this
thesis.
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Theorem 1.1.1. (Weyl, Nagata, Mumford, Haboush)

i) Every linearly reductive group is geometrically reductive.

ii) In characteristic zero, every reductive group is linearly reductive.

iii) A linear algebraic group is reductive if and only if it is geometrically
reductive.

In particular, all three notions coincide in characteristic 0.

Remark. This general results are due to the work of different mathemati-
cians: part ii) was proved by Weyl, Nagata proved that every geometrically
reductive group is reductive and the converse was first conjectured by Mum-
ford and finally proved by Haboush.
By part iii), from now on we will always deal with geometrically reductive
groups.

Let us start with a geometrical property.

Lemma 1.1.2. Let G be a geometrically reductive group acting on an affine
variety X. Let W1,W2 be disjoint closed invariant subsets of X.
Then there exists f ∈ A(X)G such that f(W1) = 0 and f(W2) = 1

Proof. Let h ∈ A(X) be such that h(W1) = 0 and h(W2) = 1.
By Lemma 1.1.1, the subspace of A(X) generated by hg for any g ∈ G is
invariant and finite dimensional. Let h1, ..., hn be a basis of this subspace.
Then

hgi = Σaij(g)hj

where the map g 7−→ (aij(g)) is a rational representation for every i, j = 1...n.
Hence we get a linear action of G on kn. Let us define the following morphism

ψ : X → kn, ψ(x) = (h1(x), ..., hn(x))

Since

ψ(gx) = (h1(gx), ..., hn(gx)) =
(hg1(x), ..., h

g
n(x)) = (Σa1j(g)hj(x), ...,Σanj(g)hj(x)) = gψ(x)

ψ is a G-morphism. Moreover, since W1 and W2 are invariant, we get
ψ(W1) = (0, ..., 0) and ψ(W2) is just a single point v 6= (0, ..., 0).
By assumption, the group G is geometrically reductive, hence there exists
f ′ ∈ k[X1, ..., Xn]

G such that f ′(v) 6= 0 and f ′(0) = 0 (since f ′ is homoge-
neous). Up to multiply f ′ by 1/f ′(v), we may assume f ′(v) = 1.
Let us define f = f ′ ◦ ψ.
For any g ∈ G and x ∈ X,
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f g(x) = f(gx) = f ′(ψ(gx)) = f ′(gψ(x)) = f ′(ψ(x)) = f(x)

where the third and the fourth equality hold since ψ is a G-morphism and
f ′ is invariant.
Hence f ∈ A(X)G. Moreover, f(W1) = f ′(0) = 0 and f(W2) = f ′(v) = 1 as
desired.

Remark. It can be shown that GL(n), SL(n) and PGL(n) are all geomet-
rically reductive groups. These are the geometrically reductive groups that
most often appear in practice.
However, even “nice” groups such as Ga are not geometrically reductive.
In fact, let us consider the rational representation of Ga

a 7−→

(

1 a
0 1

)

and the corresponding linear action on k2.
We notice that the point v = (1, 0) is invariant under this action.
Consider p = (x, y) ∈ k2. Then O(p) = {(x+ ay, y) : a ∈ k}.
Hence in this case the invariant polynomials are the ones which are constant
on the lines parallel to the x-axis, so that they must be of the form f(y).
This implies that any homogeneous invariant polynomial of positive degree
must vanish at v, hence Ga is not geometrically reductive.

1.2 Nagata’s Theorem

Geometrically reductive groups will play a fundamental role for our purpose,
mainly due to the following result.

Theorem 1.2.1. (Nagata) Let G be a geometrically reductive group and let
R be a finitely generated k-algebra on which G acts rationally.
Then RG is a finitely generated k-algebra.

In order to give the proof of this theorem, we need some preliminary
results.
The first step is to state and prove two lemmas, both due to Nagata.

Lemma 1.2.1. Let G be a geometrically reductive group acting rationally on
a finitely generated k-algebra R. Let J be an invariant ideal of R.
If f ∈ (R/J)G, then f t ∈ RG/J ∩RG for some positive integer t.
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Proof. If f = 0 the result is trivial, so we may assume f 6= 0. Let h ∈ R be
an element whose image in R/J is f . We claim that there exist h0 ∈ RG and
a suitable integer t such that h0 − ht ∈ J .
Since G acts rationally on R, the subspace M generated by hg(g ∈ G) is
finite dimensional. Let us consider N =M ∩J . By assumption f 6= 0, hence
h /∈ J and so h /∈ N , but hg − h ∈ N for any g ∈ G, since f is invariant.
M is generated by hg and we can write hg = (hg − h) + h ∈ N⊕ < h >, it
follows that we have dim M=dim N + 1.
Hence we can write any element of M in a unique way as a sum

ah+ h′ (a ∈ k, h′ ∈ N)

Therefore, we can define a linear map l :M → k by

l(ah+ h′) = a

We notice that l is G-invariant since

(ah+ h′)g = ah+ a(hg − h) + h′g ∈ ah+N

where we used that N is G-invariant, since so are M and J . Hence we have
lg(ah+ h′) = l((ah+ h′)g) = a.
Let M∗ be the dual space of M . We choose a basis h2, ..., hr of N , then
h, h2, ..., hr is a basis of M , and we may identify M∗ with kr by the dual
basis. Under this identification, l = (1, 0, ..., 0) and it is invariant, as we
noticed before.
By assumption G is geometrically reductive, so there exists an invariant
homogeneous polynomial F ∈ k[x1, ..., xr] of degree t ≥ 1 such that F (l) 6= 0.
This condition implies that the coefficient of xt1 in F is non-zero; up to scalar
multiplication we may assume that this coefficient is 1.
Let us now consider the k-algebra homomorphism

α : k[x1, ..., xr] → R
x1 7−→ h, xi 7−→ hi i = 2, ..., r

Since the action on kr is induced by the action on M , it follows that this
homomorphism commutes with the action of G. In particular, since F is
invariant, h0 = α(F ) ∈ RG.
Finally, since the coefficient of xt1 in F is 1, the polynomial h0 belongs to
ht + S where S is the ideal of R generated by h2, ..., hr.
Then h0 − ht ∈ S ⊆ J , as desired.

Lemma 1.2.2. Let G be a geometrically reductive group acting rationally on
a finitely generated k-algebra R.

If f1, ..., fs ∈ RG and f ∈ (
n
∑

i=1

fiR) ∩R
G, then f t ∈ ΣfiR

G for some t ∈ N.
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Proof. The proof will be by induction on s. For s = 1, let f ∈ f1R ∩ RG;
then f = f1f

′ and (f1f
′)g = f g1 f

′g = f1f
′g since f1 ∈ RG. Hence

f1(f
′g − f ′) = 0 (∗)

Let us consider the ideal J = {h ∈ R : f1h = 0}, the annihilator of f1: it is
invariant under G because f1 is invariant, moreover the image of f ′ on R/J
is invariant by (∗). Hence we can apply Lemma 1.2.1, obtaining f ′′ ∈ RG and
t ∈ N such that the image of f ′′ and f ′t in R/J coincide, which is equivalent
to f ′′ − f ′t ∈ J .
It follows that f1(f

′′ − f ′t) = 0, which implies

f t = f t1f
′t = f1f

′′ ∈ f1R
G.

Now assume s > 1. In order to simplify notation, let R = R/f1R and f be
the image of f in R for any f ∈ R.

If f ∈ (
s
∑

i=1

fiR)∩R
G, then f ∈ (

s
∑

i=2

fi R)∩R
G
, so we can apply the inductive

hypothesis to get a positive integer t such that

f
t
∈

r
∑

i=2

fi R
G
.

So f t =
s
∑

i=1

fihi with hi ∈ R, h2, ..., hs ∈ R
G
.

The ideal J = f1R is invariant and hs ∈ R/J
G
. Hence we can apply Lemma

1.2.1 to get a positive integer u and h′s ∈ RG such that h′s = hs
u
. It follows

that

f tu − fus h
′
s ∈ (

s−1
∑

i=1

fiR) ∩R
G.

We can apply again the inductive hypothesis and we get a positive integer v
such that

(f tu − fus h
′
s)
v ∈

s−1
∑

i=1

fiR
G.

This implies f tuv ∈
s
∑

i=1

fiR
G, as required.

Now we state a proposition containing some results of commutative al-
gebra and field theory, which will be needed in the proof of the theorem of
Nagata. Since they are not directly linked to invariant theory we won’t give
a full proof of them, for part (4) we refer to [8]. For this proposition, we
mainly refer to well-known commutative algebra texts, such as [2] and [7].
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Proposition 1.2.1. 1) Let R = ⊕i≥0Ri be a graded k-algebra, where
R0 = k. Then R is a finitely generated k-algebra if and only if
R+ = ⊕i≥1Ri is a finitely generated ideal of R.

2) Let R be a finitely generated k-algebra, integral over a subalgebra S.
Then S is a finitely generated k-algebra.

3) Let R be a k-algebra, integral over a subalgebra S. Assume that R is a
domain, and that its field of fractions L is a finitely generated extension
of k. If S is a finitely generated k-algebra, then R is a finite S-module,
and so it is finitely generated as a k-algebra.

4) Let L′ be a finitely generated extension of k, and L a subfield of L′

containing k. Then L is a finitely generated extension of k.

Proof. 1) ⇒) Clear, since R is Noetherian by Hilbert’s basis theorem.
⇐) Coversely, assume R+ is generated by f1, ..., fn where the fj are ho-
mogeneous of positive degree. We prove that for any i Ri ⊆ k[f1, ..., fn],
by induction on i ∈ N.
If i = 0 there is nothing to prove, since R0 = k.
Assume f ∈ Ri+1; by assumption we can write f = h1f1 + ...hnfn for
suitable hj ∈ R, where the hj are homogeneous of degree ≤ i. By the
induction hypothesis hj ∈ k[f1, ..., fn] and so f ∈ k[f1, ..., fn] too.

2) Let f1, ..., fn generate R. Since R is integral over S, each fi satisfies an
equation of the form

f rii + ai1f
ri−1

i + ...+ airi = 0 (∗)

with aij ∈ S, where i = 1, ..., n and j = 1, ..., ri. Let S0 be the subalge-
bra of S generated by the aij. By construction S0 is finitely generated,
hence Noetherian.
By equation (∗), we notice that R is generated as an S0-module by the
products

f s11 f
s2
2 ...f

sn
n (0 ≤ si ≤ ri − 1)

and so R is a finitely generated S0-module. Since S0 is a Noetherian
ring, this implies that R is a Noetherian S0-module, so that S is a
finitely generated S0-module. Hence S is a finitely generated k-algebra,
as desired.
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3) Let L′ be the field of fractions of S. Then L′ is a finitely generated
extension of k and L is an algebraic extension of L′. By assumption L is
a finitely generated extension of k, hence L is indeed a finite extension of
L′, being algebraic and finitely generated. So by [8] [Corollary 5.49] the
integral closure S ′ of S in L is a finite S-module. But S is Noetherian
since it is a finitely generated k-algebra, and R ⊆ S ′, hence R is also a
finite S-module.

4) See [8] [Lemma 2.25].

Now we are able to give the proof of Theorem 1.2.1.
Since R is finitely generated and G acts rationally on R, there exist linearly
independent elements f1, ..., fn ∈ R that generate R and such that the sub-
space of R generated by them is invariant under G. Moreover, the action of
G on this subspace is given by

f gi =
n
∑

j=1

aij(g)fj

where g 7−→ (aij(g)) is a rational representation.
Let S = k[x1, ..., xn]. We notice that there exists a unique rational action of
G on S such that

xgi =
n
∑

j=1

aij(g)xj

for i = 1, ..., n and g ∈ G.
Now consider the k-algebra homomorphism S → R sending xi to fi. Clearly
it commutes with the actions of G on S and R, so it suffices to prove the
following result.

Theorem 1.2.2. Let G be a geometrically reductive group acting rationally
on S = k[x1, ..., xn] in such a way that it preserves the degree of any homo-
geneous element, let Q be an ideal in S which is invariant under G. Then
we have an induced action of G on R := S/Q and RG is a finitely generated
k-algebra.

