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Riassunto

In questa tesi viene dapprima fornita una descrizione dei fenomeni gravitazionali che hanno portato
all’ipotesi dell’esistenza della materia oscura. Successivamente, viene esaminato lo stato attuale delle
conoscenze riguardanti la materia oscura, elencando i vincoli teorici e osservativi delle sue varie pro-
prietà. Vengono poi considerati diversi modelli e candidati per la materia oscura, con particolare
attenzione al modello delle WIMPs termiche, ovvero particelle massive debolmente interagenti in
grado di annichilirsi tra loro, generando particelle del Modello Standard. Questa proprietà consente
loro di rimanere in equilibrio termico e chimico con il plasma primordiale nelle prime fasi dell’universo.
In base a questa ipotesi, viene studiato il processo di disaccoppiamento della materia oscura dal bagno
termico primordiale, utilizzando il modello del freeze-out istantaneo e l’equazione di Boltzmann. Si
dimostra che tale processo conduce alla stabilizzazione della densità di materia oscura nell’universo,
mantenendola costante nel tempo.
Infine, viene esplorato l’effetto di un’eventuale risonanza nella sezione d’urto del processo di annichi-
lazione menzionato, analizzando come la presenza di tale risonanza possa influenzare la densità attuale
della materia oscura, introducendo un significativo effetto di soppressione.
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Introduction

Dark Matter (DM) is a fundamental problem in modern physics. The presence of different gravitational
phenomena, which exhibit behaviors differing from those predicted by the theory of General Relativity
(GR), leads to two possibilities for fundamental physics: to hypothesize that GR is an approximation
of a more general theory or to assume the presence of undetected matter to account for the observed
behavior.

Given the countless tests that have validated GR with great precision and the issues faced by modified
gravity theories (such as their inability to explain all problematic observations), the second option
currently seems more probable.

Given this assumption, the choice still leaves the field broad, as numerous models of particles —and
not just particles—have been developed to explain the presence of unobserved gravity- interacting
matter.

In this thesis, we first provide strong observational evidences for the necessity of assuming the existence
of Dark Matter. Secondly, we give a brief introduction to what is known about Dark Matter. Assuming
the Weakly Interacting Massive Particles (WIMPs) model, we then proceed to derive the Boltzmann
equation. Finally, we discuss the case where a pole is present in the annihilation cross-section.



Chapter 1

Evidences and Constraints of Dark
Matter

The aim of this chapter is to contextualize the framework within which Dark Matter is situated and
within which we are working. In the first section, we provide a description of the observations that
led to the formulation of the existence of Dark Matter and offer a historical review of its studies. In
the second section, we gather information on what is currently known about Dark Matter, listing the
constraints on its various properties.

1.1 Gravitation evidences for Dark Matter

The idea of the existence of dark, undetected material in our universe has been present since the
beginning of science.
In 1844, the mathematician Friedrich Bessel predicted a companion star for Sirius and Procyon,
respectively, to explain their observed motion.
In 1846, to explain the motion of Uranus, the French astronomer Urbain Le Verrier and the English
astronomer John Couch Adams predicted the existence of a new planet, Neptune, which was discovered
a few months later by Johann Galle.
Besides dark planets and dark stars, astronomers also discussed the existence of dark clouds, or dark
“nebulae.” By the end of the 19th century, the astronomical community was discussing large areas
in the sky where there seemed to be many fewer stars. One of the first explanations for this was the
presence of absorbing dark matter along the line of sight. This is regarded as one of the first examples
of “dark matter” in the sky.
At the beginning of the 20th century, Lord Kelvin tried to determine the amount of dark matter in the
Milky Way by applying gas theory to the stars. Although he did not exclude the possibility of dark
matter, his calculations suggested that the fraction was negligible compared to visible matter. Similar
calculations and conclusions were later made by Henri Poincaré and others. We can then conclude
that in the first two decades of the 20th century, dark matter was regarded as indicative of faint stars,
planets, and cold gas.
This perception started to change during the 1930s with the studies of Fritz Zwicky.

1.1.1 First Hints

Fritz Zwicky is one of the most famous pioneers in the field of dark matter, marking a turning point
in its study. In 1933, he published an article in which he studied different galaxy clusters, using the
redshift data published in 1931 by Edwin Hubble and Milton Humason.
In particular, in the Coma cluster, he noted a large scatter in the apparent velocities of eight galaxies,
with differences of about 2000 km/s. This had previously been noted by Hubble and Humason, but
Zwicky also tried to apply the Virial theorem to estimate the expected velocity dispersion of the
galaxies in the cluster.
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1.1 EVIDENCES CHAPTER 1. EVIDENCES AND CONSTRAINTS OF DARK MATTER

He obtained the total mass of the cluster by multiplying the number of observed galaxies, 800, by
the average mass of a galaxy, which is about 109M» (data obtained from the study of Hubble and
Humason). He also estimated the size of the cluster to be about 106 light-years. From this data, one
can compute the velocity dispersion of the cluster.
We can do this explicitly. Using the Virial theorem for a gravitational potential, we have:

ïTtotð = −
1

2
ïVtotð (1.1)

where ïTtotð is the kinetic energy and ïVtotð is the gravitational potential energy of the cluster, and
the brackets indicate the average with respect to time.
We remark that the Virial theorem applies only to systems that are in equilibrium.
We can roughly estimate the potential energy of the clusters by assuming a uniform mass density
distribution, yielding:

ïVtotð = −
3GM2

5R
(1.2)

where M is the total mass of the cluster (approximately 1012M») and R is the radius of the cluster.
To find

√

ïv2ð, we compute:
√

ïv2ð =
√

2Ttot
M

=

√

Vtot
M

(1.3)

This gives
√

ïv2ð ≃ 80 km/s.
Although this is a rough computation, it yields a result consistent with Zwicky’s findings. Note that
the kinetic energy is measured relative to the frame at rest with respect to the galaxy cluster, so

√

ïv2ð
represents the velocity dispersion of the system.
Observations indicate that the average velocity dispersion of galaxies is

√

ïv2ð ≃ 1000 km/s. This
strongly suggests that dark matter is significantly more prevalent than visible matter. At the time,
Zwicky, like his predecessors, considered cold intergalactic gas as an explanation for his results.
Despite this, Zwicky’s study is often regarded as the first strong observational evidence of dark matter.
Interestingly, the term “dark matter,” as previously noted, was already used within the astronomical
community. It was not even the first instance of Zwicky using the term in a publication; he had used
it earlier that year to describe the source of cosmic rays.
However, this study represents the first compelling evidence for a system predominantly composed of
dark matter. In 1937, Zwicky published a follow-up article where he further refined his study of the
Coma cluster. He revised the cluster’s radius to about 2× 107 light-years and estimated the presence
of about 1000 galaxies. He also adjusted the velocity dispersion of the galaxies to 700 km/s. Based
on this, he estimated the cluster’s mass to be 4.5× 1010M».
Using direct observations and an estimate of the cluster’s distance, he calculated an absolute lumi-
nosity of 8.5 × 107 times that of the Sun, which led to an unexpectedly high mass-to-light ratio of
about 500. Note that Zwicky relied on Hubble’s law (see A.1) for distance estimation, using a value
of H0 = 558 km/s/Mpc. We now know that H0 = 67.27 ± 0.66 km/s/Mpc, so Zwicky overestimated
the light-to-mass ratio by about ten times. Nevertheless, this ratio remains high and indicates the
presence of dark matter in some form. Meanwhile, in 1936, Sinclair Smith also derived a very high
mass-per-galaxy value from his calculations on the Coma cluster.

During the 1950s and 1960s, further studies were conducted to explain the high mass-to-light ratios
found by Zwicky and Smith. Initially, the applicability of the Virial theorem was debated. As men-
tioned earlier, the theorem is only valid for systems in equilibrium. Some astronomers, such as Erik
Holmberg, suggested that the high velocities measured could be attributed to non-permanent members
of the cluster.
This hypothesis was later dismissed, as it would imply that clusters were younger than the galaxies
they contained. Meanwhile, astronomers began to investigate the composition of dark matter. Studies
in the 1960s showed that neither cold nor hot gas could account for the missing mass.
More exotic possibilities, such as massive collapsed objects like dwarf stars or “snowballs,” were also

2



CHAPTER 1. EVIDENCES AND CONSTRAINTS OF DARK MATTER 1.1 EVIDENCES

explored. However, these possibilities were eventually ruled out by measurements of primordial light
element abundances, supporting the idea that dark matter is non-baryonic. From now on, we will
refer to Dark Matter with capital letters.
Nowadays to study the density profile of galaxy clusters, researchers exploit the hot gas within them.
Assuming the gas is in hydrostatic equilibrium, the pressure of the gas is balanced by the gravitational
pull:

dp(r)

dr
= −GNM(r)Ä(r)

r2
(1.4)

Using the equation of state, we obtain the relationship between the pressure and the temperature of
the gas:

p =
Ä

µm
T (1.5)

From these relations, one can determine the mass distribution of the total mass once the radial density
and temperature of the gas are measured. What is found is that, as it will be showed for galactic
rotation curves, the visible mass is less than the total mass.

