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Introduction

Since its early development, Modern Portfolio Theory (or MPT) has represented a building
block of portfolio management and, more in general, of finance. Markowitz and his pioneering
work opened the door to a more quantitative approach to asset allocation, showing the extreme
benefits of diversification and the great easiness wherewith it was possible to improve the
portfolio performances. While the idea of diversifying risks was already known, Markowitz
showed how it was theoretically possible to combine the asset to reduce the overall risk, without
necessarily sacrificing the returns. He demonstrated that, for a given universe of securities, it
was possible to create a set of dominating portfolios, such that it was impossible to improve the
return furthermore without increasing the risk. Therefore, investors have just to choose across
such set of superior portfolios depending on their risk-return preferences. When plotted in a
return-standard deviation space, this set of portfolios results in a branch of a parabola,

commonly called efficient frontier.

Despite the easiness and attractiveness of Markowitz’s ideas, his model presents several
drawbacks when applied to the real world. Being based on several strict assumptions, optimal
portfolios often result in asset allocations which are not feasible, go against real world
limitations or that would require large cost to set up. An example is the large changes into the
portfolio composition due to the high sensibility of the optimization process to slight changes
in the inputs (returns and variance-covariance matrix). Moreover, several studies proved that
these so-called efficient portfolios are often outperformed by more naive approaches, such as
an equally weighted portfolio. Among the main fallacies, the model does not take into account
the market capitalization and the relative level of liquidity of the assets that the investors are
required to invest in. This represent a huge limitation, especially for large institutional investors.
Even if they were feasible, the establishment of large positions on low-liquid assets would have
a huge market impact and therefore resulting on worse execution price and lower portfolio

return than what predicted by the theoretical model.

The aim of this work is to try to introduce a new parameter, namely the asset liquidity, into the
optimization problem. The resulting efficient frontier will be now a 3-dimensional surface,
graphing the trade-off between portfolio return, risk and liquidity. It will be investigated
whether the introduction of liquidity characteristics results in more feasible portfolio from
several points of view, and how gross and net returns respond to the liquidity parameter. The

data set used to conduct this analysis includes prices, turnover volumes, Bid-Ask spread, market
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capitalization and outstanding shares of the constituents of the EuroStoxx600, from 1999 to

2019, with observations recorded daily. The dissertation is then organized as it follows:

Chapter 1 presents a review of Markowitz’s mean-variance original framework and further
developments, highlighting advantages and fallacies of the optimization problem and the

various results.

Chapter 2 gives a description of the concept of liquidity, its multiple definitions and sources
and the role that it plays in driving the investment decisions. Moreover, the most common
liquidity measures used by the literature and in real world applications will be described as,
some of them, will be later implemented in the empirical analysis.

Chapter 3 describes the optimizations models used in the empirical investigation. The liquidity
will be proxied by two very popular measures: The Bid-Ask spread and the Amihud measure
of illiquidity. The first represents the easiest and most direct approximation of transaction costs,
the second is a rough proxy of the market impact. Liquidity will be implemented as an additional
constraint in the optimization process, so that each portfolio satisfies a target level of liquidity.
Firstly, this constraint will be introduced in a static contest. Hence, we will attempt at creating
a Mean-Variance-Liquidity surface in opposition to the more classical mean-variance frontier.
We will analyze how portfolio allocation, returns and performance measures vary at the
different level of liquidity imposed. Subsequently the liquidity will be introduced also from an
active perspective. With a monthly rebalancing, we will analyze four portfolios with a minimum
level of illiquidity to understand whether liquidity can play a role in determining the success of

an investment strategy.

Chapter 4 provides the data used and reports the MATLAB results of the analysis and
optimizations described in part 3.



1. Literature Review: Markowitz’s optimization problem

1.1. Before Modern Portfolio Theory

Before the groundbreaking work of Harry Markowitz and the subsequent developments of the
modern portfolio theory, asset allocation and portfolio strategies were mainly based on the
concepts elaborated by John Burr Williams in his book in 1938, “The Theory of Investment
Value”. This book, which can be considered as one of the pioneers of the current MPT,
introduced notions which have been used, later on, by Markowitz, Modigliani-Miller and Fama.
In his work, John Burr Williams made a significant contribution to the field of fundamental
analysis, developing the concept of discount cash flow and, in particular, the dividend-based
valuation. According to his theories, investors should allocate wealth in those stocks which are
undervalued, hoping that the price will, sooner or later, correct to its fundamental value.
Therefore, before the 50’s, Williams’ theory determined the way portfolio managers were
investing: they were screening across hundreds of stocks in order to find potentially
undervalued investment opportunities. However, as Markowitz pointed out in one of his works,
if the value of a stock is the present value of its future dividends, as Williams asserted, but
investors care only about the expected value of a security, and consequently the expected value
of their portfolio, they should put all their money in the security delivering the highest expected
return. However, this makes no sense, since it is well known that the allocation of all your eggs
into one basket is not wise choice. Moreover, Williams’ investment strategies were little or no
concerned about the risk associated with the securities and how the risks of different securities
interact with each other. It should be pointed out that Markowitz did not introduce the concept
of diversification, which was already well known, even before the 50’s. In fact, there are
evidences, despite being quite rudimental, of the concept of diversification even during the 16"
century, when Shakespeare wrote “My ventures are not in one bottom trusted, nor to one place;
nor is my whole estate upon the fortune of this present year; therefore, my merchandise makes
me not sad. Act I, Scene 1” in the famous Merchant of Venice (Markowitz, 1999). However,
what was lacking at that time, was an adequate theory of investment that could cover the effects
of diversification when risks are correlated and analyze risk-return trade-off on the portfolio as
a whole (Markowitz, 1999).



1.2. Mean Variance Framework

Markowitz’s work in 1952 opened the doors to what it is currently called Modern Portfolio
Theory or mean-variance analysis, since it is based on the expected returns (mean) and
the standard deviation (variance) of the different portfolios. His groundbreaking work has
shown the positive benefits of diversification in portfolio construction. He emphasized that the
overall quality of the portfolio can be different from the quality of the individual securities
constituting the portfolio itself. In fact, by choosing securities which are not positively
correlated (i.e. do not move together in the same direction), it is possible to reduce the overall
risk of the portfolio, still maintaining an adequate level of return. In his original work,
Markowitz stated that all investors share two preferences: they all prefer higher returns to lower
and they all dislike uncertainty. These assumptions ensure that investors are rational and risk
averse. Rational investors like more than less, as this maximize the utility obtained, and they
like more what is certain than what is uncertain, as the estimation and forecast of future utility
becomes easier. These represent few of the several assumptions postulated by Markowitz.
Although being quite restricting and hardly to be met in reality, they work quite well for
academic purposes as it is possible to obtain a close solution to the optimization problem.

Considering a portfolio of n securities, in which investors can invest a fraction wj, i=1, 2, ..., n,
of the available funds into i-th the security. The returns on individual securities are assumed to
be jointly randomly distributed and represented by the variable R, with the expected value being
equal to E(Ri)=ri. Letting @ = (w1, @, ..., an) and r = (rl, r2, ..., rn) be respectively the vectors
of securities weights and expected returns, it is possible to define the expected portfolio return
as:

n

E(R,)=E <Z a)l-Ri> = zn: w;E(R;) = Zn: wir; =w'r (1)
i=1 i=1

i=1
Hence, the resulting portfolio return is a simple linear combination of the security specific
return and its weight. Concerning the portfolio risk, there is no unique and universal variable to
effectively describe this concept. Investors have used different dimensions to express and
measure risk, but Markowitz quantified the risk using two well-known statistical measures: the
variance and, its square root, the standard deviation. Computations are generally easier when

dealing with the variance. Therefore, it is convenient to set up the problem in terms of the



variance and then just compute the square root to recover the standard deviation (Fabozzi,

2011). The variance can be expressed as it follows:

Where 0;; = E[(R; — ;) — (R; — 1;)] represents the covariance between the return of the i-th

and j-th asset. In matrix notation it takes this form:
op =V, = w'Qw

Where Q represents the variance-covariance matrix. As we can see from the first equation,
portfolio return is just a weighted linear combination of securities returns while the variance
of the portfolio depends not only on the variance of the single securities constituting the
portfolio, but also on the way these securities move (the correlation), and the amount invested
in each. In fact, “other things being equal, the more returns on individual securities tend to move
up and down together, the less do variations in individual securities cancel out each other and
hence the greater is the variability of return on the portfolio” (Markowitz, 1959). Recalling
Williams theories, investors should choose the portfolio which guarantees the highest expected
return. No or little attention was paid to the concept of risk. It was claimed that by the law of
large number, by investing in a sufficient number of securities, it was possible to eliminate the
portfolio risk. However, as Markowitz mentioned in his work, the presumption that the law of
large numbers applies to a portfolio of securities cannot be accepted because returns are too
intercorrelated. Thus, diversification cannot entirely eliminate the variance (Markowitz, 1952).
Markowitz had the brilliant insight that, despite correlation cannot completely eliminate the
risk, it might reduce it, without impairing portfolio returns. In fact, correlation and the resulting
diversification do play a key role, since is possible to obtain portfolios which dominate single
securities. This means that is possible to combine securities in a portfolio whose either return
is higher that the single security or the risk is lower (the risk is not completely eliminated as
stated by Williams). Any combination of securities that results in a portfolio is called feasible
portfolio. The universe of all these feasible solutions is called feasible set of portfolios. Across
these, there are some which cannot be dominated in terms of risk and return, the efficient
portfolios. A portfolio is said to be efficient when, for a given level of risk, no other combination
of securities can generate a higher level of return without increasing the risk. In the same way,
is also efficient the portfolio which delivers a given level of return with a lower level of risk
(lower variance). The collection of all these portfolios creates a line called efficient frontier. All
the feasible portfolios that lie below this line are not efficient enough since for same level of

risk, the return can be increased, or risk can be decreased for the same level of reward. The
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efficient frontier clearly shows the trade-off between risk and reward: as we move to left, the
return increases but also does the risk. Being a mere combination of securities’ characteristics,

the efficient frontier is the same for all the investors, regardless their risk preferences.

There are two optimization problems behind the formulations of the main principle of the mean-
variance analysis: investors want to either maximize the return for a given level or risk or
minimize the risk for a given level of return. Both the structures deliver the same results, as
they represent the same optimization problem tackled from two different points of view. The

problem, in matrix notation, is the following:

min, ©'Qw

) w'r =
subject to { , Ko
we=1

Where e is a column vector of ones, size n by 1. This problem aims at minimizing the variance
of the portfolio under two constraints: first, the overall return of the portfolio is equal to the
target return pp, which depends on the investor’s risk preferences; the second is a full budget
constraint which ensures that 100% of the funds available for investing are allocated in the
portfolio. Very often this minimization process is presented with in a similar way, by
multiplying the variance by 1/2. This is just a convenience with makes mathematical
computations a little easier. However, from a practical point of view, the two processes are
equivalent and lead to the same results. Equivalently, the other optimization problem aims at
maximizing the portfolio return, keeping the variance at the target level.

max,, ®'r
' 2
. w Qw = o,
subject to { p
!
we=1

Where the first constraint defines the target variance o, to be achieved. It can be noticed that
Markowitz’s original optimization process is completely boundless. Except for the full budget
constraint, no other restrictions are imposed, so that theoretically any position can be taken on
the single assets. As described later, this is far from real world applications and further
assumptions are required in order to make the optimization feasible. Both the optimization
problems can be solved using the Lagrangian multipliers approach. For the purpose of this
work, we will focus on the minimization process. To obtain the minimum, the Lagrangian

function has to be obtain as it follows:
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L=uwlw- /Il(w’r — ,up) — AL(w'e—1)

Then, partial derivatives with respect to the vector of weights and the Lagrangian multipliers

have to be taken and set equal to zero.

(0L

%=2a)ﬂ—/11r—/126=0
oL ,

X a—/llz—wr+,up=0
JL ,

L a—lz=—(t)€+1=0

By solving the system for the w, A1 and Az, and replacing the values of the Lagrangian

multipliers into w, it is possible to derive the optimal weights equation, w*:

yQ 'r - pate)u, + (aQ e — pQ71r)
ay — p?

*

Wherea = 7'Q71r, B = r'Q teand y = e’ te. The vector w* represents the optimal weight
for each asset in the portfolio, satisfying both the return and the full budget constraint. The
efficient frontier is then derived by varying the target return in the constraint and keep solving
the optimization problem for the different levels. Also, the equation describing the efficient
frontier can be easily retrieved by substituting the weights’ equation back into the minimization

problem.

Yip® = 2Bupy + a
ay — B2

W' Qw = 0'5 =

This expression represents the analytic equation of the efficient frontier, relating the portfolio
variance with the expected return. As it can be noticed, the variance is a quadratic function of
the portfolio expected return. Therefore, the frontier has a parabolic shape in a mean-variance
space, where the portfolio variance is represented on the y-axis and the expected return on the

X-axis.
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Mean-Variance Relationship

1 2 3 4 5 3 7 8
Portfolio Return

(Figure 1. Mean-Variance parabola, computed for the EuroStoxx 50, time window: 2009-
2019)

However, given such shape, the understating of the existence of a dominating solution in the
space is not immediate. To this end, it is much more convenient and easier to represent the
frontier in a mean-standard deviation plane, with returns on the y-axis and standard deviation
on the x-axis, given also that the two variables have the same unit of measurement. In fact,
being the standard deviation a direct transformation of the variance, the optimization problem

could be solved directly for the standard deviation and the results would be identical. In this

scenario, the frontier is represented by a horizontal parabola, with the vertex located on (\/iy g)

ay—Bz) .

and the two asymptotes following the equation u,, = % + o, ( ”

Mean-Variance Frontier with Asymptotes

15

-10
] 2 8 1 12

Portfolio Standard Deviation

(Figure 2. Full mean-standard deviation frontier with the green dot representing the vertex

and the red lines the asymptotes, computed for the EuroStoxx 50, time window: 2009-2019)
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The vertex represents one of the portfolios of major interest, the Global Minimum Variance.
Such portfolio is the one characterized by the lowest possible volatility. As the figure shows,
no matter what the reduction in the expected return is, it is not possible to reduce the risk of the
portfolio below the Minimum Variance level. The Global Minimum Variance is also important
because it represents the threshold between the dominating efficient frontier, the part of the
curve above the vertex, and the so-called inefficient frontier, the part below it. The part below
is called inefficient because, despite having even lower returns than the Global Minimum
Variance, they have a larger standard deviation and hence higher risk. Since these portfolios
are exactly on the same standard deviation level of a portfolio on the upper curve, they are

dominated by those as they have same risk but lower return.

Dominating Efficient Frontier

Ll
Portfolio Standard Deviation

(Figure 3. Dominating Mean-Standard deviation Efficient Frontier, computed for the
EuroStoxx 50, time window: 2009-2019)

In building the efficient frontier, the correlation between the securities represents a key driver,
Recalling that the correlation moves in the interval [-1,1], these benefits can be easily
demonstrated considering an example with just two securities. When the correlation is perfectly
positive (equals to 1), there is no space for diversification benefits. The efficient frontier is a
simple line going through the two assets; thus, the expected return of the portfolio is linearly
increasing in the risk. The opposite extreme, correlation equals -1, represents the best possible
scenario as it is theoretically possible to combine the two securities in a portfolio with
essentially zero volatility. When correlation moves in between the two extremes, the efficient
frontier moves between these two cases. Of course, this is a clear extremization of the reality,
but it is still important to explain why negative correlation and potential for diversification are
important drivers in building the efficient frontier.
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One of the most attractive features of this framework is that, provided the assumptions are
satisfied, the only inputs necessary are returns, variance and correlation. Despite this, the
estimation of such parameters is not easy, and tend to produce several drawbacks in the asset
allocation. Markowitz himself did not specify how to estimate those parameters, whether
investors should use historical values or not to compute the expected returns and the variance-
covariance matrix. What he did say was that investors should use “relevant beliefs about future
performances” without specifying how to get those (Markowitz, 1952). Later, however, he
stated that average past returns, and past covariance could actually be assumed as a good proxy
for future return and risk measures. This poses several problems both from the results validity
and appropriateness of the measures point of view. However, as much as it might be an
oversimplification, for academic purpose, the use of historical data makes the computations
much easier. That is why, historical values of returns and variance will be used to compute the

mean-variance analysis and any further development in this dissertation.

1.3. Relevant portfolios: Global Minimum Variance and Maximum
Trade-off

As mentioned, the optimal portfolio for an investor strongly depends on his risk aversion
characteristics. More risk averse individuals will prefer safer portfolios, with less risk attached,
while more risk lover investors will prefer portfolios with a stronger risk component. However,
across all the efficient portfolios, there are two which have desirable and interesting
characteristics: the Global Minimum Variance and the Maximum Trade-off (also known as
Max Sharpe) portfolio. These are, respectively, the portfolios with the lowest possible risk
(assuming the variance/standard deviation as proxy for the risk) and the portfolio with the
highest Sharpe ratio, hence the highest risk-return trade-off. These portfolios will be later used
in the empirical analysis. The Sharpe measure is indeed defined as the ratio between the
portfolio excess return over the risk-free 7 rate divided by the standard deviation of the
portfolio itself.

Hp — ¢

Op

It essentially measures the reward over the risk-free rate per unit or risk taken. Ideally investors
are looking for portfolios with positive and high Sharpe ratio. Negative values suggest that the

portfolio is underperforming the risk-free security, despite the higher level of risk taken. In this
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case, investors would be better off by switching their investments to the risk-free asset. Given
their characteristics, these portfolios are easily recognizable along the efficient frontier. The
popularity of the Global Minimum Variance has risen quite a bit in the literature in the past
years. This popularity comes from the fact that the Global Minimum Variance has some
desirable features, both from the statistical and portfolio composition point of view. First, stock
returns are difficult to estimate (Merton 1980). Estimates might significantly differ from the
real values. This estimation errors would affect the optimization process and ultimately result
in a suboptimal portfolio composition, which might lead to poor performances (Kempf,
Memmel 2005). However, the Global Minimum Variance is the result of variance minimization
problem and thus it is not affected by errors in the estimation of returns. In fact, variance-
covariance matrix can generally be estimated much more precisely than returns, therefore
improving the optimization results (Kempf, Memmel 2005). Moreover, there exist more and
better methods to cope with the uncertainty in the variance-covariance matrix than with the
estimation of returns. Second, it has been often proved that low volatility stocks do not perform
much worse than those with much higher volatility (Coqueret 2015). Therefore, the Global
Minimum Variance is the result of a portfolio optimization problem, where the only ‘binding’
constraint is the budget one (no target return constraint):
min, o' Qw

subject tow'e =1

The Lagrangian reduces to:
L=wQw—- A1(w'e—-1)

With the following partial first derivatives:

oL
£=2a)ﬂ_lle=0

oL o wet1=0
o w'e =

Solving for A; and the substituting back into the weights’ formula, we obtain:

O le Qe B
Wemy = —ro=1, Tomv = m=; SDemy = 7
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As anticipated, the Global Minimum Variance is located on the vertex of the efficient frontier

1B
Vy'y

variance-covariance matrix, thus reducing the risk of mis-allocation due to errors in the

parabola with coordinates ( ) Moreover, the weight combination is a mere function of the

estimation of the returns. On the other hand, the Maximum Trade-off portfolio is the result of
a more complex optimization problem, which aims at maximizing the Sharpe ratio, still under
the budget constraint.

w'r
Voo

subject tow'e =1

max,,

Again, solving the first derivatives for w and for 1,and substituting back it into the weights’

formula, we obtain the following quantities:

QO 1r r'Qr o« Va
wTAN=m TTAN=m=E TAN=W
The Maximum Trade-off has coordinates (I%I%) Differently from the Global Minimum

Variance, the weights are a function of both the variance-covariance matrix and the returns.
Therefore, the estimation of the returns plays a key role in determining the portfolio
composition. The Maximum Trade-off portfolio acquires particular importance when a risk-
free security is added to the analysis. In this scenario, according to the one fund theorem later
described, the Maximum Trade-off, also referred as the tangency portfolio, represents the
optimal risky portfolio in which every individual should invest in, regardless the risk
preferences. Then, the investor can control the overall risk and adapt it to his preferences by
taking a position on the risk-free security. A deeper discussion is presented in the next
paragraph. However, it is important to point out that, when the risk-free security is introduced,
the resulting Maximum Trade-off portfolio will be different from the one estimated from the
efficient frontier with only risky securities, as now the portfolio’s Sharpe ratio to maximize is

defined with respect to the risk-free rate.

In alternative to the Global Minimum Variance and the Maximum Trade-off, there is another
portfolio which, despite not necessarily lying on the efficient frontier, is of particular interest
for the investors: the equally weighted portfolio. This portfolio is often referred as a naive
portfolio because it is based on a naive diversification rule. Going against what introduced by

Markowitz, the equally weighted portfolio invests evenly across all the N securities available,
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ignoring the data and any optimization process. Despite its simplicity, a naive diversification
approach is widely used as benchmark for several reasons. First, it does not involve any
estimation error as moments do not need to be computed in order to find the optimal asset
allocation. Moreover, many studies show a lack of diversification in the portfolio holdings. An
equal weighted approach ensures sufficient diversification, avoiding large concentrations in the
same small group of assets. This, in turn, might improve the portfolio liquidity and
performances by partially reducing the market impact of Markowitz’s portfolios. Second, even
after decades of new models and new methods to estimate parameters and to cope with the
estimation errors, many investors keep using a naive approach to allocate wealth across assets,
especially when looking at passive investment strategies (DeMiguel, Garlappi, Uppal 2009).
Moreover, many studies proved that the equally weighted portfolios perform not much worse,
or even outperform, more advanced strategies, especially when the number of securities
involved is high, since, even if naively, there is more potential for diversification while the
increasing number of parameters to be estimated for the more advanced models also increases
the potential for estimation errors. Similarly, naive approaches work best when the data
available are limited, as the parameters estimation becomes less precise (DeMiguel, Garlappi,
Uppal 2009).

