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Abstract 
 

This  thesis  work,  developed  in  cooperation  with  the  Czech 
Technical  University  in  Prague,  systematically  analyses  and 
compares  different  approaches  for  the  local  fatigue  strength 
assessment of notched specimens. The paper collects 
experimental data from the FABEST analysis campaign. After 
the experimental tests using the Amsler testing machine were 
performed, the data were efficiently collected and processed using 
statistical techniques to determine the classical S-N curves, i.e. 
stress versus number of cycles to failure. Subsequently, the theory 
of critical distances, the relative stress gradient method and the 
strain energy density were applied through finite element analysis 
and other computer tools in order to compare the theoretical 
approaches with experiment. To achieve this goal, the thesis has 
been divided into eight chapters: 
▪  In the first chapter, the classical fatigue strength analysis, i.e. 

the  one  that  takes  a  nominal  stress  as  a  reference,  was 
introduced by means of some historical references. In the final 
paragraphs, a particular criticality in the use of this approach 
was highlighted. 

▪  The second chapter is based on Neuber's innovative idea from 
which  multiple  approaches  for  the  evaluation  of  fatigue 
strength  will  arise.  In  particular,  the  theory  of  critical 
distances  -  TCD  -  is  described  and  it  brings  together  two 
methods: the first is based on an integral average determined 
up  to  a  certain  length 𝜖  and  the  second  is  based  on  the 
extraction of a certain stress at a distance 𝑥𝑐 . Both of them 
use the material curve to determine an effective stress. 

▪  The third chapter presented the theory of the relative stress 
gradient - RSG - which defines a local component S-N curve 
to determine fatigue strength. Various techniques from 
different  authors  and  also  from  the  FKM  guidelines  were 
studied. 

▪  In the fourth chapter, the point of view was changed, i.e. a 
new  physical  quantity  was  considered:  the  strain  energy 
density - SED. Again, this approach rests its foundation on 
Neuber's idea of structural volume. 

▪  In the fifth chapter, the experimental apparatus adopted to 
obtain  the  necessary  data  was  described.  Furthermore,  not 
only the statistical methods for the determination of fatigue 
curves  were  described,  but  further  results  of  fatigue  tests 
performed  on  other  types  of  material  and  geometries  were 
added. 

▪  In  Chapter  Six,  the  fatigue  crack  initiation  points  and  the 
fatigue failure surface of the specimens under analysis were 
described by means of microscopic analysis. 

▪  In  the  seventh  chapter,  FEM  analyses  were  conducted  to 
determine  the  physical  quantities  required  to  apply  the 
theoretical approaches described in the first chapters of the 
thesis. In the second part, all useful parameters were 
determined using the Matlab programming language in order 
to establish a comparison between TCD, RSG and SED with 
the experimental tests in order to determine the deviations 
between experimental reality and the analytical approach. 

▪  In the eighth and final chapter, an accuracy analysis between 
the different approaches was performed with the aim of finding 
the best method to predict the fatigue strength. 

Finally, the various appendices describe the static tensile tests 

for determining certain parameters useful for the analyses and 

the programming codes used. 



 



Chapter 1

FATIGUE OF METALLIC
MATERIALS: NOMINAL
APPROACH

1.1 Brief historical description of fatigue
The first studies on fatigue of metallic materials date back to 1829 when the German engineer W. A. J.
Albert, Fig. 1.1,director of the mining industry in Clausthalin the Harz region,observed and studied
the failure of chains of iron mining conveyors.After many experimental observations, carried out thanks
to a testing machine built by himself,he published in 1837 the studies related to the phenomenon.His
finding was that fatigue was not associated with an accidental overload, but was dependent on load and
the number of repetitions of load cycles [46].As early as the first half of the 1800s, the first concepts of
the phenomenon of fatigue, as it is known today, were introduced.In particular, the idea of "repetitions"
associated with "number of cycles" hinted that the fatigue must be protracted over time.

Figure 1.1: Engineer Wilhelm August Julius Albert

Because of the excessive cost of replacing chains, Albert invented the wire rope, which was certainly more
important than the early fatigue studies.
With the development of metallic materials and their use in applications such as bridges and railroads,
sudden breaks began to become more frequent.Due to the railway accident at Versailles, France, fatigue
research was performed in 1842.In particular,W. J. M. Rankine (Fig.1.2a),commonly known for
his studies in the field of thermodynamics,discussed the railway axles failure and he said that areas of
concentrated stress could initiate failures.This was an early example of defining the notch effect [46].
In 1853 the french physicist Arthur-Jules Morin,Fig. 1.2b,discussed axles failure of horse-drawn mail
coaches and he asserted that the replacement of the axles should be made approximately at 60000  km.
This was a first example ofthe safe life design approach.In addition,he noticed that cracks mainly
occurred at section changes [46].
The term fatigue was mentioned for the first time by the Englishman and civilengineer Braithwaite in
1854,Fig. 1.3a.Braithwaite,however,says that Mr.Field coined the term.In his paper,Braithwaite,
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(a) (b)

Figure 1.2: (a) Engineer William John Macquorn Rankine, (b) Physicist Arthur-Jules Morin

describes many service fatigue failures of brewery equipment, water pumps, propeller shafts, crankshafts,
railway axles, levers, cranes, etc.Allowable stresses for fatigue-loaded components are also discussed [46].

(a) (b)

Figure 1.3: (a) Engineer John Braithwaite, (b) Mathematician and Engineer Jean-Victor Poncelet

The mathematician and engineer Jean-Victor Poncelet,Fig. 1.3a,professor ofmechanics at the école
d’application in 1825 [46],in his lectures he coined the term fatigue to describe the state ofmaterials
subjected to stress.He is particularly interested in the design of turbines and water wheels.
Between 1850 and 1860, the german engineer August Wöhler, Fig. 1.4, royal  Obermaschinenmeister of the
Niederschlesische-Märkische Bahn Railways in Frankfurt an der Oder, conducted a series of experiments
on railway axles with self-developed deflection gages.The tests were performed in fatigue laboratory
under repeated stresses subjected to bending,torsion and axialloads. These studies showed that the
fatigue life increased with decreasing applied stress so that below a certain amount of tension component
seemed to have infinite life.Even Wöhler,in those years,noted that the fatigue life of the component
decreased drastically in the presence of notching effects [46].
Wöhler represented his test results in the form oftables. Spangenberg,his successor,as director of
the Mechanisch-Technische-Versuchsanstalt in Berlin [43], plotted the results of Wöhler as curves forms,
although in the unusualform of linear abscissa and ordinate,obtaining S-N curves,where S stands for
Stress and N stands for Number of cycles.The S-N curves were called Wöhler curves since 1936 [46][52].

1.2 Introduction to fatigue phenomenon
Nowadays, mechanical structures have to meet a number of design requirements such as static strength,
fatigue strength and stiffness.However,fatigue tends to be the most common reason for the limited

2
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Figure 1.4: Engineer August Wöhler

lifetime ofa mechanicalcomponent.Fatigue is a progressive damage mechanism ofmaterialthat can
lead to failure of a mechanical component subjected to repeated stresses over time,even if the external
load cause stresses well below the ultimate tensile strength σUTS of material.These stresses, in order to
cause fatigue fracture, are not only well below σUTS , but also the yield stress σy. In other words, stresses
that would be absolutely safe from a static point of view can cause fatigue failure.

Figure 1.5: Phenomenon of crack propagation on a specimen subjected to a tension-compression load

To describe the fatigue phenomenon a metallic materialspecimen is considered (for example:steel),as
depicted in Fig. 1.5, repeatedly subjected to tension–compression load.After a certain number of cycles
N , a first sign of damage occurs when a crack is initiated from the surface.After this initial phase has
developed,as the tensile and compressive load cycles continue,the crack propagates in the orthogonal
direction to the stress flow.The repeated action of the stresses causes a propagation until the resistant
section is reduced to such an extent that it can no longer bear the maximum load of the stress, at which
point a failure occurs.Fatigue phenomenon described above is very dangerous, in fact:

• Fracture occurs without any obvious warning signs, i.e.it is manifested in a brittle manner even in
materials that prove to be ductile in a tensile test, such as steel.

• Fatigue failure occurs over time (just when the structure is considered tested).

80-90% of mechanical failures in operation occur through fatigue, hence the importance of these studies.
Static failures are very rare and occur ifthe designer did something wrong during verification or the
structure was subjected to excessive load.
As will be better seen in Ch. 6, in the following Fig. 1.6 it is possible to identify the three main phases
involved in fatigue damage.
As can be seen, the first phase of fatigue damage is characterized by a smooth surface, i.e.there are no
traces of plastic deformation that have altered the initialsection of the specimen.The finalresistance
section presents a rough surface as can be easily verified in the static tensile test.

3



Chapter 1. FATIGUE OF METALLIC MATERIALS: NOMINAL APPROACH

Figure 1.6: The 3 phases of fatigue damage:initiation, propagation and failure

1.3 Armonic load description
At the beginning a simple case of repeated stress over time is considered, i.e.a sinusoidal spectrum stress
as shown in Fig. 1.7:

Figure 1.7: σ = σ(t) function [1]

The meaning of the symbols are as follows [4]:

σa = Amplitude of stress

∆σ = Range of stress

σmax = Maximum stress

σmin = Minimum stress

σm = Mean stress

N = Number of cycles

N ′ = Alternation

Another parameter of the stress sine wave is defined, that is stress ratio  R:

R =
σmin

σmax
(1.1)

The parameters mentioned above are linked to each other.In particular, for the stress range:

∆σ = σmax − σmin (1.2)

and for the stress amplitude:

σa =
∆σ
2

=
σmax − σmin

2
(1.3)

Knowing the mean stress σm and the stress amplitude σa, it is possible to determine the maximum stress
σmax as:
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σmax = σm + σa (1.4)

and the minimum stress σmin as follow:

σmin = σm − σa (1.5)

Eq. 1.1 can be written as:

R =
σm − σa

σm + σa
(1.6)

Referring to Fig.1.8,the most commonly applied stress ratios in fatigue tests are R equalto −1 (fully
reversed loading).

Figure 1.8: Fully reversed loading with R = −1 [1]

In this case σm = 0 and σmin = −σmax.

1.4 Characterisation of metallic materials at fatigue
As said before,in order to have fatigue phenomenon,time-varying stresses must be induced.To carry
out fatigue tests on specimens,the stress cycle ofFig. 1.8 is initially applied,i.e. with a mean stress
equal to zero in this case.A certain stress amplitude σa is set and, in the meantime, is necessary to count
the number of cycles Nf that induce fracture.In this way on (σa, Nf ) plane it is possible to individuate
points.What is obtained, with a fit of the experimental points, is the Wöhler curve in Fig. 1.9.

Figure 1.9: Wöhler curve in linear scale

In order to understand which stress has been applied, it is necessary to define a second parameter, called
stress ratio R, shown at the top right of the graph σa = f(N f). It can be seen that as the stress amplitude
σa increases, the number of cycles Nf to failure decreases, i.e., the fatigue life decreases.Conversely, if the
applied stress decreases,the fatigue life increases.By applying a certain stress level,a limit is reached
beyond which the specimen does not break,even after many millions ofcycles,conventionally set at
2 × 106 ÷ 108 for steel, according to UNI 7670.These points are represented with an arrow.The trend
obtained from the fit ofthe experimentaldata suggests a particular stress amplitude beyond which,
theoretically, the life of the fatigue specimen is infinite.This stress level is so important for design that it
is called the fatigue limit and is denoted by σa,∞,−1 , where a denotes the stress amplitude, ∞ denotes that
the fatigue life is theoretically infinite and −1 is the stress ratio value.To lighten this notation σa,∞,−1
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is equalto σ0. It should be noted that there is some statisticalscatter in the experimentalresults,so
fatigue is a statistical phenomenon and this adds an additional danger factor.
Plotting the experimentalpoints on a graph having linear scales,at a low number ofcycles,the data
cloud would be very compressed towards the y-axis equals to the stress amplitude σa. For this reason,
the graph was reconstructed using logarithmic scales in base 10.A series ofpoints with an S-shaped
trend and a mean fit curve interpolating the experimental data were obtained in Fig. 1.10.

Figure 1.10:Wöhler curve in log − log scale

Considering a certain value of stress amplitude σa it is possible to determine a number of cycles Nf that
on average the specimens showed at failure.This means that in 50% of cases the specimens broke before
crossing the mean curve and in 50% of cases other specimens broke after crossing the mean curve.This
means that the curve plotted on the graph is a curve with 50% probability of survival.In the graph in
logarithmic scales,it is possible to identify the fatigue limit σ0 and the stress amplitude σS that leads
to failure of the specimen at the first load cycle,i.e., for a stress ratio R = −1,equalprecisely to the
ultimate tensile strength σUTS of the material.To plot the curve in Fig.1.10 typically,a cylindrical
specimen having a constant diameter of 10 mm, with a lapped surface and subjected to rotating bending
tests was adopted, as shown in the scheme in Fig. 1.11.

Figure 1.11:Alternating bending test machine

The specimen is supported by a left-hand bearing anchored to the frame of the testing machine.A weight
P is applied to the right end through a second bearing,precisely on the outer ring.The specimen is
driven with a number of revolution n.The weight results in a Navier’s stress trend,where it is easily
identified a point A subject to a bending stress σf and a point B subject to a bending stress equalto
−σ f . In the graph σf = σf(t), starting from point A, integral to the test specimen, the stress goes from
a positive value to a negative value and after one revolution it returns positive.In this case 1 cycle is
equal to one revolution of the sample.
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1.5 Effect of shape variation on fatigue

1.5.1 Static stress analysis and stress concentration factors
In Sec. 1.4 it was determined the fatigue curve of smooth specimen.In this way it was possible to obtain
the fatigue limit σ0 which is a property of the material.A generic mechanical component, however, has
geometric variations and is used in different environments compared to a testing laboratory.To make
the transition from a laboratory specimen to the real component, a number of parameters must be taken
into account.Performing this step allows to translate the Wöhler curve of the base specimen (smooth)
to the Wöhler curve of a generic mechanical component under real operating conditions.An important
internal parameter that affects fatigue life takes into account changes in the shape of a component.
As an example, a plate subjected to a fatigue load is taken as reference in Fig. 1.12a.It is smooth because
its rectangular cross section is constant along the entire length of the specimen  L.To introduce a shape
variation,its section can be perturbed by introducing a hole,Fig. 1.12b.The hole alters the smooth
shape of the plate,i.e. the rectangular cross section is no longer constant with a certain width  W and
thickness t.

(a) (b)

(c) (d)

Figure 1.12:Effect of shape variation and hydrodynamic analogy

In the smooth plate,the stress σ flow lines run parallel,like the fluid flow lines of a fluid inside a pipe
in Fig. 1.12c.Following the hydrodynamic analogy,the fluid flow lines inside a pipe in Fig.1.12d are
forced to deflect.From the fluid dynamic point of view a shrinkage of the section from a diameter equal
to D to a diameter equal to d causes an increase in fluid velocity from v1 to v2. A completely equivalent
situation also occurs in the drilled plate where, in the vicinity of the hole, the stress flow lines are forced
to bypass the obstacle and this,from a tensionalpoint of view,alters the path of the stress flow lines.
Locally there is a stress increase and this has an effect on fatigue strength.
Initially,to better understand the effect that a change in shape has on the fatigue life of a component,
the stress field near the hole was analyzed from a static point of view.The plate with hole in Fig. 1.13
has width W and hole diameter equal to ϕ.
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Figure 1.13:Stress concentration effect on a flat-bar with a hole

The hole causes increased stress in the vicinity of points P and Q.Any alteration in shape, which causes
a concentration of stress, is called notch.The effect of stress concentration is called the notch effect, and
the point at which the maximum stress occurs is called the notch tip.A stress far from the hole is defined
as the gross nominal stress σg:

σg =
F
Ag

=
F

W t
(1.7)

where F is the force acting on the rectangular section of the plate and Ag is the gross area of the section
and it is equalto Ag = W t. Along the horizontalaxis of the hole,another reference tension is defined
called net nominal tension σn:

σn =
F
An

=
F

(W − ϕ)t
(1.8)

where An is the net area and it is equalto An = (W − ϕ)t. σn is greater than σg because An is lower
than Ag. In reality, the stress at the net section is not uniform at all, but increases progressively towards
the tip of the notch.The stress field has a peak at the apex of the notch and then, with some gradient,
decreases.Under the assumption of linear elastic material behavior, the stress peak is denoted as  σpeak.
The blue area must be equal to the gray area,in fact,considering a reference system that originates at
the tip of the notch:

F =
∫ W

2 − ϕ
2

0
σntdx =

∫ W
2 − ϕ

2

0
σyy (x)tdx (1.9)

To quantitatively describe the stress concentration effect,theoreticalstress concentration factors were
defined as follows:

K t,n =
σpeak

σn
(1.10)

if it is referred to the nominal net stress σn, and:

K t,g =
σpeak

σg
(1.11)

if it is referred to the nominal gross stress σg. There is a link between the two factors, in fact:

σpeak = K t,n · σn = K t,g · σg (1.12)

and then
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K t,g

K t,n
=

σn

σg
=

An

Ag
(1.13)

It can be guessed from these relationships that the stress concentration factor  Kt depends on the geometry
of the component and the loading mode.The stress concentration factors for various structuraldetails
are collected in handbooks,e.g. Peterson’s [41],in the form of diagrams.An example of a diagram is
depicted in Fig. 1.14

Figure 1.14:Peterson’s diagram of Kt = f (ϕ/W ) [41]

If the structure or the structural detail are more complex, a finite element analysis is used.

1.5.2 Example of stress concentration factor determination
In this subsection,a simple finite element analysis is presented to determine the stress concentration
factor.As has been seen,K t can be determined through graphs provided by Peterson [41],or through
numerical methods, as in this case.The following flat-bar with a hole in Fig. 1.15 is subjected to a fatigue
load fluctuating between +F and −F .

Figure 1.15:Analyzed flat-bar with hole

In this case F = 100 N, W = 45 mm, L = 150 mm t = 10 mm and ϕ = 15 mm.This exercise has been
carried out by means of the ansys® calculation code.Since the thickness t <<

√
W L a 2D analysis was

performed to simplify the problem.The analysis started from the Pre-Processor environment.The
element type has been defined with the following commands:Element type - Add/Edit/Delet -
Solid - Quad 4 Node 182. Through the Option has been set a K1 on simple enhanced strn and
a K3 on plane stress with thickness. The materialwas set up using the commands:Material
Props - Material Models - Structural - Linear - Elastic - Isotropic and the Young’s modulus
E = 206000 M P a and Poisson’s coefficient υ = 0.3 have been inserted.The thickness was set using the
following commands:Real constants - Add/Edit/Delet - Add - Ok. These three screens are
shown in Fig. 1.16.
Later, geometry was created using the following commands:Modeling - Create - Areas - Rectangle
- By dimensions. In the window the coordinates of the points have been inserted, following the scheme
in Fig. 1.17.The following commands were used to create the hole:Circle - By dimensions to create
the circle and Booleans - Substract - Areas to subtract the excess area from the flat-bar.As can
be seen,only 1/4 plate was modeled to take advantage of the symmetry conditions and not to engage
the software with unnecessary computational operations.
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(a) Element type (b) Material properties

(c) Thickness t equal to 10 mm

Figure 1.16:Element type and material definition

Figure 1.17:Modeled geometry in ansys®
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In the next step,the mesh was created through the following operations:Meshing - Size cntrls -
Manualsize - Lines - Picked lines to set the number of subdivisions or the size of the elements (with
also the Spacing Ratio command to thicken the hot zone) and Flip bias to reverse the thickening zone,
if necessary.On Mesh - Areas - Free a free mesh was created.Fig. 1.18 shows the mesh.

Figure 1.18:Free mesh of flat-bar

The boundary conditions were applied with the commands:Loads - Define loads - Apply - Struc-
tural - Displacement - Symmetry B.C. and the load with the following commands Pressure - On
lines. Symmetry conditions impose carriage constraints along X that lock UY displacements and along
Y that lock UX displacements, as shown in Fig. 1.19

Figure 1.19:BCs and load

a gross stress σg was applied equal to:

σg =
F

2 ·W
2 · t

=
F

W t
=

100
45 · 10

= 0.222 MPa (1.14)

The nominal stress σn on the net section is:

σn =
F

2 ·
( 

W
2 − ϕ

2

) 
·t

=
F

2 ·
( 

W−ϕ
2

) 
·t

=
F

(W − ϕ)t
=

100
(45 − 15) · 10

= 0.333 MPa (1.15)

To apply the definitions from Eq. (1.10) and Eq. (1.11), σpeak is necessary.Through the Post-Processor
environment it was possible to determine the peak stress with Plot results - Contour plot - Nodal
solution - 1st Principal Stress commands.
It was possible to derive the stress plot in Fig.1.20 and the diagram representing the stress field along
the net section as in Fig. 1.21 with the following commands:Path Operations - Define Path - By
Nodes and Map Onto Path - S1.
The peak stress is determined by reading the value at x = 0,i.e. σpeak = 0, 7676 M P a.The following
analyticalexpressions of Kt, for a flat-bar with a hole,have been derived from the Peterson handbook
[41]:

K t,g = 0, 284 +
2

1 − ϕ
W

− 0, 600 ·
( 
1 −

ϕ
W

) 
+1, 32 ·

( 
1 −

ϕ
W

) 2
(1.16)

K t,n = 2 + 0, 284 ·
( 
1 −

ϕ
W

) 
−0, 600 ·

( 
1 −

ϕ
W

) 2
+1, 32 ·

( 
1 −

ϕ
W

) 3
(1.17)
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Figure 1.20:1st principal stress plot

Figure 1.21:1st principal stress field as a function of distance x

In this case Kt,g = 3, 47 and Kt,n = 2, 31.Instead,below,the definitions from Eq.1.10 and Eq.1.11
were applied:

K t,g,FEM =
σpeak

σg
=

0, 767
0, 222

= 3, 45 (1.18)

K t,n,FEM =
σpeak

σn
=

0, 767
0, 333

= 2, 30 (1.19)

Between finite element method and Peterson’s diagram were obtained errors equal to:

∆ g,% =
K t,g − K t,g,FEM

K t,g
· 100 =

3, 47 − 3, 45
3, 47

· 100 = 0, 57% (1.20)

∆ n,% =
K t,n − K t,n,FEM

K t,n
· 100 =

2, 31 − 2, 30
2, 31

· 100 = 0, 43% (1.21)

results, from an engineering point of view, more than acceptable.

1.5.3 Fatigue strength behavior
In the previous section,the theoretical stress concentration factor Kt was obtained using two methods:
through the Peterson’s diagrams and through a finite element analysis.At this point, the effect of shape
variation on fatigue strength was considered by taking the flat-bar in Fig.1.12a and Fig.1.12b.The
Wöhler curve was derived for both the smooth (or material) and notched specimen, as shown in Fig. 1.22
below.
At the fatigue limit, the Kf factor was introduced as:

K f =
σ0

σ0,n
(1.22)

where σ0,n is the fatigue limit of the notched component referred to the net nominalsection.Since the
stress field near the notch is not uniform,an elastic peak stress was identified.In this case,when the
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Figure 1.22:Wöhler curve of material and notched specimen [4]

point most stressed by fatigue comes to undergo a stress amplitude equal to the material property, here
is where the crack begins to propagate.This condition occurs when:

σ0,peak = σ0 (1.23)

where σ0,peak is the peak stress amplitude at the fatigue limit.From equation 1.10 it is possible to write:

K t,n σ0,n = σ0 (1.24)

whence:

σ0,n =
σ0

K t,n
(1.25)

Comparing Eq. 1.25 with Eq. 1.22 it is possible to state that Kt,n = K f . Experimental results have shown
that in fact Kf ≤ K t,n . In design, Peterson’s expression is often used:

K f − 1 = q · (Kt,n − 1) (1.26)

where q is the notch sensitivity factor modulating the relationship between  Kf and Kt,n . According to
Eq. 1.26, q is defined as:

q = q(ρ) =
1

1 +a∗

ρ

(1.27)

The following three cases can be distinguished:

• q = 0: zero notch sensitivity,i.e. for each value of Kt,n the fatigue factor is Kf = 1. Even in the
presence of a stress-concentrator, this has no effect from the fatigue point of view.

• 0 < q < 1: partial notch sensitivity, i.e.it can observed that 1 < Kf < K t,n .

• q = 1: full notch sensitivity, i.e.K f = K t,n .

The index q varies in a range between 0÷1 and thus it weights the stress concentration effect described by
K t,n , which only highlights the static stress reality, to assess what is the true effect of stress concentration
on fatigue strength.To solve a mechanical design problem, a∗ is a function of the ultimate tensile stress
of the material,i.e. a∗ = f(σ UTS ) and can be found in the literature.It is possible to see the function
q = q(ρ) in Fig. 1.23.

Figure 1.23:Notch sensitivity factor as a function of radius
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aaa
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Chapter 2

CRITICAL DISTANCES APPROACH

In this chapter the theory of critical distances will be described.This approach is based on the foundations
built by Neuber arounf 1950 and its aim is to evaluate fatigue strength in a simple way, i.e.by means of
a linear elastic stress distribution near the apex of the notch in any mechanical component [38].

Figure 2.1: Sketch of input parameters for the TCD method

From the static tensile test (see Ch. 5) the material properties were determined as input parameters for
the FE analysis.With the help ofautocad ® , the geometry was imported into the structural analysis
software and the load and constraint conditions were entered.The output is the maximum principal
stress which was used to apply the method (Fig. 2.1).

