
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Telecommunication Engineering

Graph Signal Processing:

Reconstruction Algorithms

Supervisor Master Candidate

Tomaso Erseghe Marco Ceccon

Università di Padova

28 February 2017 Academic Year 2016/2017

Abstract

In the last years we have been experiencing an explosion of information gener-
ated by large networks of sensors and other data sources. Much of this data is
intrinsically structured, such as traffic evolution in a transportation network, tem-
perature values in different geographical locations, information diffusion in social
networks, functional activities in the brain, or 3D meshes in computer graphics.
The representation and analysis of such data is a challenging task and requires
the development of new tools that can identify and properly exploit the data
structure.

In this thesis, we formulate the processing and analysis of structured data using
the emerging framework of graph signal processing. Graphs are generic data
representation forms, suitable for modeling the geometric structure of signals that
resides on topologically structured domains. The vertices of the graph represent
the discrete data domain, and the edge weights capture the pairwise relationships
between the vertices. A graph signal is then defined as a function that assigns
a real value to each vertex. Graph signal processing is a useful framework for
handling efficiently such data as it takes into consideration both the signal and
the graph structure.

In this work, we study the common features and properties of signals defined
on graphs and we focus on a specific application related to the reconstruction of
graph signals in both centralized and distributed settings.

iii

iv

Sommario

Negli ultimi anni abbiamo sperimentato una esplosione di informazioni generate da
grandi reti di sensori e da altre fonti di dati. Gran parte di questi dati hanno una
struttura intrinseca, come l’evoluzione del traffico in una rete di trasporto, i valori
di temperatura in diverse località geografiche, la diffusione di informazioni nelle
reti sociali, le attività cerebrali, o superfici tridimensionali in computer grafica.
La rappresentazione e l’analisi di tali dati è un compito impegnativo e richiede lo
sviluppo di nuovi strumenti in grado di identificare e sfruttare correttamente la
struttura dei dati.

In questa tesi, impostiamo l’elaborazione e l’analisi di dati strutturati che uti-
lizzano il contesto emergente dell’elaborazione di segnali definiti su grafi. I grafi
sono forme di rappresentazione di dati generiche, adatte per modellare la strut-
tura geometrica di segnali che risiedono in domini topologicamente strutturati. I
vertici del grafo rappresentano i dati in un dominio discreto, e i pesi dei lati del
grafo esprimono le relazioni tra vertici connessi. Un segnale su un grafo viene
quindi definito come una funzione che assegna un valore reale a ciascun vertice.
L’elaborazione dei segnali definiti su grafi è un contesto utile per la gestione ef-
ficiente di tali dati, che tiene in considerazione sia il segnale e la struttura del
grafo.

In questo lavoro, studiamo le principali caratteristiche e proprietà dei segnali
definiti su grafi e ci concentriamo su una specifica applicazione relativa alla ri-
costruzione dei segnali definiti su grafi, sia in contesti centralizzati che distribuiti.

v

vi

Contents

Abstract ii

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Outline . 4

2 Graph Signal Processing Overview 5
2.1 Introduction . 5
2.2 Graphs And Signals On Graphs 6
2.3 Graph Spectral Domain . 11
2.4 Applications Of Graph-Based Signal Processing 19

2.4.1 Processing with graph-based priors 19
2.4.2 Distributed Processing Of Graph Signals 20
2.4.3 Graph-Based Multimedia Processing 23

3 Graph Signal Reconstruction 27
3.1 Reconstruction Problem . 27
3.2 Random Sampling and Frequency Ordering 34
3.3 Performance of the LS Reconstruction Algorithm 36
3.4 `1 Regularization Sparsity . 42

4 Distributed Algorithms 51
4.1 Average Consensus . 51
4.2 ADMM: Alternating Direction Method of Multipliers 55

4.2.1 Distributed ADMM - LS Solution 58
4.2.2 Distributed ADMM - `1 Regularization Solution 66

5 Conclusions And Future Work 79
5.1 Future Work . 80

vii

References 82

viii

Listing of figures

2.1 A graph defined on 50 nodes . 6
2.2 Gershgorin circles for Metropolis weights 8
2.3 Gershgorin circles for unweighted adjacency matrix 9
2.4 Random signal defined on 50 nodes 10
2.5 Eigenvectors u0, u1, u2 and u49 11
2.6 Number of zero-crossings . 12
2.7 Exponential kernel and its IGFT 14
2.8 Translated versions of kernel signal 16

3.1 Temperature for 2 different months 31
3.2 An example of signal sampling . 34
3.3 Frequency ordering . 35
3.4 MSE for different weighting methods 39
3.5 MSE for different weighting methods 40
3.6 LS signal reconstruction for month March, Metropolis weights . . 41
3.7 LASSO and ridge constraint comparison 44
3.8 `1-norm signal reconstruction for month March, Metropolis weights 46
3.9 MSE for `1-norm problem, different λ 46
3.10 MSE for `1-norm problem, different number of samples 47
3.11 MSE comparison, 99 frequencies, λ = 1 48
3.12 MSE comparison, 10 frequencies, λ = 1 49

4.1 Convergence of average consensus algorithm 54
4.2 Convergence of the ADMM solution - LS 63
4.3 Convergence of the ADMM variables - LS 64
4.4 Average time to run ADMM - LS 65
4.5 Convergence of the ADMM solution - `1-norm regularization (10

freq.) . 69
4.6 Convergence of the ADMM solution - `1-norm regularization (99

freq.) . 70
4.7 Convergence of the ADMM solution - comparison 71
4.8 Average time to run ADMM - `1-norm regularization 72
4.9 Comparison of distributed algorithms - 1 73
4.10 Convergence of ADMM, LS solution, updated penalty parameter

(ε0 = 0.001) . 74

ix

4.11 Convergence of ADMM, LS solution, updated penalty parameter
(ε0 = 0.01) . 75

4.12 Convergence of ADMM, LASSO solution, updated penalty param-
eter (ε0 = 0.001) . 76

4.13 Convergence of ADMM, LASSO solution, updated penalty param-
eter (ε0 = 0.01) . 77

4.14 Comparison of distributed algorithms - 2 78

x

Listing of tables

3.1 Temperature dataset, index 1:33 28
3.2 Temperature dataset, index 34:66 29
3.3 Temperature dataset, index 67:99 30

xi

xii

Listing of acronyms

ADMM Alternating Direction Method of Multipliers

ATC Adapt To Combine

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

GFT Graph Fourier Transform

IGFT Inverse Graph Fourier Transform

LASSO Least Absolute Shrinkage and Selection Operator

LS Least Square

MSE Mean Squared Error

SVM Support Vector Machine

WSN Wireless Sensor Network

xiii

xiv

1
Introduction

Modern information processing inevitably involves an extremely large volume of

increasingly complex data. The complexity comes, in particular, from the intrinsic

structure of the framework on which these data resides. Data observed by different

sensors could be intrinsically related by some structures, where the data could

represent different kind of information. For instance, temperatures observed at

different regions are related to their geographical proximities, traffic volumes at

different locations in a transportation network depends on the topology of the

network, and behaviour of a group of persons may be influenced by the friendships

among them. To handle such complex data efficiently, we need to understand the

interactions between different sources of information as well as the relationships

and structures among them.

Graphs are powerful mathematical tools to model relationships and structures

of the data. In a graph representation, the vertices represent the entities and

the edges represent the pairwise relationships between these entities. Moreover,

graph-based data are flexible and adaptable to incorporate multiple information

with relationships and structures among them, yet remaining sufficiently simple

for efficient processing: we can think to the temperature of different sensors, taken

at different time instants.

Signal processing on graphs is an emerging research field which has recently at-

tracted growing interests in the signal processing community. In this setting, the

1

vertices of the graph represent entities and the edge weights reflect the pairwise

relationships between them, while a graph signal assigns a scalar value to each ver-

tex based on some observation associated with the entities. Graph signals capture

the relationships between the observations, thus reflect the structures in the data,

and they can represent a various sources of information. Numerical examples of

graph signals can be found in geographical, transportation, biomedical and social

networks, such as temperatures within a geographical area, traffic capacities at

hubs in a transportation network, or human behaviour in a social network.

1.1 Motivation

Over the past few years, we have attended so many information generated by

numerous data sources, in a large variety of applications. For example, sensor

networks have been widely deployed to measure a plethora of physical entities,

like temperature and solar radiation, traffic volumes in transportation networks,

brain activities in biological networks. Online social networks have turned into a

significant means of communication and contain a lot of information. 3D depth

cameras are yet becoming more powerful and widely used to capture dynamic

3D scenes in emerging applications such as gaming, immersive communication

and virtual reality. Such data are usually very complex since they are high-

dimensional and occupy a large amount of storage space. Furthermore, data

are intrinsically and possibly irregularly structured. For instance, wireless sensor

networks are irregularly deployed in space and their measurements depend on their

geographical positions. Also, data and structure may be generated by different

sources of information. For example, the information spread in social networks

may be influenced by the relationships between the entities, as well as the type

of data itself. The representation, analysis, and compression of such data is a

challenging task that requires the development of new tools that can identify and

properly exploit data structures.

In this thesis, we study the representation and analysis of structured data in the

context of the emerging graph signal processing framework. Graphs are generic

data representation forms that are suitable for modeling the geometric structure of

signals that live on topologically complicated domains, including social networks,

electricity networks, transportation networks, and sensor networks, where data

2

naturally reside on the vertices of weighted graphs. These signals are either in-

trinsically discrete (e.g., attributes of entities in social networks) or sampled from

a continuous process. Typically, the vertices of the graph represent the discrete

data domain and carry the data values. The edge weights of the graph capture

the pairwise relationships between the vertices, like geographical distance or bio-

logical connections, for example. A graph signal is then defined as a function that

assigns a real value to each vertex.

The weight associated with each edge in the graph often represents the similarity

between the two vertices it connects. The connectivities and edge weights are

either dictated by the physics of the problem or inferred from the data. For

instance, the edge weight may be related to the physical distance between nodes

in the network, or it may be related to the degrees of the connected vertices (that

is, the number of edges connected to the same vertex). The data on these graphs

can be visualized as a finite collection of samples, with one sample at each vertex

of the graph.

Graph representations lead to rich data description on irregular domains and, if

properly exploited, permit to efficiently capture the evolution of signals in a priori

complex high-dimensional data sets. Signals and graphs are usually defined using

different types of information which, if combined properly, can be quite helpful in

analyzing or inferring information in the datasets. Moreover, graph signal repre-

sentations provide a natural way to handle signals that cannot be easily processed

with classical tools due to their irregular structure. The price to pay for this

flexibility is the fact that one has to develop new tools and algorithms that han-

dle efficiently the graph structure, possibly by leveraging intuition from classical

signal processing in Euclidean spaces. Adapting classical signal processing tools

to signals defined on graphs has however raised significant interest in the last few

years. It requires the combination of different fields such as algebraic and spectral

graph theory, harmonic analysis, and application domain expertise. Even if this

research area looks highly promising because it provides a framework for modeling

complex and irregularly structured discrete datasets, the challenges are many and

the field is still in expansion.

3

1.2 Thesis Outline

The goal of this thesis is to present solutions as well as analysis of a few of the

most important issues that arise in the emerging field of graph signal processing.

The thesis is organized as follows:

• Initially, we review in chapter 2 the current state-of-the-art methods for

graph signal representations and their applications in both centralized and

distributed settings. First, we give the basic definitions and notation used in

this thesis for graphs and signals on graphs, and we review the generalization

of classical transforms, such as Fourier, to the irregular graph domain. Then,

the chapter concludes with applications of graph signal processing in visual

data representation, processing and compression.

• Chapter 3 introduces and studies a common application of graph signal

processing, that is the reconstruction problem: given a sampled graph signal,

defined only on a subset of the vertices of the graph, the main challenge

consists in extract the missing part of the signal. To solve this problem, we

propose two different algorithms, based on two different function that need

to be minimized.

• In chapter 4 we propose distributed versions of the reconstruction algo-

rithms. First, we present a simple interpretation of the solution, based

on the average consensus algorithm. Then, we apply a more sophisticated

method that involves the introduction of some auxiliary variables, that are

minimized in an alternating fashion. Finally, we expose some numerical

results of the distributed algorithms.

• Finally, Chapter 5 draws some conclusions and suggests possible future re-

search topics that will continue the work of this thesis.

4

2
Graph Signal Processing Overview

2.1 Introduction

In order to efficiently represent graph signals, it is necessary to take into account

for the intrinsic geometric structure of the underlying graph. Signal characteris-

tics, such as smoothness, depend on the irregular topology of the graph on which

the signal is defined. Classical signal processing tools designed for regular sig-

nal structures are therefore inappropriate for the irregular structure in the graph

setting. In the last years a lot of work has been dedicated to design new tools

and algorithms that can handle efficiently the new challenges arising from the

irregular structure of networks or other graph supports. These tools are based

on a combination of computational harmonic analysis with algebraic and spectral

graph theoretical concepts [1].

In this chapter, we review principal graph signal processing methods from the

literature, which are related to the problems studied in this thesis. First, we give

some basic definitions and notation for graphs and signals on graphs, that will be

used in the rest of the thesis. Next, we review the generalization of classical trans-

forms such as Fourier to the irregular graph domain. In the sequel, we focus on

the use of graph-based signal processing tools in different applications. In partic-

ular, we focus on graph signals reconstruction and distributed processing. Finally,

5

we quick review the use of graph-based signal processing tools for image and 3D

data, which represent a popular application area for this emerging framework.

2.2 Graphs And Signals On Graphs

In this section, we briefly recall a few basic definitions for signals on graphs. We

generally consider a connected, weighted and undirected graph G = (V , E ,A)

where V and E represent the vertex and edge sets of the graph respectively, and

A represents the weighted adjacency matrix, with Aij = Aji (since the graph is

undirected) denoting the weight of the edge connecting vertices i and j. If there

is not an edge between node i and node j, we assume Aij = 0. The degree of a

node i is defined as the sum of the weight of the edges incident on that node, that

can be computed as the sum of the weight values in the i-th row of the weighted

adjacency matrix A. We assume that the graph is connected and that it consists

of N nodes. The n-hop neighborhood N (i, n) = {v ∈ V : d(v, i) ≤ n} of node i is

the set of all nodes that are at most n-hop away from node i.

Figure 2.1: A graph defined on 50 nodes

6

The combinatorial graph Laplacian operator, also called the non-normalized

graph Laplacian, is defined as

L = D −A (2.1)

where D is the diagonal degree matrix whose i-th diagonal element is equal to the

degree of node i (the sum of the weights of all the edges incident to vertex i [2]) and

A is the weighted adjacency matrix. It is a positive semi-definite matrix that has

a complete set of real orthonormal eigenvectors with corresponding non-negative

eigenvalues. We denote its eigenvectors by {u`}`=0,1,...,N−1, and the associated real,

non-negative sorted spectrum of eigenvalues by

σ (L) = {0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN−1}

satisfying Lu` = λ`u` for ` = 0, 1, . . . , N − 1. Then we can write the Laplacian

eigendecomposition L = UΛU ∗, where U collects all the eigenvectors of L in

its columns, whereas Λ contains the eigenvalues of L. The spectral properties

of matrix L, that is its eigenvalues and eigenvectors structure, are of particular

importance to study the behaviour in the spectral domain. The following useful

results are taken from non-negative matrix theory, [3].

According to the Gershgorin circle theorem, the eigenvalues of the Laplacian

L of a graph G are located inside the discs in the complex plane with centers in

Lii and radius given by the row-sums
N∑

j=1,j 6=i
|Lij| for each i, where | · | denotes

absolute value. Since by definition the diagonal entries of L are non-negative and

all row-sums are equal to zero, the Gershgorin circles are tangent to the imaginary

axis at zero. Fig. 2.2 visualizes an example of Gershgorin circles for the Laplacian

in the complex plane, if we consider the weighted adjacency matrix by taking the

Metropolis weights as defined in (3.10).