1.4. Efficient frontier with risk-free asset

Markowitz’s biggest achievement is, without any doubt, the quantification of the importance of
diversification in the portfolio construction. Moreover, the introduction of the MPT, provided
the foundations for several other developments. Particularly remarkable has been the work done
by Tobin (1958), Sharpe and Lintner in analyzing the impact of introduction of a risk-free asset
in the analysis. They showed that adding a risk-free component generates efficient portfolios
which are superior to those available to investors without it (Rachev, Stoyanov, Fabozzi 2008).
Moreover, they found out that the efficient portfolios are a combination of a specific risky
portfolio, called market (or tangent) portfolio, common to all the investors, and the risk-free
securities. Investors are still assumed to optimize their holdings as stated by Markowitz, but
now they are also allowed to borrow or lend as much as they want at a risk-free rete (the
assumption of unlimited borrowing has been widely proved to be unrealistic). Lending
corresponds to having a long position, while shorting the risk-free security corresponds to
borrowing. This assumption has important effect on the budget constraint, as the weights of the

risky portfolio no longer have to sum to one, as investor are allowed to short the risk-free
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security and thus increase their long position on the risky assets above 100%. However, it is
still assumed that the positions on the two assets equal the unity, so that all the funds are still
invested (such assumption is implicitly incorporated in the target return constraint). Therefore,
investors allocate their funds between a portfolio of (risky) securities and the risk-free asset.
The expected return of this combined portfolio is a simple linear combination of the returns,

ER = w't + wys1y

With w,f representing the fraction invested in the risk-free asset (it is a scalar value since it is
assumed that there is only one risk-free asset). The variance (and standard deviation), on the
other hand, has the same structure as before, since the risk-free asset has zero variance.
V, = 0'Qw
The optimization problem takes the following form

min,, w'Q w

subject to w'r + (1 — w'e)ry =

And the resulting equation of the efficient, expressed in a return-standard deviation space, is:

‘Llp = Tf iap\/ﬁ

With H being equal to H = (r — ery)' Q™' (r — ery). In this case the efficient frontier is no
longer a parabola in the mean-standard deviation space, but it is a straight line, which intercepts
the y-axis at the risk-free rate value. In the extreme case where 1 = B/, the efficient line
would equate the asymptotes previously calculated for the risk-only frontier. However, if that
was the case, the Global Minimum Variance would have the same expected return of the riskless

rate, which is clearly impossible (Hubbert 2007). Therefore, the only feasible case is when ry <

B/v. Since such frontier represents all the possible combinations of the risk-free security and a
risky portfolio, it is possible to create an infinite number of lines which differ only in the slope’s
coefficient (Vasicek, McQuown 1972). It can be proved that the slope of this new efficient
frontier coincides with the Sharpe ratio of the risky portfolio selected. Since all investors are
utility maximizer, they would like to maximize the risk-return trade-off, hence, they would like
to invest in a portfolio which lies on the highest feasible line. Given this assumption, the best
efficient line is the one going through the tangency portfolio, since it has the highest Sharpe
ratio. Thus, the efficient frontier with risk-free asset can be thought as any combination of the

tangency portfolio and the riskless asset. This assumption is commonly called one fund
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theorem. The tangency portfolio is often referred as market portfolio since, under certain
assumptions, it consists of the entire universe of available assets. Indeed, if all the investors
share the same views about asset moments, they will all invest a fraction in the tangent portfolio
and borrow or lend the risk-free security, hence demanding the same risky portfolio. Then,
assuming that markets are in equilibrium so that supply equals demand, every investor's
holdings will be made up of a part of the same portfolio. It follows that the tangency portfolio
comprises all the shares outstanding of all the common stocks in the market. This portfolio is
thus called “market portfolio” and includes all the outstanding shares, proportionally to their
market capitalization (Vasicek, McQuown 1972). The resulting frontier is commonly known

Capital Market Line (CML) and it can be represented as it follows:

Efficient Frontier with Risk-free asset

rtiolio Standard Deviation

(Figure 4. Capital Market Line, computed for the EuroStoxx 50, time window: 2009-2019)

It is easy to notice that all portfolios that lie on the risky efficient frontier (Markowitz’s original
frontier) are now inferior solutions to the portfolios on the CML, in the sense that they result in
lower expected returns for the same amount of risk (Vasicek, McQuown 1972). This theorem
has important implication as, differently from the world without risk-free asset, all investor
should now pick the same portfolio regardless their risk preferences. Risk aversion does not
determine the composition of the risky portfolio anymore, but it affects the composition of the
overall efficient portfolio, resulting from the combination of the risk-free asset and the market
portfolio. More risk averse individual will position themselves to the right of the optimal
portfolio along the CML, taking a long, but smaller than the unity, position on the tangency
portfolio and investing mainly in the risk-free asset. On the other hand, very risk lover might
opt to invest everything in the tangency portfolio or even short the risk-free asset (borrow) in

order to take a long position exceeding the unity. The crucial conclusion thereby suggested is
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that every investor must resolve what risk level he is willing to assume but need not to select
particular stocks nor be concerned with how to combine them into a portfolio (Vasicek,
McQuown 1972). Theoretically, if all the model’s assumptions are satisfied, he could simply
invest in all the stocks in the market and borrow/invest in the risk-free asset and automatically

obtain the efficient portfolio.

1.5. Optimal Portfolio and Utility Maximization

In portfolio theory, as in many other situations in economics, individuals have to make choices
in a world dominated by uncertainty: in this context, they are asked to choose across a set of
portfolios, each with its own risk-return profile, and, thus, different level of utility. Since
rational individuals prefer more to less, they always make decisions in order to maximize the
resulting expected utility. Therefore, portfolio choice should also be concerned about
maximizing the utility. If the mean-variance dominating portfolio individuated by Markowitz
are truly superior choices compared to the non-efficient ones, they should also produce a higher
level of utility than all the non-dominating portfolios, otherwise investors might opt for those
portfolios that do not lie on the efficient frontier. In the standard portfolio analysis, the primary
concerns for investors are risk and returns. Thus, utility function mainly express individual’s
preferences towards these parameters, which represents only the first two moments of the
distribution of returns. In particular, the slope of the function is positive to reflect the fact that,
to maintain the same level of utility, a risk-averse investor has to be compensated with higher
returns in order to accept higher risks (Fabozzi 2012). Moreover, the more risk averse an
individual is (i.e. the larger is the risk aversion coefficient), the steeper is the utility curve, since
he must be extremely rewarded in order to accept an even small increment in the risk. As
mentioned above, the optimal portfolio for an investor depends on his risk preferences,
embedded in his utility function. Therefore, the problem reduces to the estimation of investor’s
utility function. The literature behind the estimation of the indifference curves is very wide, but
also very debated. While the existence of a function that can perfectly explain and quantify
individuals’ preferences would be extremely useful, in reality this is not always the case. In
fact, there are many evidences from both traditional and behavioral studies, that not only it is
difficult to determine the utility function, but also individuals are not fully rational as
Markowitz predicted and the utility function type, as well the risk preferences, might change
depending on the circumstances and time (Fabozzi, Pachamanova 2010). An example is the fact

that households’ portfolio tends to be home-biased, with extreme low diversification across
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foreign stocks. It seems that foreign stocks are perceived risker than similar domestic stocks.
Clearly, this behavior reflects non-rational beliefs. French and Poterba (1991) have shown that
investors in the USA and Japan allocate more than 90% of their overall investment in domestic
stock, resulting in a much lower diversification than what standard portfolio models suggest.
Moreover, the assumption that utility is expressed just by the first two moments of the
distribution of returns is a departure from the expected utility theory. According to it, when
facing many uncertain scenarios, an individual always chooses the prospect yielding the highest
level of expected utility. In that case, the choice depends on the entire probability distribution
function of the return and not merely on the expected mean and the standard deviations (Biswas
1997). However, assuming that investors are fully rational and utility maximizer makes the
analysis easier and allows for a solution to the optimization problem. Then, under certain

assumptions, the mean-variance utility coincides with the expected utility theory. Let still be 7,

the random portfolio return, W the final wealth, W = Wo(l + up), and Wy the initial wealth
which can be normalized to the unity so that the only argument of the utility function is the
return. Because of the difficulties in estimating the correct utility, practitioners often work with
a mean-variance approximation of the chosen utility function (Fabozzi, Pachamanova 2010). In
fact, by applying a Taylor series expansion around w,, it is possible to show that a mean-
variance framework is reconcilable with the expected utility theory, under specific assumptions
about investor’s preferences and returns distribution. Despite being just an approximation,
many studies showed that a two moments expansion works as a useful proxy to the expected
utility when it comes to selecting portfolios of common stocks and including higher moments
do not always improve the results (Hlawitschka 1994). A common assumption about the utility
shape is that it is quadratic. A quadratic utility function has several mathematical advantages,
such as that all the derivatives above the third power are zero. Moreover, Levy and Markowitz
(1979) showed that, when dealing with mutual funds, the expected utility function can be very
well approximated by a function of the mean and the variance of the portfolio returns. They
found out that a mean-variance approximation performs particularly well when returns range
from -30% to 60%. Moreover, they demonstrated that the mean variance frontier included the
portfolio maximizing the true utility function (Cremers, Kriztman 2003). Therefore, the

quadratic approximation can take the following form

. Aquaa ,
Uniaa() = ' — 222 7y

Where Agyqq > 0 represents the investor’s attitude towards risk and it is generally different

from the one described by Pratt (1964). However, the presupposition of a quadratic function
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results in some unrealistic assumptions about the investor’s behavior. First, a quadratic utility
Is characterized by increasing absolute risk aversion, which implies a reduction in the nominal
amount invested in risky assets as the wealth increases. Second, it exhibits a positive marginal
utility function only up to a certain level of wealth, after which it starts declining (Ingersoll
1987). Alternatively, similar conclusions can be derived assuming a multivariate normal
distribution of the return, as investors can infer the entire distribution of returns from its mean
and variance and, therefore, higher moments become irrelevant (Cremers, Kriztman 2003).
When returns follow a normal distribution, a mean-variance approach makes sense regardless
the shape of investor’s utility. A very common choice when dealing with normally distributed
returns is the negative exponential utility function o CARA (Constant Absolute Risk Aversion),
which is easier to optimize than some of the other utility functions.

Uexp W) = —e AexpW

With A.,, representing the Arrow-Pratt constant coefficient of risk aversion. Then, the

maximization of such utility is equivalent to the so-called mean-variance utility function

expressed as (Ingersoll 1987)

In both cases, the resulting expected utilities will depend merely on the first two moments of
the returns. Hereof, the connection with the mean-variance framework. Therefore, besides the
methods previously shown, there is another way to derive the efficient frontier, which consist

on the direct maximization of a mean-variance utility function (4., is replace with A to

simplify the expression)
max, o'r— Ea)’ﬂw

subeject to w'e = 1

Recalling that the maximization of a function equals the minimization of its negative form, we

can express the Lagrangian in the following form:

A
L=-wr+ Ew’Qw — L(w'e—-1)

The solution to this minimization problem can be easily obtain by replicating the steps followed

for the standard optimization problem. The resulting solution is:
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Or, alternatively,

The last representation is particularly interesting because it shows that the optimal portfolio,
and in general any optimal portfolio for a given risk parameter A, is a linear combination of the
Global Minimum Variance and Maximum Trade-off portfolio. When the investor is infinitely
risk lover, so that A — 0, the solution is given by an extreme long position in the Maximum
Trade-off and a short on the Global Minimum Variance. On the other hand, when A — oo the
investor is infinitely risk averse, and the solution simply converges to the Global Minimum
Variance portfolio, with zero holdings in the Maximum Trade-off. Therefore, by varying the
risk parameter and solving the optimization it is possible to derive the efficient frontier, which
is exactly equivalent to the one derived in the previous sections. It is easy to understand the
attractiveness of the mean-variance approximation. It provides a direct way to compute the
portfolio maximizing the expected utility, instead of having to compute the utility for each
possible portfolio’s composition along the frontier (Cremers, Kriztman 2003). Despite being
quite straightforward, this procedure is not exempt from criticisms. Even if all the assumptions
about the utility form and the distributions of returns are correct, there still would be several
pitfalls. The main drawback concerns the estimation of the risk aversion parameters. In fact,
despite the large literature behind, nowadays there is no procedure which produces a unique
result. There have been many attempts to directly elicit the risk aversion preferences, using both
qualitative and quantitative procedure. Qualitative procedures exploit surveys and
questionnaires, which are also widely applied in psychology. The main shortcoming with these
kinds of procedures is that they do not directly quantify a risk aversion parameter but simply
allow to determine whether people are more or less risk averse. Results tend also to be biased,
as people might not fully understand the questions. Moreover, and this probably represents the
biggest problem, people do not distinguish between risk aversion and risk perception (which
means that probabilities are not held constant). Therefore, some people might get classified as
extremely risk averse only because they attach a much bigger probability to a risky event that
what others do. Quantitative approaches, on the other hand, can provide an estimate of the risk
aversion parameter. These approaches are based on simulated games or scenarios where people
are asked how they would behave depending on the conditions. Then, by using those results
and making some assumptions about the utility function, it is possible to infer the risk aversion

parameter, provided that individuals are utility maximizer. The main advantage, compare to
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qualitative methods, is that now probabilities are given (and thus held constant across
individuals), therefore there is no error caused by different risk perceptions. However, also these
approaches have some drawbacks. Many evidences show that people involved in these
simulations tend to underestimate their willingness to pay, hence the resulting risk aversion is
overstated. Moreover, the answers tend to change in accordance to the size of the game. Once
that the efficient frontier has been constructed, the next step is to determine the optimal
portfolio. Since the higher is the indifference curve, the higher is the final utility, rational
investors would always like to be on the highest possible indifference curve. Therefore, the
resulting optimal portfolio, will be determined by the tangency of the highest utility curve with

the efficient frontier, or with the CML line in case the risk-free asset is included in the analysis.

Concluding, while Bernoulli and Von Neumann and Morgenstern’s work suggests that
investors wish to rationally maximize their utility, practitioners have found that for most
investors, the utility function is an impractical device for selecting portfolios. In their
experience, they find that investors do not fully understand the concept of utility and are
generally unable to provide the information required to determine their function analytically.
This also explain why the literature is mainly focused in dealing with simpler approximation
(Guerard 2010).

1.6. Drawback and Fallacies of Mean VVariance Framework

The mean-variance framework, and the portfolio selection methods arising from it, have
become standard investment tools. Aside from their theoretical appeal, the easiness of the
practical implementation was surely among the crucial determinants of their great popularity.
The constant development of technology allows to run optimization algorithms for the
computations of the minimum variance and the market portfolio quite fast also on personal
computers. Moreover, it is also relatively easy to estimate returns, variances and covariances,
at least using historical data (Morawski 2008). However, despite such attractiveness, the mean-
variance analysis is subject to several limitations and fallacies. Michaud (1989) pointed out that
the traditional procedure often leads to financially irrelevant or false "optimal" portfolios and,
sometimes, even a naive approach, as an equally weighted portfolio, might turn out to be a

superior solution.
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The first shortcoming concerns the estimation of the risk-return parameters. In fact, while using
historical data simplifies a lot the process, the results obtained have little meaning for future
portfolio allocations and performance. Therefore, a forward-looking estimate is required.
However, this complicates the analysts’ work. In fact, as Michaud (1989) and Black and
Litterman (1992) pointed out, Markowitz’ allocation process tends to predilect those securities
with high expected returns and negative correlations compared to those with low return and
positive correlation. However, these securities are also those more prone to estimation errors
(Michaud 2001). Therefore, the optimization procedure ends up maximizing these errors. This
problem might be partially alleviated by focusing only on the minimization of the risk.
However, even in this case, the estimation procedure is not so easier. If, for example, a portfolio
is composed by 50 securities, this requires the estimation of 50 expected returns and 1225
covariances (the number of covariance is N(N-1)/2). While the estimation of 50 returns might
still be reasonable, it is clear that 1225 covariances are not feasible to be estimated without
incurring in significant errors. In fact, Markowitz realized that some kind of model for the
covariance structure was needed for the practical application of normative analysis to large
portfolios (Morawski 2008). Moreover, Markowitz introduced the variance as a proxy for risk.
However, the variance is more a measure of uncertainty and, while it is straightforward that
there is a positive relationship between risk and uncertainty, the variance does not really capture
the concept of risk. In fact, the variance treats all the deviations from the mean as the same,
either they are positive or negative. However, risks are not symmetrical, and investors are
generally more concerned with the negative ones (Rachev, Stoyanov, Fabozzi 2008). This is
especially the case of hedge funds, whose potential downsides are extremely large, and the
variance cannot really capture the full extent of the risk taken (Fung, Hsieh 1999). Markowitz
suggested to use the downside semi-standard deviation as a proxy for risk, which is the
deviation of the returns falling below a given threshold. This approach also has the advantage
of being tailored to the specific objectives and risk profile of investors with different levels of
target return. Another measure of dispersion, the Mean Absolute Deviation (MAD), might be
used. Differently from the standard deviation, the MAD measures the absolute distance from
the mean, rather that the dispersion squared. The MAD tends to be more robust to outliers, those
observations falling in the tails of the distribution (Morawski 2008). Alternatively, “safety first
risk measures” can be used. These risk measures generally value the probability that portfolio
returns are lower than a given target. The most famous measure is the Value at Risk (commonly
abbreviate to VaR). However, even the VaR has its own limitations, as it does not consider the
concentration of returns in the tails beyond the threshold. To overcome these limitations,
conditional Value at Risk (CVaR) has been introduces. CVaR, also called expected shortfall or

25



expected tail loss, measures the expected value of portfolio returns, when returns fall beyond
the VaR threshold. In this sense, the CVaR represent a much more coherent risk measure
(Morawski 2008).

Another main drawback, highly linked with estimation error, is the fact that the mean-variance
model tends to be quite unstable. As the inputs slightly change, the resulting portfolio
composition might be completely different. Since trading costs are directly proportional to the
size and number of trades, such instability would translate in very high transaction costs, thus
undermining the portfolio performances (Kourtis 2015). Moreover, Markowitz’s original
optimization process, does not include any constraint at asset level, so that the optimization can
determine positions of any size. The optimal portfolio can result in extreme large positions,
which in reality might be unfeasible. This is particularly true for many institutional investors
which have investment restrictions and might not be allowed to short securities. That is why, in
order to obtain more realistic and stable results, robust estimators should be included in the
analysis, as they result less sensitive to outliers (Morawski 2008). Such solutions include the
Black-Litterman Model, which allows investors to make assumptions about future returns (so-
called views) and express how reliable they think these views are. The views, weighted by the
assigned probability, are then combined with equilibrium values to determine the expected
returns and standard deviations. Michaud, on the other hand, developed a model to reduce the
impact of estimation errors by computing mean and covariance matrix from a sample of
simulated returns. Another drawback is that the model does not allow to express the level of
uncertainty for the estimates of the parameters. This is a quite relevant issue especially during
period of high volatility and uncertainty, such as during financial crisis. Indeed, it is reasonable
to assume that estimates of parameters during such periods are likely to have an extra
component of uncertainty compared to period of steady growth, where forecasting is much
easier. Since these periods are quite different, Chow created a model where observations are
distinguished in inlier and outlier, with respect to a threshold parameter, and portfolio allocation
is calculated in both scenarios. Then, the resulting optimal portfolio allocation is a weighted
average of the inlier and outlier portfolio, where the weights are the probability of being in a
situation of steady growth (inlier observations) or during a financial crisis (outlier

observations).

However, the main fallacy linked to the purpose of this dissertation is that the mean-variance
model does not take into account information about the market capitalization and liquidity of
the stocks during optimization process. While this is likely to be irrelevant for the small, private
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investor given the size of his trades and portfolio, it might significantly affect the large
institutional investors’ decisions. As mentioned, sometimes the portfolio allocation resulting
from the optimization requires very large long and/or short positions, which may be very costly
or even impossible to establish. However, problems arise also with small position, when these
have to be taken on illiquid assets (i.e. Small or Mid-Cap stocks or asset with low liquidity such
as real estate). In fact, generally, the more capitalized is a company, the more shares are usually
available for trading and the more liquid it can be. Such stocks would allow investors to
establish quite large positions without significantly impact the execution price. On the other
hand, for less liquid asset, it might be difficult even to take a small position without affecting
the market, and thus negatively impacting the portfolio performances. Therefore, stocks’
liquidity can play a key role in affecting portfolio feasibility and returns. There have been
attempts to include a “liquidity dimension” into the analysis. A popular approach consists in
incorporating a measure of transaction costs into the model. The idea behind is to penalize the
portfolio turnover, which means to penalize the changes in the vector composition respect to an
initial portfolio, by setting a given parameter k which should reflect the extent of the transaction
costs (Kourtis 2015). The model would still aim at minimizing the variance, but under the
following constraint:

wr—klo—o|=¢

Where @ represent the initial portfolio composition. However, given the nonlinear form of
transaction costs, such problem tends not to have a closed form solution and computations
might be hard and inefficient, especially when the number of assets is large (Kourtis 2015).
Given the large dimension of the universe and time window used in the empirical analysis, this
approach has been considered unpracticable. Alternatively, Kourtis (2015) proposed a model
to improve the stability, penalizing the portfolio changes. He suggested to include a such
penalty directly into the minimization function, so that investors face a trade-off between

efficiency and stability, which can be controlled through the stability parameter c.

min, 0'Qw + c(w — @) QUw — @)

The larger is the parameter, the more the stability will be considered important, the closer will
be the optimal portfolio to @ and thus the larger will be the deviation to the Markowitz’s
equivalent portfolio (Kourtis 2015). The optimal portfolio will be just a combination of a

portfolio along the efficient frontier and the initial portfolio &.
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2. Liquidity

In the literature, it is difficult to find a unique definition of what liquidity is. This is because
there are different types and dimensions of liquidity. There is an asset specific type of liquidity,
there is a market liquidity and there is also a concept of liquidity at a corporate level, when
looking at the company’s solvency and ability to pay. While the latter is of little relevance for
the purpose of this analysis, the first two are of greater interest. Most researchers and investors
can ideally identify liquidity characteristics when analyzing a security or the market. However,
it is a bit more difficult to try to uniquely define it. As it is explained after, over time, a lot of
different definitions and measures have been developed, each of them describing a given aspect
of the liquidity. However, given that no unique solution currently exists, from a practical point
of view, investor have a sort of “discretionary” approach in defining what is liquid. The only
thing sure is that liquidity is used on a daily basis as investment criterion by many investment
funds and banks, and, at the end of the year, liquidity can represent a significant variable in
determining the sign of the trading P&L. First, it is important to understand why liquidity is so
important. The easiest answer is that liquidity determines the market value of a product, not
only when it comes to stocks or financial assets, but basically for any product in the world.
Given everything else equal, the easier it is to find, the less you are willing to pay. To get a little
bit more technical, the degree of liquidity affects the asset’s value, as more marketable product
tends to have a higher value than more illiquid. This is because investors value the ability and
the speed at which is possible to convert their holdings into cash if necessary. Therefore, having
low liquid assets poses extra risk challenges as they might end up holding those securities more
than what they would ideally want, and thus increasing their exposure to market fluctuations
(Dyl, Jiang 2008). However, as mentioned, there are different measures of liquidity, and none
of them can ultimately determine whether an asset is liquid or not, but at least it is possible to
get an idea of what is more or less liquid than others. Probably, the most widely recognized
proxy of liquidity when working with stocks is the Bid-Ask spread, which has been extensively

used in empirical studies over the years.