2.1 Neuber’s consideration on the shape variation effect
As said in the previous chapter, experimental reality highlights the fact that  Kf ≤ K t,n . To explain why
the experiment deviates from theory, in the 1950s, German professor H. Neuber, introduced the concept
of structural volume to interpret fatigue strength in the presence of notch effects [38].He asserted that
fatigue failure is determined not so much by the maximum point stress that occurs at the surface of the
component, but by the local stress σ¯ averaged in some structural volume δ whose size is a property of the
material.Taking as reference a notch (Fig. 2.2) on a mechanical component subject to an external load
that produces fatigue, to see if the crack propagates it is necessary to study the stress level averaged in
δ.
At the fatigue limit of the notched component, the following condition must occur:

15



Chapter 2. CRITICAL DISTANCES APPROACH

Figure 2.2: Neuber’s considerations [38]

σ0̄ = σ0 (2.1)

i.e. the stress amplitude,averaged in the structuralvolume,at fatigue limit,must be equalto σ0. At
this point, when the notch is blunt, it can be inferred, from the numerous graphs provided by Peterson,
that the theoretical stress concentration factor Kt,n is quite low and therefore the stress field gradient is
modest (Fig. 2.3).It can be concluded that the peak stress σpeak obtained at the tip of the notch is not
that different from the stress averaged in the structural volume  σ¯, viz:

σ¯ ≈ σpeak (2.2)

At fatigue limit, from equation 2.1, and considering2.2:

σpeak,0 = σ0 (2.3)

where σpeak,0 is the peak stress at fatigue limit.From definition 1.10:

K t,n σn,0 = σ0 (2.4)

With a smaller fillet radius ρ the equation 2.4 is too conservative.In fact, in this situation Kt,n is higher
than the previous case and this causes a high stress gradient.In this case,it is necessary to state that
the stress averaged in the structural volume is less than the peak stress, as shown in Fig. 2.4.This time,
the transition from nominal net stress to σ¯, must occur with a coefficient Kf that is damped relative to
K t,n . The reason for this consideration can be easily seen in the Fig. 2.4 where it can be noticed that  Kt,n

allows the transition from the nominal net stress to the peak stress, a passage that is far too pronounced
since the goalis to arrive at the stress averaged in the structuralvolume which is less than the peak
stress.Through these considerations it is possible to develop the first member of equation 2.4 by writing
K f instead of Kt,n , as follows:

K fσn,0 = σ0 (2.5)

From Neuber’s idea,a series ofmore advanced theories for evaluating the fatigue strength ofnotched
mechanical elements were developed.
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Figure 2.3: Blunt notch [38] Figure 2.4: Notch with small radius [38]

2.2 The theory of critical distances
As Taylor maintains [51][50],criticaldistance theory (TCD) is the name given to a group oftheories
used to predict the notching effects [31][29][5][47].The first attempt to use TCD in fatigue strength
determination was made by Neuber,in Germany,in the 1950s.Based on the considerations made in
Section 2.1, Neuber proposed that the fatigue limit of a component containing a notch can be predicted
using the average stress calculated along a line drawn from the tip ofthe notch to a length that is a
property of the material.His approach was expressed as follows:

1
ϵ

∫ ϵ

0
∆σ(x)dx = ∆σ 0 (2.6)

Where ϵ is the distance up to which the integral calculation is performed,∆σ(x) is the stress field as a
function of distance from the apex of the notch and ∆σ0 is the fatigue limit range of unnotched specimen.
This method has been formalized as the Line Method (LM) and states that a real notched component is
in its fatigue limit when the mean integralof the stress field from the tip of the notch to a length ϵ is
equalto the range of the fatigue limit of the material.Later,Peterson,proposed a simplified approach
formalized as the Point Method (PM) expressed as:

∆σ(x c) = ∆σ0 (2.7)

where xc is the distance at the apex notch from which the stress is taken.PM states that a component
with a notch is in its fatigue limit when the stress taken at a certain distance equals the fatigue limit of
the material [10][3].
These two formulations at the time presented a not insignificant problem:the determination ofthe
notch-tip stress distribution ∆σ(x).Therefore,through the fit of numerous experimentaldata,Neuber
proposed the following empirical expression:

K f = 1 +
K t,n − 1

1 +
√ 

a∗

ρ

(2.8)

and Peterson the following one:

K f = 1 +
K t,n − 1

1 +a ′

ρ

(2.9)

Moreover,in the above relationships,ρ is the notch root radius,a∗ and a′ are two criticaldistance
constants [48].
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2.3 Critical distances theory applied to high-cycle fatigue
The criticaldistance theory assumes that the stress distribution near stress concentrator is necessary
to correctly assess fatigue damage.With the advent of the finite element method,today it is possible
to develop more refined calculations and use the originalexpressions.According to the TCD,notched
components are in their fatigue limit condition when the effective stress,∆σ eff, which depends on the
maximum principal stress distribution ahead of the tip of the notch, equals the reference material strength
∆σ ref [18][8]:

∆σ eff = ∆σref (2.10)

Initially,the criticaldistance is defined by El-Haddad from LEFM [12].In particular,according to the
linear-elastic TCD, the material characteristic length, L, can be calculated as follows:

L =
1
π

( 
∆K th

∆σ 0

) 2

(2.11)

where ∆Kth is the range of the threshold value of the stress intensity factor and, again, ∆σ0 is the range
of the fatigue limit (both determined under the same load ratio,R). L is, therefore,also a property of
the material.A component, according to TCD-LM, is in the fatigue limit condition when the following
condition is assured:

∆σ eff =
1

2L

∫ 2L

0
∆σ 1(θ = 0, r)dr = ∆σ0 (2.12)

i.e. when the range ofthe maximum principalstress,averaged over a distance from the apex ofthe
notch of 2L,equals the range of the reference stress of the material.With high-cycles fatigue problem
the reference material strength is equal to the plain fatigue limit, i.e.∆σ ref = ∆σ0. Fig. 2.5 is taken as
a reference for the symbology used in the Eq. 2.12 and Eq. 2.13.

Figure 2.5: Adopted sumbology for the TCD application [49]

The formalisation of the TCD-PM, on the other hand, is written as follows:

∆σ eff = ∆σ1

( 
θ = 0, r =

L

2

) 
= ∆σ0 (2.13)

and states that a notched component reaches its fatigue limit when a certain stress, taken at a distance
L/2, equals the fatigue limit ofthe material.Fig. 2.6 graphically shows how the line method and the
point method work.
For information purposes,there are additionalformulations ofTCD. Taylor revived an idea suggested
by Sheppard, namely that the effective stress can be calculated by averaging the range of the maximum
principalstress over a semicircular area.This method has been formalised as the Area Method (AM),
Fig. 2.7 and is defined as follows:

18



Chapter 2. CRITICAL DISTANCES APPROACH

Figure 2.6: Line Method and Point Method formalisation [48]

∆σ eff =
4

πL
·
∫ π/2

−π/2

∫ L

0
∆σ 1(θ, r) · dr · dθ ≈ ∆σ0 (2.14)

Finally, it is worth recalling here that,according to Bellett et al.,the range ofthe effective stress can
alternatively be calculated by averaging the range ofthe first principalstress,∆σ 1, in a hemisphere
centred at the apex of the stress raiser and having radius equalto 1, 54L:this is known as the Volume
Method (VM).

Figure 2.7: Area method formalisation [29]

2.4 Critical distances theory applied to medium-cycle fatigue
Given the remarkable accuracy achieved by the theory of critical distances in predicting fatigue failure at
high cycle regime [49], its version for medium cycle fatigue was also implemented.The results achieved
with the application of TCD in static,medium and high cycle fatigue are really interesting considering
the fact that only a linear stress distribution, obtained through a simple FEM analysis, is required in the
vicinity of the notch.In the previous paragraph, it was mentioned that the most successful formulation
of TCD postulates that an effective stress,calculated in various ways,must equala stress taken as a
reference.If TCD is used to predict static failure then the characteristic length of material to be used is
as follows [49]:

L S =

( 
K Ic

σref

) 2

(2.15)
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where KIc is the plane strain fracture toughness and σref is a reference stress,which in many cases is
equal to ultimate tensile strenght of the material σUTS . The formalisation of the line method, in statics,
takes the following form:

∆σ eff =
1

2LS

∫ 2L S

0
∆σ 1(θ = 0, r)dr = ∆σref (2.16)

while for the point method:

∆σ eff = ∆σ1

( 
θ = 0, r =

L S

2

) 
= ∆σref (2.17)

In general, the characteristic lengths of the material, respectively  LS for static problems and L for high-
cycle fatigue,have different values.For finite-life applications,this length willvary as the number of
cycles to failure varies and therefore L, renamed LM in this field, will be a function of Nf . There are two
approaches to determining this function:

• A classical approach using material properties in static and high-cycle fatigue.

• Reversed point method with two calibration curves:the first one from smooth specimen and the
second one from notched specimen.

Before going into more detail, it is necessary to understand what kind of function was used to achieve the
aim.Knowing that, in accordance with the schematisation of the Wöhler curve, the relationship between
the stress amplitude and the number of cycles to failure is a power function,a similar relationship was
also determined between LM and Nf , viz:

L M (N f ) = AN B
f (2.18)

The following sub-sections describe the two methods for determining the function written above.

2.4.1 Determination ofthe functionalrelationship between L and Nf using
the classical approach

The first method that has been developed to determine the constants  A and B ofthe function LM =
LM (N f) is based on the use ofmaterialproperties given by static and dynamic loading.The Wöhler
curve ofa smooth specimen,generated with a cycle ratio ofR and with reference to the nominalnet
stress amplitude (Fig. 2.8), is considered to derive the fatigue limit of the material  σ0 and the stress that
leads to static failure of the specimen σS, related to the UTS by the following relation:

σS =
(1 − R)

2
· σUTS (2.19)

Specific to the case in this thesis work σS = σUTS .

Figure 2.8: Application of TCD in its classical formulation in MCF [49]

The following system of two equations in two unknowns can be written:
{ 

L S = AN B
S

L = AN B
0

(2.20)
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which provides the following solutions:

B = −
log

( L S
L

) 

log
( 

N 0
N S

) (2.21)

A = LN −B
0 (2.22)

From a theoretical point of view, this procedure is correct if N0 and NS have been precisely determined.
In practice,due to statisticalscatter,the calibration ofthe equation Eq.2.18 is,most ofthe time,
not adequate enough to predict notch effects in the finite-life range.In addition,many different tests
are required to derive the necessary materialproperties and this may lead to increased costs within a
production process [49].

2.4.2 Determination ofthe functionalrelationship between L and Nf using
calibration curves

Two curves were considered for the application ofthis second approach:the smooth and the notched
specimens curve (Fig. 2.9).The two curves shown were determined using statistical techniques described
in Ch. 5. The point method can be used to derive the critical distance following an inverse path, at any
given number ofcycles to failure.Referring to Fig.2.9,the stress profile acting in the vicinity ofthe
notch due to an external load σg,a, at a number of cycles equal to Nf was determined.The stress applied
to the smooth specimen, at the same number of cycles as previously assumed, was used as input data to
determine the corresponding critical distance L(Nf )/2, by crossing the diagram σ1 = σ1(r).

Figure 2.9: Application of TCD with two calibration curves in MCF [49]

If this is done for any two or more values of Nf then the constants in Eq. 2.18 can be found.This method
is statistically consistent and this is advantageous compared to the approach defined in Sec. 2.4.1 [49].
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Chapter 3

RELATIVE STRESS GRADIENT
APPROACH

In this chapter,the stress gradient method willbe addressed from the perspective ofthe femfat®

software and the FKM guidelines.Given the simplicity oflinear analysis using the FE method,the
starting point is always the same:the determination of the stress field near the tip of the notch.The
approach according to femfat® requires the determination of the equivalent Von Mises stress distribution
[13], whereas the approach followed by FKM requires the maximum principal stress distribution [15].

Figure 3.1: Example of sketch input parameters for the RSG method

After setting the appropriate load and constraint conditions,Von Mises σe = σe(x) and first principal
stress σ1 = σ1(x) were obtained using a .txt file.These two curves,derived by points,are the input for
the two methods described in this thesis work.

3.1 Theory implemented on FEMFAT
Fatigue life estimation ofa notched component,in femfat® , is based on the use ofinfluence factors.
They take into account effects related to stress gradient, mean stress, surface condition, and other effects
that have not been mentioned.In this work, only the effect due to the stress gradient will be analyzed.
The focus on notching effects has led,over the years,to the mathematicalformalisation of the thought
that fatigue strength depends not only on the maximum stress acting on the tip of the stress concentrator,
but also on the relative stress gradient χ′ [36].A local approach has been defined because it is based
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on the analysis of the stress state in the vicinity of the notch.In this region,which is of most interest,
the corresponding local S-N curve was output, which is described, using a log-log graph, by the following
three parameters (Fig. 3.2):

Figure 3.2: Diagram of component S-N curve [13]

σaf,C = Endurance stress limit

Ncf,C = Endurance cycle number

K C = inclination

The main purpose of the method is to determine these three parameters with a functional relation with
influence factors, as described below [40]:

σaf,C = f 1(influence factors)

Ncf,C = f 2(influence factors)

K C = f 3(influence factors)

Influence factors related to the effect of the stress gradient are:

• f GR,af : has an effect on the fatigue limit

• f GR,cf : has an effect on the number of cycles to failure

• f GR,sf : has an effect on the inclination

The factors described above modify the three parameters ofthe materialcurve: tension-compression
fatigue limit σA,t−c , number of cycles at knee point Ncf,M and the slope KM through the functions f1, f 2

and f3. As described in Ch. 1, the nominal strength of a smooth specimen should, for the same imposed
external stress, be greater than that of a notched component by a factor of  Kt.
However,as shown in Ch.2, by experimentalevidence,the presence ofa stress concentrator reduces
fatigue strength by a coefficient smaller than Kt, exactly by Kf [42].The approach refers to the classical
viewpoint where S-N curves are compared under the same nominalstress. This method results in a
reduction in the fatigue limit ofthe notched component.From the localpoint ofview,however,the
comparison is made in terms of peak stress.The fatigue limit of a smooth specimen is increased by the
presence of a notch,or more generally,by a stress gradient.This support effect is proportionalto K t,
which includes geometric and type of load factors, damped by Kf dependent on the material [42].This
explains, for example, why the fatigue limit of a specimen subjected to rotating bending is always greater
than one subjected to pure tension-compression.On this basis, the central idea of the support effect as
the beneficial consequence of a stress gradient on the fatigue life was introduced [42].Starting from the
original definition of Kf , here re-interpreted with different symbols, it was obtained:

K f =
σD(χ=0)

σD(χ̸=0)
(3.1)
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Figure 3.3: Support effect

where σD(χ=0) is practically the fatigue limit of a specimen subjected to tension-compression load,i.e.
σA,t−c and σD(χ̸=0) is the nominalfatigue limit of a notched specimen.Multiplying both members by
σD(χ̸=0) and dividing by Kf it was obtained:

σD(χ̸=0) =
σD(χ=0)

K f
(3.2)

To switch to the local viewpoint, it was multiplied by the theoretical stress concentration factor:

σD(χ̸=0) · K t = σD(χ=0) ·
K t

K f
(3.3)

on the left the localpeak stress was obtained,indicated as σD,local(χ̸=0) , while on the right the fatigue
factor n was recognised:

n =
K t

K f
(3.4)

As can be seen from the Fig. 3.3, n ≥ 1.In femfat® the support effect is determined by means of the
relative stress gradient χ′ [13].First of all, the stress gradient is defined as:

χ(x) =
dσe

dx
(3.5)

where σe is the Von Mises’ equivalent stress, while the relative stress gradient:

χ ′ (x) =
1

σe,max
·
dσe

dx
(3.6)

To record the support effect, the following approaches were analyzed in the software:the Stieler method,
the IABG method and the femfat® method [13].In the first case,the support effect depends on the
relative stress gradient and the yield stress of the material:

n = 1 +
√ 

χ ′ · 10−
( 

0,33+
σ y
712

) 
(3.7)

The following expressions were derived for different classes of materials using the IABG method:

n = 1 + 0, 45 · χ′0,30 for steel (3.8)

n = 1 + 0, 33 · χ′0,65 for cast-steel (3.9)

n = 1 + 0, 43 · χ′0,68 for cast-iron (3.10)

while in femfat® the following equation was developed [13]:

n =

[ 

1 +

( 
σA,b

σA,t−c
− 1

) 

·

( 
χ ′

(2/b)

) K D
] 

(3.11)

where σA,b is the fatigue limit for a smooth specimen subjected to rotating bending,  σA,t−c is the fatigue
limit of the material subjected to tension-compression load, KD is the damping coefficient of the support
effect for the calculation of the fatigue limit and b is the specimen thickness [11][37].
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Kind of material Stainless steelOther kind of steel
aG 0.40 0.50

bG 2400 2700

Table 3.1:Constants aG and bG [15]

In this thesis,the Stieler and IABG methods were developed while the femfat® method,described in
the Eq.3.11,was unusable because of the lack of tests under bending load on the analyzed specimens
[13].

3.1.1 Determination of local Wöhler curve parameters
To determine the fatigue strength of the notched component it is necessary to multiply the fatigue limit
of the smooth specimen subjected to tension-compression with the fatigue factor:

σaf,C = f GR,af · σA,t−c = n · σA,t−c (3.12)

The factor that takes into account the effect of the stress gradient and influences the slope of the local
S-N curve, KC , is f GR,sf and it was determined in this way [13]:

f GR,sf = 1 +
1, 8 · χ′1,2

f GR,af
(3.13)

The slope, at this point, was determined as follows [13]:

K C =
K M − IFK2

f GR,sf
IFK3 + IFK2 (3.14)

where KM is the slope ofthe curve ofthe base material,IFK2 is the exponent ofinclination ofthe
incipient fracture S-N curve and and IFK3 is the materialgroup dependent exponent.For steeland
alluminium alloys IFK2 = 3 and IFK3 = 2.The factor that influence the number of cycles to failure is
f GR,cf and it is defined as [13]:

f GR,cf =
10

( 
6,8− 3,6

K C

) 

10
( 

6,8− 3,6
K M

) (3.15)

The number of cycles to failure for the notched component is obtained from that of the base material by
simply multiplying by the influence factor as shown below [13]:

Ncf,C = Ncf,M · fGR,cf (3.16)

3.2 FKM Guideline
The guide drawn up by FKM proposes the following approach [15].Three expressions have been derived
for the fatigue factor depending on the value obtained for the relative stress gradient:

n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + χ′ · 10
−

( 
aG −0,5+ σ UTS

bG

) 

χ ′ ≤ 0, 1 mm −1

1 +
√

χ ′ · 10
−

( 
aG +

σ UTS
bG

) 

0, 1 mm−1 < χ ′ ≤ 1 mm −1

1 + 4
√

χ ′ · 10
−

( 
aG + σ UTS

bG

) 

1 mm−1 < χ ′ ≤ 100 mm −1

(3.17)

where aG and bG are two constants tabulated in Tab. 3.1.
In accordance with Fig. 3.4, the guide proposes to calculate the relative stress gradient in this way:
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Figure 3.4: calculation of the relative stress gradient [15]

χ ′ =
1

σ1,a
·
∆σ a

∆x
=

1
∆x

·

( 

1 −
σ2,a

σ1,a

) 

(3.18)

Given n the localfatigue limit of the notched specimen is determined as in Eq.3.12.The slope of the
inclined section was assumed to be KC = 5, while the number of cycles to failure of the notched specimen
is equal to the number of cycles to failure of the smooth specimen.

Figure 3.5: local S-N curve by FKM approach

The FKM guide greatly simplifies the steps to be followed to derive the localS-N curve compared to
the approach followed by femfat® . In Fig. 3.5 a typicaloutput curve from the FKM method can be
observed qualitatively [15].

27



Chapter 3. RELATIVE STRESS GRADIENT APPROACH

aaa

28



Chapter 4

STRAIN ENERGY DENSITY
APPROACH

This chapter will describe an approach that differs slightly from the previous ones.The classical approach,
TCD and RSG dealwith fatigue in different ways,of course,but they always refer to the stress state
present in the vicinity ofthe notch by means ofa peak stress,for the nominalapproach,or a stress
distribution for TCD or RSG.Strain energy density approach,abbreviated to SED,changes point of
view and lays its foundation by considering the strain energy density W.The idea proposed by Neuber
still applies:the materialis sensitive to an average stress within a structuralvolume whose size is a
property of the material.First of all, the linear elastic fracture mechanics is introduced in order to define
the correct terminology and the parameters required for subsequent developments.In a second step,
V-notch will be treated, the environment in which SED was born, with a practical application.Next, the
SED applied to fillet-notches, the aim of the thesis work, will be described.

4.1 Hints of linear elastic fracture mechanics
Many mechanical components, as well as being characterised by variations in shape, can have microstruc-
tural defects within them which can alter the distribution of the stress field.These defects can be,for
example:cracks, fissures or ineliminable microstructural characteristics of the material.Taking the plate
with a hole of Ch.1 as a reference,it can be seen that (Fig.4.1),as the radius ρ decreases,the stress
field along the net section, at least theoretically, tends to infinity.

Figure 4.1: Variation of the stress field as the geometric configuration changes

Inglis,in 1913 [19],proposed an analyticalexpression for the determination of Kt,g in an intermediate
case:
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K t,g = 1 + 2 ·
√ 

a
ρ

(4.1)

where a is practically the major half-axis of the elliptical hole and ρ is the radius of curvature at the ends
of the major axis.ρ is related to the size of the minor half-axis:

ρ =
b2

a
(4.2)

Through these expressions it is easy to realise that if ρ → 0, the Kt,g → ∞.
In order to understand the effect that a crack has on a component, Fig. 4.2 has been considered, which
represents a plate subjected to a gross nominal tensile stress σg.

Figure 4.2: Comparison of the linear elastic stress field with the real elasto-plastic stress field [4]

Under the assumption that the plasticised zone at the apex ofthe crack is small,the linear elastic
stress field is representative ofthe realelastic-plastic stress field and linear elastic fracture mechanics,
abbreviated LEFM, was considered.As the external load σg increases, the distribution of the stress field
increases homothetically.This propoportional growth is described by the stress intensity factor  K.

Figure 4.3: Irwin stress field [20]

Taking Fig. 4.3 as a reference, in 1957 Irwin [20] determined the analytical expressions of the stress field
near the crack tip:

σxx (r, θ) =
K I√
2πr

· cos
θ

2
·

( 
1 − sin

θ

2
· sin

3θ
2

) 

σyy (r, θ) =
K I√
2πr

· cos
θ
2

·

( 
1 + sin

θ
2

· sin
3θ
2

) 

τxy (r, θ) =
K I√
2πr

· sin
θ

2
·

( 
cos

θ

2
· cos

3θ
2

) 
(4.3)
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K I is the stress intensity factor and is determined, analytically, as:

K I =
√

2π · lim
r→0 +

σyy (r, θ = 0) · r1/2 (4.4)

The limit above exists and is finite.The expressions described in Eq. 4.3 are applied for:plane stress or
plane strain, the latter condition with εzz = 0 and a stress in direction z equal to:

σzz (r, θ) = υ · (σxx + σyy ), (4.5)

near the crack tip,for mode I stress and an externalapplied stress σg which must not exceed a value
conventionally set at 0.5σy in order not to make the plasticised zone excessively large.There are also
stress modes II and III, represented in Fig. 4.4.

(a) Mode I: opening (b) Mode II: in-plane shear (c) Mode III: out-of-
plane shear

Figure 4.4: Description of load modes [6]

Sometimes, to get a first estimate, it is useful to have an engineering expression of  KI , given by:

K I = ασg
√

πa (4.6)

where σg is a nominalstress calculated in a simple way,such as F/A or Mf /W f , a is a reference crack
lenght and α is a dimensionless correction factor which depends on the type ofload and the shape of
the component and can be found in the literature.A typical diagram,for a crack on a plate subject to
traction, is depicted in Fig. 4.5

Figure 4.5: dimensionless correction factor as a function of 2a/W

up to a value of 2a/W = 0.3, α remains unitary.

4.1.1 Fatigue fracture mechanics
In the case of fatigue, the crack propagation phenomenon is controlled by the range of the stress intensity
factor,∆K I . In LEFM, fatigue tests are performed by stressing the component with a nominalstress
range equal to ∆σg and cycle ratio R = 0, as depicted in Fig. 4.6.
A stress cycle with R = −1 has not been considered in this discussion because it would result in a crack
closure at each cycle.The diagram of KI as a function of time was obtained using Eq.4.6,updated to
the fatigue problem:

∆K I = α∆σ g
√

πa (4.7)
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Figure 4.6: Load applied to specimen for fracture mechanics tests [4]

Cycle after cycle ∆σg remains constant, but the crack length goes from an initial value ai to the current
value a,so α increases and the ∆KI increases.The experimentalresults,collected with the use ofa
microscope, were plotted in a graph crack length a versus number of cycles to fracture Nf (Fig. 4.7).

Figure 4.7: a vs. N f and crack propagation rate vs. range of stress intensity factor [4]

In the 1960s, Paul Paris derived a further graph expressing the speed of crack propagation as a function of
the range of the stress intensity factor.As can be seen, two limits have been derived:the threshold ∆Kth
below which there is no propagation and the value which leads to immediate fracture of the component.
The equation of the inclined line is:

da
dN

= C∆K m
I (4.8)

where C and m are two materialconstants.This differentialequation can be integrated to derive the
number of cycles to failure that a mechanical component with an initial crack size  ai can sustain, up to
a crack length af :

dN =
da

C∆K m
I

→
∫ N f

0
dN =

∫ af

a i

da
C∆K m

I
(4.9)

under the assumption of constant α:

N f =
a

( 
1− m

2

) 

f − a

( 
1− m

2

) 

i( 
1 − m

2

) 
· C · αm · ∆σm

g · πm/2
(4.10)

Since in many practical cases, α varies, numerical techniques will be needed to determine a good approx-
imation of the number of cycles to failure.
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4.2 Non-conventional extensions of LEFM
In the last 30-40 years, fracture mechanics has been successfully applied to U-notches with a sufficiently
smallradius. This extension is based on the fact that,at the fatigue limit,the notches have at their
tip material that is not healthy, but damaged, precisely with a non-propagating crack.In more modern
developments, the sides of the notch have been opened at a certain angle.In order to explain this issue
from a theoreticalpoint of view,welded structures have been considered,but it can easily be extended
to other cases.
In order to understand the application ofthe SED method,the mechanicalcomponents weakened by
V-notches was considered in this thesis, applying the method to a welded joint with an opening angle of
2α [32].