Proof. The proof will be by contradiction. First, we assume that there exists
a homogeneous ideal Q of S such that RG is not finitely generated.
Since S is Noetherian, we may assume that Q is maximal among such ideals.
Notice that since Q is homogeneous, R is a graded algebra.
Moreover, by the maximality of Q, if J is any non-zero homogeneous ideal
of R, then (R/J)G is finitely generated.
By Lemma 1.2.1 (R/J)G is integral over (RG/J ∩RG) so we can apply 2) of
Proposition 1.2.1 and we have that



CHAPTER 1. ACTIONS OF ALGEBRAIC GROUPS 16

(RG/J ∩RG) is finitely generated. (A)

Moreover, by the proof of 2) of Proposition 1.2.1, we get that

(R/J)G is a finite (RG/J ∩RG)-module. (B)

Clearly (RG)+ 6= 0 since RG is not finitely generated, so let f be a non-zero
homogeneous element of RG of positive degree. If f is not a zero-divisor, we
claim that we have

fR ∩RG = fRG

In fact, let a ∈ fR ∩ RG. Then a = fh and ag = a for any g ∈ G. This
implies fh = (fh)g = f ghg = fhg for all g ∈ G, so that f(hg − h) = 0 and
hg = h. Hence h ∈ RG and a ∈ fRG, as desired.
We get the equality since the other inclusion is trivial as we have f ∈ RG.
By (A) for J = (f), the k-algebra RG/fRG is finitely generated, hence by
part 1) of Proposition 1.2.1 (RG/fRG)+ = RG

+/fR
G is a finitely generated

ideal of RG/fRG. This implies that RG
+ is a finitely generated ideal of RG,

so that RG is a finitely generated k-algebra by part (1) again, which is a
contradiction.
Otherwise, if f is a zero-divisor, let us consider the annihilator of f , the ideal
I = {h ∈ R : fh = 0}. Since f is homogeneous, I is homogeneous too; hence
by (A) the algebras RG/fR∩RG and RG/I ∩RG are both finitely generated.
Hence there exists a finitely generated subalgebra R1 of RG such that the
natural homomorphisms from R1 to these algebras are both surjective.
By (B) the k-algebra (R/I)G is a finite (RG/I∩RG)-module; let c1, ..., cr ∈ R
be the lifts of the generators of this module.
Let g ∈ G. We have

(fci)
g = f gcgi = fcgi = fci

where the last equality holds because cgi − ci ∈ I. It follows that fci ∈ RG

for any i = 1, ..., r, hence R1[fc1, ..., fcr] ⊆ RG.
We claim that actually RG = R1[fc1, ..., fcr], so that RG is finitely generated
and we get the required contradiction.
Indeed, let h ∈ RG. Since the natural map from R1 to RG/fR ∩ RG is
surjective, we get the existence of h′ ∈ R1 such that h − h′ = fb for some
b ∈ R. Hence fb ∈ RG and we get

0 = (fb)g − fb = f(bg − b)

which implies bg − b ∈ I, so that the image of b in R/I belongs to (R/I)G.
Recalling that (R/I)G is generated as an RG/I ∩RG-module by the ci, there
exist f1, ..., fr ∈ RG such that



CHAPTER 1. ACTIONS OF ALGEBRAIC GROUPS 17

b−
r
∑

i=1

fici ∈ I.

Since the fi ∈ RG and the natural map from R1 to RG/I ∩RG is surjective,
we get the existence of f ′

i ∈ R1 such that fi − f ′
i ∈ I for any i. This implies

b−
r
∑

i=1

f ′
ici ∈ I.

Hence we have

h = h′ + fb = h′ +
∑

ff ′
ici ∈ R1[fc1, ..., fcr].

Now we consider the general case, where Q is a maximal invariant ideal in S
such that RG is not finitely generated.
If RG contains a zero-divisor, we get a contradiction exactly as in the homo-
geneous case. Hence we may assume that RG is a domain.
Now Q is not homogeneous, hence R = S/Q is not a graded k-algebra, so
the proof before doesn’t work anymore and we have to find another way.
First, we notice that by the homogeneous case SG is finitely generated. more-
over by Lemma 1.2.1 the k-algebra RG = (S/Q)G is integral over SG/Q∩SG.
It is therefore sufficient to show that the field of fractions L of RG is a finitely
generated extension of k, by part 3) of Proposition 1.2.1.
Let T be the set of non-zero divisors of R, let T−1R denote the correspond-
ing ring of fractions. Clearly R ⊆ T−1R since the natural map from R into
the localization is injective. Moreover, if m is a proper ideal of T−1R, then
m ∩ RG = 0 since RG is a domain. In particular, if m is a maximal ideal
(T−1R)/m is a field and L is a subfield, up to isomorphism.
By part 4) of Proposition 1.2.1, it suffices to show that (T−1R)/m is a finitely
generated extension of k. This is clear, since (T−1R)/m is the field of frac-
tions of the finitely generated k-algebra R/m ∩R.



Chapter 2

Construction of quotients

Let us consider the action of an algebraic group G on a variety X. One might
hope that the orbit set X/G endowed with the quotient topology could be
made into a variety in such a way that the natural projection is a morphism.
Unfortunately, this is not the case, even if we consider very simple actions.
For instance, assume that Gm acts on A

1 by multiplication. Then there are
exactly 2 orbits, namely the origin and A

1 \{0}. However, the origin belongs
to the closure of the set of non-zero elements, so that X/G consists of 2 points
and one of them is in the closure of the other. Hence it cannot be structured
as a variety, since any finite algebraic set has the discrete topology.
However, we could ask if we can relax the idea of having an orbit space, in
order to get quotients with better geometrical properties, such as categorical
quotients.
In this chapter, we will use Nagata’s Theorem in order to construct quotients
in both the affine and projective case. As we will see, the situation in the
affine case is quite straightforward, since there always exists a global quotient
which is itself affine. Unlike the affine case, the projective one will require
more attention, and the result which we will state are not global in general.
Finally, we will state the Hilbert-Mumford criterion, which will play a central
role in the last chapter.
We will follow the exposition of [11] (Chapter 4) and of [15] (Sections 3.3, 3.4, 4.1,
4.2).

18
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2.1 Affine quotients

Let us start with the simpler case, where a geometrically reductive group
acts on an affine variety. The main result is the following theorem.

Theorem 2.1.1. Let G be a geometrically reductive group which acts linearly
on an affine variety X. Then there exists an affine variety Y and a morphism
φ : X → Y such that

i) φ is G-invariant

ii) φ is surjective

iii) if U is open in Y ,then

φ∗ : A(U) → A(φ−1(U))

is an isomorphism of A(U) onto A(φ−1(U))G

iv) if W is a closed invariant subset of X, then φ(W ) is closed

v) if W1, W2 are disjoint closed invariant subsets of X, then
φ(W1) ∩ φ(W2) = ∅

Proof. By the theorem of Nagata, A(X)G is a finitely generated k-algebra.
Since it is a subalgebra of A(X), it is reduced. Hence there exists an affine
variety Y whose coordinate ring is A(X)G. Let φ : X → Y be the morphism
induced by the natural inclusion A(Y ) = A(X)G ⊂ A(X).

i) By contradiction, let us assume there exists x ∈ X, g ∈ G such that
φ(gx) 6= φ(x). Let f ∈ A(Y ) such that

f(φ(gx)) 6= f(φ(x))

but this implies that φ∗f(gx) 6= φ∗f(x), contradicting the fact that
φ∗f ∈ A(X)G.

ii) Let y ∈ Y , let f1, ..., fr generate the maximal ideal in A(X)G corre-
sponding to the point y.
First, we notice that the fi generate a proper ideal in A(X). By con-

tradiction, if
n
∑

i=1

fiA(X) = A(X), then by Lemma 1.2.2

1 ∈
n
∑

i=1

fiA(X)G, contradicting the fact that
n
∑

i=1

fiA(X)G is a maximal
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ideal.

Hence there exists a maximal ideal of A(X) containing
n
∑

i=1

fiA(X).

Let x be the point of X corresponding to this maximal ideal. Then

x ∈ V (
n
∑

i=1

fiA(X)) so that fi(x) = 0 for any i = 1, ..., r. Since the fi

are elements of A(Y ), it follows that

fi(φ(x)) = φ∗(fi(x)) = fi(x) = 0

which implies φ(x) = y.

iii) It suffices to prove the claim for distinguished open subsets in Y , so
we may assume that U = Yf for some f ∈ A(Y ). In this case,
φ−1(U) = Xf . Hence we have to prove that (A(X)G)f = (A(X)f )

G

for any f ∈ A(X)G.
Let h/fn ∈ (A(X)f )

G. Then, for any g ∈ G, (h/fn)g = h/fn. Let
x ∈ X.

(h/fn)(gx) = h(gx)/fn(gx) = h(gx)/fn(x) since f ∈ A(X)G

This must be equal to h(x)/fn(x). But this implies that

fn(x)(h(gx)− h(x)) = 0 in k.

Then necessarily h(gx) = h(x) and h ∈ A(X)G.
Hence we get (A(X)f )

G ⊆ (A(X)G)f . Since the other inclusion is triv-
ial, we get (A(X)G)f = (A(X)f )

G as desired.

iv) Follows immediately by (v). If W is a closed invariant subset of X and
y ∈ φ(W ) \ φ(W ), we can apply (v) to W1 = W and W2 = φ−1(y) to
get y 6∈ φ(W ), which is a contradiction.
Notice thatW2 is indeed an invariant subset ofX, since φ is G-invariant
by (i).

v) Let W1 and W2 be disjoint closed invariant subsets of X. By Lemma
1.1.2 there exists f ∈ A(X)G such that f(W1) = 0 and f(W2) = 1.
Since A(X)G = A(Y ), we may consider f as an element of A(Y ) in
order to get f(φ(W1)) = 0, f(φ(W2)) = 1.
This implies that φ(W1)∩φ(W2) = ∅, since f is constant on both φ(W1)
and φ(W2), so it is constant on the respective closures.



CHAPTER 2. CONSTRUCTION OF QUOTIENTS 21

Corollary 2.1.1. Let x1, x2 ∈ X and let Y and φ : X → Y be as above.
Then
φ(x1) = φ(x2) ⇔ O(x1) ∩O(x2) 6= ∅

Proof. =⇒) TakeWi = O(xi). By contradiction, assumeW1∩W2 = ∅. Then,
by part v) of Theorem 2.1.1

φ(W1) ∩ φ(W2) = ∅.

But φ(Wi) = φ(xi) since φ is G-invariant, hence we get φ(x1) 6= φ(x2), con-
tradicting the assumption.

⇐=) This is clear, since φ is constant on orbits and so it is constant on
their closures.

Now, we are going to prove that the variety Y constructed in Theorem
2.1.1 is a categorical quotient for the action of G on X. Actually, an even
stronger result is true. In order to state this result, we need the following
lemma.

Lemma 2.1.1. Let X,G, Y be as in Theorem 2.1.1, and let U be an open
subset of Y . If W1,W2 are closed disjoint invariant subsets of φ−1(U), then
φ(W1) ∩ φ(W2) = ∅.

Proof. Let Wi be the closure of Wi in X. Assume that there exists y ∈
φ(W1) ∩ φ(W2).
Let us consider the closed subsets φ−1(y) ∩W1 and W2 whose images under
φ both contain the point y. Hence, by part (v) again we get

φ−1(y) ∩W1 ∩W2 6= ∅

However, by assumption W1 and W2 are closed in φ−1(U). Hence

φ−1(U) ∩W1 ∩W2 = W1 ∩W2 = ∅

and this leads to a contradiction, since clearly

φ−1(y) ∩W1 ∩W2 ⊂ φ−1(U) ∩W1 ∩W2.

Corollary 2.1.2. Let X,G, Y be as in Theorem 2.1.1. Let U be an open
subset of Y .
Then (U, φ|U ) is a categorical quotient of φ−1(U) by G.
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Proof. Let Z be any variety, and ψ : φ−1(U) → Z be aG-invariant morphism.
We have to show that there exists a unique morphism χ : U → Z such that
χ◦φ = ψ. Uniqueness immediately follows from the fact that φ is surjective,
so we have only to prove existence.
We first prove that there exists a map χ such that χ ◦ φ = ψ. The claim is
that ψ(φ−1(y)) consists of one point for any y ∈ U . So, let z1, z2 ∈ ψ(φ−1(y)),
z1 6= z2. If we take Wi = ψ−1(zi), we get two disjoint closed invariant subsets
of φ−1(U) such that φ(W1) ∩ φ(W2) 6= ∅, contradicting lemma 2.1.1. Notice
that to conclude that the Wi are invariant we used the fact that ψ is G-
invariant.
Hence we can define χ : U → Z in the following way:

χ(y) := ψ(φ−1(y))

This is well defined and clearly satisfies χ ◦ φ = ψ.
Let V be an open subset of Z. Since φ is surjective by part ii) of Thereom
2.1.1, we get

χ−1(V ) = Y \ φ[X \ φ−1(χ−1(V )] = Y \ φ[X \ ψ−1(V )]

The set ψ−1(V ) is open since ψ is a morphism, so that X \ ψ−1(V ) is closed
in X. Moreover, it is invariant since ψ is G-invariant. Applying (iv) we get
that φ(X \ ψ−1(V )) is closed, hence χ−1(V ) is open.
Therefore, in order to prove that χ is a morphism, it is enough to prove that
χ |χ−1(V ) is a morphism when V is an affine open subset of Z. Since ψ is
G-invariant, the image of

ψ∗ : A(V ) → A(ψ−1(V ))

is contained in A(ψ−1(V ))G. By part (iii) of Theorem 2.1.1

φ∗ : A(χ−1(V )) → A(φ−1(χ−1(V ))G = A(ψ−1(V ))G

is an isomorphism, so we can consider its inverse (φ∗)−1. Hence we get a
k-algebra homomorphism

(φ∗)−1 ◦ ψ∗ : A(V ) → A(χ−1(V ))

which determines a morphism χ′ : χ−1(V ) → V since V is affine. By con-
struction of χ′, we have

χ′ ◦ (φ |ψ−1(V )) = ψ |ψ−1(V )

Since χ ◦ φ = ψ, we also have

(χ |χ−1(V )) ◦ (φ |ψ−1(V )) = ψ |ψ−1(V )

By the surjectivity of φ, this implies χ |χ−1(V )= χ′, so that χ |χ−1(V ) is a
morphism.
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Corollary 2.1.3. Assume we are in the same setting as Theorem 2.1.1.
Moreover, let U be an open subset of Y such that the action of G on φ−1(U)
is closed. Then U is an orbit space for this action.

Proof. We have already shown that U is a categorical quotient.
Let x1, x2 ∈ φ−1(U) be points belonging to different orbits. We have to show
φ(x1) 6= φ(x2).
By Corollary 2.1.1, it suffices to show that O(x1) ∩O(x2) = ∅.
This follows by Lemma 2.1.1, by simply takingWi = O(xi), where this choice
makes sense since the action of G on φ−1(U) is closed.

Examples. Construction of affine quotients

• Let Gm acts on A
n by scalar multiplication: t(x1, ..., xn) = (tx1, ..., txn).