7

0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues

Figure 2.2: Gershgorin circles for Metropolis weights

Therefore, the eigenvalues of L have non-negative real parts and are all inside a

circle of radius 2dmax where dmax is the maximum degree over all vertices. In this

case we can see that the eigenvalues, in the case of Metropolis weight adjacency

matrix, are limited within a circle of radius 1 centered in [1, 0]. In the case of

unweighted adjacency matrix, defined in (3.15), we can see from Fig.2.3 that the

eigenvalues are restricted inside a circle of bigger radius, because the adjacency

matrix is not normalized as in the Metropolis case.

8

0 10 20 30 40 50

-25

-20

-15

-10

-5

0

5

10

15

20

25

Eigenvalues

Figure 2.3: Gershgorin circles for unweighted adjacency matrix

Since L · 1 = 0, where 0 is a zero vector of length N , the smallest eigenvalue

of the non-normalized Laplacian is always zero and its multiplicity is equal to the

number of connected components of the graph, and the corresponding eigenvector

is a constant vector. The largest eigenvalue depends on the maximum degree of

the graph. Moreover, the combinatorial Laplacian is associated with the incidence

matrix, as shown in [2].

For connected graphs, the normalized graph Laplacian is closely related to the

combinatorial Laplacian and is defined as

L = D−
1
2LD−

1
2 = I −D−

1
2AD−

1
2 (2.2)

where I is the identity matrix. As in the case of the non-normalized Laplacian,

the eigenvalues are non-negative, with the smallest one equal to zero. A nice

property of the eigenvalues of the normalized Laplacian is that they are contained

between the interval [0, 2], which makes it easier to compare the distribution of

the eigenvalues between different graphs, especially if there is a large difference

in the number of vertices; the maximum value λmax = 2 is reached if and only

9

if G is bipartite, i.e. the set of vertices V can be partitioned into two subsets V1

and V2 such that every edge e ∈ E connects one vertex in V1 and one vertex in

V2. Furthermore, the normalized Laplacian eigenvalues are consistent with the

eigenvalues in the spectral geometry and in stochastic processes, such as random

walks [2].

The combinatorial and the normalized graph Laplacians are both examples of

generalized graph Laplacians [4] and they are both popular in many graph related

frameworks. In general, when the graph is almost regular, the combinatorial and

the normalized Laplacian have similar spectra. In these thesis we mainly use the

combinatorial graph Laplacian and we focus only on undirected graph. For the

sake of completeness, we note that the definition of the Laplacian can be easily

extended to directed graphs [5].

A graph signal y in the vertex domain is a real-valued function defined on the

vertices of the graph G, such that y (n) is the value of the function at vertex n ∈ V .

An example of a graph and a signal on the graph is given in Fig. 2.4. This signal

is generated randomly from a Gaussian distribution, with zero mean and standard

deviation of 5.

-10

-5

0

5

10

Figure 2.4: Random signal defined on 50 nodes

10

2.3 Graph Spectral Domain

The fundamental analogy between traditional signal processing and graph signal

processing is established through the spectral graph theory [2]. In particular,

the generalization of the classical Fourier transform to graph settings has been

established through the eigenvectors and the eigenvalues of the graph Laplacian

matrix [6], which carry a notion of frequency for graph signals. In particular,

the graph Laplacian eigenvectors associated with small eigenvalues correspond

to signals that vary slowly across the graph, hence they can be associated with

the notion of low frequency. For connected graphs, the Laplacian eigenvector u0

associated with the eigenvalue 0 is constant and equal to 1√
N

at each vertex.

u0 u1

u2 u49

Figure 2.5: Eigenvectors u0, u1, u2 and u49

11

In other words, if two vertices are connected by an edge with a large weight, the

values of the low frequency eigenvectors at those locations are likely to be similar.

The eigenvectors associated with larger eigenvalues take values that change more

rapidly on the graph: they are more likely to have dissimilar values on vertices

connected by an edge with high weight. This is demonstrated in both Fig. 2.5,

which shows different graph Laplacian eigenvectors for a random sensor network

graph, and in Fig. 2.6, which shows the number of zero crossings of each graph

Laplacian eigenvector. The set of zero crossings of a signal y on a graph G is

defined as

ZG (y) = {e = (i, j) ∈ E : y (i) y (j) < 0};

that is, the set of edges connecting a vertex with a positive signal to a vertex with

a negative signal.

0 2 4 6 8 10 12 14 16

λℓ

0

50

100

150

200

250

300

Figure 2.6: Number of zero-crossings

The eigenvectors of the graph Laplacian are therefore considered to represent a

Fourier basis for graph signals. For any function y defined on the vertices of the

graph, the Graph Fourier Transform (GFT) ŷ (λ`) at frequency λ` is thus defined

12

as the inner product with the corresponding eigenvector u` [6]

ŷ (λ`) = 〈y, u`〉 =
N∑
n=1

y (n)u∗` (n) (2.3)

where the inner product is conjugate-linear in the first argument, and u∗` (n) is

the conjugate value of the eigenvector u` at node n. Therefore we can say that

the GFT of a signal y is ŷ = U ∗y.

The Inverse Graph Fourier Transform (IGFT) is

y (n) =
N−1∑
`=0

ŷ (λ`)u` (n) , ∀n ∈ V . (2.4)

The Fourier basis can be chosen as the eigenvectors of either the combinato-

rial or the normalized graph Laplacian matrices, since both spectrums have a

frequency-like interpretation [1]. We notice that, as in the classical Euclidean set-

tings, the spectral domain representation provides important information about

the graph signals. For example, analogously to the classical case, the graph Fourier

coefficients of a smooth signal decay rapidly. Such signals are compressible as they

can be closely approximated by just a sparse set of Fourier coefficients [7]. This

property is used in many applications such as compression or regularization of

graph signals.

The graph Fourier transform and its inverse give us a way to equivalently repre-

sent a signal in two different domains: the vertex domain and the graph spectral

domain. While we often start with a signal in the vertex domain, it may also be

useful to define a signal directly in the graph spectral domain. We refer to such

a signals as kernels. In Fig. 2.7 one such signal, a heat kernel, is shown in both

domains.

13

0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e−λℓ

Spectral domain Vertex domain

Figure 2.7: Exponential kernel and its IGFT

Analogously to the classical analog case, the graph Fourier coefficients of a

smooth signal such as the one shown in Fig. 2.7 decay rapidly. Such signals are

compressible as they can be closely approximated by just a few Fourier coefficients.

Besides its use in spectral analysis, the graph Fourier transform is also useful

in generalizing traditional signal processing concepts such as convolution, trans-

lation, or modulation to graph settings. In particular, the relation between the

vertex and the spectral graph domain has been used to define the convolution on

the graph. Given two signals y and h, the result of the convolution of these two

signals on vertex n is defined as [8, 6]

(y ∗ h) (n) =
N−1∑
`=0

ŷ (λ`) ĥ (λ`)u` (n) , (2.5)

which imposes the property that the convolution in the vertex domain is equivalent

to a multiplication in the graph spectral domain, as in the classical Euclidean

settings.

The generalized convolution product defined in Eq.(2.5) satisfies the following

properties, as discussed in [8]:

1. Generalized convolution in the vertex domain is multiplication in the graph

spectral domain:

f̂ ∗ h = f̂ ĥ. (2.6)

14

2. Let α ∈ R be arbitrary. Then

α (f ∗ h) = (αf) ∗ h = f ∗ (αh) . (2.7)

3. Commutativity:

f ∗ h = h ∗ f. (2.8)

4. Distributivity:

f ∗ (g + h) = f ∗ g + f ∗ h. (2.9)

5. Associativity:

(f ∗ g) ∗ h = f ∗ (g ∗ h) (2.10)

6. Define a function h0 inRN by h0 (i) :=
N−1∑̀

=0

u` (i). Then h0 is an identity for

the generalized convolution product:

f ∗ h0 = f. (2.11)

7. An invariance property with respect to the graph Laplacian (a difference

operator):

L (f ∗ h) = (Lf) ∗ h = f ∗ (Lh) . (2.12)

8. The sum of the generalized convolution product of two signals is a constant

times the product of the sums of the two signals:

N∑
i=1

(f ∗ h) (i) =
√
Nf̂ (0) ĥ (0) =

1√
N

[
N∑
n=1

f (i)

][
N∑
n=1

h (i)

]
. (2.13)

The classical translation operator is defined through the change of variable

(Tvy) (t) = y (t− v), which cannot be generalized to graph settings. However, it

is possible to define a generalized translation operator Tv of a graph signal as a

convolution with a Kronecker δ centered at vertex v [9, 8, 6]:

Tvy (n) =
√
N (y ∗ δv) (n) =

√
N

N−1∑
`=0

ŷ (λ`)u
∗
` (v)u` (n) (2.14)

15

where

δv (n) =

1 if n = v

0 otherwise

where the normalizing constant
√
N ensures that the translation operator pre-

serves the mean of the signal. The Kronecker function δv is an N -dimensional

signal that is zero everywhere on the graph except from node v, where it takes

the value of one. This is a kernelization operation, acting on a signal ŷ defined in

the graph spectral domain rather than translating a signal y defined in the vertex

domain. An example of the translation of a signal y in different nodes of the graph

is illustrated in Fig. 2.8. We can observe that the classical shift in the classical

definition of the translation does not apply on graphs.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T1y

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T10y

0.05

0.1

0.15

0.2

0.25

T30y

0.05

0.1

0.15

0.2

0.25

T50y

Figure 2.8: Translated versions of kernel signal

16

Some expected properties of the generalized translation operator follow imme-

diately from the generalized convolution properties:

1. Ti (f ∗ h) = (Tif) ∗ h = f ∗ (Tih) .

2. TiTjf = TjTif.

3.
N∑
i=1

(Tif) (i) =
√
Nf̂ (0) =

N∑
i=1

f (i) .

Unlike the classical case, the set of translation operators {Ti}i∈{1,2,...,N} does not

form a mathematical group; i.e., TiTj 6= Ti+j. In the very special case of shift-

invariant graphs [10], which are graphs for which the Discrete Fourier Transform

(DFT) basis vectors are graph Laplacian eigenvectors, we have

TiTj = T[((i−1)+(j−1)) mod N]+1, ∀i, j ∈ {1, 2, . . . , N}. (2.15)

However, Eq.(2.15) is not true in general for arbitrary graphs. Moreover, while

the idea of successive translations TiTj carries a clear meaning in the classical

case, it is not a particularly meaningful concept in the graph setting due to our

definition of generalized translation as a kernelized operator.

Filtering is another fundamental operation in graph signal processing. Similarly

to classical signal processing, the outcome yout of the filtering of a graph signal y

with a graph filter h is defined in the spectral domain as the multiplication of the

graph Fourier coefficient ŷ (λ`) with the transfer function ĥ (λ`) such that

ŷout (λ`) = ŷ (λ`) ĥ (λ`) , ∀λ` ∈ σ (L) . (2.16)

The filtered signal yout at node n is given by taking the IGFT of ŷout in (2.16):

yout (n) =
N−1∑
`=0

ŷ (λ`) ĥ (λ`)u` (n) . (2.17)

Eq.(2.17) can be expressed in matrix notation [11] as

yout = ĥ (L) y, (2.18)

17

where

ĥ (L) = U


ĥ (λ0) 0

. . .

0 ĥ (λN−1)

U ∗
is a graph filter or kernel defined in the spectral domain of the graph.

Interestingly, when the graph filter is a polynomial of order K with coefficients

{αk}Kk=0 such that

ĥ (λ`) =
K∑
k=0

αkλ
k
` , (2.19)

filtering in the spectral domain of the input signal y (n) at node n can be inter-

preted as a linear combination of the components of the input signal at vertices

that are within a K-hop neighborhood of n. Combining Eqs. (2.18) and (2.19)

we obtain

yout (n) =
N−1∑
`=0

ŷ (λ`) ĥ (λ`)u` (n)

=
N∑
m=1

y (n)
K∑
k=0

αk

N−1∑
`=0

λk`u
∗
` (m)u` (n)

=
N∑
m=1

y (m)
K∑
k=0

αk
(
Lk
)
n,m

(2.20)

where
(
Lk
)
n,m

= 0 if the shortest-path distance between vertices n and m id

greater than k [6]. This property can be quite useful for designing signals that are

localized in the vertex domain of the graph. A detailed overview of these basic

operations can be found in [1].

18

2.4 Applications Of Graph-Based Signal Pro-

cessing

In this section, we present some graph-based signal processing applications. We

review some of the works from the literature that use graph-based tools to process

graph signals in both centralized and distributed settings.

2.4.1 Processing with graph-based priors

Many of the representation methods of the previous section have been applied

to different signal processing tasks such as denoising, semi-supervised learning,

and classification. Similar to the traditional Euclidean domain, notions such as

smoothness and sparsity have been used as regularizers for solving many inverse

graph-based problems in both centralized and distributed settings.

The smoothness of the signal on the graph has been one of the core assumptions

in semi-supervised learning with applications in classification, link prediction, and

ranking problems. A signal is considered to be smooth on the graph if it exhibits

little variations between strongly connected vertices. Typically, the notion of

global smoothness Sp (y) of a signal y is defined through the discrete p-Dirichlet

norm of y as

Sp (y) =
1

p

∑
v∈V

‖∇vy‖p2 =
1

p

∑
v∈V

[∑
u∈Nv

Avu [y (v)− y (u)]2
] p

2

, (2.21)

where Nv denotes the one-hop neighborhood of node v, and Avu is the edge weight

between nodes v and u. When p = 1, Eq.(2.21) defines the total variation of the

signal y on the graph. When p = 2, we have a widely-used Laplacian based form

of smoothness defined as

S2 (y) =
∑
u,v∈E

Avu [y (v)− y (u)]2

= yTLy =
N−1∑
`=0

λ`ŷ (λ`)
2 . (2.22)

19

Eq.(2.22) implies that the signal y is smooth, i.e., S (y) is small, only if the

graph Fourier coefficients corresponding to big eigenvalues are small. This defi-

nition of smoothness or similar notions have been imposed as regularizers in the

graph-based semi-supervised learning literature, where the goal is to compute the

unknown signal entries by exploiting the assumption that the signal values vary

slowly between nodes that are connected by strong edges. The extension to more

sophisticated regularization techniques has been developed through the definition

of kernels on graphs that are typically of the form of the power series of the graph

Laplacian. Recently, a framework for active semi-supervised learning based on

sampling theory for graph signals has been introduced and is based on the above

notion of smoothness of signals on the graph.

While smoothness priors have been widely employed, the use of sparse prior

for graph signals has been mostly overlooked so far. The reason is that the link

between sparsity and signal structure is not well understood in graph settings.

However, there are still some works that try to exploit sparsity in learning appli-

cations. For example, the sparsity of the Fourier coefficients has been exploited

for the reconstruction of bandlimited graph signals.

2.4.2 Distributed Processing Of Graph Signals

The processing of graph signals in centralized settings has received considerable

attention, but less work has been devoted to solving similar tasks in distributed

settings like sensor networks. Many distributed processing tasks consider the

graph signal to be the result of the application of a linear graph-based operator

to an initial input signal. When the signal can be represented as a filtering op-

eration in the vertex domain of the graph, distributed processing of the signal is

significantly simplified. More formally, given an initial signal y, every signal yout

that can be expressed as filtering of y in the graph vertex domain with a graph

operator P ∈ RN×N , such that

yout (i) =
∑
j∈Ni

Pi,jy (j) (2.23)

can be computed by local exchange of information only within the neighborhood

of node i. Pi,j is the filtering weight corresponding to the edge between nodes i

20

and j. The operator or graph filter P is then defined according to the model of

the signal.