4.2.1 Description of the stress state from a static point of view
Is considered a notch with generic opening angle 2α.It is subject to a mode I and mode II loading.In
this case the focus is on plane stress condition and therefore mode III loading is not considered.Applied
stresses produce a plastic zone that necessarily exist near the V-notch, but of such limited size that the
linear elastic fields remain representative of the realstress state in the immediate vicinity of the notch
tip.

Figure 4.8: Symbology adopted [32]

Tip radius represented in Fig. 4.8 is equal to zero, but from the point of view of fatigue behavior, a notch
with a non-zero and smallradius also behaves like a V-notch as shown by Smith and Miller in 1978,
Fig. 4.9.

Figure 4.9: Frost hypothesis [32]

This statement is considered true if the radius ρ ≥ 4a0, with a0 length constant defined by El Haddad.
Examples of mechanical components weakened by V-notches are described below:

• Power – transmission – shaft (Fig.4.10):slots for snap rings.Values ofthe radius in the order
of hundredths or tenths ofa mm can be found in the literature,i.e. values that fallwithin the
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assumptions made above.The opening angle is equalto 90◦ . Possible fatigue crack initiation
from the apex of these notches, dependent on external loading conditions, can be treated with the
recently developed theory.Using Peterson manuals may not be a good solution because it would
be difficult to derive the notch sensitivity factor q to calculate the notch factor Kf .

Figure 4.10:keyway for retaining rings [32]

• Power – transmission – shaft (Fig. 4.11):keyway.There are notches with a small radius, i.e.stress
concentration sites that can induce fatigue cracks.

Figure 4.11:keyway for tab [32]

• Shaft-hub forced coupling (Fig.4.12). A gear wheel,flywheelor other mechanicalcomponent is
mounted on the shaft.Sharp edges are formed between the clamped object and the shaft.There
are notches with a small radius, i.e.stress concentration sites that can induce fatigue cracks.

Figure 4.12:V-notch in forced shaft-hub shrinkage [32]

• Welded joints such as the typicalT-joint. The notch,depicted in Fig.4.13,has an opening angle
equal to 2α = 135◦ . In literature values of the fillet radius limited to a few tenths of a mm.In this
case the crack initiation point is situated at weld toe.

The idea of fracture mechanics is to analyse the stress field in the immediate vicinity of the crack tip so
as to carry out checks at the initiation point and not through a notch sensitivity factor to find the notch
factor.For this purpose, the preliminary hypotheses are:

• Plane stress case:Mode I and II loading on the notch plane

• Reduced plastic zone (linear elastic equations)

• Notches with zero or very small radius

External loads induce only mode I and mode II stresses.It also was considered a polar reference system
at the tip of the notch and therefore the focus is on an infinitesimalvolume ofmateriallocated at a
distance r from the tip and with θ anomaly,Fig. 4.8. The stress components in the plane are:radial
stress σrr , hoop stress σθθ and shear stress τrθ in polar coordinates.The stress field takes the following
form, for mode I:
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(a) T-joint with 2α = 135 ◦ (b) T-joint with 2α = 135 ◦ and 2α =
0◦

Figure 4.13:Welded joints with different load conditions and different V-notches [32]

⎧
⎨

⎩

σθθ

σrr

τ rθ

⎫
⎬

⎭
=

1
√

2π
·

r Λ1−1 K 1

(1 + Λ1) + χ1(1 − Λ1)

[ ⎧⎨

⎩

(1 + Λ1)cos(1 − Λ1)θ
(3 − Λ1)cos(1 − Λ1)θ
(1 − Λ1)sin(1 − Λ1)θ

⎫
⎬

⎭
+

+ χ1(1 − Λ1)

⎧
⎨

⎩

cos(1 + Λ1)θ
−cos(1 + Λ1)θ
sin(1 + Λ1)θ

⎫
⎬

⎭

] (4.11)

for mode I and II, stress distributions become:
⎧
⎨

⎩

σθθ

σrr

τ rθ

⎫
⎬

⎭
= rΛ1−1 K 1

⎧
⎨

⎩

σθ̃θ(θ)
σr̃r (θ)
τ r̃θ (θ)

⎫
⎬

⎭
I

+ rΛ2−1 K 2

⎧
⎨

⎩

σθ̃θ(θ)
σr̃r (θ)
τ r̃θ (θ)

⎫
⎬

⎭
II

(4.12)

the functions in the single variable θ can be found in the literature.Subscripts 1 and 2 indicate mode I
and mode II stress contributions.The exponents 1 − Λ1 and 1 − Λ2 describe the singularity degree of the
local stress field, are functions of the opening angle 2α and were described by American mathematician
Williams in 1972.Through the graph of Fig.4.14,it is possible to see the trend of these exponents in
function of the opening angle.

Figure 4.14:Singularity of stress distributions for V-notches [32]

For mode II load,the stress field is singular only for 0◦ < 2α < 102 ◦ , while for Mode I load the range
of singularity is 0◦ < 2α < 180 ◦ . K V

1 and KV
2 describe the intensity ofthe localsingular stress field

and have the same meaning as the stress intensity factor in Irwin’s crack equations.These are called
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notch stress intensity factor (N-SIFs) to distinguish them from stress intensity factor.Their definition
was given in 1972 by Gross and Mandelson:

K V
1 =

√
2π · lim

r→0 +
σθθ(r, θ = 0) · r1−Λ 1

K V
2 =

√
2π · lim

r→0 +
τ rθ (r, θ = 0) · r1−Λ 1

(4.13)

In summary, simply considering mode I loading, as the opening angle 2α increases, the local stress field
remains singular but the power of the singularity decreases, as depicted in Fig. 4.15.

Figure 4.15:Different singularity of V-notches [32]

4.2.2 Fatigue application:fixed opening angle and mode I loading
In the case of cracks, the stress intensity factor KI due to mode I loading is the parameter that governs
the fatigue strength ofa cracked component,i.e. it determines the instantaneous propagation speed.
Once the ∆KI range and the Paris law are known, the crack propagation rate is known and the fatigue
life is determined by integrating Eq. 4.8.The extension of fracture mechanics applied to V-notches takes
the same point ofview: N-SIFs governs fatigue life.Two notched components with the same opening
angle 2α and mode I loading have been considered in Fig.4.16. If the two notches are subject to the
same ∆KV

1 value, then they will also be characterised by the same fatigue life  Nf and vice versa.

Figure 4.16:Two V-notches characterised by the same value of the Mode I NSIF range, ∆KV
1 [32]

The approach described above has an important application in welded joints with weld-toe failure.Two
welded joints with two different geometries but with the same 2α opening angle equal to 135◦ have been
considered (see Fig. 4.17).
Expressing the fatigue strength in terms of the nominal stress applied to the main plate falls within the
scope of Eurocode 3.For the two joint configurations, assuming experimental testing in the laboratory,
the trends shown in Fig. 4.18 would be obtained.

36



Chapter 4. STRAIN ENERGY DENSITY APPROACH

Figure 4.17:Two welded joints with different dimensions [32]

Figure 4.18:Design curve diagram according to the nominal approach [32]

The curve describing the joint with a stiffener thickness ofL2 is lower due to pronounced geometric
variation.Locally, at the crack initiation point, the stress concentration is higher than in the case with
L1 stiffener thickness.The idea ofnon-conventionalfracture mechanics is to link fatigue strength to
the intensity of the localstress state at the crack initiation point.Therefore,∆K V

1 is used because it
describes the intensity ofthe localstress field that causes the crack initiation at the weld toe.In the
literature [25],there was therefore a shift from ∆σnom to ∆K V

1 . the experimental data collected in the
graph in Fig. 4.18 now collapse into a single design curve, as depicted in Fig. 4.19.

Figure 4.19:Fatigue curve diagram in terms of ∆K V
1 [32]

In 1998,Lazzarin and Tovo [25],showed that joints belonging to different classes,if the experimental
results are expressed in terms of nominal stress, are part of the same strength class if described in terms
of ∆K V

1 . Lazzarin and Tovo summarised 180 experimental results with the following characteristics:

• steel joints

• As-welded joints

• Break only at welding foot (2α = 135◦ )

The advantages are obvious:

• Only one design curve is used
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• NSIFs approach oriented to FEM analysis

Using the nominal stress method becomes difficult when analysing complex structures because the stress
range varies from point to point and therefore defining a nominal stress as  F/A or Mf /W f becomes too
complicated.Thanks to the advent ofcalculation codes that exploit the theory ofthe finite element
method, local analyses can be carried out and this inevitably leads to an enormous advantage.

4.2.3 Fatigue application:different opening angle and mode I and II loadings
In this sub-section, a cross joint has been considered, consisting of a vertical plate to which two horizontal
plates are joined,Fig. 4.20. A tensile fatigue load producing a certain nominalstress range must be
transmitted.

Figure 4.20:Cross joint [32]

The nominalapproach is to use the appropriate fatigue curve provided by the standard.According to
the fracture mechanics approach,the analysis must be conducted locally and here two V-notches were
recognised:one at the weld toe with 2α = 135◦ and one at the weld root with 2α = 0◦ . These two
V-notches can be the site of fatigue fracture initiation.In particular, at the weld toe mode I is singular
and mode II is non-singular (being 2α = 135◦ > 102◦ ), while at the root side both modes I and II are
singular, but in the present case mode II is negligible.Considering the stress distributions on the critical
points, Fig. 4.21 was obtained.

Figure 4.21:Stress distributions on different critical points [32]

Although this method brings considerable advantages and improvements over the nominal stress approach,
it is not without its drawbacks.Recalling the equations of the notch stress intensity factors (Eq.4.13)
it can be seen that the unit of measurement of each factor is closely related to the eigenvalues Λi, i.e.
MPa · mΛ i −1 , which in turn depend on the angle 2α and the stress mode.As the units of measurement
are different,it is not possible to compare ∆Ki. This proves to be a very limiting problem in practical
cases since very often the designer wants to know which point ofa particular weld is most criticalfor
fatigue strength.This kind of drawback can be solved by the SED (Strain Energy Density) approach,
which will be discussed in the next section.

4.3 SED applied to V-notches
The strain energy density (SED) approach was introduced to address the issue of comparing N-SIFs in
components with different notch openings and load application modes.The energy criterion proposed
by Lazzarin and Zambardi [28] considers as a critical parameter for structural strength the strain energy
density averaged over a circular sector of radius Rc, which is considered a material property.As mentioned
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in the preamble, the approach is based on the idea of elementary structural volume proposed by Neuber,
according to which materials are sensitive to the mean stress state in a structural volume whose size is a
property of the material.Although the stresses and energy density tend towards infinity at the point of
singularity, the energy in a small structural volume surrounding the notch tip has a finite value and this
value controls failure.The energy,averaged in a volume ofradius Rc (which depends on the material
properties),is a precise function ofthe Notch Stress Intensity Factors and is given in closed form for
plane stress and plane strain conditions, the material being thought of as isotropic and linear elastic.The
general expression for energy density, according to Beltrami, is:

W(r, θ) =
1
2

σθθεθθ +
1
2

σrr εrr +
1
2

σzz εzz +
τ 2

rθ

2G

=
1

2E

( 
σ2

rr + σ2
θθ + σ2

zz − 2υ(σrr σθθ + σrr σzz + σθθσzz ) + 2(1 + υ)τrθ
) (4.14)

Where the stress components refer to the polar coordinate reference system shown in Fig. 4.8,G is the
shear modulus,E is the Young’s modulus and υ is the Poisson’s coefficient.Substituting Eq.4.12 into
Eq. 4.14 it was obtained:

W(r, θ) = W1(r, θ) + W2(r, θ) + W12(r, θ) (4.15)

where subscripts 1 and 2 refer to the loading mode, in particular 1 refers to Mode I, 2 refers to Mode II
and 12 refers to a mixed Mode.Written separately, the terms of Eq. 4.15 are:

W1(r, θ) =
1

2E
· K V 2

1 · r2(Λ1−1) · f̃ 1(θ)

W2(r, θ) =
1

2E
· K V 2

2 · r2(Λ2−1) · f̃ 2(θ)

W12(r, θ) =
1
E

· K V
1 K V

2 · rΛ1+Λ 2−2 · f̃ 12(θ)

(4.16)

Where parameters K1 and K2 are the Notch Stress Intensity Factors (N-SIFs) related to Mode I and
Mode II stress distributions,respectively,Λ1 and Λ2 are Williams’ eigenvalues and f˜

1(θ), f̃ 2(θ), f̃ 12(θ)
are functions that depend only on the angle θ.The strain energy in a region of radius Rc around the
notch tip is:

E(Rc) =
∫ 

A
W · dA =

∫ R c

0

∫ +γ

−γ
[W1(r, θ) + W2(r, θ) + W12(r, θ)]rdrdθ =

=
1
E

( 
I1(γ)
4Λ1

· K V 2
1 · R2Λ1

c +
I2(γ)
4Λ2

· K V 2
2 · R2Λ2

c

) (4.17)

where I1 and I2, depending on the angle γ and the Poisson’s coefficient υ, are the integrals of the angular
functions f˜

1(θ) and f̃ 2(θ). Since the integration field is symmetric with respect to the notch bisector,
the contribution of W12(r, θ) vanishes.
Bearing in mind the Fig.4.22,the area of the circular sector of radius Rc, on which the integration is
carried out, is:

A(R c) =
∫ R c

0

∫ +γ

−γ
rdθ = R2

cγ (4.18)

Therefore, the elastic deformation energy averaged over area A is equal to:

W =
E(Rc)
A(R c)

=
e1

E
·

( 
K V

1

R1−Λ 1
c

) 2

+
e2

E
·

( 
K V

2

R1−Λ 2
c

) 2

(4.19)

being:

e1(2α) =
I1(γ)
4Λ1γ

and e2(2α) =
I2(γ)
4Λ2γ

(4.20)

Parameters e1 and e2 are the shape functions enclose the angle dependence 2α, as shown in the following
Tab. 4.1 and Fig. 4.23.
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Figure 4.22:Region of radius Rc around the notch tip [28]

Plane stress Plane strain

2α γ\π Λ1 Λ2 I1 I2 I1 e1 I2 e2

0◦ 1 0.5000 0.5000 1.0250 2.3250 0.8450 0.133 2.1450 0.341
15◦ 23/24 0.5002 0.5453 1.0216 2.1608 0.8431 0.140 2.0087 0.306
30◦ 11/12 0.5014 0.5982 1.0108 2.0091 0.8366 0.145 1.8810 0.273
45◦ 7/8 0.5050 0.6597 0.9918 1.8688 0.8247 0.149 1.7610 0.243
60◦ 5/6 0.5122 0.7309 0.9642 1.7385 0.8066 0.150 1.6479 0.215
90◦ 3/4 0.5445 0.9085 0.8826 1.5018 0.7504 0.146 1.4379 0.168
120◦ 2/3 0.6157 1.1489 0.7701 1.2887 0.6687 0.129 1.2437 -
135◦ 5/8 0.6736 1.3021 0.7058 1.1883 0.6201 0.118 1.1505 -
150◦ 7/12 0.7520 1.4858 0.6386 1.0908 0.5678 0.103 1.0590 -
160◦ 5/9 0.8187 1.6305 0.5930 1.0269 0.5315 0.093 0.9986 -

Table 4.1:Values of the integrals I1, I 2 and e1, e2

Figure 4.23:Shape functions e1, e2 = f (2α)
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In this way, if two V-notches with different opening angles 2α and subjected to different nominal loading
conditions (always Mode I and/or Mode II stresses) have the same range of averaged strain energy density
∆W then they will also have the same fatigue life Nf . At this point, knowing the analytical formula for
calculating the averaged SED, the need arises to estimate the value of the control radius  Rc. Since this is
a function of the material,Lazzarin and Livieri [30] estimated Rc by simply imposing equality between
the respective values of the strain energy density for the smooth material and for the notched material,
both referring to the same number of fatigue cycles to failure.
Since the welding process locally alters the material properties, Lazzarin and Livieri carried out a series
of experimental tests to calculate the critical radius directly on welded steel and aluminium joints with
V-notches and welded joints with shaved weld beads, i.e.with an opening angle of 2α = π (Fig. 4.24).

Figure 4.24:Head-to-head joint without weld caps [32]

Using a smooth specimen without a weld would give a different estimate of  Rc as the base material has
different strength characteristics to that inside a weld.The fatigue strength for a number of cycles to
failure equal to Nf = 5 · 106 is σD = 155 MPa with P.S. 50%.The structural volume of radius Rc can be
plotted at the point of crack initiation, which typically occurs at the boundary between the zone of filler
material and the thermally altered zone.Within this volume there is an averaged energy corresponding
to a load that results of 5 · 106 number of cycles.In the world of welded joints, this type of joint expresses
the smooth specimen.The averaged SED is expressed as:

∆W
unnotched
D =

1
V

∫ 

V
∆W D dV =

1
V

∫ 

V

∆σ 2
D

2E
dV =

∆σ 2
D

2E
(4.21)

Therefore, taking as reference the weld toe of a welded joint (Fig. 4.22, 4.13a), known the value of ∆K1

it is possible to determine the range of the averaged strain energy density of the joint under examination:

∆W
notched
D ≈

e1

E
·

∆K V 2
1

R2(1−Λ 1)
c

(4.22)

For this type of joint ∆KV
1,D = 211 MPa · mm0.326 (the subscript D indicates that the value was found

at the same number of cycles to failure) with P.S. 50%.Through the above considerations:

∆W
unnotched
D = ∆W

notched
D

∆σ 2
D

2E
=

e1

E
·

∆K V 2
1,D

R2(1−Λ 1)
c

(4.23)

i.e.:

Rc =
( 

√
2e1 ·

∆K V
1,D

∆σ D

) 1
0.326

= 0.28 mm (4.24)

For light alloys it was obtained Rc = 0.12 mm.At this point,given any welded joint,it is possible to
determine ∆W at each possible crack initiation point.Fatigue failure occurs at the point where ∆W is
greatest.By way of Fig. 4.25 shows the graph of fatigue failure of about 900 specimens according to the
SED approach carried out by Berto and Lazzarin [27].In this way it is possible to include in a single
curve the welded joints considered which, in nominal approach, present several curves for each strength
class.
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Figure 4.25: Summary of data on fatigue failure of welded steeljoints during Mode I and II stresses
expressed by the design band obtained from the SED method [27]

X-joint values
B [mm] H [mm] t [mm] h [mm] a [mm] Rc [mm] ∆σ nom [MPa] 2α [◦ ]

50 25 8 8 5 0.28 1 135

Table 4.2:Dimensional and load values

4.3.1 Application of the SED method to a V-notch
In this sub-section,a cross-joint has been considered as an application example for the SED approach
(Fig. 4.26) through finite element analysis.As can be seen,the problem has symmetries and therefore
only 1/4 joint could be analysed (Fig. 4.26 shows the main dimensions).Along the y-axis, the symmetry
constraint blocks the displacements along x (UX = 0), while along x-axis it blocks displacements along
the y, i.e.UY = 0.

Figure 4.26:Cross joint and symmetry condition. Main dimensions. [32]

The joint has been modelled using autocad® software with the dimensions described in Tab.4.2. It
was then exported via an .IGES file and imported into ansys® for structural analysis.
The materialwas defined as steelwith E = 206000 MPa and υ = 0.3.quad 8 node 183 was chosen
as the element type,with the following second K-option:plane strain. The plane strain state best
represents the stress-strain state that results at the apex ofa V-notch (since in-plane stresses tend to
infinity in theory, out-of-plane stress is also non-zero).The imported geometry consists only of lines, so
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it was necessary to create the area entity.

Figure 4.27:Divide area by lines tool and the control volume with Rc = 0.28 mm

In the controlvolume ofradius Rc a globalelement size of0.05 mm was used.A mesh with a global
element size of 1 mm was used outside the control volume.Load and constraint conditions were applied
as described in Fig. 4.28.Since the analysis is linear elastic, it is possible to obtain the value of the SED
for any external load condition by means of a simple proportion.

Figure 4.28: Type of mesh adopted and zoom of the controlvolume for the calculation of the averaged
SED

in order to determine the averaged SED to be used to find the number ofcycles to failure,first ofall
the elements enclosed within the control volume of radius Rc were isolated.Once this is done, with the
following commands:

general postprod → element table → define table → add

the strain energy represented by the word sene was chosen.With the same command the geometry
volu property was added.The values were then added together to obtain the total energy in the control
volume:

E =
∑ 

i

Ei (4.25)

where Ei is the strain energy ofeach element and E is the totalstrain energy.an energy ofE =
0.154054 · 10−5 mJ was obtained.To find the averaged SED (Eq. 4.19), the area must be determined as
the sum of the areas of the individual elements enclosed in the circular sector:

A =
∑ 

i

A i (4.26)

and it was obtained A = 0.153938 mm2. With the help of the sum of each element function the total
energy and area value were obtained.The averaged SED is therefore determined as:

∆W =
E
A

=
0.154054 · 10−5

0.153938
= 1.0007536 · 10−5 MJ

m3 (4.27)
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At this point it is possible to scale the value just found for any stress level,bearing in mind that the
proportion must be made with the stresses with exponent 2, i.e:

( 
∆W

∆σ 2
nom

) 

(load=1 MPa)
=

( 
∆W

∆σ 2
nom

) 

(any load MPa)
(4.28)

knowning the averaged SED it is possible to enter in a design curve (in terms of ∆W = ∆W(Nf)) and
estimate the number of cycles to failure.In conclusion, the SED approach proves to be an effective and
versatile method for any kind ofanalysis,both static and fatigue,thanks to the solid controlvolume
theory on which it is based.Regardless of the opening angle of the notch 2α or the mode of load stress,
any component using the SED approach will be compared to a single design curve with a single unit of
comparison, expressed in terms of linear elastic strain energy density.

4.4 SED applied to blunt V-notches
In the case of blunt V-notch, taking as reference the coordinate system in Fig. 4.29, the stress distribution
under a mode I load is [26] [24]:

σij = a1r Λ1−1
[ 
f ij (θ, α) +

( 
r
r0

) µ1−Λ 1

gij (θ, α)
] 

(4.29)

where a1 can be expressed by the notch stress intensity factor KV
1 in the case ofa sharp,zero notch

radius,V-notch or by the elastic maximum notch stress σmax in the case ofblunt V-notch. r0 is the
distance from the origin ofthe reference system and the tip ofthe notch and depends on the opening
angle and the notch root radius [14]:

r0 =
q − 1

q
ρ (4.30)

and

q =
2π − 2α

π
(4.31)

Figure 4.29:Reference system in the case of blunt V-notch [26]

The angular functions fij and gij are given by:
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f θθ
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f rθ

⎫
⎬

⎭
=

1
1 + Λ1 + χb1(1 − Λ1)
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(1 + Λ1)cos(1 − Λ1)θ
(3 − Λ1)cos(1 − Λ1)θ
(1 − Λ1)sin(1 − Λ1)θ

⎫
⎬

⎭
+

+ χb1(1 − Λ1)

⎧
⎨

⎩

cos(1 + Λ1)θ
−cos(1 + Λ1)θ
sin(1 + Λ1)θ

⎫
⎬

⎭

] (4.32)
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2α (rad) q Λ1 µ1 χb1 χc1 χd1 ω1̃ F (2α)

0 2 0.5 −0.5 1 4 0 1 0.785
π\6 1.8333 0.5014 −0.4561 1.0707 3.7907 0.0632 1.034 0.6917
π\4 1.75 0.505 −0.4319 1.1656 3.5721 0.0828 1.014 0.6692
π\3 1.6667 0.5122 −0.4057 1.3123 3.2832 0.096 0.97 0.662
π\2 1.5 0.5448 −0.3449 1.8414 2.5057 0.1046 0.81 0.7049
2π\3 1.3334 0.6157 −0.2678 3.0027 1.515 0.0871 0.57 0.8779
3π\4 1.25 0.6736 −0.2198 4.153 0.9933 0.0673 0.432 1.0717
5π\6 1.1667 0.752 −0.1624 6.3617 0.5137 0.0413 0.288 1.4417

Table 4.3:Parameters for stress distributions, Eq. 4.29 and 4.37, and local strain energy, Eq. ??
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⎭
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⎫
⎬

⎭

] (4.33)

considering only a mode I load under the plane strain condition,the eigenfunctions fij and Gij satisfy
the following expressions:

f zz (θ) = υ(fθθ(θ) + frr (θ)) (4.34)

gzz (θ) = υ(gθθ(θ) + grr (θ)) (4.35)

The table shows the parameters present in the Eq. 4.31, 4.32, 4.33 for some opening angles.
In the case of a V-notch the parameter a1 become:

a1 =
K V

1√
2π

(4.36)

where KV
1 is calculated according to Eq. 4.13.In the presence of blunt V-notch it is possible to link the

parameter a1 to the maximum principal stress present at the notch tip:

a1 =
σmax

r Λ1−1
0

{ 
1 + (1+µ 1)χ d1 +χ c1

1+Λ1+χ b1 (1−Λ 1)

( 
q

4(q−1)

) } =
σmaxr 1−Λ 1

0

1 + ω˜1
(4.37)

where ω˜1 can be found in Tab. 4.3.The stress field with respect to a reference system in polar coordinates
becomes:

σθθ (r, θ) =
σmax

1 + ω˜1

( 
r0

r

) 1−Λ 1
[ 
f θθ +

( 
r
r0

) µ1−Λ 1

gθθ

] 

σrr (r, θ) =
σmax

1 + ω˜1
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r0

r

) 1−Λ 1
[ 
f rr +

( 
r
r0

) µ1−Λ 1

grr

] 

τr,θ (r, θ) =
σmax

1 + ω˜1

( 
r0

r

) 1−Λ 1
[ 
f rθ +

( 
r
r0

) µ1−Λ 1

grθ

] 

(4.38)

Strain energy density is then:

W1(r, θ) =
1

2E

( 
σmax

1 + ω˜1

) 2{ ( 
r
r0

) 2(Λ1−1)

F̃ Λ +
( 

r
r0

) 2(µ1−1)