These risks, associated with unforeseen impossibility to liquidate a position when required,
have also stimulated the literature to try to find whether this extra risk component (extra in the
sense that does not directly depend on prices changes) is actually rewarded somehow. Indeed,
many researches, including Amihud and Haim Mendelson (1986) and Amihud (2002),
suggested that part of stock excess return is due to illiquidity premium: they proved a positive

relationship between stock return and different measures of illiquidity (mainly Bid-Ask spread
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and a function of the stock dollar volume), suggesting that small firm stocks should be better
compensate in terms of returns as result of their market “thinness”. If this is true, there would
be repercussion on the portfolio composition. An early liquidation of a portfolio with a heavy
exposure on Small-Cap might significantly reduce the portfolio performances. Thus, investors
with a short-term investment horizon should focus on more liquid securities, while long-term
investors can attenuate the consequences of trading illiquid asset and therefore capture the
potential premium return. It is clear how liquidity can affect not only portfolio characteristics
but also its profitability. Many measures of liquidity are linked with costs estimates, as more
liquid markets and securities are assumed to be cheaper than more illiquid. While for the
household, those cents spent in transaction cost might be irrelevant, for large traders they might
determine between who wins and who loses. Moreover, as mentioned, Markowitz’s
optimization does not take into account stocks’ features. Hence, the portfolio composition might
load aggressively on those low-liquid securities, given the potential higher returns they offer,
resulting in unfeasible portfolio or significant differences in the theoretical and realized returns.
Furthermore, Ohler (1990) conducted a study questioning financial advisors about the
investment characteristics that are considered as the most important by their clients. Aside from
risk and return, which unsurprisingly were ranked as the most important, liquidity classified in
the top 3 desirable characteristics, showing the importance of such component also for the
clients. Therefore, it seems reasonable to analyzed whether it makes sense to introduce a
measure of liquidity in the mean-variance framework and what are the potential implications
and results. However, first it is necessary to try to define what asset liquidity and market
liquidity are and their consequences on portfolio allocation. Subsequently, we will try to
understand where liquidity come from, which might be the sources of different degree of
liquidity across similar assets. Finally, we will analyze the most famous measures of liquidity

developed by the literature in order to try to give a numerical representation to this variable.

2.1. What is Liquidity?

When dealing with stocks, or pretty much any other security traded in financial markets, one of
the most well recognized definition of liquidity is the ease to buy or sell an asset quickly, in
large quantities, without substantially affecting the execution price (basically the ease at which
is possible to trade an asset at its fair market value). According to this definition, shares in large
blue-chip stocks like General Motors or General Electric are more liquid, because they are
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continuously traded during the day and therefore the stock price is unlikely to move
dramatically following few trading orders (Morawski 2008.). This definition captures more the
idea of market liquidity than the liquidity of the single asset itself which can be thought as the
ease with which it can be converted into cash. Thus, cash and equivalents are generally
considered as the most liquid assets available in the market, since they are or can be immediately
converted into cash, hence reducing basically to zero the liquidity risk. Stocks tend to be pretty
liquid (even if with differences depending on their specific characteristics and the market
organization and conditions) as, nowadays, can be easily traded and converted in cash. Among
the most illiquid assets there is real estate, for which the liquidation process might take days or
weeks and generally involve very high transaction costs. Since the purpose of this work is to
show how liquidity affects portfolio allocation and, ultimately, the performances, we will
mainly focus on the market definition. Despite being quite easy, that definition is very powerful
and captures several dimensions of the market structure, including time (how much does it take
to liquidate a given position?), cost (at which prices will the trade be executed?) and quantity
(how large is the position that can be liquidated?) (Morawski 2008). These quantities are also
referred as immediacy (time), size or depth (quantity) and width or breadth (cost) and they
represent the three main dimensions of market liquidity. Market breadth is defining as the cost
of doing a trade at a given size. It is primarily associated with the Bid-Ask spread of the security
traded, especially when the trade size is small and the market impact null or almost null. Market
depth generally refers to the size of the market, interpreted either as the market players willing
to trade with you, or the number of units that can be traded at a given price. The idea is that the
more participants there are, the easier should be to find someone on the other side of the market
to trade with. Thus, larger and more organized markets (i.e. NYSE) are considered deeper than
smaller markets. However, such identification might actually be misleading. As pointed out by
Persaud (2002), the size itself is not a good indicator of liquidity if it is not followed by a
sufficient diversification among the traders. A large market where everyone wants to trade on
the same side cannot be considered more liquid than a small one where it is always possible to
find someone on the other side willing to trade with you. This balance in the market is ensured
by the presence of noise trader, people trading for exogenous reasons other than profiting from
under/overvalued securities. Indeed, if all the market players share the same information and
trade only with respect to under/overvalued securities, everyone would buy or sell at the same
time, making the trades impossible to be executed, thus making the market extremely illiquid
(Morawski 2008). Breadth and depth are two sides of the same coin, as in both cases investors
try to execute the trade with the minimum price impact. Immediacy refers to the time necessary
to execute a trade of a given size at a given price. The speed of the trade firstly depends of the
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type of order submitted. Market orders are generally executed immediately. When submitting
a market order, investors are willing to trade at the prevailing market conditions. This means
that the order is likely to be fast, as not particular conditions are demanded, but also likely to
be executed at inferior prices. On the other hand, with standing limit order, investors can expect
to obtain better prices on average, but more time is required. However, also the speed greatly
depends on the overall market liquidity, as in case of low-deep market, it might take time even
to execute a market order. There exists a clear trade-off between these quantities. When traders
are willing to search longer, they can expect to find better prices for a given size or better sizes
for a given price, but this comes at the cost of sacrificing immediacy. On the other hand, if they
want to trade larger sizes, they should expect lower prices, as the trade is likely to occur at a
discount price, and longer searching time. Thus, it is not possible to fast trading large quantities

at the market price. One dimension must be sacrificed in order to maximize the other two.

2.2. Origins of liquidity

Now that there is a clearer idea of what liquidity is, it is useful to try to understand where it
comes from, what are the factors that determine the level of liquidity of an asset. As defined
before, an asset is liquid provided that it can be traded quickly and without discount. This
definition implies two main things: first the possibility to find a counterparty, otherwise the
liquidation is impossible, second, the transaction should have no or little impact on the
execution price. If selling an asset is impossible, then the liquidity is zero by definition
(Morawski 2008). This is probably the worst-case scenario that all the investors fear: the will
to liquidate a position before the market moves, but the impossibility to do so. Therefore, it is
clear that what determines the liquidity are those factors ultimately affecting the duration and
execution of a trade. The factors can be clustered in three main categories: transaction costs,
trading organization and infrastructures and different asset valuations (Morawski 2008). The
role played by the first group of variables is clear. Whether those costs are more or less explicit,
they lower the liquidation value thereby reducing the trading frequency. The second group
regards the characteristics and infrastructures of the market which will ultimately affect not
only the easiness and ability to find a counterparty, but also the duration of the transactions.
Finally, also different beliefs regarding the assets will affect the liquidity, as different valuation

estimates will result in longer and more difficult transactions.
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2.2.1. Transaction costs

When discussing liquidity, transaction costs are often one of the concepts introduced at the
beginning. They represent the measurable component of liquidity and thus researchers try to
estimate them and establish a relationship with the liquidity. As mentioned earlier in this
chapter, transaction costs take a variety of forms, going from pure explicit costs, such as
commissions paid to brokers, to less explicit, like the spread, to pure implicit costs of difficult
estimation, such as the price impact and the opportunity costs. Commissions represent the
compensation paid to the brokers for a variety of services provided to the costumers, including
the search of a viable counterparty. This service is quite valuable, especially for small, private
investors, who lack of the necessary expertise or in those markets where the search for a
counterparty would be extremely costly if done on your own. In turn, this provides significant
liquidity-related benefits for the investors: first brokers have better knowledge of the market
and the actors playing in it. They can find a better counterparty faster and more cheaply that
what investors could do on their own, thus increasing the liquidation speed and decreasing the
liquidity risk. Moreover, they are better negotiators, and this can significantly improve the
resulting execution price, thus decreasing again the liquidity risks. However, commissions are
generally of less relevance compared to other transaction costs for two main reasons: they are
smaller and known upfront, hence their impact on the uncertainty of the execution price is often

quite small.

The second major type of costs include the spread and price impact. These two measures are
grouped together since, similarly to commission, they impact negatively the execution price by
lowering the revenues obtain or increasing the price paid, but differently from commission they
are not know upfront and their size depends of multiple factors, including order size, type of
market, market’s conditions. Spread and market impact affect liquidity in two different ways.
Spread is a pure cost: it forces the investor to buy higher and sell lower than what is the current
fair market value (this is because the spread represents the dealer’s profit, thus the current fair
market price is assumed to be in between Bid and Ask prices). It has a very similar effect to
commissions. Higher spread reduces the willingness to trade and the trading frequency, leading
to less market activity and thus lower market depth (Morawski 2008). Market impact, on the
other hand, affects liquidity through a different channel. As mentioned, market impact is the
result of trading huge quantities in a market which is unable to absorb such sizes without
significantly impact the execution price. In these situations, market players are afraid that those
large trades might be driven by an informational advantage and thus require some price
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concessions in order to take that risk and be the counterparty. It is clear that market impact
affects the liquidation price. Very often, investors hide their large trades by splitting them in
multiple smaller trades, hoping that their real position is not discovered and so the resulting
execution price will be better than what they would have gotten by executing the entire trade at
once. However, this comes at the cost of increasing the liquidation time and thus being subject
to unexpected market fluctuations (Morawski 2008). What is really interesting is that several
studies show that the “indirect” costs of trading share the same sources of liquidity itself, like
Keim and Madhavan (1998) demonstrated that many determinants of transaction costs (i.e.
stock-specific characteristics, returns volatility, market infrastructures, type and features of
trading orders) are also factors affecting the liquidity itself. This is why, transaction costs and
liquidity can be used as interchangeable words to describe the same concept.

The last type of transaction costs groups the opportunity costs. They represent the cost of missed
opportunities: it includes all the losses and gains that could have been avoided or obtained if,
instead of waiting and postponing, the transaction would have been completed earlier. As
rational investors want to maximize their utility, they are looking to maximize their liquidation
price. Assuming that the time of liquidation is not random but pre-determined, investors might
decide to postpone their transaction, hoping to get more favorable terms (Morawski 2008). This
search, however, results in extending the liquidation period and increasing the liquidity risk by
being exposing to market fluctuations. Of course, market fluctuations might turn out to be
positive for the investor, but anyway they represent an additional component of uncertainty.
Concluding, transactions costs, whether explicit or implicit, seem to affect liquidity in all its

dimensions.

2.2.2. Type of Market

Market infrastructures have been already mentioned multiple times has a factor affecting
liquidity. This is not surprising. The type of market, infrastructures and organization determine
the way buyers and seller are brought together, as well as the execution timing and price. Thus,
different markets result in different liquidation duration and price, therefore affecting the
liquidity overall. There are several different types of markets. The simplest ones are the direct
search market, as they require individuals to find a counterparty on their own. These markets
are quite common for real estate and commodities, but also for those financial products of

difficult standardization (i.e. credit default swaps). Liquidity is severally impaired by the market
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characteristics. Liquidation process can be extremely long as there is absolutely no
intermediation which can help to find a willing counterparty to trade with. Moreover, also the
valuation of these assets becomes more difficult, especially if they lack of comparables with an
active market. This might lead to very different valuations, resulting in even longer liquidation
process and potentially lower liquidation proceeds. It is a market where bargain power can
significantly affect the outcome of the transaction. This also means that it is possible to execute
operations at terms that would be impossible to obtain on more regulated markets. A similar
type of market is the brokered market. It is a market where investors still have to find each
other, but this function is delegated to brokers. As mentioned before, brokers are extremely
useful because they possess a set of skills which can significantly increase the liquidity in the
market. Not only they take care of bringing their clients together, they also provide a set of
corollary services, such as order management. This is particularly useful for price-sensitive
clients that can benefit from a significant reduction in the price impact, hence decreasing the
transaction costs and improving the liquidation prices. Moreover, brokers are experienced
negotiators. They know better the market and the counterparties, thus improving the quality and
the speed of the transactions, resulting in larger trading frequency and subsequently greater
liquidity in the market. A third form of market is dealer market. Dealers play a similar role to
brokers, but instead of trading on their clients’ behalf, the trade for their own account. This
means that instead of looking for a buyer for their clients that are selling, dealers will directly
buy from the clients. They act as buyers for the sellers and sellers for the buyers. In order to
stay in business, they must profit from this activity. This is achieved by offering to buy at the
Bid price and sell at a higher Ask price. This difference is indeed the spread and compensate
the dealer for offering an extreme valuable service: immediacy. Dealers trade whenever their
clients want to trade, providing thus liquidity in exchange of a compensation that takes the form
of the spread. However, the spread does not ensure that dealers will profit from buying and
selling a given securities, as they might have to buy a greater quantity than the one, they end up
selling later. If the market moves when some of those stocks are still in the dealer’s storage, he
might need to reduce his Ask price thus losing money. Dealers market are very liquid because,
assuming an investor accepts the transaction price (Bid or Ask), he can trade immediately at
that price, reducing the liquidation time close to zero (of course it then depends on the size
traded). However, the most common form of where stocks, and the majority of financial
instruments are traded, are auction-market. They main characteristics is that these markets are
centralized and organized. Buyers and sellers do not even know who the counterparty of their
trades is. They simply place their orders, in terms of price and quantity, and the exchange will
take care of matching them with someone on the other side of the market. There are different

35



auction-markets depending on how orders are executed, whether it is on a continuous basis or
at specific point in time. Execution price is then determined in accordance with the pricing
rules, which also depend on the type of market. Overall, these markets are fairly liquid.
Especially in the continuous type, as soon as an order is available on the other side of the market,
it will be matched and executed. Moreover, since investors are trading directly with other
investors, without the intermediation of dealers, transaction costs are lower, thus potentially

increasing the trading frequency and liquidity.

It is now clear that the market organization can substantially affect liquidity, primarily through
its effect on liquidation time and price. These represent the two dimensions highly affected by
the market’s characteristics. Liquidation duration is the entire process that goes from the search
of a potential counterparty to the moment when the trade is finalized. The search depends
mainly on two factors: the asset’s characteristics and trading frequency. Simpler assets, with
active market and comparables have easier valuation process, hence facilitating the negotiations
between parties. On the other hand, higher is the trading frequency, easier is to find someone
on the other side of the market (Morawski 2008). Investors in direct search market are clearly
penalized from this point of view. They bear the entire cost of search. This is partially alleviated
in brokered market, where this responsibility is shifted to the broker. From the pure counterparty
search, these two are definitely the most illiquid markets. Moreover, in these markets often non-
standardized goods are traded, making also the valuation process a little bit trickier and
increasing even more the liquidity risk. The others two markets are quite liquid from this
perspective. They basically involve little or no search at all, thus significantly increasing the
execution time. Moreover, better and more improved markets for search of a counterparty tend
to attract more investors. This leads to higher chances of finding a counterparty, higher trading
frequency and hence greater liquidity. The increasing liquidity and decreasing costs can attract
further investors, exponentializing the results and improving the liquidity beyond the simple
reduction of search costs (Morawski 2008). Regarding the liquidation price, each type of market
has it benefits. Auctions allow to trade at the current market value, thus guarantee a market
price liquidation. However, direct and brokered markets enable investors to choose their own

transaction terms, hence allowing for potential higher liquidation values (Morawski 2008).

Concluding, market organization plays a key role in determining the level of liquidity in the
market. More organized infrastructures can improve liquidity by mainly reducing the search
time and costs. Dealer markets reduce the liquidation time to zero in exchange of the payment
of the spread while auction market, on continuous basis, constantly attempt to match buy orders
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with sell orders so that, a soon as they are matched, they can be executed. However, there is
little room for improvement in terms of liquidation price. On the other hand, markets that
require the investors to directly or indirectly find their counterparty are associated with higher
transaction costs, but given that the trade is conducted privately, investor can obtain more
favorable liquidation terms, thus decreasing the liquidity risk associated with lower execution

price.

2.2.3. Diverging Valuations

The last factor that has to be taken into account is the asset valuation. The role played has
already been partially explained in the previous paragraphs. Valuation directly affects the
liquidity through its impact on the liquidation time and costs. Whenever there is some
discretionary power in deciding the transaction value, the overall duration increases as it
becomes more difficult to find a partner agreeing to your own personal valuation. Why then
these different valuations? Where do they come from? There are several possible explanations.
Among the main factors affecting different valuations there are different information set and
different expectations (Morawski 2008). Clearly, having different information concerning the
asset examined will produce different estimates. This will result in either a longer search for a
new potential partner or a review of the information currently used to make the valuation. Either
way, this is translated in longer liquidation periods. Investors also have different expectation
about the assets. This is translated in different estimates of future revenues and/or different
perception of the underlying risk. In both cases, again, the resulting valuations are likely to be
different. There is also another possible explanation that is called divergence of tastes, which
can be defined as the difference in utility attached to the same object (Morawski 2008). While
this generally the case of non-financial instruments (i.e. arts, consumption goods and so on),
there are some empirical studies supporting the theory that this phenomenon is also happening
in the financial world. Behavioral finance studies show that many investors are home biased in
their investment strategies: they tend to invest more than what they should do in companies and
stocks that are geographically closer to them. Similarly, just consider the ESG topic that is
growing fast in these past years. Investors sensitive to this topic are likely to attach more value
to companies that are actively involved in ESG operations that investors who are indifferent,

thus resulting in different valuations for the same stock.
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Concluding, also valuation plays a key role in determining the overall liquidity level. Assets
that require longer valuation and negotiation process are likely to have higher liquidity cost due
to higher risks. It should be pointed out that, precisely because negotiation power can play a
key role in the outcome, the liquidation price can turn out to be greater than what originally
forecasted. However, given that this cannot be known upfront, the overall effect is still to
increase the illiquidity level due to a greater uncertainty surrounding the timing and outcome
of liquidation.

2.3. Liquidity measures

Since investors are assumed be rational, given two securities with identical risk and return
characteristics, they should prefer the cheapest and most liquid one. Thus, in order to include
the liquidity into the decision process, a quantitative measure is required. While a broad
definition of market and asset liquidity has been provided, the literature has failed to provide a
unique empirical measure so far. As mentioned, the definition of market liquidity tackles
several dimensions which are not that easy to quantify. The market width, representing the cost
of doing a trade at a given size, is the less difficult to quantify, since it is composed by some
observable elements. Commissions, being the most explicit ones, can be easily quantified as
they are directly paid to the broker in exchange of the trading services provided, but also
represent the smallest and less relevant component. The indirect components (spread, market
impact and opportunity costs), while opaquer, often account for the largest share of the overall
cost. The importance of transaction costs greatly depends on the type of trader and portfolio
management. For a more passive trader with a buy hold strategy, market impact might be small
or irrelevant especially if the investment horizon is long. For an aggressive investor with an
active portfolio management and frequent rebalancing, market impact and, more generally, the
overall transaction costs, play an important role in determining the net performances. Overall,
transaction costs are sort of penalties that are paid whenever a trade is executed, either you trade
frequently or not. Thus, they create a trade-off between the will of rebalancing the portfolio to
keep it align as much as possible to the investment goals, and the will of minimizing the cost
of trading to increase the performances. It becomes clear why transaction costs, being strictly
related to the concept of liquidity, have to be included into the analysis. The focus of this work
will be mainly on estimates of Bid-Ask spread, market impact and other liquidity-related

measured for which the estimation requires data that can be easily retrieve for all the securities.
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There are some common measures that have been widely used for research purposes, but they
all measure different aspects of the broad definition of liquidity. A first popular group of
measures attempts to quantify the market depth, this includes: quantity available for trading at
the given quotes, the trading volume and, in particular, the turnover (Morawski 2008). More
complex measures have been developed by combing these quantities with other stock-related
variables. The trading volume is probably the simplest proxy of liquidity: it computes the
overall number of shares traded within a given time window (i.e. minutes, days, months, years)
for a given stock. Data providers often report values on a daily basis. However, by focusing on
single day trading volume, the liquidity picture of a stock is likely to be biased, as it could
reflect (high or low) unusual trading activity. That is why, a more popular liquidity measure
based on trading volume consists in averaging the daily traded volume over a period T as it

follows:

T
ADV = 2 DV,
1

Where DV is the trading volume (i.e. the number of shares traded) on the day i for a given
security. Even if from a retrospective point of view, this measure allows to better understand
the level of trading activity, smoothing the impact of unusual market activity. The Average
Daily Volume is often averaged out over 20 days, 1, 3 or 6 months. It is a widely used measure
of liquidity in practice. Increasing or decreasing level of ADV, might signal a shifting market
interest for the security, therefore signaling a bearish or bullish momentum depending on the
price’s direction. Moreover, volumes are also useful to confirm price movements. During strong
price upward or downward trends, volume should also rise. If it is not the case, there may not
be enough interest to support the price shift and price might revert back. Despite its wide
application, it also suffers from some shortcomings: trading similar amounts for different stocks
might correspond to trade significant differences in the overall float available in the market.
Indeed, a higher volume might also be due to a large availability in the market. Therefore,
companies with less stocks would appear to be less liquid on average compared to those with
more outstanding stocks. Similarly, securities with the same trading volume might appear as
equally liquid, while it might not be the case, especially when comparing Large with Mid and
Small-Cap stocks.