Most of the existing works in such settings focus on reaching distributively

an agreement between sensors, using only local communication. In that case, the

operator P is a doubly stochastic weight matrix that leads to an output yout that is

the average value of components of the initial signal y. Examples of such operators

are the Metropolis and the Laplacian weight matrices [12] defined respectively as:

• Metropolis weights

Pij =


1/ (1 + max{di, dj}) j ∈ Ni, i 6= j

1−
∑
k∈Ni

Aik i = j

0 otherwise,

(2.24)

where d (i) , d (j) denotes the degree of the i-th and the j-th sensors respec-

tively.

• Laplacian weights

P = I − αL (2.25)

where L denotes the Laplacian matrix of the graph G and the scalar α must

satisfy 0 < α < 1/dmax, where dmax consists of the maximum degree of the

graph.

Among the most common applications, distributed consensus algorithms in both

synchronous (average consensus algorithms) [13] and asynchronous versions (gos-

sip algorithms) [14] have been widely used for performing various aggregations

tasks in ad-hoc sensor networks. In particular, the authors in [15] solve the

problem of distributed classification of multiple observations exploiting average

consensus while consensus-based distributed algorithms for Support Vector Ma-

chine (SVM) training for binary classification have been proposed in [16]. In

addition, [17] solves a distributed field estimation problem from compressed mea-

surements while [18] introduces an algorithm for distributed subspace estimation

based on average consensus. Gossip algorithms find also numerous applications

in problems such as distributed parameter estimation, source localization, dis-

tributed compression [14], and decentralized sparse approximation [19].

21

Distributed average consensus operators are however only a specific case of the

general family of graph-based operators. More in general, distributed processing

of graph signals requires the definition of more sophisticated graph operators P .

To that end, the authors in [20] have introduced a special category of linear graph

operators called graph Fourier multipliers, which has been eventually extended to

generalized graph multiplier operators in [21]. Such operators are defined with

respect to a real symmetric positive semi-definite matrix Φ = UV UT , where U

and V are the eigenvectors and the eigenvalues of Φ, and are expressed as

P =
N−1∑
`=0

g (V`)U`U
∗
` , (2.26)

where g (·) : [0 : Vmax (Φ)] → R is a positive function defined in the spectral

domain of the graph. When the matrix Φ is the graph Laplacian matrix then

P =
N−1∑
`=0

g (λ`)u`u
∗
` , (2.27)

which corresponds to a graph Fourier operator. The union of such operators

P = [ug1 (Λ) , ug2 (Λ) , . . . , ugS (Λ)] represents the graph Fourier multipliers. From

Eq.(2.23), a graph signal yout is then the result of filtering a set of initial signals y =

[y1; y2; . . . ; yS] in the spectral domain with each of the graph Fourier multipliers,

such that

yout =
S∑
s=1

ugs (Λ)uTys. (2.28)

An example of a union of graph Fourier multipliers is the spectral graph wavelet

transform [6], where each of the multipliers corresponds to a particular scale. An

efficient way to apply graph Fourier multipliers in distributed settings is by ap-

proximating them with Chebyshev polynomials [6], [20]. In that case, the output

signal yout is the linear combination of a set of graph filtering operations (in the

vertex domain) of some initial signals on the graph. Such an approximation per-

mits the distributed approximation of yout from the set of initial signals as well as

the implementation of the forward and adjoint operators, which can be useful in

tasks such as distributed denoising and distributed smoothing, as shown in [20].

A few more distributed processing algorithms of graph signals are based on

22

the above mentioned ideas of graph filtering in the vertex domain. Recently, a

distributed least square reconstruction algorithm of bandlimited graph signals has

been proposed in [22]. The initial observations are sampled only on a subset of

nodes and the algorithm is shown to be efficient in tracking the unobserved data

of time-varying graph signals. The distributed graph signal inpainting algorithm

of [23] uses a regularizer that minimizes a metric term related to the variation of

the signal on the graph. The underlying assumption is that the signal is smooth

on the graph. The problem of interpolation of bandlimited graph signals from

a few samples is also studied in . The reconstruction is achieved using iterative

graph filtering, which can be approximated by polynomials of the graph Laplacian

matrix and implemented in distributed settings. Graph filters have also been used

to accelerate the convergence of the average consensus algorithm on a sensor graph

[24, 25]. Finally, matrix polynomials of a graph-shift operator have been proposed

in [26] to design graph filters for distributed linear network operators such as finite-

time consensus or analog network coding. Most of all the above mentioned works

show the potentials of graph signal processing techniques for distributed tasks,

but do not explicitly consider practical aspects such as quantization, which is of

significant importance in real word applications.

2.4.3 Graph-Based Multimedia Processing

Apart from processing signals that live on networks, graphs have been used for

modeling structured signals that live on other irregular domains. In particular,

graph signal processing algorithms have been successfully applied in numerous

multimedia applications in order to capture the geometrical structure of complex

high-dimensional signals such as images, videos, and 3D data. This type of data

provides a promising application domain for the emerging field of graph signal

processing.

First, we note that graphs and features based on graphs have recently started to

gain attention in the computer vision and shape analysis community mainly due

to the fact that the graph Laplacian has been shown to approximate successfully

the Laplace-Beltrami operator on a manifold [27], [28], [29]. Spectral features

defined on the graph have been successfully applied in a wide variety of shape

analysis tasks. The heat kernel signatures [30], their scale-invariant version [31],

23

the wave kernel signatures [32], the optimized spectral descriptors of [33], have

already been used in 3D shape processing with applications in graph matching

[34] or in mesh segmentation and surface alignment problems [35]. These features

have been shown to be stable under small perturbations of the edge nodes of the

graph. In all these works however, the descriptors are defined based only on the

graph structure, and the information about the attributes of the nodes such as

color and 3D positions, if any, is assumed to be introduced in the weights of the

graph. Thus, the performance of these descriptors largely depends on the quality

of the defined graph.

Signal compression is a second application domain where graph signal processing

tools have been applied successfully. Analogously to the classical analog case, the

graph Fourier coefficients of a smooth signal decay rapidly , making the graph

Fourier transform a good candidate for compression. In particular, the graph

Fourier transform has been widely used to compress efficiently smooth images.

For example, the graph-based Fourier transform has been used in [36] for the

compression of image and video signals, as an alternative to the classical Discrete

Cosine Transform (DCT). The authors in [37] adapted the graph for maximally

smooth signals and optimized the graph Fourier transform for better compression

of 3D smooth images. A set of edge-adaptive transforms was presented as an

alternative to the standard DCT and used in depth-map coding in [38]. A few

steps towards the theoretical analysis of the analogy between the graph Fourier

transform and the classical DCT have been taken in [39]. Under a Gaussian

Markov Random Field image model, the graph Fourier transform has been shown

to be optimal in decorrelating the signal and used for predictive transform coding.

Graphs have also been used for compressing multiview images, where the graph is

designed by connecting corresponding pixels in different views [40]. In [41] graph-

based transforms have been used to code luminance values in RGB. The problem

of multiview images of asymmetric quality has been studied in [42], where the

construction of a graph from high quality images has led to the enhancement of

low quality images. In the same line of works, a graph regularizer that imposes

smoothness has been proposed in [43] to enhance the quality of quantized depth

images. Thus, graph representations are an interesting tool for compression of

image and video signals.

Finally, graph-based transforms have recently been used in computer graph-

24

ics where the structural organization of 3D objects is captured by a graph. In

particular, the authors in [44] represent a moving human body by a sequence of

3D meshes with a fixed and known connectivity represented by a graph. The

geometry and the color information have then been considered as time-varying

signals on a graph, which are compressed using the graph wavelet filter banks .

Graph representations have been also used in to model the structure of 3D point

clouds and connect nearby points. The graph Fourier transform, which is equiv-

alent to Karhunen-Love transform on such graphs, is adopted to decorrelate and

eventually compress the point cloud attributes that are treated as signals on the

graph.

25

26

3
Graph Signal Reconstruction

3.1 Reconstruction Problem

We consider the problem of reconstruct a graph signal from observations taken

from a subset of vertices of the graph [45]. The problem fits well, e.g., to a Wireless

Sensor Network (WSN) scenario, where the nodes are observing a spatial field

related to some physical parameter of interest. Let us assume that the nodes’

topology is fixed and that the corresponding graph is symmetric and connected.

Suppose now that the WSN is equipped with nodes that, at every time instant,

can take observations of the underlying signal or not, depending on, e.g., energy

constraints, failures, limited memory and/or processing capabilities, etc. Our

purpose is to build a technique that allows the recovery of the field values at each

node. In this way, the information is processed on the fly by all nodes and the

data diffuse across the network by means of a real-time sharing mechanism.

The signal corresponds to the minimum temperatures of 99 Italian cities, as-

signed to each month of the year. The temperatures data set were taken from

the “Ministero delle politiche agricole, alimentari e forestali” site [46], where each

value of the temperature is specified for the last 12 months. Furthermore, the

coordinates of latitude and longitude were taken from the same source.

27

city ind lat long Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Torino 1 45.1 7.7 -4.8 -4.3 -3 1.4 3.9 8.7 11.3 11.1 9.4 3 0.6 -1.9

Alessandria 2 44.9 8.6 6.4 4.6 1.3 3.5 4.9 9.8 11.6 16.3 18.6 18 15.6 9.1

Asti 3 44.9 8.2 6.3 3.4 0.8 2.7 4.6 9.5 11.6 16.3 18.5 18.1 15.9 9.1

Biella 4 45.6 8.1 -6.5 -4.6 -3.4 1.8 4.6 9.7 12 11.3 9.1 3.1 -0.8 2.9

Cuneo 5 44.4 7.5 -0.8 -0.1 1.7 6.2 8.2 12.8 15.4 15.1 13.4 6.9 4.7 1.9

Novara 6 45.1 8.6 -3.4 -0.5 1.2 6.6 9.2 14.2 16.4 15.5 13.1 6.9 1.8 -0.7

Verbania 7 45.9 8.5 -8.5 -7 -6.1 -1.6 1.4 6.5 9 8.6 6.8 1.1 -2.8 -4.1

Vercelli 8 45.3 8.3 -5.7 -3.8 -2.6 2.5 5.4 10.3 12.6 12 9.7 3.6 -0.2 -2.1

Aosta 9 45.7 7.3 -9.6 -9.7 -9.4 -5.3 -2.5 2.2 4.9 5 3.4 -2.2 -4.6 -5.4

Milano 10 45.5 9.2 -1.3 2.1 3.6 8.8 11 15.9 18.5 17.4 15.3 8.8 3.8 1

Bergamo 11 45.7 9.7 -2.7 0 1.2 5.8 7.9 12.7 15.7 14.6 13.2 6.5 2.9 -0.3

Brescia 12 45.5 10.2 -2.6 -0.1 0.8 5.2 7.6 12.4 15.4 14 12.6 6 2.9 0.1

Como 13 45.8 9.1 -3.8 -1.2 0.3 5.2 7.4 12 14.9 14.1 12.6 6.3 1.9 -0.9

Cremona 14 45.1 10 -0.6 2.9 3.7 8.8 11.8 16.3 19.4 17.6 15.5 8.9 4.5 1.8

Lecco 15 45.8 9.4 -2.3 0.6 2.1 7.2 9.1 13.8 16.6 15.7 14.1 7.6 3.2 0.1

Lodi 16 45.3 9.5 -0.4 3 3.8 8.8 11.7 16.5 19.2 17.7 15.6 8.8 4.8 2

Mantova 17 45.1 10.8 -0.7 3.1 3.8 8.6 11.9 15.9 19.6 17.4 15.2 9.1 4.5 1.8

Pavia 18 45.2 9.2 -0.5 2.4 3.5 8.5 10.7 15.5 18 16.8 14.4 8.1 4.6 2.3

Sondrio 19 46.2 9.9 -6.4 -4.6 -3.6 0.2 2.4 6.8 10.2 9.5 8.5 1.9 0 -2.2

Varese 20 45.8 8.8 -3.6 -0.7 0.9 6.2 8.7 13.5 16 15.2 13.3 7.2 1.8 -0.9

Trento 21 46.1 11.1 -4.9 -3.2 -2.5 1.2 3.8 8.6 11.3 10.5 9 3 1.3 -1.1

Bolzano 22 46.5 11.3 -6.2 -4.1 -3.6 0.5 2.9 7.5 10 9.1 7.8 1.6 0 -1.9

Venezia 23 45.4 12.3 0.6 4.9 5.8 9.8 12.6 17.4 20.2 18 16.6 10.2 5.4 2.3

Belluno 24 46.2 12.2 -4.2 -1.3 -0.7 3.4 5.9 10.8 13 11.7 10.5 4.2 1.3 -1.2

Padova 25 45.4 11.9 -0.8 3.9 4.9 8.6 11.9 16.5 19.3 17.2 15.4 9.4 4.4 0.9

Rovigo 26 45.1 11.8 0.1 4.3 5.2 9 12.4 16.8 19.7 17.4 15.4 9.6 5.2 2.2

Treviso 27 45.7 12.2 -1.1 2.8 4 7.9 10.7 15.4 18.1 16.3 14.9 8.6 4.1 0.9

Verona 28 45.4 11 -1 2.6 3.5 7.7 10.8 15.1 18.3 16.5 14.6 8.5 4.2 0.9

Vicenza 29 45.5 11.5 -1.8 1.8 2.8 6.2 9.4 14.1 16.6 15.3 13.4 7.7 3.5 0

Trieste 30 45.6 13.8 2.1 6.1 6.7 10 12.4 17.6 20.1 18.9 17.4 10.3 6.3 4.1

Udine 31 46 13.2 -2.5 1.6 2.1 6 8.5 13.6 15.4 13.7 12.6 6.2 2.3 -0.3

Gorizia 32 45.9 13.6 0.5 4.9 5.2 8.4 11.2 16.4 18.2 17.1 15.6 9.2 5 2.6

Pordenone 33 46 12.6 -2 2.5 3.5 7.7 10.2 15.1 17.5 15.5 14.4 7.6 3 0.2

Table 3.1: Temperature dataset, index 1:33
28

city ind lat long Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Genova 34 44.4 12.6 8.7 7.6 4.1 5.2 5.9 10.1 11.5 15.6 18.2 18 16.3 10.6