G̃µ + 2
( 

r
r0

) Λ1+µ 1−2

+M̃ Λµ

} 
(4.39)

where F̃Λ , G̃µ and M̃Λµ depend on the Poisson’s modulus and the eigenfunctions described by Eq. 4.32
and 4.33.Considering the structural volume in Fig. 4.30 the strain energy can be expressed as:
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E1 =
∫ 

Ω
W1dΩ =

∫ +θ̄

−θ̄
dθ

∫ R 2

R 1(θ)
W1(r, θ)rdr (4.40)

by solving the integral:

E1 =
1

2E

[ √
2πσmax

1 + ω˜1

] 2
r 2(1−Λ 1)

0

( 
IΛ + Iµ + IΛµ

) 
(4.41)

where IΛ , Iµ and IΛµ are integral expressions that can be found in [26].In general, it is possible to write:

I1 =
1
2π

( 
IΛ + Iµ + IΛµ

) 
(4.42)

where I1 = I1(2α, ρ, Rc). The mean value of the strain energy density is then given by:

W1 =
1
E

( 
I1

2Ω

) 
σ2

maxr 2(1−Λ 1)
0

[ √
2π

1 + ω˜1

] 2
(4.43)

Area Ω is defined as:

Figure 4.30:Control volume for averaged SED assessment [26]

Ω =
∫ R 2

R 1(θ)

∫ +θ̄

−θ̄
rdrdθ (4.44)

With mathematical considerations that can be found in [26], the following equation was obtained:

I1

2Ω

( 
2α, ρ, Rc

) 
=

1
ρ2(1−Λ 1)

· H

( 
2α,

Rc

ρ

) 
(4.45)

Eq. 4.43 becomes:

W1 =
E1

Ω
= F (2α) · H

( 
2α,

Rc

ρ

) 
·
σ2

max

E
(4.46)

where:

F (2α) =
( 

q − 1
q

) 2(1−Λ 1)[ √
2π

1 + ω˜1

] 2
(4.47)

and some notable values are shown in Tab. 4.3.
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Chapter 5

EXPERIMENTAL TESTS: THE
AMSLER MACHINE

This chapter willdescribe the static tensile test,which is necessary to obtain the materialparameters
to be used as input in FE analyses (ch.7). A description ofthe reference materials,i.e. 42CrMo4 +
QT, S275 and AlMgSi1 willalso be given.As far as fatigue curves are concerned,specialemphasis
will be given to the experimentaldata obtained,the data fitting techniques and the extrapolation of
information needed to develop the theoretical approaches addressed in the next chapters.in order not to
cause confusion, and, as will be seen more clearly in Ch. 7 the following nomenclature has been adopted
for FABEST specimens:

• FABEST014 - Unnotched specimen

• FABEST050 - Solid bar of circularcross-section,straight-through hole (sometimesalso called
Fabest_h20 or Fabest_12_h20)

• FABEST051 - Solid bar of circular cross-section, circumferential V-groove, with  ρ = 0.5 mm (some-
times also called Fabest_v05)

• FABEST052 - Solid bar of circular cross-section, circumferential V-groove, with  ρ = 2 mm (some-
times also called Fabest_v20)

5.1 The static tensile test for 42CrMo4 and material properties
The tensile test is the simplest and quickest test for the characterisation ofa materialand consists of
applying a displacement at constant speed to the end of a sample, taking care to measure the elongation
of the sample using a strain gauge and the tensile force applied using a load cell.The tensile test ends
with breakage,i.e. the physicalseparation of the two ends of the specimen.The fracture occurs under
quasi-static conditions,as the load is applied slowly.The test also makes it possible to determine the
constitutive law of the material in the stress-strain plane.
Fig. 5.1 represents a typical scheme of a tensile test machine with the physical quantities involved.it is
possible to note the tensile force Fx in the x-direction and the uniaxial stress σx that develops along the
section of the specimen.Young’s modulus can be obtained from the test as:

E =
σx

εx
(5.1)

As mentioned in the preamble, in this section the material properties of 42CrMo4 + QT were determined,
namely:the Young’s modulus E and the Poisson’s coefficient υ.The tests were performed in Poland
at UTP Bydgoszcz by Lukasz Pejkowskiand Jan Seyda according to ISO 6892-1:2016 standard,under
strain control ε, with an imposed strain rate equal to:

ε̇ =
dε
dt

= 0.00025 s−1 (5.2)

The Poisson’s modulus was determined in accordance with ASTM E132-04 standard.On the certificate
provided by the university, it was possible to identify the temperature at which the test was performed,
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Figure 5.1: Scheme of static tensile test machine

Chemical composition [%]
C Mn Si P S Cu Cr Ni

0.42 0.64 0.21 0.013 0.009 0.02 1.04 0.06

Al H N Mo V Ti Sn
0.026 1.30 ppm 0.0086 0.185 0.006 0.0013 0.003

Table 5.1:Chemical composition of 42CrMo4 + QT steel

i.e. T = 20◦ C and the chemicalcomposition of the materialin Tab.5.1. The specimens for the tensile
test were obtained from a rounded bars with a diameter of 35 mm with a tolerance of  ±0.600 mm.
Four specimens identified as MON were used and their characteristics are described in Tab. 5.2.
Five diameter readings were taken and an average value was derived for each specimen.The cross-sectional
area was then calculated using the following formula:

AMON,i =
π · ϕ2

mean,i

4
i = 1, . . . , 4 (5.3)

For each specimen, the stress-strain curve represented in Fig. 5.2 was determined.
In order to determine Young’s modulus,deformations between 0.05% and 0.2% were considered.The
data within this range have been fitted with a straight line ofequation y = mx + q,where y is equal
to the stress value σx , x corresponds to the strain εx , the angular coefficient m is Young’s modulus E
and q is the intercept on the y-axis.This procedure was done for the four specimens and then the values
obtained were averaged.

Specimen no. MON 01 MON 02 MON 03 MON 04
ϕ1 in (mm) 5.010 5.010 5.020 5.020
ϕ2 in (mm) 5.010 5.010 5.010 5.010
ϕ3 in (mm) 5.000 5.010 5.020 5.010
ϕ4 in (mm) 5.010 5.010 5.010 5.020
ϕ5 in (mm) 5.000 5.010 5.010 5.010
ϕmean in (mm) 5.006 5.010 5.014 5.014
St.Dev. 0.005 0 0.005 0.005
Cross section area (mm2) 19.68 19.71 19.75 19.75
Gripping pressure (bar) 120 120 120 120

Table 5.2:Specimen diameters, normalcross-section and gripping pressure
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Figure 5.2: σ − ε curves of MON specimens

Figure 5.3: σ − ε curves with small deformation of MON01 specimen

49



Chapter 5. EXPERIMENTAL TESTS: THE AMSLER MACHINE

Material properties
E [MPa] υ ReH [MPa] ReL [MPa] σUTS [MPa]

206362 0.296 1047.6 1034.7 1110.9

Table 5.3:Material properties of 42CrMo4 + QT steel

Material properties
Material E [MPa] υ ReH [MPa] σUTS [MPa]

S275 206000 0.3 340 475
AlMgSi1 70000 0.33 302 315

Table 5.4:Material properties of S275 structuralsteeland AlMgSi1 alloy

A fit straight-line for specimen MON01 with an R-square of 0.9999 is shown in Fig.5.3. Stress curves
were also derived as a function of transverse strain εy by means of a linear equation y = p1x + p2, where
y takes the meaning of σx , x becomes εy (an example in Fig. 5.4 with an R-square of 0.9955).The other
curves have been collected in the App. A.

Figure 5.4: σ − ε y curve of MON01 specimen

To determine the Poisson’s ratio υ it is necessary to consider its definition:

υ = −
εy

εx
=

p1

E
(5.4)

After deriving υ for each specimen, the values was averaged to obtain the final coefficient.The material
properties are described in the Tab. 5.3.
where ReH is the upper yield strength and ReL is the lower yield strength.The most interesting material
properties for unalloyed structuralsteelS275 and the aluminium-manganese-silica alloy AlMgSi1 have
been collected [39].The mechanical properties have been compiled in Tab. 5.4.In the absence of tensile
test certificates, common values [9] for the modulus of elasticity and Poisson’s ratio were adopted.
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Test frequencies
Specimen Material Frequence [Hz] Stress ratio R

FAB014 42CrMo4 + QT 125 −1
FAB050 42CrMo4 + QT 167 −1
FAB051 42CrMo4 + QT 184 −1
FAB052 42CrMo4 + QT 184 −1

Blunt 42CrMo4 + QT 150 −1
Sharp 42CrMo4 + QT 150 −1

F2 S275 15-30 −1
F3 S275 15-30 −1

F2 AlMgSi1 15-30 −1
F3 AlMgSi1 15-30 −1

Table 5.5:Frequencies and stress cycles adopted in fatigue tests

5.2 Fatigue tests:Amsler machine
The tensile fatigue testing machine is located at the Czech Technical University in Prague (CTU). The
machine operates on a frequency between 50-300 Hz according to the manufacturer.The machine plus
the specimen create a joint system which gets close to the resonance.This means that the stiffness of the
specimen plus the weight of the machine define the operating frequency (set by the resonance).For less
stiff specimens the frequency will get lower and vice versa.A load application frequency of 125 Hz was
reached for the unnotched specimen (FAB014), while frequencies of 167 Hz and 184 Hz were reached for
the notched FABEST specimens.The experimental tests carried out on the 42CrMo4 + QT specimens
were allconducted with a stress ratio ofR = −1. Data on the test frequency and load ratio adopted
were collected in Tab. 5.5.

5.2.1 Set-up Amsler machine at CTU
Before setting up the Amsler test machine, the test specimens were cleaned and painted black (Fig. 5.5)
with a high emissivity spray for thermalmeasurements with infrared cameras.In this way,reflections
due to foreign bodies were reduced.

(a) (b)

Figure 5.5: (a) Fabest specimen, (b) Painted specimen

Manual set-up was then performed on the Amsler machine shown in Fig. 5.6
Initially the specimen was screwed to the base and, thanks to the threaded fixture, tightened with knobs as
shown in Fig. 5.7 (the grease applied to the thread facilitates the whole procedure).There, an unnotched
specimen is shown as an example.A further threaded fixture was placed on top of its lower twin (Fig. 5.8).
A small threaded component required to connect the top of the machine, Fig. 5.8, was inserted through
the bore of this device in order to apply the cyclic fatigue load with great precision.This part was then
also screwed on at the top and tightened with the knobs (Fig. 5.9- 5.10).
In Fig. 5.10 The complete set-up is illustrated with a notched FABEST specimen as an example.After
the ’practical’ part had been completed, some settings had to be made from the machine’s software.
In Fig. 5.11 it is possible to observe the amount of force on the Amsler machine.In Fig. 5.12:(a) is a
pre-load value and it is set for the section concerning machine start-up, i.e.the transient.In the image
(b), on the other hand, it was applied the load at steady state with the stress cycle  R = −1.
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Figure 5.6: Amsler machine at CTU in Prague

Figure 5.7: Bottom fixing levers

Figure 5.8: Threaded connection element
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Figure 5.9: Tightening operation

Figure 5.10:Left: connection between upper and lower part.Right: Specimen fixed

Figure 5.11: Initialisation
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(a) (b)

Figure 5.12:(a) Dynamic pre-load settings, (b) Dynamic load settings

The final screen allows notes to be entered (Fig. 5.13):on the type of material, the tester, the start time
and date of the test, etc.

Figure 5.13:Final options

5.2.2 Experimental tests
Using the software incorporated in the PCs in the laboratory,the various tests were monitored using:
static force diagrams Fs = F s(t) in kN as a function oftime,dynamic force diagrams Fd = F d(t) in
kN as a function oftime and frequency diagrams f = f (t) in Hz as a function oftime. In Fig. 5.14
are represented some time instants of a test taken as an example, with the moment of the fatigue crack
initiation,where the frequency decreases rapidly.In Ch. 6, together with the fracture sections,graphs
such as those represented in Fig. 5.14 will be shown together with the experimental results to relate the
fracture cross sections to the parameters ofthe S-N curve.The graphs ofstatic force,dynamic force
and frequency as a function of time will be plotted and it will be possible to note the rapid decrease in
frequency as a direct consequence of fatigue crack initiation.
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(a) start of test (b) test in progress at a certain time t

(c) test in progress at a certain time t + t ′ (d) test in progress at a certain time t + t ′ + t ′′

(e) test in progress at a certain time t + t ′ + t ′′ + t ′′′ (f ) crack initiation

Figure 5.14:Diagrams recorded by the software
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5.2.3 Experimental results:Amsler machine
The data collected by the Amsler machine were organised in an excel® file.Using the VBA programming
language in Excel,fit curves were obtained from the experimentaldata [21][22].Severalmathematical
models were used to fit the experimental results.The first one that was taken into consideration is the
following:

logNf = a + b · σa (5.5)

which can be rewritten if using the notation used in matlab® or excel® to:

logNf = L1CON + L1LIN · σ a (5.6)

this equation has been used for logNf − σ a axes and is called logN-linS regression.In logNf − logσa

coordinate the following equation was used:

σk
a · Nf = C (5.7)

and this type of regression is called Basquin regression.In matlab® or excel® language:

σSN_W
a · Nf = SN_C (5.8)

As described in [22], linear equations were obtained because some points in the quasi-static and high-cycle
regions were excluded.When fatigue tests are carried out in the laboratory a certain statistical dispersion
can be observed.If specimens of the same nominal size are tested under the same load  σa, they do not
show the same number of cycles to failure Nf , but there is some statisticalscatter in the experimental
results.Generally,fatigue tests are conducted at different stress levels and it can be observed that,for
each stress level shown in Fig. 5.15, there is a statistical distribution on the number of cycles to failure.
A first hypothesis is that the distribution is Gaussian (or Normal).In practically allapplications,the
x-axis ofthe S-N curves,where the number ofcycles is present,is in logarithmic scale in base 10,so
the distribution is of the log-normaltype for each stress amplitude.The parameters characterising the
Normaldistribution are the mean value µ and the standard deviation σ.It is possible to fit the mean
values, for each stress level, with a linear curve in log − log scales.This is the curve that for each stress
levelgives the average value of the number of cycles to failure,i.e. the curve at the 50% probability of
survival(P.S.50%).Using this curve in machine design is not at allprecautionary because the risk of
failure before it is 50%, which is unacceptable in all engineering applications.At this point, by integrating
the probability curves, it is possible to determine points with an higher probability of survival, for example
90% or 97.7%,by interpolating them with another line.A second hypothesis that has been made is to
force the fit with the same inverse slope as the curve with P.S.50%,in this way it is assumed that the
standard deviation σ is constant for allstress levels.In practice,a widely used curve is the P.S.97.7%
curve, which is obtained from the P.S.50% curve by interpolating points with a deviation of 2σ.

Figure 5.15:Fatigue curves at different survival probabilities

Given a certain number of cycles NA it is possible to identify 3 levels of stress that correspond to the 3
different probabilities of survival (Fig. 5.16).The width of the statistical dispersion scatter within which
the experimental results fall is indicated by the parameter Tσ which by definition is:
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Tσ =
σA,10%

σA,90%
(5.9)

Figure 5.16:Scatter Tσ

from the mathematicalmodeldescribed by Eq.5.5 the standard deviation oflogarithms ofnumber
of cycles to failure is described by L1_LOGN and the standard deviation ofstresses is L1_SLOGS.
From Eq. 5.7 the standard deviation of logarithms of Nf is SN _SLOGN and from stress point of view
SN_SLOGS. Eq. 5.9 is taken as an example, but it is possible to define a similar index considering the
stresses for a P.S. of 2.3% and 97.7% respectively.
A non-linear analysis ofthe data was also carried out.Following [22],the mathematicalfunction was
proposed as:

σa = A ·

( 
C ·

N f + B
N f + C

) β

(5.10)

which in excel® or matlab® language is written as:

σa = KV_A ·

( 
KV_C ·

N f + KV_B
N f + KV_C

) KV_BETA

(5.11)

As the curve is defined with a higher number of parameters than linear models, the fitting curve better
follows the experimentaldata even in outward regions.Statisticalparameters were also derived here:
KV _SLOGN, KV _SLOGS and KV _R2. With regard to the fatigue curve of the smooth specimen
FAB014 in 42CrMo4+QT, the graph in Fig. 5.17 was obtained.
Tab. 5.6 shows all the data describing the curves.
Given the standard deviation on the number ofcycles to failure it is possible to obtain the statistical
range ofdispersion for a survivalprobability of97.7% and 2.3%.To do this,Basquin type regression
from Eq.5.7 was taken as a reference.The statisticalparameters for carrying out the procedure using
matlab® can be found in Tab.5.6. The fatigue limits for a P.S.of 50% have been determined by
imposing Nf = 2 · 105 cycles.It was obtained Fig. 5.18.
For the smooth specimen, as can be seen in Fig. 5.18, for a number of cycles equal to  N0 = 220122 cycles,
fatigue limit is σ0 = 573.3 MPa.Similar information was obtained for the notched specimens as shown
in the following Fig. 5.21, 5.22, 5.23, 5.24, 5.19, 5.20 and Tab. 5.8, 5.9, 5.7.The fatigue limits derived all
refer to the net nominal section.
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Figure 5.17:Experimental data of FABEST014 - unnotched specimen - and fit curves from Eq. 5.5, 5.7
and 5.10

parameters code values description
logN/linS regression
a L1CON 10.3 y-axis intercept
b L1LIN -0.009 Slope
σlog10 L1_SLOGN 0.198 Standard deviation

of the logarithm of Nf
σσ,log10 L1_SLOGS 0.015 Standard deviation

of the logarithm of stress
R2 L1_R2 0.9584 Coefficient of determination

Basquin regression
k SN_W 13.076 Slope
C SN_C 2.57 · 1041 Constant
σN,log10 SN_SLOGN 0.117 Standard deviation

of the logarithm of Nf
σσ,log10 SN_SLOGS 0.014 Standard deviation

of the logarithm of stress
R2 SN_R2 0.9670 Coefficient of determination

Kohout-Vechet regression
A KV _A 2014.4 Constant
B KV _B 3874 Constant
C KV _C 388107 Constant
β KV _BETA -0.106 Constant
σlog10 KV _SLOGN 0.357 Standard deviation

of the logarithm of Nf
σσ,log10 KV _SLOGS 0.014 Standard deviation

of the logarithm of stress
R2 KV _R2 0.9662 Coefficient of determination

Table 5.6:Statistical parameters for the curves of FAB001
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Figure 5.18: Statistical scatter of smooth specimentFAB014. Kohout-Vechet regression was used to
derive the fatigue limit.

Figure 5.19:Experimental data of FABEST050 and fit curves from Eq. 5.5, 5.7 and 5.10
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parameters code values description
logN/linS regression
a L1CON 7.0 y-axis intercept
b L1LIN -0.006 Slope
σN,log10 L1_SLOGN 0.035 Standard deviation

of the logarithm of Nf
σσ,log10 L1_SLOGS 0.009 Standard deviation

of the logarithm of stress
R2 L1_R2 0.9981 Coefficient of determination

Basquin regression
k SN_W 4.701 Slope
C SN_C 5.18 · 1016 Constant
σN,log10 SN_SLOGN 0.125 Standard deviation

of the logarithm of Nf
σσ,log10 SN_SLOGS 0.027 Standard deviation

of the logarithm of stress
R2 SN_R2 0.9753 Coefficient of determination

Kohout-Vechet regression
A KV _A 57910 Constant
B KV _B 31306.8 Constant
C KV _C 384558.1 Constant
β KV _BETA 0.449 Constant
σN,log10 KV _SLOGN 0.351 Standard deviation

of the logarithm of Nf
σσ,log10 KV _SLOGS 0.024 Standard deviation

of the logarithm of stress
R2 KV _R2 0.9925 Coefficient of determination

Table 5.7:Statistical parameters for the curves of FABEST050, with ϕ = 2 mm

Figure 5.20:Statistical scatter of FABEST050 with ϕ = 2 mm
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Figure 5.21:Experimental data of FABEST051 and fit curves from Eq. 5.5, 5.7 and 5.10

parameters code values description
logN/linS regression
a L1CON 6.63 y-axis intercept
b L1LIN -0.006 Slope
σN,log10 L1_SLOGN 0.169 Standard deviation

of the logarithm of Nf
σσ,log10 L1_SLOGS 0.054 Standard deviation

of the logarithm of stress
R2 L1_R2 0.9749 Coefficient of determination

Basquin regression
k SN_W 5.268 Slope
C SN_C 4.17 · 1017 Constant
σlog10 SN_SLOGN 0.142 Standard deviation

of the logarithm of Nf
σσ,log10 SN_SLOGS 0.027 Standard deviation

of the logarithm of stress
R2 SN_R2 0.9824 Coefficient of determination

Kohout-Vechet regression
A KV _A 6740.4 Constant
B KV _B 2232.7 Constant
C KV _C 153153.3 Constant
β KV _BETA -0.6957 Constant
σlog10 KV _SLOGN 0.017 Standard deviation

of the logarithm of Nf
σσ,log10 KV _SLOGS 0.017 Standard deviation

of the logarithm of stress
R2 KV _R2 0.9979 Coefficient of determination

Table 5.8:Statistical parameters for the curves of FABEST051, with ρ = 0.5 mm
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Figure 5.22:Statistical scatter of FABEST051 with ρ = 0.5 mm

Figure 5.23:Experimental data of FABEST052 and fit curves from Eq. 5.5, 5.7 and 5.10
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parameters code values description
logN/linS regression
a L1CON 7.3 y-axis intercept
b L1LIN -0.007 Slope
σN,log10 L1_SLOGN 0.197 Standard deviation

of the logarithm of Nf
σσ,log10 L1_SLOGS 0.033 Standard deviation

of the logarithm of stress
R2 L1_R2 0.9562 Coefficient of determination

Basquin regression
k SN_W 5.931 Slope
C SN_C 9.76 · 1019 Constant
σN,log10 SN_SLOGN 0.248 Standard deviation

of the logarithm of Nf
σσ,log10 SN_SLOGS 0.042 Standard deviation

of the logarithm of stress
R2 SN_R2 0.9307 Coefficient of determination

Kohout-Vechet regression
A KV _A 101125469Constant
B KV _B 27757 Constant
C KV _C 60072.2 Constant
β KV _BETA -1.172 Constant
σN,log10 KV _SLOGN 0.614 Standard deviation

of the logarithm of Nf
σσ,log10 KV _SLOGS 0.039 Standard deviation

of the logarithm of stress
R2 KV _R2 0.9740 Coefficient of determination

Table 5.9:Statistical parameters for the curves of FABEST052, with ρ = 2 mm

Figure 5.24:Statistical scatter of FABEST052 with ρ = 2 mm
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5.3 Fatigue tests from literature [39] [44]
With regard to specimens extracted from the literature they were tested at frequencies up to 15 Hz with
servohydraulic testing machines and at a frequency of 30 Hz with mechanical resonance testing machines
for S275 structuralsteeland AlMgSi1 alloy [39].With regard to the data from the Santus,Taylor and
Benedetti article [44],it was found that the test frequency was 150 Hz.in both articles the stress ratio
set was R = −1.

5.3.1 Fatigue data from literature:[39]
With regard to the fatigue tests performed in [39], the following fit curves were obtained.In Fig. 5.25, 5.26
and 5.27 the fatigue curves of test specimen F, shown in Fig. ??, in S275 material are represented.The
fit curves were obtained with a programming code similar to that seen in the previous section for FAB001.

Figure 5.25:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10

Figure 5.26:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10

In Fig. 5.28, 5.29 and 5.30 the fatigue curves of test specimen F, shown in Fig. ??, in AlMgSi1 material
are represented.
As with the previous samples, the statistical scatter was determined using Basquin’s equation (Eq. 5.7),
in Fig. 5.31, 5.32, 5.33, 5.34 and 5.35 for S275 material.
For AlMgSi1 material the curves in Fig. 5.36, 5.37, 5.38, 5.39 and 5.40 were obtained.
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Figure 5.27:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10

Figure 5.28:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10
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Figure 5.29:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10

Figure 5.30:Experimental data found in [39] and fit curves from Eq. 5.5, 5.7 and 5.10
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Figure 5.31:Statistical scatter of F2-specimen in S275 with ρ = 1 mm, stress related to net section

Figure 5.32:Statistical scatter of F2-specimen in S275 with ρ = 0.2 mm, stress related to net section
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Figure 5.33:Statistical scatter of F2-specimen in S275 with ρ = 0.04 mm, stress related to net section

Figure 5.34:Statistical scatter of F3-specimen in S275 with ρ = 0.2 mm, stress related to net section

Figure 5.35:Statistical scatter of F3-specimen in S275 with ρ = 0.04 mm, stress related to net section
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Figure 5.36:Statistical scatter of F2-specimen in AlMgSi1 with ρ = 1 mm

Figure 5.37:Statistical scatter of F2-specimen in AlMgSi1 with ρ = 0.2 mm

Figure 5.38:Statistical scatter of F2-specimen in AlMgSi1 with ρ = 0.04 mm
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Figure 5.39:Statistical scatter of F3-specimen in AlMgSi1 with ρ = 0.2 mm

Figure 5.40:Statistical scatter of F3-specimen in AlMgSi1 with ρ = 0.04 mm
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Parameters Plain Blunt Sharp
P50%, MPa 390 163 87.5
P10%, MPa 363 147 83.5
P90%, MPa 417 178 91.3
St.Dev., MPa 20.7 12.1 2.93
k 1163 n/a 2127
b (·103) −80.139 n/a −215.96

Table 5.10:Data from [44] with stress ratio R = −1 for 42CrMo4 + QT

5.3.2 Fatigue data from literature:[44]
In this subsection,data and graphs obtained in [44]are collected.Two specimens with the following
characteristics were considered in the cited article:

• Blunt specimen with ρ = 1 mm at the tip of the notch

• Sharp specimen with ρ = 0.2 mm at the tip of the notch

The corresponding fatigue curves can be viewed in Fig. 5.41.