1.1.2 Galactic Rotation Curves

The understanding of galaxy rotation curves began to evolve in the 1970s with a more in-depth study
of their characteristics.
It is important to note that these curves had been studied since the early 20th century, and through
them, it was possible to determine the mass-to-light ratio of galaxies.
At that time, astronomers explained the observed excess mass by suggesting the presence of extin-
guished stars, dark clouds of gas, meteors, comets, and other debris. However, in 1970, Kent Ford and
Vera Rubin studied the rotation curve of the Andromeda Galaxy (M31). For the first time, it became
apparent that much more mass was needed to explain the observations, and that dark clouds of gas
were insufficient. Later that same year, similar conclusions were drawn for other galaxies.
Throughout the 1970s, astronomers measured the velocity of stars in spiral galaxies as a function of
their radial distance from the center and found that their rotation curves remained flat even at the
largest observed optical radii, where the galaxy’s matter is still detected through visible light. This
was unexpected, as the velocities were anticipated to decrease. Later on, using radio telescopes and
specifically the Doppler shift of the 21 cm hyperfine transition of neutral hydrogen, the same trend
was observed at even larger radii.
We can easily understand why the rotation velocity curve was expected to drop rather than remain
flat.
Assuming that standard Newtonian gravity is a good approximation for describing the motion of stars
within galaxies, we would expect a star’s circular velocity vc around the galaxy’s center to be:

vc =

√

GM

r
(1.6)

Where M is the enclosed mass and r is the distance from the galactic center. If the star is on
the periphery of the galaxy, then M , according to Gauss’s law, is constant, and we would expect
vc ∝ 1/r1/2. However, it was found that the velocity distribution outside the galactic disk flattens,
implyingM(r) ∝ r. This provided further evidences for the presence of matter around galaxies that is
not visible to our telescopes, with a density profile very different from the mass distribution of visible
matter.
The same conclusion would be reached even when accounting for the non-uniform mass distribution
of spiral galaxies.
We conclude by noting that in 1963, Arrigo Finzi was the first to propose a unified interpretation for
the high mass-to-light ratios in galaxy clusters and the rotation curves of galaxies.
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1.1 EVIDENCES CHAPTER 1. EVIDENCES AND CONSTRAINTS OF DARK MATTER

Figure 1.1: The radial velocity of several galaxies as a function of the distance to the nucleus, from the original
paper of Vera Rubin

1.1.3 Cosmic Microwave Background

The study conducted by the Planck satellite on the anisotropies in the Cosmic Microwave Background
(CMB), particularly its angular power spectrum, determined the total matter density fraction, Ωm =
0.1326±0.0063, and the baryonic density fraction, Ωb = 0.02273±0.0006. The parameter Ω is defined
as Ä/Äc, where Ä is the current matter density of the Universe, and Äc is the critical density required
for the Universe to be spatially flat.
In this context, “matter” refers to all material with the same equation of state as dust, characterized
by p = 0. This includes both baryonic matter and Dark Matter, which are assumed to have the same
equation of state. For each type of matter (with its own equation of state), there is an associated
density fraction Ωi (see Appendix A.1).
We can distinguish between Ωm and Ωb because baryonic matter interacts with the photon bath (i.e.,
the electromagnetic field), whereas Dark Matter does not. For baryonic matter, if a region of higher
density forms due to statistical fluctuations, gravitational effects that would enhance this density are
counteracted by electromagnetic interactions. Dark Matter, on the other hand, does not experience
these interactions, leading to different effects on the angular power spectrum of the CMB.
Additionally, the ratio between baryonic matter and Dark Matter is consistent with what we expect to
explain the velocities of galaxies within clusters and the velocities of stars within galaxies. Finally, the
CMB provides insights into the era of its formation, even predating the formation of stars and galaxies.
This evidence strongly suggests the presence of a type of matter that influenced the Universe’s history
from its early stages, does not interact with the photon bath, and has a density approximately five
times greater than that of baryons.

1.1.4 Cosmological Scales

As pointed out in the CMB paragraph, the presence of Dark Matter favored the growth of inho-
mogeneities in our universe. We understand very well how cosmological structures formed: the tiny
perturbations we observed in the CMB grew under the influence of gravity and generated the large-
scale structure that we observe today. Nevertheless, it can be shown that this growth is quite weak
in a radiation-dominated universe, and it is still too slow when matter dominates. Furthermore, since
before the CMB era, baryonic matter and the photon bath were tightly coupled, this model is not
completely accurate. In fact, baryonic perturbations can grow only after the time of recombination
when the Universe becomes neutral and photons decouple. It has been proved that, with only bary-
onic matter today, we would have a much smoother and more homogeneous universe compared to our
current universe. To have the high inhomogeneities and cosmological structures we observe today, we
need some species that decoupled from the baryon-photon plasma much earlier than recombination,
creating gravitational potential wells. At recombination, baryons finally decouple from photons and
fall into these potential wells formed earlier, which allows the perturbations to grow faster. Fur-
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CHAPTER 1. EVIDENCES AND CONSTRAINTS OF DARK MATTER 1.2 CONSTRAINTS

thermore, from the study of the matter power spectrum—a quantity that measures matter density
fluctuations at different scales—we can learn about the necessity of Dark Matter: The predictions
obtained by accounting for Dark Matter are very successful. Without Dark Matter, the theoretical
predictions would be very different, leading to significant disagreement with observations.

1.1.5 Other Evidence

• Gravitational lensing consists of the bending of light rays due to nearby massive objects and
can be used to infer the presence of mass between us and what we observe. Both galaxies
and clusters of galaxies act as gravitational lenses. We refer to strong lensing when the lens
produces multiple images of the same object. In contrast, weak lensing occurs when the lens
merely distorts the image of the source. By studying gravitational lensing caused by galaxies, we
can determine the gravitational mass of the object and infer the structure of the halos around
galaxies. Gravitational lensing confirms the existence of Dark Matter halos around galaxies and
reveals the presence of enormous quantities of Dark Matter in galaxy clusters.

• There are example, like in the Bullet Cluster and MACS J0018.5, where the baryonic matter and
the gravitational potential appear clearly spatially separated. In the Bullet Cluster, baryonic
matter was detected through X-rays, while the gravitational potential well was mapped using
weak gravitational lensing.

• While Big Bang Nucleosynthesis (BBN) does not provide direct evidence for Dark Matter, it
predicts the abundances of light elements and thereby provides a measurement of baryon density.
The results from BBN are consistent with observations from the CMB and are smaller than the
total matter density, suggesting the presence of Dark Matter.

1.2 What do we know about Dark Matter?

Dark Matter has attractive gravitational interactions and is either stable or has a lifetime much longer
than the age of the Universe. This is almost tautological: we postulate the existence of Dark Matter,
assuming that the theory of gravity is correct, to explain the motion of baryonic matter inside galaxy
clusters and galaxies.
One might then wonder, as anticipated in the preface, whether we could abandon the postulate of
Dark Matter and instead consider that the law of gravity might be incorrect. This is the goal of
theories known as MOND (MOdified Newtonian Dynamics).
We will now explore this possibility in more detail. The first such theory was proposed in 1982 by
Mordehai Milgrom. He suggested replacing Newton’s second law F = ma with F = µ(a)ma, where
µ(a) deviates from 1 only for very small accelerations a, specifically a j a0 ≃ 1.2 × 10−10 m/s2. In
this regime, µ = a/a0, and from the modified second law of Newton:

F =
GMm

r2
= maµ =

ma2

a0
(1.7)

We obtain:

a =

√
GMa0
r

(1.8)

From the centripetal acceleration a = v2/r, we derive v = (GMa0)
1/4.

This correction to the theory of gravity would explain why rotation velocity curves remain flat at large
distances from the center of a galaxy, instead of decreasing, without the need to assume the existence of
Dark Matter. However, this theory, as originally postulated, has some problems. Firstly, it is unclear
from Milgrom’s articles whether his theory modifies the law of gravity or corrects Newton’s second
law. Additionally, this theory does not conserve energy, linear momentum and angular momentum.
Finally, MOND is a non-relativistic theory and thus cannot be applied where General Relativity is
required.
Therefore, to consider MOND a viable alternative to Dark Matter, a more refined version of the theory
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1.2 CONSTRAINTS CHAPTER 1. EVIDENCES AND CONSTRAINTS OF DARK MATTER

was needed. For this reason, Jacob Bekenstein developed the TeVeS theory (short for Tensor-Vector-
Scalar gravity) in 2004. This theory is embedded in a relativistic framework and modifies only the
law of gravity.
TeVeS is compatible with the observed rotation curves of hundreds of spiral galaxies and also explains
the empirical Tully-Fisher law, which relates the intrinsic luminosities and rotational velocities of
spiral galaxies, L ∝ V ³ where ³ ≃ 4.
However, TeVeS fails to explain observations at the scale of galaxy clusters. Although MOND reduces
the need for additional mass in clusters, significant quantities of Dark Matter are still required.
Furthermore, TeVeS does not account for the observation of two merging galaxy clusters, collectively
named the Bullet Cluster, which we mentioned in 1.1.

1.2.1 Mass

The mass of the main component of Dark Matter has been constrained within a broad range of about
80 orders of magnitude. A firm upper bound is established: mDM f 2 × 10−9 M» = 2 × 1048 GeV.
This constraint arises from the unsuccessful search for MACHOs, very massive and compact objects
that were considered viable candidates up until the late 1980s.
The proposed strategy involved monitoring large numbers of stars in nearby galaxies to detect vari-
ations in their brightness. If MACHOs were responsible for the halo, we would have expected to
observe a certain number of microlensing events, but these were never detected. By the mid-1990s, it
became clear that compact objects did not seem to account for the missing mass, at least not in the
Milky Way’s halo. During this period, various surveys (including those by the Kepler satellite, and
the ground-based MACHOS and EROS collaborations) and theoretical considerations ruled out mass
ranges greater than 2× 1048 GeV.
The lower limit on the Dark Matter particle mass is less well defined and depends on the nature of
Dark Matter and its statistical properties. To explain the existence of small Dark Matter-dominated
structures, such as dwarf galaxies with typical sizes of R ≃ 1 kpc, Dark Matter must be able to local-
ize within these galaxies. For bosons, the de Broglie wavelength of the Dark Matter particle must be
smaller than the size of these dwarf galaxies. Using a typical velocity, and the Heisenberg uncertainty
principle, this leads to the constraint mDM > 10−22 eV. For fermions, the constraint is more stringent.
The Pauli exclusion principle limits the number of particles that can fit into different structures, such
as dwarf galaxies. Knowing the Dark Matter mass for these objects allows us to determine the lower
limit for fermions to be between 0.2 and 0.7 keV, assuming these particles reached thermal equilibrium
in the early universe.