Such limitations can be easily overcome by relating the traded shares with the total available to
be traded in the market. This ratio is defined as the ADV over a given period 7 and the number

of outstanding shares per period on the same time window.
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ADV
# outstanding shares

Turnover =

This measure allows to correct for the biased belief that a stock is liquid simply because the
trading volume is high, while that trading volume actually accounts for a very small part of the
outstanding tradeable shares. However, even this measure is not flawless. First, similarly to the
Bid-Ask spread, such measure does not take into account the size of the trade. Second, there is
no clear relationship why larger companies, generally assumed to be more liquid, should have
larger turnover. Indeed, many evidences suggest the opposite. Large companies generally have
a huge number of outstanding and high price share. Thus, even if the volume appears to be quite
large, it might just reflect a small portion of the outstanding shares. On the other hand, small
companies have more affordable shares, which can attract more investors, thus in turn boosting
the volume traded. This is also the reason companies sometimes decide to split their shares to
keep them more affordable and thus more liquid. Finally, the total number of outstanding shares
does not fully reflect the real number of tradeable shares. To get a better picture, this measure
is sometimes corrected by multiplying the number of outstanding shares by the floating
percentage. Such measure is later used on the empirical analysis but, unfortunately, the floating
percent could not be obtained for all the securities and thus the first “raw” version of the ratio
will be used. Overall, this group of measures has wide real-world applications when evaluating
investment decisions as they are understandable, cost and time efficient and data can be
obtained directly from the exchanges or from data providers. Very often, portfolio managers
screen securities by imposing a minimum level of ADV or turnover ratio. This represent a first

“raw” implementation of liquidity concept in their portfolio optimization.

The second group of estimates are related to transaction costs. One of the earliest and most used
measure is the Bid-Ask spread. It is the first approximation of the market breadth, measured as
the distance between the Bid (price for immediate purchase from the market dealer) and Ask
price (price for immediate sell from the market dealer). It represents the cost of a round trip for
the investors, the cost of buying and selling at the same time, the same security, from the same
dealer. Such trade results in a loss for the investor as the Bid price is always equal or higher
than the Ask price. This is because the Bid price represents the cost to buy immediately the
security, thus a premium has to be paid to someone who is willing to offer this “immediacy”
service. Similarly, if the investor wants to sell immediately, he has to offer at discount in order
to compensate the buyer for the service. Thus, it is easy to understand why Bid-Ask spread is
often referred as a proxy of liquidity: it broadly measures the cost for being able to execute your

trade immediately, to transform your illiquid asset into a liquid one and vice versa. From the
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market dealer point of view the spread represents the profits for offering liquidity, in the form
of immediacy, maintaining an inventory sufficiently large to cover the different buy and sell
order size. The absolute difference, despite providing an initial measure of liquidity, is quite
problematic for one main reason: high price stocks are more likely to have also high absolute
spread, thus making any comparison between stocks meaningless. Moreover, it is an imperfect
measure of the cost too, as it represents the quoted spread from the market dealers, but trade
can also happen at prices in between these boundaries. That is why the realized effective spread
is a better measure. To make the measure meaningful, the difference is often divided by the
mid-price, estimated as the average of the Bid and Ask price. Hence, potential liquidity

measures based on the concept of spread include:

Percentage quoted spread = (Pa - Pg) / (Pa + Pg)
Log spread = In (Pa / Pg)
Effective spread = | 2Pt - (Pa + PB) |

(Gabrielsen, Marzo, Zagaglia 2011). For the purpose of this work, we will mainly focus on the
percentage quoted spread. Ideally the Bid-Ask spread should be lower for more liquid
securities. The more liquid as stocks is, the easier is to execute a trade, thus lowering the
liquidity risk and cost for immediacy. However, the spread presents also several drawbacks.
First, it can only be computed for dealer-type market, but this represent no problem for the
purpose of this work. Second, the spread does not take into account the size of the trade. It
measures the round-trip cost of a relatively small trade which has no market impact. Therefore,
large institutional traders who trade significant quantities at a time, the Bid-Ask spread alone
pictures just a partial representation of the upcoming liquidity costs. Another indirect measure
of spread was postulated by Roll in 1984. Roll’s idea consists in using a model to infer the
effective spread based on the time series properties of observed market prices and returns,
focusing on the negative autocorrelation produced by Bid-Ask bounce (Gabrielsen, Marzo,
Zagaglia 2011). This measure should be positive correlated with the actual Bid-Ask spread. His
model assumes that prices follow a random walk and the observed closing price P on day ¢ is
equal to the stock’s true value plus or minus half of the effective spread. In these circumstances
the autocovariance of returns will be negative. However, empirical evidences show that in real
markets it often appears to be positive. In such cases the Roll spread is generally set to zero in
that given month (Bedowska-Sojka, 2017). Therefore, the Roll covariance spread estimator

would take the following form:
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2% /- cov (AP, AP,_,) Whencov (AP, AP._;) <0

Roll { 0 When cov (AP;,AP;_;) =0

The implication of this measure is that the higher the negative covariance is, the more illiquid
should also be the stock. The main shortcoming of this measure is that it does not take into
account information asymmetries. To better explain it, Roll’s measure gives an estimation of
the pure processing cost, thus assuming that does not change in response to trades. This
condition, however, would ideally hold only if there were no informed traders in the market
and the quotes did not adjust to compensate for changes in inventory positions. Indeed, Huang
and Stoll’s work in 1996 shows that when estimating the Roll implied spread in the NYSE, the
resulting value is actually much lower than the effective half-spread (Gabrielsen, Marzo,

Zagaglia 2011).

What Roll’s measure is missing is the role played by information advantages when executing a
trade. This topic is particularly sensitive for investors executing large trades. Indeed, processing
large trades might signal that the investor possesses some sort of private informational
advantage and thus it is unlikely that he will be able to execute the entire order at the quoted
prices (Bid or Ask) without impacting the execution price. This effect of trading size on the
execution price is commonly known as market or price impact and represent a “shadow”
component of trading, as it cannot be estimated upfront and it is unknow until the trade is
completed. To incentivize others to trade with them, investors offer to sell at discount and buy
at premium with respect to the fair value, causing the price to move. While price impact might
be neglectable for the small investors, it constitutes a big, maybe the biggest, share of costs for
traders moving large quantities. They would end up paying much more that the half of the
quoted spread per transaction. The market or price impact is highly correlated with the liquidity
risk. When the trading size is small, the chances of finding a counterparty are higher, therefore
reducing the risk of overholding the security (holding the asset more than what desired).
However, as the size increases it gets more difficult to find willing parties to trade immediately
therefore increasing the risk of being subject to additional prices shifts due to the impossibility
of liquidating the position (at least without significantly impacting the trade execution price).
This is precisely the trade-off mentioned before: the investor can delay his liquidation thus
reducing the market impact, but this will ultimately pose new risks for the remaining portion of
the portfolio that has not been liquidated yet (Stange, Kaserer 2009). Differently from the
spread, the price impact cannot be directly observed and thus estimated. It is also hard to
measure because it is the cost of trading many shares relative to the cost of trading one share,

and you cannot run a controlled experiment and trade both many shares and one share under
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identical conditions (Grinold, Kahn 1999). It highly depends on the market conditions and
characteristics. One of the first factors affecting the price impact is probably the size of the
market itself. In small, illiquid markets, even small trades might cause price to diverge while,
in larger and more complex markets, big trades are conducted on a daily basis. The type of the
market also affects the execution price: trading the same security in a regulated exchange or
OTC can result in significantly different trading price. Thus, there have been many attempts in
proxying the price impact resulting from a given trade. A first, raw, measure of the market
impact has been introduced by Kyle (1985) and it is called Kyle’s lambda. It is derived by

regressing the stock price on the average trade size in the following way:
Pt =u + AVt

The resulting A coefficient of the OLS regression will be the approximated estimate of the
market impact. For very short period, this can be approximated as the ratio between the price

change and a measure of the volume traded, often the turnover.

|AP|
" Turnover

According to this formulation, a high liquid stock will experience a smaller price change than
a more illiquid, given the same level of turnover over a period. A second measure of market
impact has been proposed by Grinold and Kahn in 1994. This is known as sigma-root-liquidity
model and attempts to estimate the price change as a function of the spread, stock daily volatility
04, size of the trade to be conducted (Q), the average traded volume (V) and a constant factor

C.

AP = Spread + o4 * C * Q
Va

Thus, the cost of conducting a trade is a constant function of the spread and depends
proportionally on the daily volatility and the size of the trade compared to the average activity
in the market during a day window. It represents a raw measure, as it relates the market impact
only to the size of the trade, without taking into account the rate of trade as well as the stock
market capitalization. However, it represents a good and complete approximation of the trading
costs, by taking into account both a spread and market impact component, but it requires

knowing upfront the trade size.
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There is another group of estimates, called liquidity ratios, that attempts to combine turnover
and/or other measures of trading volume and returns. A first example, also known as Amivest
liquidity ratio, is defined as:

Yiapixq Ve

IRl=""7"—— = —
|7 |7

with 7, being the stock returns, p; the stock price for the i-th security and ¢, is the number of

shares traded, V; is the dollar trading volume during that day. This measure compares the traded
volume to the absolute price change during a certain period. The higher the volume, the easier
the price movement can be absorbed (Rico von Wyss 2004). Amihud (2002) proposed a similar
measure, which became quite popular in the literature. Instead of measuring the degree of
liquidity, Amihud proposed a measure of illiquidity by reverting the parameters in the Amivest
ratio. He defined the illiquidity parameter, /LLIQ, as the average ratio between the stock return
to its dollar trading volume in any given period (7 trading days during the selected window),
where the dollar trading volume is the cumulative number of shares traded during the day times

the trading price:
ILLIQ = 37 1
THt=1y

Amihud measure has been proved to be a good proxy for the theoretical price impact coefficient
lambda discovered by Kyle. The disadvantage of this illiquidity measure is that this is not well
suited for comparison between different markets and securities (Corwin, Schultz 2012).
However, given the focus of the analysis on European incorporated stocks, this should not
represent much of a problem. It should also be pointed out that despite its attractiveness, the
Amihud measure of illiquidity as little meaning as a stand-alone variable. Most of the time, this

measure is used to make liquidity comparisons between the different asset analyzed.

Ranaldo (2000) proposes another version of a liquidity ratio:

Vi

IR=—-t———
(Ne _No)*rt

where the traded volume V4 is corrected for the free float of the firm. The term (N — N,) denotes
the difference between total number of shares outstanding and the number of shares owned by
the firm (Rico von Wyss, 2004). The main shortcoming of these measures is that they are all

sensitive to the stock price.
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Brunner (1996) overcame this problem by dividing the stock return by the number of trades V..

T
LRZ — Zt:l |T|’
t
Similarly, to Amihud measure, a higher ratio shows lower liquidity. If the number of trades for
certain time space is zero, this liquidity ratio would converge to infinite. The great advantage
of these measures is that they can be easily computed, even with a spreadsheet, as they simply

require daily values for stock returns, shares outstanding and trading volume.

The last measure that is worthy to mention is derived from option theory. As previously
describe, liquidity can be defined as the ability to sell or buy whenever needed, without
significantly impact the trading value. Longstaff associated this ability to sell at the chosen time
to a put option and, thus, the value of liquidity can be potentially estimated using option pricing
theory (Dyl, Jiang 2008). He basically determined the illiquidity as the opportunity cost and the
associated loss in the asset value due to the impossibility to sell it a fashionable way. Longstaff
based is model on a frictionless world, where an investor with perfect timing sells the risky
asset and invest the proceeds into a riskless security to maximize the portfolio value. If then the
investor is unable to sell the asset for a given time 7, the optimal trade is no longer possible and
thus the portfolio value declines. Longstaff’s model measures the portfolio loss due to the

impossibility to trade to trade the asset during the illiquid period T as follows:

Discount = (2 + ?) [N(d)] + \/% * exp (_(;ZT) -1

Where o represents the annualized daily return standard deviation, T the estimated illiquidity

period for the selected security and N(d) is probability that a standardized, normally distributed,

2
random variable is greater or less than d, with d being /‘IZ—T . This model calculates the potential

discount for the absence of liquidity that can occur in a market with rational investors with daily
returns volatility being o and the period of illiquidity is T days. Concluding, the model shows
that the cost of illiquidity per unit of time is a function of the volatility, and the total percentage
discount depends on both the cost per unit of time and the length of this “illiquidity period”
where the stocks cannot be traded (Dyl, Jiang 2008). As many other measures, however, it has
some shortcomings. First, as many other economics models, are based on a frictionless world,
with perfectly rational investors. Moreover, it might have little meaning from a practical point
of view as it would require knowing upfront the illiquidity period T, which is unlikely to be the

case, and it also requires significant computations.

45



All these measures are computed on a stock level, thus refer to a single asset. However,
investors managed several different positions at a time. Therefore, it might be interesting to
take a look at the overall portfolio’s liquidity level. Indeed, when looking at the portfolio as a
whole, the picture changes, as some sort of diversification can be achieved to reduce the
liquidity risk. While portfolio managers are not willing to bet everything on a high illiquid
stock, they might accept to invest in more illiquid securities, knowing that in case of
emergencies, they can cover that position or convert in cash part of the remaining portfolio.
Hence, instead of focusing on a single asset, it may be more interesting to focus on the aggregate
level of liquidity, as we focus on the aggregate level of risk and return. However, here the
literature is not particularly extended, and finding a solution is a little bit tricky. Indeed, there
is no clear explanation on how to combine liquidity measure across different assets. Surely, the
easiest way would be to linearly aggregate them as it is done with the portfolio return. However,
as returns correlate, also liquidity can correlate. Different asset classes might have different
aggregate level of liquidity. In period of financial recession, safer investments attract more
capital, thus liquidity might shift from the stock market to the sovereign bond market, making

the liquidation of multi-asset portfolio easier.

Concluding, there are many different measures of liquidity, depending on which aspect of
liquidity there is a focus on. Some of them are simpler, based on the trades that are really
happening on the market (volume, spread). Others are more complex, try to give an explanation
and estimation to why the resulting trading costs sometimes diverge so much from the quoted
spread. It is thus clear that the absence of a unique definition of liquidity makes also difficult to
establish a unique measure thereby giving the investor the arbitrary power to determine what is

liquid and what is not.
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3. Mean — Variance — Liquidity Optimization

As mentioned, liquidity has been hardly treated in the mean-variance framework. However,
portfolio managers attempting at maximizing the performances of their portfolios are somewhat
limited by what they need or want to do and the ease at which they can do it. Therefore, they
are sensitive to the three main dimensions of liquidity: price, timing and quantity. If they cannot
invest in perfectly liquid assets, they need to give up one or more dimensions, and this will
impose costs on their portfolios, which will ultimately affect their investment decisions
(Hodrick, Moulton 2009). But the introduction of liquidity parameters into the optimization
poses some challenges, mostly deriving by the lack of a unique definition and measure capable
of summarizing the liquidity in all its dimensions. Hence, the first question is clearly which
liquidity measures should be chosen? Should we use only explicit transaction cost measures,
which can be determined and estimated with higher accuracy? This is often the best proxy for
the liquidity chosen in the literature. However, this solution would ignore the hidden costs from
trading large quantity. Estimating market impact is quite difficult and often requires knowing
the size you want to trade, which is not the case of this research paper. Therefore, the very first
step is the choice of the liquidity parameters to use, and it is already challenging. Secondly,
how should they be combined into the optimization problem? One possible solution would be
to model them as a linear function of the portfolio weights, in the same way portfolio returns
are calculated. This, however, introduces additional questions. The mean-variance optimization
is a universal model, in the sense that it can be applied to any portfolio, regardless its size. Thus,
the portfolio weights resulting from the optimization process are in relative terms (percentages),
not in absolute (real units). In order to know how much an investor would really need to buy or
sell, it is first required knowing the size of the overall investment. As mentioned before, the
price impact depends on the quantity trade, which cannot be really captured by portfolio weights

expressed in percentages.

This chapter will describe the methodology implemented in the empirical analysis focusing on
two main parts: a static analysis, where liquidity is included into the optimization process in
order to replicate Markowitz’s frontier in a 3-dimensional space. Thus, the frontier shapeshifts
from a simple line to a surface, representing a 3-way trade-off between volatility, return and
liquidity. The second part is focused on a more active approach. The attempt is to investigate
whether portfolios with different required minimum level of liquidity would perform differently
over time and whether there is an illiquidity premium to profit from. Data implemented and

results are then presented in Chapter 4.
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3.1. Static Analysis: Mean-Variance-Liquidity Frontier

There are very few research papers that investigate this topic. One of the most famous is a paper
published by some professors from the MIT called: /¢t’s 11 pm—do you know where your
liquidity is? The mean-variance-liquidity frontier. In their paper, they try to build this 3-
dimensional surface using three different approaches: a liquidity filtered surface, a liquidity
constrained surface and a surface derived from a direct maximization of the utility function,
including now a liquidity parameter. They applied all these approaches to a basket of 50 US
stocks randomly selected. For the purpose of this work, it has been decided to implement a
similar liquidity constrained approach. This seems the most reasonable approach. Indeed, from
a practical point of view, liquidity is often implemented as a sort of filter, by focusing on
securities with an historical minimum level of trading volume (ADV). From a static point of
view (buy and hold portfolio), this approach is totally feasible. However, since this analysis is
also developed from an active management perspective with monthly rebalancing, introducing
such a filter could cause some issues. In particular, since this approach would exclude from the
portfolio selection all those stocks with a level of liquidity below the one required, the turnover
can be extremely high, as investors would be forced to completely liquidate their position on
those securities, even if the security’s level of liquidity is extremely close but still smaller than
the threshold. Moreover, as the trading volume of a security drops below the minimum level,
the investor would face unexpected liquidation precisely when liquidity is draining up, thus
increasing the liquidity risk and costs. Thus, from an active management perspective, with
frequent rebalancing, implementing this strategy can results in huge transaction costs and
significant potential losses due to unexpected early liquidations. Such criteria are, however,
often used in passive management strategies, as they require low effort, they are cost and time
efficient and the low frequency of the rebalancing ensure no extreme transaction costs. On the
other hand, implementing a direct utility optimization seems rather complicated. Literature
shows that is already quite difficult to determine the individuals risk aversion, with empirical
results being far from what theorical models predict. Introducing the liquidity in the direct
optimization would require determining the risk aversion to illiquidity, for which no estimation
method currently exists. Concluding, imposing liquidity as additional constraint in the
optimization process seems the most feasible and appropriate approach for the purpose of this

analysis.

Initially we will focus on a portfolio where short selling is not allowed. There are several

reasons behind this choice. From a practical point of view, first, the liquidity constraint is easier
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to implement when all weights are positive. This is because liquidity parameter can be linearly
combined as returns are. With negative weights, the model gets more complicated, as short sold
securities would decrease the overall portfolio liquidity. This could still be easily solved by
taking the absolute value of the weights or by standardizing them. Anyway, this requires the
introduction of a nonlinear constraint in the optimization process, which would no longer
guarantee the convexity of the problem, and thus the existence of a unique global minimum
solution. Despite this shortcoming, a portfolio with short selling will be analyzed, as short
selling is universally allowed, and many investors pursue long-short portfolios. However,
despite being allowed, short selling is often difficult, especially for private investors as well as
institutional investors. Indeed, many of the latter face regulatory constraint preventing them
from short selling securities (clear example is pension funds). Since it is unlikely that
transaction costs are going to heavily affect the decision of the small portfolio manager, it makes
sense to first consider a case closer to real world applications. Moreover, with the recent huge
migration from active to passive, less and less investment portfolios are including short selling
positions. For the reasons here announced, it seems more correct to first focus on a portfolio

with these characteristics.

Based on these criteria, we developed a 3-dimensional surface, which shows risk (portfolio
standard deviation) on the x-axis, portfolio return on the y-axis and portfolio illiquidity on the
z-axis. It was opted to focus on illiquidity rather than liquidity, because many parameters
directly estimate the illiquidity (transaction costs) first as described in the previous chapter (i.e.
Spread, Amihud, pure price impact measures). This surface was developed in the same way
Markowitz originally developed the efficient frontier. By varying the target illiquidity and
return parameter, we calculated the portfolio with the minimum variance satisfying those
criteria. Therefore the “Mean-Variance-Liquidity Surface” was obtained by solving the

following optimization problem:

min,, w'Q w

w'r =

. w'e=1
subject to w; =0
w'l=1,

Where | represents the asset’s specific liquidity level and L, represent the target portfolio
liquidity. The asset’s specific level of liquidity has been determined by combining the security

specific mid-price Bid-Ask spread and the Amihud measure of illiquidity. This choice is
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motivated by the fact that, first, both the measures can be easily obtained and calculated.
Especially for Small-Cap securities the data are fragmented and hard to retrieve. Thus, the need
to use measures that do not rely on too many parameters and are also of common use. Moreover,
combining them, it allows to take into account for both explicit and implicit costs (at least
partially). Indeed, the spread is a well know liquidity measure that portfolio managers try to
account for when optimizing their portfolio, and Amihud measure of illiquidity, despite not
having a real meaning when taken as a stand-alone measure, is useful to compare securities
with different level of liquidity. The greater this combined liquidity parameter is, the lower is
the liquidity of the stock. Then, each portfolio on the surface will satisfy a target level of return

and liquidity, by minimizing the risk.

Subsequently, the same analysis is computed on a portfolio where short selling is allowed. It
seems interesting to also analyze this case since short selling is a common practice in today’s
finance. The original Markowitz’s optimization problem was completely boundless. However,
such approach seems extremely inappropriate due to real world limitations. As it is shown later,
without any bound, portfolios might take positions exceeding the unit, which is clearly not
feasible. However, from the purpose of a pure static analysis, it has been opted to first introduce
loose bounds, as the time window is extremely long and an eventual buy and hold portfolio
over that time period would be at least more feasible than in the case with periodic rebalancing.
As mentioned, allowing short positions however introduces some issues from the optimization
point of view. The process now requires nonlinear constraint to handle the negative weights.
Without that, a simple linear combination would make no sense as negative positions in high
liquid securities would actually decrease the overall portfolio liquidity. To overcome this
problem, liquidity parameters have been linearly combined with the absolute value of the
weights. This approach guarantees that taking a long or a short position on an equally liquid
security, would also equally impact on the overall portfolio liquidity. This is of course a rough
approximation, as short positions are generally more difficult to establish, therefore the level of
liquidity would not probably be the same. The optimization problem then takes the following
form:

min,, ©'Qw

w'r =y
w'e=1
abs(w)'l =L,
w; = —1and w; < +1

subject to
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All the parameters have been calculated in the same way as before. For each optimization
method the 3-dimensional Mean-Variance-Liquidity surface was plotted, alongside with each
efficient frontier at the different liquidity threshold L. Particular attention is paid to two specific
portfolios with peculiar characteristics: the Global Minimum Variance (here and in after called
GMV) and the Maximum Sharpe (here and in after call TAN). For each GMV and TAN, the
resulting portfolio composition has been investigated, with a focus on the allocation across
different market capitalization classes (Large, Mid and Small) and how these evolve in
portfolios with different level of liquidity. Finally, the gross and net return as well as Sharpe
ratio’s evolution was analyzed for the GMV and TAN at the different levels of liquidity. The
net returns have been calculated as the difference between the average gross return and the
average Bid-Ask mid-price spread over the same time window, as calculated in chapter 4.