Figure 5.41:Fatigue curves of specimens found in [44]

Relevant data from the tests conducted by Santus, Taylor and Benedetti [44] were collected in Tab. 5.10.
The equation used here has the following form:

σa = k · Nb
f (5.12)

Eq. 5.12 is linked to Eq. 5.7, i.e.is the Basquin equation:

C = kw

w = −
1
b

(5.13)
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aaa
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Chapter 6

DESCRIPTION OF CRACK
INITIATION POINT

6.1 Introduction to Dino-Lite microscope
In this chapter the fracture sections of the specimens will be analyzed.The Dino-Lite microscope with
a 5 MPx camera was used to achieve the goal.It consists of a base where the specimens are placed,a
support structure and the microscope connected to a PC via USB cable (Fig. 6.1)

Figure 6.1: Dino-Lite microscope

The specimen is placed under the lens as shown in the Fig. 6.2.

Figure 6.2: Placement of the specimen under analysis

Through the DinoCapture software it was possible to obtain information on the fracture section,in
particular on the fatigue crack initiation point.A typical screenshot ofthe program can be seen in
the Fig. 6.3. With the help ofthe software it is possible to adjust the parameters ofthe image,such
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as brightness,contrast,etc. and,with the commands placed in the upper menu,add some comments,
length measures etc.

Figure 6.3: DinoCapture software

In the following paragraphs, numerous images have been collected describing the fracture section of the
specimens.The Amsler testing machine also returned graphs of static force, dynamic force and frequency
as functions oftime. The sudden decrease in frequency,at a certain number ofcycles,identifies the
initiation of the fatigue crack.

6.2 FABEST_V05 specimen
As mentioned in paragraph 5.2.2 the following experimental data for FAB051 were collected in the current
Tab. 6.1:stress ratio R, nominal net stress σa,n, number of cycles to fracture Nf , frequency f , start and
end of the test.

Specimen R σa,n [MPa] N f [cycles] f [Hz] Start End
FAB051_2B -1 608.3 629 184 28/07/21 28/07/21
FAB051_5 -1 553.2 1732 184 20/07/21 20/07/21

FAB051_9B -1 454.4 5227 184 30/06/2021 30/06/2021
FAB051_10 -1 365.3 15137 184 30/06/2021 30/06/2021
FAB051_8 -1 304.0 34867 184 29/06/21 29/06/21
FAB051_3 -1 251.8 78435 184 28/06/21 28/06/21
FAB051_7 -1 201.7 173482 184 29/06/21 29/06/21
FAB051_4 -1 214.4 258440 184 28/06/21 28/06/21
FAB051_1 -1 201.8 447210 184 20/07/21 20/07/21
FAB051_6 -1 189.2 2169391 184 28/06/21 28/06/21
FAB051_2 -1 183.8 10248826 184 27/07/21 28/07/21
FAB051_9 -1 176.7 100000000 184 30/06/21 07/07/21

Table 6.1:Parameters of the experimental results of FAB051

For each specimen,the Amsler test machine returns three graphs:static force,dynamic force and fre-
quency as a function oftime. When the frequency drops dramatically,fatigue crack initiation can be
observed at that precise instant.An example is shown in Fig. 6.4
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(a) Static force (b) Dynamic force

(c) Frequency

Figure 6.4: Forces and frequency as a function of time

Images in Fig. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14 describing the fracture section of the
specimens with the magnification used were collected
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(a) Part of the specimen 1 (b) Fracture section with 24.6x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with x magnification

(d) Crack initiation point with x magnifica-
tion

Figure 6.5: Severalpictures of specimen 1 - FAB051

(a) part of the specimen 2 (b) Fracture section with 26.3x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 62.6x magnification

(d) Part of the fracture section with 199.6x
magnification

Figure 6.6: Severalpictures of specimen 2 - FAB051
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(a) part of the specimen 3 (b) Fracture section with 26.3x magnifica-
tion

(c) Part of the fracture section with 53.5x
magnification

(d) Part of the fracture section with 185.5x
magnification

Figure 6.7: Severalpictures of specimen 3 - FAB051

(a) part of the specimen 4 (b) Fracture section with 28.8x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 55.7x magnification

(d) Crack initiation point with 199.2x mag-
nification

Figure 6.8: Severalpictures of specimen 4 - FAB051
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(a) part of the specimen 5 (b) Fracture section with 26.0x magnifica-
tion

(c) Part of the fracture section with 67.5x
magnification

(d) Part of the fracture section with 200.7x
magnification

Figure 6.9: Severalpictures of specimen 5 - FAB051

(a) part of the specimen 6 (b) Fracture section with 28.8x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 48.3x magnification

(d) Crack initiation point with 203.5x mag-
nification

Figure 6.10:Severalpictures of specimen 6 - FAB051
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(a) part of the specimen 7 (b) Fracture section with 23.8x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 54.3x magnification

(d) Crack initiation point with 97.2x magni-
fication

Figure 6.11:Severalpictures of specimen 7 - FAB051

(a) part of the specimen 8 (b) Fracture section with 26.3x magnifica-
tion

(c) Part of the fracture section with x mag-
nification

(d) Part of the fracture section with 99.6x
magnification

Figure 6.12:Severalpictures of specimen 8 - FAB051
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(a) part of the specimen 9 (b) Fracture section with 26.3x magnifica-
tion

(c) Part of the fracture section with 63.2x
magnification

(d) Part of the fracture section with 97.4x
magnification

Figure 6.13:Severalpictures of specimen 9 - FAB051

(a) part of the specimen 10 (b) Fracture section with 26.0x magnifica-
tion

(c) Part of the fracture section with 52.5x
magnification

(d) Part of the fracture section with 198.9x
magnification

Figure 6.14:Severalpictures of specimen 10 - FAB051
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Specimen R σa,n [MPa] N f [cycles] f [Hz] Start End
FAB052_10B -1 608.7 992 184 20/07/21 20/07/21
FAB052_1B -1 576.4 4124 184 22/07/21 22/07/21
FAB052_2B -1 548.6 8806 184 23/07/21 23/07/21
FAB052_8B -1 519.9 11458 184 08/07/21 08/07/21
FAB052_5 -1 457.5 18571 184 29/06/21 29/06/21
FAB052_3 -1 407.4 44054 184 29/06/21 29/06/21
FAB052_4 -1 356.7 62956 184 29/06/21 29/06/21
FAB052_9 -1 253.1 325894 184 19/07/21 19/07/21
FAB052_6 -1 304.4 376654 184 29/06/21 29/06/21
FAB052_7 -1 254.0 394885 184 29/06/21 29/06/21
FAB052_10 -1 234.6 10000000 184 20/07/21 21/07/21
FAB052_8 -1 215.6 10000000 184 07/07/21 08/07/21
FAB052_2 -1 306.2 10031491 184 22/07/21 23/07/21
FAB052_1 -1 246.6 12453336 184 21/07/21 22/07/21

Table 6.2:Parameters of the experimental results of FAB052

6.3 FABEST_V20 specimen
The following experimental data were also collected for test specimen FAB052 6.2:stress ratio R, nominal
net stress σa,n, number of cycles to fracture Nf , frequency f , start and end of the test.
Images in Fig. 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23 and 6.24 describing the fracture section
of the specimens with the magnification used were collected.
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(a) Part of the specimen 1 (b) Fracture section with x magnification

(c) Part of the fracture section with 49.5x
magnification

(d) Part of the fracture section with 164.9x
magnification

Figure 6.15:Severalpictures of specimen 1 - FAB051

(a) Part of the specimen 1 (b) Fracture section with 25.6x magnifica-
tion

(c) Part of the fracture section with 67.1x
magnification

(d) Part of the fracture section with 211.4x
magnification

Figure 6.16:Severalpictures of specimen 2 - FAB051
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(a) Part of the specimen 1 (b) Fracture section with 26.3x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 67.8x magnification

(d) Crack initiation point with 197.4x mag-
nification

Figure 6.17:Severalpictures of specimen 3 - FAB051

(a) Part of the specimen 1 (b) Fracture section with 28.4x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 63.8x magnification

(d) Crack initiation point with 198.1x mag-
nification

Figure 6.18:Severalpictures of specimen 4 - FAB051
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(a) Part of the specimen 1 (b) Fracture section with 23.1x magnifica-
tion

(c) Part of the fracture section with 42.6x
magnification

(d) Part of the fracture section with 195.5x
magnification

Figure 6.19:Severalpictures of specimen 5 - FAB051

(a) Part of the specimen 1 (b) Fracture section with 26.3x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 63.1x magnification

(d) Crack initiation point with 188.3x mag-
nification

Figure 6.20:Severalpictures of specimen 6 - FAB051
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(a) Part of the specimen 1 (b) Fracture section with 25.1x magnifica-
tion

(c) Fatigue lines in part of the fracture sec-
tion with 57.2x magnification

(d) Crack initiation point with 199.2x mag-
nification

Figure 6.21:Severalpictures of specimen 7 - FAB051

(a) Part of the specimen 1 (b) Fracture section with 26.3x magnifica-
tion

(c) Part of the fracture section with 52.7x
magnification

(d) Part of the fracture section with 196.2x
magnification

Figure 6.22:Severalpictures of specimen 8 - FAB051
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(a) Part of the specimen 1 (b) Fracture section with 26.8x magnifica-
tion

(c) Part of the fracture section with 61.3x
magnification

(d) Part of the fracture section with 197.5x
magnification

Figure 6.23:Severalpictures of specimen 9 - FAB051

(a) Part of the specimen 1 (b) Fracture section with 24.8x magnifica-
tion

(c) Part of the fracture section with 59.8x
magnification

(d) Part of the fracture section with 197.5x
magnification

Figure 6.24:Severalpictures of specimen 10 - FAB051
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Chapter 7

FINITE ELEMENT ANALYSIS AND
APPLICATION OF THEORETICAL
APPROACHES

In this chapter, finite element analyses were carried out on the three specimens with the aim of determining
the physical quantities required to apply the theoretical methods presented in this thesis work (Ch. 2, 3, 4).
FE analyses were performed and the TCD, RSG and SED methods were applied (Fig. 7.1).These results
will then be compared, in the following chapters, with the experimental results coming out of the Amsler
test machine and other findings from literature.

Figure 7.1: Brief to do list in Chapter 7 for Fabest specimens

Throughout the chapter, numerical and programming techniques will be used to achieve this aim.These
topics will be addressed in parallel in order to give a practical and immediate impression of what is really
needed to obtain the desired results.It should be noted that Fig. 7.1 shows a synthetic procedure that
will be followed for FABEST specimens, but a similar procedure will be followed for specimens extracted
from the literature [39] [44].
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7.1 Finite element analysis of FABEST specimens
In this sub-chapter,finite element analyses will be conducted for the geometries proposed in this thesis
work.This part is crucial because the linear elastic stress distribution near the tip of the notch is necessary
in order to develop the theoretical approaches (See Ch. 2 and 3).In addition, in order to apply the SED
approach,it is also necessary to determine the strain energy density averaged over a certain structural
volume (See Ch. 4).
These next sub-chapters are organised as follows.As the TCD and RSG methods need either the maxi-
mum principal stress distribution or the Von Mises stress distribution (depending on the case) as an input
parameter, and these can be obtained in a single .txt file, the modelling of the specimen is the same.The
case for the SED approach is different.For this reason it was decided to divide the analyses,between
pre and post processor, into two categories:that which includes the TCD and the RSG and that which
includes the SED.

7.1.1 Finite element analysis of specimen FABEST_V05 for TCD and RSG
approach

For the numericalmodelling ofthe FABEST_V05 specimen,the starting point is the pre-processor
environment.Initially, a FE model was constructed to obtain the necessary data to be able to apply the
TCD and RSG methods.

Pre-processor for TCD and RSG approach
The geometry of the test specimen is represented in the 2D technicaldrawing in Fig.7.2. A 3D model
(usefulfor understanding how the component willlook in a FE environment) was created with solid-
works ® , shown below.

Figure 7.2: Geometry of FABEST_V05

Since the test was conducted with cycle-stress ratio R = −1 and the specimen is axisymmetric,the
symmetry of the problem was exploited (the acting loads are also symmetric).Fig. 7.3 shows how the
problem has been simplified to make better use of the computational power of the software.
First of all, the element type to be adopted was defined, namely:

element type → add-edit-delete → solid → quad 4 node 182

through the commands described in Fig. 7.4.In the options, a K1 K-option was set to simple enhanced
strain and K3 to axisymmetric to perform a 2D analysis knowing that the specimen is cylindrical in
shape.
From Ch. 5 the value of Young’s modulus and Poisson’s coefficient was entered, as described in Fig. 7.5.

material properties → material models → structural

→ linear → elastic → isotropic
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Figure 7.3: Semplification of the problem and symmetry boundary conditions

Figure 7.4: Type of element used for FE analysis and K-options
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Figure 7.5: Input of material properties

As a static and linear elastic structuralanalysis,only these two values are required.After the type of
element (and therefore its structural behaviour) and the material were chosen, the geometry was imported
via the .IGES file using the import option.Since the geometric model consists only of lines, it is necessary
to create the area entity in order to lay out the mesh.With

modeling → create → structural → areas → arbitrary → by lines

area was created.At this point it was possible to generate the mesh.In order to be able to apply TCD
and RSG efficiently, it is necessary to achieve a very fine element size in the vicinity of the notch.Knowing
that the diameter ofthe net section is equalto ϕn = 10 mm (and thus the radius is rn = 5 mm),an
element size equal to ∆x = 0.005 mm was chosen to obtain a number of subdivisions along the bisector
equal to (Fig. 7.6):

nsud =
rn

∆x
=

5
0, 005

= 1000 (7.1)

Figure 7.6: Basic dimensions for calculating the number of subdivisions

In order to obtain accurate results around the hot zone, it is necessary to construct a mesh that gradually
becomes dense from upstream to downstream.To achieve this,it is necessary to derive the number of
elements nρ to be generated on the fillet.At the notch ρ = 0.5 mm and therefore,knowing the angle
underlying the arc, which is equal to α = π/4 rad, it was possible to obtain l (Fig. 7.6):

l = α · ρ =
π

4
· 0, 5 =

π

8
≈ 0, 393 mm (7.2)

known l, has been obtained:

nρ =
l

∆x
=

0, 393
0, 005

≈ 79 (7.3)
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through the function picked lines a number of subdivisions was set to 79.The mesh creation for the
remaining lines is shown in Fig. 7.7 where the number of subdivisions and the spacing ratio have been
indicated to obtain a sparse mesh away from the hot zone.

Figure 7.7: Subdivision and spacing ratio on FABEST_V05

A free-form mesh was used to mesh the component and the result is shown in Fig. 7.8 with appropriate
zooming towards the area of interest.
At this point, symmetry conditions have been applied in the areas highlighted in Fig. 7.3 which impose
the following constraint conditions:

symmetry B.C.

{ 
UX = 0 along axis
UY = 0 along bisector

(7.4)

where UX is the displacement along X and UY is the displacement along Y and were set as follows:

loads → define loads → apply → structural → displacement → symmetry B.C.

→ on lines

As the Wöhler curves shown in Ch. 5 relate to the net cross-section, it was decided to set a nominal net
stress of σn = 1 MPa.Following the continuity equation:

σnAn = σgAg (7.5)

the gross nominal stress to be applied is:

σg = σn ·
An

Ag
= σn ·

πϕ 2
n

4
πϕ 2

g

4

= σn ·
ϕ2

n

ϕ2
g

= σn ·
(2rn)2

(2rg)2 = 1 ·
102

202 = 0.25 MPa (7.6)

and it was applied with the following commands:

loads → define loads → apply → structural → pressure → on lines
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Figure 7.8: Free mesh on FABEST_V05

The reason why a nominalnet stress of1 MPa has been applied is that only one analysis with the
computer is required.In this way it is sufficient to scale this unit stress to any stress state to apply
the TCD and RSG with the realvalues.Finally, after the procedures involving the pre-processor
environment had been completed, the solution was launched in the solution environment.

Solution
In this environment, the analysis was launched using the following commands:

solve → current LS

through the following screen in Fig. 7.9 it is possible to see some information about the type of analysis
carried out.

Figure 7.9: Information on the analysis conducted in the solution environment

In this specific case it can be seen that the analysis is 2D (For the specimen Fabest_h20 the 3D model
will be used, 7.1.3).

Post-processor for TCD and RSG approach
First of all, the deformation plot was obtained to quickly check the correctness of the solution.The result
can be seen in Fig. 7.10

92



Chapter 7. FINITE ELEMENT ANALYSIS AND APPLICATION OF THEORETICAL
APPROACHES

plot results → deformed shape

Figure 7.10:Deformed vs. non-deformed configuration of FABEST_V05

Using the following options it is possible to plot the maximum principalstress field and the Von Mises
stress:

plot results → contour plot → nodal solution

→ stress → 1st principal stress - Von Mises stress

The following commands were used to extract the stress field near the tip of the notch:

select → entities → lines → by num-pick

→ nodes → attached to → lines,all

In this way it was possible to derive the .txt file containing the maximum principal stress values  σ1 = σ1(x)
and the Von Mises one σe = σe(x), as a function of the distance from the notch apex, through the following
commands:

list results → nodal solution

Fig. 7.11 clarifies the symbols used in this discussion.
Stress plots are shown in Fig. 7.12.
In Fig. 7.13 it is possible to see the distribution of maximum principal stress and the Von Mises distribution
as a function of the distance from the apex x.

93



Chapter 7. FINITE ELEMENT ANALYSIS AND APPLICATION OF THEORETICAL
APPROACHES

Figure 7.11:Symbology for the first principal stress and Von Mises stress field

(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.12:Contour plot of stress fields
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Figure 7.13:Stress fields: nodal values

7.1.2 Finite element analysis of specimen FABEST_V20 for TCD and RSG
approach

In this subsection, the specimen FABEST_V20, which has a larger fillet radius than FABEST_V05, will
be modelled.

Pre-processor for TCD and RSG approach
The geometry of the test specimen is represented in the 2D technical drawing in Fig. 7.14.A 3D model
was created with solidworks® , depicted below.

Figure 7.14:Geometry of FABEST_V20

Similarly to specimen FABEST_V05,since the test was conducted with cycle ratio R = −1 and the
specimen is axisymmetric, the symmetry of the problem was exploited as in Fig. 7.3.After these initial
considerations,the element type to be adopted was defined in the pre-processor environment,i.e
quad 4 node 182. Since the shape ofthis specimen is identicalto that of FABEST_V05, the same
element k-options have been set.
From Sec. 5.1 the value of Young’s modulus and Poisson’s coefficient was entered, as described in Fig. 7.5.
As a static and linear elastic structuralanalysis,only these two values are required.After the type of

95



Chapter 7. FINITE ELEMENT ANALYSIS AND APPLICATION OF THEORETICAL
APPROACHES

element (and therefore its structural behaviour) and the material were chosen, the geometry was created
using autocad® software to speed up the creation of the lines that characterise the contour of the sample.
From the 2D mechanical drawing software, the .IGES file was obtained and imported into ansys® . Since
the geometric modelconsists only oflines,it is necessary to create the area entity in order to lay out
the mesh.Using the same method as in the previous sample,the area was generated.At this point it
was possible to generate the mesh.In order to be able to apply TCD and RSG efficiently, it is necessary
to achieve a extremely fine element size in the vicinity ofthe notch. Knowing that the diameter of
the net section is equalto ϕn = 10 mm (and thus the radius is rn = 5 mm),an element size equalto
∆x = 0.005 mm was chosen to obtain a number ofsubdivisions along the bisector equalto (Fig. ??)
1000,as described in Eq.7.1. In order to obtain accurate results around the hot zone,it is necessary
to construct a mesh that gradually becomes dense from upstream to downstream.To achieve this,it is
necessary to derive the number of elements nρ to be generated on the fillet.At the notch ρ = 2 mm and
therefore, knowing the angle underlying the arc, which is equal to  α = π/4 rad, it was possible to obtain
l (Fig. ??):

l = α · ρ =
π

4
· 2 =

π

2
≈ 1, 571 mm (7.7)

known l, has been obtained:

nρ =
l

∆x
=

1, 571
0, 005

≈ 314 (7.8)

through the function picked lines a number of subdivisions was set to 314.The mesh creation for the
remaining lines is shown in Fig. 7.15 where the number of subdivisions and the spacing ratio have been
indicated to obtain a sparse mesh away from the hot zone.

Figure 7.15:Subdivision and spacing ratio on FABEST_V20

A free-form mesh was used to mesh the component and the result is shown in Fig. 7.16 with appropriate
zooming towards the area of interest.
At this point, symmetry conditions have been applied in the areas highlighted in Fig. 7.3 which impose
the same boundary conditions as FABEST_V05.The gross nominal stress to be applied is the same as
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Figure 7.16:Free mesh on FABEST_V05

that of FABEST_V05 of the previous Sec. 7.1.1.
Finally, after the procedures involving the pre-processor environment had been completed, the solution
was launched in the solution environment.

Post-processor for TCD and RSG approach
First of all, the deformation plot was obtained to quickly check the correctness of the solution.The result
can be seen in Fig. 7.17
Using the same options as above (i.e.FABEST_V05) it is possible to plot the maximum principal stress
field and the Von Mises stress in Fig. 7.18 and extract the .txt file.
In Fig. 7.19 it is possible to see the distribution of maximum principal stress and the Von Mises distribution
as a function of the distance from the apex x.
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Figure 7.17:Deformed vs. non-deformed configuration of FABEST_V20

(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.18:Contour plot of stress fields
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Figure 7.19:Stress fields: nodal values

7.1.3 Finite element analysis ofspecimen FABEST_12_H20 for TCD and
RSG approach

Compared to previously studied specimens,FABEST_12_H20 was modelled with 3D tetrahedralel-
ements.A 2D model is insufficient to capture the stress distribution from the surface to the axis of
symmetry.As a 3D modelrequires more computing power,the element size around the hot zone was
increased.

Pre-processor for TCD and RSG approach
The geometry of the test specimen is represented in the 2D technical drawing in Fig. 7.20.A 3D model
can be seen in Fig. 7.22.

Figure 7.20:Geometry of FABEST_12_H20

As described in previous FE analyses,the symmetry ofthe problem was exploited and therefore only
1/8th of specimen was considered for the analysis (Fig. 7.22 clarifies the type of model used).First of all,
the element type (Fig. 7.21) to be adopted was defined, namely:

element type → add-edit-delete → solid → 10 node 187
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Figure 7.21:Type of element used for FE analysis

From Sec. 5.1 the value of Young’s modulus and Poisson’s coefficient was entered, as described in Fig. 7.5.
A 1/4 circle was modelled in autocad® and then imported into ansys® as described in the V-rounded-
notch specimen analysis.Using the commands extrude - areas - by XYZ offset, the circle was
extruded by 45 mm.The hole was then created using the booleans - substract - volumes command.
At this point, the picked lines tool was used to create subdivisions along all the lines that make up the
specimen, Tab. 7.1.Elements with a dimension of ∆x ≈ 0.01 mm were obtained along the x-coordinate
(Fig. 7.22).

Figure 7.22:Subdivision and spacing ratio on FABEST_12_h20 and the position of x-coordinate

After setting the various dimensions of the elements with the appropriate spacing ratios, the component
was meshed with a free mesh (Fig. 7.23).
In autocad ® , there is an option to measure the area of any geometric figure.In this case it has been
used to determine the area of the net section and it is equal to  An = 22.3022 mm2 (relative to 1/4 of net
area).The gross area can be calculated as:

Ag =
πϕ2

n

16
=

π · 122

16
= 28.2743 mm2 (7.9)

Using Eq. 7.5, the gross stress to be applied for a net stress of1 MPa was determined,i.e. σg =
0.7888 MPa.Then the solution was launched.

Post-processor for TCD and RSG
First of all, the deformation plot was obtained to quickly check the correctness of the solution.The result
can be seen in Fig. 7.24.
By means of the same commands used previously, the stress plots depicted in Fig. 7.25 were obtained.
The stress field along the x-coordinate is not decreasing,but there is a point of maximum at a certain
depth from the surface (Fig.7.26). In order to solve the problem,a new reference system willbe
considered, which originates at the point of maximum stress.
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Number NDIV Spacing ratio
1 19 0.333
2 14 0.500
3 5 2.000
4 3 1.000
5 4 1.000
6 3 1.000
7 17 1.000
8 10 0.333
9 18 1.000

10 20 0.250
13 15 0.500
14 7 2.000
15 2 2.000
16 17 1.000
17 8 0.500
20 158 1.000
22 40 1.000
23 20 4.000
24 60 1.000
25 15 1.000
26 12 2.000
27 14 2.000
28 5 2.000
34 2 2.000
36 15 0.500
38 7 2.000
39 20 1.000
40 10 1.000

Table 7.1:Values of SR and number of subdivisons
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(a) Mesh in isometric view (b) Mesh in front view

(c) Mesh in isometric with zoom (d) Hotspot zoom

Figure 7.23:Mesh of FABEST_12_h20

(a) (b)

Figure 7.24:Deformed vs. non-deformed configuration of FABEST_12_h20
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(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.25:Contour plot of stress fields

Figure 7.26:Stress fields: nodal values
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7.2 Finite element analsysis of specimens from literature for TCD
and RSG approach

In this sub-section, specimens from the literature were modelled.In particular, specimens were obtained
from [44]that have a geometry very similar to FABEST_V05 and _V20,the only difference being the
radius of the fillet at the apex of the notch.As far as the specimens from [39]are concerned,different
modelling techniques have been adopted due to the completely different geometry.

7.2.1 Blunt and sharp V-notch specimen from [44]
As the specimens considered in ansys® have the same shape as FABEST_V05 or FABEST_V20,the
same modelling techniques have been adopted as previously seen.

Pre-processor for TCD and RSG approach
From [44] it can be seen that the net diameter is equal to 14 mm.By modelling only 1/4 specimen due
to the symmetry of the problem,the bisector of the notch is 7 mm long.Using the same element size
for the Fabest specimens, 1400 elements were obtained (following Eq. 7.1).The procedures for obtaining
the mesh and setting the boundary conditions are exactly the same for Fabest specimens.The nominal
gross stress to be applied in this case, however, is different:

σg = σn ·
An

Ag
= σn ·

πϕ 2
n

4
πϕ 2

g

4

= σn ·
ϕ2

n

ϕ2
g

= σn ·
(2rn)2

(2rg)2 = 1 ·
142

202 = 0.49 MPa (7.10)

Once the operations in this environment were completed, the solution was launched and the results needed
to develop the theoretical methods were obtained.