1.2.2 Charge Neutrality

We know that Dark Matter does not interact with light. In fact, it does not absorb, emit, or reflect
light at any frequency, which indicates that Dark Matter has a very small electromagnetic coupling.
There are hypotheses that the “dark sector”—the collection of particles that make up Dark Matter
(which could include more than one type of particle)—might contain “millicharged Dark Matter”
particles that couple with the Standard Model via a “dark photon.”
Observational upper limits on the cross section for elastic Dark Matter-photon interactions are cur-
rently set at ÃDM−µ f 4 × 10−33 cm2. Additionally, we have bounds on the charge of Dark Matter:
q < 10−6 for mDM = 10 GeV and q < 10−4 for mDM = 10 TeV.
One important consequence of Dark Matter’s weak interaction with light is that it cannot cool by
radiating photons during galaxy formation.
This also explains the presence of extended dark halos around galaxies; if Dark Matter could cool like
baryonic matter, it would collapse at the center of disk galaxies.
While most of Dark Matter is dissipationless, some part of it could be dissipative. This would imply
the formation of a second “dark disk” on galactic scales, a concept behind Partially Interacting Dark
Matter (PIDM). The formation of such a dark disk would provide strong evidence in favor of this
model. PIDM could emit dark photons or other dark particles.
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1.2.3 Self Interaction

For simplicity, Dark Matter has traditionally been assumed to be collisionless. However, studies of
systems like the Bullet Cluster indicate that the upper bound for the self-interaction cross-section is
quite significant, Ãself/m f 2 barns/GeV.
There are indeed models that propose Self-Interacting Dark Matter (SIDM) to address and resolve the
cuspy-core problem. This problem arises from the discrepancy between simulations of N-body systems
and the observed density profiles of Dark Matter halos around galaxies. Specifically, observations reveal
uniform regions of Dark Matter around dwarf galaxies, whereas simulations had predicted a steeper
density distribution. Another possible explanation for this issue is a model involving a mix of cold
and warm Dark Matter.

1.2.4 Coldness

We call Cold, Warm and Hot Dark matter according to the typical velocity of Dark Matter. As already
said, to explain the structure of our Universe, we need Dark Matter. In fact, baryonic matter can only
form after recombination, which is when atoms become stable. Before this, photon pressure prevents
the formation of stable atoms.
Once stable atoms are formed, they must fall into an existing gravitational well; otherwise, there would
not be enough time to form the structures of the Universe that we observe today. Numerical simu-
lations show that if Dark Matter had relativistic velocities, the structures at the galaxy scale would
be washed out, meaning we wouldn’t observe galaxies. For Warm Dark Matter, the smallest-scale
structures are dwarf galaxies. Both Cold and Warm Dark Matter (respectively CDM and WDM) can
account for all large-scale structure observations. The primary difference between them appears at
the dwarf-galaxy scale, where observations and interpretations are still inconclusive.
It is important to note that the density profiles of Dark Matter inside galactic halos do not match
those predicted by CDM-only simulations. One possible solution is the presence of WDM alongside
CDM, or incorporating baryonic matter more fully in simulations.
We also note that neutrinos, which had been considered a promising candidate for Dark Matter until
the 1980s, are excluded as Dark Matter candidates because they are relativistic, hence, Hot Dark
Matter (HDM) is not considered capable of forming the structures in our Universe. We will revisit
this point in the next chapter
Finally the relic abundance of Dark Matter and its primordial velocity distribution are tightly con-
strained by cosmological assumptions made about the thermal history of the Universe. If we identify
a Dark Matter particle from this thermal history, its properties could serve as a cosmological probe
to gain information about that epoch.

1.2.5 Stability

We conclude this chapter by discussing the stability of Dark Matter. We know that Dark Matter
was already present during the formation of the CMB and remains around galaxies and inside galaxy
clusters. This implies that the most stable particle in the dark sector has a lifetime comparable to the
age of the universe. Nevertheless, the strongest bounds on the lifetime of Dark Matter are stronger:
ÄDM > 1018 s for non-visible products (i.e., those not interacting with the electromagnetic field), and
ÄDM > 1025−29 s when the products are visible.
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Chapter 2

Instantaneous Freeze-Out

We can divide Dark Matter candidates into “thermal” and “non-thermal” relics. Thermal relics are
produced during the early stages of the universe while in equilibrium with a thermal bath. They reach
equilibrium with this bath and then, at a certain point, “decouple” or “freeze-out” when their inter-
actions can no longer keep up with the expansion of the universe. Chemical equilibrium is disrupted
when the reactions altering the number of particles occur slower than the universe’s expansion rate,
after which the number of particles per comoving volume remains constant.
When this happens, we say they have chemically decoupled. However, at a certain point, they also
kinetically decouple. After kinetic decoupling, the exchange of momentum with the radiation bath
ceases to be effective.
As we will see, the transition from thermal equilibrium is the process that sets the relic density we
observe today. All other options fall into non-thermal models.
To maintain thermal equilibrium with the radiation bath, we need to assume the existence of an in-
teraction between the dark sector and the particles of the Standard Model. The simplest interaction
we can consider is:

ÇÇ→ ÈÈ (2.1)

where Ç represents the Dark Matter particle and È represents a Standard Model particle. This
equation shows that two Dark Matter particles annihilate to produce two Standard Model particles.
We define the rate of annihilation as Γann = nÇïÃvMølð, where the angle brackets indicate the average
over all possible states of the colliding particles. Here, vMøl is the Møller velocity (see A.2) between
Ç and Ç, and Ã is the cross section of the interaction.
As mentioned earlier, we expect that at some point a particle species decouples from the thermal
bath, and subsequently, the number of particles of that species freezes out. If the temperature of the
species is TFO > mÇ at freeze-out, we refer to this as relativistic freeze-out; otherwise, it is called
non-relativistic freeze-out. Using the instantaneous freeze-out model, we estimate that Dark Matter
particles decoupled when:

Γann(TFO) = nÇïÃvMølð = H(TFO) (2.2)

Here, we compare the rate of annihilation of Dark Matter particles with the rate of expansion of the
universe, represented by the Hubble constant H. Both rates depend on the temperature of the thermal
bath, and for a certain temperature TFO, we expect them to be equal. When H(TFO) > Γann(TFO),
the universe’s expansion is so rapid that it prevents two Dark Matter particles from interacting and
annihilating.
Before proceeding, we derive some results useful for studying this model for both Hot and Cold Dark
Matter. From Friedmann’s equation (A.4), we can show that when the scale factor a is small (i.e., at
the early stages of the universe), we have a radiation-dominated universe. As discussed in the section
on Friedmann’s equations, Är = 3H2/8ÃG. Additionally, from statistical mechanics considerations, we

have Är =
Ã2

30 g∗(T )T
4, where the subscript r indicates a radiation-dominated universe, and g∗ counts

the total number of effectively massless degrees of freedom in the Standard Model (see A.3). From
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CHAPTER 2. INSTANTANEOUS FREEZE-OUT 2.1. RELATIVISTIC FREEZE-OUT

this, we can derive the value of H:

H(T ) =
Ã

3

√

8ÃG

10

√

g∗(T )T
2 (2.3)

Note that 1/
√
8ÃG is the Planck Mass, MP l, in natural units.

2.1 Relativistic Freeze-Out

In this section, we focus on relativistic freeze-out, specifically the case where Dark Matter decouples
from the thermal bath when it is relativistic: TFO > mÇ. We proceed by using the instantaneous
freeze-out model, and thus we apply the expression given in 2.2 and the expression for the Hubble
constant in a radiation-dominated universe. In this context, the expression for nÇ is given by:

nÇ = geff
·(3)

Ã2
T 3 (2.4)

Where geff = gÇ for bosons and geff = 3
4gÇ for fermions, and ·(z) is the Riemann zeta function.