Imperia 35 43.9 8.9 3.2 3.4 5.2 9 10.9 15 17.9 18.2 16.7 10.7 7.9 5.9

La Spezia 36 44.1 8 5.1 5.8 6 9.6 11.3 15 17.7 17.6 16.1 11.1 9.4 8.3

Savona 37 44.3 9.8 3.2 4.5 5.9 10.1 11.6 16 18.5 18.7 16.8 10.7 8.2 6.8

Bologna 38 44.5 8.5 -0.7 2.7 3.1 7.1 10 14.1 17.8 15.7 13.6 7.9 4.3 1.7

Ferrara 39 44.8 11.3 -0.1 4 5 8.8 12.4 16.6 19.7 17.1 15.1 9.3 5.4 2.3

Forl 40 44.2 11.6 0.7 3.8 4.1 7.5 10.4 14.4 17.5 15.7 13.8 8.7 5.2 1.6

Modena 41 44.6 12 -1.4 1.4 1.3 5.6 8.1 12.2 16.2 14.3 11.8 6.5 3.5 1.8

Parma 42 44.8 10.9 -0.2 2.1 2.1 6.7 9.2 13.4 16.7 15 13.1 7.3 4.6 2.9

Piacenza 43 45 10.3 -0.3 2.2 2.5 7.2 9.7 14.4 17.1 15.6 13.6 7.4 4.6 2.5

Ravenna 44 44.4 9.7 0.8 4.1 4.7 8.3 11.3 15.4 18.4 16.3 14.5 9 5.7 2.4

Reggio Emilia 45 44.7 12.2 -1.3 1.6 1.4 6.1 8.8 12.7 16.7 14.5 12.3 6.8 3.7 2.1

Rimini 46 44.1 10.6 1.8 4.7 5.2 8.9 11.5 16 19.4 17.6 15.2 10.2 7.1 3.1

Firenze 47 43.8 12.6 1.6 4.1 3.9 7.1 9.9 13.9 16.9 16.4 14.1 9 5.6 2.8

Arezzo 48 43.5 11.9 1.6 4 3.3 6.6 9.4 13.4 16.4 15.4 13.1 8.8 4.7 1.9

Grosseto 49 42.8 11.9 4.7 5.7 5.4 9.3 11.4 15.9 18.9 18.4 16.1 11.7 8.4 6.2

Livorno 50 43.6 11.1 6.5 7.2 7 10.3 12.4 16.7 19.6 19.5 17.5 13.1 10.2 8.6

Lucca 51 43.8 10.3 1.6 2.7 2.2 6.1 7.9 12 15.1 14.3 12.1 7.6 5.9 4.8

Massa 52 44 10.5 2.2 3.3 3 7 8.8 12.7 15.6 14.7 13.1 8.1 6.6 5.6

Pisa 53 43.7 10.1 4.8 6.1 6 9.1 11.6 15.8 18.3 18.2 16.1 11.4 8.7 6.6

Pistoia 54 43.9 10.4 0.9 2.6 2.3 5.8 8 12.2 15.2 14.9 12.5 7.6 5.2 3.4

Prato 55 43.9 10.9 0.7 3 2.8 6.1 8.6 12.8 16 15.7 13.3 7.9 5 2.7

Siena 56 43.3 11.1 3.4 4.8 4.4 8.2 10.4 14.9 17.8 17.3 14.9 10.4 6.9 4.6

Perugia 57 43.1 11.3 1.4 3.8 2.7 7 8.6 13.1 16.7 15.2 12.7 8.4 5.1 2.6

Terni 58 42.6 12.4 1.6 4 2.8 7.4 8.7 13.4 17.2 15.9 13.3 9.1 5.7 3

Ancora 59 43.6 12.7 4.6 6.5 6.3 10.3 12.2 16.8 20.6 18.7 16.2 11.2 8.5 5.5

Ascoli Piceno 60 42.8 13.6 1.1 3.2 2.8 6.6 8.3 13.3 17.2 15.2 12.7 8.4 5.3 2.6

Macerata 61 43.3 13.4 3.2 5.3 4.7 8.8 10.4 15.1 19.1 17 14.6 9.9 7.2 4.4

Pesaro 62 43.9 12.9 3 5.3 5.3 8.9 11.5 15.9 19.2 17.5 15.3 10.3 7.2 3.8

Roma 63 41.9 12.4 3.7 6.3 5.2 9 11 15.1 18.5 18 15.4 11.5 7 3.2

Frosinone 64 41.7 13.4 0.2 3.3 2 6.4 8.2 12.7 16.2 15.1 12.6 8.8 3.7 -0.9

Latina 65 41.5 12.9 5.8 7.9 6.8 10.4 12.5 16.6 19.6 19.3 16.9 13.3 9.2 5.4

Rieti 66 42.4 12.9 -0.9 2.1 0.5 4.8 6.3 10.9 14.9 13.4 10.7 6.8 3.1 0.3

Table 3.2: Temperature dataset, index 34:66
29

city ind lat long Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Viterbo 67 42.4 12.1 4.1 6.1 5.4 9.6 11.1 15.6 19 18.3 15.7 11.6 7.9 4.9

L’Aquila 68 42.2 13.2 -1.9 0.9 -0.4 4 5.7 10.3 14.2 12.6 10 6.2 1.9 -1.4

Chieti 69 42.2 14.1 3.2 4.8 4.6 9 11 15.8 19.5 18.1 15.4 11.5 7.1 3.9

Pescara 70 42.5 14.2 1 2.6 2.2 6.2 8.3 13.2 17 15.2 12.7 8.7 4.8 1.9

Teramo 71 42.7 13.7 1.3 2.9 2.7 6.5 8.5 13.5 17.4 15.5 13 8.8 5.3 2.8

Campobasso 72 41.6 14.7 3.5 6.1 5.5 10.2 11.6 16.3 19.8 18.6 15.8 12.1 7.3 4.1

Isernia 73 41.6 14.3 0.5 3.5 2.7 7.7 8.9 13.8 17.3 16 13.3 9.8 4.1 -0.2

Napoli 74 40.9 14.2 7.7 9 8.2 12 13.7 18.4 21 20.8 18 14.7 10.8 8

Avellino 75 40.9 14.8 3.4 5.4 4.6 8.8 10.2 14.8 18 16.9 14.1 10.9 7.1 3.7

Benevento 76 41.1 14.8 2.5 5.1 4.3 8.9 10.1 14.9 18.1 17.1 14.3 10.8 5.9 2.5

Caserta 77 41.1 14.3 2.5 5.3 4.3 8.8 10.4 15.4 18.4 17.5 14.9 11.3 5.8 1.2

Salerno 78 40.7 14.8 5 6.9 5.9 10.1 11.4 16 19.1 18.3 15.6 12.6 8.8 5.5

Bari 79 41.2 16.9 4.1 6.5 6.1 9.6 11.5 16.4 19.6 18.4 15.4 12.2 8 4.4

Brindisi 80 40.6 17.8 5.6 7.8 7.7 11 13 18.2 21 20.2 17 14.1 9.5 6

Foggia 81 41.5 15.5 4.7 6.8 6.1 10.4 11.9 16.4 20.3 18.9 15.9 12.4 9.1 6.3

Lecce 82 40.4 18.2 6.6 9.2 8.4 11.9 13.9 19 22.1 21.4 18.3 15.4 10.9 7.3

Taranto 83 40.5 17.2 5.6 8 7.8 10.9 12.7 17.9 20.5 19.7 16.7 14.1 9.1 5.5

Potenza 84 40.6 15.8 3.5 5.6 4.7 8.8 10.4 15.1 18.5 17.1 14.4 11.5 7.8 4.2

Matera 85 40.7 16.6 4.1 6.2 5.6 9 11.1 16 19.2 18.1 15.3 12.3 7.8 3.5

Catanzaro 86 38.9 16.6 7.1 8.8 7 11.1 13.2 18.1 21.2 20.3 17.3 15.6 12 7.6

Cosenza 87 39.9 16.3 4.8 6.8 5.5 9.9 11.3 16.2 19.4 18.5 15.5 13.4 9.8 6

Crotone 88 39.1 17.2 6.8 8.2 7 10.8 12.5 17.9 21.2 20.4 17.2 15 11.5 7.4

Reggio Calabria 89 38.1 15.7 10.2 11.7 10.1 13.8 15.9 20.6 23.8 23.4 21.1 19.3 14.8 11.1

Vibo Valentia 90 38.7 16.1 10.4 12.1 10.4 14 16.2 20.8 23.8 23.2 20.7 18.9 14.9 11.3

Palermo 91 38.1 13.4 7.6 8.4 7.6 11.8 13.1 17.3 20.8 20.3 18.1 16.4 11.5 8.3

Agrigento 92 37.3 13.6 7.8 9 7.8 12.4 13.7 17.8 20.3 20.2 18.4 17.1 12.1 8.3

Caltanisetta 93 37.5 14 6.2 7.9 6.5 11.4 12.8 17.2 20.2 19.5 17.4 16 11.1 7.5

Catania 94 37.5 15.1 6.3 8.2 6.7 11 13.1 17.6 20.8 20.5 18.6 16.9 11.6 7.7

Enna 95 37.5 14.3 4.9 6.7 5.2 9.9 11.6 16.2 19.7 18.9 16.5 14.8 10 6.4

Messina 96 38.2 15.5 10.4 11.7 10.5 14.1 15.7 20 23.4 23.1 21.3 19.3 14.9 12.1

Ragusa 97 36.9 14.8 8 9.7 8.4 12.6 14.6 18.9 21.6 21.4 19.8 18.3 13.2 9.6

Siracusa 98 37.1 15.3 8.4 9.9 8.8 12.6 14.9 19.2 22.2 22.2 20.5 19 13.6 9.7

Trapani 99 38 12.5 9.9 10.1 9.5 12.7 14.4 18.4 21.2 21.5 19.9 17.8 13.3 9.7

Table 3.3: Temperature dataset, index 67:99
30

We also assume that the sampling procedure in the vertex domain is random,

therefore we are able to detect the signal only for a subset of nodes: for the

non-sampled nodes we have to reconstruct their own value of the signal.

Assume that we have the time-sampled signal rt, t ∈ τ where τ denotes the

set of sampled nodes. The signal rt is known and we want to reconstruct the

entire signal st for t ∈ τ ∪ τ̄ , where τ̄ is the set of non-sampled nodes, starting

from an estimate in the frequency domain limited to the component indexed by

F . We assume an optimal frequency ordering for the set F , which means that the

frequencies are indexed in such a way that the first provide higher signal energy

and the last does not represent a significant contribution: therefore the frequency

set F is ordered according to each nodes energy contribution. This assumption

provides stability for the estimation process and ensures that the reconstruction

error is lower than the one obtained assuming random ordering (or some other

indexing strategy). Then we can say that F acts as a low-pass filter, which passes

the lowest frequencies guaranteeing higher signal energy.

-5

0

5

10

15

20

February

-5

0

5

10

15

20

August

Figure 3.1: Temperature for 2 different months

The problem corresponds to reconstruct the non-sampled component st, t ∈ τ̄
of the signal ŝt = rt for t ∈ τ

ŝt = Ut,f Ŝf for t ∈ τ̄
(3.1)

because for t ∈ τ the signal is known.

31

Ut,f is the eigenvector matrix associated to rows t ∈ τ̄ and columns f ∈ F , then

we need to know the component sampled in the vertex domain only for the subset

of eigenvector chosen by frequency index. Ŝf , f ∈ F is the estimated signal in the

frequency domain.

The Least Square (LS) solution to the problem (3.1) is

1. Ŝf = arg min
Sf∈R|F|

‖rt −Ut,fSf‖2
2, for t ∈ τ and f ∈ F

2. ŝt = Ut,f Ŝf , for t ∈ τ̄ and f ∈ F

Step 2 is easy, because Ut,f is known and Ŝf is what we have to estimate (the

GFT of the observed signal).

Assuming for clearness Ut,f = UT
t , step 1 can be solved as follow:

Ŝf = arg min
Sf

∑
t∈τ

(rt −Ut,fSf)
2

= arg min
x∈R|F|

∑
t∈τ

(
rt −UT

t x
)2

= arg min
x

∑
t∈τ

r2
t + xτ (UtU

τ
t)x− 2rtU

T
t x

= arg min
x

∑
t∈τ

r2
t + xτ

(∑
t∈τ

UtU
T
t

)
x− 2

(∑
t∈τ

rtU
T
t

)
x (3.2)

and taking the derivative of Eq.(3.2) with respect to x and setting it equal to 0

we have (∑
t∈τ

UtU
T
t

)
x =

∑
t∈τ

Utrt (3.3)

which leads to

x̂ =

(∑
t∈τ

UtU
T
t

)−1

·

(∑
t∈τ

Utrt

)
(3.4)

and finally

Ŝf =

(∑
t∈τ

UT
t,fUt,f

)−1

·

(∑
t∈τ

UT
t,frt

)
. (3.5)

Now we discuss a necessary and sufficient condition that guarantees exactly

signal reconstruction from its samples, as discussed in [45]. It is clear from Eq.(3.5)

32

that reconstruction of the original signal is possible only if the matrix∑
t∈τ

UT
t,fUt,f (3.6)

is invertible. From (3.6), a necessary condition enabling reconstruction is

|τ | ≥ |F| (3.7)

i.e., the number of nodes in the sampling set must be greater than equal to

the signal bandwidth. However, this condition is not sufficient, because matrix∑
t∈τ
UT
t,fUt,f in (4.33) may loose rank, or easily become ill-conditioned, depending

on the graph topology and sampling strategy. It is invertible if
∑
t∈τ
UT
t,fUt,f =

UT
f RτUf has full rank, where Rτ is the vertex-limiting operator that projects

into the sampling set τ . Introducing the operator

Rτ̄ = I −Rτ , (3.8)

which projects into the complement of the sampling set. Then, exploiting (4.34)

in UT
f RτUf , signal reconstruction is possible if I −UT

f Rτ̄Uf is invertible, i.e., if

condition

‖Rτ̄Uf‖2 < 1 (3.9)

is satisfied. Condition (4.35) is related to the localization properties of graph

signals: it implies that there are no F -bandlimited signals that are perfectly

localized over the set τ̄ . As explained in [45], [47], [48], it is easy to show that

condition (4.35) is necessary and sufficient for signal reconstruction.

Eq.(3.5) can be written as Ŝf = Mrt, where M =
(
UT
t,fUt,f

)−1
U τ
t,f is the

matrix projecting the known signal defined in the vertex domain into the estimated

spectral domain signal. This procedure need to collect all the values of the term∑
t∈τ
UT
t,frt for each t ∈ τ in a central node and to sum them. Therefore this

solution can be seen as a centralized implementation; in chapter 4 “Distributed

Algorithms” we will see a distributed solution to the reconstruction problem.

33

3.2 Random Sampling and Frequency Order-

ing

Now we want to briefly describe how the choice of sampling strategy and frequency

ordering affects the reconstruction algorithm.

First of all, we decided to sample the nodes in the vertex domain according to

a random procedure: given the number of sampled nodes, we select the samples

over all the nodes according to a uniform distribution, where each node has the

same probability of being chosen. This is justified because we can not decide

under which conditions a node is selected or not: in some cases we are aware of

a node function value, in some other we are not, depending on, e.g., energy con-

straints, failures, limited memory and/or processing capabilities, etc. Therefore

we randomly pick up a sufficient number of nodes over the entire network, and

then we build the sampling set. In Fig. 3.2 is reported an example of random

sampling of graph signal.

Original signal Sampled signal

Figure 3.2: An example of signal sampling

Now we consider the choice of the frequency indexing in the graph spectral

domain. We assumed that they are sorted according to the energy contribution

which gives to the signal: we sorted the frequency indices in the spectral domain

according to the mean of the squared absolute value of the same component, for a

collection of signals, where first (the lowest) frequency gives an higher contribution

34

to signal energy in vertex domain, and last (the biggest) gives a small contribution

to signal energy. Therefore the set of frequencies is ordered in such a way as to

have the energy of the signal decreasing as the frequencies increases. An example

is reported in Fig 3.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

λℓ

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

S
(λ

ℓ
)

Original frequency ordering

0 0.2 0.4 0.6 0.8 1 1.2 1.4

λℓ

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

S
(λ

ℓ
)

Induced frequency ordering

Figure 3.3: Frequency ordering

35

3.3 Performance of the LS Reconstruction

Algorithm

Now we present some results obtained through the implementation of the algo-

rithm described in Section 3.1. For this simulation we took into account some dif-

ferent definitions of the weighted adjacency matrix A from [12], [49]. The weight-

ing methods we considered for our simulations are Metropolis-Hasting, Laplacian,

maximum degree, exponential of the distance, unweighted and normalized un-

weighted. We briefly describe how they are defined.

• Metropolis weights: these are a form of local-degree weights, which are

defined as

Aij =


1/ (1 + max{di, dj}) j ∈ Ni, i 6= j

1−
∑
k∈Ni

Aik i = j

0 otherwise.

(3.10)

In other words, the Metropolis weight on each edge is one over one plus the

larger degree at its two indicent nodes, and the self-weights Aii are chosen

in such a way that the sum of the weights at each node is 1. The Metropolis

weights are very simple to compute and are well suited for distributed im-

plementation using local information. In particular, each node only needs to

know the degrees of its neighbors to determine the weights on its adjacent

edges. The nodes do not need any global knowledge of the communication

graph, or even the number of nodes N . Furthermore, the weighted adja-

cency matrix A, in this case, is a doubly stochastic matrix: A · 1 = 1 and

1T ·A = 1T .

• Laplacian weights: the weight matrix has entries given by

Aij =


α j ∈ Ni, i 6= j

1− α|Ni| i = j

0 otherwise.

(3.11)

36

where | · | denotes cardinality, or expressed in matrix form

A = I − αL (3.12)

where L is the Laplacian matrix of the associated underlying graph. The

parameter α must satisfy α ≤ 1/max{dk}. Even in this case, A is a doubly

stochastic matrix.