There are two types of orbits: punctured lines through the origin and
the origin itself. We notice that in this case the origin is the only closed
orbit, moreover, it belongs to the closure of every orbit.
It follows that the invariant polynomials are indeed constant, since they
must be constant on orbit closures, hence A(An)Gm = k. By Corollary
2.1.2, the affine variety corresponding to k, which is a single point, is
a categorical quotient for this action.
However, this quotient is not an orbit space, since the action is not
closed. Even worse, by Corollary 2.1.1 all the orbits are identified in
the categorical quotient, since their closures contain the origin.

• Let Gm acts on A
2 by t(x, y) = (tx, t−1y). There are four types of

orbits:

i) conics of the form {(x, y) : xy = α} for any α ∈ k∗,

ii) the punctured x-axis {(x, 0) : x 6= 0},

iii) the punctured y-axis {(0, y) : y 6= 0},

iv) the origin.

Again, in order to construct a categorical quotient for the action, we
have to determine the ring of invariants.
Let us consider the following k-algebra homomorphism.

f : k[z] → k[x, y]
z 7−→ xy
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We claim that this is an isomorphism onto the ring of Gm- invariant
functions.
First, it is clear from the form of the orbits that k[xy] ⊆ A(A2)Gm .
Conversely, assume that

∑

i,j

aijx
iyj is invariant. Since the action of Gm

on k[x, y] is given by

t(
∑

i,j

aijx
iyj) =

∑

i,j

ti−jaijx
iyj

it follows that
∑

i,j

ti−jaijx
iyj =

∑

i,j

aijx
iyj for any t ∈ Gm.

This is true only if aij = 0 whenever i 6= j.
This is equivalent to say that the given polynomial belongs to k[xy], as
desired.
Since we have shown that the ring of invariants is k[z], we are able to
conclude that the pair (A1, φ) is a categorical quotient, where
φ : A2 → A

1 is the morphism sending (x, y) 7−→ xy, induced by the
inclusion k[xy] ⊆ k[x, y].

• Let Gm acts on the affine variety A
1 \ {0} by multiplication. In this

simple case, we have only one orbit which is the whole A
1 \ {0}. Then

any Gm-invariant morphism A
1 \ {0} → Z must be constant, hence we

have a single point as a categorical quotient.
In this case the categorical quotient is an orbit space, since the action
is trivially closed.

2.2 Projective quotients

In this section we are going to construct quotients for the actions of geomet-
rically reductive groups on projective varieties. The idea is the following one:
we would like to cover our projective variety X by affine open subsets invari-
ant under the action of the group and glue the respective affine quotients.
However, in general it is not possible to cover all of X in such a way, so we
will actually construct quotients for a suitable open invariant subset of X.
We start by giving the following general definitions.

Definition 2.2.1. Let G be an algebraic group acting on a variety X.
A good quotient ofX by G is a pair (Y, φ) where Y is a variety and φ : X → Y
is an affine morphism, satisfying the properties (i)− (v) of Theorem 2.1.1.
A geometric quotient is a good quotient which is also an orbit space.
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Proposition 2.2.1. The concepts of good and geometric quotients are local
with respect to Y , that is,

1) if (Y, φ) is a good (geometric) quotient of X by G and U is open in Y ,
then (U, φ|U) is a good (geometric) quotient of φ−1(U) by G;

2) if φ : X → Y is a morphism and {Ui} is an open covering of Y such that
for any i the pair (Ui, φ|Ui

) is a good (geometric) quotient of φ−1(Ui) by
G, then (Y, φ) is a good (resp. geometric) quotient of X by G.

Proof. 1) Parts (i)− (iii) are clear, so we have only to show (v), since we
recall that (iv) follows by (v). But (v) is just Lemma 2.1.1.

2) Parts (i) and (ii) are clear.
For (iii), let U be an open subset of Y . Notice that {U ∩ Ui} is an
open covering of U .
For any i, let us consider the following commutative diagram

A(U) A(φ−1(U))G

A(U ∩ Ui) A(φ−1(U ∩ Ui))
G

φ∗(U)

φ∗(U∩Ui)

where the vertical maps are the restrictions. If f ∈ A(φ−1(U))G, then
f|U∩Ui

∈ A(φ−1(U ∩ Ui))
G, and since φ∗(U ∩ Ui) is an isomorphism by

assumption, we get hi ∈ A(U ∩ Ui) whose image is f|U∩Ui
.

Since the hi are compatible on the restrictions, i.e hi|U∩Ui∩Uj
= hj|U∩Ui∩Uj

,
and the regular functions form a sheaf, we get the existence of a unique
element h ∈ A(U) such that h|U∩Ui

= hi. By the commutativity of the
diagram, φ∗(U)(h) = f and it is an isomorphism, as desired.

For (v), let W1,W2 be disjoint closed invariant subsets of X and by
contradiction assume there exists y ∈ φ(W1) ∩ φ(W2). Hence there
exist w1 ∈ W1 and w2 ∈ W2, such that φ(w1) = φ(w2) = y. Moreover,
since the Ui cover Y , there exists an index j such that y ∈ Uj. Let us
consider W ′

1 = W1 ∩ φ
−1(Uj) and W

′
2 = W2 ∩ φ

−1(Uj): since wi ∈ W ′
i

for i = 1, 2 and φ is G-invariant, it follows that they are non-empty
disjoint closed invariant subsets of φ−1(Uj). But y ∈ φ(W ′

1) ∩ φ(W ′
2),

contradicting that (Uj, φ|Uj
) is a good quotient of φ−1(Uj) by G.
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Proposition 2.2.2. Let (Y, φ) be a good quotient of X by G. Then

1) (Y, φ) is a categorical quotient of X by G;

2) φ(x1) = φ(x2) ⇔ O(x1) ∩O(x2) 6= ∅;

3) if the action of G on X is closed, then (Y, φ) is a geometric quotient.

Proof. The result follows from the proofs of Corollaries 2.1.1, 2.1.2, 2.1.3,
since there we never used that our varieties were affine, but only the fact
that we had a good quotient.

Now, let us assume that X is a projective variety. In order to consider
the action of a geometrically reductive group G on X, we need to talk about
invariant polynomials. However, in the context of projective varieties, the
action of G on X does not induce an action on k[x0, ..., xn] or any quotient
of this ring, since polynomials are not functions on P

n. We therefore make
the following definition.

Definition 2.2.2. A linearisation of an action of an algebraic group G on a
projective variety X is a linear action of G on kn+1 which induces the given
action on X.
A linear action of G on X is an action of G together with a linearisation.

Clearly, a linear action of G onX induces an action on k[x0, ..., xn]. Hence
the following definition makes sense.

Definition 2.2.3. Let X be a projective variety in P
n. For any linear action

of a geometrically reductive group G on X, a point x ∈ X is called

• semi-stable if there exists an invariant homogeneous polynomial f of
positive degree such that f(x) 6= 0;

• stable if dim O(x) = dim G and there exists an invariant homogeneous
polynomial f of positive degree such that f(x) 6= 0 and the action of
G on Xf is closed.

Remark. We denote by XSS(resp. XS
0 ) the set of semi-stable (resp. stable)

points of X. These sets do not depend only on the action of G on X,
but also on the embedding of X in P

n and the chosen linearisation of the
action. Notice that a point is not semi-stable if all non-constant invariant
homogeneous polynomial vanish at the point. The set of non-semi-stable
points is called the nullcone, denoted by N , and it is closed, since N =
V (S(X)G+) where S(X) is the homogeneous coordinate ring of X.

Our goal now is to show that XS
0 and XSS are open in X. In order to do

this, we need some general results.
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Proposition 2.2.3. Let f : X → Y be a surjective morphism of varieties, let
n = dim X and m = dim Y . Then the sets Yk := {y ∈ Y : dim f−1(y) ≥ k}
are closed in Y for all integers k.

Proof. The proof will be by induction on m. If m = 0 the result is trivial, so
we may assume m > 0.
By the Theorem on the dimension of a fibre, Yn−m = Y and there exists a
dense open subset U of Y such that dim f−1(y) = n−m for any y ∈ U .
Let Y ′ be the complement of U . Then Yk ⊆ Y ′ if k > n − m and Y ′ is a
proper closed subset of Y . Let Zi denote the irreducible components of Y ′,
then dim Zi < m, so if we consider the restriction fi : f

−1(Zi) → Zi, we
can conclude that Yk is closed in Zi by the inductive hypothesis. Hence Yk
is closed in Y , as desired.

Lemma 2.2.1. Let G be an algebraic group acting on a variety X.

i) For any x ∈ X, dim O(x) = dim G− dim Gx;

ii) For any integer n, the set {x ∈ X : dim O(x) ≥ n} is open, that is,
dim O(x) is a lower semi-continuous function of x.

Proof. i) Observe that O(x) is the image of the morphism

σx : G→ X
σx(g) = gx

and the fibres of σx are cosets of Gx, so that they all have dimension
equal to dim Gx. By a well-known result in dimension theory, it follows
that dim G = dim O(x) + dim Gx.

ii) By i) it suffices to show that dim Gx is an upper semi-continuous func-
tion of x. Let us consider the following morphism

φ : G×X → X ×X
(g, x) 7−→ (gx, x).

By the previous proposition, it follows that the function

G×X → N

P 7−→ dim φ−1(φ(P ))
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is upper semi-continuous.
By restricting to {(1, x) : x ∈ X}, which is clearly isomorphic to X, it
follows that the set {x ∈ X: dim φ−1(x, x) ≥ n} is closed in X.
We are done, since the fibre φ−1(x, x) is Gx × {x} ≃ Gx.

Lemma 2.2.2. The sets XSS and XS
0 are open in X.

Proof. For XSS it is clear from the remark after Definition 2.2.3, since it is
the complement of the nullcone.
For XS

0 , we first observe that the set L = {x ∈ X : dim O(x) = dim G} is
open in X by part ii) of the previous Lemma.
Let X0 :=

⋃

Xf where the union is taken over all invariant polynomials f
such that the action of G on Xf is closed.
It follows that XS

0 = L ∩ X0 is open in X0, which is open in X, thus the
stable set is open.

We are now ready to state the main result of this section.

Theorem 2.2.1. Let X be a projective variety in P
n. Then, for any linear

action of a geometrically reductive group G on X,

i) there exists a good quotient (Y, φ) of XSS by G, and Y is projective;

ii) there exists an open subset Y S of Y such that φ−1(Y S) = XS
0 and

(Y S, φ|XS
0

) is a geometric quotient of XS
0 ;

iii) if x1, x2 ∈ XSS,

φ(x1) = φ(x2) ⇔ O(x1) ∩O(x2) ∩X
SS 6= ∅.

Proof. i) Let X̃ be the affine cone overX, so thatA(X̃) = k[x0, ..., xn]/I(X).
By the theorem of Nagata, A(X̃)G is a finitely generated k-algebra.
Moreover, since the action of G on kn+1 is linear, the induced action on
A(X̃) preserves the degree of any homogeneous element. Hence A(X̃)G

is a k-algebra graded by degree, generated by the homogeneous ele-
ments f1, ..., fr.
Let Y be the projective variety whose homogeneous coordinate ring is
A(X̃)G.
If the fi are not of the same degree, say fi has degree di, let d := d1 · · · dr
and let us consider

(A(X̃)G)(d) = ⊕l≥0A(X̃)Gdl,
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which is finitely generated as a k-algebra by (A(X̃)G)
(d)
1 , and the cor-

responding projective variety Y ′.
Notice that the varieties Y and Y ′ are naturally isomorphic, simply by
taking the degree d-Veronese embedding.
Hence we have that the inclusion A(X̃)G ⊂ A(X̃) induces a well-defined
rational map of projective varieties

φ : X 99K Y
P 7−→ [f1(P ), ..., fr(P )]

whose indeterminacy locus is given by the points of X for which any
invariant homogeneous polynomial of positive degree vanish at them,
which is precisely the nullcone. Hence we get a morphism

φ : XSS → Y .

For f ∈ A(X̃)G, the affine open subsets Yf cover Y and by construction
of φ we have φ−1(Yf ) = Xf . Moreover, notice that the Xf cover XSS

by definition.
Let X̃f and Ỹf denote the affine cones over Xf and Yf respectively. We
recall that if R is a graded k-algebra, R0 denotes the subring of R given
by elements of degree 0. Then we have

A(Yf ) = A(Ỹf )0 = (A(X̃)G)f )0 = ((A(X̃)f )0)
G = (A(X̃f )0)

G =
A(Xf )

G

and so by Theorem 2.1.1 the pair (Yf , φ |Xf
) is a good quotient of Xf

by G.
Finally, we apply part (2) of Proposition 2.2.1 to get that (Y, φ) is a
good quotient of XSS by G.

ii) Put Y S = φ(XS
0 ) and define Y 0 to be the union of those Yf for which

the action of G on Xf is closed.
Clearly XS

0 ⊆ φ−1(Y 0) and so Y S ⊆ Y 0. Let X0 = φ−1(Y 0); it follows
from part 1) of Proposition 2.2.1 that (Y 0, φ |X0) is a good quotient of
X0, but it is indeed a geometric quotient since the action of G on X0

is closed.
We claim that we have XS

0 = φ−1(Y S).
Indeed, if x ∈ φ−1(Y S), then φ(x) ∈ Y S so that φ(x) = φ(x′) for a
suitable x′ ∈ XS

0 . This implies that O(x) ∩O(x′) 6= ∅ since (Y 0, φ |X0)
is a geometric quotient, hence x = gx′ ∈ XS

0 , since the stable set is
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invariant.
Moreover, again using that (Y 0, φ |X0) is a geometric quotient and the
fact that the stable set is invariant, we get that

Y 0 \ Y S = φ(X0 \XS
0 ).