Using this expression, we get:

geff
·(3)

Ã2
T 3
FOïÃvMølð =

Ã

3

√

g∗(TFO)

10

T 2
FO

MP l
(2.5)

So we can easily compute TFO:

TFO =
Ã3

3·(3)
√
10

g∗(TFO)

geff

1

ïÃvMølðMP l
(2.6)

Obviously, this is correct as long as TFO k mÇ. With this result, one can compute nÇ(TFO), and to
calculate ΩÇh

2, we introduce a quantity that we will use again in 3.
After freeze-out, the number of Dark Matter particles remains constant (in the first approximation),
and thus the number density of Dark Matter evolves as nÇ ∝ a−3. This also implies that the comoving
number density remains constant (defined as the number of particles per unit of comoving volume).
We can compute its value at freeze-out since it does not change afterward. For an adiabatic expansion,
the total entropy of the universe remains constant, so S = sa3 is conserved, which means that s ∝ a−3.
Defining the variable YÇ = nÇ/s, it is proportional to the number of particles per comoving volume
na3. Then the relic density is:

ΩÇh
2 =

ÄÇ
Äcrit/h2

=
mÇYÇ(TFO)s0

Äcirt/h2
(2.7)

Where the numerator in the density associated with Ç, Äcrit ≃ 1.05×10−5h2 GeV cm−3, is the critical
density required for the universe to be flat, and s0 ≃ 2.9 × 103 cm−3 is the entropy per comoving
volume today. To compute YÇ, we use 2.4 and s(TFO) =

2Ã2

45 g∗s(TFO)T
3
FO, where g∗s is the effective

number of degrees of freedom for entropy. (see A.3).
We now suppose Ã2 ≃ G2

FT
2. This expression is valid for weak interactions, where GF ≃ 10−5/GeV2

is the Fermi constant and represents the cross section of neutrinos. From this expression, one obtains
that TFO = O(MeV). Finally, by substituting the numerical values, we get:

ΩÇh
2 ≃ 0.076

(

geff
g∗s(TFO)

)

(mÇ

eV

)

(2.8)

If we impose ΩÇh
2 ≃ 0.12, we find the Cowisk-McClelland relation:

mÇ ≃ 168.55eV
1

geff

(

g∗s(TFO)

106.75

)

(2.9)

Thus, for HDark Matter, we would have mÇ = 10 − 100 eV. Nevertheless, as seen in Chapter 1, Hot
Dark Matter cannot explain the formation of structures at galactic scales.
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2.2. NON-RELATIVISTIC FREEZE-OUT CHAPTER 2. INSTANTANEOUS FREEZE-OUT

2.2 Non-relativistic Freeze-Out

We now explore the case of Cold Dark Matter, specifically the scenario where Dark Matter decouples
from the thermal bath when it is non-relativistic: TFO < mÇ. For a species of non-relativistic particles
(mk T ) that remains in thermal equilibrium, we expect their number density to be:

nÇ = gÇ

(

mÇT

2Ã

)3/2

e−mχ/T (2.10)

Where gÇ represents the internal degrees of freedom of the Dark Matter particles. Note that because
of the exponential factor, if Dark Matter always remained in equilibrium with the thermal bath, its
number density would be approximately zero as T approaches some Kelvins. We can now through
2.10 rewrite 2.2, using the change of variable xFO = mÇ/TFO:

e−xFO
gÇm

3
Ç

(2Ã)3/2
x
−3/2
FO ïÃvMølð =

Ã

3MP l

√

g∗(xFO)

10

m2
Ç

x2FO
(2.11)

We find the freeze-out temperature solving numerically this equation. Taking the logarithm on both
sides:

xFO =
1

2
lnxFO + ln

(

gÇ
√

g∗(TFO)

)

+ ln (mÇïÃvMølðMP l) + ln

(

3
√
5

2Ã5/2

)

(2.12)

We note that the freeze-out temperature TFO depends weakly (logarithmically) on mÇ and ïÃvMølð.
Moreover, in this case, for small velocities, we can Taylor expand: Ãv = a + bv2 + O(v4). Taking
the average over a thermal distribution, we set ïÃvMølð as constant (corresponding to an s-wave). As
reference values, we take mÇ = 100 GeV and ïÃvMølð = 1 pb ≈ 2.6× 10−9GeV−2 (but the same result
holds for similar values) and get:

xFO ≃
1

2
ln(xFO) + ln

(

gÇ
√

g∗(TFO)

)

+ 25 (2.13)

This means that, up to minor corrections, xFO ≃ 25. Obviously, to compute xFO with better accuracy,
we need to make some assumptions about the number of degrees of freedom of Dark Matter, gÇ, and we
need to know the dependence of g∗ on T (see A.3). If we let T vary over a wide range of temperatures,
from 10−2 GeV to 106 GeV, g∗ ranges between 10 and 100, so xFO ≃ 25 is a solid estimate over this
range. It is important to note as a consistency check that xFO ≃ 25 implies TFO j mÇ, which is the
hypothesis from which we started. As done for relativistic freeze-out, one can compute YÇ(TFO) and
then, using 2.7, compute ΩÇh

2:

ΩÇh
2 ≃ 2.09× 108

g
1/2
∗ (TFO)

g∗s(TFO)

xFO
MP lïÃvMølð

GeV−1 (2.14)

This expression is valid for any value ofmÇ and ïÃvMølð if the freeze-out happens in the non-relativistic
regime. We plug in xFO = 25 and impose g(TFO) = gs(TFO), which is true except at very low
temperatures. After working through the numbers, we obtain:

ΩÇh
2 ≃ 0.12

(

106.75

g(TFO)

)1/2( 0.7, pb

ïÃvMølð

)

(2.15)

Where the numbers within the brackets are typical values for g(TFO) at TFO ≃ 200 GeV and for
ïÃvMølð in processes mediated by weak interactions. The value ΩDM = 0.12 is highlighted. This
expression leads us to conclude that, for these values, we would obtain the correct relic density of
Dark Matter. This is remarkable because it means that WIMPs predict the correct value of ΩDM ,
making them excellent Dark Matter candidates for masses in the GeV-to-TeV range. This is sometimes
referred to as “the WIMP miracle.” However, we must not be deceived; having two parameters means
you can always adjust one to achieve the correct relic density.
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Chapter 3

Boltzmann Equation

Departures from thermal equilibrium lead to varying relic densities for different types of particles,
including Dark Matter candidates. Once a species decouples from the thermal bath, its comoving
density stops evolving and remains roughly constant. Instantaneous freeze-out assumes perfect ther-
mal equilibrium before decoupling, with the comoving density remaining constant afterward.
However, this is only an approximation. The transition between these two regimes is smoother, so to
analyze it properly, we need a new tool: the Boltzmann equation.
To properly track the decoupling process, we must follow the microscopic evolution of the particle’s
phase space distribution f(pµ, xµ), where pµ represents the four-momentum of the particle and is de-
fined as the derivative of the space-time coordinates with respect to an affine parameter. Furthermore,
pµ must satisfy the on-shell relation pµpµ = pµgµ¿p

¿ = m2
Ç, where gµ¿ is the Robertson-Walker metric

(see appendix A.1) but could be any metric. We now present the Boltzmann equation:

L̂[f ] = Ĉ[f ] (3.1)

Here, L̂ is the Liouville operator, and Ĉ is the collision operator. The left-hand side of the equation
represents the evolution of the phase space distribution due to the geometry of space-time, while the
right-hand side accounts for the effects of decays and production processes.

3.1 The Liouville Operator

The Liouville operator L̂ is the total derivative of the phase space density with respect to an affine
parameter:

L̂[f ] =
d

d¼
f(xµ, pµ) =

[

dxµ

d¼

∂

∂xµ
+
dpµ

d¼

∂

∂pµ

]

f (3.2)

Without any interactions, particles move along space-time geodesics, and we can substitute the deriva-
tive of the four-momentum dpµ/d¼ using the geodesics equation. We also recognize dxµ/d¼ as the
four-momentum. We can rewrite L̂ as:

L̂[f ] =

[

pµ
∂

∂xµ
− Γµ³´p

³p´
∂

∂pµ

]

f (3.3)

Where Γµ³´ is the affine connection. As stated before we are using the Robertson-Walker metric and
so we expect the phase space density to be spatially homogeneous and isotropic. The homogeneity in
space imposes that the derivatives of f with respect to spatial coordinates are vanishing and so the
first term in the right-hand side is equal to:

pµ
∂

∂xµ
= E

∂

∂t
(3.4)

11



3.2. THE COLLISION OPERATOR CHAPTER 3. BOLTZMANN EQUATION

While using the non-vanishing affine connection of the Robertson-Walker metric, we can rewrite the
second term. Putting all together, we get:

L̂[f ] = E
∂f

∂t
−H(E2 −m2

Ç)
∂f

∂E
(3.5)

Using the definition of nÇ:

nÇ = gÇ

∫

f(E, t)
d3p

(2Ã)3
(3.6)

To compute the Boltzmann equation it is cost-effective to integrate this expression over d3p and
multiply by gÇ/E.

gÇ

∫
(

∂f

∂t
−H |p|

2

E

∂f

∂E

)

d3p

(2Ã)3
=
dnÇ
dt
− gÇH

∫ |p|2
E

∂f

∂E

d3p

(2Ã)3
(3.7)

We now compute this integral:

gÇ

∫ |p|2
E

∂f

∂E

d3p

(2Ã)3
= gÇ

∫ |p|2
E

∂p

∂E

∂f

∂p

d3p

(2Ã)3
= gÇ

∫

|p|∂f
∂p

d3p

(2Ã)3
(3.8)

We can now evaluate this integral using spherical coordinates:

gÇ
4Ã

(2Ã)3

∫ +∞

0
|p|3∂f

∂p
= gÇ

4Ã

(2Ã)3

(

p3f |+∞0 − 3

∫ +∞

0
|p|2f

)

(3.9)

The first term vanishes because we assume f vanishes faster than |p|3 and the last term is just three
times nÇ in spherical coordinates (from 3.6). Combining these, we obtain the left-hand side of the
Boltzmann equation as:

dnÇ
dt

+ 3HnÇ (3.10)

This equation tells us that the number density of Ç, in the absence of interactions, is only affected
by the dilution effect of the expansion of the universe. In fact, as we will show, if Ĉ=0, then nÇa

3 is
constant, as expected.