Post-processor for TCD and RSG
In the post-processor,the Von Mises stress fields and the maximum principal stress field were obtained
(Fig. 7.27 and 7.28).
A single diagram shows the stress fields (first principalstress and Von Mises stress) for the geometric
configurations with a net applied nominal stress of 1 MPa (Fig. 7.29, 7.30).
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(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.27:Contour plot of stress fields of specimen with ρ = 1 mm

(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.28:Contour plot of stress fields of specimen with ρ = 0.2 mm
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Figure 7.29:Stress fields: nodal values for ρ = 1 mm configuration

Figure 7.30:Stress fields: nodal values for ρ = 0.2 mm configuration
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7.2.2 F2 and F3 specimens from [39]
Pre-processor for TCD and RSG approach
In addition to the V-rounded notch as a geometric notch detail, flat fillet specimens were also considered
(Fig. 7.31) in this thesis work.

Figure 7.31:Form of flat specimens with main dimensions [39]

The dimensions of the F2 and F3 series are collected in Tab. 7.2.

Form d [mm] D [mm] t [mm] R = 1.00 [mm] R = 0.20 [mm] R = 0.04 [mm]

F2 30 54 6 X X X
F3 100 180 10 / X X

Table 7.2:Specimen shapes and dimensions

In order to automate the initialprocesses,code was written using the ansys® native programming
language (APDL).With this simple script,it is possible to define:the type of element used,i.e. quad
4 node 182 with K-option plane stress with thickness and simple enhanced strain, the real
constant t and the material properties, i.e.Young Modulus EX and Poisson’s ratio P RXY .

/PREP7
!ELEMENT TYPE
ET, 1 , PLANE182
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!OPTIONS ELEMENT
KEYOPT, 1 , 1 , 3
KEYOPT, 1 , 3 , 3
KEYOPT, 1 , 6 , 0
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!THICKNESS
R, 1 , 6 ,
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!MATERIAL MODEL
MP,EX, 1 , 2 0 6 0 0 0
MP,PRXY, 1 , 0 . 3

The various geometries described in Tab. 7.2 were constructed with autocad® and exported to an .IGES
file.Since it is necessary to obtain the stress distribution along the bisector of the notch and it is inclined
with respect to the direction of application of the load (Fig. 7.32), a line was generated to take the nodal
stress values.The mesh,to output accurate results,needs to be very dense around the hotspot and
therefore squares with lines were generated to obtain a gradual mesh up to the apex.Depending on the
type of specimen,the dimensions vary,but the concept is highlighted in Fig.7.32,i.e. the area around
the fitting for all type F specimens is very similar.The type of model used in ansys® is also shown here.
It can be seen how the boundary conditions (as Eq.7.4) and the load in terms of σn were applied.In
general, the subdivisions nρ on the fillet were obtained usign a element size shown in Tab. 7.3.
The notch bisector is 5 mm long.This length was chosen because the most interesting stress values are
found near the apex of the notch, and so to extend a greater distance with the line would mean spending
more time on FE modelling to obtain information not needed to apply TCD or RSG. Fig. 7.33 shows a
mesh for specimen F2 with ρ = 1; mm.
The overallelement size is around 0.5 − 1 mm and was chosen so as not to generate huge differences
between the contour of the hot zone and the zone of least interest for the application of the approaches.
A stress of 1 MPa was applied along the net section.
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Figure 7.32:Hotspot area and FE model

(a) Mesh around the hot zone (b) Zoom at the hotspot

Figure 7.33:Mesh of specimen with ρ = 1 mm
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Specimen R [mm] ∆x [mm]

F2 1 0.005
F2 0.2 0.005
F2 0.04 0.001
F3 0.2 0.005
F3 0.04 0.002

Table 7.3:Element dimensions for F specimens

Post-processor for TCD and RSG
Stress values for each specimen geometry were extrapolated along the notch bisector.In Fig. 7.34 it can
be see the stress plots for the F2 configuration and ρ = 1; mm.

(a) Plot of first principal stress (b) Zoom σ 1 on the hotspot

(c) Plot of Von Mises stress (d) Zoom σ e on the hotspot

Figure 7.34:Contour plot of stress fields of specimen F2 with ρ = 1 mm

The stress fields of the five geometric configurations with an external unit load applied are shown below,
in Fig. 7.35.
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(a) Stress fields of F2 specimen with ρ = 1 mm (b) Stress fields of F2 specimen with ρ = 0.2 mm

(c) Stress fields of F2 specimen with ρ = 0.04 mm (d) Stress fields of F3 specimen with ρ = 0.2 mm

(e) Stress fields of F3 specimen with ρ = 0.04 mm

Figure 7.35:Stress Fields of F specimens
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7.3 Determination of the stress field in the vicinity of the notch
The output of FE analyses should be used to develop the approaches under study.However, for TCD and
RSG, it is useful to approximate the nodal data with continuous functions.In the following paragraphs,
the goodness offit, with statisticalparameters,will be evaluated.In this sub-section,the case ofan
infinite plate with a hole is presented from the point of view of the mathematical theory of elasticity.In
general,for non-accelerating,isotropic,linear-elastic body subject to smallstrains,the equations that
govern the problem are:

Geometric compatibility
The displacements must match the geometrical boundary conditions and must be continuos functions of
position with which the strain components are associated, as follows:

εx =
∂u
∂x

γxy =
∂v
∂x

+
∂u
∂y

εy =
∂v
∂y

γyz =
∂w
∂y

+
∂v
∂z

εz =
∂w
∂z

γzx =
∂u
∂z

+
∂w
∂x

(7.11)

where u, v and w are the displacement components in the x, y and z directions.

Equilibrium
On the surface the stress components must be in equilibrium with the given external loads,and within
the body they must satisfy the following equilibrium differential equations:

∂σxx

∂x
+

∂τ xy

∂y
+

∂τ xz

∂z
+ bx = 0

∂τ yx

∂x
+

∂σyy

∂y
+

∂τ yz

∂z
+ by = 0

∂τ zx

∂x
+

∂τ zy

∂y
+

∂σzz

∂z
+ bz = 0

(7.12)

where bx , by and bz are the body forces.

Stress-strain relations
The relations between stress and strain is:

εx =
1
E

[ 
σx − υ(σ y + σz)

] 
γxy =

τxy

G

εy =
1
E

[ 
σy − υ(σ z + σx )

] 
γyz =

τyz

G

εz =
1
E

[ 
σz − υ(σ x + σy )

] 
γzx =

τzx

G

(7.13)

Infinite plate with circular hole loaded with uniaxial stress
Eq. 7.11, 7.12 and 7.13 were applied in the following case shown in Fig. 7.36 using cylindrical coordinates.
The stresses in the reference system (r, θ), with the appropriate boundary conditions, become:

σr (r = R, θ) = 0

σr (r = ∞, θ) =
σg

2
(1 + 2cos(2θ))

σθ(r = ∞, θ) =
σg

2
(1 − 2cos(2θ))

τ rθ (r, θ) = −
σg

2
sin(2θ)

(7.14)
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Figure 7.36:Plate loaded with uniaxial tension

Using the generalsolution ofthe Airy stress function in polar coordinates,which is attributed to the
Australian mathematician J.H. Michell,we can arrive at a generalsolution by selecting appropriate
terms.The shape of the chosen stress function is as follows:

Φ(r, θ) = a0 + a1log(r) + a2r 2 + a3r 2log(r) + (a21r 2 + a22r 4 + a23r −2 + a24)cos(2θ) (7.15)

stresses then become

σr (r, θ) = a3
( 
1 + 2log(r)

) 
+2a2 +

a1

r 2
−

( 
2a21 +

6a23

r 4 +
a24

r 2

) 
cos(2θ)

σθ(r, θ) = a3
( 
3 + 2log(r)

) 
+2a2 −

a1

r 2 +
( 

2a21 +
12a22

r 2 +
6a23

r 4

) 
cos(2θ)

τ rθ (r, θ) =
( 

2a21 + 6a22r 2 −
6a23

r 4
−

2a24

r 2

) 
(7.16)

From the knowledge of the boundary conditions and stress values, an analytical solution of this problem
was obtained.The resulting relationships are as follows:

σr (r, θ) =
σg

2

( 
1 −

a2

r 2

) 
+

σg

2

( 
1 +

3a4

r 4
−

4a2

r 2

) 
cos(2θ)

σθ(r, θ) =
σg

2

( 
1 +

a2

r 2

) 
−

σg

2

( 
1 +

3a4

r 4

) 
cos(2θ)

τ rθ (r, θ) = −
σg

2

( 
1 −

3a4

r 4 +
2a2

r 2

) 
sin(2θ)

(7.17)

Stress distributions from the apex notch are required for the application of TCD and RSG, i.e.for θ = ±π
2

and r = [R; ∞) (where for r → ∞, σθ(r, θ) → σg). The following expressions were obtained:

σr

( 
r, θ = ±

π

2

) 
=

σg

2

( 
3a2

r 2
−

3a4

r 4

) 

σθ

( 
r, θ = ±

π

2

) 
=

σg

2

( 
2 +

a2

r 2 +
3a4

r 4

) 

τ rθ

( 
r, θ = ±

π

2

) 
= 0

(7.18)

Clearly these equations will be adapted to the case at hand to perform the fit operation.
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7.4 Workflow for the application of the TCD method
In this section the theory of criticaldistances willbe addressed both in its classicalformulation and in
the one proposed by Taylor and Susmel in [49], where a calibration takes place using two curves.

7.4.1 Classic TCD formulation in HCF fatigue
As seen in Ch. 2, in order to be able to apply the theoretical concepts developed, it is essential to know
the critical distance L which depends on two material parameters:the fatigue limit range of the smooth
specimen ∆σ0 and the range of the threshold value of the stress intensity factor ∆Kth . The first value
was determined from the experimental curves proposed in Ch. 5 and it is equal to ∆σ0 = 1147 MPa for
42CrMo4 + QT material.By adding the fatigue limits of the other two materials, Tab. 7.4 was obtained.

Material σ0 [MPa]at P.S.50% Reference
42CrMo4 + QT 573.3 \
42CrM04 + QT 390 [44]
S275 217 [39]
AlMgSi1 113 [39]

Table 7.4:Fatigue limit of smooth specimens

The stress intensity factor for 42CrMo4 + QT material was extracted from experimental results according
to the ASTM E647 standard using compact tension (CT) specimens [44].In Fig. 7.37 is depicted the CT
specimen type used for the tests,where W is the width and a is the pre-crack length including notch.
The stress intensity factor was estimated using the following equation:

K =
∆F

B
√

W
f (α) (7.19)

where B is the specimen thickness in mm, f (α) is a function of dimensionless correction factor and ∆F
is the force range in N.For description of the fatigue crack growth rate, Klesnil and Lukáš proposed the
following relationship [23]:

da
dN

= C(∆K − ∆K th)m (7.20)

The two constants,C = 2.1 · 10−11 m
cycle

1
(MPa

√
m)2.59 and m = 2.59,were derived from the experimental

results and it was then possible to determine the design curve shown in Fig. 7.37.In particular, a ∆Kth
value of 9.1 MPa

√
m was taken.

Figure 7.37:CT specimen and Klesnil and Lukáš fit curve [23] [44]
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∆K th and ∆σ0 must be determined at the same stress-ratio.The values for the other materials have
been collected in the Tab. 7.5.

Material ∆K th [MPa
√

m] Reference
42CrMo4 + QT 9.10 [44]
S275 5.4 [17]
AlMgSi1 3.68 [7]

Table 7.5:Threshold value of the stress intensity factor ∆K th

Since ∆Kth values for AlMgSi1 are difficult to find and have been found in the literature with  R ̸= −1,
the following equation has been applied to determine the number in Tab. 7.5:

∆K th(R) = (1 − R)γ ∆K th(R = 0) (7.21)

where γ is a materialparameter and ∆Kth(R = 0) is the range of the threshold value ofthe stress
intensity factor with R = 0.These two parameters can be derived by imposing a system of two equations
in two unknowns,knowing two ∆Kth at two different stress cycles R (for the same material).In [7],
four ∆K th values were obtained at four different stress ratio R.To be more precise,a fit equation was
adopted to derive gamma and ∆Kth(R = 0), i.e.y = (1 − x)a · b, where a takes on the meaning of γ and
b of ∆K th(R = 0).
Once the main parameters were determined, it was possible to calculate the critical distance using Eq. 2.11:

L =
1
π

·

( 
∆K th

∆σ 0

) 2

=
1
π

·

( 
9.1

2 · 573.3

) 2
= 0.020 mm for 42CrMo4 + QT

L =
1
π

·

( 
∆K th

∆σ 0

) 2

=
1
π

·

( 
9.1

2 · 390

) 2

= 0.043 mm for 42CrMo4 + QT

L =
1
π

·
( 

∆K th

∆σ 0

) 2

=
1
π

·
( 

5.4
2 · 217

) 2

= 0.049 mm for S275

L =
1
π

·

( 
∆K th

∆σ 0

) 2

=
1
π

·

( 
3.68

2 · 113

) 2

= 0.084 mm for AlMgSi1

(7.22)

After the El-Haddad parameter had been determined,the methods provided by Neuber and Peterson
were implemented (Ch. 2).
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TCD - Line Method in its classical formulation in HCF

To achieve this goal, a matlab® program was implemented to determine ∆σeff. Fig. 7.38 shows a block
diagram.

Figure 7.38: Block diagram of TCD - LM application in its classical formulation in HCF fatigue. In
this scheme σ∗

0 is the fatigue limit of the notched specimen referred to the net cross-section.

The text files S1_.txt (A subscript has been inserted after _ to remind the type of geometry), containing
the maximum principalstress values for an applied externalload,was loaded to perform the analysis.
The nodal values were then scaled according to the fatigue limit of notched specimens obtained in Ch. 5
and, the continuum theory developed in Sec. 7.3, was used to derive a continuous function of the stress
field,which turns out to be,at the output ofansys® , determined by points (i.e.the mesh nodes).
Based on the previous consideration, the following form of the approximation curve was chosen, which is
a fourth-order hyperbola containing only even terms.In contrast to the theoretical case, parameters p2

and p4 have been added.The reason is that the FE output is evaluated from the root of the notch and
not from the centre of the coordinate system,which for the circular hole plate was at the centre of the
circle.The following generalised function was obtained:

∆σ 1(x) = p0 +
p1

(q1 + x)2
+

p2

(q2 + x)4
(7.23)

where, for the case under consideration, the coefficients have the values described in Tab. 7.6.
Tab. 7.6 shows parameters that identify the goodness of fitting the nodal values of the stress fields, i.e.R2.
R-square is the square of the correlation between the nodal values and the predicted values [2].R-square
can take on any value between 0 and 1,with a value closer to 1 indicating that a greater proportion of
variance is accounted for by the model.For example,an R-square value of0.9976 means that the fit
explains 99.76% of the total variation in the data about the average.Applying Eq. 7.23 analytically was
obtained:
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Coefficients
Specimen p0 p1 p2 q1 q2 R2

Fabest_v05 - 42CrMo4 + QT 189.68 639.10 36.89 1.14 0.51 0.9999
Fabest_v20 - 42CrMo4 + QT 331.91 1434.12 -603.64 1.19 1.31 0.9998
Fabest_h20 - 42CrMo4 + QT 1349.24 688.57 -1384.42 1.64 1.74 0.9991
V-groove ρ = 1 mm - 42CrMo4 + QT 197.41 673.29 138.99 1.19 0.86 1.000
V-groove ρ = 0.2 mm - 42CrMo4 + QT104.96 261.61 3.19 0.97 0.27 0.9999
F2 with ρ = 1 mm - S275 117.6 3957.6 876.0 5.8 1.2 1.000
F2 with ρ = 0.2 mm - S275 103.5 481.4 3.7 1.6 0.3 0.9998
F2 with ρ = 0.04 mm - S275 86.9 150.5 0.04 0.8 0.08 0.9976
F3 with ρ = 0.2 mm - S275 62.3 435.1 3.5 1.7 0.3 0.9998
F3 with ρ = 0.04 mm - S275 60.2 144.8 0.03 0.8 0.08 0.9972
F2 with ρ = 1 mm - AlMgSi1 66.4 2235.4 494.8 5.8 1.2 1.000
F2 with ρ = 0.2 mm - AlMgSi1 51.7 240.4 1.9 1.6 0.3 0.9998
F2 with ρ = 0.04 mm - AlMgSi1 32.7 56.7 0.01 0.8 0.08 0.9976
F3 with ρ = 0.2 mm - AlMgSi1 46.2 322.4 2.6 1.7 0.3 0.9998
F3 with ρ = 0.04 mm - AlMgSi1 22.0 52.9 0.01 0.8 0.08 0.9972

Table 7.6:Coefficient of ∆σ1 = ∆σ1(x) function at fatigue limit of notched specimens for FABEST and
for specimens from [44] and [39]

∆σ eff =
1

2L

∫ 2L

0
∆σ 1dx =

1
2L

∫ 2L

0

[ 
p0 +

p1

(q1 + x)2
+

p2

(q2 + x)4

] 
dx =

=
1

2L

[ ∫ 2L

0
p0dx +

∫ 2L

0

p1

(q1 + x)2
dx +

∫ 2L

0

p2

(q2 + x)4
dx

] 
=

=
1

2L

[ 
p0x

⃓�
⃓�
⃓�
2L

0
−

p1

(q1 + x)

⃓�
⃓�
⃓�
2L

0
−

p2

3(q2 + x)3

⃓�
⃓�
⃓�
2L

0

] 
=

=
1

2L

[ 
2Lp0 −

( 
p1

q1 + 2L
−

p1

q1

) 
−

( 
p2

3(q2 + 2L)3
−

p2

3q32

) ] 

(7.24)

These calculations are performed automatically by matlab® . The results have been collected in Tab. 7.7.

TCD - Point Method in its classical formulation in HCF
With regard to the point method, the function described in Eq. 7.23 was evaluated, following the definition
of Eq. 2.13, for both critical length values derived previously in Eq. 7.22, namely:

∆σ eff = ∆σ1

( 
x =

L
2

) 
= p0 +

p1
( 
q1 + L

2

) 2 +
p2

( 
q2 + L

2

) 4 (7.25)

Again, a simple matlab® program was created to derive the values (Fig. 7.39).
The results have been collected in Tab. 7.8
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Specimen ∆σ 0 [MPa] 2L [mm] ∆σ eff [MPa] errors [%]
Fabest_v05 - 42CrMo4 + QT 1147 0.040 1123.36 -2.03
Fabest_v20 - 42CrMo4 + QT 1147 0.040 1122.14 -2.14
Fabest_h20 - 42CrMo4 + QT 1147 0.040 1454.67 26.86
V-groove ρ = 1 mm - 42CrMo4 + QT 780 0.087 854.5 9.56
V-groove ρ = 0.2 mm - 42CrMo4 + QT 780 0.087 717.1 -8.06
F2 with ρ = 1 mm - S275 434 0.099 544.0 25.4
F2 with ρ = 0.2 mm - S275 434 0.099 594.8 37.0
F2 with ρ = 0.04 mm - S275 434 0.099 529.1 21.9
F3 with ρ = 0.2 mm - S275 434 0.099 458.7 5.7
F3 with ρ = 0.04 mm - S275 434 0.099 456.9 5.2
F2 with ρ = 1 mm - AlMgSi1 226 0.169 290.2 28.39
F2 with ρ = 0.2 mm - AlMgSi1 226 0.169 253.8 12.31
F2 with ρ = 0.04 mm - AlMgSi1 226 0.169 160.2 -29.10
F3 with ρ = 0.2 mm - AlMgSi1 226 0.169 289.8 28.23
F3 with ρ = 0.04 mm - AlMgSi1 226 0.169 133.3 -41.01

Table 7.7:Output of TCD - LM method in HCF in classical formulation for FABEST and for specimens
from [44] and [39]

Figure 7.39: Block diagram of TCD - PM application in its classical formulation in HCF fatigue. In
this scheme σ∗

0 is the fatigue limit of the notched specimen referred to the net cross-section.
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Specimen ∆σ 0 [MPa] L/2 [mm] ∆σ eff [MPa] errors [%]
Fabest_v05 - 42CrMo4 + QT 1147 0.010 1165.29 1.63
Fabest_v20 - 42CrMo4 + QT 1147 0.010 1132.60 -1.22
Fabest_h20 - 42CrMo4 + QT 1147 0.010 1454.42 26.84
V-groove ρ = 1 mm - 42CrMo4 + QT 780 0.022 889.9 14.09
V-groove ρ = 0.2 mm - 42CrMo4 + QT 780 0.022 816.7 4.71
F2 with ρ = 1 mm - S275 434 0.025 568.1 30.9
F2 with ρ = 0.2 mm - S275 434 0.025 681.7 57.0
F2 with ρ = 0.04 mm - S275 434 0.025 630.7 45.3
F3 with ρ = 0.2 mm - S275 434 0.025 526.1 21.2
F3 with ρ = 0.04 mm - S275 434 0.025 548.3 26.3
F2 with ρ = 1 mm - AlMgSi1 226 0.042 310.5 37.37
F2 with ρ = 0.2 mm - AlMgSi1 226 0.042 299.8 32.66
F2 with ρ = 0.04 mm - AlMgSi1 226 0.042 178.1 -21.21
F3 with ρ = 0.2 mm - AlMgSi1 226 0.042 343.6 52.03
F3 with ρ = 0.04 mm - AlMgSi1 226 0.042 149.2 -33.98

Table 7.8:Output of TCD - PM method in HCF in classical formulation for FABEST and for specimen
from [44] and [39]

7.4.2 Classic TCD formulation in MCF fatigue
TCD - Line Method in its classical formulation in MCF
Susmeland Taylor in [49]extended TCD to the medium cycle regime,i.e. MCF. Here,the classical
method has been proposed, which requires knowledge of certain material properties, i.e.:

• σUTS , ultimate tensile strength;

• σ0, fatigue limit of the plain specimen,

• ∆K th , range of the threshold value of the stress intensity factor

• K I,c , plane strain fracture toughness

From Ch. 5 it is possible to find the value of ultimate tensile strength of 42CrMo + QT equal to  σUTS =
1097 MPa. Due to the enormous difficulty in finding data for other materials,the method was only
developed for 42CrMo4 + QT steels,which has KI,c = 82.85 MPa

√
m following [16].Using a program

implemented in matlab® , it was possible to determine the main quantities of interest.Following the
block diagram proposed in Fig. 7.40 the amplitude of the stress breaking the plain material under static
loading σS was calculated in the first instance from Eq.2.19. The parameters describing the Basquin
curve of the smooth specimen were imported together with those of the notched specimens under analysis.
Following [49] the two critical lengths in HCF and LCF were derived.
The power law relationship between L and Nf was then determined by imposing the system oftwo
equations in two unknowns,as described by Eq.2.20. Knowing the upper and lower limits,a vector
was constructed with some arbitrary cycles and the respective critical distance was calculated for each of
them.The program now performs a fit of the nodal values of the stress distribution output from the FEM
analysis at a given number of cycles, and, for each of them, determines an effective stress amplitude.In
more detail:

1. After performing the experimentaltests on the smooth specimen,the fatigue curve described by
the parameters C and k was determined using the statisticaltechniques seen in Ch.5 and in [49]
[45].It is also possible to derive the fatigue limit σ0 and the number of cycles at knee point N0.
These data are highlighted in yellow because they are input parameters to the programme.

2. Ultimate tensile strength σUTS was taken from the tensile tests.this is also an input data,as are
K I,c and ∆K th.

3. Amplitude ofthe stress breaking the plain materialunder static loading σS was calculated with
R = −1.
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Figure 7.40:Block diagram of TCD - LM application in its classical formulation in MCF fatigue

4. The two critical lengths in HCF and LCF were derived respectively.

5. The law Li = AN B
f has been derived.

6. A vector of number ofcycles [Nf]1xn has been constructed (1 row and n columns) and from it a
vector of critical lengths was derived.

7. From the FEM analysis, the stress field was obtained with an external load resulting in a nominal
net stress of 1 MPa.Here a vector of nodal stresses of dimension mx1 was obtained.

8. Experimental tests were performed on the notched specimens and the parameters  C∗ and k∗ were
derived by fitting the data (∗ refers to the fact that these are parameters for notched specimens).

9. With the previously constructed vector of cycles, a vector of stresses associated with each  Nf was
obtained.The vector has dimension 1xn.

10. Each individualstress value associated with Nf was multiplied by the entire stress field obtained
from ansys,and here the advantage of having performed an analysis with a nominalnet stress of
1 MPa becomes immediately evident.As can be seen,the entire stress field is scaled according
to the stress value determined by the notched specimen curve at a certain number of cycles.This
is possible under the assumption oflinear elasticity.A mxn matrix has been derived,where the
columns represent the stress distributions at a certain Nf .

11. Each individual stress distribution was fitted to obtain a vector of continuous first principal stresses.

12. Each individual function was then imported into the TCD - LM method together with the vector
of critical lengths obtained previously.A vector of effective stresses associated with the numbers of
cycles defined earlier was obtained.

The results are collected in Tab. 7.9 for FABEST specimens.
with regard to Specimen from [44] it was obtained the Tab. 7.10.

