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Chapter 1

Introduction

Inflation theory is the standard theory in cosmology describing the primordial Universe. It was
introduced to explain some shortcomings of the Hot Big Bang model, such as the horizon problem and
the flatness problem [1], but in the modern view the most important property of inflation theory is
that it could have generated the seeds for the Large Scale Structures (LSS) we observe nowadays, from
galaxies to CMB anisotropies [2]. Inflation is an early phase of accelerated expansion taking place
before the standard radiation domination epoch, (presumably) at energies scales much higher than the
ones we can probe at Earth laboratories. Despite the fact that the nature of the fields driving inflation,
their number and their interactions are still not known precisely, there is a wide group of models which
are compatible with the experimental observations. During the inflationary epoch, quantum fluctu-
ations of the primordial vacuum generates small deviations from perfect homogeneity and isotropy,
which are stretched by the accelerated expansion into the LSS we observe today. Assuming an initial
Bunch-Davies vacuum state for the fluctuations, it was shown that they evolve into a two-squeezed
quantum state which, as we will see, discloses both a classical and a quantum interpretation [3].

This prediction of Inflation theory is widely accepted by the cosmologists’ community, however, a
key question remains: how did these fluctuations transition from a quantum state to the classical realm
we see in our Universe? This problem is referred to as “quantum-to-classical” transition and the main
mechanism which was proposed to explain the classicalization of the primordial quantum fluctuations
in our Universe is the quantum decoherence. This phenomenon is well known in Physics, especially in
quantum optics, and it was observed in laboratory [4]. Quantum decoherence relies on the fact that
the Early Universe is not a closed system, but can be considered as an open quantum system (OQS)
interacting with an environment. During the last fifteen years this OQS approach has been applied
to cosmology as a possible solution to explain the quantum-to-classical transition, keeping attention
to the fact that some assumptions it relies on are broken by the expansion of the Universe. Within
this technique the Early Universe is partitioned into a system and an environment which respectively
consist in the degrees of freedom which are observable today and the ones which are not. It should
be clear that the choice of what is the system and what is the environment is crucial, because if it
changes, it redefines the observables we can access, the entanglement and the quantum information
properties we can test. For this reason, choosing a well justified bipartition is fundamental. In litera-
ture there are two main choices for this bipartition: a system field interacting with an external field,
e.g. [5], and a system made of Super-Hubble scale modes (observable today) self-interacting with an
environment made of the shorter wavelengths (unobservable today), e.g. [6, 7]. In this work we will
consider a two-field model [8], with the system made of the scalar curvature perturbation (which is
directly related to the inflaton quantum fluctuations) and an environment made by a second external
field that plays the role of the so called “isocurvature” perturbation. In the OQS setting, the state
of the Universe is represented by the density matrix, whose evolution is described by the Liouville
equation. This equation is usually too difficult to be solved, then some approximations are needed,
giving raise to a plethora of so-called master equations, which will be presented in the following.

The Thesis is organized as follows. In chapter 2 we will provide a short review of the inflation
mechanism, starting with the reasons that led to the introduction of this new theory, then focusing on
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the raising of quantum fluctuations. In chapter 3 we will summarize the outcome of a two-squeezed
quantum state for the inflationary perturbations in case of no decoherence (that as we will see has
been described both as a highly classical and a highly quantum state), and then we will introduce the
OQS formalism, by deriving the master equation that describes the quantum state evolution of the
inflationary perturbations. In chapter 4 we will present our two-field model for the Early Universe
[8], where we consider a linear interaction between the curvature, also called adiabatic, (system) and
the isocurvature, also called entropic, (environment) sectors showing that for such a simple model, we
observe an initial period of decoherence, followed by a recoherence, where the quantum information
is transferred from the environment to the system. The phenomenon of recoherence was not much
studied in literature (it was found for the first time in [8]) and it is peculiar of the model we con-
sidered. In chapter 5 we will generalize this model by introducing a non-linear self-interaction in the
environmental degrees of freedom and we will see how the decoherence and recoherence of the previous
model are modified. The latter generalization constitute the main original part of this Thesis work.
Finally we will draw our conclusions, along with some future prospects and present some appendixes
making explicit some computations.
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Chapter 2