3.2 The Collision Operator

We can now focus on the collision operator Ĉ for generic a process:

Ç+ a+ b+ . . .←→ i+ j + . . . (3.11)

As already done for the Liouville operator it is helpful to integrate Ĉ over the phase space, we will
call this integral C :

C =
gÇ

(2Ã)3

∫

Ĉ[f ]
d3pÇ
EÇ

=−
∫

dΠÇdΠadΠb · · · dΠidΠj · · ·

× (2Ã)4¶4(pÇ + pa + pb + . . .− pi − pj − . . .)
× [|M→|2fafbfÇ · · · (1± fi)(1± fj) · · ·
− |M←|2fifj · · · (1± fÇ)(1± fa)(1± fb) · · · ]

(3.12)

Here, |M| is the matrix element averaged over initial and final spins and includes any symmetry factors
for identical particles. The right arrow corresponds to the direct process in 3.11, while the left arrow
denotes the inverse reaction.
We now focus on the reaction given in 2.1. In the early universe, where f j 1, we can approximate
1± f ≃ 1. Assuming CP (or T) invariance, we also have |M→| = |M←|. Within these hypotheses the
generic expression 3.12 takes the following form:

12
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C = −
∫

(2Ã)4¶4(pÇ + pÇ̄ − pÈ − pÈ̄), dΠÇ, dΠÇ̄, dΠÈ, dΠÈ̄|M|2(fÇfÇ̄ − fÈfÈ̄) (3.13)

We assume that the process in 2.1 occurs with perfect symmetry between Ç and Ç, as well as between È
and È. Specifically, we assume that È represents all the species into which Ç annihilates and that it is in
thermal equilibrium. This is because these particles have additional interactions with the thermal bath
that are stronger than their interactions with Ç. Given that È is in thermal equilibrium and assuming
zero chemical potential (while the Boltzmann equation remains covariant, with this assumption, we
are now choosing a specific frame of reference), its distribution is given by fÈ = exp[−EÈ/T ]. The
delta function then provides us with the relation EÇ + EÇ = EÈ + EÈ. From these expressions, we
can write:

fÈfÈ = exp[−(EÈ + EÈ)/T ] = exp[−(EÇ + EÇ)/T ] = f eqÇ f
eq
Ç (3.14)

We will use:

fi(E, t) =
ni(t)

neqi
f eqi (E, t) (3.15)

With f eqi the distribution for species i in thermal equilibrium. We also define the thermally averaged
cross section:

ïÃvMølð = (neqÈ )−2
∫

(2Ã)4¶4(pÇ + pb − pc − pd) dΠbdΠcdΠddΠÇ |M|2e−(Eψ+Eψ̄)/T (3.16)

Where neq is the number density at thermal equilibrium. With this definition we can rewrite 3.13 as:

C = −ïÃvMølð[n2Ç − (neqÇ )2] (3.17)

We can finally write the Boltzmann equation:

dnÇ
dt

+ 3HnÇ = −ïÃvMølð[n2Ç − (neqÇ )2] (3.18)

In the Boltzmann equation (3.18) the thermal average ïÃvMølð has usually been done by expanding
the cross section at low relative velocity. However, there are cases, such as near a resonance or a
threshold, where the cross section is poorly approximated by this expansion or where it may even
become divergent.

3.3 Thermal Average

For the definition, we have that ïÃvMølð, for an equilibrium Maxwell-Boltzmann distribution at tem-
perature T , i.e., f(E) ∝ exp(−E/T ), is:

ïÃvMølð =
∫

ÃvMøle
−E1/T e−E2/Td3p1d

3p2
∫

e−E1/T e−E2/Td3p1d3p2
(3.19)

Particle 1 and 2 in our case are just the colliding particles Ç and Ç̄. We can rewrite the momentum-
space volume element:

d3p1d
3p2 = 4Ãp1E1dE1 4Ãp2E2dE2

1

2
dcos¹ (3.20)

Where ¹ is the angle between the three-momenta and we used the shell equation. Changing variables:

E+ = E1 + E2, E− = E1 − E2, s = 2m2 + 2E1E2 − 2p1p2cos¹ (3.21)

We obtain d3p1d
3p2 = 2Ã2E1E2dE+dE−ds. The integration region {E1 > m, E2 > m, |cos¹| < 1}

transforms in:

|E−| f
√

1− 4m2

s

√

E2
+ − s, E+ g

√
s, s g 4m2 (3.22)
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Once this is done we can rewrite the numerator of 3.19:
∫

ÃvMøle
−E1/T e−E2/Td3p1d

3p2 = 2Ã2
∫

dE+

∫

dE−

∫

dsÃvMølE1E2e
−E+/T =

= 2Ã2
∫

dsÃ(s− 4m2)

∫

dE+e
−E+/T

√

E2
+ − s =

= 2Ã2T

∫

dsÃ(s− 4m2)
√
sK1(

√
s/T ).

(3.23)

Where we used A.16 and Ki is the modified Bessel function of the second kind of order i. The
denominator is: 1:

∫

e−E1/T e−E2/Td3p1d
3p2 = [4Ãm2TK2(m/T )]

2 (3.24)

Putting all together we rewrite 3.19:

ïÃvMølð =
∫ +∞
4m2 dsÃ(s− 4m2)

√
sK1(

√
s/T )

8Tm4K2
2 (m/T )

(3.25)

This result is valid for Maxwell-Boltzmann statistics, but for T < m/3 (from confronting the rest mass
energy with the thermal energy) it can be safely applied to all statistics. To perform this integral,
it is convenient to switch to a frame of reference different from the comoving frame. We will now
demonstrate this statements, where the first equality is used to perform the integral:

ïÃvMølð = ïÃvlabðlab ̸= ïÃvcmðcm (3.26)

The first quantity is the thermal average of ÃvMøl in the comoving reference frame, while the other
quantities will be specified later. We now use vMøl = vrel(1 − v1 · v2) (from A.2), where vrel is the
relative velocity between particle 1 and particle 2, and v1 and v2 are the velocities of particle 1 and
particle 2 in the comoving reference frame. Since vrel is an invariant, the Møller velocity transforms
according to the following law:

vMøl = v′Møl

(1− v1 · v2)
(1− v1′ · v2′) (3.27)

where the prime indicates quantities in the new reference frame.
We now define the lab frame as the rest frame of one of the incoming particles. In this case, from A.2,
vlabMøl = vlab, where vlab is just the velocity of the incoming particle in the lab frame, while the velocity
of the other particle vanishes. Thus, from 3.27, we get vMøl = vlab(1− v1 · v2).
Let’s now define the Møller velocity in the center-of-mass frame (c.m. frame). In this case, vcmMøl = vcm,
and by multiplying and dividing by pµ1p2µ, one gets:

vMøl = v
′

Møl

(1− v1 · v2)

(1− v
′

1 · v
′

2)
= vcm

1

2

2Ecm1 Ecm2
E1E2

(3.28)

And:

vMøl = vcm
1

2

(

Ecm1 Ecm2 + p2 +m2

E1E2

)

= vcm
1

2

(

pµ1p2µ +m2

E1E2

)

= vcm
1

2

(

1− v1 · v2 +
m2

E1E2

)

(3.29)

Where we used the modulus of the tri-momentum p in the c.m. frame. We can now proceed with the
definition of the thermal average in the primed frame:

ïÃv′

Mølð =
∫

Ãv
′

Møldn
′

1dn
′

2
∫

dn
′

1dn
′

2

(3.30)

1To compute the numerator one has just to use the definition of the Bessel function with an easy change of variables,

while for the denominator to use the propriety ∂K1

∂z
= K1

z
+K2.
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For definition of Møller velocity the numerator is invariant (see section A.2) while the denominator
changes because of the contraction of volumes, as seen before. This means that are valid the equalities:

ïÃvMølð = ïÃv
′

Mølð
′

〈

V1V2

V
′

1V
′

2

〉

= ïÃv′

Mølð
′

〈

E
′

1E
′

2

E1E2

〉

= ïÃv′

Mølð
〈

vMøl

v
′

Møl

〉

(3.31)

The thermal averages for the lab and c.m. frames are respectively:
〈

vMøl

vlab

〉

= ï1− v1 · v2ð = 1,

〈

vMøl

vcm

〉

=
1

2

[

1 +

〈

m2

E1E2

〉]

=
1

2

[

1 +
K2

1 (x)

K2
2 (x)

]

(3.32)

Where for the lab frame the average is taken for all possible angles v1 and v2 and for the c.m. frame
For sake of brevity we present only the result without the derivation. We rewrite the result as:

ïÃvMølð = ïÃvlabðlab =
1

2

[

1 +
K2

1 (x)

K2
2 (x)

]

ïÃvMølð (3.33)

Using the numerical values of the modified Bessel functions of the second kind, we find that for x→ 0,
which corresponds to relativistic freeze-out, ïvMøl/vcmð → 1/2. In contrast, for x→∞, representing
non-relativistic freeze-out, the asymptotic expansion gives ïvMøl/vcmð → 1. Specifically, for the case
we are interested in, where x ≃ 20− 25, we find that ïvMøl/vcmð ≃ 0.932− 0.945.
Since ïÃvMølð = ïÃvlabðlab, it is convenient to perform the integral in the lab frame. To do this, we
use the kinetic energy per unit mass in the lab frame, given by ϵ = (s− 4m2)/4m2.

Using the shell relation and the fact that v = p/E, one can also show that vlab =
2
√
ϵ(1+ϵ)

1+2ϵ . Thus, we
can rewrite 3.25 as:

ïÃvMølð =
∫

∞

0
dϵ K(x, ϵ) Ãvlab, K(x, ϵ) =

2x

K2
2 (x)

√
ϵ(1 + 2ϵ)K1(2x

√
1 + ϵ) (3.34)

Once the value of Ãvlab is known, the integral can be computed numerically, which avoids the potential
complications associated with expanding Ãvlab in powers of ϵ.
In some cases, it is useful to compute the thermal average of ÃvMøl in the non-relativistic limit. Here,
the relativistic Maxwell-Boltzmann distribution (∝ e−E/T ) in 3.19 is replaced by the non-relativistic
Maxwell-Boltzmann distribution (∝ e−p2/2mT ).
In this non-relativistic case, the denominator of 3.19 is straightforward to compute and yields (2ÃmT )3.
For the numerator, we use the integration variables prel = p1 − p2 and ptot = p1 + p2. Since ÃvMøl

depends only on prel, we can perform the integral over ptot. After some calculations, we obtain:

ïÃvMølðn.r. =
2x3/2

Ã1/2

∫

∞

0
Ãvlabϵ

1/2e−xϵ, dϵ (3.35)

Where p2rel = 4m2ϵ. Outside of resonances or thresholds, we can safely Taylor expand Ãvlab in powers
of ϵ and use this expansion to compute the integral 3.34 or 3.35. Specifically, in the first case, one
should use the expansion of the Bessel functions for large arguments. We do not delve into all the
computational details, but it is worth noting that they coincide only up to the first order. There is
particularly better agreement if Ãvlab is a slow function of ϵ. Typically, for cold relics (in our case
x ≃ 20 − 25), if we consider a non-relativistic distribution, we are committing an error of about
≃ 1− 5%.