• Maximum-degree weights: are defined as

Aij =


1/maxk{dk} j ∈ Ni, i 6= j

1− di/maxk{dk} i = j

0 otherwise.

(3.13)

• Exponential of the distance: the weights are function of the exponential of

the distance, that is the weight is large when two neighboring nodes are

closer and is low when they are distant:

Aij =


e−dist(i,j) j ∈ Ni, i 6= j

1 i = j

0 otherwise.

(3.14)

where the distance between two nodes is defined as dist (i, j) = ‖coordi − coordj‖2,

where coordi corresponds to latitude and longitude coordinates of node i.

• Unweighted: the weights matrix is simple and it contains a 1 only for neigh-

boring nodes:

Aij =

1 j ∈ Ni, i 6= j

0 otherwise.
(3.15)

• Normalized unweighted: weights are defined in such a way that A · 1 = 1,

where we first take the unweighted adjacency matrix (3.15) and then we

normalize each row by dividing each element by its corresponding row-sum.

In this case the adjacency matrix is row-stochastic.

37

The performance measure taken is the Mean Squared Error (MSE) between the

non-sampled original signal and the reconstructed one, summed for each month:

MSE =

√∑
t∈τ̄

|ŝt − st|2 (3.16)

Considering the sampling strategies, we averaged the simulation over 1000 differ-

ent random sampling layout, in order to smooth the reconstruction error and to

reduce the effect of the randomness of the sampling. The frequency set is ordered

as described in Section 3.1.

In Fig. 3.4 we show the behaviour of the MSE for different numbers of samples

and frequencies, changing the weighting strategy. We can clearly see that the best

results are obtained for the doubly-stochastic Metropolis weights.

The results of the simulation can be better interpreted in Fig. 3.5, which shows

the behaviour of the error by fixing the number of frequencies: we can note that

the MSE for Metropolis weights is more smoothed and has a more regular trend.

38

Metropolis

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

]

30

of frequencies

60

40

40

50

20 1000

Laplacian

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

]

30

of frequencies

60

40

40

50

20 1000

Max-degree

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

]

30

of frequencies

60

40

40

50

20 1000

e−dist

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

]

30

of frequencies

60

40

40

50

20 1000

Unweighted

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

]

30

of frequencies

60

40

40

50

20 1000

Normalized unweighted

0

of samples

0
50

10

100

20

80

M
S

E
 [
d
B

] 30

of frequencies

60

40

40

50

20 1000

Figure 3.4: MSE for different weighting methods

39

Metropolis

0 20 40 60 80 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

Laplacian

0 20 40 60 80 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

Max-degree

0 20 40 60 80 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

e−dist

0 20 40 60 80 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

Unweighted

0 20 40 60 80 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

Normalized unweighted

0 10 20 30 40 50 60 70 80 90 100

of samples

0

5

10

15

20

25

30

35

40

45

50

M
S

E
 [

d
B

]

Figure 3.5: MSE for different weighting methods

40

In Fig 3.6 is reported an example of signal reconstruction, using 50 original

sampled values and 10 frequencies: it is possible to observe that the reconstructed

signal is quite similar to the original one, except for some outlier values that can

not be exactly estimated since their neighboring nodes does not bring sufficient

information to precisely evaluate an outlying value.

-5

0

5

10

15

20

Original signal

-5

0

5

10

15

20

Reconstructed signal

Figure 3.6: LS signal reconstruction for month March, Metropolis weights

41

3.4 `1 Regularization Sparsity

In this section we want to deal with a possible problem: what if the number of

sampled nodes is smaller than the number of active frequencies? Typically, the

estimation model can be represented using matrix notation as

r = US, (3.17)

where r is the observed vector in vertex domain, U is the T × F matrix of

eigenvectors (where F denotes the number of frequencies and T the number of

sampled nodes) and S is the vector of unknown parameters to be estimated. The

estimation problem, as we have seen, is usually solved through LS where the

parameters are estimated by the values minimizing the residual sum of squares

‖r −US‖2. Provided U is full rank, such that UTU is nonsingular and can be

inverted, this gives Ŝ =
(
UTU

)−1
UTr.

From a statistician’s point of view, high-dimensional problems, that is when

F � T , are interesting because they cannot be solved by classical estimation

procedures like LS. The standard procedures rely on the assumption that UTU

is nonsingular, otherwise UTU cannot be inverted and the parameters cannot be

uniquely estimated. This obviously does not hold when F > T , as the covariate

matrix does not have full column rank. There are no other differences in the model

than the fact that F > T , but this highly influences the estimation problem. Thus

to cope with regression when F � T , some kind of preselection or regularization

is needed.

The Least Absolute Shrinkage and Selection Operator (LASSO) was proposed

by Tibshirani in 1996 [50] as a new method for estimation in linear models. In-

spired by the work of Breiman [51] on the non-negative garotte and wishing to im-

prove upon unsatisfactory properties of the ordinary LS estimates, he introduced

regression with a `1-norm penalty. The `1 penalty appeared to have desirable

properties that could be exploited with great benefit in high-dimensional regres-

sion problems, and it is in the F � T problems that the LASSO-type methods

have really proven their superiority compared to other existing methods. Today,

the methods of the LASSO-type are by far the most popular group of methods

solving regression problems when F � T . In this section, we describe the LASSO

42

pointing especially to why it has become such an appreciated tool for regression.

Assuming the linear model (3.1), the LASSO estimator is defined by

Ŝ = arg min
S

‖r −US‖2
2 + λ ‖S‖1 (3.18)

where λ is a tuning parameter controlling the amount of shrinkage. This formu-

lation of the problem is called Lagrangian form. We call the penalty of this form

a `1 penalty. In addition to shrinking the coefficients toward zero, the `1 penalty

has the advantageous property of doing variable selection. In this way the LASSO

performs a kind of continuous subset selection [50].

To understand in more detail how the LASSO leads some regression coefficients

to be exactly equal to zero, note first that problem (3.18) is equivalent to mini-

mizing the residual sum of squares with a size constraint of the form ‖S‖1 ≤ t on

the parameters. Here t is a tuning parameter that, by Lagrangian duality, has a

one-to-one correspondence with the penalty parameter λ.

For all penalized regression methods having similar size constraints, like also

for ridge regression [52] (where the size constraint minimizes the residual sum of

squares as ‖S‖2
1 ≤ t), t controls the amount of shrinkage imposed on the estimates.

By the form of the size constraint ‖S‖r1 ≤ t, larger values of λ correspond to more

shrinkage, forcing the estimates toward zero. For the LASSO, large values of

λ will shrink all coefficients, but in addition put some of them exactly equal to

zero. This is a direct consequence of using the `1-norm in the constraint. Since

the LASSO constraint is not differentiable at zero, the LASSO has the ability of

producing estimates that are exactly equal to zero. The ridge constraint, on the

other hand, does not share this property as having r > 1 gives constraints that are

differentiable at zero [53], [54]. That is, the difference really lies in the shape of

the constraint region. To illustrate this, we consider the simple situation with only

two parameters in Fig.3.7. It shows the estimation picture for the LASSO and

ridge regression. The elliptical contour lines represent the residual sum of squares

centered at the LS estimate, while the shaded regions represent the constraint

region for the lasso and ridge regression respectively.

43

Ŝ

lasso

Ŝ

ridge

Figure 3.7: LASSO and ridge constraint comparison

In both cases, the solution is at the first point where the elliptical contour lines

of the residual sum of squares hit the constraint region, which gives a minimum

value for cost function. The important advantage of the LASSO is that, because of

the diamond shape, it is more likely that the first time the elliptical contour lines

hit the constraint region is in the corner, hence one of the parameters is estimated

to be exactly zero. In higher dimensions the constraint region will have many

corners and flat edges causing even more estimates to be zero [53]. Since the size

of the constraint region is controlled by t, taking t small enough, that correspond

to a large λ, will force coefficients to be exactly zero. For ridge regression there

are no sharp edges making it less likely for the contour lines to hit a corner. Hence

estimated regression coefficients exactly equal to zero will rarely occur.

When the LASSO puts coefficients to zero, we say that it is producing a sparse

solution. That is, only a few of the regression coefficients are estimated to be

nonzero. This means that using the LASSO there is an underlying assumption

about sparsity: we assume that there are only a few of the frequencies that are

actually explaining the response. It is exactly this sparsity assumption that makes

the LASSO such a successful tool in high-dimensional regression analysis. Not

only sparsity is a consequence of using the `1-norm constraint and an important

theoretical aspect to reduce the complexity and the number of effective parameters

44

in the model, there are also intuitive as well as practical and computational reasons

to assume sparsity in regression. The intention of producing more interpretable

models is especially fruitful in the high-dimensional context. It is easier and more

convenient to interpret results from a LASSO fit rather than a result involving

estimated coefficients.

In standard regression models, the set of covariates is typically composed by

a few variables that are well chosen and believed to be relevant and contribut-

ing to the model. The difference between the traditional setting and the high-

dimensional problems is that the number of potential frequencies is much larger,

but more importantly, we do not know which of them might be relevant. In this

sense, the fact that the LASSO does variable selection makes it extremely attrac-

tive in determining the relevant frequencies exhibiting the strongest effects. In

fact, all constraints of the form ‖S‖r1 with r ≤ 1 perform variable selection, but

the LASSO is the only constraint that has the advantage of producing a sparse

solution while at the same time being convex. This also makes it an attractive

method for computational reasons as non-convex constraints make the optimiza-

tion much more difficult [53], [54], [55].

There is no closed form expression for the estimates in the LASSO solution.

The optimization problem becomes that of a convex problem with inequality con-

straints that are typically solved through quadratic programming [56]. We solved

the estimation problem through the Matlab fmincon function, which automat-

ically solves the problem using an interior-point algorithm. The only changeable

parameter is the `1-norm weight λ, which through we can adjust the sparsity of

the solution: with a small value of λ the `1-norm has a lower weight in the mini-

mizing function, so the solution, and therefore the error, will be similar to the LS

ones; instead for higher values of λ the solution will be more sparse, and then the

error would be more affected by the regularization term.

In Fig 3.8 we show a comparison between the original temperature of month

March and the reconstructed version through the LASSO regularization, imposing

the number of frequencies to 99. As for the example in Fig 3.6, we use 50 samples;

furthermore, the `1-norm is weighted with a value λ = 1. We can notice that the

reconstructed values are similar to the correct ones, but the outlier quantities can

not correctly estimated because of their intrinsic structure, which is different from

their neighbors.

45

-5

0

5

10

15

20

Original signal

-5

0

5

10

15

20

Reconstructed signal

Figure 3.8: `1-norm signal reconstruction for month March, Metropolis weights

For a more general purpose, we need to estimate the correct value of the pa-

rameter λ: therefore we report the behaviour of the MSE for different values of

the parameter λ and for different values of the number of samples, respectively in

Fig 3.9 and in Fig 3.10.

0 20 40 60 80 100

of samples

-2

0

2

4

6

8

10

12

M
S

E
 [
d
B

]

λ = 0.1

λ = 0.5

λ = 1

λ = 2

λ = 3

λ = 5

λ = 10

Figure 3.9: MSE for `1-norm problem, different λ

46

0 2 4 6 8 10

λ

2

3

4

5

6

7

8

9

10

11

M
S

E
 [

d
B

]

10 samples

20 samples

30 samples

40 samples

50 samples

60 samples

70 samples

80 samples

90 samples

Figure 3.10: MSE for `1-norm problem, different number of samples

In Fig 3.11 is reported a comparison of the MSEs for the LS and the LASSO

problems, for each weighted adjacency matrix described in Section 3.3, imposing

the number of active frequency to its maximum value. We can see that the per-

formance of the LS solution are worse than the ones of the `1-norm regularization,

which improves significantly the precision of the reconstructed signal, specially in

the case when the number of sampled nodes are less than the number of active

frequencies.

47

Metropolis

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Laplacian

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Max-degree

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

e−dist

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Unweighted

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Normalized unweighted

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Figure 3.11: MSE comparison, 99 frequencies, λ = 1

48

Metropolis

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Laplacian

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Max-degree

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

e−dist

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Unweighted

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Normalized unweighted

0 10 20 30 40 50 60 70 80 90 100

of samples

-2

0

2

4

6

8

10

12

14

M
S

E
 [

d
B

]

LS

LASSO

Figure 3.12: MSE comparison, 10 frequencies, λ = 1

49

In Fig 3.12 we show the results for a different number of active frequencies, which

in this case is 10: the LS solution behaves bad when the number of sampled nodes

is smaller than the size of the estimated frequency content, i.e., T < F , especially

when it is equal to the number of estimated frequencies, which exploit the un-

invertibility of the eigenvectors matrix, and the `1-norm regularization is useful,

because it deviates the solution of problem (3.18) to sparse vector; on the other

hand, when the number of sampled nodes increases, the performance of the LS

achieves the ones of the LASSO. In both the simulations we set the `1-norm

weight λ = 1.

We can conclude that the `1-norm regularization is useful when the frequency

set cardinality is greater than the number of sampled nodes, because it induces

sparsity in the solution and therefore the reconstructed signal is more similar to

the original one (because of the intrinsic structure of the GFT of the signal),

and that its solution corresponds to the LS one when we have a sufficiently high

number of sampled nodes, even if the complexity of the computation is larger.

50

4
Distributed Algorithms

In this chapter we want to formalize and solve the reconstruction problem in a

distributed way.

A first simple idea of distributed algorithm is the average consensus, in which

the nodes of the network try to reach the same common value which is the average

between their initial quantities.

Another distributed algorithm that can be useful is the Alternating Direction

Method of Multipliers (ADMM), which is more complex than the average con-

sensus. It is a powerful algorithm that solves optimization problems decomposing

them into smaller local sub-problems, which are easier to handle. The solution of

there local subproblems are coordinated to find the solution to a global problem.

This algorithm is well suited for distributed optimization and in the latest years

has found several applications in different areas.

4.1 Average Consensus

Consensus is a commonly adopted term to denote the efficient exchange of infor-

mation between nodes in a network, with the final aim to converge to a common

and agreed value.

A typical application of consensus finds a place in the field of WSN, where

51

distributed sensor measurements need to be averaged to reduce the uncertainty

on the measure, in which case we talk of average consensus. This is so far the

most studied problem, carrying the simplicity of the target (an average) together

with the complexity involved in the identification of efficient distributed methods

to reach this target.

In distributed consensus problem a group of nodes (agents, sensors) have to

reach a common decision in a distributed fashion. Some of its applications include

distributed agreement, synchronization problem [57], multi-vehicle control and

navigation [58] and load balancing in parallel processors [59].

Distributed consensus algorithm in its most simple form reduces to average

consensus algorithm, where the nodes have to compute the average of their ini-

tial states [58], [60], [61], [62], [63]. Average consensus problem is an inevitable

part of the solution for more complex problems in several applications. Some of

these applications are multiagent distributed coordination and flocking [62], [64],

distributed data fusion in sensor networks [65], gossip algorithms [66], sensor lo-

calization [67] and distributed estimation and detection for decentralized sensor

networks [68], [69].

In average consensus algorithm each node updates its state by a weighted aver-

age of its own and neighbors’ states. Convergence rate of the algorithm depends

on the choice of weights.

Average consensus algorithm intends to compute the average of initial states

of node, x̄ =
(
11T/N

)
x (0), by using local communication between neighboring

nodes. x (0) is the vector of initial states of nodes and 1 denotes the column

vector with all coefficients one. At each iteration the statte of each node updates

according to

x (t+ 1) = Ax (t) . (4.1)

A is a N × N real valued doubly stochastic matrix modeling the exchange of

information, which in this case corresponds to the weighted adjacency matrix of

the graph, t = 0, 1, 2, . . . is the discrete time index and N is the number of nodes

in the network.

We have seen that considering a centralized approach the implementation of the

solution needs to collect all the values U τ
t,frt in a “central node” and sum them

for each t ∈ τ .