3.2. Active Analysis: Rolling analysis with minimum liquidity

requirements

From an active approach point of view, this research tries to investigate whether imposing
minimum level of liquidity when rebalancing the portfolio affects the portfolio profile, in terms
of risk, return, turnover and weights allocation. Similar to what done in the static analysis, the
focus will be on two different optimization approaches, one where short selling is not allowed,
and one where it is, but upper and lower bounds at a security level are introduced. In both case
a monthly rebalancing approach has been applied. At each rebalancing date, historical values
are used to determine the next month portfolio composition. The active approach will be
focused exclusively on the GMV and TAN. This choice is motivated by the fact that, first, these
two portfolios are the most peculiar across the ones along the frontier. Since this research is
generalized to all the type of inventors and there is no explicit risk aversion preference, it makes
sense to pick the portfolios with peculiar characteristics. Secondly, these rolling optimizations
require a lot of computational power, therefore focusing just on those allows to keep the code
lighter and faster. The focus will be on four different portfolios, each of one needs to satisfy a
target level of liquidity. Therefore, at the beginning of each month, the following optimization

jpprocesses are run:
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GMV TAN

min,, w'Q w w'r
max,,
w'Qw
w'r =, w'r =y
subject to (2)52:01 subject to (Z)ie2201
(l),l = ILLl (l),l > ILLL

Where ILL; represents the asset’s specific liquidity measure. ILL; is the i-th liquidity threshold
parameter as defined in chapter 4. From an active perspective it seems more reasonable to
introduce an inequality constraint rather an equality for the liquidity as in the static analysis.
The main reason explaining this choice is that, as shown in chapter 4, less liquid securities tend
also to have larger standard deviation. Therefore, if the inequality sign was the other way
around, the portfolios resulting from the rebalancing would almost be the same. Hence, the
introduction of a minimum level of illiquidity to satisfy, while minimizing the illiquidity.
Similar approach in case for the portfolio without short selling constraint. As mentioned before,
such portfolio was bounded at an asset level so that no single position can exceed the upper and
lower bound. However, differently from the static analysis, it was opted to tighten these bounds
to 50%. This is because the active approach involves now a quite frequent rebalancing, and
previous bounds are likely to lead to an enormous turnover. It should be pointed out that 50%
still represent a quite high level compared to real world applications, and it would probably
require quite strong risk lover features to be achieved. However, since originally Markowitz’s
optimization was completely boundless and there is no investor’s profile model leading this
analysis, the choice would be anyway arbitrary. Thus, the optimization problem solved at each

rebalancing date is the following:

GMV TAN
min, 0'Qw T w'r
Y Vo' Qw
w'r = w'r =,
subject to we=1 subject to we=1
w'l = ILLl w'l = ILLL
w; = —05and w; < +0.5 w; = —05and w; < +0.5

ILL; is calculated in the same way as in the previous case but is based on the unconstrained
portfolio characteristics. For each optimization method and level of liquidity the gross and net
returns are calculated. These are then used to value the portfolio performances based on a series
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of risk-reward measures. These measures include the followings: Sharpe, Sortino and Treynor
ratio, Value-at-Risk, Expected Shortfall, Calmar and Sterling ratio based on the drawdown
sequence and the Farinelli-Tibiletti ratio. The Sharpe ratio is the traditional risk-reward
measure. It shows the amount of return per unit of risk taken, where the risk is proxied by the
portfolio returns volatility. It takes the form previously shown in the optimization process.
Sharpe ratio, despite is wide application, is often criticized because based on the total volatility
as measure of risk. However, the volatility in positive returns is of smaller concern than the
volatility of negative return, which could represent a better proxy for the risk. The Sortino ratio
overcome this bias, by relating returns with unit of downside volatility, defined as the standard
deviation of only the negative returns. Sortino takes the following form:
Ry

Jvar(R, <0)

Sortino =

Another risk-reward widely used is the Treynor ratio. Differently from the previous two,
Treynor does not relate the returns to the volatility, but rather to the systematic risk of the
portfolio expressed by the portfolio beta ,,. This risk measure is defined as the sensitiveness

of portfolio returns to movements in the market and Treynor is the following ratio.

Ry
Treynor = —

By

The portfolio beta will be calculated proxying the market with the referring benchmark from
which the universe used in this analysis is extrapolated. It represents an appropriate choice since
the benchmark is the EuroStoxx 600 basically approximate the entire European float-market
capitalization. The next measures involve more complex definition of risk that go beyond the
simple portfolio returns volatility. The first is the Value-at-Risk ratio, which is a risk-reward
measure derived from the concept of Value-at-Risk (VaR). The VaR estimates, given a certain
level of probability, what is the expected loss for a particular investment. Given a portfolio, a
time horizon, and probability g, VaR(q) can be defined informally as the maximum possible
loss that can occur during that time window and after we exclude all worse outcomes whose

probability is lower than q (Fabozzi 2011).

VaR il
ar (q) = quantile(R,, q)

In the following analysis the threshold probability g has been set to 5% (often used in real world
applications). Thus, the VaR calculates the maximum possible loss occurring with a probability
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of 5% based on the portfolio returns distribution. The greater is the potential loss, the lower will
be the ratio and thus worse will be the portfolio. The next measure is based on the Expected
Shortfall. The Expected Shortfall, also known as Conditional Value at Risk (CVaR), is highly
correlated with the VaR. Given again a probability g, instead of calculating the possible loss in
the investment, it calculates the expected portfolio return in the worst q% cases. It represents a
sort of conservative way to estimate portfolio returns by focusing only on “negative” scenarios.
The Expected Shortfall is considered a more useful risk measure than VVaR because it is more
coherent and gives a better idea of risk. It is calculated for a given quantile-level g and measures
the expected value of portfolio returns, given that the VaR at level g has been exceeded (Fabozzi
2011). This calculation is simplified as it follows:
Ry

CVaR =
(@) mean(R, < quantile(R,,q))

Safer investments like Large-Cap stocks rarely exceed VaR by a significant amount. On the
other hand, more volatile asset classes, like Small-Cap or stocks from emerging markets can
have CVaRs much larger than their VaRs. Ideally, investors are looking for small CVaRs.
However, very often, the investments with the most upside potential have large CVaRs (Fabozzi
2011).

The next two measures are based on the drawdown sequence and are the Calmar and Sterling
ratio. First, it is necessary to introduce the concept of Drawdown. The Drawdown is a measure
that focuses on the losses and their recovery in a recursive way. It basically refers to the
portfolio loss from the previous peak before the portfolio recovers to a new peak. Therefore, it
can be analyzed in two different dimensions: magnitude, how large was the loss before the
recovery, and time, how long before the total recovery (Fabozzi 2011). This means that a
drawdown is official recorded only when the portfolio goes above the previous peak. The
drawdown became really popular as investors tend to focus just on gain and loss with respect
to their purchase prices, without taking into account the drop from a peak arising after the
acquisition. However, also that represents a sort of loss (more like missing profits) on the
investment thereby worthy of being taken into account. This also means that the drawdown
might not be equal to the loss if the security was sold when it plummeted. Investors are, of
course, interested in finding securities with the lowest possible drawdown, as it means that,
historically, the “negative” price shifts were quite small. Based on the maximum drawdown

(the largest movement from a peak to a low point before its recovery) is the Calmar Ratio.
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Calmar = L
max (DD)

However, this ratio might be biased by a single large drawdown, while the average or the
following ones are actually quite small. The Sterling ratio partially solves this bias by taking
the ratio of the returns over the average of the k-largest drawdown sequences, which has been
set to five in the empirical analysis. Sterling then takes the following form:

Ry
mean(Maxz(DD))

Calmar =

The last measure implemented is the Farinelli-Tibiletti ratio. This ratio divides positive and
negative volatility, as well as, big return shifts from small return shifts with respect to a
predetermined threshold. The ratio takes the following form:

_E[((Ry — )P

FT = -
E[(Ry — 1) )4

Where r represents the threshold chosen and p > 0 and g > 0. For the purpose of our analysis
the threshold has been set naively to zero. It is clear that the smaller p and g are, greater is a
given power, greater will be the weight attached to that particular tail of distribution (i.e. smaller
p, greater is the weight attached to extreme positive returns, thereby supporting riskier

investments) (Rachev, Stoyanov, Fabozzi 2008).
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4. Mean-Variance-Liquidity Empirical Analysis on the EuroStoxx
600 constituents from 1999 to 2019

In the following chapter the results of the empirical analysis will be reported and examined.
The entire analysis has been conducted using the software MATLAB® and the data provider
Eikon Thomson Reuters®. Table values have been rounded at the fifth digit after the decimal

point.

4.1, Starting Universe and Data Used

The empirical study is based on an initial universe composed by all the current constituents of
the EuroStoxx 600 index (as of May 2019). This index is provided by the STOXX® Ltd and
aims at replicating the performances of the European Union economy. It has a fixed number of
components, comprising Large, Mid and Small-Cap stocks, representing approximately 90% of
the free-float market capitalization of the European stock market. It includes stocks from all the
major European countries, such as UK (which accounts alone for roughly 27% of the index),
France, Germany and Switzerland (each accounting for roughly 15% of the index), as well as
Austria, Italia, Sweden, Spain and many more (STOXX® Index Methodology Guide, 2020).
Such index has been specifically chosen for its composition since, differently from the
EuroStoxx 50, it also includes many Small and Mid-Cap stocks, which allows to better
investigate the potential effects of liquidity in the portfolio construction. For each constituent,
the closing prices have been downloaded starting from 1989, with a daily frequency, using the
data provider Reuters. Since the time history starts before the introduction of the common
currency euro, each stock has its original currency. This includes stocks in the following
currencies: Norwegian Krona, Swedish Krona, Danish Krona Polish Zloty and Swiss Franco
and UK pound. For the sake of simplicity, it has been assumed a perfect hedge situation, so that
prices can be easily converted to Euro denominated values by adjusting the daily prices for the
daily exchange rate. Unfortunately, Reuters does not own exchange rate data before the
31/12/1998, thus the constituents’ time-series have been resized to start from the first date when
all the exchange rates are available. Furthermore, for the same constituents, it was downloaded
also the Bid and Ask prices, the security market value, the turnover by volume and the number
of shares outstanding. For portfolio performances analysis also the EuroStoxx600 levels have

been downloaded during the same time window. Given the enormous amount of data, and in
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order to avoid an excessive portfolio rebalancing in the subsequent analysis, data has been
converted on a monthly basis. Monthly returns have been calculated has the ratio between
previous month last business day closing price and the current month last business day closing
price. Shares outstanding, turnover and market values data, on the other hand, have been simply
averaged out on the same time interval. Bid and Ask prices have been used to calculate the Bid-
Ask spread percentage, with respect to the security mid-price, has describe in Chapter 2. Such
measure was then averaged in the same way the others were. The turnover volume has also
been converted to the turnover volume percentage as described in Chapter 2, by taking the ratio
between the average turnover volume on a given month and the average number of outstanding
shares over the same month. Unfortunately, Reuters provides the common shares outstanding
based on annual reports, therefore the number for outstanding shares are hardly changing during
the year. In addition to turnover volume percentage and Bid-Ask spread, the liquidity of a
security has also been proxied by the daily Amihud illiquidity measure described in the previous
chapters. Such measure has been chosen for several reasons: first, it can be easily calculated
with the data Reuters provides. It requires nothing more than turnover values and prices, thus
allowing to obtain enough data for such a big universe. Second, as mentioned in the previous
chapters, it approximates the market impact for a given securities, which cannot be fully

captured by turnover and spread.

To better investigate the liquidity characteristics and its possible impacts on the mean-variance
framework, securities have been classified in Large, Mid and Small-Cap, following the
EuroStoxx 600 index guideline classification, but simplifying it by removing the buffers
conditions and rounding the thresholds. Specifically, securities have been classified as it follows

(based on their average monthly Market Value):

- Large-Cap account for 70% of the index;
- Mid-Cap account for 20% of the index;

- Small-Cap account for the remaining 10% of the index.

Such classification has been kept constant for entire analysis. The estimation methodology
chosen for the static analysis is a combination of sample and exponentially moving mean.
Specifically, the sample mean has been taken for the first 10 years (120 observations) and, after
that, a weight of 2.00% has been assigned to each new monthly observation. This approach has
the advantage of allowing us to track the evolution of the company over time, giving more

weights to more recent events. Moreover, since the variables have been converted to a monthly
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basis, applying a pure exponentially smoothing approach would result in misrepresenting the
data, as there would be a huge focus only on the very recent past. Unfortunately, for some
securities there are less than ten years of data available, either due to lack of information by
Reuters or because they got listed and became eligible for the index later. Thus, for those
securities, parameters would be calculated using a pure smoothing approach. This also explain
the choice of a very small smoothing factor. However, it should be pointed out that those
securities, due to their limited data availability, are unlikely to be eligible for the final universe,
therefore the results should not be biased. For these reasons, the proposed approached is

considered to be the best solution for the analysis.

Given the huge amount of data involved in a universe of 600 securities, for a time spawn of
over 20 years, it was opted to reduce the initial universe to a more appropriate one, consisting
in 100 securities. However, in order to keep the final universe as close as possible to the original
composition, some adjustments have been made. In particular, we aimed at keeping the same
Large, Mid, Small-Cap ratio existing in the EuroStoxx 600. Concluding, the analysis that
follows will be carried out on a portfolio of 100 securities, 10 Small-Cap, 20 Mid-Cap and 70
Large-Cap. To avoid possible bias due to a driven stock specific selection towards more or less
liquid securities, a random simulation of 1000 portfolios has been run, and one of the resulting
compositions has been chosen completely randomly.

4.2. Initial Descriptive analysis

The initial universe price evolution over the 20 years’ time window is the following (the
“outlier” stock is CHOCOLADEFABRIKEN LINDT, whose prices in is currently above
80,000.00 Euro).
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(Figure 5. Price evolution of the EuroStoxx 600 constituents, time window 1999-2019)

In order to make the results more understandable, all the stocks have been organized according
to their Market Cap classification, so that the first presented are always Small-Cap, then there
are Mid and Large-Cap. Initially, it is provided a brief descriptive analysis summarizing returns,
standard deviation, minimum and maximum return, skewness, kurtosis and spread. The tables
are reported in the Appendix at the end of the chapter. Results are already quite interesting.
Over the past 20 years, it seems that Market Cap classes have had specific characteristics. In
particular, it can be noticed that Small-Cap, which on average have a larger spread, are
associated with higher average returns but also higher standard deviation. On the other hand,
Large-Cap stocks tend to have much lower spread, less risk but also lower average returns. This
seems to initially suggest some sort of illiquidity premium across the stocks (at least in the long
run), as more illiquidity stocks appear to guarantee larger returns to compensate for both the
higher volatility and liquidity risk. The following table shows the described situation, with

values representing the sample mean of the variables over the entire time window.

BucketSize Return St _Dev Sharpe Ratio Spread
'Small Cap' 1.57466 10.35091 0.155 0.67257
'Mid Cap' 1.15616 9.38921 0.12846 0.50957
'Large Cap' 0.87734 8.75771 0.10524 0.31559

(Figure 6. Sample average descriptive statistics of the universe)
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Further, the initial universe’s liquidity has been investigated using some of the measures
describe previously, including spread, turnover, market value and Amihud measure of
illiquidity. The results are somewhat expected. First, it can be noticed that the spread, on
average, tends to decline as the Market Cap increases. Such relationship has been established
and widely proven in several studies. Far more interesting is the Amihud measure of illiquidity.
Even if with some exceptions, it seems that such measure tends to be higher in low capitalized
compared to high capitalized securities. This seems to indicate that not only low capitalized
stocks are more “costly” due to a higher spread, but also, they tend to have a lower trading
volume, which in turns tends to increase the expensiveness of such stocks even more following
the impact of potential trades. Finally, the last measure presented is the turnover which, quite
surprisingly, is larger for Small and Mid-Cap than for Large-Cap stocks. This might be due to
Small-Cap stocks having less shares outstanding (almost 10 time less), thus the impact of
similar trades would result in larger turnover for Small-Cap. Another possible explanation is
that Small-Cap stocks tend to have less history than Large-Cap. Therefore, larger value would
be attributed to those Small-Cap compared to the Large-Cap, which have been through more
economics cycles. Indeed, by taking sample mean values, Large-Cap stocks appear to have
larger turnover than Mid and Small-Cap. Moreover, if we look at the dollar value of the
turnover, this is much larger for Large-Cap stock compared to Small-Cap. To further investigate
into the liquidity characteristics, correlations among the previously described variables have
been analyzed. Firstly, as mentioned above, the correlation between spread and turnover does
not have a specific direction, as sometimes stocks with higher spread tend to have also higher
turnover. This association seems particularly more frequent among Mid and Large than Small-
Cap stocks, for which, on the other hand, the majority shows negative correlations. This is might
be due to the fact that Small-Cap stocks tend to be much costlier, in several different ways, than
the other stocks. Therefore, a further increase in the spread would significantly impact the trades
people are willing to undertake. On the other hand, for Mid and Large-Cap stocks the market
impact might be smaller and thus, even if there is an increase in the spread, it will not affect
much the turnover. Furthermore, the correlations between spread and market value and between
spread and Amihud illiquidity show a precise direction. In particular, the correlation between
spread and Market Cap appears to be strongly negative for all the stock classes, confirming
once more that the higher the Market Cap is, the lower spread tend to be. Even more interesting
for the purpose of this analysis is the correlation between spread and Amihud illiquidity
measure. This correlation seems to be positive and very strong among all the stocks classes.
This suggest that stocks with higher spread are not only costlier in terms of pure explicit
transaction costs, but, apparently, they tend to be associated with also higher average market
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impact. For these reasons, the liquidity constraints set in the following analysis will be a
combination of the mid-price spread percentage and Amihud measure of illiquidity. The aim is
to try to take into account explicit transaction costs, proxied by the spread, and more implicit
transaction costs, proxied by the Amihud measure of illiquidity. As mentioned earlier, these

results are based on the entire initial universe (EuroStoxx600).
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(Figure 7. Correlation across the different liquidity measures, divided by Market Cap class)

The randomly chosen final universe, however, shares the same similarities, therefore ensuring
that the results obtained are not entirely biased and can be generalized to the entire population.
It can be noticed that when taking securities with sufficient data, for all the stock classes, Large-

Cap appears to have a larger turnover than Small and Mid-Cap, even if slightly.
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(Figure 8. Liquidity characteristics of the assets constituting resulting portfolio universe)
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BucketSize Spread Turnover Amihud Illiquidity

'Small Cap' 0.23794 0.28314 0.00069
'Mid Cap' 0.16662 0.32419 0.00025
'Large Cap' 0.11942 0.32857 8e-05

(Figure 9. Average liquidity characteristics per Market Cap class)

4.3. Mean-Variance Portfolio

The first step is the investigation of the mean-variance framework. To do so we run several
optimizations using MATLAB and, providing as input the mean returns and variance,
calculated using the previously described methodology, of the final universe for the entire time
window (1999-2019). Initially, no further constraint has been set so that both long and short
positions are allowed. As it can evinced by the following picture, Markowitz’s idea was correct,
as by combining the securities in a specific way is possible to obtain better risk-return profiles

than by investing in the single securities.

@ Efficient Frontier with all Universe Assets (Time Window: 1999-2019)

— EF

°
TAN
* W

(Figure 10. Efficient Frontier based on the final universe composition)

In particular, over the past 20 years, the GMV would have outperformed or at least performed
as good as roughly 30% of the final universe of stocks, but with a lot less risk. However, even
with a naive approach such as equal weighting (black dot on the above graph), the portfolio
would have outperformed many securities and performed almost as good as the GMV,
highlighting another Markowitz drawback and calling some questions about the usefulness of

all these computations. As mentioned in chapter 3, much of the subsequent analysis is focused

63



on the GMV and TAN. The following chart shows the resulting composition for both the

portfolios.
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(Figure 11. Comparison of GMV and TAN Unconstrained and assets’ relative liquidity

measures)

As it can be noticed, this chart shows some of the mean-variance framework’s drawbacks

previously discussed. According to the optimization results, the investors are required to take

several large long and short positions in single assets. While this phenomenon is partially

alleviated in the GMV (even if for security n° 6, COFINIMMO the optimal weight is around

35%), the TAN shows multiple extreme positions, with weights ranging from -70% to +70%.

Furthermore, some of those extreme positions are on assets which appear to have higher

illiquidity costs than the others. In particular, the TAN requires to allocate a significant amount

of funds across some of the Small and Mid-Cap stocks with the highest Bid-Ask spread and
Amihud measure of illiquidity. Overall, both TAN and GMV would reflect the starting

universe, with similar proportions invested in Small, Mid and Large-Cap.

BucketSize GMV_Unconstrained TAN_Unconstrained
'Small Cap' 0.159 0.12082
'Mid Cap' 0.14776 0.11586
'Large Cap' 0.69324 0.76332

(Figure 12. Weights distribution across the different Market Cap classes for an

Unconstrained portfolio)

Quite surprisingly is that the GMV invests slightly more in the Small-Cap class than what the

TAN does. Concluding, this first results already show that while from a mathematical point of
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view there is a set of unique solutions dominating the other, not necessarily such solutions can
be implemented, due to real world limitations. Even if it was feasible to replicate such
portfolios, it might get extremely costly, with a significant impact on the final performances.

The same analysis has been conducted including a no-short selling constraint so that short
positions are not allowed. As expected, the efficient frontier is lower than in the case of short
selling, as less combinations are now available. Interesting is the GMV and TAN composition
compared to the first, boundless, optimizations. Including the no-short selling constraint limits
the level of diversification as expected, but it does not completely solve the problems listed
before. The GMV’s level of diversification is extremely reduce as it is now investing in 21
securities, with 4 securities accounting for 2/3 of the overall portfolio. Moreover, almost 1/3 of
the funds is allocated to a Small-Cap stock with a significant degree of illiquidity, as it has the
3 largest spread and the 7 largest Amihud illiquidity measure. Regarding the TAN, it also
has quite significant concentration in few, low liquid securities, even across Large-Cap.
Furthermore, introducing the no-short selling constraint extremized the Market Cap class
allocation, with both GMV and TAN investing roughly the same proportion in Small and Large-
Cap (35% Small 60-65% Large), with a minimum investment or no investment at all in Mid-

Cap stocks.
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(Figure 13. Comparison of GMV and TAN Constrained and assets’ relative liquidity

measures)
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BucketSize GMV_Constrained TAN Constrained

'Small Cap' 0.33649 0.36212
'Mid Cap' 0.05676 0
'Large Cap' 0.60674 0.63788

(Figure 14. Weights distribution across the different Market Cap classes for a

Constrained portfolio)

4.4. Mean-Variance-Liquidity Optimization

The following paragraph will attempt to show the implications of the introduction of a liquidity
constraint in the mean-variance optimization framework. The paragraph includes two sub-

section, one for each optimization problem.