Inflation

2.1 Hot Big Bang model

During the 20s of the last century the astronomer Edwin Hubble observed that the astrophysical
objects outside our galaxy were receding from us, independently on the direction one is looking at.
This discovery allowed him to formulate the famous Hubble law, which claims that (for sufficiently low
velocities) there exists a linear relation between the receding velocity of the galaxies and their distance
[9]. Before this observation the Universe was thought to be static (Einstein himself put into play the
cosmological constant to guarantee a static Universe), but this simple relation, together with the
Copernican principle (i.e. we are not privileged observers in the Universe), led to the discovery of the
Universe expansion. In order to explain this expansion two theories were formulated: the steady-state
theory and the Hot Big Bang theory. These two theories competed until 1964, when the discovery of
the Cosmic Microwave Background (CMB) [10] secured the Big Bang theory as the best theory of the
origin and evolution of the Universe (together with the evidences of the Big Bang Nucleosynthesis). In
the following years many other predictions of the Big Bang theory were confirmed by the observations,
such as the abundance of light elements, the fact that the age of the Universe is comparable to direct
age measurements of object within the Universe and that given the irregularities in the CMB, it
provides an explanation for the subsequent formation of structure, through gravitational collapse.
However, in spite of all its successes, the Big Bang theory is not a flawless model, but it has some
shortcomings which were solved only in the 80s with the introduction of the inflation theory by
Starobinskij [11] and Guth [1].

2.1.1 Big Bang cosmology

The Hot Big Bang model is based on the cosmological principle which claims that the Universe
is homogeneous and isotropic on large scales and that it can be described by the so-called FLRW
(Friedmann-Lemâıtre-Robertson-Walker) metric [12]:

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.1)

where t is the cosmic time, a(t) is the scale factor which measures the physical size of the Universe,
dΩ is the infinitesimal solid angle and k is the curvature that can be either positive (closed Universe),
negative (open Universe) or null (flat Universe). We will call “comoving” observer an observer which
sees the cosmic fluid at rest. The physical coordinates are related to the comoving ones through the
relation:

Physical distance = a(t)× Comoving distance. (2.2)

If we interpret the Universe as a perfect fluid, the expansion will be characterized by its pressure P
and its energy density ρ, which are in general connected through an equation of state:

P = wρ, (2.3)
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with w = 0 for non-relativistic matter, w = 1/3 for radiation, w = −1 for the cosmological constant.
In general relativity (GR) the Einstein equations relate the geometry of the spacetime to the matter
distributions within it:

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (2.4)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, G is the gravitational
constant and Tµν is the energy-momentum tensor. This equation is obtained by varying with respect
to the metric the following action:

S = SHE + Sm =

∫
d4x
√
−g R

16πG
+

∫
d4x
√
−gLm, (2.5)

where SHE is the Einstein Hilbert action, and Sm describes the matter content of the Universe. In
particular from the variation δSHE/δgµν one finds the LHS of (2.4) while the energy-momentum tensor
on the RHS is defined as:

Tµν ≡ −
2√
−g

δSm

δgµν
. (2.6)

If we focus on the global properties and treat the Universe as a perfect fluid, we obtain the following
expression for the energy-momentum tensor:

Tµν = uµuν(ρ+ P ) + Pgµν , (2.7)

where uµ is the four-velocity of the fluid in its reference frame.
If we replace (2.1) and (2.7) in (2.4) we obtain the Friedmann equations [12]:

H2 +
k

a2
=

8πG

3
ρ, (2.8)

ä

a
= −4πG

3
(ρ+ 3P ), (2.9)

ρ̇+ 3H(ρ+ P ) = 0, (2.10)

where overdots represents derivative with respect to cosmic time and H = ȧ/a is the Hubble
parameter. Only two of these three equations are independent. When k = 0 Friedmann equations can
be easily solved leading to the following solutions:

Matter domination P = 0 =⇒ ρ ∝ a−3 a(t) ∝ t2/3

Radiation domination P = 1/3 =⇒ ρ ∝ a−4 a(t) ∝ t1/2.
(2.11)

A more interesting solution, which we will recall when we will talk about inflation is the one
obtained assuming the cosmological constant domination, i.e. w = −1:

P = −ρ =⇒ a(t) ∝ eHt. (2.12)

Density parameter and horizons

The energy density of a flat Universe (k = 0) is called critical density:

ρc(t) =
3M2

PlH
2

8π
. (2.13)

Then the density parameter is:

Ω(t) ≡ ρ

ρc
. (2.14)