52

Now we want to consider a distributed approach, where each node knows only

local information about its neighborhood: by means of the average consensus

algorithm, each vertex can exchange information between itself and its directly-

connected neighbors about the quantity that needs to be estimated, and after a

sufficiently high number of messages exchange the network is able to reach the

same result of the centralized approach.

The application of the average consensus in our case is the following: for the

estimated signal in frequency, instead of computing the product Ŝf = Mrt, where

M =
(
UT
t,fUt,f

)−1
U τ
t,f , we can write for each component of Ŝf :

Ŝf,i =
Ns∑
j=1

Mi,jrj =
Ns∑
j=1

Cj, ∀i = 1, . . . , Nf . (4.2)

where Ns is the number of samples of the signal in the vertex domain and Nf is

the length of the estimated frequency content.

Therefore for each frequency index i = 1, . . . , Nf we can separate the contribu-

tion of each sampled node, while for the centralized approach we did not because

the computation of the matrix product involves summations between different in-

dices, and we can collect them in a matrix C where Ci,j is the contribution of

vertex i for the frequency index j. The values for the non-sampled nodes in C is

initialized to 0.

At each iteration of the consensus algorithm the values of C are updated ac-

cording to

C (t+ 1) = AC (t) (4.3)

that is, each vertex shares its value with its neighbors and updates it according to

the values received from the neighborhood. After a sufficient number of iteration,

that depends on the values of the adjacency matrix, the contribution of each node

will converge to the same value.

The fundamental property of the adjacency matrix A is that it is doubly-

stochastic: in this way the update rule (4.3) consists in a weighted average between

the values of the node itself and its neighborhood. Finally, in order to obtain the

summation of each contribution, it is necessary to multiply the estimated signal

by the number of nodes N : first we report the estimated signal (for each node)

in the vertex domain by taking its IGFT, then we multiply the mean value by

53

N , obtaining the same result as the centralized approach as we show in Fig. 4.1,

where dashed lines represent the centralized reconstruction error while solid lines

depict the consensus behaviour, for different number of sampled nodes.

0 100 200 300 400 500 600 700 800 900 1000

of iteration

0

1

2

3

4

5

6

7

8

9

10

M
S

E
 [

d
B

]

20 samples

50 samples

80 samples

Figure 4.1: Convergence of average consensus algorithm

The convergence of the consensus solution is obviously related to the intrinsic

structure of the adjacency matrix, for which in this case we defined the weights

as the Metropolis ones (3.10), and to the structure of the sampling pattern: both

these parameters affects the number of iterations required for convergence.

54

4.2 ADMM: Alternating Direction Method of

Multipliers

In this section we want to exploit the ADMM to improve the performance of the

reconstruction algorithm. ADMM is a powerful method introduced in [70], [71]

in the 1970s which has the robustness of method of multipliers and can support

decomposition. Today it finds applications thanks to the presence of large-scale

distributed computing systems and the needs to solve massive optimization prob-

lems. In this section, we refer to the formulation of [72].

In order to introduce the algorithm in a generic way, which will be useful for

further applications with different optimization functions, we start from a generic

problem in the form

minimize
y

F (y) =
N∑
i=1

Fi (yi) (4.4)

assuming that the objective function F (y) =
N∑
i=1

Fi (yi) is a separable function

which corresponds to the summation of local objective function Fi over all the

nodes of the network. In our reconstruction problem, the function that needs to

be minimized is

Fi (yi) =

1
2

(ri −Uiyi)
2 i ∈ τ

0 i ∈ τ̄
(4.5)

where ri is the i-th component of the sampled signal, Ui is the i-th row of the

eigenvector matrix Ut,f and the factor 1
2

is considered to simplify the derivation.

We need to put this problem in a form which is suitable for the application of

the ADMM. To do this, we duplicate the y variable in many variables yi such that

the previous problem can be rewritten into a new form, taking in consideration

these duplicated variables

minimize
yi

N∑
i=1

Fi (yi)

subject to yi = yj,∀j ∈ Ni,∀i = 1, . . . , N,

(4.6)

55

and imposing the equality between neighboring nodes frequency vectors: the local

copy of each node variable yi must be equal to the one of its neighbors yj. With

this constraint each node will have the same values of the variable and, instead

of having only one vector, we will have many vectors (as many as the number of

nodes) but every one equal to each other.

The constraint on the duplicated variables can be rewritten as yi = z, such

that the minimization problem becomes

minimize
yi

N∑
i=1

Fi (yi)

subject to yi = z,∀i = 1, . . . , N.

(4.7)

In this way, we need a global knowledge of some variables: specifically, each

local variable yi depends on the same z. We need to enable each node to update

its variables in an autonomous way using information gathered from its neighbors.

As described in [73], in order to obtain a distributed version of the problem, we

can write

minimize
y,z

N∑
i=1

Fi (yi)

subject to Ay = z

z ∈ Z = {zi,j = zj,i}

(4.8)

where y = [yi]i=1,...,N , z = [zi,j]∀j∈Ni,i=1,...,N , imposing the constraints yi =

zi,j, ∀j ∈ Ni, i = 1, . . . , N through the block diagonal matrix A, which du-

plicates the information of each node to its neighbors. The set Z is useful for

coordinate the values of the different zi,j, obtaining a distributed version of the

problem. This approach is equivalent to the one in [74]. In its distributed version,

the ADMM algorithm is the most used method for distributed coordination of

agents [72], [75]. In our specific reconstruction algorithm the objective function

takes values as stated in (4.5), therefore our problem can be finally written as

minimize
y,z

∑
i∈τ

1

2
(ri −Uiyi)

2

subject to Ay = z

z ∈ Z = {zi,j = zj,i}.

(4.9)

56

To find the solution of problem (4.9), and in general for every problem in the

form (4.8), we look for the stationary points of the augmented Lagrangian func-

tion, which is defined as

L (y, z,λ) = F (y) + 〈λ,Ay − z〉+
ε

2
‖Ay − z‖2 (4.10)

where the vector λ = [λi]i=1,...,N collects the Lagrangian multipliers of the nodes

and ε is the penalty parameter, which weights the penalty term and must be

positive.

To look for stationary points of the augmented Lagrangian function (4.10) we

perform an alternating search, which, at each iteration, performs an update of

vectors y, z and λ. We define the new values of these vectors at each iteration

by using the notation y∗, z∗ and λ∗.

We start setting null initial conditions, imposing z and λ variables to be equal

to 0 before the first iteration: this initialization will also be successively useful to

obtain a more compact formulation.

At each iteration, the ADMM update consists of

y∗ = arg min
y

L (y, z,λ)

z∗ = arg min
z∈Z

L (y∗, z,λ)

λ∗ = λ+ ε (Ay∗ − z∗)

(4.11)

which can be rewritten, exploiting the Lagrangian function, as

y∗ = arg min
y

F (y) + λTAy +
ε

2
‖Ay − z‖2

z∗ = arg min
z∈Z

− λTz +
ε

2
‖Ay∗ − z‖2

λ∗ = λ+ ε (Ay∗ − z∗) .

(4.12)

A special consideration must be done on the importance of the penalty parameter

ε, that must be set to a proper value in order to reach the convergence [76].

57

4.2.1 Distributed ADMM - LS Solution

Now we want to compute the distributed solution of the ADMM algorithm: start-

ing from (4.12), we look for a closed form solution for each variable update rules.

• y update: the update can assume two different forms, depending on whether

the node i is sampled or not. Exploiting the objective function (4.5), for

each node i ∈ τ we have

y∗i = arg min
yi

1

2
(ri −Uiyi)

2 +
∑
j∈Ni

λTi,jyi +
ε

2

∑
j∈Ni

‖yi − zi,j‖2 . (4.13)

Deriving (4.13) with respect to yi and imposing the equality with 0:

UT
i (Uiyi − ri) +

∑
j∈Ni

λi,j + ε
∑
j∈Ni

(yi − zi,j) = 0 (4.14)

(
UT
i Ui + ε|Ni|I

)
yi = UT

i ri −
∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j (4.15)

y∗i =
(
ε|Ni|I +UT

i Ui

)−1

(
UT
i ri −

∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
. (4.16)

Instead for i ∈ τ̄ :

y∗i =
1

ε|Ni|

(
−
∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
(4.17)

Therefore the update for the local variable y at each vertex i can be written

as

y∗i =


(
ε|Ni|I +UT

i Ui

)−1

(
UT
i ri −

∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
for i ∈ τ

1
ε|Ni|

(
−
∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
for i ∈ τ̄

(4.18)

58

• z update: expanding the second of (4.12) we obtain

z∗ = arg min
z∈Z

− zTλ− ε
(
zTAy∗

)
+
ε

2
‖z‖2 . (4.19)

By dividing each element by ε and collecting −zT :

z∗ = arg min
z∈Z

1

2
‖z‖2 − zT

(
Ay∗ +

λ

ε

)
= arg min

z∈Z

1

2

∥∥∥∥z − (Ay∗ +
λ

ε

)∥∥∥∥2

= arg min
z∈Z

∑
i,j∈Ni

1

2
(zi,j −mi,j)

2

(4.20)

where m = Ay∗ + λ
ε

is a vector built from neighbors information: mi,j =

y∗i + λi,j/ε.

Imposing the constraint z ∈ Z, which corresponds to balance the z variables

as zi,j = zj,i, we can separate each z, obtaining

z∗i,j = z∗j,i = arg min
z

1

2
(z −mi,j)

2 +
1

2
(z −mj,i)

2 (4.21)

whose derivative imposed equal to 0 gives

z∗ −mi,j + z∗ −mj,i = 0 (4.22)

and finally we obtain

z∗i,j = z∗j,i =
mi,j +mj,i

2
=
y∗i + y∗j

2
+
λi,j + λj,i

2ε
(4.23)

that is the result of the communication between node i and its neighbor j.

• λ update: for each i = 1, . . . , N and ∀j ∈ Ni the values of the corresponding

Lagrangian multiplier is updated as

λ∗i,j = λi,j + ε
(
y∗i − z∗i,j

)
. (4.24)

Therefore the update rules of the ADMM in its distributed version, for our

59

specific reconstruction problem, can be written as

y∗i =


(
ε|Ni|I +UT

i Ui

)−1

(
UT
i ri −

∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
for i ∈ τ

1
ε|Ni|

(
−
∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j

)
for i ∈ τ̄

z∗i,j =
y∗i + y∗j

2
+
λi,j + λj,i

2ε

λ∗i,j = λi,j + ε
(
y∗i − z∗i,j

)
.

(4.25)

We can conclude that, locally (at node i) we have the variables zi,j and λi,j for each

neighbor j ∈ Ni, which comes from the previous iteration update. They are used

to update the variable yi and then, exchanging with neighbors the information

about the updated y∗i , each node updates its own zi,j and its λi,j, using the

information of itself and of its neighbors, until all nodes reaches an agreement on

each of the values of y and z.

In order to simplify the expression of the updates, it is useful to assume λ̃ = λ/ε,

such that

y∗i =


(
ε|Ni|I +UT

i Ui

)−1

(
UT
i ri + ε

(∑
j∈Ni

zi,j − λ̃i,j

))
for i ∈ τ

1
|Ni|

(∑
j∈Ni

zi,j − λ̃i,j

)
for i ∈ τ̄

z∗i,j =
y∗i + y∗j

2
+
λ̃i,j + λ̃j,i

2

λ̃∗i,j = λ̃i,j + y∗i − z∗i,j.

(4.26)

Now we can exploit a nice property of the set Z: assume that we start from

z = 0 and λ̃ = 0. By construction, we have that z ∈ Z and λ̃ ∈ Z⊥. Let us

explain why.

At the first iteration the update of λ̃ is computed as

λ̃∗i,j = λ̃i,j + y∗i − z∗i,j
λ̃∗j,i = λ̃j,i + y∗j − z∗j,i

(4.27)

60

and, since λ̃ = 0 and zi,j = zj,i by construction, we are summing yi and yj

to the same value of zi,j = zj,i, respectively in the first and in the second of

(4.27). We can write z∗ = LZ

(
Ay∗ + λ̃

)
, where L is called projector: it is

a matrix that extract from the vector
(
Ay∗ + λ̃

)
the component that belongs

to the linear space Z; it has the nice property that L2 = L and therefore has

eigenvalues 1, in z, and 0 elsewhere. Therefore the update of λ̃ can be written as

λ̃∗ = λ̃ +Ay∗ − z∗ = (I −LZ)
(
Ay∗ + λ̃

)
and we can conclude that λ̃ and z

are orthogonal to each other, since they are the same vector multiplied by I−LZ
and LZ .

Formally, if we sum the left and the right of (4.27), we obtain:

λ̃∗i,j + λ̃∗j,i = λ̃i,j + y∗i − z∗i,j + λ̃j,i + y∗j − z∗j,i

= λ̃i,j + λ̃j,i + y∗i + y∗j −
y∗i + y∗j

2
− λ̃i,j + λ̃j,i

2
−
y∗j + y∗i

2
− λ̃j,i + λ̃i,j

2

= λ̃i,j + λ̃j,i + y∗i + y∗j − y∗i − y∗j − λ̃i,j − λ̃j,i
= 0

(4.28)

that ensures the orthogonality between z and λ̃.

Thus z ∈ Z and λ̃ ∈ Z⊥ by construction and, for the Lagrangian multipliers,

it must be satisfied λ̃i,j = −λ̃j,i and so the update of z is simplified to

z∗i,j =
y∗i + y∗j

2
(4.29)

With this simplification, we can exploit compact updates and simplify them: if

we define zi =
∑
j∈Ni

zi,j and λ̃i =
∑
j∈Ni

λ̃i,j, the updating rules of z and λ̃ becomes

z∗i =
∑
j∈Ni

z∗i,j =
1

2

(
y∗i |Ni|+

∑
j∈Ni

yj

)
(4.30)

λ̃∗i =
∑
j∈Ni

λ̃∗i,j = λ̃i + y∗i |Ni| − z∗i (4.31)

that, instead of collecting many replicas, it is sufficient to gather just one variable.

Now we can write the final expressions for the update rules of the ADMM

61

algorithm for the reconstruction problem:

y∗i =


(
ε|Ni|I +UT

i Ui

)−1
(
UT
i ri + ε

(
zi − λ̃i

))
i ∈ τ

1
|Ni|

(
zi − λ̃i

)
i ∈ τ̄

z∗i =
1

2

(
y∗i |Ni|+

∑
j∈Ni

y∗j

)
λ̃∗i = λ̃i + y∗i |Ni| − z∗i

(4.32)

where zi and λ̃i are defined as (4.30) and (4.31), respectively.

This version of the ADMM is still expensive from the computational point of

view, since it requires the inversion of a matrix in the update of the y variables

for the sampled nodes, whose dimension is |F| × |F|: when the number of ac-

tive frequencies is high, the inversion requires a considerable computational time.

Since the matrix that needs to be inverted is an identity, multiplied by a con-

stant factor, plus something, in the form
(
αI +UTU

)
, the inverse has the form(

βI + γUTU
)
. Therefore, since

(
αI +UTU

)−1 (
αI +UTU

)
= I, we can write

the inverse matrix in a closed form:

I =
(
αI +UTU

) (
αI +UTU

)−1

=
(
αI +UTU

) (
βI + γUTU

)
= αβI + αγUTU + βUTU + γ ‖U‖2UTU

(4.33)

and we obtain the systemαβ = 1

αγ + β + γ ‖U‖2 = 0
→

β = 1/α

γ = −β/
(
α + ‖U‖2) (4.34)

which exploits the values of β and γ.

Finally, since in the first of (4.32) the inverse matrix is multiplied by the vector

x =
(
UT
i ri + ε

(
zi − λ̃i

))
, it is possible to compact the expression as(

βI + γUTU
)
x = βx+

(
γ
(
UTx

))︸ ︷︷ ︸
δ = γ · 〈U ,x〉

U

= βx+ δU

(4.35)

62

where δ = γ · 〈U ,x〉 is a constant term (for each vertex of the network), which

ensures linear complexity, instead of a quadratic one, for the y update.