Notice thatX0\XS
0 is a closed invariant subset ofX0, hence by property

(iv) of a geometric quotient, φ(X0 \XS
0 ) is closed in Y 0, so that Y S is

open in Y 0 and so it is open in Y .
Finally, we apply part 1) of Proposition 2.2.1 once again, to get that
(Y S, φ |XS

0

) is a geometric quotient of XS
0 , as desired.

iii) follows immediately from Proposition 2.2.2.

Remark. The quotient Y is usually denoted by X//G, in order to remind
that it is not necessarily an orbit space.

Example. Consider the linear action of Gm on X = P
n by

t[x0, x1, ..., xn] = [t−1x0, tx1, ..., txn].

In order to construct a quotient, we have to determine the ring of invariants
k[x0, ..., xn]

Gm . Clearly, the polynomials x0x1, x0x2, ..., x0xn are invariants.
We claim that these polynomials generate the ring of invariants.
If f ∈ k[x0, ..., xn], f =

∑

m=(m0,...,mn)

a(m)xm0

0 xm1

1 · · · xmn
n , then

t.f =
∑

m=(m0,...,mn)

a(m)tm1+...+mn−m0xm0

0 xm1

1 · · · xmn
n .

Hence f is invariant if and only if a(m) = 0 for all m such that m0 6=
n
∑

i=1

mi.

Notice that, if m satisfies m0 =
n
∑

i=1

mi, then

xm0

0 xm1

1 ...xmn
n = (x0x1)

m1 ...(x0xn)
mn ,

that is, if f is invariant then f ∈ k[x0x1, ..., x0xn].
It follows that the ring of invariants is k[x0x1, ..., x0xn], which is isomorphic
to k[y0, ..., yn−1]. Hence in this case the quotient Y is Pn−1.
Moreover, since we know the generators of the ring of invariants, we have an
explicit expression of the rational map

φ : Pn 99K P
n−1

[x0, ..., xn] 7−→ [x0x1, ..., x0xn].
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From the expression we immediately get that the nullcone is the projective
variety defined by the homogeneous ideal (x0x1, ..., x0xn). It follows that

XSS =
⋃n
i=1Xx0xi = {[x0, ..., xn] ∈ P

n : x0 6= 0 and (x1, ..., xn) 6= 0}

and XSS ≃ A
n \ {0}, where we are identifying Xx0 with A

n in the natural
way.
Therefore we have that

φ : An \ {0} → P
n−1

is a good quotient for the action on XSS. Moreover, the action of Gm on
A
n \ {0} is closed, since the orbits are exactly punctured lines through the

origin, hence (Pn−1, φ) is indeed a geometric quotient of XSS.

In general, the computation of the ring of invariants is difficult, so we
would like to have other criterion to determine the (semi-)stability of a point.
We will need the following general result. For the proof we refer to [4].

Lemma 2.2.3. Let G be an algebraic group acting linearly on a variety
X. For any x ∈ X, O(x) is an open subset of O(x), hence the boundary
O(x) \ O(x) is a union of orbits of G, all of which have dimension strictly
less than dim O(x).
In particular, the orbits having minimum dimension are closed.

Proof. See [4] (1.8).

Proposition 2.2.4. Let G be a geometrically reductive group acting linearly
on the projective variety X. A point x is stable if and only if it is semistable,
O(x) is closed in XSS and dim O(x) =dim G.

Proof. ⇒) Assume x is stable and let x′ ∈ O(x) ∩ XSS, then φ(x) = φ(x′)
and so x′ ∈ φ−1(φ(x)) ⊂ φ−1(Y S) = XS

0 . Since the action of G on XS
0 is

closed, x′ ∈ O(x) and hence O(x) is closed in XSS.
⇐) Conversely, since x is semistable, there exists an invariant homogeneous
polynomial f of positive degree such that x ∈ Xf . Since O(x) is closed in
XSS by assumption, it is also closed in the affine open subset Xf .
By Lemma 2.2.1 the set Z := {z ∈ Xf : dim O(z) < dim G } is closed
in Xf . Hence Z and O(x) are closed disjoint invariant subsets of the affine
variety Xf . By Lemma 1.1.2 there exists h ∈ A(Xf )

G such that h(Z) = 0,
h(O(x)) = 1.
Since A(Xf ) is a quotient of (k[x0, ..., xn]f )0, by Lemma 1.2.1 there exist
positive integers t, r and a homogeneous invariant polynomial h′ such that
ht = h′/f r.
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Clearly x ∈ Xfh′ and Xfh′ is disjoint from Z, hence dim O(y) =dim G for
any y ∈ Xfh′ .
It now follows from Lemma 2.2.3 that the action of G on Xfh′ is closed, since
all the orbits have the same dimension, hence x is stable.

We are now ready to give a topological criterion for stability. From now
on we will always assume that G is a geometrically reductive group acting
linearly on a projective variety X.

Proposition 2.2.5. Let x ∈ X and let x̃ ∈ kn+1 be a non-zero point lying
over x. Then:

i) x is semi-stable if and only if 0 /∈ O(x̃);

ii) x is stable if and only if dim Gx̃ = 0 and O(x̃) is closed in X̃.

Proof. i) If x is semi-stable, there exists a G-invariant homogeneous poly-
nomial f such that f(x) 6= 0. We may view f as an invariant polynomial
on X̃ with f(x̃) 6= 0. It follows that f(O(x̃)) 6= 0 and so 0 /∈ O(x̃).

Conversely, if 0 /∈ O(x̃), by Lemma 1.1.2 there exists an invariant
polynomial f such that f(0) = 0 and f(O(x̃)) = 1.
We may take f to be homogeneous: in fact, if we decompose f =
f0 + ... + fr into the homogeneous components, then each fi must be
G-invariant since the action is linear, hence at least one of them does
not vanish on x̃. It follows that x is semi-stable, as desired.

ii) If x is stable, then dimGx = 0 and there exists f homogeneous invariant
polynomial such that x ∈ Xf and O(x) is closed in Xf .
First, we notice that Gx̃ ⊂ Gx, hence the stabiliser of x̃ is also zero
dimensional. As before, we view f as a function on X̃ and we consider
the closed subset

Z := {z ∈ X̃ : f(z) = f(x̃)}

of X̃. Hence it suffices to show that O(x̃) is closed in Z. The natural
projection X̃ \ {0} → X restricts to a finite morphism π : Z → Xf .
The preimage π−1(O(x)) is closed and G-invariant, and it is the union
of a finite number of orbits as π is finite. Moreover, since π is finite,
every such orbit has dimension equal to dim G, and so it is closed in
the preimage by Lemma 2.2.3. In particular, we get that O(x̃) is closed
in Z.
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Conversely, assume that dim Gx̃ = 0 and O(x̃) is closed in X̃. Then,
since the action is linear, 0 /∈ O(x̃) = O(x̃), and thus x is semi-stable
by part i). Hence there exists a non-constant homogeneous invariant
polynomial f such that x ∈ Xf . As before, we consider the finite mor-
phism π : Z → Xf .
Since π(O(x̃)) = O(x) and π is finite (hence closed), we have that O(x)
is closed in Xf . Moreover, dim O(x) = dim G and hence x has zero
dimensional stabiliser. Since O(x) is closed in Xf for every f such that
x ∈ Xf , it follows that O(x) is closed in XSS = ∪fXf . Hence x is
stable by Proposition 2.2.4.

2.3 Hilbert-Mumford criterion

Now we are going to give a numerical criterion which can be used to determine
(semi)-stability of a point.

Definition 2.3.1. A 1-parameter subgroup (1−PS) of G is a non-trivial
group homomorphism λ : Gm → G.

For a 1-PS λ, let λx : Gm → X to be the morphism given by λx(t) = λ(t)x.
There is a natural embedding of Gm into P

1, namely,

t 7−→ [1 : t].

Next, since X is a projective variety, the morphism λx extends uniquely to
λ̃x : P

1 → X, and we use a particular notation for this extension:

limt→0 λ(t)x := λ̃x([1, 0])
limt→∞ λ(t)x := λ̃x([0, 1])

Now, let x̃ ∈ X̃ be a non-zero lift of x. Then we consider the morphism
λx̃ : Gm → X̃ given by t 7−→ λ(t)x̃. However, X̃ is not projective, hence this
morphism may or may not extend to P

1. If it does, as before we denote the
limits by

limt→0 λ(t)x̃
limt→∞ λ(t)x̃.

Since P
1 is complete, λx̃(P

1) is closed in X̃, hence λx(Gm) ⊆ λx̃(P
1), so that

any point in the boundary λx(Gm) \ λx(Gm) must be one of the two limit
points.
Since the action of Gm on kn+1 is linear, it is diagonalisable; therefore there
exists a basis e0, ..., en of kn+1 such that for any i
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λ(t)ei = triei

where ri ∈ Z. With respect to this basis, x̃ =
n
∑

i=0

x̃iei and therefore

λ(t)x̃ =
n
∑

i=0

tri x̃iei.

We let the λ-weights of x to be the integers ri such that xi 6= 0. We notice
that these integers do not depend on the choice of the lift x̃. In fact, by
taking ax̃ for any a ∈ k∗ we get

λ(t)ax̃ =
n
∑

i=0

triax̃iei

and axi 6= 0 ⇔ xi 6= 0.

Definition 2.3.2. The Hilbert-Mumford weight of x at λ is

µ(x, λ) := max {−ri : xi 6= 0}

Remark. The Hilbert-Mumford weight µ(x, λ) is the unique integer µ such
that limt→0 t

µλ(t)x̃ exists and it is non-zero.
In fact, let x̃ be a non-zero lift and assume as before that we have chosen a
basis such that the action of λ(t) is given by

λ(t)x̃ = λ(t)(x0, ..., xn) = (tr0x0, ..., t
rnxn).

By definition of µ(x, λ), we get µ(x, λ) + ri ≥ 0 for any i such that xi 6= 0,
with equality for at least one index i. It follows that

ỹ := limt→0 t
µ(x,λ)λ(t)x̃ = (y0, ..., yn)

where yi = xi if ri = −µ(x, λ) and 0 otherwise. Hence ỹ exists and it is
non-zero.

Lemma 2.3.1. Let λ be a 1-parameter subgroup and x ∈ X. The Hilbert-
Mumford weight has the following properties:

i) µ(x, λ) < 0 ⇔ limt→0 λ(t)x̃ = 0;

ii) µ(x, λ) = 0 ⇔ limt→0 λ(t)x̃ exists and it is non-zero;

iii) µ(x, λ) > 0 ⇔ limt→0 λ(t)x̃ does not exist.

Proof. i) µ(x, λ) < 0 if and only if ri > 0 for any i.
Since λ(t)x̃ = (tr0x0, ..., t

rnxn), this is equivalent to limt→0 λ(t)x̃ = 0.
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ii) This is just the previous remark.

iii) µ(x, λ) > 0 if and only if there exists ri < 0 such that xi 6= 0, which is
equivalent to say that limt→0 λ(t)x̃ does not exist.

We notice that limt→∞ λ(t)x̃ = limt→0 λ
−1(t)x̃, where λ−1(t) = λ(t)−1.

In particular, from the previous lemma we get:

i) µ(x, λ−1) < 0 ⇔ limt→∞ λ(t)x̃ = 0;

ii) µ(x, λ−1) = 0 ⇔ limt→∞ λ(t)x̃ exists and it is non-zero;

iii) µ(x, λ−1) > 0 ⇔ limt→∞ λ(t)x̃ does not exist.

Following the discussion above and the topological criterion (Proposition
2.2.5) we get the following result for (semi-)stability with respect to the
action of λ(Gm) on X.

Proposition 2.3.1. Let G be a geometrically reductive group acting linearly
on the projective variety X and let x ∈ X. Assume that λ is a 1-parameter
subgroup of G. Then:

i) x is semi-stable for the action of λ(Gm) if and only if µ(x, λ) ≥ 0 and
µ(x, λ−1) ≥ 0;

ii) x is stable for the action of λ(Gm) if and only if µ(x, λ) > 0 and
µ(x, λ−1) > 0;

Proof. i) By the topological criterion, x is semi-stable if and only if
0 /∈ λx̃(Gm). As we already noticed, any point in the boundary λx̃(Gm)\
λx̃(Gm) is either

limt→0 λ(t)x̃ or limt→∞ λ(t)x̃ = limt→0 λ
−1(t)x̃.

Hence 0 /∈ λx̃(Gm) if and only if the limits do not exist or they exist and
they are non-zero. By Lemma 2.3.1 this is equivalent to µ(x, λ) ≥ 0
and µ(x, λ−1) ≥ 0.

ii) By the topological criterion, x is stable if and only if dim λ(Gm)x̃ = 0
and λx̃(Gm) is closed. The orbit is closed if and only if the boundary
is empty, that is, if and only if both limits

limt→0 λ(t)x̃ or limt→∞ λ(t)x̃ = limt→0 λ
−1(t)x̃
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do not exist, which by Lemma 2.3.1 is equivalent to µ(x, λ) > 0 and
µ(x, λ−1) > 0.
Moreover, if these inequalities hold, then λ(Gm) cannot stabilise x̃ (oth-
erwise the limits would both exist) and so λ(Gm)x̃ is a proper closed
subset of λ(Gm). Hence, we must have dim λ(Gm)x̃ = 0.

Remark. If x is (semi-)stable for G, then it is (semi-)stable for all subgroups
H of G, as every G-invariant function is clearly H-invariant.
Hence, by Proposition 2.3.1 we get

x is semi-stable =⇒ µ(x, λ) ≥ 0 ∀ 1-parameter subgroup λ of G;
x is stable =⇒ µ(x, λ) > 0 ∀ 1-parameter subgroup λ of G.