3.4 Semi-Analytical Solutions

It is advantageous to express 3.18 in terms of dimensionless quantities. To achieve this, we first
employ the comoving number density YÇ, as defined previously in 2, to account for the effects of
cosmic expansion:

dYÇ
dt

=
d

dt

[

nÇa
3

sa3

]

=
1

sa3

[

a3
dnÇ
dt

+ 3a2nÇ
da

dt

]

=
1

s

[

dnÇ
dt

+ 3HnÇ

]

(3.36)
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Where we used the conservation of entropy per comoving volume. We can then rewrite the Boltzmann
equation 3.18 in the following way:

dYÇ
dt

= −sïÃvMølð(Y 2
Ç − (Y eq

Ç )2) (3.37)

Where we used nÇ = YÇs. Then we define the dimensionless variable x = mÇ/T . It is convenient
rewrite dYÇ/dt as it follows:

dYÇ
dt

=
dYÇ
dx

dx

dt
(3.38)

We now want to properly express dx/dt. From the conservation of the entropy in a comoving volume

we have S = 2Ã2

45 g∗sT
3a3 = const. then:

0 =
d

dt

[

g∗s

(a

x

)3
]

=
a3

x3
dg∗s
dx

dx

dt
+

3a2

x3
g∗sȧ−

3a3

x4
dx

dt
g∗s (3.39)

Simplifying common factors, calling dg∗s/dx = g
′

∗s and H = ȧ/a we get:

dx

dt
=

Hx

1− x
3
g′
∗s

g∗s

(3.40)

We then can rewrite the Boltzmann in its final form:

dYÇ
dx

= −ïÃvMølð
s

Hx

(

1− x

3

g
′

∗s

g∗s

)

(Y 2
Ç − (Y eq

Ç )2) (3.41)

To give a semi-analytical solution for the Boltzmann equation we take g∗s = const. With this assump-
tion made we arrive at this differential equation:

dYÇ
dx

= −ïÃvMølð
s

Hx
(Y 2
Ç − (Y eq

Ç )2) (3.42)

This form of the Boltzmann equation is an ordinary differential equation quadratic in the independent
variable and there are not closed analytical solutions. Before giving a semi-analytical solution we first
need to express the x dependence of s and H. As pointed out earlier in 2 H(x) = H(x = 1)x−2 and
s(x) = s(x = 1)x−3. We can then rewrite:

dYÇ
dx

= − ¼

x2
[

Y 2
Ç − (Y eq

Ç )2
]

, ¼ :=
s(x = 1)ïÃvMølð

H(x = 1)
(3.43)

We define ∆Ç = YÇ − Y eq
Ç :

d∆Ç

dx
= −dY

eq
Ç

dx
− ¼

x2
∆Ç(2Y

eq
Ç +∆Ç) (3.44)

Before freeze-out, ∆Ç is nearly zero. Therefore we can impose d∆Ç/dx = 0. Solving for ∆Ç, we get:

∆Ç =
x2

¼[∆Ç + 2Y eq
Ç ]

dY eq
Ç

dx
, x < xFO (3.45)

While long after the freeze-out we have that that Y eq
Ç becomes negligible, and thus YÇ ≃ ∆Ç. Conse-

quently, we obtain:
d∆Ç

dx
= − ¼

x2
∆2
Ç, x > xFO (3.46)

This differential equation is easily solved, allowing us to determine Y 0
Ç , where the suffix denotes the

present value:

Y 0
Ç =

(
∫

¼

x2
dx

)−1

=

√

45

Ã

g
1/2
∗

g∗s

1

mMP l

1

J(xFO)
; J(xFO) =

∫

∞

xFO

dx
ïÃvMølð
x2

(3.47)
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Figure 3.1: Numerical solutions of the Boltzmann equation for three different values of ³, the dashed line
represents the density per comoving value for a specie in thermal equilibrium

This can also be rewritten in the following way:

1

Y 0
Ç

=
1

Y FO
Ç

+

(

45

Ã
G

)1/2 ∫ TFO

T0

g∗s√
g∗
ïÃvMølðdT (3.48)

Where we used dT = −dx m/x2, and in the first case we neglected 1/Y FO
Ç . From this we can compute

easily the relic density using 2.7:

ΩÇh
2 =

1.07× 109GeV −1

g
1/2
∗ MP lJ(xFO)

(3.49)

We note that by providing an expression for ïÃvMølð using a Taylor expansion, as discussed in 3.3,
we can evaluate J(xFO) and compute the relic density. This approach yields, at first order, the same
result for both the relativistic and non-relativistic regimes:

ΩÇh
2 =

1.07× 109GeV −1xFO

g
1/2
∗ MP l(a(0) + 3a(1)/xFO)

(3.50)

Where a(n) indicates the nth derivative of ÃvMøl with respect to ϵ evaluated at ϵ = 0.
Using the expression for the Hubble constant in a radiation-dominated universe and the expression
for the entropy, we can rewrite ¼. Additionally, we need to specify ïÃvMølð as well.

¼ =
2Ã
√
10

15
mÇMP l

g∗s√
g∗
ïÃvMølð (3.51)

We remark that we are neglecting the dependence of g∗s and g∗ on x. We choose the annihilation cross

section to be: ïÃvMølð =
³2
χ

32Ãm2
χ
. This cross section is selected to represent an s-wave process, which is

typical for weak interactions (on the order of pb). We set mÇ = 200 GeV and in addition, we compare
three different values of the coupling ³Ç. In figure 3.1 we observe several important points: First, the
line representing thermal equilibrium approaches zero, indicating that, in the absence of decoupling,
the relic density of Dark Matter would be zero. Second, there is a specific point at which YÇ decouples
from the thermal bath. The decoupling occurs at different values of x for different values of ³Ç;
however, in all cases, xFO ≃ 20-30. As anticipated, for larger values of the cross section, decoupling
occurs at a later time, resulting in a lower relic density (ΩÇ ∝ 1/Ã).
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Chapter 4

Annihilation Near Poles

In this section, we consider the case where annihilation takes place near a pole or a resonance in
the cross section. This can happen, for example, when there is an s-channel exchange of a mediator
particle with mass approximately twice the Dark Matter mass. Let m be the mass of the colliding
particles, mR the mass of the resonance, and ΓR its width. We now consider a resonant cross section
of the relativistic Breit-Wigner form:

Ãres =
4ÃÉ

p2
BiBf

m2
RΓ

2
R

(s−m2
R)

2 +m2
RΓ

2
R

(4.1)

Here, É = (2J + 1)/(2S + 1)2 is a statistical factor, S is the spin of the colliding particles, J is
the spin of the resonance, p = 1

2(s − 4m2)1/2 is the center-of-mass momentum, and Bi and Bf are
the branching fractions of the resonance into the initial and final channel, respectively. We rewrite
the cross section in a more convenient way as follows, using ϵ defined in 3.3, µR = mRΓR/4m

2 and
ϵR = (m2

R − 4m2)/4m2.

Ãres =
4ÃÉ

m2ϵ
BiBf

µ2R
(ϵ− ϵR)2 + µ2R

(4.2)

Using vlab = 2
√

ϵ(1 + ϵ)/(1 + 2ϵ) and Bf = 1−Bi, we can write:

Ãresvlab =
8ÃÉ

m2

µ2R
(ϵ− ϵR)2 + µ2R

bR(ϵ) (4.3)

Where the factor bR(ϵ) is given by:

br(ϵ) =
Bi(1−Bi)(1 + ϵ)1/2

ϵ1/2(1 + 2ϵ)
(4.4)

And we assume that bR(ϵ) is a very slow function of ϵ near the resonance, (i.e., far from ϵ = 0) and it
can be expanded in powers of ϵ:

bR(ϵ) =

∞
∑

l=0

b
(l)
R

l!
ϵl (4.5)

We now firstly examine the case where we have a very narrow resonance, µR << 1. Recalling the
relation

lim
µ→0

µ

x2 + µ2
= Ã¶(x) (4.6)

We write:

Ãresvlab =
8Ã2É

m2
µR¶(ϵ− ϵR)bR(ϵR) (4.7)

Using this expression we can compute using 3.34 the relativistic thermal average:

ïÃresvmølð =
16Ã2É

m2

x

K2
2 (x)

µRBi(1−Bi)
√
1 + ϵRK1(2x

√
1 + ϵR)¹(ϵR) (4.8)
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While the non-relativistic formula (3.35) gives:

ïÃresvmølðn.r. =
16ÃÉ

m2
x3/2Ã1/2µRϵ

1/2
R e−xϵRbR(ϵR)¹(ϵR) (4.9)