The expanding Universe has two characteristic scales: the Hubble length H−1 giving the charac-
teristic timescale of evolution of a(t) and the curvature scale a|k|−1/2 giving the distance up to which
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space can be taken as having a flat geometry. From the Friedmann equation we obtain the following
relation: √

|Ω− 1| = H−1

a|k|−1/2
. (2.15)

Since light speed is finite, it has travelled only a finite distance from the beginning of the Universe t∗,
so we can define the cosmological horizon as the radius of the region of causal connection centered on
us:

dH(t) = a(t)

∫ t

0

dt′

a(t′)
. (2.16)

An object farther than this radius is causally disconnected from us.
Another useful definition is that of comoving Hubble radius:

rH(t) =
1

ȧ(t)
=

1

a(t)H(t)
. (2.17)

This is the distance travelled by light in the Hubble time H−1.
Another important quantity is the redshift, defined as:

1 + z =
a(t0)

a(temission)
. (2.18)

2.1.2 Shortcomings of the Big Bang model

In this section we will give a short review of the original motivations that gave rise to the
inflationary model. We remind that today these problems are marginal and the main focus is on the
ability of the inflation to predict the formation of large scale structure (LSS).

The flatness problem

As we have seen we can write the density parameter as:

|Ω− 1| = |k|
a2H2

. (2.19)

During the standard Big Bang evolution Ω moves away from 1, since:

Matter domination : |Ω− 1| ∝ t2/3,

Radiation domination : |Ω− 1| ∝ t.
(2.20)

So if Ω is exactly equal to 1 it will remains zero, but if Ω is even slightly different from 1, it gets
farther and farther from flatness. Nowadays Ω is measured to be very close to 1, so it must have been
even much closer in the past. In particular, assuming radiation domination up to the present days we
obtain:

Nucleosynthesis (t ∼ 1sec) : |Ω− 1| < O(10−16)

Electro-weak scale (t ∼ 10−11sec) : |Ω− 1| < O(10−27).
(2.21)

These results give rise to a fine-tuning problem: if we want to explain the smallness of Ω today we need
to fine tune the initial value of Ω up to the 27th decimal figure, and this appear quite unnatural and
difficult to accept. The situation is even more dramatic at the Planck scale where |Ω− 1| < O(10−60).

The horizon problem

Looking the CMB spectrum we see that photons emitted in opposite directions in the sky appear
to be at almost the same temperature. The simplest explanation is that the Universe has indeed
reached a state of thermal equilibrium, through interactions between different regions. Unfortunately
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this explanation cannot be used in the context of the Big Bang model. Indeed there was no time for
those regions to interact before the photon decoupling, because of the finite size of the horizon:∫ tdec

t∗

dt

a(t)
≪
∫ t0

tdec

dt

a(t)
. (2.22)

This relation claims that the distance photons could have travelled before decoupling is much smaller
than the present horizon distance. In fact, in the Big Bang theory, regions separated by more than 2
degrees should be causally disconnected.

Unwanted relics

Particle physics predict that in the Early Universe, a variety of massive particles, dubbed as
“unwanted relics”, should have formed (e.g. magnetic monopoles, domain walls etc.). If they were
created in the Early Universe they should contribute today to the density parameter, leading to Ω≫ 1
in sharp contrast with the observations.

2.1.3 The inflationary solution

Inflation theory was proposed for the first time by Aleksej Starobinskij [11] and Alan Guth [1] in
the early 80s as a possible solution to the shortcomings of the Hot Big Bang model. The inflationary
cosmology is not a replacement of the Hot Big Bang model, but rather an add-on that occurs at very
early times without affecting any of its successes.
Going back to the flatness problem:

|Ω− 1| = |k|
a2H2

. (2.23)

The problem arises because aH always decreases, causing Ω to depart from 1. In order to solve the
problem we need a mechanism that lead Ω to approach 1. This is possible if we consider an early
epoch characterized by an accelerated expansion, which can be expressed using different conditions:

ä > 0 ⇐⇒ d

dt

H−1

a
< 0 ⇐⇒ P < −1

3
ρ. (2.24)

The second condition has a clear geometrical interpretation: since H−1/a is the comoving Hubble
length, the condition for inflation is that the comoving Hubble length is decreasing with time. In
comoving coordinates this means that the observable Universe becomes smaller during inflation be-
cause the characteristic scale occupies a smaller and smaller region as inflation proceeds. From the
last condition we understand that radiation and non-relativistic matter are not sufficient to obtain
inflation, while the cosmological constant would do the job. In figure (2.1) it is shown the Hubble
radius as a function of time in case of inflation.
Since we want to recover the Hot Big Bang behaviour and all its successful predictions, we cannot
permit inflation to go on forever and it has to stop at some point. Now let us show briefly how the
inflation theory solves the previous shortcomings.