Now we want to exhibit some numerical results obtained by simulating the

distributed algorithm on the network presented is Section 3.1. The signal here

is represented by the temperatures of month March and the random sampling

structure and the frequencies ordering are the same of the centralized algorithm,

as described in Section 3.2.

In Fig. 4.2 we show the behaviour of the MSE, between the estimated signal

and the original one in vertex domain, at each iteration of the distributed ADMM

algorithm, for different values of the penalty parameter ε. In this case we fixed

the number of sampled nodes to 50 and the number of frequencies to 10, and the

weighted adjacency matrix is constructed with Metropolis weights (3.10).

0 50 100 150 200 250 300 350 400 450 500

of iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

M
S

E
 [
d
B

]

ǫ = 0.001

ǫ = 0.01

ǫ = 0.1

ǫ = 1

Centralized

Figure 4.2: Convergence of the ADMM solution - LS

It is fundamental to understand how the choice of the penalty parameter im-

pacts on the MSE performance: we can observe that a small value of ε ensures

faster convergence to the same centralized MSE with respect to an higher one.

63

Instead, if we fix the penalty parameter to a bigger value, the error does not con-

verges within a few number of iterations of the algorithm and so its estimated

signal is not reliable.

Furthermore, the penalty parameter affects the convergence of the two ADMM

variables y and z, as stated in (4.32): a larger value of ε ensures quick conver-

gence, as shown in Fig. 4.3. However, this is a measure of the similarity of the

two variables and the value of the difference in itself does not mean anything,

except that they are converging. What is more meaningful is the value of the cost

function: we are interested in evaluating how the MSE saturates. From Fig. 4.2

we can conclude that a small value of the penalty parameter ε ensures a correct

estimation of the signal even for few number of iterations of the algorithm. Thus

the local estimates, even if the convergence of y and z is not perfect, after a small

number of iterations reach the desired level, which is the centralized one.

0 50 100 150 200 250 300 350 400 450 500

of iteration

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

||
y
 -

 z
||

22

ǫ = 0.001

ǫ = 0.01

ǫ = 0.1

ǫ = 1

Figure 4.3: Convergence of the ADMM variables - LS

64

Furthermore, we report in Fig. 4.4 the average time taken to run a simulation of

the ADMM algorithm, for different numbers of iteration: the compact update rules

(4.32), but especially the formulation of the inverse matrix in (4.33), (4.34) and

(4.35), guarantee a substantial improvement in the computation time, considering

that it is a distributed algorithm involving a hundred of nodes.

100 200 300 400 500 600 700 800 900 1000

of iteration

10
-2

10
-1

10
0

ti
m

e
 [
s
]

Figure 4.4: Average time to run ADMM - LS

Finally, we can conclude that if the penalty parameter ε is set to a proper value,

the algorithm runs efficiently, even for a small number of iterations, reducing

therefore the computational time.

65

4.2.2 Distributed ADMM - `1 Regularization Solution

In this section we want to exploit the solution of the ADMM distributed algorithm

for problem (3.18), where we take into consideration the `1-norm penalty term.

As for the LS solution, we can write the problem in a compact form, introducing

another variable, x that considers only the `1-norm penalty term and that need

to be equal to the y, since they represent the same estimated frequencies vector.

Therefore the minimization problem becomes

minimize
y,z

∑
i∈τ

1

2
(ri −Uiyi)

2 + λ`1 ‖x‖1

subject to Ay = z

y = x

z ∈ Z

(4.36)

where λ`1 is the weight of the `1-norm penalty term.

Again, to find the solution of (4.36) we search the stationary points of the

augmented Lagrangian, which has the form

L (x,y, z,µ,λ) =F (y) + λ`1 ‖x‖1 + 〈λ,Ay − z〉+
ε

2
‖Ay − z‖2 (4.37)

+ 〈µ,y − x〉+
ε

2
‖y − x‖2 . (4.38)

The derivation of the closed form updates of the variables is computed as follow:

• y update: the update can assume two different forms, depending on whether

the node i is sampled or not. For each node i ∈ τ we obtain

y∗i = arg min
yi

1

2
(ri −Uiyi)

2 +
∑
j∈Ni

λTi,jyi +
ε

2

∑
j∈Ni

‖yi − zi,j‖2

+ µTi yi +
ε

2
‖yi − xi‖2 .

(4.39)

Deriving (4.39) with respect to yi and imposing the equality with 0:

UT
i (Uiyi − ri) +

∑
j∈Ni

λi,j + ε
∑
j∈Ni

(yi − zi,j) + µi + ε (yi − xi) = 0 (4.40)

66

(
UT
i Ui + ε (|Ni|+ 1) I

)
yi = UT

i ri−
∑
j∈Ni

λi,j + ε
∑
j∈Ni

zi,j −µi + εxi (4.41)

y∗i =
(
ε (|Ni|+ 1) I +UT

i Ui

)−1

(
UT
i ri −

∑
j∈Ni

λi,j − µi + ε

(∑
j∈Ni

zi,j + xi

))
=
(
ε (|Ni|+ 1) I +UT

i Ui

)−1
(
UT
i ri + ε

(
zi + xi − λ̃i − µ̃i

))
(4.42)

where zi =
∑
j∈Ni

zi,j, λi =
∑
j∈Ni

λi,j, λ̃i = λi

ε
and µ̃i = µi

ε
.

Instead for i ∈ τ̄ :

y∗i =
1

(|Ni|+ 1)

(
zi + xi − λ̃i − µ̃i

)
(4.43)

• z update: does not change, since it does not depend on x

z∗i =
1

2

(
y∗i |Ni|+

∑
j∈Ni

y∗j

)
(4.44)

• x update: we need to take care of the `1-norm penalty parameter λ`1 . Since

it affects all the variables x, for each frequency vector xi the multiplicative

constant becomes λ`1/N , because we need to take into account the contri-

bution for each node by separating the penalty term. Therefore the update

rule for each xi is derived as follow:

xi = arg min
xi

λ`1
N
‖xi‖1 − µ

T
i xi +

ε

2
‖yi − xi‖2

= arg min
xi

λ`1
N
‖xi‖1 +

ε

2
‖xi‖2 − εxTi

(
y∗i +

µi
ε

)
= arg min

xi

λ`1
εN
‖xi‖1 +

1

2
‖xi − (y∗i + µ̃i)‖2

= arg min
xi

1

2
‖xi −mi‖2 +

λ`1
εN
‖xi‖1 (4.45)

67

assuming mi = y∗i + µ̃i is a local built vector. The solution of (4.45) is

x∗i = sign (mi)

[
|mi| −

λ`1
εN

]+

(4.46)

where the plus function is defined as

[x]+ =

x if x ≥ 0

0 otherwise
(4.47)

• λ update: the Lagrangian multiplier is updated as previous

λ̃∗i = λ̃i + y∗i |Ni| − z∗i (4.48)

• µ update: the values of the other Lagrangian multiplier is updated as

µ̃∗i = µ̃i + y∗i − x∗i (4.49)

Now we are able to express all the ADMM variables update for the `1-norm

regularization problem in a compact form:

y∗i =


(
ε (|Ni|+ 1) I +UT

i Ui

)−1
(
UT
i ri + ε

(
zi + xi − λ̃i − µ̃i

))
i ∈ τ

1
(|Ni|+1)

(
zi + xi − λ̃i − µ̃i

)
i ∈ τ̄

z∗i =
1

2

(
y∗i |Ni|+

∑
j∈Ni

y∗j

)

x∗i = sign (mi)

[
|mi| −

λ`1
εN

]+

, mi = y∗i + µ̃i

λ̃∗i = λ̃i + y∗i |Ni| − z∗i
µ̃∗i = µ̃i + y∗i − x∗i .

(4.50)

As in the previous problem formulation, we can write the inverse matrix of the

y update in a closed form, where in this case α = ε (|Ni|+ 1).

Now we want to show the numerical behaviour of the convergence of the ADMM

algorithm for the `1-norm regularization problem. As stated in section 4.2.1, the

68

penalty parameter ε affects the slope convergence, for both the MSE saturation

and for the similarity between local variable y and z and y and x. In Fig. 4.5 we

can see the behaviour of the MSE for each iteration of the algorithm, for different

values of ε. We imposed Metropolis weights and we fixed the number of sampled

nodes to 50 and the number of estimated frequencies to 10, while the `1-norm

weight λ` is set to 1.

0 50 100 150 200 250 300 350 400 450 500

of iteration

1

2

3

4

5

6

7

8

M
S

E
 [

d
B

]

ǫ = 0.001

ǫ = 0.01

ǫ = 0.1

ǫ = 1

Centralized

Figure 4.5: Convergence of the ADMM solution - `1-norm regularization (10 freq.)

We can see that the trend of the curves is comparable to the one of the LS

solution and that the penalty parameter ε must be set to a proper value.

What is interesting to observe is the behaviour of the convergence when the

number of frequencies is greater than the number of sampled nodes, for which

the LS solution error diverges as discussed in section 3.4: we show in Fig. 4.6 the

evolution of the mean square error when the number of frequencies is 99. The

69

parameter λ` is again set to 1.

0 50 100 150 200 250 300 350 400 450 500

of iteration

2

3

4

5

6

7

8

M
S

E
 [

d
B

]

ǫ = 0.001

ǫ = 0.01

ǫ = 0.1

ǫ = 1

Centralized

Figure 4.6: Convergence of the ADMM solution - `1-norm regularization (99 freq.)

We can observe that the convergence is slightly slower with respect to the previ-

ous favorable case, but the result is significantly better adding the regularization

parameter, which impose the solution vector to be sparse depending on the value

of λ`.

In order to compare the performance of the two algorithms, we report in Fig. 4.7

a comparison between the convergence of the ADMM solution for both problems,

when the estimated frequencies are 10: the LS behaviour is represented by dashed

lines, while solid lines depict `1-norm trend. The results are comparable.

70

0 50 100 150 200 250 300 350 400 450 500

of iteration

1

2

3

4

5

6

7

8
M

S
E

 [
d

B
]

ǫ = 0.001

ǫ = 0.01

ǫ = 0.1

ǫ = 1

Figure 4.7: Convergence of the ADMM solution - comparison

For the sake of completeness, in Fig. 4.8 we show the average time spent to run

a simulation of this version of the ADMM algorithm: we can see that it is similar

to the previous one reported in Fig. 4.4, since in addition now we have to update

two local variables.

71

100 200 300 400 500 600 700 800 900 1000

of iteration

10
-2

10
-1

10
0

ti
m

e
 [
s
]

Figure 4.8: Average time to run ADMM - `1-norm regularization

Now, our aim is to compare the proposed distributed algorithms with the one

illustrated in [45] by Barbarossa, Di Lorenzo, Banelli and Sardellitti. Their solu-

tion proceed by minimizing the Lagrangian function of the LS problem by means

of a steepest descent procedure. The adaptive implementation is termed Adapt

To Combine (ATC) diffusion strategy, and is based on two steps: first, in the

adaptation step, the intermediate estimate is updated adopting the observation

at each node; then, in the diffusion step, where intermediate estimates are com-

bined through neighboring nodes. Finally, given the estimated signal in the graph

spectral domain, the graph signal can be computed locally by taking the IGFT.

We show in Fig. 4.9 a comparison between average consensus, ADMM for LS

problem, ADMM for LASSO problem and the ATC solutions. We can observe

that, as previous in Fig. 4.7, LS and LASSO behaves very similar, while the

average consensus algorithm converges slower than the ADMM solutions. Our

72

implementation of the steepest descent procedure proposed by Barbarossa et al.

is outperformed by our distributed algorithms implementations, but obviously it

converges. We set the value of the `1-norm penalty term to λ`1 = 1 and the value

of the Lagrangian penalty parameter to ε = 0.01.

0 50 100 150 200 250 300 350 400 450 500

of iteration

4

4.5

5

5.5

6

6.5

7

7.5

M
S

E
 [

d
B

]

ATC

Avg. consensus

LASSO

LS

Figure 4.9: Comparison of distributed algorithms - 1

Finally, we introduce an update rule for the penalty parameter ε: at each itera-

tion of the ADMM algorithm, we can update (increase) the weighting parameter

as ε∗ = δε, with δ > 1, in order to improve convergence speed and stability, as

suggested by several works [76], [77], [78]. A good idea is to decide to update the

local penalty values at each iteration: since the problem is convex, the solution is

moving towards the optimum and so we can increase the values of ε, since higher

penalty parameter implies slower shift from current point. Therefore we set an

initial small value of penalty parameter and we increase it by a constant factor at

73

each iteration, in order to improve convergence speed.

We implemented this new version of the ADMM algorithm exploiting the update

rules as function of λ and µ, instead of λ̃ = λ/ε and µ̃ = µ/ε, because we

are updating the penalty parameter but not the Lagrangian multiplier: we need

to take into account of their values instead of their fraction with respect to ε,

otherwise the solution will not converge.

0 50 100 150 200 250 300 350 400 450 500

of iteration

4.5

5

5.5

6

6.5

7

7.5

8

M
S

E
 [

d
B

]

ǫ fixed

ǫ updated

Figure 4.10: Convergence of ADMM, LS solution, updated penalty parameter
(ε0 = 0.001)

74

0 50 100 150 200 250 300 350 400 450 500

of iteration

4

4.5

5

5.5

6

6.5

7

7.5
M

S
E

 [
d

B
]

ǫ fixed

ǫ updated

Figure 4.11: Convergence of ADMM, LS solution, updated penalty parameter
(ε0 = 0.01)

We report in Fig. 4.10 and in Fig. 4.11 a comparison of the behaviour of the

MSEs between static and dynamic penalty parameters, for LS problem and for

two different initial values of ε0 = 0.001 and ε0 = 0.01, respectively. We can see,

especially in Fig. 4.10 where the initial value of ε is very small, ensuring an initial

fast convergence, that updating the penalty parameter ensures a much stable and

quicker convergence for the MSE, with respect to the one of the static version.

75

In Fig. 4.12 we show the behaviour of the MSE for the `1-norm regularization

problem, for both fixed and updated penalty parameter, starting from an initial

value of ε0 = 0.001. As well as for the LS minimization, there are no fluctuations

in the ε updated version. In Fig. 4.13 it is shown the same behaviour considering

ε0 = 0.01. The results are the same as in the previous cases.

0 50 100 150 200 250 300 350 400 450 500

of iteration

3.5

4

4.5

5

5.5

6

6.5

7

M
S

E
 [

d
B

]

ǫ fixed

ǫ updated

Figure 4.12: Convergence of ADMM, LASSO solution, updated penalty parameter
(ε0 = 0.001)

76

0 50 100 150 200 250 300 350 400 450 500

of iteration

3.5

4

4.5

5

5.5

6

6.5

7
M

S
E

 [
d

B
]

ǫ fixed

ǫ updated

Figure 4.13: Convergence of ADMM, LASSO solution, updated penalty parameter
(ε0 = 0.01)

We show in Fig. 4.14 a comparison of the best performance of the distributed

algorithms: we consider ADMM algorithm applied to LS and LASSO problems,

average consensus and ATC approach. The number of sampled nodes is 50 and

the number of active frequencies is 10. The other parameters are set to λ`1 = 1,

ε0 = 0.001.

We can see that the convergence of LS and LASSO are approximately equal

and reaches the minimum after few iterations, while consensus and the solution

proposed in [45], confirming that ADMM algorithm is the best solution.