Here, ¹(ϵR) represents the Heaviside function. In fact the integral for the thermal average is performed
for ϵ > 0, which means that if ϵR < 0—i.e., if the particle mass exceeds half the resonance mass mR—a
narrow resonance does not contribute to the thermally averaged cross section. This is because, in the
center-of-mass frame, the resonance must be formed at rest, and ifm > mR, energy conservation would
require the resonance to have momentum, leading to a contradiction. Conversely, whenm < mR, there
are collisions, driven by the thermal distribution, with sufficient energy to form the resonance. While
this holds for a very narrow resonance, a broader one may still contribute to the thermal average of
the cross section even when m > mR. Generally, particles with a mass greater than (mR+ΓR)/2 have
too much rest energy to produce a resonance.
For arbitrary values of ΓR, the relativistic average must be computed numerically, but a closed-form
expression can be obtained for the non-relativistic case. We will first present some analytical results
for the non-relativistic thermal average, followed by numerical computations for both relativistic and
non-relativistic averages. We can write 4.3 as it follows:

ïÃresvlabð =
8ÃÉ

m2
µR Re

i

ϵR + iµR − ϵ
bR(ϵ) (4.10)

Using the non-relativistic thermal average (3.35) we can write:

ïÃresvmølðn.r. =
16Ã1/2É

m2
x3/2µR

∫

∞

0
Re

ϵ1/2e−xϵ

zR − ϵ
bR(ϵ)dϵ (4.11)

Where zR = ϵR + iµR. We can expand bR(ϵ), swap the summation with the integral sign, and rewrite
it as:

ïÃresvmølðn.r. =
16ÃÉ

m2
x3/2µRÃ

1/2
∞
∑

l=0

b
(l)
R

l!
Fl(zR;x) (4.12)

Where we define:

Fl(zR;x) = Re
i

Ã

∫

∞

0

ϵl+1/2e−xϵ

zR − ϵ
dϵ (4.13)

By passing the derivative inside the integral sign and differentiating the exponential, it is easy to show
the following relation:

Fl(zR;x) = −
∂

∂x
Fl−1(zR;x) (4.14)

And thus:

Fl(zR;x) = (−1)l ∂
l

∂xl
F0(zR;x) (4.15)

And through some computations it can be also showed that:

F0(zR;x) = Re
(

z
1/2
R e−zRx erfc(−ix1/2z1/2R )

)

(4.16)

With these formulae we can approximate ïÃresvmølðn.r. up to any order.

We now present some numerical results for the thermal average of ÃvMøl. It is important to note
that the thermal average depends on both 2m/mR and x. Although we could have shown a single 3D
surface plot, for clarity and readability, we instead present two 2D sections of the same plot. In 4.1,
we present the thermal average of ÃvMøl as a function of 2m/mR for two values of x, computed using
both relativistic and non-relativistic averages. The non-relativistic average shows a steeper function,
and, as expected, for larger values of x, the relativistic and non-relativistic thermal averages show
better agreement. We also note that the relativistic thermal average presents broadened peaks and
shifted towards bigger masses due to the thermal distributions.
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Figure 4.1: The dashed lines represent the relativistic
thermal average of ÃvMøl, while the solid lines corre-
spond to the non-relativistic thermal averages. Red
lines are for x = 25, and blue lines are for x = 15. In
all cases, µR = 0.01.

Figure 4.2: The dashed lines represent the relativistic
thermal average, while the solid lines correspond to the
non-relativistic thermal averages. Black lines refer to
2m/mR = 0.95, blue lines to 2m/mR = 0.90, and red
lines to 2m/mR = 0.80. In all cases, µR = 0.01.

In 4.2, we present the thermal average as a function of x for three different values of 2m/mR. These
functions are used to calculate JÇ and, consequently, the relic density. Specifically, one needs to
integrate the functions shown in 4.2, divided by x2, from xFO to infinity. Note that the units used on
the y-axis of both 4.1 and 4.2 are BiBf8Ãµ

2
RÉ/m

2.
In 4.3, we present the computation of ΩÇ using both relativistic and non-relativistic thermal averages
for two different values of µR. The relic density was computed by integrating from xFO = 25 to
x = 500. While ideally, the integration should extend from xFO to infinity, we limited it to x = 500
due to numerical constraints. This approximation introduces an error of about 5%. Extending the
integration domain would not significantly change the trend of the graph, also due to the logarithmic
scale used. We opted to limit the integration range to highlight both relativistic and non-relativistic
results.
Note that the logarithmic scale on the y-axis may obscure differences between the two types of thermal
averages too, but the graphs indicate good agreement between the relativistic and non-relativistic

computations. The unit used on the y-axis is 1.07× 109 GeV−1 × 25, BiBf8Ãµ
2
RÉ/(m

2MP lg
1/2
∗ ). We

finally observe a striking suppression of the relic density near the resonance, with a reduction factor
of approximately 103 for µR = 0.03 and 104 for µR = 0.01. This result clearly demonstrates how the
presence of a resonance in the cross-section can significantly impact the relic density of Dark Matter.
This finding will be further discussed in the conclusions.

Figure 4.3: Ωχ as a function of 2m/mR for two different values of µR. The red lines correspond to µR = 0.01,
while the blue lines correspond to µR = 0.03. Dashed lines represent the relativistic average, and solid lines
represent the non-relativistic thermal average.
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Conclusions

In this work we first described the observational evidences that led to the formulation of the existence
of Dark Matter. We then focused on the WIMPs model and what we can say about them. Among
all the models, we analyzed the model of thermal Dark Matter. As previously discussed, thermal
Dark Matter presupposes the existence of an interaction with Standard Model particles that allows
it to maintain thermal equilibrium with the primordial plasma. It has then been studied that, due
to the expansion of the universe, such interactions are insufficient to maintain thermal equilibrium,
leading to the decoupling of Dark Matter from the thermal bath and resulting in the freeze-out. This
process was initially studied using an instantaneous freeze-out model and later through the Boltzmann
equation.
Subsequently, it was studied how to perform the thermal averaging of the generic cross-section that
describes the interaction between Dark Matter and the Standard Model, which is a necessary quantity
for studying the freeze-out. We finally focused on the specific case where Dark Matter particles
annihilate close to a resonance, and we provided an explicit expression for the cross section. Applying
what we learned, we calculated the thermal average of the cross section, which allowed us to determine
how it influences the relic density. What we found is that near a resonance, the relic density is
significantly suppressed. This is particularly important: indeed, thermal Dark Matter, being a testable
model, has been the subject of various experiments aimed at detecting its interaction with ordinary
matter, which is presumed to exist. The lack of detection has imposed stringent limits on the cross
section, specifically upper limits. It has been observed that this implies lower limits on the relic density
(ΩÇ ∝ 1/Ã), and if these limits were greater than ΩDM =0.12, it would lead to the falsification of the
model.
If, on the other hand, we assume the presence of resonances in the cross section, we can achieve small
relic densities even with small couplings values, thanks to the suppression mentioned earlier. This
therefore allows us to still consider thermal Dark Matter as a reasonable paradigm for explaining
Dark Matter.



Appendix A

Useful Results

A.1 Friedmann’s Equations

The cosmological principle asserts that the Universe is homogeneous and isotropic. This “principle” is
actually an empirical fact, and happens to be true only at the large scales of the Universe: extremely
large galaxy surveys such as the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey revealed
that there are not any huge structure on scales greater than hundreds of Mpc, to give an idea of this
enormous scale, the radius of our galaxy is about ≃ 12.5 kpc, the nearest galaxy of similar size to our
own, the Andromeda Galaxy, is at a distance of about 800 kpc. The typical distance between galaxies
of the size of the Milky Way is about ≃ 1 Mpc. We add that the biggest structures in the universe
are galaxy clusters or superclusters with a typical size that ranges from 1-15 Mpc to ≃ 100 Mpc.
The cosmological principle justifies the assumption that our Universe, at least at these large scales,
can be described by the Robertson–Walker metric, the most general metric for a spacetime that is
spatially homogeneous and isotropic, but evolving in time:

ds2 = −c2dt2 + a2(t)

(

dr2

1− kr2 + r2dΩ2

)

(A.1)

Where a(t) is a function of time and is called the scale factor of the Universe. k is a constant that
gives us information about the curvature of the Universe: if k > 0, we live in a spherical geometry
world; if k = 0, we live in a flat world; and if k < 0, in a hyperbolic geometry. We remark that r, ¹,
and ϕ are often called comoving coordinates: regardless of what a(t) is doing, their values remain the
same (for non-moving particles). Given this metric, we can write the Einstein field equations:

Gµ¿ =
8ÃG

c4
Tµ¿ (A.2)

Where Gµ¿ is the Einstein tensor and Tµ¿ is the stress-energy tensor. We underline that the Einstein
tensor is dependent only on the metric, so given the metric one can always compute it. For the sake
of brevity, we do not show it explicitly.
What Einstein’s equation is telling us is how the presence of matter curves spacetime, and so we have
to describe the matter under consideration. We choose to model matter in the Universe by a perfect
fluid at rest. In this case:

Tµ¿ = diag(−Äc2, p, p, p) (A.3)

We have raised an index to get a convenient form of the stress-energy tensor. Plugging in T ¿µ and
computing the Einstein tensor, one gets only 2 independent equations:

(

ȧ

a

)2

+
kc2

a2
=

8ÃG

3
Ä (A.4)

And:

2

(

ä

a

)

+

(

ȧ

a

)2

+
kc2

a2
= −8ÃG p

c2
(A.5)
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Equation A.4 is the first Friedmann equation, subtracting A.4 to A.5 we get the second Friedmann
equation:

ä

a
= −4ÃG

3
(Ä+ 3p) (A.6)

We notice that we have three functions of time: a(t), Ä(t), and p(t). If we want to solve for these
functions and get an explicit dependence on time, we will need one more equation; namely, we need
an equation of state, which gives the relation between Ä and p. In fact, taking the derivative with
respect to time in A.4 and using A.6, we get:

Ä̇+ 3

(

ȧ

a

)

(Ä+ p) = 0 (A.7)

If we use an equation of state in the form Ä = wp where w is a constant that depends on the type of
the matter we arrive at:

Ä̇

Ä
= −3(1 + w)

ȧ

a
(A.8)

So we obtain that Ä ∝ a−3(1+w). For different types of matter, we can choose different values of w.
For baryonic matter and Dark Matter, we set w = 0, which implies p = 0, allowing us to think of
them as dust in the vacuum, without any pressure. Consequently, we have Ä ∝ a−3. This also means
that:

d

dt
(a3Ä) = 0 (A.9)

This equation states the intuitive fact that if the content of matter in the universe doesn’t change,
then its density is diluted as the volume of the universe increases.
From statistical mechanics considerations for radiation, we have w = 1

3 , so Ä ∝ a−4. This can also be

explained intuitively: the density of photons scales as a−3 and their energy as a−1, since Eµ = hc
¼ and

¼ ∝ a. We conclude with the definition of the Hubble parameter H:

H =
ȧ

a
(A.10)

The value of the Hubble parameter at the present epoch is the Hubble constant, H0, and it is roughly
70± 10 km/sec/Mpc.