Theorem 2.3.1 (Hilbert-Mumford Criterion). Let G be a geometrically re-
ductive group acting on a projective variety X, let x ∈ X. Then

1. x is semi-stable ⇔ µ(x, λ) ≥ 0 ∀ 1-parameter subgroup λ of G;

2. x is stable ⇔ µ(x, λ) > 0 ∀ 1-parameter subgroup λ of G.

This is equivalent to say that if x is not stable, then there exists a 1-
parameter subgroup λ such that µ(x, λ) ≤ 0 and analogously if x is not semi-
stable. These statements are at least plausible if G has enough 1-parameter
subgroups; in fact this is the case if G is geometrically reductive.
We will give the proof in the particular case where G = SL(n). In order to
achieve this goal, we need some preliminary results.
First we recall a general definition:

Definition 2.3.3. A morphism of varieties f : X → Y is called proper if,
for every variety Z, the morphism

f × 1Z : X × Z → Y × Z

is closed.

It is well-known that a finite morphism is proper.
Notice that a variety X is complete if and only if the morphism X → {pt}
is proper. In particular, this implies that the preimage of a complete variety
under a proper morphism is again complete.
In the proof of the criterion we will use the following result.

Lemma 2.3.2. Let G be a linear algebraic group(not necessarily geometri-
cally reductive) acting on arbitrary variety X. Then the morphism
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σx : G→ X
σx(g) = gx

is proper if and only if O(x) is closed in X and Gx is finite.

Proof. ⇒) If σx is proper, then O(x) is clearly closed, being the image of σx.
Moreover, as we already noticed Gx = σ−1

x (x) is both complete and affine, so
it must be finite.
⇐) Conversely, assume O(x) is closed and Gx is finite. In order to prove that
σx is proper, it suffices to show that the induced morphism σ′

x : G → O(x)
is finite.
By assumption, σ′

x has finite fibres, but being finite is a much stronger prop-
erty.
Actually, it suffices to find a non-empty open subset U in O(x) such that the
restriction σ′

x |σ′−1
x (U) is finite; since in this case we can use the action of G

to cover O(x) by similar open subsets.
Hence the proof follows from this more general fact.

Proposition 2.3.2. Let f : X → Y be a dominant morphism of varieties
such that f has finite fibres. Then there exists a non-empty open subset U in
Y such that

f |f−1(U): f
−1(U) → U

is finite.

Proof. Let V, V ′ be non empty open affine subsets of X, Y respectively, such
that f(V ) ⊂ V ′ and consider the induced homomorphism

f ∗ : A(V ′) → A(V ).

Since f is dominant, f ∗ is injective. Moreover f has finite fibres, so we have
dim V = dim V ′. It follows that every element g of A(V ) satisfies an equation
of the form

gr + f ∗(a1)g
r−1 + ...+ f ∗(ar) = 0

for some a1, ..., ar belonging to the quotient field of A(V ′). Notice that f ∗(ai)
is well defined since f ∗ is injective.
We can apply this to a finite set of generators of A(V ). Let h be an element
of A(V ′) such that hai ∈ A(V ′) for every ai of any of the finite number of
equations (for instance, we can just take the product of all the denominators
of ai). It follows that A(V )f∗(h) is integral over A(V

′)h, which is equivalent
to say that the restriction

f : Vh◦f → V ′
h
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is finite. Since X \ (Vh◦f ) is a proper closed subset of X, it follows that

dim X \ (Vh◦f ) < dim X = dim Y ;

the desired result follows by taking U = V ′
h ∩ (Y \ f(X \ Vh◦f )).

Now we can go back to our situation of a geometrically reductive group
G acting linearly on a projective variety X.

Corollary 2.3.1. Let x ∈ X and x̃ be a non-zero point lying over x. Then
x is stable if and only if the morphism

σx̃ : G→ kn+1

σx̃(g) = gx̃

is proper.

Proof. This result follows immediately from the previous lemma and the
topological criterion for stability.

In the proof of the Hilbert-Mumford criterion we will use the valuative
criterion for properness, that we now state in a form which is suitable for our
purpose.
Let us denote by R the ring of formal power series k[[T ]] and let K = k((T ))
be the field of fractions of R. For any variety X, we can consider R-valued
and K-valued points of X. In particular, if X is affine, we can just consider
generators of I(X) and then take common zeroes of these polynomials in Rn

and Kn (this makes sense since k ⊂ R). We denote these sets of points by
XR and XK respectively.
Notice that there is a natural map XR → X obtained by substituting 0 for
the indeterminate T .

Theorem 2.3.2 (Valuative criterion for properness). Let f : X → Y be a
morphism of varieties. Then

i) if y ∈ f(X) there exists x ∈ XK such that fK(x) ∈ YR, (fK(x))T=0 = y;

ii) if f is not proper, there exists x ∈ XK such that fK(x) ∈ YR and
x /∈ XR.

The geometric idea behind this result is the following one: a morphism
f : X → Y is proper if given any smooth curve C in X and any point p ∈ C,
any morphism C \{p} → X can be extended uniquely to a morphism C → X
in such a way that the following diagram commutes:
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C \ {p} X

C Y

f∃!

Then our version can be obtained by localising the construction above. Full
details, in a more general setting, can be found in [9] [Chapter 2, Theorem
7.3.8].

Lemma 2.3.3. Let R and K be as in the valuative criterion and let M be
any n× n-matrix with entries in K. Then there exist A,B ∈ SL(n,R) such
that M = ADB where D = diag(a1, ..., an) and ai divides ai+1 for any i.

Proof. Clearly we may assume M 6= 0 and let mij be the entry with mini-
mum valuation. After multiplying on left and right by permutation matrices,
we may assume that this entry is exactly m11. We can write















1 0 0 0 · · · 0
y2 1 0 0 · · · 0
y3 0 1 0 · · · 0
...

. . .

yn 0 · · · 0 1















M















1 z2 z3 z4 · · · zn
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .

0 · · · 0 1















=















m11 0 · · · 0
0 ∗ · · · ∗
0 ∗ · · · ∗
... ∗ · · · ∗
0 ∗ · · · ∗















where yi = −mi1/m11 and zj = −m1j/m11.
Notice that by the way we choose m11, both yi and zj belongs to R. Thus
both of the matrices on the left hand side belong to SL(n,R).
Now we just repeat the same procedure on the (n−1)× (n−1) submatrix on
the right hand side, until we obtain a diagonal matrix D = diag(m1, ...,mn)
where for any i the valuation of mi is at most the valuation of mi+1, as
desired.

Now we are ready to give the proof of the Hilbert-Mumford criterion.

Proof. (Theorem 2.3.1, G = SL(m)) Assume that x is not stable. Then, by
Corollary 2.3.1 σx̃ is not proper, so we can apply part ii) of the valuative
criterion for properness to get g ∈ SL(m,K) such that gx̃ ∈ Rn+1 and
g /∈ SL(m,R).
By Lemma 2.3.3 we get

g = g1hg2,

where g1, g2 ∈ SL(m,R) and h = diag(a0, ..., am−1) where ai ∈ K. Since
R is a DV R with maximal ideal (T ), then for any i we have ai = uiT

ri ,
where ui is a unit of R and ri is a suitable integer. Let us consider the
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matrix D = diag(u−1
0 , ..., u−1

m−1). Notice that D ∈ SL(m,R) since det h = 1,
moreover

g = g1D
−1(Dh)g2

and we may assume h = diag(T r0 , ..., T rm−1) up to multiplying by D and
D−1 as above.
Since det h = 1, then it follows that r0 + ... + rm−1 = 0. Moreover, not all
ri = 0, since otherwise g would belong to SL(m,R).
Let g2 be the element of SL(m) obtained by substituting T = 0 in g2, and
define a 1-parameter subgroup of SL(m) in the following way:

λ(t) = g−1
2 diag(tr0 , ..., trm−1)g2.

Let e0, ..., en be a basis of k
n+1 diagonalising λ; so that there exist l0, ..., ln ∈ Z

such that λ(t)ei = tliei.

So x̃ =
n
∑

i=0

x̃iei and we have to prove that µ(x, λ) ≤ 0, that is, if x̃i 6= 0 then

li ≥ 0.
Notice that we may regard ei as a basis of Kn+1; by definition of λ then we
get

g−1
2 hg2ei = T liei.

Now we have

g−1
2 g1

−1gx̃ = g−1
2 g1

−1(g1hg2)x̃ = (g−1
2 hg2)g

−1
2 g2x̃,

and so

(g−1
2 g1

−1gx̃)i = T li(g−1
2 g2x̃)i.

Finally we get

(g−1
2 g2x̃)i = T−li(g−1

2 g1
−1gx̃)i ∈ T−liR. (∗)

Notice that in order to conclude that (g−1
2 g1

−1gx̃)i ∈ R, we used the assump-
tion gx̃ ∈ Rn+1.
The left hand side of (∗) belongs to R and has constant term x̃i by definition
of g2.
Now assume that x̃i 6= 0. Then by (∗) it necessarily follows li ≥ 0, as desired.

Now assume x is not semi-stable. Then we argue exactly as before to get
equation (∗). Moreover, by the topological criterion x is not semi-stable if
and only if 0 ∈ O(x), so by part i) of the valuative criterion for properness
we may further assume that (gx̃)T=0 = 0.
Hence in this case the right hand side of (∗) belongs to T−li+1R, so we deduce
that if x̃i 6= 0 then li > 0, which is equivalent to µ(x, λ) < 0.
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Now we give a simple application of the Hilbert-Mumford criterion.

Example. We consider again the action ofGm onX = P
n given by t[x0, ..., xn] =

[t−1x0, tx1, ..., txn]. Since G = Gm, by Proposition 2.3.1 it suffices to compute
µ(x, λ) and µ(x, λ−1) where λ is just the identity of Gm.
Assume x̃ = (x0, ..., xn) lies over x ∈ P

n. Then

limt 7→0 λ(t)x̃ = (t−1x0, tx1, ..., txn)

exists if and only if x0 = 0. In such a case, µ(x, λ) = −1 and otherwise
µ(x, λ) = 1. Similarly

limt 7→0 λ
−1(t)x̃ = (tx0, t

−1x1, ..., t
−1xn)

exists if and only if x1 = ... = xn = 0. In this case, µ(x, λ−1) = −1 and
otherwise µ(x, λ−1) = 1.
Therefore, we get that a point x ∈ P

n is stable if and only if it is semi-stable
and we have

XSS = XS
0 = {[x0, ..., xn] : x0 6= 0 and (x1, ..., xn) 6= (0, ..., 0)},

which agrees with what we have already computed using the invariants.



Chapter 3

Projective hypersurfaces

In this chapter we will consider the problem of classifying projective hyper-
surfaces of a fixed degree d up to a linear change of coordinates.
More precisely, let G = SLn+1 acts on A

n+1 in the natural way. This action
induces an action on the subspace k[x0, ..., xn]d of homogeneous polynomials
of degree d for any positive integer d. This space has dimension

N =

(

n+ d

d

)

and thus it can be identified with A
N .

A non-zero homogeneous polynomial F of degree d defines a projective hy-
persurface in P

n given by V (F ). If F is irreducible, then this will be a variety
(irreducible).
Since any non-zero scalar multiple of a homogeneous polynomial define the
same hypersurface, we consider the following projective space:

Hypd(n) := P(k[x0, ..., xn]d) ≃ P
N−1.

A point of this space is called a hypersurface of degree d.
Clearly, the action of SLn+1 on k[x0, ..., xn]d induces a linear action of SLn+1

on Hypd(n) given by

(g · F )(p) = F (g−1 · p) for any g ∈ SLn+1, F ∈Hypd(n).

Now we are going to study this action, and we will try to describe the semi-
stable and stable points.
For this chapter, we mainly refer to [5] (Chapter 10), [11] (Chapter 7) and
[13] (Section 4.2) .

42
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3.1 Smooth Hypersurfaces

Definition 3.1.1. • Let p ∈ P
n and F ∈ k[x0, ..., xn]d. The point p is

singular for the hypersurface V (F ) if

F (p) = 0 and
∂F

∂xi
(p) = 0 for any i = 0, ..., n.

• The hypersurface is smooth or non-singular if it has no singular points.

Remark. By the Euler formula we get

n
∑

i=0

xi
∂F

∂xi
= dF .

So if we assume that char(k) is coprime to d, we see that p is singular if and

only if
∂F

∂xi
(p) = 0 for any i.

Let ∆ be the resultant of the polynomials
∂F

∂xi
. As usual, we will call ∆ the

discriminant of F . Then ∆ is a homogeneous polynomial in the coefficients of

F , and ∆(F ) = 0 if and only if the polynomials
∂F

∂xi
have a root in common,

that is, if and only if V (F ) is singular.
Moreover, since the property of being singular is independent from the choice
of coordinates, it follows that ∆ is SLn+1-invariant.
Hence we obtained the following result.

Theorem 3.1.1. Let us assume char(k) and d are coprime. Every smooth
hypersuface is a semi-stable point of Hypd(n).

Proof. Let F be the polynomial corresponding to the hypersurface. From
the previous observation, ∆ is an invariant homogeneous polynomial and
∆(F ) 6= 0, since the hypersurface is smooth.

The projective automorphism group of a hypersurface is the subgroup of
PGLn+1 which leaves this hypersurface invariant.
It is known that for d ≥ 3 the projective automorphism group of any smooth
hypersurface of degree d is finite; this is a classical but non-trivial result. For
a proof, see [12] Theorem 5.23.
Hence we get the following stronger result.