TCD - Point Method in its classical formulation in MCF
For the Point Method,the only substantialdifference to the previous case is that the effective stress is
calculated at a certain criticaldistance equalto L/2. Fig. 7.41 shows the block diagram which is very
similar to Fig. 7.40.
The results are collected in Tab. 7.11.
with regard to Specimen from [44] it was obtained the Tab. 7.12.
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FABEST_V05
N f [Cycles] σref [MPa] σeff [MPa] errors [%]

1000 866.1 999.2 -15.37
2000 821.4 993.8 -21.00
5000 765.8 967.9 -26.39
104 726.2 932.3 -28.37

2 · 104 688.7 883.5 -28.28
5 · 104 642.1 803.4 -25.12
105 609.0 735.8 -20.82

2 · 105 577.5 666.3 -15.38

FABEST_V20
1000 866.1 1082.7 -25.01
2000 821.4 1030.0 -25.40
5000 765.8 944.6 -23.35
104 726.2 871.7 -20.02

2 · 104 688.7 796.3 -15.61
5 · 104 642.1 699.2 -8.88
105 609.0 630.2 -3.48

2 · 105 577.5 565.2 2.14

FABEST_H20
1000 866.1 2201.9 -154.23
2000 821.4 1904.8 -131.91
5000 765.8 1570.0 -105.02
104 726.2 1355.5 -86.64

2 · 104 688.7 1169.6 -69.81
5 · 104 642.1 962.5 -49.90
105 609.0 830.3 -36.34

2 · 105 577.5 716.5 -24.06

Table 7.9: Effective stresses by LM and critical distances for arbitrarily chosen numbers of cycles to
failure for FABEST specimens

V-groove ρ = 0.2 mm

N f [Cycles] σref [MPa] σeff [MPa] errors [%]
1000 668.6 701.8 -4.97
2000 632.4 680.4 -7.58
5000 587.7 653.1 -11.13
104 555.9 632.2 -13.72

2 · 104 525.9 610.6 -16.10
5 · 104 488.7 580.1 -18.70
105 462.3 554.7 -19.99

2 · 105 437.3 526.5 -20.41
5 · 105 406.3 484.5 -19.25

Table 7.10:Effective stresses by LM and critical distances for arbitrarily chosen numbers of cycles to
failure for specimen from [44]
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Figure 7.41:Block diagram of TCD - PM application in its classical formulation in MCF fatigue

FABEST_V05
N f [Cycles] σref [MPa] σeff [MPa] errors [%]

1000 866.1 1176.9 -35.88
2000 821.4 1168.4 -42.25
5000 765.8 1117.5 -45.92
104 726.2 1053.6 -45.08

2 · 104 688.7 975.5 -41.63
5 · 104 642.1 862.0 -34.24
105 609.0 775.4 -27.33

2 · 105 577.5 692.4 -19.89

FABEST_V20
1000 866.1 1207.2 -39.39
2000 821.4 1121.9 -36.59
5000 765.8 1001.8 -30.83
104 726.2 910.0 -25.31

2 · 104 688.7 821.3 -19.28
5 · 104 642.1 713.6 -11.13
105 609.0 639.1 -4.94

2 · 105 577.5 570.7 1.18

FABEST_H20
1000 866.1 2211.7 -154.37
2000 821.4 1909.2 -132.45
5000 765.8 1571.0 -105.15
104 726.2 1355.6 -86.66

2 · 104 688.7 1169.4 -69.78
5 · 104 642.1 962.3 -49.86
105 609.0 830.1 -36.31

2 · 105 577.5 716.4 -24.04

Table 7.11:Effective stresses by PM and critical distances for arbitrarily chosen numbers of cycles to
failure for FABEST specimens
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V-groove ρ = 0.2 mm

N f [Cycles] σref [MPa] σeff [MPa] errors [%]
1000 668.6 754.4 -12.84
2000 632.5 744.1 -17.65
5000 587.7 734.7 -25.02
104 555.9 728.1 -30.98

2 · 104 525.9 717.8 -36.49
5 · 104 488.7 692.3 -41.67
105 462.3 661.9 -43.18

2 · 105 437.3 622.4 -42.34
5 · 105 406.3 560.9 -37.85

Table 7.12:Effective stresses by PM and critical distances for arbitrarily chosen numbers of cycles to
failure for specimen from [44]

As can be seen, the lack of precise data regarding material properties (such as  KI,c ) leads to high deviations
between actual and reference stress.

7.4.3 TCD in HCF by using two calibration curves
As seen in the previous subsections,the practicalapplication ofthe TCD, in its classicalformulation,
requires a prioriknowledge ofthe range offatigue limit ofthe smooth specimen ∆σ0 and the range
of the threshold value of the stress intensity factor ∆Kth. ∆σ 0 can be obtained from the curve of the
smooth specimen at a high number of cycles (see Ch. 5).Due to the difficulty in finding ∆Kth from the
literature, the Point Method for determining the characteristic length of the material was also proposed
in this thesis work.This approach involves the use of two calibration curves:the smooth and the notched
specimen.Since L is a parameter that only depends on the material, it can be seen from Fig. 7.42 that
the different stress gradients due to different types ofgeometries should have no influence ifthe TCD
concept is correct.

Figure 7.42:Critical Distance Estimation for sharp and blunt notches

Two curves can be used to find a value ofthe inherent strength σref that makes the two estimations
agree.Ideally, considering a sharp notch and a blunt notch, the critical distance should be unambiguous.
In reality, it must be noticed that when a blunt notch is adopted, small errors on stresses bring to large
error in criticaldistance estimation.On the contrary,when sharp notches are studied,smallerrors on
criticaldistance result in large errors on the reference stress.For this reason,the use of sharp notches
has to be preferred for criticaldistance estimation.For the bar specimens,the one with ρ = 0.2 mm
was chosen because it is the specimen with the most pronounced degree of sharpness compared to the
other specimens under analysis from [44].Since L is a length derived from LEFM, in order to respect the
assumptions through which it is derived, a notch, as acute as possible, must be considered.For FABEST
campaign the specimen with ρ = 0.5 mm was taken.Given, therefore, a component subjected to a fatigue
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load,it is possible to determine the linear elastic stress field in the vicinity ofthe stress concentrator
and,following the reverse path,it is possible to enter with the reference stress,cross the diagram and
determine the length L/2.Fig. 2.9 clarifies the procedure to be followed to extrapolate the critical length.
A matlab ® program has been implemented:

1. Stress fields with a σa,n = 1 MPa have been imported.

2. The fatigue limit,a materialproperty,was loaded together with the fatigue limits of the notched
specimens from the experimental tests.

3. As done previously, the fit function was derived for first principal stress

4. Using Newton’s method for solving non-linear equations,the criticaldistance was calculated by
imposing the equality ∆σ0 = ∆σ1(x)

5. When the critical distance was known, the PM were applied.

The results were collected in Tab. 7.13.

Point Method
Specimen ∆σ 0 [MPa] L/2 [mm] ∆σ eff [MPa] errors [%]
FABEST_V05 - 42CrMo4 + QT 1147 0.014 1147 0
FABEST_V20 - 42CrMo4 + QT 1147 0.014 1128.2 -1.61
FABEST_H20 - 42CrMo4 + QT 1147 0.014 1454.5 26.85
V-groove ρ = 1 mm - 42CrMo4 + QT 780 0.027 879.6 12.76
V-groove ρ = 0.2 mm - 42CrMo4 + QT 780 0.027 780 0

Table 7.13:Output of TCD - using reverse Point Method for 42CrM04 + QT for FABEST and speci-
mens from [44]

The following were used for the flat specimens:F3 with ρ = 0.04 mm.A programme has been written
for each type of material.The results for the S275 steel specimen have been compiled in Tab. 7.14.

Point Method
Specimen ∆σ 0 [MPa] L/2 [mm] ∆σ eff [MPa] errors [%]
Niessner F2 ρ = 1 mm 434 0.038 554.0 27.65
Niessner F2 ρ = 0.2 mm 434 0.038 618.0 42.40
Niessner F2 ρ = 0.04 mm 434 0.038 501.9 15.64
Niessner F3 ρ = 0.2 mm 434 0.038 477.4 9.99
Niessner F3 ρ = 0.04 mm 434 0.038 434 0

Table 7.14: Output of TCD - using reverse Point Method for S275 with F3, ρ = 0.04 mm,reference
specimen [39]

The same strategy has been adopted for aluminium alloy test pieces.The results were collected in
Tab. 7.15.
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Point Method
Specimen ∆σ 0 [MPa] L/2 [mm] ∆σ eff [MPa] errors [%]
Niessner F2 ρ = 1 mm 226 0.019 324.3 43.49
Niessner F2 ρ = 0.2 mm 226 0.019 355.7 57.39
Niessner F2 ρ = 0.04 mm 226 0.019 267.3 18.27
Niessner F3 ρ = 0.2 mm 226 0.019 407.0 80.08
Niessner F3 ρ = 0.04 mm 226 0.019 226 0

Table 7.15:Output of TCD - using reverse Point Method for AlMgSi1 with F3,ρ = 0.04 mm, reference
specimen [39]

7.4.4 TCD in MCF by using two calibration curves
For the MCF fatigue region, the same criterion was adopted as in HCF. The only difference is that now
it is necessary to determine a criticaldistance at two different numbers of cycles to failure in order to
derive a function as in Eq.2.18. In order to determine the functionalrelationship between the critical
distance and the number ofcycles,104 and 5 · 105 cycles with the respective stresses were taken for
both the smooth and the notched specimen curves for FABEST campaign.A matlab ® program was
implemented which derived the criticaldistances and then saved these in a .mat file.The fit function
found for FABEST_V05 is:

L = 70.12 · N−0.53
f (7.26)

In subsequent programs, those critical distances were adopted for the PM method.The following effective
stresses were obtained in Tab. 7.16.
For the specimens from [44], the one with ρ = 0.2 mm was taken as the reference specimen.The function
is:

L = 18.58 · N−0.36
f (7.27)

The results in Tab. 7.17 were obtained.
With regard to the flat specimens from Niessner’s article [39],F3 with ρ = 0.04 mm were taken as
reference.In this case,104 and 106 cycles with the respective stresses were taken.The tables for steel
and aluminium alloy were obtained, Tabs. 7.18, 7.19.The function for steel is:

L = 382, 29 · N−0.56
f (7.28)

For aluminium the function is:

L = 22.04 · N−0.35
f (7.29)
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N f [Cycles] σref [MPa] σeff [MPa] - PM errors [%]
FABEST_V05

104 726.2 634.6 12.6
2 · 104 688.7 644.8 6.4
5 · 104 642.1 639.1 0.5
105 609.0 618.6 -1.6
2 · 105 577.5 586.1 -1.5
5 · 105 538.5 530.3 1.5

FABEST_V20
104 726.2 756.8 -4.2
2 · 104 688.7 718.5 -4.3
5 · 104 642.1 653.2 -1.7
105 609.0 600.9 1.3
2 · 105 577.5 546.7 5.3
5 · 105 538.5 477.8 11.3

FABEST_H20
104 726.2 1353.1 -86.3
2 · 104 688.7 1169.2 -69.8
5 · 104 642.1 962.8 -49.9
105 609.0 830.7 -36.4
2 · 105 577.5 716.8 -24.1
5 · 105 538.5 589.8 -9.5

Table 7.16:Effective stresses by PM using reverse path for FABEST specimens

V-groove ρ = 0.2 mm

N f [Cycles] σref [MPa] σeff [MPa] - PM errors [%]
104 555.9 466.0 15.5
2 · 104 525.9 455.4 13.4
5 · 104 488.7 438.8 10.2
105 462.3 427.0 7.6
2 · 105 437.3 414.3 5.3
5 · 105 406.3 393.9 3.1

Table 7.17:Effective stresses by PM using reverse path for specimens from [44]
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N f [Cycles] σref [MPa] σeff [MPa] - PM errors [%]
F2 ρ = 1 mm

104 365.8 250.5 31.5
2 · 104 338.2 258.6 23.5
5 · 104 304.8 271.7 10.9
105 281.8 277.9 1.4
2 · 105 260.6 277.6 -6.6
5 · 105 234.7 266.5 -13.5
106 217.0 251.7 -16.0

F2 ρ = 0.2 mm

104 365.8 175.2 52.1
2 · 104 338.2 177.0 47.7
5 · 104 304.8 180.0 40.9
105 281.8 185.1 34.3
2 · 105 260.6 194.0 25.5
5 · 105 234.7 209.2 10.9
106 217.0 218.8 -0.8

F2 ρ = 0.04 mm

104 365.8 113.8 68.9
2 · 104 338.2 117.1 65.4
5 · 104 304.8 121.4 60.2
105 281.8 122.9 56.4
2 · 105 260.6 122.8 52.8
5 · 105 234.7 123.4 47.4
106 217.0 127.7 41.1

F3 ρ = 0.2 mm

104 365.8 217.3 40.6
2 · 104 338.2 219.0 35.2
5 · 104 304.8 221.3 27.2
105 281.8 226.0 19.8
2 · 105 260.6 234.7 9.9
5 · 105 234.7 248.5 -5.8
106 217.0 254.9 -17.5

Table 7.18:Effective stresses by PM using reverse path for specimens from [39] for S275
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N f [Cycles] σref [MPa] σeff [MPa] - PM errors [%]
F2 ρ = 1 mm

104 223.8 188.9 15.6
2 · 104 201.9 186.6 7.6
5 · 104 176.3 181.6 -3.0
105 159.0 176.0 -10.7
2 · 105 143.5 169.0 -17.8
5 · 105 125.2 157.8 -26.0
106 113.0 148.4 -31.3

F2 ρ = 0.2 mm

104 223.8 110.3 50.7
2 · 104 201.9 107.4 46.8
5 · 104 176.3 104.9 40.5
105 159.0 103.8 34.7
2 · 105 143.5 103.3 28.0
5 · 105 125.2 102.9 17.8
106 113.0 102.2 9.5

F2 ρ = 0.04 mm

104 223.8 41.1 81.6
2 · 104 201.9 36.0 82.2
5 · 104 176.3 30.0 83.0
105 159.0 26.4 83.4
2 · 105 143.5 22.4 84.4
5 · 105 125.2 18.5 85.2
106 113.0 16.4 85.5

F3 ρ = 0.2 mm

104 223.8 187.2 16.3
2 · 104 201.9 181.6 10.1
5 · 104 176.3 175.9 0.2
105 159.0 173.1 -8.8
2 · 105 143.5 171.0 -19.2
5 · 105 125.2 168.1 -34.2
106 113.0 165.0 -46.0

Table 7.19:Effective stresses by PM using reverse path for specimens from [39] for AlMgSi1
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7.5 Workflow for the application of RSG method
In this subsection,the stress gradient method willbe applied according to the FEMFAT and FKM
approaches.

7.5.1 FEMFAT approach
In the previous paragraphs,the stress field for each geometric configuration was determined.Within
the .txt files it is also possible to derive the Von Mises stress as a function of the distance from the tip
of the notch,following [13].Following the FEMFAT approach it is possible to determine the derivative
of the stress field with respect to the x-coordinate (See Eq.3.5). In this formulation,the S-N curve is
only determined at the most criticalpoint,i.e. the point with the highest equivalent stress.The stress
gradient values are collected in Tab. 7.20.

Specimen χ
[ 

MPa
mm

] 
χ ′

[ 
mm−1

] 

Fabest_v05 2515.6 5.1717
Fabest_v20 475.5 1.2489
V-groove ρ = 1 mm 1134.5 2.7318
V-groove ρ = 0.2 mm 5708.5 12.9599
F2 with ρ = 1 mm 773.4 2.3081
F2 with ρ = 0.2 mm 4723.3 11.5356
F2 with ρ = 0.04 mm 29304.0 57.5753
F3 with ρ = 0.2 mm 5054.2 11.5616
F3 with ρ = 0.04 mm 43985.0 55.4247

Table 7.20:Stress gradient at the tip of the notch and relative stress gradient

With reference to specimen Fabest_h20, an anomaly was found.The line tangent to the point of max-
imum stress (which should represent the stress gradient,see Fig.7.26) is practically flat,and for this
reason the output was not convincing to continue with the RSG approach.Three methods have been
developed in FEMFAT to take into account the effect of the relative stress gradient, but only two of these
will be developed in this thesis work (see Ch.3, Sec.3.1). The Stieler equation depends on the yield
stress of the materialand therefore parametric curves can be derived as in Fig.7.43.According to the
IABG method, the curve in Fig. 7.43 was obtained for steel.

Figure 7.43: Support effect as a function of relative stress gradient according to Stieler and IABG
method
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n Stieler IABG
Specimen 42CrMo4+QT S275 AlMgSi1 42CrMo4+QT S275
Fabest_v05 1.0417 x x 1.7367 x
Fabest_v20 1.0205 x x 1.4810 x
V-groove ρ = 1 mm 1.0736 x x 1.6083 x
V-groove ρ = 0.2 mm 1.1604 x x 1.9705 x
F2 with ρ = 1 mm x 1.2366 1.2676 x 1.5784
F2 with ρ = 0.2 mm x 1.529 1.5982 x 1.9372
F2 with ρ = 0.04 mm x 2.1819 2.3365 x 2.518
F3 with ρ = 0.2 mm x 1.5296 1.5593 x 1.9378
F3 with ρ = 0.04 mm x 2.1596 2.4559 x 2.5008

Table 7.21:Support factors for different materials and geometries

Local fatigue limit σaf,C Stieler IABG
Specimen 42CrMo4+QT S275 AlMgSi1 42CrMo4+QT S275
Fabest_v05 597.2 x x 995.7 x
Fabest_v20 585.1 x x 849.1 x
V-groove ρ = 1 mm 418.7 x x 627.2 x
V-groove ρ = 0.2 mm 452.6 x x 768.5 x
F2 with ρ = 1 mm x 268.4 143.2 x 342.5
F2 with ρ = 0.2 mm x 331.8 180.6 x 420.3
F2 with ρ = 0.04 mm x 473.5 264.0 x 546.4
F3 with ρ = 0.2 mm x 331.9 176.2 x 420.5
F3 with ρ = 0.04 mm x 468.6 277.5 x 542.7

Table 7.22:Local fatigue limit σ af,C for different materials and geometries

A matlab ® program was implemented to determine the support factors for the two methods.The
results were collected in Tab. 7.21.
The programme returns the graph of the support factor following Stieler’s definition and IABG definition,
as a function of the relative stress gradient in Fig.7.44.In addition to the curve,there are also points
relating to the specific notch geometry.It can be seen that the higher the degree of acuity, the more the
support factor tends to increase.
With regard to the geometries from literature [39], the diagrams in Fig. 7.45 were obtained.
Next, the fatigue limits of the localS-N curves were determined,using Eq.3.12.The following values
were obtained for Stieler method, Tab. 7.22:
The relative stress gradient also influences the slope of the curve.For each material, the values in Tab. 7.23
Fatigue limits of 106 cycles and failure stresses of up to 103 cycles were used to determine the slope of
the smooth material curve for S275 and AlMgSi1.Given these two points in the S-N plane, the slope of
the curve was derived using the following equation:

kM =
log10

( 
106

103

) 

log10
( 

σUTS
σ0

) (7.30)

The graphs in Fig. 7.47 were obtained for FABEST specimen and for specimen from [44].
The same curves were also obtained for specimens from [39] in Fig. 7.48
The cycles at the respective local fatigue limits were then determined (Tab. 7.24).
Graphs of the factor fGR,cf against the relative stress gradient can be determined for both Stieler and
IABG methods (Fig. 7.50 7.51 7.52).
Once the 3 parameters characterising the local Wohler curve have been determined, the material fatigue
curve can be plotted to observe the main differences.In general,compared to the curve of the smooth
specimen, there is an increase in fatigue strength, i.e.the local fatigue limit moves towards higher values.
Conversely,the knee point moves to the left,i.e. towards lower numbers of cycles to failure.The slope
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Figure 7.44: Points of the support factor for each geometry in 42CrMo4+QT - Stieler and IABG
method. Diagrams of support factor versus relative stress gradient in accordance with Stieler’s and IABG
approach [13] for FABEST experimental campaign and from [44]

kC Stieler IABG
Specimen 42CrMo4+QT S275 AlMgSi1 42CrMo4+QT S275
Fabest_v05 3.056 x x 3.1413 x
Fabest_v20 3.9235 x x 4.5056 x
V-groove [] ρ = 1 mm 3.2176 x x 3.4222 x
V-groove [] ρ = 0.2 mm 3.0079 x x 3.022 x
F2 with ρ = 1 mm x 3.2354 3.1573 x 3.3441
F2 with ρ = 0.2 mm x 3.0109 3.0076 x 3.017
F2 with ρ = 0.04 mm x 3.0005 3.0004 x 3.0007
F3 with ρ = 0.2 mm x 3.0108 3.0100 x 3.017
F3 with ρ = 0.04 mm x 3.0005 3.0003 x 3.0007

Table 7.23:Slope of the S-N localcurves
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Figure 7.45: Points of the support factor for each geometry in S275 - Stieler and IABG method.
Diagrams of support factor versus relative stress gradient in accordance with Stieler’s and IABG approach
[13] for article [39]

Ncf,C Stieler IABG
Specimen 42CrMo4+QT S275 AlMgSi1 42CrMo4+QT S275
Fabest_v05 27541 x x 29645 x
Fabest_v20 50170 x x 65915 x
V-groove ρ = 1 mm 123259 x x 143784 x
V-groove ρ = 0.2 mm 102996 x x 104324 x
F2 with ρ = 1 mm x 197508 247784 x 214666
F2 with ρ = 0.2 mm x 163158 217425 x 164080
F2 with ρ = 0.04 mm x 161615 215986 x 161639
F3 with ρ = 0.2 mm x 163151 219517 x 164069
F3 with ρ = 0.04 mm x 161620 218644 x 161647

Table 7.24:Endurance limit of the S-N local curves
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Figure 7.46:Points of the support factor for each geometry in AlMgSi1 - Stieler method. Diagrams of
support factor versus relative stress gradient in accordance with Stieler’s approach [13] for article [39]

Figure 7.47:Points of the slope ratio for each geometry in 42CrMo4+QT - Stieler and IABG method.
Diagrams of slop ratio versus relative stress gradient in accordance with Stieler’s and IABG approach [13]
for FABEST experimental campaign and from [44]
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Figure 7.48:Points of the slope ratio for each geometry in S275 - Stieler and IABG method.Diagrams of
slop ratio versus relative stress gradient in accordance with Stieler’s and IABG approach [13] for Niessner
experimental campaign and from [39]
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Figure 7.49:Points of the slope ratio for each geometry in AlMgSi1 - Stieler method. Diagrams of slop
ratio versus relative stress gradient in accordance with Stieler’s approach [13] for Niessner experimental
campaign and from [39]

Figure 7.50:Points of f GR,cf for each geometry in 42CrMo4+QT - Stieler and IABG method. Diagrams
of f GR,cf versus relative stress gradient in accordance with Stieler’s and IABG approach [13] for FABEST
experimental campaign and from [44]
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Figure 7.51: Points of f GR,cf for each geometry in S275 - Stieler and IABG method. Diagrams of
f GR,cf versus relative stress gradient in accordance with Stieler’s and IABG approach [13] for Niessner
experimental campaign and from [39]

Figure 7.52:Points of f GR,cf for each geometry in AlMgSi1 - Stieler method.Diagrams of f GR,cf versus
relative stress gradient in accordance with Stieler’s approach [13] for Niessner experimental campaign and
from [39]
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of the localcurve decreases.Comparative graphs are shown in Figs.7.53 where the support factor was
calculated in accordance with Stieler.

(a)

(b)

Figure 7.53:Comparison of local and material fatigue curves for FABEST campaign specimens
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7.5.2 FKM guidelines
The approach followed by the FKM guidelines is to calculate the relative stress gradient using the first
principal stress.The results were compiled in Tab. 7.25 in a similar way as for FEMFAT.

Specimen χ
[ 

MPa
mm

] 
χ ′

[ 
mm−1

] 

Fabest_v05 6520.4 11.8679
Fabest_v20 444.6 1.0493
V-groove ρ = 1 mm 1085.6 2.3339
V-groove ρ = 0.2 mm 5475.7 10.9457
F2 with ρ = 1 mm 699.3 2.0845
F2 with ρ = 0.2 mm 4283.8 10.4035
F2 with ρ = 0.04 mm 26460.0 51.6878
F3 with ρ = 0.2 mm 4588.0 10.4324
F3 with ρ = 0.04 mm 40295.0 50.1859

Table 7.25:Stress gradient at the tip of the notch and relative stress gradient according to FKM

Following Eq. 3.17 the calculation of the support factor is strictly dependent on the relative stress gradient
and some material parameters.Depending on the value of χ′ , different formulations have been proposed
for the calculation of n.A matlab ® program has been implemented which, depending on the  χ′ value
obtained,returns the correct support factor (App.??). For each geometric configuration and for each
material, the results were tabulated (Tab. 7.26).

n FKM
Specimen 42CrMo4+QT S275 AlMgSi1
Fabest_v05 1.2498 x x
Fabest_v20 1.1362 x x
V-groove ρ = 1 mm 1.1853 x x
V-groove ρ = 0.2 mm 1.2727 x x
F2 with ρ = 1 mm x 1.2534 1.4562
F2 with ρ = 0.2 mm x 1.3788 1.6819
F2 with ρ = 0.04 mm x 1.5655 2.018
F3 with ρ = 0.2 mm x 1.3790 1.6824
F3 with ρ = 0.04 mm x 1.5613 2.0105

Table 7.26:Support factors for different materials and geometries

The guide now sets constant values for the number ofcycles at knee point and the slope (See Ch.3
Sec.3.2). it is possible to observe the graph in Fig.7.55 which makes a comparison between the local
S-N curves and the material curve.
The local fatigue limits become, Tab. 7.27:
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Figure 7.54:Support effect as a function of relative stress gradient according to FKM

Figure 7.55
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Specimen Local fatigue limits

Fabest_v05 in 42CrM04+QT 716.6
Fabest_v20 in 42CrM04+QT 651.4
V-groove ρ = 1 mm in 42CrM04+QT 462.3
V-groove ρ = 0.2 mm in 42CrM04+QT 496.4
F2 with ρ = 1 mm in S275 272.0
F2 with ρ = 0.2 mm in S275 299.2
F2 with ρ = 0.04 mm in S275 339.7
F3 with ρ = 0.2 mm in S275 299.2
F3 with ρ = 0.04 mm in S275 338.8
F2 with ρ = 1 mm in AlMgSi1 164.6
F2 with ρ = 0.2 mm in AlMgSi1 190.1
F2 with ρ = 0.04 mm in AlMgSi1 228.0
F3 with ρ = 0.2 mm in AlMgSi1 190.1
F3 with ρ = 0.04 mm in AlMgSi1 227.2

Table 7.27:Local fatigue limits according to FKM guidelines

7.6 Workflow for the application of SED method
The finite element analysis for calculating the averaged SED involves steps in both the pre-processor and
post-processor that are different from those seen for the TCD and RSG.The quantity to be taken is a
strain energy density present within a certain structuralvolume ofradius Rc [28]. It is therefore not
necessary to extrapolate the maximum principalstress field or the Von Mises stress field.As seen in
Ch. 4 it is necessary to determine the control radius in order to obtain the variable of interest.