Solution to the shortcomings

The flatness problem is easily solved in the inflationary scenario because looking at the density
parameter (2.19) we see that if aH increases, Ω is pushed towards one, regardless the initial conditions
(in this sense we call inflation an attractor solution). This is the case in the inflation theory where
the scale factor increases like (2.12) and the Hubble parameter is almost constant (at least in the case
w = −1).

The horizon problem is solved if we show that the following condition holds:∫ tdec

t∗

dt

a(t)
≫
∫ t0

tdec

dt

a(t)
, (2.25)
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Figure 2.1: Comoving Hubble radius as a function of time. The scales that are inside the horizons are called
sub-Hubble scales, the ones which have crossed the horizon are called super-Hubble scales. (The figure was
taken by [13]).

so that light can travel much further before decoupling than it can afterwards. To understand the
validity of this relation, remember that inflation corresponds to a decreasing of the comoving Hubble
wavelength (2.24), which is a good measure of how far light can travel in the Universe. This is telling
us that the region of the Universe we can see after inflation is much smaller than the region which
would have been visible before inflation started (if inflation lasts enough time). Hence before inflation
our observable Universe was well within the causal horizon, allowing to reach the thermal equilibrium
we observe in the CMB spectrum.

The unwanted relics problem is solved by inflation because the energy density during inflation
falls off more slowly (as a−2 or slower) then the relic particle density, so that the latter becomes
rapidly negligible. This solution can only work if, after inflation, the energy density of the Universe
can be turned into conventional matter without recreating the unwanted relics. This can be achieved
by ensuring that during the conversion, known as reheating, the temperature never gets hot enough
again to allow their thermal recreation.

Inflation duration

It should be clear that the previous shortcomings are solved by inflation only if inflation lasts
enough, a short period of expansion would not be sufficient. In this sense we can introduce a useful
quantity called the number of e-folds, defined as:

N =

∫ tf

ti

H(t)dt = ln

(
af
ai

)
, (2.26)

where “i” and “f” refers to the beginning and the end of inflation, respectively. So this number
immediately tells us how much the Universe has inflated at the end of inflation with respect to its
beginning and the name comes from the fact that

af
ai

= eN .
Let us see what is the minimum number of e-folds inflation should last to solve the horizon problem.
The minimal requirement is that the Hubble radius today is smaller than the Hubble radius at the
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beginning of inflation:

rH(t0) ≤ rH(ti) =⇒ 1

a0H0
≤ 1

aiHi
. (2.27)

Multiplying both sides for af :

af
a0

H−1
0 ≤

af
ai

H−1
i =⇒

af
ai︸︷︷︸
eN

≥
af
a0

Hi

H0
. (2.28)

Using the fact that as the Universe expands the temperature decreases as the inverse of the scale
factor, a(t) ∝ T−1:

eN ≥ T0

H0

Hi

Tf
=⇒ N ≥ ln

(
T0

H0

)
+ ln

(
Hi

Tf

)
. (2.29)

We know that T0 ≈ 2.7K ≈ 10−13GeV and H0 ≈ 10−42GeV , so

ln

(
T0

H0

)
≈ 67. (2.30)

The ratio Hi/Tf is model dependent, but we can estimate it assuming a quasi-De Sitter phase with
H constant:

H ≈ const. =⇒ H2(ti) = H2(tf ). (2.31)

Since at the end of inflation there is a radiation epoch we can impose:

H2(tf ) =
8

3
πGργ |Tf

=
8

3
πG

π2

30
g∗T

4|Tf
=

8

3

π3

30
g∗

T 4
f

M2
Pl

, (2.32)

=⇒ H(ti) = H(tf ) ∼
T 2
f

MPl
. (2.33)

Then, replacing this result in (2.29) we get:

N ≥ ln

(
T0

H0

)
+ ln

(
Tf

MPl

)
. (2.34)

Depending on the inflationary model we have 10−5 ≤ Tf/MPl ≤ 1 so that ln (Tf/MPl) = [−11, 0], so
finally:

N ≥ 67 + [−11, 0] = [56, 67]. (2.35)

Here we can better understand the utility of the number of e-folds: we can say that in order to solve
the Horizon problem the Universe had to be expanded by a factor of e60 ∼ 1026. One can show that
this minimal requirement is the same necessary to solve the other shortcomings of the Big Bang model.