Theorem 3.1.2. Let d ≥ 3. Any smooth hypersurface is a stable point of
Hypd(n).
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Example. We assume char(k) 6= 2. Let us consider Hyp2(n), i.e the space of
quadric hypersurfaces in P

n. The space k[x0, ..., xn]2 is the space of quadratic
forms

F =
∑

0≤i,j≤n

aijxixj,

where aij = aji, or equivalently, the space of symmetric (n + 1) × (n + 1)
matrices, identifying F with the matrix A = (aij). In this particular case,
the discriminant ∆ corresponds to the determinant of the matrix A, thus a
quadric is smooth if and only if the rank of the associated matrix is n + 1.
By Theorem 3.1.1, we get that a smooth quadric is semi-stable.
From the theory of quadratic forms, every quadric whose associated matrix
has rank r + 1 is projectively equivalent to

x20 + ...+ x2r,

which implies that there are exactly n orbits, each one determined by the
rank.
Notice that we are considering the action of SLn+1, hence we are allowed
to consider only linear transformations of determinant 1, but since we are
considering polynomials up to a non-zero scalar multiple, the result is the
same.
Let us consider the non-degenerate form

F = x20 + ...+ x2n;

and let us look to its stabilizer. If g ∈ SLn+1, then F (x) = xTx and we have

gF (x) = F (g−1x) = xT (g−1)T g−1x.

Hence g stabilizes F if and only if

(g−1)T g−1 = In+1.

It follows that the stabilizer is the special orthogonal group SOn+1, which is
positive-dimensional. This implies that a smooth quadric cannot be stable.
Moreover, we claim that the only semi-stable points are the smooth quadrics.
Let h be an invariant homogeneous polynomial of degree s in the variables
aij, and let F be a non singular quadratic form. Then there exists a µ ∈ k
such that the homogeneous polynomial

hn+1 − µ∆s takes the value 0 at F .
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Since this polynomial is invariant and we have a unique orbit containing all
the non singular quadratic forms, we have (hn − µ∆s)(O(F )) = 0. We no-
tice that this orbit is open, since it is exactly Hyp2(n)∆, so we must have
hn − µ∆s ≡ 0 because the orbit is dense.
Finally, since ∆ is irreducible, we get h = λ∆r for suitable λ ∈ k and integer
r.
In particular, for points outside Hyp2(n)∆ every invariant is zero, hence these
points are not semi-stable.
Thus we obtained that a quadric is never stable and it is semi-stable if and
only if it is smooth.
Hence Hyp2(n)//SLn+1 is a single point: this geometrically means that ev-
ery non-degenerate quadratic form is equivalent to x20 + ... + x2n, as already
observed.

3.2 Hilbert-Mumford criterion for hypersur-

faces

In order to determine the (semi)-stable locus for the action of SLn+1 on
Hypd(n) we can use the Hilbert-Mumford criterion.

Remark 3.2.1. It follows from the definition of the Hilbert-Mumford weight
that

µ(gx, λ) = µ(x, g−1λg) for any g ∈ G.

This allows us to replace λ by a suitable conjugate in calculations. This
is particularly convenient in our case where G = SLn+1: in fact, since any
1-parameter subgroup is diagonalisable, it is conjugate to one of the form

λ(t) =diag(tr0 , ..., trn) where the ri are integers such that
n
∑

i=0

ri = 0 and r0 ≥

r1 ≥ ... ≥ rn. Then the action of λ is diagonal with respect to the standard
basis of k[x0, ..., xn]d given by monomials. Furthemore, given I = (i0, ..., in),
the weight of the monomial

xI = xi00 x
i1
1 ...x

in
n

is precisely −
n
∑

j=0

rjij, where the negative sign arises since we act by the

inverse of λ(t).
Thus, given F =

∑

aIxI ∈ Hypd(n), we get that

µ(F, λ) =max{
n
∑

j=0

rjij : I = (i0, ..., in) and aI 6= 0}.
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For general values of d and n it is very difficult to give a complete de-
scription of the semi-stable locus. However, we will see that for certain small
values, such a description can be given.

Example. Let us start with the easiest case, when d = 1. In this case,
Hyp1(n), the space of hyperplanes in P

n, is isomorphic to P
n.

We claim that (Pn)SS = ∅. Since the action of SLn+1 on P
n is transi-

tive, i.e there is only one orbit, it suffices to show that the point x =
[1, 0, ..., 0] is not semi-stable. Let us consider the 1−parameter subgroup
λ(t) = (t, t−1, 1, ..., 1): it is clear that µ(x, λ) = −1 < 0, thus x is not semi-
stable.

We already considered the case d = 2. It is worth noting that the cases
d = 1, 2 are ”special”, in the sense that their behaviour is known for any n.

3.3 Binary forms of degree d

Now we are going to study the case of binary forms of degree d.

Definition 3.3.1. A binary form of degree d is a degree d homogeneous
polynomial in two variables, so it is just an element of k[x0, x1]d.

The set of zeroes of a binary form F is given by d points counted with
multiplicity. Of course, this is strictly related to the (ir)reducibility of the
polynomial: for istance, the reducible form F (x0, x1) = xd0 has the point [0, 1]
of multiplicity d.
Going back to our notation, we are going to study the action of SL2 on
Hypd(1).

We may assume d ≥ 3. From the remark, any 1-PS of SL2 is conjugate
to

λ(t) =

(

t 0
0 t−1

)

.

Assume F̃ =
d
∑

i=0

aix
d−i
0 xi1 ∈ k[x0, x1]d \ {0} lies over F ∈ Hypd(1): then we

have

λ(t)F̃ =
d
∑

i=0

t2i−daix
d−i
0 xi1.
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We notice that xd0 has weight −d, xd−1
0 x1 has weight −d+ 2 and so on. The

following picture shows the weight set:

According to the picture, we notice the symmetry of the weight set with
respect to the monomial x

d/2
0 x

d/2
1 , which has weight 0.

Let us compute the Hilbert-Mumford weight: we have

µ(F, λ) =max{−(2i− d) : ai 6= 0} =max{d− 2i : ai 6= 0} = d− 2i0,

where i0 is the smallest index for which ai 6= 0.
Hence we get

1. µ(F, λ) ≥ 0 if and only if i0 ≤ d/2, which is equivalent to say that the
point [1, 0] occurs as a root with multiplicity at most d/2;

2. µ(F, λ) > 0 if and only if i0 < d/2, which is equivalent to say that the
point [1, 0] occurs as a root with multiplicity strictly less than d/2.

From this we easily deduce the following result.

Theorem 3.3.1. Hypd(1)
SS(resp. Hypd(1)

S
0 ) is equal to the set of hypersur-

faces with roots of multiplicity less than or equal to (resp. strictly less than)
d/2.

Proof. We will prove the statement for semi-stability, the one for stability is
exactly the same.
(⇒) By contradiction, assume F is semi-stable and has a root [p0, p1] of
multiplicity > d/2. Since the action of SL2 on P

1 is transitive, there exists
g such that g[p0, p1] = [1, 0]. Then F ′ = gF has the point [1, 0] has a root of
multiplicity > d/2, since
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F ′([1, 0]) = gF ([1, 0]) = F (g−1[1, 0]) = F ([p0, p1]) = 0.

From the observation above, this implies that µ(F ′, λ) ≤ 0. But

µ(F ′, λ) = µ(gF, λ) = µ(F, g−1λg),

hence F is not semi-stable by the Hilbert-Mumford criterion.

(⇐) Conversely, assume F has no roots of multiplicity > d/2 and F is not
semi-stable. Then there exists a 1-PS λ′ such that µ(F, λ′) < 0. Let g ∈ SL2

be such that g−1λ′g = λ. Then µ(gF, λ) = µ(F, λ′) < 0 and hence gF has the
point [1, 0] as root of multiplicity > d/2, but then F has the point g−1[1, 0]
as a root of multiplicity > d/2, contradicting the assumption.

Corollary 3.3.1. Assume d is odd. Then Hypd(1)
SS = Hypd(1)

S
0 and

Hypd(1)//SL2 is a geometric quotient of the space of stable binary forms
of degree d.

Now assume d is even and let F ∈Hypd(1)
SS\ Hypd(1)

S
0 . This precisely

means that F has a root of multiplicity d/2 and no roots of multiplicity
greater than d/2. Let us consider the fibre of the morphism

φ : Hypd(1)
SS → Hypd(1)//SL2

containing F . Since the quotient is a good quotient, this fibre contains a
unique closed orbit. Assume that F belongs to this orbit; then its stabilizer
must be positive dimensional, otherwise F would be stable. Since any element
stabilizing F also stabilizes its set of roots and any subset of P1 consisting
of at least 3 points is only stabilized by the identity, it follows that F must
have exactly 2 roots. Since one has multiplicity d/2, the only possibility is
that the other one is of multiplicity d/2 too.
This tells us that

(Hypd(1)//SL2)\ (Hypd(1)
S/SL2) = {p0}

where the single point p0 represents the orbit of the polynomial F0 = x
d/2
0 x

d/2
1 .

Here of course by Hypd(1)
S/SL2 we mean the geometric quotient of the sta-

ble locus.
Summarizing, we get that in the quotient all the semi-stable but not stable
orbits are identified with the unique closed one, namely the one of binary
forms having exactly two roots, each one of multiplicity d/2.

Let us consider some special cases for small values of d.
If d = 3, then the semi-stable and the stable locus coincide. This locus con-
sists of forms with 3 distinct roots. Given any three points p1, p2, p3 ∈ P

1,



CHAPTER 3. PROJECTIVE HYPERSURFACES 49

there is a unique automorphism of P1 mapping these points to any other
three distinct points q1, q2, q3. This implies that there is only orbit, hence in
this case the quotient Hyp3(1)//SL2 is a single point. This agrees with the
fact that the ring of invariants is k[∆], as one can show.

If d = 4, then the stable locus is the set of forms with 4 distinct roots,
while the semi-stable locus is the set of forms with at most double roots. A
binary quartic is given by

a0x
4
0 + a1x

3
0x1 + a2x

2
0x

2
1 + a3x0x

3
1 + a4x

4
1.

Lemma 3.3.1. The ring of invariants S(Hyp4(1))
SL2 is generated by the two

following invariants:

I = a0a4 − 4a1a3 + 3a22,
J = a0a2a4 + 2a1a2a3 − a0a

2
3 − a21a4 − a32.

Proof. The discriminant ∆ is a homogeneous polynomial of degree 6 and we
have precisely ∆ = I3 − 27J2.
Given any 4 distinct ordered points in P

1, there exists a unique automorphism
of P1 mapping these points to (0, 1,∞, λ) for some λ 6= 0, 1. The number λ
is called the cross ratio of the four points in the given order. However, in our
case the 4 roots of a stable binary form do not have a natural ordering. Let us
consider the following action of the symmetric group S4 on k\{0, 1}: given λ,
permute 0, 1,∞, λ according to α ∈ S4, then apply the linear transformation
mapping the first three back to 0, 1,∞ and let α · λ be the image of the
fourth. The orbit of λ consists of

λ, 1− λ, 1/λ, (λ− 1)/λ, λ/(λ− 1), 1/(1− λ).

The number

ρ =
((2λ− 1)(λ− 2)(λ+ 1)

λ(λ− 1)

)2

is symmetric in the six different values of λ, hence we have a well-defined
morphism

ρ :Hyp4(1)
S
0 → A

1

λ 7−→ ρ(λ)

which is SL2-invariant.
We notice that λ corresponds to the polynomial

x0x1(x0 − x1)(x0 − λx1) = x30x1 − (1 + λ)x20x
2
1 + λx0x

3
1.
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whose roots are precisely [1, 0], [0, 1], [1, 1], [λ, 1]. Thus we can express the
coefficents a0, ..., a4 in terms of λ through the following k-algebra homomor-
phism

k[a0, a1, a2, a3, a4] → k[λ]
a0 7−→ 0
a1 7−→ 1

a2 7−→ −(1 + λ)
a3 7−→ λ
a4 7−→ 0.

Moreover, it can be shown that ρ = 36J2/∆.
For each value of ρ ∈ A

1\{0,−27}, there are six possible choices for λ, which
corresponds to a unique stable orbit. For the value 0 there are three possible
choices for λ, namely −1, 2, 1/2, which again corresponds to a unique stable
orbit. Finally, for the value −27, there are two possible values for λ, namely
−ω,−ω2, where ω3 = 1 and ω 6= 1, and these points correspond again to a
unique orbit.
Hence the morphism ρ is SL2-invariant and separates the orbits, so A

1 is
indeed the geometric quotient of the action on the stable locus and the mor-
phism ρ is the quotient morphism.
We are now ready to complete our proof. If f is any homogeneous invariant
polynomial in the coefficients a0, ..., a4, then its zero set in P

4 consists of a
finite union of closures of 3-dimensional orbits. These are easy to classify:
for each α ∈ k there exists a single stable orbit for which J2/∆ = α, from
what we have observed before. We will denote the closure of these orbits
by Xα. Moreover, there is another one 3-dimensional orbit, the one consist-
ing of quartics with a unique double root, whose closure we denote by X∞.
Each Xα is irreducible, so it is the zero locus of an irreducible homogeneous
polynomial fα. Moreover, we may assume f is irreducible, so that f actually
coincides with some fα.
By checking the respective zero sets, we see that we can take fα to be:

f∞ = ∆,
f0 = J ,

f−1/27 = I,
fα = J2 − α∆ for α 6= ∞, 0,−1/27.

It follows that each fα ∈ k[I, J ], as desired.