A.2 Møller Velocity

In this section, we focus on the meaning of vMøl. In the non-relativistic regime, vMøl is simply the
relative velocity between the colliding beams of particles. However, when relativistic corrections are
taken into account, this is no longer true.
We start with the rate of collisions occurring in volume dV over time dt for two beams of particles
with number densities n1 and n2. In the reference frame in which particle 2 is at rest, the rate of
collisions is given by d¿ = Ãvreln1n2dV dt, where d¿ is, by its nature, an invariant quantity. In a
generic reference frame, we get d¿ = An1n2dV dt.
Here, A is a quantity to be determined, but we know that A = Ãvrel in the rest frame of particle 2.
In addition being both d¿ and dV dt invariant quantities, we get that An1n2 is invariant too. We will
always use the cross section Ã in the rest frame of a particle, so Ã is an invariant quantity. We note
that if:

A = Ãvrel
p1µp

µ
2

E1E2
(A.11)

We get the correct expression for A in the rest frame of particle 2 and An1n2 is invariant. We now
give an expression to get vrel. In an arbitrary reference frame particle 1 and 2 have velocities v1 and
v2 respectively. From p1µp

µ
2 computed in the rest frame of particle 2 we obtain vrel:

p1µp
µ
2 =

m1m2
√

1− v2rel
⇒ vrel =

√

1− m2
1m

2
2

(p1µp
µ
2 )

2
(A.12)
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In any reference frame p1µp
µ
2 = E1E2 − p1 · p2. Using v = E/p and E = m/

√
1− v2 we get:

p1µp
µ
2 = m1m2

1− v1 · v2
√

(1− v21)(1− v22)
= E1E2(1− v1 · v2) (A.13)

Substituting in A.12, after simple computations, we get:

vrel =

√

(v1 − v2)2 − (v1 × v2)2

1− v1 · v2
(A.14)

We can now substitute A.11 and A.14 to compute the collision rate. After some algebraic manipula-
tions, we obtain the collision rate in an arbitrary frame of reference:

d¿ = Ã
√

(v1 − v2)2 − (v1 × v2)2n1n2dV dt (A.15)

It is very common to define the Møller velocity vMøl ≡
√

(v1 − v2)2 − (v1 × v2)2.
In this way, the expression for the rate of collision per unit volume and time is similar to the non-
relativistic expression: d¿ = ÃvMøln1n2dV dt. From this, it is easy to see that, to compute Γ, one
must use the Møller velocity.
We finally derive a result that will be useful in the next section, we want to show that:

vMølE1E2 =

√

1

4
s(s− 4m2) (A.16)

Using A.12 and A.13:

vMølE1E2 = vrelE1E2(1− v1 · v2) =

√

1− m2
1m

2
2

(p1µp
µ
2 )

2
(p1µp

µ
2 ) (A.17)

From this is only matter of algebraic computations to show equation A.16

A.3 Degrees of Freedom

In this section we provide a more precise definition of g∗ and g∗s and examine how the dependence of
degrees of freedom on temperature influences the Boltzmann equation. We assume that each species
of particles i in the early universe is in kinetic equilibrium, with a well-defined temperature Ti. We
can express its energy and entropy as follows:

Äi(Ti) =

∫

f(Ti, Ei)Eid
3pi

si(Ti) =

∫

3m2
i + 4p2i
3EiTi

f(Ti, Ei)d
3pi

(A.18)

Here, we use s = (Ä+ P )/T , where P = p2/E is the pressure of the gas. Recall that the distribution
function f(Ei, Ti) is given by:

f(Ei, Ti) =
gi

(2Ã)3
1

exp(Ei/Ti) + ¸i
(A.19)

With ¸i = 1 for Fermi-Dirac statistics, ¸i = −1 for Bose-Einstein statistics, and ¸i = 0 for Maxwell-
Boltzmann statistics, and gi denoting the number of internal degrees of freedom for the particle species,
we now define the effective degrees of freedom for energy and entropy:

g∗,i(T ) =
30

Ã2T 4
Äi(T ) =

15gi
Ã4

x4i

∫

∞

1

y2(y2 − 1)1/2

exp(xiy) + ¸i
dy (A.20)

g∗s,i(T ) =
45

2Ã2T 3
si(T ) =

45gi
4Ã4

x4i

∫

∞

1

y(y2 − 1)1/2

exp(xiy) + ¸i

4y2 − 1

3y
dy (A.21)
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Where the integrals in A.18 are performed in spherical coordinates (d3p = 4ÃE
√
E2 −m2 dE) with

the coordinate change y = E/m.
The contributions of each species to the total number of effective degrees of freedom for entropy and

energy are weighted by g(i) = g∗,i

(

Ti
T

)4
and g

(i)
s = g∗s,i

(

Ti
T

)3
, respectively.

Each species contributes to the total energy density Ä and entropy density s with its own Äi and si, at
its own temperature Ti. To express Ä and s in terms of the temperature of the thermal bath T rather
than Ti, we need to define these effective numbers of degrees of freedom.
The total effective degrees of freedom for energy and entropy are denoted g∗ and g∗s, respectively, and

are the sum of these weighted contributions. Note that in general, g(i) ̸= g∗,i (or g
(i)
s ̸= g∗s,i).

In principle, by knowing the temperature of each species of particles and their respective number of
effective degrees of freedom, one can always compute g∗ and g∗s. This can also be done by exploiting
the fact that up to decoupling, the temperature of the thermal bath T and the temperature of each
species Ti are the same.
We will not go into the details here but will illustrate how the number of degrees of freedom is affected
by temperature: In particular, studying the thermal history of the universe and observing A.1, we

Figure A.1: Degrees of freedom as a function of temperature: g∗ and g∗s are very similar. The dotted lines
indicate the transition phase at 210 MeV, while the solid lines correspond to 150 MeV. Note that as you read
the plot from left to right, the temperature increases, which means you are moving backward in time.

can see that g∗ and g∗s are characterized by two distinct epochs. The first epoch is when there is no
entropy production and each particle species contributing to the total energy and entropy densities
can be considered as an ideal gas. The second phase begins with the QCD transition, occurring
at T ≃ 150 − 300 MeV, during which these approximations are no longer valid. In this transition
phase, gluons and all quarks are no longer free but are confined within hadrons, leading to an abrupt
reduction in the number of degrees of freedom (the QCD transition phase marks this change).
We note that we have frequently used the conservation of entropy per comoving volume, which is not
as valid during the QCD phase transition.

25



Bibliography

For the evidences for Dark Matter and the empirical facts about it:

• D. Hopper, TASI 2008 Lectures on Dark Matter, arXiv:0901.4090

• D.Hopper, G. Bertone, A History of Dark Matter, arXiv:1605.04909,

• G.B. Gelmini, TASI 2014 Lectures: The Hunt for Dark Matter, arXiv:1502.01320

• M. Lisanti, Lectures on Dark Matter Physics, arXiv:1603.03797

For the Boltzmann equation and freeze-out:

• E.W. Kolb and M.S. Turner, The Early Universe. Addison-Wesley Publishing Company,1989.

• D. Hopper, TASI 2008 Lectures on Dark Matter, arXiv:0901.4090

• G.B. Gelmini, TASI 2014 Lectures: The Hunt for Dark Matter, arXiv:1502.01320

For the thermal average section:

• P.Gondolo, G.B. Gelmini Cosmic abundances of stable particles: improved analysis , Nuc. Phys.
B360 (1991) 145-179

• M. E. Peskin, D. V. Schroeder, An Introduction To Quantum Field Theory, Frontiers in Physics.
Westview Press, 1995

For the number degrees of freedom in the early universe:

• P.Gondolo, G.B. Gelmini Cosmic abundances of stable particles: improved analysis , Nuc. Phys.
B360 (1991) 145-179

• L. Husdal On Effective Degrees of Freedom in the Early Universe, arXiv:1609.04979

For the thermal average near a resonance:

• K.Griest, D.Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev.B43 (1991)
3191-3203

• P.Gondolo, G.B. Gelmini Cosmic abundances of stable particles: improved analysis , Nuc. Phys.
B360 (1991) 145-179

For the cosmology part:

• E.W. Kolb and M.S. Turner, The Early Universe. Addison-Wesley Publishing Company,1989.

• A. Liddle, An Introduction to Modern Cosmology. Wiley, 2015.

• S. M. Carroll, Spacetime and geometry: an introduction to General Relativity Cambridge Uni-
versity Press, 2019.