7.6.1 Finite element analysis of FABEST specimens for SED approach
To determine the critical radius, following Eq. 4.23, it is necessary to impose equality between the strain
energy density of the smooth specimen and the strain energy density of the notched specimen, at a fixed
number of cycles to failure.For the smooth specimen,under uniaxialloading conditions,the following
strain energy density was obtained for Nf = 105 cycles to failure:

∆W
unnotched
D =

∆σ 2
D

2E
=

11472

2 · 206362
= 3.19

MJ
m3 (7.31)

The only unknown in the strain energy density for the notched specimen is the range of NSIF ∆KV
1,D . The

problem,however,is that no data is available for this parameter in this thesis work and it is therefore
mandatory to find it.In addition,the specimens under analysis do not show a V-notch.The initial
idea is to perform an FE analysis on a specimen with a V-notch subject to the fatigue load of the most
notched specimen (i.e.FABEST_V05) and derive a first attempt control radius.In order to do this, it
is necessary to obtain an extremely dense mesh around the tip ofthe notch and this may cause some
problems from a computational point of view.Recently, a method called Peak Stress Method (PSM) has
been proposed which allows finite element analysis using coarse meshes [34][33].K 1 was connected with
the peak stress σpeak calculated at the tip of the notch and the analytical relation is:

K V
1 = K ∗

FE · σpeak · d1−Λ 1 (7.32)

Where d is the medium size ofthe elements and K∗FE is a constant that depends on the software,the
type of element and the mesh pattern [35].The advantages of this method can be summarised as follows:

• Coarse mesh that reduces calculation time.

• Only the peak stress evaluated at the tip of the notch is used and not a stress distribution which
would have to be worked out later.

To carry out the analysis of the V-notch specimen, it is necessary to know some basic settings.Following
Fig. 7.56 it is possible to exploit the symmetry of the problem, as done previously in Fig. 7.3.
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Figure 7.56:Definition of the parameters for Peak Stress Method

Starting with the K∗FE parameter, from [35] it can be seen that for a 2D plane-4 element type, 1 .38 ± 3%
was obtained for opening angles of 2α = 90◦ . it is important to note that K-option 1 must be the third
in ansys® . To obtain plausible values, the mesh must be free and the following condition must be met:

a
d

≥ 3 (7.33)

where a = min(n, l) and d is the minimum element dimension (Fig.7.56). In this case l= n = 5 mm
and therefore the minimum d to be respected is equal to ≈ 1.67 mm.The peak stress can be taken once
the analysis is complete by assimilating it into the first principalstress.Λ1, from Tab.4.1,is equalto
0.5445.Using common mechanicaldrawing software,it is possible to draw the geometry with V-notch
and export an .IGES file.The material was set as in the FE analyses for TCD and RSG. a global element
size of 1.67 mm was set and the free mesh technique was applied.The result can be seen in Fig. 7.57.

Figure 7.57: Free mesh for peak stress determination. Plane-4 node 182 was used with K1 option set
to enhanced strain and K3 set to axisymmetric.

The same boundary conditions as seen in Fig. 7.3 were set and a unit tensile stress was applied along the
gross section.The solution was then launched and a peak stress of 4.68 MPa was taken.Since this is a
linear elastic analysis, it is possible to scale the value obtained for a unit stress to a real one:

σ1 MPa
peak : K 1 MPa

1 = σany load
peak : K any load

1 (7.34)

The fatigue limit derived in Ch.5 refers to the net nominalsection.it is necessary to use Eq.7.5 to
obtain the corresponding gross load.The fatigue limit related to net section is σ0,n = 215.7 MPa and:

σ0,g =
Anσ0,n

Ag
= 53.9 MPa (7.35)

A value of KV
1,σg=1 = 8.2 MPa · mm0.4555 was obtained for σg = 1 MPa. To find the correct value under

the fatigue load of Eq. 7.35 it was obtained:
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K V
1 = K V

1,σg=1 · σ0,g = 8.2 · 53.9 = 440.0 MPa · mm0.4555 (7.36)

From the Eq. 7.37 the first attempt control radius was obtained:

R(1)
c =

( 
√

2e1 ·
∆K V

1

∆σ 0

) 1
1 − Λ1 =

( √
2 · 0.146 ·

2 · 440.0
2 · 573.3

) 1
1 − 0.5445= 0.1448 mm (7.37)

At this point it is possible to use this value to shape the control volume at the apex of the notch (Fig. 7.58).

Figure 7.58:Definition of control volume [26]

q = 1.5 for 2α = 90◦ and therefore r0 = 0.1667 mm (Eq.4.30 and Eq.4.31). the sum of Rc and r0 is
needed to define the control volume:

R2 = Rc + r0 = 0.1448 + 0.1667 = 0.3115 mm (7.38)

An 8-node plane element,i.e. quad 8 plane 183, was adopted for the FE analysis with the second
K-option set to axisymmetry.Following Fig. 7.5 the material was set.Using an .IGES file, the geometry
with the controlvolume created in autocad® was imported.The area for the modeland the control
volume has been generated.After meshing the component and imposing the load and constraints,the
control volume was isolated to extract the SED with the option select - entities (Fig. 7.59).
An element table consisting of the entity SEN E and V OLU has been defined:

element table → define table → add → energy → SENE

and

element table → define table → add → geometry → VOLU

The sum of each item function was used to find the total SEN E and total V OLU .The ratio constitutes
the SED:

SED =
SENE
V OLU

=
0.374026 · 10−3

1.46355
= 2.5556 · 10−4 MJ

m3 (7.39)

To find the SED at a given load,it is necessary to use a proportion taking into account the fact that
stresses have a quadratic trend.It has been achieved:

SED σ0,g = SED unit load · ∆σ2
0,g = 2.5556 · 10−4 · (2 · 53.9)2 = 2.9737

MJ
m3 (7.40)

The first attempt value of Rc is not correct because the SED does not equal ∆W
unnotched
D . At this point

it is necessary to proceed by trial until the strain energy density of the smooth specimen equals that of
the notch one.Tab. 7.28 has been constructed which collects some notable points of  Rc.
Using these points from FE analysis, the following fit function was adopted:

∆W
notched
D = a · eb·R c (7.41)
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Figure 7.59:FE model for bar specimens

R(i)
c R(i)

2 ∆W
notched,i
D ∆W

unnotched
D

0.0448 0.2115 4.4990 3.1856
0.0948 0.2615 3.6409 3.1856
0.1198 0.2865 3.2972 3.1856
0.1323 0.2990 3.1353 3.1856
0.0698 0.2365 4.0370 3.1856
0.0823 0.2490 3.8304 3.1856
0.1448 0.3115 2.9737 3.1856

Table 7.28:Averaged SED values for discrete points of Rc. Iterations based on a given critical radius
value
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where a = 5.397 and b = −4.127 with R2 = 0.9995.Through the Newton-Raphson method an estimate of
the control radius Rc = 0.1277 mm has been derived on the intersection of the function and the averaged
SED of the smooth specimen, as can be seen in Fig. 7.60.

Figure 7.60:Strain Energy Density versus control radius Rc.

Once the value ofRc is known,the energy method can be applied to FABEST_V20.In this case:
ρ = 2 mm,r0 = 0.6667 mm,R2 = 0.7944 mm,σ0,n = 297.1 MPa,σ0,g = 74.2 MPa and SEDunit load =
1.2487 · 10−4 MJ

m3 . Applying Eq.7.40 a value ofSED σ0,g = 2.7565MJ
m3 was obtained.Comparing this

value with ∆W
unnotched
D the following error has been made:

Error(%) =
SED σ0,g − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
2.7565 − 3.1856

3.1856
· 100 = −13.5% (7.42)

7.6.2 Finite element analysis ofV-groove specimen from [44]for SED ap-
proach

Following the same procedures as for the FABEST specimens,the strain energy density of the smooth
specimen is:

∆W
unnotched
D =

∆σ 2
D

2E
=

7802

2 · 206000
= 1.4767

MJ
m3 (7.43)

An FE analysis was performed to determine an estimate of the NSIF per mode 1 load.In this case the
parameters for determining KV

1 are the same except for the element size,in fact a = min(n, l) = 3 mm
and then d = 1 mm.The mesh can be seen in Fig. ??
Once the peak stress value has been found,the K V

1 = can be calculated using Eq.7.35,Eq. 7.34 and
Eq. 7.36 with σ0,n = 87.5 MPa.The control radius is:

R(1)
c =

( 
√

2e1 ·
∆K V

1

∆σ 0

) 1
1 − Λ1 =

( √
2 · 0.146 ·

2 · 202.3647
2 · 390

) 1
1 − 0.5445= 0.0613 mm (7.44)

q = 1.5 for 2α = 90◦ and therefore r0 = 0.0667 mm (Eq.4.30 and Eq.4.31).The sum of Rc and r0 is
needed to define the control volume:

R2 = Rc + r0 = 0.0613 + 0.0667 = 0.1280 mm (7.45)
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Figure 7.61:V-notch specimen mesh

After determining some points by FE analysis, as done previously, an interpolation function was derived
and Newton’s method was applied to find the value ofthe controlradius. In this case it is R c =
0.037962 mm.In Fig. 7.62 it is possible to see the graph of the strain energy density against the control
radius, with its interpolation function.

Figure 7.62:Strain Energy Density versus control radius Rc.

Once the radius Rc was known,all other geometric parameters were determined for the specimen with
ρ = 1 mm and a strain energy density was derived equal to SEDσ0,g = 1.7454MJ

m3 . The committed error
is:

Error(%) =
SED σ0,g − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
1.7454 − 1.4767

1.4767
· 100 = 18.2% (7.46)

7.6.3 Finite element analysis of Flat specimen from [39] for SED approach
Initially, the strain energy density of the smooth specimens were calculated.For S275 steel:

∆W
unnotched
D =

∆σ 2
D

2E
=

4342

2 · 206000
= 0.4572

MJ
m3

(7.47)

and for Aluminium alloy AlMgSi1:

∆W
unnotched
D =

∆σ 2
D

2E
=

2262

2 · 70000
= 0.3648

MJ
m3 (7.48)
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Starting with steel specimens, the control radius for the F2 specimens was determined, using Eq.  ?? and
it is equal to R(1)

c = 0.1089 mm.The value of KV1 was determined by imposing the following values for
the FE calculation and analysis:

• d = 4 mm

• K ∗
FE , Λ1 same as previosly analyses

• σpeak = 1.21 MPa with external load equal to 1 MPa.

The values were then updated to the real net load.Using autocad® , the first attempt control volume
was constructed and through iterations similar to those made in the previous paragraphs,the curve of
the strain energy density as a function of the controlradius was obtained.Since the specimens are flat
and not axisymmetric, the same type of element was adopted with K-option set to plane strain.This
is the only substantialdifference between the two geometries.A unit load was applied along the net
section and the boundary conditions can be seen in Fig.7.32.The Tab.7.29 collects the main output
parameters from the FE analysis and the SED approach.

R(i)
c R(i)

2 ∆W
notched,i
D ∆W

unnotched
D

0.0989 0.1122 0.6887 0.4572
0.0889 0.1022 0.8249 0.4572
0.1089 0.1222 0.5925 0.4572
0.1189 0.1322 0.4042 0.4572

Table 7.29:Main values for SED approach for F2 specimens in S275 steel

A fit function, Eq. 7.41, was adopted to determine the corresponding value of  Rc crossing the SED line
of the smooth specimen:

∆W
notched
D = 5.52 · e−21.19·R c (7.49)

The following Fig. 7.63 was obtained

Figure 7.63:Strain Energy Density versus control radius Rc.

The value obtained was used to find the SED ofthe other two F2 specimens.The percentage errors
committed are:

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.9111 − 0.4572

0.4572
· 100 = 99.3% (7.50)
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for specimen with ρ = 0.2 mm and

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.5354 − 0.4572

0.4572
· 100 = 17.1% (7.51)

for specimen with ρ = 1 mm.At this point,an R(1)
c = 0.0849 mm was obtained for specimen F3.As

with specimen F2,averaged SED values were calculated to determine a fit function.The main results
are collected in Tab. 7.30.

R(i)
c R(i)

2 ∆W
notched,i
D ∆W

unnotched
D

0.025 0.0383 0.9566 0.4572
0.0849 0.0982 0.1837 0.4572
0.1849 0.1982 0.1718 0.4572

Table 7.30:Main values for SED approach for F3 specimens in S275 steel

the fit function obtained is:

∆W
notched
D = 3.19 · 10−6 · R−3.365

c + 0.1709 (7.52)

the value ofthe controlradius,applying Newton’s method,is R c = 0.034 mm. The value ofSED
for specimen F3 with ρ = 0.2 mm was calculated using the controlradius just determined.The error
committed is:

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.3102 − 0.4572

0.4572
· 100 = −32.1% (7.53)

Regarding aluminium alloy, the first-attempt value of the control radius, for F2 specimen type, is  R(1)
c =

0.0533 mm.Again, the attempts were collected in a summary Tab. 7.31.

R(i)
c R(i)

2 ∆W
notched,i
D ∆W

unnotched
D

0.02 0.0333 0.5990 0.3648
0.0533 0.0666 0.3193 0.3648

Table 7.31:Main values for SED approach for F2 specimens in AlMgSi1 alloy

Fit function is:

∆W
notched
D = −8.409 · Rc + 0.7672 (7.54)

and,via Newton’s method,the corresponding controlradius is Rc = 0.048 mm.The percentage errors
made on the other two F2 specimens are:

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.6381 − 0.3648

0.3648
· 100 = 74.9% (7.55)

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.4861 − 0.3648

0.3648
· 100 = 33.2% (7.56)

At the first iteration,the controlradius for the aluminium alloy F3 specimen is R(1)
c = 0.0389 mm.In

this case the fit function is ∆W
notched
D = −9.589 · Rc + 0.6235 and the corresponding controlradius is

Rc = 0.027 mm.The percentage errors made on the F3 specimen with ρ = 0.2 mm is:

Error(%) =
SED σ0,n − ∆W

unnotched
D

∆W
unnotched
D

· 100 =
0.1071 − 0.3648

0.3648
· 100 = −70.6% (7.57)
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COMPARISON BETWEEN TCD,
RSG AND SED WITH
EXPERIMENTAL RESULTS AND
CONCLUSIONS

8.1 Theory of critical distances

8.1.1 TCD in HCF in its classical formulation
For the classical method in HCF the percentage deviations between the range of the effective stress ∆σeff

and the range of the reference stress, i.e.the fatigue limit of the smooth specimen ∆σ0, were obtained.
For each specimen,relative stress gradients were determined in Subsec.7.5.1.It is possible to plot the
percentage error committed in the evaluation of the actual stress versus  χ′ , Fig. 8.1.

(a) (b)

Figure 8.1: % error committed versus relative stress gradient calculated according to Eq. 3.6 - TCD in
its classical formulation

The percentage error was determined using the following equation:

Error(%) =
∆σ eff − ∆σ ref

∆σ ref
· 100 (8.1)

where for problems in HCF, ∆σref = ∆σ0. As far as V-rounded specimens are concerned, the percentage
errors remain within a band of ±15%.Both the line method and the point method estimate the effective
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stress in a very similar way.Although the specimens in the FABEST campaign and those in the article
[44] nominally have the same material, data on ∆Kth, or other material parameters, could induce these
deviations which are not exaggeratedly pronounced.The lack ofreliable data on steeland aluminium
alloy,on the other hand,leads to huge errors.In the best case,errors fallwithin the ±15% band,but
in the worst case the actual stress deviates from the relative reference stress by values even higher than
40%, which is not acceptable from an engineering point of view.

8.1.2 TCD in MCF in its classical formulation
The concepts seen for HCF were also extended in MCF. Stresses were determined according to classical
TCD at arbitrarily chosen cycles and were compared with stresses derived from the Basquin curve at the
same number ofcycles.For the LM method,the diagram in Fig.8.2 was obtained,while for the PM
method, the diagram in Fig. 8.3 was obtained.

Figure 8.2: Effective stress versus reference materialstrength for 42CrMo4+QT, Line Method

Figure 8.3: Effective stress versus reference materialstrength for 42CrMo4+QT, Point Method

With regard to the Line Method, it is interesting to note that the blunt V-notch specimens lie within an
error interval of about ±30%.The only exception is the specimen Fabest_h20, which estimate in MCF
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is highly wrong.However, the situation improves with the PM method, where even for Fabest_h20, the
percentage error is close to 30%.

8.1.3 TCD in HCF by using two calibration curve
In this paragraph, error graphs were determined according to reverse Point Method in Fig. 8.4.

(a) (b)

Figure 8.4: % error committed versus relative stress gradient calculated according to Eq. 3.6

As seen in Par.7.5,the relative stress gradient of the Fabest_h20 specimen was not determined.The
error made with respect to the reference stress was collected in Tab. 7.13.Referring to the 42CrMo4+QT
specimens,the errors are contained within a range of ±15%,while for S275 the intervalerror increases
to 30%.For aluminium alloy, this deviation is out of the range ±30% for specimens with a low relative
stress gradient.

8.1.4 TCD in MCF by using two calibration curve
The reverse Point Method was also extended in the medium cycle zone.For a certain number of cycles,
the reference stress obtained from the Basquin curve was compared to the stress obtained by the PM
method.The deviations were represented in the graphs in Fig. 8.5.

Figure 8.5:Effective stress versus reference material strength for 42CrMo4+QT, Reverse Point Method

Compared to the classicalapproach,for the material42CrMo4+QT,the % error is smaller and more
centred, i.e.the data falls within the error range of 15%.
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8.1.5 Executive summary
At the fatigue limit,points ofthe experimentally fatigue life and the TCD predicted fatigue life have
been depicted in Fig. 8.6.

Figure 8.6: Fatigue Data of TCD method

The black dashed strip corresponds to an error band of 30%, while the solid strip corresponds to an error of
15%.As can be observed, for the fabest campaign samples, the error band is contained within 30%.With
the steel specimens from the Santus and Niessner campaign, non-conservative results were obtained, while
for the aluminium alloy,depending on the type ofgeometry,conservative and non-conservative values
were obtained.

150



Chapter 8. COMPARISON BETWEEN TCD, RSG AND SED WITH EXPERIMENTAL
RESULTS AND CONCLUSIONS

8.2 Relative stress gradient approach
In this section, it is interesting to compare the percentage deviation that is present between the experi-
mentally calculated support factor and that determined by the method of Stieler, IABG and FKM.  nexp

is calculated as follows:

nexp =
K t,n · σD(χ̸=0)

σD(χ=0)
(8.2)

where,using the same nomenclature as in Ch.3, σD(χ̸=0) is the experimentalvalue of the fatigue limit
of the notched specimen related to the net section and σD(χ=0) is the experimentalvalue of the fatigue
limit of a smooth (unnotched) specimen.The stress concentration factors can be found from the graphs
in Ch. 5, as wellas the fatigue limits.Tab. 8.1 shows the support factors calculated according to the
experimental method and according to the 3 approaches seen.

Specimen nexp nStieler nIABG nFKM

42CrMo4 + QT
Fabest_v05 1.2870 1.0417 1.7367 1.2498
Fabest_v20 1.0003 1.0205 1.4810 1.1362
V-groove ρ = 1 mm 1.1912 1.0736 1.6083 1.1853
V-groove ρ = 0.2 mm1.2833 1.1604 1.9705 1.2727

S275
F2 with ρ = 1 mm 1.3703 1.2366 1.5784 1.2534
F2 with ρ = 0.2 mm 1.9614 1.5290 1.9372 1.3788
F2 with ρ = 0.04 mm3.0531 2.1819 2.5180 1.5655
F3 with ρ = 0.2 mm 1.5136 1.5296 1.9378 1.3790
F3 with ρ = 0.04 mm2.6660 2.1596 2.5008 1.5613

AlMgSi1
F2 with ρ = 1 mm 1.4863 1.2676 x 1.4562
F2 with ρ = 0.2 mm 1.8814 1.5982 x 1.6819
F2 with ρ = 0.04 mm2.2046 2.3365 x 2.018
F3 with ρ = 0.2 mm 2.1539 1.5593 x 1.6824
F3 with ρ = 0.04 mm1.8688 2.4559 x 2.0105

Table 8.1:Experimental and numerical data

The percentage deviations were collected in Tab. 8.2.The following formula was used to determine the
errors:

Error(%) =
nexp − n method

nexp
· 100 (8.3)

where with nexp denotes the experimentally calculated fatigue factor following Eq. 3.4 and  nmethod rep-
resents the fatigue factor calculated using the methods seen in this thesis work.
From the point of view of stresses, graphs of the percentage deviations as a function of the relative stress
gradient were obtained in Fig. 8.7,8.8 and 8.9.

8.2.1 Executive summary
At the fatigue limit, points of the experimentally fatigue life and the RSG predicted fatigue life have been
depicted in Fig. 8.10.
For the RSG approach,both from Stieler’s and IABG’s point ofview,non-conservative values were
obtained.
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(a) (b)

(c)

Figure 8.7: % error committed versus relative stress gradient calculated according to Eq. 3.6 - Stieler
method.

(a) (b)

Figure 8.8: % error committed versus relative stress gradient calculated according to Eq. 3.6 - IABG
method.
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(a) (b)

(c)

Figure 8.9: % error committed versus relative stress gradient calculated according to Eq. 3.6 - FKM
method.

Figure 8.10:Fatigue Data of RSG method
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Specimen nexp Errors nStieler Errors nIABG Errors nFKM

42CrMo4 + QT
Fabest_v05 1.2870 19.1 -34.9 2.9
Fabest_v20 1.0003 -2.0 -48.1 -13.6
V-groove ρ = 1 mm 1.1912 9.9 -35.0 0.5
V-groove ρ = 0.2 mm1.2833 9.6 -53.5 0.8

S275
F2 with ρ = 1 mm 1.3703 9.8 -15.2 8.5
F2 with ρ = 0.2 mm 1.9614 22.0 1.2 29.7
F2 with ρ = 0.04 mm3.0531 28.5 17.5 48.7
F3 with ρ = 0.2 mm 1.5136 -1.0 -28.0 8.9
F3 with ρ = 0.04 mm2.6660 19.0 6.2 41.4

AlMgSi1
F2 with ρ = 1 mm 1.4863 14.7 x 2.0
F2 with ρ = 0.2 mm 1.8814 15.1 x 10.6
F2 with ρ = 0.04 mm2.2046 -6.0 x 8.5
F3 with ρ = 0.2 mm 2.1539 27.6 x 21.9
F3 with ρ = 0.04 mm1.8688 -31.4 x -7.6

Table 8.2:Percentage deviations between experimentaland numerical data

8.3 Strain energy density approach
For the SED approach, as well as the TCD, the percentage deviations were represented as a function of
the relative stress gradient in Fig. 8.11, 8.12 and 8.13.

Figure 8.11:% error committed versus relative stress gradient calculated according to Eq. 3.6

As can be seen from the graphs, for the 42CrMo4+QT steel, the SED approach exhibits deviations within
±15% error, while for the S275 steel and aluminium alloy, the estimates fall outside the  ±30% range and
in some cases reach errors that are too high.
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Figure 8.12:% error committed versus relative stress gradient calculated according to Eq. 3.6

Figure 8.13:% error committed versus relative stress gradient calculated according to Eq. 3.6
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8.3.1 Executive summary
At the fatigue limit, points of the experimentally fatigue life and the SED predicted fatigue life have been
depicted in Fig. 8.14.

Figure 8.14:Fatigue Data of SED method

With the SED approach,the data converges more on the zero-error line than with the TCD and RSG
approaches.The situation for aluminium alloy, however, remains highly variable.

8.4 Conclusions
In this thesis work,three approaches were proposed for the prediction ofthe fatigue life ofdifferent
specimens with different geometries:Critical Distance Theory, Relative Stress Gradient and Strain Energy
Density.The first method was applied in HCF and a small attempt was also proposed in MCF, with the
available data.The second method was presented following 3 different schools of thought:Stieler, IABG
and FKM. The third method was applied in HCF. The TCD also found application with the special shape
specimen Fabest_h20, however reporting high errors, as demonstrated in the previous chapters.The RSG
failed in the determination of the 3 main parameters of the localfatigue curve,while the SED was not
applied given the previous results.In conclusion, the approaches studied on the Fabest campaign prove
to fall within an error band of at least 30%.In the best of cases, percentage deviations even approached
1%, while in the worst of cases errors of 30% were reached for TCD, RSG and SED. As far as the data
from the literature is concerned,slightly higher errors were obtained for the Santus article’s campaign,
while for Niessner’s campaign, perhaps also due to the lack of more precise data, highly percentage errors
were obtained.In the worst case, values close to 100 per cent were reached.
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Appendix A

DETERMINATION OF STATIC
PROPERTIES OF MATERIAL

In addition to Ch. 5, this appendix contains data from static tensile tests carried out at at UTP Bydgoszcz
in Poland.The data were analysed in excel.
Tab. A.1 shows the slopes of the σx = σx (εx ) and σx = σx (εy ) curves.The first column correspond to
the elastic moduli, the second are necessary to calculate the Poisson’s coefficient according to Eq. 5.4.

Specimen E [MPa] p1 slope on (σx , εy ) plane υ

MON01 205782 756167 0.272
MON02 206031 641709 0.321
MON03 207255 645032 0.321
MON04 260380 767506 0.269

mean value 206362 0.296
St.Dev. 644 0.029

Table A.1: Values of E and υ

The following are the fit diagrams from which the values described in Tab. A.1 were derived.
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(a)

(b)

(c)

Figure A.1: Curves for determining the modulus of elasticity
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(a)

(b)

(c)

Figure A.2: Curves for determining slope on (σx , εy ) plane
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