Hence Hyp4(1)//SL2 is isomorphic to P
1 and the quotient map is given by

Hyp4(1)
SS → P

1

[a0, ..., a4] 7−→ [I3 − 27J2, J2].
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3.4 Plane cubics

Now we will study degree 3 hypersurfaces in P
2, i.e plane cubic curves. Every

homogeneous polynomial of degree 3 in x0, x1, x2 is of the form

F (x0, x1, x2) =
3
∑

i=0

3−i
∑

j=0

aijx
3−i−j
0 xi1x

j
2, for suitable aij ∈ k.

First, we want to describe all plane cubics up to projective equivalence; that
is, we will give a complete description of the quotient for the action of SL3

on Hyp3(2).
Let us start with the classification of reducible curves. They are of the
following types:

1) the union of an irreducible conic and a line intersecting it at two distinct
points;

2) the union of an irreducible conic and a line tangent to it;
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3) the union of three non-concurrent lines;

4) the union of three concurrent lines;

5) the union of two lines, one of them double;

6) one triple line.
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From the theory of quadratic forms we know that every non-singular conic in
P
2 is projectively equivalent to the conic C : x0x2 + x21 = 0. Moreover, since

the projective automorphism group of C acts transitively on the set of lines
tangent to it and on the set of lines intersecting it in two distinct points, we
get that every reducible curve of type 1) and 2) is projectively equivalent to
the curve:
1) (x0x2 + x21)x1 = 0;

2) (x0x2 + x21)x0 = 0
respectively.

Since the group of projective automorphisms acts transitively on the set
of 3 lines, any reducible cubic of type 3)−6) is projectively equivalent to the
curve
3) x0x1x2 = 0;

4) x0x1(x0 + x1) = 0;

5) x20(x0 + x1) = 0;

6) x30 = 0
respectively.
Let us stop for a while our classification, in order to recall some properties of
singular points and tangent lines, which will be fundamental for our purpose.

Definition 3.4.1. A singular point p of a cubic defined by F (x0, x1, x2) = 0
is called a double point if at least one second order partial derivatives of F
at p is non-zero.
It is called a triple point if all second order partial derivatives of F vanish at
p.

Let p = [p0, p1, p2] be a point of the curve C : F (x0, x1, x2) = 0.

• If p is non-singular, then the tangent line to C at p is given by the
equation

∂F

x0
(p)x0 +

∂F

x1
(p)x1 +

∂F

x2
(p)x2 = 0.

• If p is a double point, then the tangent cone to C at p is given by the
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following homogeneous polynomial of degree 2

xT







∂F
x2
0

(p) ∂F
x0x1

(p) ∂F
x0x2

(p)
∂F
x0x1

(p) ∂F
x2
1

(p) ∂F
x1x2

(p)
∂F
x0x2

(p) ∂F
x1x2

(p) ∂F
x2
2

(p)






x = 0

where x = (x0 − p0, x1 − p1, x2 − p2).

Notice that the 3 × 3 matrix in the equation has not full rank, since p is a
double point. Hence the polynomial factorises into a product of two linear
polynomials, which may be distinct or not. According to this observation,
we have two different types of double points:

1. A node is a double point with two distinct lines in the tangent cone.

2. A cusp is a double point with a single line of multiplicity 2 in the
tangent cone.

Lemma 3.4.1. Let C be the plane cubic defined by the polynomial

F (x0, x1, x2) =
3
∑

i=0

3−i
∑

j=0

aijx
3−i−j
0 xi1x

j
2.

Then for the point p = [1, 0, 0] we have:

i) p ∈ C if and only if a00 = 0;

ii) p is a singular point of C if and only if a00 = a10 = a01 = 0;

iii) p is a triple point of C if and only if a00 = a10 = a01 = a11 = a20 =
a02 = 0;

iv) if p is a double point of C, then its limit tangent lines are defined by

a20x
2
1 + a11x1x2 + a02x

2
2 = 0.

Proof. i) is immediate. For parts ii) and iii) the proof is just a computation
of the derivatives (first and second order) of F at p, while part iv) follows
immediately by the formula for the tangent lines at a double point that we
recalled before.

Let us continue our classification of cubics. Now assume that the curve is
irreducible. We have two possibilities: either the cubic is smooth or singular.
First, let us consider the case of a smooth curve.
We can choose a system of coordinates such that [0, 0, 1] is an inflection point
with tangent line x0 = 0. Then we can write the equation as follows:
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x22x0 + x2L2(x0, x1) + L3(x0, x1) = 0,

where L2 is a form of degree 2 and L3 is a form of degree 3. By assumption,
the line x0 = 0 intersects the cubic in the single point [0, 0, 1] with multiplicity
3, this implies that the coefficient of x21 in L2 must be zero. Thus in affine
coordinates x = x1/x0 and y = x2/x0 the equation has the form

y2 + axy + by + dx3 + ex2 + fx+ g = 0.

Clearly d 6= 0, so after scaling we may assume d = 1.
Assume char(k) 6= 2. Replacing y with y + a/2x + b/2, we may assume
a = b = 0. If char(k) 6= 3, after a linear change of variables x −→ x + e/3,
we may assume e = 0.
Thus, we obtain the Weierstrass equation of a non-singular plane cubic:

y2 + x3 + ax+ b = 0, char(k) 6= 2, 3
y2 + axy + by + x3 + cx+ d = 0, char(k) = 2
y2 + x3 + ax2 + bx+ c = 0, char(k) = 3.

The condition that the curve is non-singular is expressed by ∆ 6= 0, where ∆
is the discriminant defined by

∆ = 4a3 + 27b2, char(k) 6= 2, 3
∆ = a3b3 + b4 + a4(abc+ c3 + a2d), char(k) = 2

∆ = b3 + (b2 − ac)a2, char(k) = 3.

Now let us assume that the cubic is singular. We may choose the point
[0, 0, 1] to be the singular point.
Then the equation cannot does not involve the monomials x32, x0x

2
2 and x1x

2
2,

since otherwise [0, 0, 1] would not belong to the curve or it would be a non
singular point. Hence the equation has the form

x2L2(x0, x1) + L3(x0, x1) = 0.

By a linear transformation of x0, x1 we can reduce L2 to be one of the two
forms:

1. L2 = x20;

2. L2 = x0x1.

Let us consider the first case, which corresponds to a cuspidal cubic,as we
will se soon. The equation is

x2x
2
0 + ax30 + bx20x1 + cx0x

2
1 + dx31 = 0.
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Replacing x2 with x2 + ax0 + bx1 we may assume a = b = 0; moreover since
the curve is irreducible then d 6= 0, so we may further assume d = 1 after
scaling. Finally, the coefficient c may be either 0 or 1.
Let char(k) 6= 3. From a direct computation we get that the Hessian of the
curve is

cx30 + 3x20x1 = 0,

hence we have a unique inflection point(the intersection of the curve and the
Hessian) given by [1,−c/3,−2c3/27]. If we change the coordinates in such a
way that the inflection point becomes [1, 0, 0] with tangent x2 = 0, we finally
get that the equation becomes

x2x
2
0 + x31 = 0.

Given in this form, it is immediate to see that [0, 0, 1] is a cusp, with double
tangent line x0 = 0.
If instead char(k) = 3, the Hessian is just cx30 = 0; hence there are 2 orbits
of cuspidal cubics given by c = 0 or c = 1, represented by the equations

x20x2 + x31 = 0 and x20x2 + x0x
2
1 + x31 = 0.

In the first case the Hessian is identically zero, hence all non singular points
of the curve are inflection points. The second curve does not have non sin-
gular inflection points.

Let us now consider the case when the quadratic form L2 reduces to x0x1 = 0,
which corresponds to the case of nodal cubics.
The equation is of the form

x0x1x2 + ax30 + bx20x1 + cx0x
2
1 + dx31 = 0.

By replacing x2 with x2 − bx0 − cx1 we may assume b = c = 0. Now, since
the curve is irreducible we must have a, d 6= 0, after scaling we may assume
that they are both 1. Hence we get the equation

x0x1x2 + x30 + x31 = 0,

which shows that [0, 0, 1] is indeed a node with tangent lines x0 = 0 and
x1 = 0.
Summarizing, we get the following list of irreducible plane cubics(up to pro-
jective equivalence), which completes our classification:

char(k) 6= 2, 3 :
7) non singular cubic

x0x
2
2 + x31 + ax20x1 + bx30 = 0, 4a3 + 27b2 6= 0;
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8) nodal cubic
x0x1x2 + x30 + x31 = 0;

9) cuspidal cubic
x0x

2
2 + x31 = 0.

char(k) = 3 :
7) non-singular cubic

x0x
2
2 + x31 + ax0x

2
1 + bx20x1 + cx30 = 0, b3 + (b2 − ac)a2 6= 0;

8) nodal cubic
x0x1x2 + x30 + x31 = 0;

9) cuspidal cubic

x20x2 + x31 = 0 or x20x2 + x0x
2
1 + x31 = 0

char(k) = 2 :
7) non singular cubic

x0x
2
2+x

3
1+ax0x1x2+bx

2
0x2+cx

2
0x1+dx

3
0 = 0, a3b3+b4+a4(abc+c3+a2d) 6= 0;

8) nodal cubic
x0x1x2 + x30 + x31 = 0;
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9) cuspidal cubic
x0x

2
2 + x31 = 0.

This classification does not tell us anything about which ones are stable or
semi-stable. In order to have a complete description of the (semi)stable locus,
we will use the Hilbert-Mumford criterion.

Theorem 3.4.1. A plane cubic curve C is stable if and only if it is non-
singular, while it is semi-stable if and only if it has no triple point and no
double point with a unique limit tangent (i.e. it has no cusps).

Proof. Let C be defined by the vanishing of the polynomial

F (x0, x1, x2) =
3
∑

i=0

3−i
∑

j=0

aijx
3−i−j
0 xi1x

j
2.

We have already observed that any 1-PS of SL3 is conjugate to λ(t) =diag(tr0, t
r
1, t

r
2)

where r0 ≥ r1 ≥ r2 and r0 + r1 + r2 = 0.
Moreover, we have already computed the Hilbert-Mumford weight for general
hypersurfaces (see Remark 3.2.1): in this particular case we get

µ(F, λ) =max{(3− i− j)r0 + ir1 + jr2 : aij 6= 0}.

Finally, since µ(gx, λ) = µ(x, g−1λ′g) for any 1-PS λ′, we will only consider
the diagonal parameter subgroup λ.

Let us first consider the case of stability. Assume that C has a singular
point p, by a change of coordinates p = [1, 0, 0]. Hence by Lemma 3.4.1 we
have a00 = a10 = a01 = 0. For λ(t) =diag(t2, t−1, t−1) we have µ(F, λ) ≤ 0
since i+ j ≥ 2. Hence F is not stable.
Conversely, assume F is not stable. Then µ(F, λ) ≤ 0; this implies a00 =
a10 = 0 since the monomials x30 and x

2
0x1 have weights −3r0 and −(2r0 + r1)

respectively, which are strictly negative. If we also have a01 = 0, then [1, 0, 0]
is a singular point by Lemma 3.4.1. If a01 6= 0, then

0 ≥ µ(F, λ) ≥ 2r0 + r2.

Since r2 = −(r0+r1), we have r0−r1 ≤ 0. But r0 ≥ r1 by assumption, hence
we must have r1 = r0 and r2 = −r0. For these values of ri, we get

µ(F, λ) =max{(3− 3j)r0 : aij = 0} ≤ 0.

Since r0 > 0, we must have ai0 = 0 for any i, which is equivalent to say that
x2 divides F . It follows that F = x2f

′ for some f ′ of degree 2; hence C is
singular at every point for which x2 = f ′ = 0.
Let us now consider the case of semi-stability. If F is not semi-stable, then
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µ(F, λ) < 0, that is, all weights of F must be positive. Since r0 ≥ r1 ≥ r2, the
monomials with non-positive weights are x30, x

2
0x1, x0x

2
1, x

2
0x2, x0x1x2. This

implies that a00 = a10 = a20 = a01 = a11 = 0. We conclude from Lemma
3.4.1 that [1, 0, 0] is a singular point for C, which is a triple point if a02 = 0
or a cusp if a02 6= 0.
Conversely, let us assume that C has a triple point or a double point with
a unique tangent. Again, we assume that this point is [1, 0, 0] and it follows
from Lemma 3.4.1 that a00 = a10 = a20 = a01 = a11 = 0. Let us consider the
1-PS λ(t) =diag(t3, t−1, t−2): a direct computation gives µ(F, λ) < 0, thus F
is not semi-stable.

From the classification of cubics, it is immediate to see that the singular
points of the following cubics are nodes. Hence we conclude that there are
three semi-stable but not stable orbits:

1) nodal irreducible cubics;

2) the union of an irreducible conic and a line not tangent to it;
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3) the union of three non-concurrent lines.

Finally, we list the non semi-stable orbits:

1) irreducible cuspidal cubics (two orbits if char(k) = 3);

2) the union of an irreducible conic and its tangent line;
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3) the union of three concurrent lines;

4) the union of two lines, one of them double;

5) a triple line.