2.1.4 The inflaton field

As we have seen, in order to obtain inflation we need a particle with the unusual property of a
negative pressure. The simplest choice is to consider a scalar field, which is called the inflaton. It
is useful to split this field as the sum of a classical background field depending only on time plus a
fluctuations field depending also on the spatial coordinates:

ϕ(x, t) = ϕ0(t) + δϕ(x, t). (2.36)

This splitting makes sense if the fluctuations are much smaller than the background field, so that we
can treat them in perturbation theory. For the moment we will focus on the background field (we will
neglect the index 0).
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The background dynamics

Comparing the energy-momentum tensor of the inflaton with that of a perfect fluid it can be
shown that the energy density and the pressure of a homogeneous scalar field ϕ ≡ ϕ0(t) satisfy the
following equations [2]:

ρϕ =
1

2
ϕ̇2 + V (ϕ), (2.37)

Pϕ =
1

2
ϕ̇2 − V (ϕ), (2.38)

where V (ϕ) is the inflaton potential and different choices of this potential correspond to different
inflationary models. The equation of state in this case becomes:

wϕ =
Pϕ

ρϕ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (2.39)

Thus if the potential energy dominates over the kinetic term, V (ϕ)≫ 1
2 ϕ̇

2, we get wϕ ∼ −1 < −1
3 as

we required to have an accelerated expansion. The condition V (ϕ)≫ 1
2 ϕ̇

2 is satisfied if the potential
is sufficiently flat. This regime is called slow-roll regime and it is the standard scenario to realize
inflation.
Assuming a spatially flat Universe, k = 0 (reasonably since during inflation the Universe is pushed to
be flat) and replacing (2.37) and (2.38) in the Friedmann equations (2.8) and (2.10) we obtain:

ϕ̈+ 3Hϕ̇ = −∂V

∂ϕ
, (2.40)

H2 =
8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (2.41)

The standard strategy to solve this equation is the so-called slow-roll approximation (SRA): it consists
in the first slow-roll condition we already introduced:

1st slow-roll condition: ϕ̇2 ≪ V (ϕ), (2.42)

which is realized if the inflaton potential is sufficiently flat. Moreover, given the flatness of the
potential, we expect that also the higher order derivatives are negligible. So we can impose:

2nd slow-roll condition: ϕ̈≪ 3Hϕ̇. (2.43)

Then our evolution equations in the slow-roll approximations read:

H2 ≈ 8πG

3
V (ϕ),

3Hϕ̇ ≈ −∂V

∂ϕ
.

(2.44)

In order to quantify the slow-roll regime dynamics we can introduce the so-called slow-roll parameters:

ε = − Ḣ

H2
η = − ϕ̈

Hϕ̇
. (2.45)

We can easily see that a necessary condition for inflation to happen is:

ä = (aH)· = ȧH + aḢ = aH2 + aḢ = aH2

(
1 +

Ḣ

H2

)
= aH2(1− ε) > 0. (2.46)

So inflation happens only if:

ä > 0 ⇐⇒ ε < 1. (2.47)
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Moreover, the slow-roll parameters can be expressed in terms of the inflaton potential as:

ε =
3

2

ϕ̇2

V (ϕ)
=

1

16πG

(
V ′(ϕ)

V (ϕ)

)2

η =
V ′′

3H2
− Ḣ

H2

V ′

3Hϕ̇
≈ ηV − ε, (2.48)

where we defined ηV = V ′′/(3H2). This implies that in order to satisfy both the slow-roll conditions
we need to require:

ε, η ≪ 1. (2.49)

This condition guarantees that inflation happens and that it lasts enough to solve the shortcomings
of the Big Bang model.