4.4.1. Portfolio with no-Short Selling

The first results provided concern the introduction of the liquidity constraint in a portfolio where
short selling is not allowed. As previously described, the liquidity parameter has been computed
as the linear combination of the spread and Amihud illiquidity measure. These values have been
subsequently standardized so that they would range from 0 to 1, making easier the set-up and
interpretation of the constraints and result. Initially, it makes sense to analyze how portfolio’s
liquidity behaves alongside the efficient frontier. Therefore, we calculated what is the portfolio
liquidity for the set of dominant portfolios constituting the efficient frontier. There seems to be
an inverse relationship between risk, return and liquidity. The higher risk and returns are, the
lower also tend to be the portfolio liquidity, up until the most illiquid portfolio at the end of the

efficient frontier, where the entire portfolio allocation is on a single, very high illiquid security.
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Liquidity Evolution along the Efficient Frontier without Short Selling
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(Figure 15. Liquidity evolution along the Constrained Efficient Frontier)

To build the new Mean-Variance-Liquidity surface, several optimization iterations have been
run. Given that there is no unique way to determine what is liquid and what is not, as well as,
there are no particular portfolio liquidity references in the literature, the target liquidity level to
be matched at each optimization iteration has been chosen by looking at the percentiles of the
liquidity alongside the frontier previously shown. From the 5™ up the 100" percentile, twenty
different frontiers have been calculated. Thus, along the same frontier, there are portfolios with

different risk-return profile, but same level of liquidity. The resulting surface is the following:
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(Figure 16. Mean-Variance-Liquidity surface for a portfolio without short selling)

Returns and standard deviation are on the y-axis and x-axis as usual, while on the z-axis there

is the level of portfolio illiquidity. TANs and GMVs have also been plotted on the surface and
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they are represented, respectively, by the red and green dots. It is interesting to notice the surface
initially protrudes outside and then goes back in. The picture becomes clearer if looking at the
single frontiers plotted in the standard 2-dimensional space. When the level of target liquidity
is extremely high (very low illiquidity constraint), the portfolio combinations achievable are
somewhat limited by the availability of securities and the positive weights constraint. However,
as the liquidity constraint gets looser, the portfolio can achieve better risk-return combinations,
up to the point where the level of illiquidity required is so strict, that the frontiers start moving
to the right (worse solutions). Particularly interesting are those points where frontiers overlap:
those represent portfolios with the same risk-return portfolio but, by lying on different frontiers,
they also have different level of liquidity. This suggest that there is some sort of superiority
between these portfolios: given everything else equal, a rational investor should always choose
the portfolio that represents the cheapest solution, as it would maximize his final utility. Overall,
this surface shows that in both case where liquidity is set very high or very low, the risk-return
profiles are worse than in case of mid-range values. However, at that point, high liquid
portfolios represent a superior choice, both in terms of costs and portfolio composition,

compared to same risk-return profile portfolios but with higher degree of illiquidity.

Efficient Frontiers with increasing llliquidity Constraint
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(Figure 17. All the Mean-Variance-Liquidity frontiers, with GMV and TANs, plotted in a

return-standard deviation space)

As for the surface previously presented, also here TANs and GMVs have been plotted on their
respective frontier calculated at each liquidity iteration. At the end of each frontier is also
reported the target level of illiquidity. By taking a closer look the graph, it can be noticed that
at a level of gross return of 1.5912% and standard deviation of 5.90%, there is an intersection



between two different frontiers, meaning two different portfolios with same risk-return profile.
However, these two portfolios lie on the two most extreme frontiers, the most liquid and the
most illiquid. On the most liquid, such portfolio is towards the end, therefore the diversification
is quite reduced even if the overall liquidity is very high. Indeed, despite that, both the portfolios
are basically investing in the same number of securities. However, in terms of net returns there
Is a significant difference as, by only taking into account the spread, the return of the portfolio
on the most liquid is 1.4690%, thus with just a marginal reduction from the gross, while for the
portfolio on the most illiquid the net return is 1.1414%, almost 30% less than its equivalent.
Concluding, given that the level of diversification is fairly similar, and assuming that investors
preferences are the same and there are no other constraints, a rational investor should always
choose the portfolio lying on the most liquid frontier.

In terms of diversification, as expected, a higher degree of illiquidity produces a skewed
allocation towards the most illiquid assets and therefore a significant reduction in the
diversification, as weights are constrained above zero. This can be noticed especially in the
TAN, where some high illiquid Large-Cap stocks which had no or small weights at lower level
of illiquidity, get increasing allocations. However, until the 60" percentile GMV is investing in
at least 10 assets while the TAN in at least 8. These numbers might seem small, but they are
not far away from Markowitz’s starting point of 21 assets for the GMV and only 12 for the
TAN. In terms of Market Cap allocation, there are some common trends across GMV and TAN:
the reduction on Mid-Cap investments as the liquidity decreases as well as the increasing

allocation towards Small-Cap stocks

Subsequently, the evolution of GMV and TAN gross and net returns, as well as the Sharpe ratio,

at the different levels of liquidity has been analyzed. The results are the following:
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(Figure 18. Return and Sharpe ratio evolution across different level of illiquidity for a

portfolio without short selling)

Markowitz’s TAN and GMV are represented by the green and red dots respectively. As it can
be noticed, GMV returns tend to increase quite straightforwardly as the illiquidity increases.
TAN has a similar behavior, up to a level of illiquidity of 0.75 after which returns start
decreasing again. Such portfolio represents a superior choice compared to the followings as it
has less risk (lower Standard deviation), higher returns and lower trading costs. This seems to
indicate that, while lower liquidity brings higher returns (and, of course, higher risks), there is
an “efficient point” after which stretching the degree of illiquidity even more would be
counterproductive from all the points of view. Concerning the Sharpe ratio, results get even
more interesting. For both the GMV and TAN, the relationship resembles a reverse U-shape
curve. This, again, points to an optimality point, a given level of liquidity maximizing the risk
return profile of the portfolio. It is also interesting to notice that the level of illiquidity of
Markowitz’s TAN is in between the two level of illiquidity maximizing the gross Sharpe ratio.
Therefore, it seems that Markowitz optimization is automatically selecting a portfolio among
the top performing. Complete different story for the GMV, whose level of illiquidity
maximizing the gross Sharpe ratio is three times bigger. However, considering the net amount
flowing into the investors’ pockets, the optimality is on a lower level of illiquidity as expected.
Indeed, for a net perspective, the level of illiquidity maximizing the TAN Sharpe Ratio is
smaller than Markowitz’s value. This confirms that is possible to improve Markowitz
optimization by considering the liquidity as an extra parameter, as better performing and
cheaper solutions can be achieved. On the other hand, it can be noticed how the imposition of
a liquidity constraint is highly penalizing the GMV net returns, as the net Sharpe ratio is almost
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halved. Indeed, the introduction of higher and higher illiquidity constraint seems to increase the
risk and illiquidity enormously but with only a marginal impact on returns. Therefore, in period
of high illiquidity, it might make more sense to try to maximize the liquidity of the portfolio,

and imposing constraint on the maximum level of risk acceptable.

4.4.2. Portfolio with Short Selling

The same analysis has been performed on a portfolio where also short selling is allowed. Again,
the liquidity target levels have been calculated using the same methodology as before but
applied to the liquidity calculated along the boundless Markowitz’s efficient frontier. As
previously described in chapter 3, these optimizations require the use of a nonlinear constraints
in order to account for the liquidity of short-sold securities. Given the nonlinearity of the
constraint, the problem might not be convex and have no unique solution, especially when the
constraints get tighter and tighter. To deal with this issue and reduce the margin for errors, we
used the GlobalSearch script in MATLAB. For each optimization, the function simulates
several starting points and the returns the global minimum solution, if available. The advantage
of having short selling is that it allows to stretch the limits of the liquidity threshold, as higher
degree of illiquidity can now be achieved. Indeed, the illiquidity constraint thresholds for the
20 frontiers have been set from the 5" percentile to 1.5x the 100" percentile of the illiquidity

along the original Markowitz frontier. The resulting liquidity frontier is the following:

Liquidity Evolution along the Efficient Frontier with Short Selling
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(Figure 19. Liquidity evolution along the Unconstrained Efficient Frontier)
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As for the constrained case, illiquidity appears to increase with the risk-return profile, following
almost a straight line. As it can be notice, the overall level of illiquidity of the TAN is extremely
large, being more than five times larger than the most illiquid security. Based on these values,

Mean-Variance-Liquidity surface shown below is derived.

Mean-Variance-Liqudity Surface with Short Selling

Portfolio llliquidity

Retum 2

(Figure 20. Mean-Variance-Liquidity surface for a portfolio with short selling)

Again, returns, standard deviation and portfolio illiquidity are, respectively, on the y-axis, X-
axis and z-axis, while green and red dots represent the GMVs and TANSs. As for the no-short
selling constraint, it can be notice that the surface’s evolution is similar. Efficient solutions can
be found, as for the same risk-return profile, there are portfolios with different degree of
liquidity and thus different costs. The major difference with the constrained case is that by
allowing short selling, the combination of risk-return-illiquidity that can be achieved are much
higher. The TAN on the most liquid frontier in the unconstrained case generates a return higher
than the top performing TAN in the constrained case, with 1/3 of the volatility and a degree of
illiquidity 30% lower. Indeed, for the same percentile of illiquidity, there is a significant
increase on the Sharpe ratio, which is more than doubled compared to the constrained case.
Moreover, as expected, allowing short selling also had beneficial effects in terms of
diversification as both GMV and TAN invest in all the 100 assets, regardless the level of
liquidity. Also, the allocation across the Market Cap classes is improved. Weights are more
equally distributed across the classes. As the liquidity decreases there is still a skewed allocation
towards Small and Mid-Cap (TAN almost doubles its exposure to Small-Cap from 7 to 12%
and GMV increases its exposure to Mid-Cap by 30%, even if there is a significant reduction to
Small-Cap) but the overall allocation almost reflects the initial universe composition.
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Particularly interesting is the GMV, for which imposing different liquidity constraints results
in different portfolio composition rather than just a skewed version of the most liquid GMV.
Regarding the returns, unfortunately, results are less straightforward than for the constrained

case.
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(Figure 21. Return and Sharpe Ratio evolution across different level of illiquidity for a
portfolio with short selling)

Indeed, both GMV returns and Sharpe ratio do not show a clear relationship with the liquidity,
as for low levels of illiquidity the Sharpe ratio is even higher than for larger levels, even if the
absolute return is smaller. This seems to suggest that while increasing liquidity is beneficial for
absolute returns, the risk increases proportionally more, resulting in a portfolio with lower
Sharpe ratio and higher costs. However, results seem highly dependent on the level of liquidity
chosen. Concerning TAN things get interesting. At first it can be noticed that the return-
illiquidity relationship is almost a line, suggesting an almost linear relationship between the
variables. Moreover, the Sharpe ratio curve, after an initial increase, gets almost flat, which
means that as the illiquidity increases not only the absolute returns increase, but also does the
risk in a proportional way such that the ratio is basically constant. Therefore, it seems that
stretching the illiquidity level above the 50" percentile is pointless as no better risk-return

profiles can be achieved for the TAN.
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4.5. Rolling Approach

To deepen the analysis, we investigate the effect of liquidity from a dynamic point of view. We
use the same three “cases” described above: standard Markowitz, liquidity constrained without
short selling and liquidity constrained with short selling and apply a monthly rebalancing
approach. To do so, first we computed new estimates for returns, variance and illiquidity
measure. In particular, we used an exponentially weighted moving average approach, where the
initial value is the sample mean for roughly the first 10 year (124 monthly observations so that
there are exactly 10 years left in the rolling analysis). Thus, at the end of each month, returns,
variance and illiquidity are calculated as the combination of the new monthly observation (at
time t) and the previous 124 observations. Moreover, also the smoothing factor is calculated in
a dynamic way. Starting from a value of 90%, assigned to the previous 124 observations, the
smoothing factor is adjusted depending on the current average assets’ volatility compared to
the previous period average volatility. In particular, the factor is adjusted inversely to the change
in the volatility levels, so that if the universe, as aggregate, appears to be more volatile in this
period compared to the previous month, less weight will be given to the new observation. In
this way, we try to account for random spikes in the volatility and period of greater uncertainty.
The analysis will be again focused on the GMV and TAN, for which, at each iteration, portfolio
composition, gross and net return, volatility and portfolio illiquidity will be calculated.
Moreover, also the level of illiquidity alongside the frontier will be calculated at each iteration,
since the liquidity constraints will be based on those levels. When introducing the liquidity
constrained, we will be focused on four different levels: 101, 251, 501, 75™ percentile based on
the current level of liquidity along Markowitz’s frontier in the period. Therefore, at each
iteration, those target percentiles will be calculated based on the current liquidity levels along
the frontier. Moreover, percentiles have been chosen to ensure that there are relevant differences
across the portfolios but, at the same time, portfolios are enough diversified (diversification
which could not be achieved by imposing higher constraint thresholds). Overall, this solution
seems the most reasonable because, especially over such a long-time spawn, the liquidity across
assets and portfolios is likely to change. Hence, it makes more sense to define a target level in
relative terms based on the current level of liquidity in the market, rather than just taking
absolute values based on the entire time series. As before, the illiquidity parameter has been
standardized from 0 to 1 at each iteration. The purpose of this analysis is to investigate whether
portfolios with more or less stringent liquidity characteristics can perform better than standard
Markowitz and whether there is a superior solution across the different liquidity constrained

portfolios. An inequality constraint has been added to the portfolio, thus introducing a minimum
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level of illiquidity that each portfolio has to achieve, but without imposing any upper constraint
on that. The optimization process takes the form described in chapter 3. Firstly, we analyze the
evolution of the liquidity parameter over time for both GMV and TAN.

Average GMV and TAN Portfolio llliquidity between 2009-2019
! : |
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(Figure 22. Illiquidity evolution over time window 2009-19 for Markowitz GMV and TAN

Constrained with monthly rebalancing)

It is interesting to notice that while in absolute values the portfolio illiquidity seems to decrease
over time, when analyzing using the standardize values, it actually increases. This suggest that
even if portfolios are less expensive nowadays, with apparently lower transaction costs
compared to 10 years ago, they also seem to invest in more illiquid securities now than what

they used to do in the past.

Moving to the unconstrained case, the patterns are similar to the constrained case. There is an
upward trend of increasing allocation to relative more illiquid stocks for the TAN, even if the
overall level of spread and Amihud measure of illiquidity is much lower than in the triennial
2012-2015 where, in contrast, the standardized illiquidity was not much large. The GMV on
other hand, does not seems to predilect more or less liquid securities, as the ratio in gross terms
stays almost constant over time. As in the static analysis, allowing short position widely
increases the level of illiquidity for both the TAN and GMV, with the TAN peaking at values

ten times larger than in the constrained case.
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Average GMV and TAN Unconstrained Portfolio llliquidity between 2009-2019
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(Figure 23. Illiquidity evolution over time window 2009-19 for Markowitz GMV and TAN

Unconstrained with monthly rebalancing)

Subsequently, we analyzed the GMV and TAN allocation across the different Market Cap
classes. As it can be noticed, overtime, GMV seems to give more weight to Small-Cap
compared to the TAN, especially during the triennium 2011-2015, where TAN is allocating
almost everything across Mid and Large-Cap. On the other hand, in the most recent years, there
has been a significant decline in the allocation to Large-Cap for both TAN and GMV, which is
consistent with the previous picture, showing an upward trend in the level of illiquidity starting
from 2015.

Market Cap Classes Evolution Markowitz Constrained
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(Figure 24. Markowitz GMV and TAN allocation across the different Market Cap classes)

Significantly different is the trend for the unconstrained portfolio, whose Market Cap class

allocation is almost constant over time and extremely similar to the initial universe composition.
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However, these results are just at an aggregate level. As it is shown later, even if the class
allocation is fairly constant, the level of turnover is significantly high, even higher than for the

constrained case.

In this part results will be mainly focused on portfolio characteristics concerning gross and net
returns, turnover level and portfolio performances parameters, which will be then used to
determine which portfolio would have outperformed the others. Firstly, cumulated returns are
analyzed. The following picture shows the comparison between the portfolios for the different
levels of liquidity, plotted against the relative benchmark, the EuroStoxx 600. Unfortunately,
due to the limited availability of data, it was not possible to compute a net version of the
benchmark, so in both gross and net case, portfolios return will be compared to the gross

cumulated return of the EuroStoxx 600.
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(Figure 25. Constrained portfolio Gross and Net cumulated returns at the different illiquidity

levels)

As expected, the higher the degree of illiquidity is, the higher is also the potential cumulated
return of the portfolio. It can be noticed that there are only four TAN time-series in the chart.
This is because also Markowitz portfolio satisfies the threshold at the 10™ percentile, therefore
the resulting portfolio almost overlaps Markowitz’s (even for the GMV the two time-series
almost overlaps completely, but in this case the differences are slightly bigger). All the
portfolios show a premium compared to the relative benchmark, even when moving to net
returns. However, even if imposing higher illiquidity constraint seems to guarantee higher
returns, it also comes at an average higher cost. It can be noticed how the most illiquid TAN

has, on average, net returns 30% lower than the Markowitz’s net. Even worse is the GMV case,
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where the average difference between gross and net returns is more than twice than the
Markowitz’s. However, these results were partially expected since the GMV was almost more
liquid than the TAN, therefore the imposition of very high illiquidity constraint resulted in very
“extreme” portfolios, with the final allocation widely changed from Markowitz’s and heavily
biased towards more illiquid securities which had no or very small weight in Markowitz’s. It
can also be noticed that, in terms on net returns, the TAN at the 50" percentile performed as
good as the 75" percentile, despite a visible difference in gross performances. This again
suggests that controlling the level of liquidity in the portfolio is beneficial. Too liquid portfolio
does not produce enough gross returns, but with too low liquidity the premium is eaten by the

transaction costs.

Moving to the unconstrained case, the results are completely different than in the constrained
case. GMV and TAN are showing extreme values. It can be noticed how, in terms of gross
returns, they stand at the opposites: the first is highly outperformed by the EuroStoxx 600 until
the 2015, where it sharply increases up until reaching the same level of the benchmark. The
TAN, on the other hand, is always outperforming the benchmark, increasing the overall value
of the portfolio by 8 times in 10 years. This is enormous considering that the cumulative return
of the S&P over the same period is barely 185%. As we move to net returns, performance
plummet for the GMV, with the Markowitz’s barely breaking even, and the most illiquid is
even losing money. TAN still shows remarkable performances, but not too far apart from the

constrained case.
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(Figure 26. Unconstrained portfolio Gross and Net cumulated returns at the different

illiquidity levels)
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It might thus make sense to investigate the weight allocation and turnover to determine the
causes of these results. In terms of weight evolution and turnover, the overall composition of
the portfolios over time is similar in term of asset allocation, with even the most illiquid
guarantying a sufficient level of diversification. If looking at the evolution, there are quite
significant spikes around 2011-12 and 14-15 which are probably due to the high turmoil in the
market caused by the debt financial crisis and the political and economic instability that
characterized the 2014-15. This can be noticed even better in the following chart, providing the
approximate level of turnover at each rebalancing date, calculated roughly as absolute distance
between portfolio weights at time t-1 and time t. Overall, the level of turnover is not far away
from Markowitz’s, but they are still quite high. Despite an average of 20-25% (which is still
high considering a monthly rebalancing), there are spikes around 60-80%. Changing such huge
portions of the portfolio can be extremely costly, eroding all the returns. While for the
constrained case the levels are still reasonable, the unconstrained portfolios show unrealistic
level of turnover for both the GMV and TAN. This problem regards not only high level of
illiquidity, but even Markowitz’s portfolios, showing how his boundless approach, from an
active perspective, is not feasible in the real world. This also explain the poor performance of
the GMV. The gross return increases slightly but steadily, thanks to investment in low
risky/volatile securities. However, considering a monthly rebalancing without turnover
constraint, such research for low risk security leads to an extreme portfolio rebalancing and thus
the complete erosion of the profits (just consider that the average standard deviation for the
GMV constrained is 10 times bigger than for the unconstrained, which is almost 0). This
situation is even worse for higher illiquidity levels, as there is no premium, gross performances
are the same of the other level of liquidity and the final net return is -12%. Similar situation for
then TAN, where the huge turnover erodes the returns, bringing them down almost to the same
level of the constrained case. It should be pointed out that the level of turnover is also highly
correlated with the bounds chosen. The higher is the position allowed on a single asset, the
higher is also the chance that the portfolio will experience a higher level of turnover. Indeed, it
can be easily shown that with stricter bounds the turnover would significantly decline. The
introduction of a simple no-short selling constraint however seems to partially alleviate the
problem. The TAN is still performing well, and the GMV, with less low-risk optimal allocations
available, is “forced” to invest in more risky securities, which in return, boost significantly the

gross and net performances.
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Approximate Level of Turnover

GMV Constrained ” TAN Constrained
T ' l ' Tanikw] O ' i s
——omv,10 | g7L ] TANIO | o ‘ ‘
GMV 25 TAN 25 |
GAAV:SQ 06 ‘ | 1 ' l  TAN% 05 I
2T Jos l , | | 1 \ ’ | My T oal b " \ [ A\ ’HI
= N a U osk IR | | \/ \
o h | ‘1 1| rl\ M| "‘ | l 11 V ) .‘i‘\ | ‘ i
oz (WAL ,M‘w 'I’ “l} .A{‘u ‘”l‘ AL J = ; !\‘ | QX | ‘” “' \} ‘
N TAWT ALY | | ‘ U\ \ Iy
o1 (Is" - A‘J‘I?" ’ ‘ ‘Hf' !.r}'u L{ oaf | " : \ ‘H‘“ ‘
”[17 71"; 71 1?7 \AX 47 1 71}‘7 A7 V“F 717“7?0 ”ﬂ“i‘-ﬂr 1 71; T ‘l' 7';7 r’u 18 7 B (P 1 77’1
- GMV Unconstrained " TAN Unconstrained
8 ] \
6 9 j ( | |
| !
‘ f Il ‘ TR
C | i ﬁ 3- | ‘7/‘ MR g |
f \ | ARATVANRLAR A
\ \l l | 2 W | RN AN
U ‘ Rt
; le\rl, Wova Al e IV | VYWY T

09 10 12 13 14 15 18 17 18 19 20 09 10 1" 12 13 14 15 18 17 18 19 20

(Figure 27. Approximate turnover evolution for all the portfolios, time window: 2009-2019)

This picture highlights one of the Markowitz’s drawback initially mentioned. It can be noticed
how, even with only a monthly frequency, the optimization problem is quite unstable, with
significant changes in the resulting allocation as the inputs change. In terms of diversification,
the constrained TAN and GMV diversify in a sufficient amount of assets, with GMV investing
in @ minimum of 10 securities in at least 90% of the time-window and TAN investing in a
minimum of 8 securities in 80% of the time-window. These number might seem small, but they
are closely aligned with Markowitz’s, especially when the illiquidity is low. Even the allocation
across Market Cap classes is quite similar. In analyzing the constrained cases, it turns out that
even across high illiquid portfolios there is an average significant investment in Mid-Cap stocks
that it could not be found before in the static analysis, where the average allocation was below
5% for both GMV and TAN. Overall the trend is similar across the different level of illiquidity.
It is quite interesting to notice that, despite the significant differences in the required level of
illiquidity, the GMV Market Cap class allocation is not so different until 2017, after which there
is a significant increasing in the Small-Cap allocation, with peaks at 80-85%. This suggests that
in the past few years there might have been an increase in the risk associated with Small-Cap
stocks, which was not so predominant earlier in time. TANs, on the other hand, show a
consistent increase in the Small-Cap allocation as illiquidity increases, even if between 2012
and 2015, almost 75% of the portfolio is invested in Large-Cap, which not only appear to be

more liquid, but also to deliver the best risk-reward profile.
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Market Cap Classes Evolution - Constrained Portfolio

(Figure 28. Market Cap allocation across different level of illiquidity for the Constrained
portfolios, time window: 2009-2019)

The unconstrained cases show a very similar pattern to Markowitz’s as well. In particular, it
can be noticed how the allocation is almost constant over time. When the optimization is
boundless (even if not completely) and thus all the assets are available for investing, GMV and
TAN seem to allocate similarly across classes and time, with a slighter higher allocation in
Small and Mid-Cap stocks for the GMV. This phenomenon is also quite interesting considering
the high level of turnover previously shown. Hence, while the optimizations seem to require a
significant asset-specific level of turnover from month to month, from a market cap class point
of view, the resulting “group” turnover is much smaller, with a smoother class weight
allocation.