77

0 50 100 150 200 250 300 350 400 450 500

of iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

M
S

E
 [

d
B

]

ATC

Avg. consensus

LASSO

LS

Figure 4.14: Comparison of distributed algorithms - 2

78

5
Conclusions And Future Work

This thesis introduced graph signal processing framework as a developing tool

which has grown in recent years. We addressed several problems related to the

representation and processing of structured signals defined on weighted and undi-

rected graphs. In particular, we introduced some concepts and properties related

to the graph-based transforms, which are commonly known in the graph signal

processing framework. Next, we addressed the problem of reconstruction of a

graph signal by using some well known tools, starting from an estimation of the

signal in the graph spectral domain. Finally, we proposed a distributed process-

ing algorithm for reconstructing graph signals, focusing on the convergence of the

solution with respect to the centralized one.

After having illustrated the main common assumptions and definition in the

graph signal processing field, we focused on a specific problem which corresponds

to reconstruct a graph signal, starting from an estimation in the spectral domain,

by observing only a subset of values of the original signal. We explained and

justified some assumptions for the choice of the samples and the frequency index

ordering, as we proved necessary and sufficient conditions for reconstructing graph

signals. Besides, the signal estimation was derived, comparing different weighted

adjacency matrices and two different estimation models: the LS and the LASSO.

We found that both solution behaves similar in relaxed setting, instead when we

have weak reconstruction condition the LASSO performs better.

79

Then we focused on the distributed version of the algorithms and on their

convergence to the centralized solution: first we introduced average consensus,

which is a simple form of distributed processing, and then the ADMM algorithm

were explained. Starting from the common formulation of the problem, we have

derived simple variables update rules in a closed form, which enable the network

to derive an estimation of the spectral signal in a distributed way. Simulations

results proved the convergence of the algorithm.

To summarize, we have studied in this thesis several important problems re-

lated to the emerging field of signal processing on graphs. We have provided

solutions for processing and analyzing graph signals in both centralized and dis-

tributed settings. We believe that the contribution of this thesis can be useful for

understanding the interplay between signals and graphs.

5.1 Future Work

Signal processing on graphs is a relatively new research field that is still in its

infancy. Parts of this field are old as there exists a lot of research mainly in the

machine learning and the computer science community on analyzing and under-

standing the graph structure. However, the concept of a signal on a graph is

new and very interesting from a signal processing perspective. While this thesis

brings contributions in the theory of distributed graph signal reconstruction and

its applications, it provides answers to only some of the open questions that are

related to the interdependence between the graph structure and the signal on the

graph proper data analysis. There are therefore many more exciting directions

that graph signal processing research can pursue.

Graphs are powerful and promising discrete tool for analyzing complex high-

dimensional data sets. However, in order to fully exploit their power, we should

further learn how to use them properly. The challenges are many: we need to

understand the theoretical and empirical role of the graph structure, and define

meaningful criteria for constructing the graph; also, understanding the role of the

graph structure in graph signals is a necessary step for designing more efficient

graph-based signal processing algorithms that can be used for analysis and infer-

ence tasks on complex high-dimensional data sets; finally, an important parame-

ter that should be considered is the computational complexity of the graph-based

80

algorithms: these should be designed in a scalable manner in order to handle

large-size data.

81

82

References

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,

“The emerging field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irregular domains,” IEEE

Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[2] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997,

vol. 92.

[3] F. R. Gantmacher, Theory of Matrices. 2V. Chelsea publishing company,

1960.

[4] T. Bıyıkoglu, J. Leydold, and P. F. Stadler, “Laplacian eigenvectors of

graphs. perron-frobenius and faber-krahn type theorems, volume 1915 of

lecture notes in mathematics,” 2007.

[5] F. Chung, “Laplacians and the cheeger inequality for directed graphs,” An-

nals of Combinatorics, vol. 9, no. 1, pp. 1–19, 2005.

[6] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs

via spectral graph theory,” Applied and Computational Harmonic Analysis,

vol. 30, no. 2, pp. 129–150, 2011.

[7] X. Zhu and M. Rabbat, “Approximating signals supported on graphs.” in

ICASSP. Citeseer, 2012, pp. 3921–3924.

[8] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis

on graphs,” Applied and Computational Harmonic Analysis, vol. 40, no. 2,

pp. 260–291, 2016.

[9] ——, “A windowed graph fourier transform,” in 2012 IEEE Statistical Signal

Processing Workshop (SSP). Ieee, 2012, pp. 133–136.

83

[10] L. J. Grady and J. R. Polimeni, “Discrete calculus: History and future,” in

Discrete Calculus. Springer, 2010, pp. 1–9.

[11] N. J. Higham, Functions of matrices: theory and computation. Siam, 2008.

[12] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Sys-

tems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[13] V. Blondel, J. M. Hendrickx, A. Olshevsky, J. Tsitsiklis et al., “Convergence

in multiagent coordination, consensus, and flocking,” in IEEE Conference

on Decision and Control, vol. 44, no. 3. IEEE; 1998, 2005, p. 2996.

[14] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,

“Gossip algorithms for distributed signal processing,” Proceedings of the

IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[15] E. Kokiopoulou and P. Frossard, “Distributed classification of multiple

observation sets by consensus,” IEEE Transactions on Signal Processing,

vol. 59, no. 1, pp. 104–114, 2011.

[16] K. Flouri, B. Beferull-Lozano, and P. Tsakalides, “Distributed consensus

algorithms for svm training in wireless sensor networks,” in Signal Processing

Conference, 2008 16th European. IEEE, 2008, pp. 1–5.

[17] A. Schmidt and J. M. Moura, “A distributed sensor fusion algorithm for

the inversion of sparse fields,” in 2009 Conference Record of the Forty-Third

Asilomar Conference on Signals, Systems and Computers. IEEE, 2009, pp.

1332–1336.

[18] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace

estimation in wireless sensor networks,” IEEE Journal of Selected Topics in

Signal Processing, vol. 5, no. 4, pp. 725–738, 2011.

[19] D. Ustebay, R. Castro, and M. Rabbat, “Efficient decentralized approx-

imation via selective gossip,” IEEE Journal of Selected Topics in Signal

Processing, vol. 5, no. 4, pp. 805–816, 2011.

84

[20] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polyno-

mial approximation for distributed signal processing,” in 2011 International

Conference on Distributed Computing in Sensor Systems and Workshops

(DCOSS). IEEE, 2011, pp. 1–8.

[21] ——, “Distributed signal processing via chebyshev polynomial approxima-

tion,” arXiv preprint arXiv:1111.5239, 2011.

[22] X. Wang, M. Wang, and Y. Gu, “A distributed tracking algorithm for re-

construction of graph signals,” IEEE Journal of Selected Topics in Signal

Processing, vol. 9, no. 4, pp. 728–740, 2015.

[23] S. Chen, A. Sandryhaila, and J. Kovačević, “Distributed algorithm for graph

signal inpainting,” in 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 3731–3735.

[24] E. Kokiopoulou and P. Frossard, “Polynomial filtering for fast convergence

in distributed consensus,” IEEE Transactions on Signal Processing, vol. 57,

no. 1, pp. 342–354, 2009.

[25] A. Sandryhaila, S. Kar, and J. M. Moura, “Finite-time distributed consensus

through graph filters,” in 2014 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 1080–1084.

[26] S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed linear network

operators using graph filters,” arXiv preprint arXiv:1510.03947, 2015.

[27] M. Hein, J.-Y. Audibert, and U. Von Luxburg, “From graphs to manifolds–

weak and strong pointwise consistency of graph laplacians,” in International

Conference on Computational Learning Theory. Springer, 2005, pp. 470–

485.

[28] A. Singer, “From graph to manifold laplacian: The convergence rate,” Ap-

plied and Computational Harmonic Analysis, vol. 21, no. 1, pp. 128–134,

2006.

[29] M. Belkin and P. Niyogi, “Towards a theoretical foundation for laplacian-

based manifold methods,” in International Conference on Computational

Learning Theory. Springer, 2005, pp. 486–500.

85

[30] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative

multi-scale signature based on heat diffusion,” in Computer graphics forum,

vol. 28, no. 5. Wiley Online Library, 2009, pp. 1383–1392.

[31] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for

non-rigid shape recognition,” in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1704–1711.

[32] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature:

A quantum mechanical approach to shape analysis,” in Computer Vision

Workshops (ICCV Workshops), 2011 IEEE International Conference on.

IEEE, 2011, pp. 1626–1633.

[33] R. Litman and A. M. Bronstein, “Learning spectral descriptors for de-

formable shape correspondence,” IEEE transactions on pattern analysis and

machine intelligence, vol. 36, no. 1, pp. 171–180, 2014.

[34] N. Hu, R. M. Rustamov, and L. Guibas, “Stable and informative spectral

signatures for graph matching,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2014, pp. 2305–2312.

[35] W. Hwa Kim, M. K. Chung, and V. Singh, “Multi-resolution shape analysis

via non-euclidean wavelets: Applications to mesh segmentation and surface

alignment problems,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2013, pp. 2139–2146.

[36] W.-S. Kim, S. K. Narang, and A. Ortega, “Graph based transforms for

depth video coding,” in 2012 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2012, pp. 813–816.

[37] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multiresolution graph fourier

transform for compression of piecewise smooth images,” IEEE Transactions

on Image Processing, vol. 24, no. 1, pp. 419–433, 2015.

[38] G. Shen, W.-S. Kim, S. K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-

adaptive transforms for efficient depth map coding,” in Picture Coding Sym-

posium (PCS), 2010. IEEE, 2010, pp. 566–569.

86

[39] C. Zhang and D. Florêncio, “Analyzing the optimality of predictive trans-

form coding using graph-based models,” IEEE Signal Processing Letters,

vol. 20, no. 1, pp. 106–109, 2013.

[40] T. Maugey, A. Ortega, and P. Frossard, “Graph-based representation

for multiview image geometry,” IEEE Transactions on Image Processing,

vol. 24, no. 5, pp. 1573–1586, 2015.

[41] T. Maugey, Y.-H. Chao, A. Gadde, A. Ortega, and P. Frossard, “Luminance

coding in graph-based representation of multiview images,” in 2014 IEEE

International Conference on Image Processing (ICIP). IEEE, 2014, pp.

130–134.

[42] D. Tian, H. Mansour, A. Knyazev, and A. Vetro, “Chebyshev and conjugate

gradient filters for graph image denoising,” in Multimedia and Expo Work-

shops (ICMEW), 2014 IEEE International Conference on. IEEE, 2014,

pp. 1–6.

[43] P. Wan, G. Cheung, D. Florencio, C. Zhang, and O. C. Au, “Image bit-depth

enhancement via maximum-a-posteriori estimation of graph ac component,”

in 2014 IEEE International Conference on Image Processing (ICIP). IEEE,

2014, pp. 4052–4056.

[44] H. Q. Nguyen, P. A. Chou, and Y. Chen, “Compression of human body

sequences using graph wavelet filter banks,” in 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2014, pp. 6152–6156.

[45] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, “Distributed

adaptive learning of graph signals,” arXiv preprint arXiv:1609.06100, 2016.

[46] a. e. f. Ministero delle politiche agricole. (2017) Statistiche me-

teoclimatiche. [Online]. Available: https://www.politicheagricole.it/flex/

FixedPages/Common/miepfy700 riferimentiAgro.php/L/IT

[47] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncer-

tainty principle and sampling,” 2015.

87

https://www.politicheagricole.it/flex/FixedPages/Common/miepfy700_riferimentiAgro.php/L/IT
https://www.politicheagricole.it/flex/FixedPages/Common/miepfy700_riferimentiAgro.php/L/IT

[48] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive least

mean squares estimation of graph signals,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 2, no. 4, pp. 555–568, 2016.

[49] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-

mean-square deviation,” Journal of Parallel and Distributed Computing,

vol. 67, no. 1, pp. 33–46, 2007.

[50] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[51] L. Breiman, “Better subset regression using the nonnegative garrote,” Tech-

nometrics, vol. 37, no. 4, pp. 373–384, 1995.

[52] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for

nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[53] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer series in statis-

tics Springer, Berlin, 2001, vol. 1.

[54] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with spar-

sity: the lasso and generalizations. CRC Press, 2015.

[55] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data:

methods, theory and applications. Springer Science & Business Media,

2011.

[56] J. Friedman, T. Hastie, H. Höfling, R. Tibshirani et al., “Pathwise coor-

dinate optimization,” The Annals of Applied Statistics, vol. 1, no. 2, pp.

302–332, 2007.

[57] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

[58] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation

in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 215–233, 2007.

88

[59] G. Cybenko, “Dynamic load balancing for distributed memory multipro-

cessors,” Journal of parallel and distributed computing, vol. 7, no. 2, pp.

279–301, 1989.

[60] G. Scutari, S. Barbarossa, and L. Pescosolido, “Distributed decision through

self-synchronizing sensor networks in the presence of propagation delays and

asymmetric channels,” IEEE Transactions on Signal Processing, vol. 56,

no. 4, pp. 1667–1684, 2008.

[61] M. Cao, A. S. Morse, and B. D. Anderson, “Agreeing asynchronously,” IEEE

Transactions on Automatic Control, vol. 53, no. 8, pp. 1826–1838, 2008.

[62] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of

agents with switching topology and time-delays,” IEEE Transactions on

automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[63] L. Moreau, “Stability of multiagent systems with time-dependent commu-

nication links,” IEEE Transactions on automatic control, vol. 50, no. 2, pp.

169–182, 2005.

[64] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and

switching networks,” IEEE Transactions on Automatic control, vol. 52,

no. 5, pp. 863–868, 2007.

[65] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed con-

sensus and averaging,” SIAM Journal on Control and Optimization, vol. 48,

no. 1, pp. 33–55, 2009.

[66] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-

rithms,” IEEE/ACM Transactions on Networking (TON), vol. 14, no. SI,

pp. 2508–2530, 2006.

[67] U. A. Khan, S. Kar, and J. M. Moura, “Distributed sensor localization

in random environments using minimal number of anchor nodes,” IEEE

Transactions on Signal Processing, vol. 57, no. 5, pp. 2000–2016, 2009.

[68] J. N. Tsitsiklis et al., “Decentralized detection,” Advances in Statistical

Signal Processing, vol. 2, no. 2, pp. 297–344, 1993.

89

[69] Z.-Q. Luo, “An isotropic universal decentralized estimation scheme for a

bandwidth constrained ad hoc sensor network,” IEEE Journal on Selected

Areas in Communications, vol. 23, no. 4, pp. 735–744, 2005.

[70] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlin-

ear variational problems via finite element approximation,” Computers &

Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[71] R. Glowinski and A. Marroco, “Sur l’approximation, par éléments fi-

nis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de

problèmes de dirichlet non linéaires,” Revue française d’automatique, in-

formatique, recherche opérationnelle. Analyse numérique, vol. 9, no. 2, pp.

41–76, 1975.

[72] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[73] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consensus

by the alternating direction multipliers method,” IEEE Transactions on

Signal Processing, vol. 59, no. 11, pp. 5523–5537, 2011.

[74] H. Zhu, G. B. Giannakis, and A. Cano, “Distributed in-network channel

decoding,” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp.

3970–3983, 2009.

[75] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method of

multipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1,

pp. 1–122, 2011.

[76] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods.

Academic press, 2014.

[77] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, “On

augmented lagrangian methods with general lower-level constraints,” SIAM

Journal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2007.

90

[78] E. G. Birgin and J. M. Mart́ınez, Practical augmented Lagrangian methods

for constrained optimization. SIAM, 2014.

91

92

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Motivation
	Thesis Outline

	Graph Signal Processing Overview
	Introduction
	Graphs And Signals On Graphs
	Graph Spectral Domain
	Applications Of Graph-Based Signal Processing
	Processing with graph-based priors
	Distributed Processing Of Graph Signals
	Graph-Based Multimedia Processing

	Graph Signal Reconstruction
	Reconstruction Problem
	Random Sampling and Frequency Ordering
	Performance of the LS Reconstruction Algorithm
	1 Regularization Sparsity

	Distributed Algorithms
	Average Consensus
	ADMM: Alternating Direction Method of Multipliers
	Distributed ADMM - LS Solution
	Distributed ADMM - 1 Regularization Solution

	Conclusions And Future Work
	Future Work

	References