Again, this follows from the classification up to equivalence: cubics of the
form 1), 2) have a cusp, while the ones of the form 3), 4), 5) have a triple
point.
Let us consider the three semistable orbits: they are given by equations

1) x0x1x2 + x30 + x31 = 0,

2) x0x1x2 + x31 = 0,

3) x0x1x2 = 0.
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From the equations we see that λ(t) = diag(t, 1, t−1) stabilizes the second
curve, while λ(t) = diag(t2, t−1, t−1) stabilizes the third curve. Hence these
two orbits have positive dimensional stabilizer, so they are of dimension ≤ 7,
because dim SL3 = 8. More precisely, it can be shown that their dimension
are 7 and 6, respectively. Let us consider the fibre of the projection

Hyp3(2)
SS →Hyp3(2)//SL3

containing any semi-stable but not stable points. The unique closed orbit
contained in this fibre must be the one corresponding to three non-concurrent
lines, since it is the one of minimal dimension. Moreover, from Lemma 2.2.3
we get that this orbit is contained in the closure of the one of dimension
7. Finally, it can be shown that the orbit of nodal irreducible cubics has
dimension 8, thus its closure must contain both the other strictly semi-stable
orbits. In particular, these orbits correspond to just one point in the quotient.
The geometric quotient of the stable locus classifies smooth cubics up to
isomorphism. From the theory of elliptic curves, it is known that two such
cubics are isomorphic if and only if they have the same j -invariant, where

j = 1728
4a3

4a3 + 27b2

and we are referring to the Weierstrass equation

y2 + x3 + ax+ b = 0.

Thus we get that the geometric quotient Hyp3(2)/SL3 is isomorphic to A
1,

because any element of k occurs as the j -invariant of some elliptic curve.
(See [10] IV Theorem 4.1).
Finally, the good quotient Hyp3(2)//SL3 is just the compactification of the
geometric quotient, where we add the single point corresponding to the
strictly semi-stable orbits. Thus this quotient is isomorphic to P

1.

3.5 Plane quartics

Let us now consider Hyp4(2), the space of plane quartics. Every quartic is
defined by an homogeneous polynomial of degree 4 of the following form

F (x0, x1, x2) =
4
∑

i=0

4−i
∑

j=0

aijx
4−i−j
0 xi1x

j
2, for suitable aij ∈ k.

As usual, let λ be a 1-PS defined by λ(t) = diag(tr0 , tr1 , tr2) where r0 + r1 +
r2 = 0 and r0 ≥ r1 ≥ r2.
From Remark 3.2.1 it follows that
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µ(F, λ) =max {(4− i− j)r0 + ir1 + jr2 : aij 6= 0}.

In order to state the result about stability of a quartic, we need to recall a
definition.

Definition 3.5.1. Let C be any curve defined by the vanishing locus of the
polynomial F , let p ∈ C.
We say that p is a tacnode if p is a double point with a unique tangent line,
such that the intersection multiplicity between the curve and this line at p
is at least 4.

Example. Let us consider the curve given by y2 − x4 = 0 in A
2. This curve

has a tacnode in the origin, with the x-axis as tangent line. Geometrically,
this means that two branches of the curve have the same tangent line at the
origin, as we can see from the following picture.

Remark. Let C be a plane quartic defined by the polynomial

F (x0, x1, x2) =
4
∑

i=0

4−i
∑

j=0

aijx
4−i−j
0 xi1x

j
2.

We notice that the results in Lemma 3.4.1 are still true, in exactly the same
form.

Theorem 3.5.1. A plane quartic C is stable if and only if C has no triple
points and no tacnodes.

Proof. ⇐) Let F be the polynomial defining the curve C. By contradiction,
assume C is not stable. From the Hilbert-Mumford criterion, there exists
a 1-PS λ such that µ(F, λ) ≤ 0. As usual, up to a suitable conjugate, we
assume that λ(t) = diag(tr0 , tr1 , tr2) with r0 ≥ r1 ≥ r2. Thus we get

µ(F, λ) =max {(4− i− j)r0 + ir1 + jr2 : aij 6= 0} ≤ 0.

We notice that this inequality implies
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a00 = a10 = a01 = a11 = a20 = 0.

Moreover, if a30 6= 0 and a02 6= 0, then we must have

0 ≥ r0 + 3r1 + 2r0 + 2r2 = r0 + r1,

which implies r2 ≥ 0, contradicting our assumption on the ri. Now, if a02 = 0,
we get that C has a triple point at [1, 0, 0] from the previous remark. Other-
wise, if a02 6= 0, the double point [1, 0, 0] has the unique tangent line x2 = 0.
Since we must have a30 = 0, the intersection multiplicity of the point is at
least 4, thus it is a tacnode.

⇒) Conversely, by contradiction let us assume that C has a triple point;
without loss of generality we may assume that this point is [1, 0, 0]. Thus we
must have a00 = a10 = a01 = a11 = a20 = a02 = 0.
Let us consider the 1-PS defined by λ(t) = diag(t2, t−1, t−1). Hence we get

µ(F, λ) =max {8− 3i− 3j : aij 6= 0},

which implies µ(F, λ) ≤ −1 because either i ≥ 3 or i ≥ 2 and j ≥ 1 (and
viceversa, exchanging the roles of i and j). Here we remark that µ(F, λ) < 0,
hence we actually proved that a quartic with a triple point is not semi-stable.
Now, let us assume that C has a tacnode at [1, 0, 0], with tangent line x2 = 0.
It follows that a00 = a10 = a01 = a11 = a20 = a30 = 0.
If we consider λ(t) = diag(t, 1, t−1), then we get

µ(F, λ) =max {4− i− 2j : aij 6= 0}.

From a direct computation, we easily get µ(F, λ) ≤ 0 and C is not stable.

3.6 Cubic surfaces

Let us now consider Hyp3(3), the space of cubic surfaces in P
3. We are going

to study (semi)-stability of cubic surfaces under the action of SL4 using the
Hilbert-Mumford criterion. For this section, we refer to [3] and [1].
In this case, we will consider 1-PS of the form

λ(t) = diag(tr0 , tr1 , tr2 , tr3), r0 + ...+ r3 = 0 and r0 ≤ r1 ≤ r2 ≤ r3 (∗)

We notice that here we reversed the inequalities between the ri, because
we are considering the inverse of our ”typical” 1-PS. This choice is due to
simplicity, since it allows us to avoid negative signs in the action.
Let us recall that an ordinary double point of a surface is a double point
whose singularity is locally anatically equivalent to that one of the origin in
x2 + y2 + z2 = 0, i.e. a singular point whose tangent cone is given by an
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irreducible degree 2 polynomial.
An ordinary cusp is a double point whose singularity is locally analitically
equivalent to the origin in x2+y2+z3 = 0, i.e. a singular point whose tangent
cone consists of two distinct planes and the intersection multiplicity of the
surface and the planes is exactly 3.
The main result is the following one.

Theorem 3.6.1. A cubic surface is stable if and only if it is smooth or it
has only ordinary double points.
A cubic surface is semi-stable if and only if its singular points are ordinary
cusps (and perhaps some ordinary double points).
Moreover, there is only one closed orbit of semi-stable not stable cubic sur-
faces, namely that of x30 = x1x2x3.

Graphic of the surface x30 = x1x2x3 in a neighborhood of the point [0, 0, 0, 1]

Proof. The proof will be divided into the following steps:

a) Cubic surfaces with only ordinary double points or cusps are semi-
stable.

b) Cubic surfaces with only ordinary double points are stable.

c) Cubic surfaces with a singularity which is worse than an ordinary cusp
are not semi-stable. This is the case of double points whose tangent
cone consists of a unique plane of multiplicity 2, not ordinary cusps
(i.e cusps where the intersection multiplicity at the point is of higher
order) or triple points.
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d) Cubic surfaces with at least an ordinary cusp are semi-stable but not
stable; they all contain in their orbit closure the orbit of the surface
x30 = x1x2x3.

a) Let S be a cubic surface defined by F (x0, x1, x2, x3) = 0. Assume that
S is not semi-stable: then we have µ(F, λ) < 0 for the 1-PS of the form
(∗). More precisely, if

F =
∑

I=(i0,i1,i2,i3)
aIx

I , i0 + i1 + i2 + i3 = 0 and x = (x0, x1, x2, x3),

we have

λ(t)F =
∑

I=(i0,i1,i2,i3)
trIaIx

I rI = r0i0 + ...+ r3i3.

Since µ(F, λ) < 0 all the weights must be positive. Thus we get

r0i0 + ...+ r3i3 > 0 whenever aI 6= 0. (A)

If S is reducible, then S is either the union of three planes (counted
with multiplicities) or a union of a plane and an irreducible quadric. In
the first case, it is clear that such a surface has at least a triple point,
which is the intersection of the planes. Let us consider the second case:
up to a change of coordinates we may assume that the equation is of
the form

x0L2(x0, x1, x2, x3),

where L2 is irreducible. Since L2 is a non-degenerate quadratic form,
another change of coordinates leads to the form

x0(x
2
0 + x21 + x22 + x23).

It is clear that [0, 1, i, 0] is a double point, which is a cusp since its
tangent cone is x0(x1 + ix2) = 0. Since the plane x0 = 0 is contained
in the surface, the point is not an ordinary cusp.
Thus we may assume S to be irreducible.
In this case, then r2 > 0: otherwise every monomial appearing in F
would be divisible by x3 from inequality (A). Then F cannot contain
a monomial divisible by x20 or x0x1 because their weights are 2r0 + ri
and r0 + r1 + ri respectively, and we have
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2r0 + ri ≤ r0 + r1 + ri ≤ r0 + r1 + r3 = −r2 < 0.

Hence the equation will be of the form

x0L2(x2, x3) + L3(x1, x2, x3).

It follows that S has a double point at [1, 0, 0, 0]. Moreover, the tangent
cone L2 has rank ≤ 2. If this rank is stricly less than 2, we would have
a unique plane of multiplicity 2. Otherwise, if the rank is exactly 2,
we may assume L2(x2, x3) = x2x3 and the point is a cusp: moreover
we must have r0 + r2 + r3 > 0 from inequality (A), because the first
monomial is x0x2x3. However, this implies r1 < 0, thus the monomial
x31 cannot appear in the equation of F . Hence the point [1, 0, 0, 0]
cannot be an ordinary cusp, because the intersection multiplicity of
the surface and both the planes x2 = 0 and x3 = 0 is of higher order.

b) Now assume S is not stable. In this case, the inequality (A) becomes
r0i0+...+r3i3 ≥ 0. If r2 > 0, we proceed in the same way as before to get
that S cannot have an ordinary double point at [1, 0, 0, 0]. However,
we may now have r2 = 0. If r0 < r1, the only change is that F
can contain the monomial x0x1x3, but we see from (A) that it cannot
contain x0x

2
2. Thus the tangent cone has rank ≤ 2 and we get again

that [1, 0, 0, 0] cannot be an ordinary double point. Finally, if r0 = r1,
we have λ(t) = diag(t−1, t−1, 1, t2) and we can check that S has at least
one cusp.
Thus we get that cubic surfaces with at most ordinary double points
are stable, as desired.

c) Let us assume that [1, 0, 0, 0] is a singular point which is worse than an
ordinary cusp. For an appropriate choice of coordinates, the equation
of F will be of the form

x0L2(x1, x2, x3) + L3(x1, x2, x3).

By assumption, the tangent cone L2(x1, x2, x3) = 0 has rank ≤ 2. If
this rank is 1, then we may assume L2 = ax23 for some a ∈ k∗. Let us
consider the 1-PS defined by λ(t) = diag(t−5, t, t, t3): we get that S is
not semi-stable by (A).
If L2 has rank 2, we may assume L2 = x2x3. Let us now consider
λ(t) = diag(t−2, 1, t, t).
We have
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limt−→0 λ(t)F = x0x2x3 + cx31,

where c is the coefficient of x31 in L3. Since the point [1, 0, 0, 0] is not
an ordinary cusp, we must have c = 0. Hence the limit is the union of
three planes, which is not semi-stable. To see this, it suffices to consider
the 1-PS λ(t) = diag(t−1, t−1, t, t).

d) Assume S has an ordinary cusp at [1, 0, 0, 0], which means c 6= 0 in the
notation of part c). We have

limt−→0 λ(t)F := F0 = x0x2x3 + cx31.

Let S0 be the surface corresponding to the polynomial F0: this surface
has three ordinary cusps, which are [1, 0, 0, 0], [0, 0, 0, 1] and [0, 0, 1, 0]
(and no other singularities), hence it is semi-stable. Since every orbit
closure of a cuspidal surface contains S0, it follows that this orbit is
closed.
Finally, S0 is not stable because its stabilizer contains the matrices
of the form diag(a, 1, b, c), where a, b, c ∈ k∗ and abc = 1. Thus the
stabilizer is positive-dimensional.

The algebra of invariants S := A(Hyp3(3))
SL4 was computed by G.

Salmon and A.Clebsch ([16]). It is generated by the invariants I8, I16, I24, I32,
I40, I100, where the subscript indicates the degree. The invariant I32 is the
discriminant.
We have a basic relation between the invariants: the square of I100 is ex-
pressed as a polynomial in the first five invariants, i.e.

I2100 = F (I8, I16, I24, I32, I40).

Hence we have the following isomorphism of graded k-algebras

S ≃ k[t0, t1, t2, t3, t4, t5]/(t
2
5 − F (t0, t1, t2, t3, t4)

I8 7−→ t0
I16 7−→ t1
I24 7−→ t2
I32 7−→ t3
I40 7−→ t4
I100 7−→ t5,

where k[t0, t1, t2, t3, t4, t5] is graded by setting
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deg t0 = 8, deg t1 = 16, deg t2 = 24, deg t3 = 32, deg t4 = 40, deg t5 = 50,

so that F is a weighted homogeneous polynomial. We notice that the sub-
algebra of S generated by elements of even degree is just k[t0, t1, t2, t3, t4]
because we have t25 = F (t0, t1, t2, t3, t4). It follows that Hyp3(3) is the projec-
tive variety associated to the algebra of invariants k[t0, t1, t2, t3, t4], which is
the weighted projective space P(8, 16, 24, 32, 40) ≃ P(1, 2, 3, 4, 5), a projective
variety of dimension 4.
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