Market Cap Classes Evolution - Unconstrained Portfolio

. 5 v | Cap
i o
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(Figure 29. Market Cap allocation across different level of illiquidity for the Unconstrained
portfolios, time window: 2009-2019)

81



The last step of the active analysis is a performance comparison of the portfolios. Portfolios
have been evaluated using the risk-reward measures described in chapter 3. Based on these
measures, each portfolio got ranked and the results are here reported. The first tables presented
concern the constrained case. In analyzing the risk reward measures, some Treynor ratios turns
out to have negative values. Unfortunately, Treynor has little meaning when the parameter is
negative. It should be specified that such negative values are not due to bad returns, but rather
a negative portfolio beta. Indeed, the “worst performing”, according to Treynor Ratio, is the
TAN_p50, which however classifies first according to several other parameters. Therefore,

Treynor ratio will be presented but excluded from the computation to determine the final rank.

Strategy CcI sh So Tr VaR ES cal Ste FT

"GMV-MKW" 67 0.25884 0.36882 82.9143 0.17001 0.11719 0.09209 0.1123 0.86107
"GMV_pl0" 60 0.26386 0.38635 73.48374 0.17305 0.12146 0.09299 0.1166 0.87795
"GMV_p25" 51 0.2824¢6 0.42233 81.89108 0.18671 0.13405 0.0997 0.12905 0.91971
"GMV_p50" 32 0.29106 0.46008 159.12231 0.21978 0.14536 0.10929 0.13672 0.95886
"GMV_p75" 19 0.30158 0.46696 576.7739 0.22123 0.15049 0.10782 0.14293 0.96966
"TAN-MKW" 46 0.30576 0.4249 -112.96469 0.19763 0.1474 0.08917 0.14016 0.92828
"TAN plO" 41 0.30576 0.4249 -112.96794 0.19763 0.1474 0.08917 0.14016 0.92828
"TAN p25" 32 0.30959 0.43149 -156.48321 0.20083 0.14979 0.09062 0.14243 0.93631
"TAN p50" 11 0.32584 0.4764 -233.62098 0.23154 0.16404 0.09751 0.15633 0.99105
"TAN p75" 26 0.29719 0.44611 62.0076 0.23663 0.15166 0.09498 0.1423 0.95361

(Figure 30. Table summarizing Gross performance measures and the final rank for

Constrained portfolios)

As mentioned above, the top performing portfolio is the TAN_p50. The best four portfolios are
indeed the two most illiquid per type. This confirms once more that, in terms of gross returns
and “gross” risk-return profile, less liquid portfolio can outperform more liquid, without
sacrificing diversification as shown before. There are few interesting things that should be
pointed out: first we see that the Sharpe ratio is almost always increasing in the illiquidity
measure, similarly to what we described in the static analysis. In particular for the TAN, it
increases up to the 50™ percentile and then starts declining again. The same pattern is also
shown by Sortino, even if the increments from one illiquidity level to the other are much bigger.
This suggests that the overall volatility changes less that what the downside volatility does.
However, it is quite interesting to notice that, while the downside volatility is always larger than
the upside for high liquid portfolio, the trend gets reverted for high illiquid portfolios (GMV
p_75, TAN p_50 and TAN p_75) where the volatility of negative returns is actually smaller
than the volatility of positive returns. Moreover, it is also interesting to highlight that for both
GMV and TAN the 50" liquidity percentile minimizes the downside volatility. Similarly, also
the VaR and the Expected Shortfall are minimized at the 50" percentile. The Maximum

Drawdown is actually quite similar across the portfolios, with the exception of the 75%
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percentile, where there is a significant increment in the potential maximum loss. Overall, all the
risk measures seem to follow the same pattern, and be minimized at the 50" percentile,
regardless the object of the optimization.

The same performance analysis has been computed using net returns for the performance
measures. Again, Treynor has been excluded due to the beta still being negative as it is
calculated as the correlation between portfolios and benchmark gross returns.

Strategy €T Sh So Tr VarR ES Cal Ste FT

"GMV-MKW" 66 0.2278 0.32248 73.90955 0.14685 0.10186 0.08039 0.09769 0.81129
"GMV_pl0o" 59 0.23061 0.33416 64.9862 0.1481e6 0.10472 0.08061 0.10064 0.82329
"GMV_p25" 51 0.2443% 0.36364 66.2406 0.15823 0.11405 0.08551 0.10987 0.85396
"GMV_pS5S0" 29 0.24497 0.387 105.90628 0.17869 0.11967 0.09112 0.11281 0.87564
"GMV_p75" 31 0.24834 0.37884 208.07764 0.17266 0.1206 0.0863 0.11508 0.86909
"TAN-MKW" 42 0.26678 0.36949 -116.13083 0.16887 0.1263 0.07697 0.12019 0.86143
"TAN plo" 37 0.26678 0.36949 -116.13484 0.16887 0.1263 0.07697 0.12019 0.86143
"TAN p25" 29 0.27055 0.37582 -168.75653 0.17185 0.12852 0.07833 0.12231 0.86886
"TAN p50" 10 0.28328 0.41404 -243.62147 0.19562 0.13972 0.08375 0.13314 0.915
"TAN p75" 31 0.25094 0.37674 50.99539 0.19066 0.12525 0.07854 0.11753 0.87256

(Figure 31. Table summarizing Net performance measures and the final rank for Constrained

portfolios)

In this case risk measures have also been calculated on the net returns, to highlight potential
liquidity effects. Again, the top performing portfolio is the TAN at the 50" percentile, followed
by the GMV at the same liquidity level and the GMV and TAN at the highest illiquidity level.
Thus, high illiquidity seems to reward sufficiently the investors in terms of net performances
compared to the risk taken. Markowitz’s classify among the last, suggesting that a keeping a
high level of liquidity is not necessarily beneficial, if not adequate rewarded (as mentioned
before Markowitz portfolio has a level of liquidity very close to the 10" percentile). Risk
measures follow the exact same pattern as in the case of gross returns, with the liquidity at the
50" percentile minimizing the risks. Concluding, it is interesting that the top performing
portfolios are those with intermediate level of liquidity. This behavior could be explained by
the fact that the search of liquidity might be as penalizing as the search for illiquidity. By
focusing only on very liquid securities, profit opportunity from low-liquid, riskier securities are
missed, thus resulting in less performing portfolio, even in net terms. It should always be
remembered that the performance analysis is conducted with respect to only spread as
transaction cost. For more illiquid stocks market impact plays a much bigger role than the
quoted mid-price spread. Therefore, this picture might actually change when including the
market impact. However, as already repeated, this would require knowing the size to trade,
which is not the case of this research work.
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Moving to the unconstrained case, we replicated the same analysis. Even with short selling
allowed, some portfolios appear to have a negative beta and hence Treynor will be left out from
the following analysis. Given the very poor performances of the GMV at each liquidity level,
we are expecting it to be outperformed by the TAN. Indeed, the GMV is vastly outperformed
by the TAN, with all the performance measures being twice larger or more for the TAN. The
top performing portfolios are the TANs with intermediate level of illiquidity (50" and 25™).
Thus, in both the constrained and unconstrained case it seems that keeping the liquidity of the
portfolio not to high, might indeed be beneficial, resulting in better portfolios for an active

management perspective.

Strategy CcI Sh So Tr VaR ES Cal Ste FT

"GMV-MKW" 47 0.11592 0.13681 -12.06519 0.07781 0.04658 0.03041 0.04316 0.56068
"GMV_plo" 49 0.11572 0.13685 -11.91452 0.07807 0.04653 0.0303 0.04311 0.5616
"GMV_p25" 54 0.11464 0.13679 -11.3164 0.07733 0.04652 0.02994 0.04315 0.56428
"GMV_p50" 60 0.09534 0.12085 -6.49501 0.07393 0.04033 0.02432 0.03718 0.56823
"GMV_p75" 70 0.07877 0.10012 -7.87467 0.05463 0.0335 0.01855 0.03113 0.54787
"TAN-MKW" 32 0.25107 0.39519 85.4151 0.18641 0.12932 0.08937 0..1215 0.89352
"TAN plo" 20 0.25504 0.4004 103.78009 0.1827 0.13112 0.0933 0.12374 0.89993
"TAN p25" 18 0.25489 0.40142 100.06549 0.18244 0.13132 0.09329 0.12402 0.9011
"TAN p50" 11 0.25527 0.40212 104.87962 0.18443 0.13127 0.0934 0.12376 0.90191
"TAN p75" 24 0.25502 0.39829 111.71877 0.188 0.13014 0.09196 0.12251 0.89749

(Figure 32. Table summarizing Gross performance measures and the final rank for
Unconstrained portfolios)

GMV returns are highly impaired by the illiquidity, as most of the performance measures are
halved compared to the gross ones. If we take a closer look at those measures indeed, it can be
noticed that the Shape ratio for the TAN is actually not that different compared to the
constrained case (roughly 20% less), while the difference is much bigger for the GMV as
anticipated. When looking at Sortino, it is interesting to notice that for the GMV the downside
volatility is always larger than the upside, while this trend is reverted for the TAN. Indeed,
TANS’ Sortino are four times larger than the corresponding GMVs, while the Sharpe ratio is
less than three times larger. Concerning the other risk measures, they tend to be larger than their
constrained counterparty. For example, the VaR, while being slightly larger for the GMV, it is
almost twice larger for the TAN unconstrained compared to the constrained case. Similar
pattern is shown by both the CVaR and the Drawdown sequence. Overall, differently from the

constrained case, there does not seem to be a relationship between risk and liquidity level.

From the net results perspective, conclusions are unchanged. This is somewhat expected, given
that the levels of illiquidity for all the TANs was very similar. Apparently, by not setting up an

upper bound for the level of illiquidity, all the TAN unconstrained maximize the Sharpe ratio

84



for almost the same level of illiquidity, which is extremely large (well above the unity, which
means above the single security with the highest level of illiquidity). Similar conclusions can
be made for the GMV, whose research for the minimum volatility, in a constrained liquidity
environment, results in a very large degree of illiquidity, regardless the percentile chosen for

the lower bound.

Strategy CI sh So Tr VaR ES Cal Ste FT

"GMV-MKW" 45 0.06031 0.07492 -6.24804 0.03954 0.02398 0.01574 0.02225 0.50309
"GMV_plo" 50 0.05979 0.07442 -6.15195 0.0394 0.02379 0.01558 0.02207 0.50373
"GMV_p25" 55 0.05744 0.07214 -5.77042 0.03786 0.02307 0.01493 0.02143 0.50528
"GMV_p50" 60 0.03403 0.04537 =2.39371 0.02579 0.01428 0.00866 0.01318 0.50876
"GMV_p75" 70 0.01082 0.01472 -1.09914 0.00733 0.00456 0.00254 0.00425 0.48659
"TAN-MKW" 32 0.18341 0.2988 30.30402 0.13564 0.09422 0.0648 0.08856 0.79012
"TAN plo" 21 0.18576 0.30219 32.93148 0.13269 0.09527 0.06742 0.08992 0.79368
"TAN p25" 19 0.18552 0.30262 32.35806 0.1324 0.09534 0.06736 0.09006 0.79435
"TAN p50" 11 0.18598 0.30358 33.09247 0.13399 0.09541 0.06751 0.08996 0.79535
"TAN p75" 22 0.18671 0.30212 34.35109 0.13725 0.0951 0.06683 0.08954 0.79302

(Figure 33. Table summarizing Net performance measures and the final rank for

Unconstrained portfolios)

Even if we compared all the portfolios constrained and unconstrained, the rank would not
change, with the constrained version always outperforming the unconstrained counterparty and
TAN and GMV at the 50™ percentile still being the top performer in gross and net terms.
Concluding, from an active perspective, while undoubtedly there are benefits from keeping high
level of liquidity in the portfolio, especially in terms of diversification and low transaction costs,
it seems that such liquidity is not fully rewarded also in terms of lower risk and higher return.
Indeed, by accepting a higher level of portfolio illiquidity, returns increase more than
proportionally therefore allowing for better performing portfolios. Moreover, this analysis
shows how Markowitz optimization process represents an unfeasible solution from the active
management perspective, as it involves extreme positions shifts from month to month, resulting
in high transaction costs and worse performances. By simply adding a no-short selling
constraint, much more feasible solutions can be achieved, reducing significantly the level of

turnover and thus ultimately boosting the overall performances.
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Conclusions

Markowitz’s model revolutionized the way portfolio allocation was done, re-designing the
process from a more quantitative point of view, where risks and rewards were, at the same time,
minimized and maximized. However, as many theoretical models, it works mostly in theory.
Even if all the assumptions on which it is based are overlooked (all the economics models are
based on strict and implausible assumptions), the boundless optimization originally proposed
would still be of little relevance for real world applications. Indeed, it has been shown that, first,
stocks are not all the same. Markowitz paid no attention to the stocks’ characteristics, but as
demonstrated, stocks with different level of capitalization, are associated with different risk-
reward-liquidity profiles. If such characteristics are not taken into account, there is no certainty
that the resulting optimization process will be feasible. Indeed, from a buy-hold portfolio
perspective, it is possible to derive portfolios with the same risk-return profile, but different
levels of liquidity. Based on pure risk-reward preferences, investors should be indifferent
between them. However, as they prefer more to less, they should be more willing to invest in
the most liquid, and thus less costly, portfolio. On the other hand, from an active management
perspective, results are quite surprising. By focusing on four portfolios with minimum level of
illiquidity at each rebalancing date, the top performing portfolios, both in terms of gross and
net performances, were those with an intermediate level of illiquidity, thus not to illiquid, but
also not to liquid. This could be due to the fact that focusing only on very liquid securities
prevents investors from exploiting better opportunities arising from lower liquid but more
rewarding stocks. Therefore, a more balanced portfolio, with a mix of liquid and illiquid
securities might actually perform better than portfolios with extreme (positive or negative)
exposure to the liquidity. This work also shows that the boundless approach is unfeasible. While
the unconstrained GMV was vastly outperformed by the relative benchmark, the TAN resulted
in a final value 8 times larger than the starting one. However, the turnover was so high than the
net performances where even negative for the GMV, while for the TAN they were not so
different from the constrained case. On the other hand, the constrained case shows a more
feasible behavior, with limited turnover and downside risk, without however renouncing to
good performances. This suggest that, introducing a simple constraint such as limiting the
weights to be positive can significantly limit the drawbacks of Markovitz’s boundless
optimization. Furthermore, by introducing a liquidity constraint, it is actually possible to
improve the performances of the optimization, thereby capturing some premium coming from

the introduction of the liquidity parameter in the model.
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Appendix
DESCRIPTIVE TABLE

Small-Cap summary of the main statistics:

Mean_sC Median_SC StDev_sc Min_sc Max_SC Midspread sC Skew_sC Kurt_sc Sharpe_scC
TRITAX BIG BOX 0.69 1.10 3.92 1252 10.34 0.24 -0.62 3.96 0.18
CINEWORLD GR 1. 46 1.87 7.80 -29.44 18.33 0.73 -0.44 3.93 0.15
ALTEN 2.14 0.93 15.37 -53.79 127.78 .54 2.47 23.08 0.14
AMBU 2.97 1.93 10.29 -35.89 37.20 2.04 0.51 4.64 0.27
ARGE 5.9% 3.66 16.97 -18.83 110.08 1.31 4.10 26.35 0.34
ASM INTERNATI 2.31 1.35 16.03 -45.18 105.70 0.26 1.66 32,38 0.14
BALFOUR BEA 0.99 0.54 10.05 -28.82 54.31 0.65 0.64 6.49 0.10
BEAZL 1.08 1.09 6.82 -20.45 27.64 0.98 0.09 4.20 0.16
BUCHER INDUST 1.36 1.63 8.18 —35.2F 26.03 0.54 -0.52 5.34 0.17
ELECTROCO 0.54 =031 9.40 -21.56 31.29 0.43 0.36 3.29 0.06
GVC HOLDI 1.22 1.26 14.65 -56.35 54.39 3.14 0.04 5.567 0.08
HEXPOL 2.85 2.01 12.78 -38.89 64.43 0.60 0.90 8.09 0.22
IMCD GRO 215 2.62 5.52 =10.59 20.85 0.40 0.48 4.10 0.39
INTERPUMP GR 1.28 1.49 7.57 -26.44 25.11 0.65 =0.19 4.17 0.17
ROYAL UNIB 1.79 1. oq 12.29 -48.30 88.85 0.91 1.89 22.23 0515
SIMCO 1.86 1.54 10.97 =37.12 40.11 0.74 -0.01 4.28 0.17
SSP GRO 1.89 2.14 6.59 -18.42 1515 0.15 -0.58 3.86 0.29
UNITE GR 1.66 1.39 12.58 -52.40 85.00 1.10 1.45 14.88 0.13
VISCOF 0.81 1.14 7.07 —22.21 27.69 0.56 0.17 4.48 0.11
WDP 0.90 0.64 4.71 -19.82 15.07 0.82 -0.40 4.78 0.19
AAK 1.42 1.58 8.41 -22.60 29.57 0.42 0.02 4.07 0.17
ALTRAN TECHNOLO .42 0.70 15.70 -68.99 83.89 0.30 0.17 7.94 0.07
AVEVA GR 2.18 1.60 10.62 -36.77 40.78 .12 0.16 332 0.20
BRITV 0.97 1.41 7.64 -22.84 25.66 0.20 -0.16 4.34 0.13
CD PROJECT 3.69 2.57 20.21 -41.49 138.11 0.60 2.44 15.34 0.18
CLOSE BROTHERS G 0.73 0.75 8.70 22525 3%.22 0.75 0.03 4.46 0.08
COFINIM 0.08 0.35 3.65 -20.73 12.80 0.35 -0.97 7.54 0.02
DECHRA PHARMACEUT 1.61 1.67 8.63 -48.79 29.03 1.34 -0.70 8.50 0.19
HOMESER 1.47 1.48 8.98 -44.22 3T .32 X2 -0.46 6.79 0.16
JUPITER FUND MANAG 0.96 0.77 7.89 =23.91 23.09 0.14 -0.30 3.75 0.12
KINDRED GROUP 244 1.5% 11.14 =221.75 61.16 0.45 1.04 7.14 0.19
KONECRAN 1.07 0.85 1035 -28.97 40.11 0.65 0.08 3.81 0.11
ROCKWOOL INTERNATIO 1.3% 0.41 9.5% -25.40 39.73 0.60 0.53 5.413; 0.14
SOPRA STERIA G 3% 0.93 13871 -61.41 84.64 0.61 0.78 10.86 0.10
TGS-NOPEC GEO 2.7, 1251 12.74 -39.02 67.16 0.45 0.45 5.84 0.17
TOMRA SYST 117 1.05 11.14 -29.93 49.56 0.52 0.15 4.35 0.11
VALM 2.41 2.67 6.76 -16.54 17.33 0.17 -0.16 2.94 0.36
VAT GRO 2.67 2.54 8.44 -16.36 18.31 0.13 -0.06 2.59 0.32
VICTR 1.36 1.74 8.41 -24.81 29.91 1.04 -0.07 3.43 0.16
WH SMI 1.00 0.72 8.58 -30.24 41.72 0.50 0.56 5.82 0.12
WIENERBER 0.57 0.65 10.36 -35.86 51.68 0.32 0.28 6.40 0.05
BOLSAS Y MERCADOS ESP 0.20 -0.31 7.42 -21.29 22.34 0.37 -0.09 3.46 0.03
CEMBRA MONEY BANK 1.03 1.03 5.07 -8.17 17.9% 0.15 0.96 4.74 0.20
DOMETIC GR 1.09 1.82 7.83 -18.10 17.89 0.20 -0.15 3.08 0.14
FLSMIDTH AND 0.95 137 10.62 =35.73 30.64 0.52 0.02 3.47 0.09
GALENICA SA 0.66 1.42 5.24 -13.41 9.96 0.12 -0.61 3.41 0.13
GREENE K 0.67 0.96 7255 =29567 3205 0.44 -0.10 4.67 0.09
LOOMIS 1.93 0.93 8.03 -16.06 34.15 0.35 0.88 5.10 0.24
TAKEAWAY 4.37 3.63 11.52 1821 28.91 0.59 0.13 2.56 0.38
TECAN ' 1.28 1379 10.01 -28.21 45.73 0.58 0.07 4.82 0.13
UDG HEALTHCARE P 1.09 0.84 T3 =33:23 43.76 2.59 0.54 7.63 0.14
AAREAL BANK ( 105 0.72 12.38 -50.86 58.10 0.31 0.32 6.62 0.08
AURUBIS (X 0.88 1.76 T3T9 =25.13 19.85 0.46 -0.34 3.19 0.11
BECHTLE (X 1.29 115 10.11 -29.09 40.16 0.59 0.05 4.33 0.13
EVOTEC (X 1.81 -0.93 20.79 -44.20 171.23 0.65 3.02 2317 0.09
GERRESHEIMER ( 0.70 0.85 Ta8% -28.04 32.34 0.26 0.33 5.99 0.09
MORPHOSYS (X 3.05 0.03 27.42 -43.90 288.46 0.55 6.48 59.88 0.11
NEMETSCHEK ( 2.29 1.64 17.64 =51.71 103.33 1.46 1.66 12.42 0.13
SILTRONIC (X 3.13 -0.51 15.20 -25.63 39.36 0.43 0.13 2.33 0.20
TAG IMMOBILIEN ( 0.39 0.76 9.98 -46.68 40.78 1.09 0.36 P14 0.04
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Mid-Cap summary:

Mean_MC Median_ MC StDev_MC Min MC Max MC Midspread MC Skew_MC Kurt MC Sharpe_MC

WORLDLI 2.38 2.29 7..29 -15.68 18.26 0.38 0.16 2.9, 0.33
AIR FRANCE- 0.65 -0.28 12.52 -46.64 62.33 0.19 0.43 5.63 0.05
BANCO B =057 =099 11.99 =351103 45.38 0.41 0.05 4.08 -0.04
BANCO COMR.PORTUGUE =d A -0.89 10.74 -40.51 32.07 0.41 0.08 4.36 =034,
FINECOBANK 2524 2.45 8.3 -19.70 18.15 0.15 =022 3.04 0.28
NMC HEAL 3252 3.25 9.63 =47 59 23.85 0.46 =013 2.49 0.37
UNIONE DI BANCHE IT =057 0.22 10.73 -30.61 36.43 0.34 0.01 3.5 -0.02
VERBU 0.82 0.85 7.98 -19.89 22.14 0.35 -0.05 R L 0.10
ASR NEDERL 2.30 2.98 6.34 -9.24 14.52 0.25 0.02 2.14 0.36
HALMA 1.25 0.70 6.68 223530 24.86 0.86 -0.03 3.7, 0.19
HELVETIA HOLDI 0.77 0.86 7.62 -34.45 32.04 0.48 -0.40 7.06 0.10
HISCOX 1.18 0.72 8.30 -42.37 30.84 0.83 -0.38 7.63 0.14
ICA GRUP 1.11 0.67 8.28 -19.87 38.09 0.36 0.59 5.00 0.13
KINGSPAN GR 1.70 2.27 10.47 -29.69 42.55 0.84 0.12 4.24 0.16
ORPEA 1 5% 1.34 6.50 =25.00 19.55 0.34 =0.27 4.03 0.23
SPIRAX-SARCO E 1.29 1.85 6.76 -28.62 20.06 0.69 =055 4.61 0.19
SWEDISH ORPHAN BIOV 1.35 -0.61 11.66 -28.34 45.68 0.68 0.86 5.10 0.12
A2A 0.29 0.55 9.33 =21.57 47.41 0.45 0.98 7.60 0.03
AALBER 1.20 1.56 9531 -23.96 43.60 0.33 0.38 4.60 0.13
AMS 2.28 2.91 14.40 -40.67 56.72 0.76 0.03 4.33 0.16
CELLNEX TELE 1.58 1.87 6.69 -11.63 22.21 0.10 0.62 3.64 0.24
COBH 0.57 0.41 7.99 -28.07 30.96 0.46 0.13 4.22 0.07
ELEKTA 2513 1.81 10.30 -28.87 46.79 0.36 0.42 4.74 0.21
EURAZ 0.81 1.23 8.71 -30.00 54.49 0.39 0.48 8.82 0.09
GALAPAG 2337 0.56 12.89 s AR 70.23 0.81 1.15 6.88 0.18
GLANB 1.20 1.25 9.24 -38.67 40.68 1.33 -0.06 5.39 0.13
GN STORE N 1.60 1.44 1223 -43.95 37.92 0.38 -0.35 4.44 0.13
JUST E 2.54 3.01 11.27 =26.92 29.93 0.13 -0.03 3.14 0.22
JYSKE BA 0.97 0.91 8.11 =83:72 26.66 0.39 -0.12 5.06 0.12
LOGITECH 2.10 0.77 12.50 -31.52 66.94 0.37 0.77 6.04 0.17
MAN GRO 0.85 0.94 9:95 =39.38 26.69 0.29 -0.46 4.67 0.09
METSO 140 1.16 10.46 =893 31.69 0.35 -0.28 3.83 0.10
OCADO GR 3.38 0.18 17.47 8731 66.78 0.17 0.86 5.08 0.19
PHOENIX GROUP 0.51 0.90 6.71 =21.21 23.65 0.51 0.14 4.30 0.08
REMY COINTR 1.37 0.95 8.50 -34.09 46.14 0.34 0.41 8.59 0.14
SALM 1.97, .92 9.65 -23.18 33.75 1.78 -0.04 3.34 0.20
SECURITA 0.61 0.60 8.02 -26.01 29.90 0.25 0.04 4.43 0.08
SMITH (D 1.15 1.28 10.27 -37.89 61.05 0.92 0.42 7.93 Dl
TATE & L 0.59 0.69 7.96 -31.01 29.09 0.46 -0.24 5.03 0.07
WOOD GROUP (J 0.66 0.84 9.31 -28.74 25.89 0.41 -0.13 3.38 0.07
AUTO TRADER G 1.62 1.78 7.94 -17.24 19.82 0.09 -0.14 3.16 0.20
BBA AVIAT 0.32 0.49 8.85 -29.60 33.08 0.44 -0.23 4.21 0.04
BELLW 1.36 0.79 9.45 -36.08 33.86 0.50 0.04 4.55 0.14
BOSKALIS WESTMIN 1.25 0.81 9.32 =39.83 32.74 0.32 0.08 4.46 0.13
CASTELL 1.08 Y.A3 6.77 i b o B B 27.08 0.35 0.23 392 0.16
CYBG 0.41 -0.02 9.76 -23.72 2793 0.10 -0.20 4.37 0.04
DERWENT LON 0.98 1.47 7.24 -30.25 30.61 0.52 -0.21 54 0.14
DIASOR 1.65 1.00 6.96 =15.22 19.39 0.50 0.21 2:<87 0.24
ELIS 0.46 0.49 6.89 -=15.90 17.44 0.26 0.18 3.48 0.07
EURONE 2.38 1.00 257 -20.79 175707 0529 0.01 3T 0.31
FABE 1.45 1.64 8.09 =20.92 33.47 0537 0.03 5.45 0.18
GEORG FISC 1.03 0.91 9.84 -30.80 45.09 0.44 0.15 5.04 0.10
HERA 0.72 0.61 6.67 -16.09 23.49 0.49 -0.04 3.40 .11
HIKMA PHARMACEUT 1.45 1.13 9.92 -20.98 41.62 0.26 0.44 4.08 0.15
HUHTAMA 0.88 0.83 779 -20.82 43.16 0.48 0.88 732 0.11
INGENICO GR 1.81 112 15.98 -38.60 160.74 0.36 4.24 42.82 .11
INMOBILIARIA COL 0.04 0.00 13.41 -44.74 59.29 1.41 0.36 6.52 0.00
INTERMEDIATE CAPITA 1.23 1.65 10.34 -34.59 67.82 0.46 0.79 11.86 0.12
INVEST 0.72 0.50 8.87 -23.17 37.52 0.40 0.24 4.15 0.08
KESKO 0.84 0.92 7.95 =25.71 28.25 0.36 -0.13 3.90 011
LAGARDERE GR 0.45 0.31 8.75 -32.95 47.41 0.16 0.47 6.58 0.05
MEGGI 1.06 0.67 8.91 -36.03 45.58 0.49 0.15 6.14 0.12
MERLIN PROPERTIES 0.90 1.38 4.82 -9.63 13.00 0.23 -0.04 2t 0.19
NIBE INDUSTRI 2.04 232 8.31 -33.65 33.04 0.57 0.04 4.80 0.25
NOKIAN RENK 1.53 1.14 10.43 =39.17, 36.65 0.56 -0.21 4.59 0.15
PENNON GR 0.39 0.19 6.31 -33.78 25.16 0.45 -0.50 6.82 0.06
QUILT 0.76 0.7 1195 -13.38 12.24 0.12 -0.40 2.24 0.10
REXEL 0.33 -0.29 10.36 -24.70 44.40 0.26 0.47 4.51 0.03
RIGHTMO 2.01 2.20 9.48 -24.27 34.80 0.31 0.14 4.74 0.21
ROTO 1.06 0.86 7.49 -22.08 21.56 0.81 -0.09 3.45 0.14
RUBIS 1.10 L3 5.36 -13.66 15.20 0.45 0.08 3.02 0.20

90



SAAB
SBM OFFSH
SCHIBSTE

SIGNI

SOFI

SPECTR

STOREBRA

SUBSEA

TRAVIS PERK
WILLIAM H
ACKERMANS & VAN H
B&M EUROPEAN VAL
BB BIOTEC

BTG

DAILY MAIL

DKSH HOLD
FASTIGHETS BALD
FLUGHAFEN ZU
GETINGE

GREAT PORTLAND ES
HAYS

HOWDEN JOINERY
HUSQVARN

IG GROUP HOLD

IMI

INCHCA

INMARS

ITALG

LPP
LUNDBERGFORETAG
OC OERLIKON CORPOR
ORION

POLYMETAL INTERNAT
PSP SWISS PROPER
REC GRO

SUNRISE COMMUNICA

TRELLEBOR
POLYMETAL INTERNAT

PSP SWISS PROPER
RPC GRO

SUNRISE COMMUNICA
TRELLEBOR

1sl DRILLI

AGGRE

SPIE

CARL ZEISS MEDITEC
FREENET (X

GRENKE N (X

HELLA GMBH &
RHEINMETALL (
SCOUT24 (X
AROUNDTOWN (
FUCHS PETROLUB PF.
SARTORIUS PREF.

!
o Ok o

|
(=

H OO O0OOKWKOKOKREOKREOOHKOOOOHKRHKHFOOOHKHKFOHKOOLEROO

I e i e S S S S = I P o

.93

72

.50
79
.70
39
.84
.44
% §
.21
.80
.89
32
<53
.28
259
.85
293
.04
715
e23
.88
597
23
.87
.47
52
97
.08
21
92
79
.41

80

a2
i g

.45
.41

.80
212

45

.84
.03
S22
.11
.11
.79
=37
Rl
=15
.48
=0
=51

I
o

1
(=

O N O KO KO OO

R WO O OO OROREOOOO O

S 47
239
i 4

84

S12
.34
.70
<39
.63
£22
$93
.48
.99
.38
.34
.19
.89
.06
.95

10

ST
.48
.56
22
.96
.87
=3
.34
.54
.03
-39
<49

i52
.69
.07

525
.50

92

69

.07

25
66
56
81
F2
02
53
02
24
43
00
63
97

o

fan

-
G D DWW D WY o ®Y s 5 ®

= =
~N W N

.04
.41
.18
.49
.18

.43
.62
£95
.76
251
S
.66
12

5 i)
10.
.49
.66
.88

.64
+51

.49
.66
.88
.64
.74
.67
.84
.20
.44
.34

51

.16
.03
=59
=93
=52

-34.87
-38.44
=37.81
=17.25
-20.86
-24.75
=59:21
-54.03
-44.57
-23.82
-29.30
-24.51
-21.82
-53.82
523508
=21.502
-61.90
-32.95
-24.45
e A
-42.33
-30.40
=A7=33
-41.53
-26.02
-57.70
-22.56
-16.88
-41.21
-17.60
-56.64
=31.57
-34.50
-18.01
-21.47
-19.02

-52.34
-34.50

-18.01
-21.47
=1.9.:02
-52.34
-57.18
-39.69
-19.08
-56.15
-43.22
=39.56,
-15.26
-36.53
-10.31

-9.28
-29.84
-47.57

91

46.
27..
80.
15.
12.
ST
34.
62.
65.
33.
24.
18.
36.
69.
46.
14.
70.
36.
24.
30.
34.
96.
26.
30.
36.
62.
45.
13
52
20.
{2510
27
39.
28.
3
14.

139.
395

28.
35
14.
139.
82.
32.
14.
43.
67.
5.
23.
595
13%
12z
34.
41.

99

H OKFHOOOODOOOOoOkKOOKOOD OKFOODOOOKFODOOOOOO OO OO WOoOOokHEODOODOO OO OO o O o O

41
25
48

.24
.59
.68
.41
.94
.41
<22
«93
X7
.46

35

.48
.14
«29

91
30

.54
.38
<03
.20
<29
.50
.70
.16
<13
.28
.41
-35
37
.12

29
08
10

.30
.12

29
08
10

.30
.06
.69
.30
RERE
.46
.83
“25
.66
=36
.36
.64
13

= N = = =T =}

.04
;15
+69
.26
.64
.49
.64
.07
.06
.09
207
.60
.62
i95
553
.81
.10
.04
.08
s
.30
<13
.16
.69
.10
.19
.98
£15
.50
.01
.48
205
.26
.90
.47
.32

.10
.26

.90
.47
=32
.10
=93
.20
.18
5122

87
05
26
52
06
10
06
10

[
N oW ooy

=

B R WU o s WO U N

[
()

-

GO NGNOG <IN B 0 W OB WE 0B RO WwEs W= w s o N

'S

[

.82
<93
.81
.66

66
70
57
23
66
08
63
46
91
53
75
31
27
68
40
86

.83
.64

97
92
72
78
91
49
95
77
17
50
84
82
46
19
61

.84
.82

46
19

.61
.02
+9%
.54
.24
+3d:
.96

82

.47

51

.58

03

.74

=]

000 0000000000000 00

000 00000000000 0000000000000 000000 0O

10
08
12
11
13
14
07
10
10
02
12
10
15
10
03
09
06
10
12
12
02
14
07
13
11
13
06
29
25
21
07
10
04
18
13
02
11

.04

18
13

.02

11

ad:
«1:
.03
.10
.07
.16
15
s
+19
«32
+21:
.24



Large-Cap summary:

Mean LC Median_LC StDev_LC Min_LC Max_LC Midspread LC Skew_LC Kurt_LC Sharpe_LC

NESTLE ' 0.71 0.53 4.09 =13:15 13.01 0.10 -0.09 335 0.17
NOVARTIS 0.40 0.06 4.58 -13.42 13.05 0.09 0.07 3.13 0.09
HSBC HOLDI 0.27 0.40 6.52 -20.81 26.01 0.09 0.30 4.73 0.04
ROCHE HOLD 0.49 0.38 5.36 -18.17 15511 0.09 -0.07 3.28 0.09
TOTAL 0.49 0.68 5.36 -14.29 20.11 0.07 0.20 3.54 0.09
LVMH 1.38 132 8.21 -34.71 38.02 0.10 0.21 575 0:L7
ROYAL DUTCH SHE 0.30 0.44 5.96 -17.38 23.12 0.07 0.06 391 0.05
BP 0.25 0.14 6.92 -33.52 25.29 0.10 0.01 Bl 0.04
3I GRO 0.85 0.76 9.71 -43.50 35.77 0.28 -0.25 5i2D) 0.09
L'ORE 0.73 0.76 5:72 -16.76 22.82 0.11 0.05 4.80 0.13
ANHEUSER-BUSCH I 0.89 1.46 7.36 -34.49 28.63 0.17 -0.52 6.01 0.12
SANO 0.50 0.67 5.88 =177 23.35 0.10 0.00 3487 0.08
ASTRAZEN 0.49 0.09 7.01 -21.24 25.37 0.11 0.32 3.68 0.07
UNILEVER DUTCH C 0.47 0.39 5.43 =15:377 19.97 0.09 0.14 4.70 0.09
INDIT 133 1.05 6.34 -20.58 22.01 0.26 -0.31 4.39 0.18
GLAXOSMITHKL -0.05 -0.49 5.28 -18.10 20.22 0.11 0.21 3.91 -0.01
DIAG 0.67 0.94 4.71 -13.46 13.61 0.14 -0.29 3.07 0.14
NOVO NORDISK 1.52 1.08 7.24 -28.73 28.64 0.21 -0.20 5.35 0.21
BRITISH AMERICAN TO 0.86 123 6.79 2191 34.74 0.19 0.16 5.78 0.13
AIRB 1.36 1.50 10.07 -37.04 32.68 0.11 -0.13 4.15 0.14
BANCO SANTAN 0.33 1.04 8.52 -24.08 40.08 0.17 0.08 4.91 0.04
EQUIN 0.65 0.52 T2, -20.49 22.37 0.23 0.06 3.29 0.09
ASML HOLD 197 1.27 12.22 -40.36 49.92 0.11 0.37 5.47 0.16
BNP PARI 0.50 1.40 8.44 -30.66 29.34 0.08 -0.36 4.43 0.06
CHRISTIAN D 1.60 1.71 8.28 -31.20 37.82 0.26 -0.01 5259 0.19
UNILEVER ( 0.54 0.82 5.49 -17.79 19.07 0.17 -0.11 4.52 0.10
VODAFONE GR 0.04 0.14 T2, -22.56 25.16 0.13 -0.01 3.81 0.01
RIO TIN 127 0.66 9.94 -46.72 28.54 0.16 -0.38 4.99 0.13
ENI 0.29 0.27 5.52 16433 20.95 0.40 0.15 3.63 0.05
ENEL 0.08 0.07 5.89 -17.41 15.32 0.50 -0.17 3.39 0.01
HERMES IN 1.69 1.84 8.09 -22.49 30.39 0.37 0.14 3413 0.21
KERI 0.96 0.21 9.46 -25.90 34.45 013 0.16 4.49 0.10
LLOYDS BANKING G -0.32 -0.45 10.44 -35.88 64.10 0.14 0.65 9.36 -0.03
RECKITT BENCKISER 0.95 0.94 5.96 -22.77 30.97 0.22 -0.09 6.57 0.16
AXA 0.44 0.77 10.10 ~39:93 51.76 0.08 0.09 7.76 0.04
UBS GRO 0.18 0.09 8.67 -24.76 49.10 0.10 0.62 T.19 0.02
HEINEK 0:59 0:53 553 o R 15.80 0.14 =0.15 3.5% 0.11
ING GRO 0.42 0.69 1121 -51.54 70.75 0.09 0.30 11.52 0.04
AIR LIQU 0.64 1.02 4.73 -13.06 13.99 0.11 =0:33 33 0.14
ESSILORLUXOT 0.91 0.63 5.31 -18.23 18.16 0.21 -0.03 31T 0.17
DANO 0.51 1.02 5.14 -20.74 16.62 0.09 -0.37 3.94 0.10
GLENCO 0.15 -0.39 11.93 -38.97 45.69 0.05 0.31 5.32 0.01
PRUDENTI 0:59 1.87 8.65 -37.68 33.63 0.18 -0.41 5.54 0.07
IBERDRO 0.70 0.57 6.43 <21:35 21.81 0.21 -0.07 4.13 0.11
SAFR 163 1.62 11.31 -41.16 82.06 0.26 1.44 14.74 0.14
TELEFONI 0.20 0.37 156 -24.98 34.87 0.17 0.35 5.33 0.03
VINCI 133 1.14 6.56 -19.47 23.40 0.17 0.02 3.44 0.17
BHP GRO 1.50 1257 9.16 -24.93 43.41 0.20 0.30 4.06 0.16
EDF =0.12 -0.96 875 -19.44 27.18 0.08 0.48 3.52 -0.01
INTESA SANPA 0.22 0.61 9.89 <313 27.99 0.51 -0.37 3.72 0.02
ORAN 0.12 -0.86 11.92 -54.60 66.86 0.07 1.01 12.79 0.01
ZURICH INSURANCE 0.15 0.57 8.26 -45.46 31.50 0.11 =015 7.86 0.02
BARCLA 0.29 =0.52 11.56 -44.98 97.02 0.13 2.44 24.18 0.03
ABB LTD 1.05 0.72 14.09 =59:712 149.99 0.20 4.33 54.49 0.07
BBV.ARGENTA 011 039 8:59 -24.48 3770 0.18 0.39 5.20 0.01
SCHNEIDER ELEC 0.72 0.93 7.34 -34.43 20.49 0.13 -0.41 4.73 0.10
CREDIT AGRIC 0.39 0.28 10.37 ~28:95 34.74 0.10 0.05 3.84 0.04
PERNOD-RIC 1.09 1.04 6.08 <1781 21.51 0.17 0.27 4.07 0.18
RELX 0.64 0.57 6.22 -19.49 27.48 0.25 0.48 5.21 0.10
ROYAL BANK OF SCT -0.25 =0.11 12.00 -62.14 76.73 0.17 0.11 13.11 -0.02
NATIONAL G 0.33 0.67 5¥32 <3778 18.65 0.19 -0.24 3.68 0.06
PHILIPS ELTN.KONINK 0.85 0.52 8.86 -28.23 27.74 0.10 -0.02 4.13 0.10
RICHEMON L3 1.68 8:13 -22.89 26.24 0.19 -0.16 3.80 0.17
UNICRED -0.42 0.03 10.42 -31.50 50.48 0.50 0.29 5.88 -0.04
BT GRO -0.10 0.53 8.83 -28.35 24.51 0.16 -0.25 3% -0.01
COMPASS GR 0.58 0.92 6.10 -30.16 14.83 0.20 -0.91 5.90 0.10
NOKIA 0.34 -0.20 12.39 -34.92 66.03 0.12 0.53 6.27 0.03
SOCIETE GENE 0.51 0.50 10.35 =325 33213 0.11 -0.07 3.87 0.05
ANGLO AMERI 119 0.92 11.63 ~35:29 69.34 0.19 1403 8.84 0.10
CREDIT SUISSE G 0.05 0.27 8.88 -23.99 34.33 0.11 0.22 4.25 0.01
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