2.2 Quantum fluctuations of the inflaton field

Up to this moment we focused on the evolution of ϕ0, now we want to study the evolution of the
quantum fluctuation δϕ(x, t), which is the quantity we are mostly interested in. First of all we need to
understand how it is possible to generate the cosmological perturbations on large cosmological scales
(such us the anisotropies we observe in the CMB spectrum), starting from the small-scale microscopic
quantum fluctuations δϕ of the inflaton field.
Let us consider the evolution equations for the background field and for the fluctuations:

ϕ̈0 + 3Hϕ̇0 = −V ′(ϕ),

δ̈ϕ+ 3H ˙δϕ− ∇2δϕ

a2
= −V ′′(ϕ)δϕ.

(2.50)

If we derive with respect to time the first one we get:(
ϕ̇0

)··
+ 3H

(
ϕ̇0

)·
= −V ′′(ϕ)ϕ̇0,

δ̈ϕ+ 3H ˙δϕ− ∇2δϕ

a2
= −V ′′(ϕ)δϕ.

(2.51)

We can see that ϕ̇0 and δϕ have the same equation of motion apart from the laplacian term. As we
will show soon, we are most interested on super-horizon scale, characterized by k ≪ aH, so going
to Fourier space one can immediately see that the laplacian term becomes negligible. This approach
consists in performing a coarse-graining of the system, since we are not interested in the microscopic
behaviour we take an average over small-scale regions. Since ϕ̇0 and δϕ have the same equation of
motion on super-Hubble scale, it turns out that the two solutions are not independent and one obtains
[14]:

δϕ(x, t) = −δt(x)ϕ̇0(t). (2.52)

Thus the scalar field is related to its background evolution through:

ϕ(x, t) = ϕ0(t− δt(x)). (2.53)

The last equation tells us that, on large scales, the scalar field goes locally through the same expansion
history of the background field, but at a different time due to quantum fluctuations.

2.2.1 Solution to the equation of motion

In this section we want to solve the equation:

δ̈ϕ+ 3H ˙δϕ− ∇2δϕ

a2
= −∂2V (ϕ)

∂ϕ∂ϕ
δϕ. (2.54)

The Fourier transformation of the inflaton fluctuations is:

δϕ(x, t) =
1

(2π)3

∫
d3keik·xδϕ(k, t). (2.55)
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Notice that we are considering 3-dim Fourier space because our Universe is invariant under translations
and rotations, but not under time translation (because it is expanding). Since the evolution equation
is linear different modes evolve independently and we can focus on a single mode. The equation of
motion for a given Fourier component reads:

δ̈ϕk + 3H ˙δϕk −
k2δϕk

a2
= − ∂2V (ϕ)

∂ϕk∂ϕk
δϕk. (2.56)

Now we promote δϕ to a quantum operator, rescale it and pass to conformal time (dτ = dt/a):

δϕ(x, τ) =
δϕ̂(x, τ)

a(τ)
, (2.57)

from now on dots represent derivative with respect to cosmic time, while ’ represent derivative with
respect to conformal time. We can expand the field operator in terms of the creation and annihilation
operators as:

δϕ̂(x, τ) =
1

(2π)3

∫
d3k

[
uk(τ)âke

−ik·x + u∗k(τ)â
†
ke

ik·x
]
, (2.58)

where âk and â†k are the annihilation and creation operators of the free vacuum since we are not
considering any interaction. In order to have canonical commutation relations,[

âk, âk′
]
=
[
â†k, â

†
k′

]
= 0

[
âk, â

†
k′

]
= δ3(k− k′), (2.59)

we need to require the following normalization condition for the mode functions:

u∗k(τ)u
′
k(τ)− uk(τ)u

∗′
k (τ) = −i. (2.60)

In flat spacetime:

uk(t) =
1√
2ωk

e−iωkt with ωk =
√

k2 +m2 Plane wave. (2.61)

In a curved spacetime uk is not necessarily a plane wave; there is indeed an ambiguity in the definition
of the vacuum state. Nevertheless, if we consider a small patch of the spacetime, λ ≪ H−1, we can
use the equivalence principle and consider a flat metric, obtaining a plane wave expression:

uk(τ) ≈
e−ikτ

√
2k

for k ≫ aH. (2.62)

This choice is called Bunch-Davies vacuum choice.
More generally, in a curved spacetime, starting from the equation of motion of the inflaton field, one
can show that uk(τ) satisfies the following evolution equation:

u′′k(τ) +

(
k2 − a′′

a
+ V ′′a2

)
uk(τ) = 0. (2.63)

De Sitter solution

If we consider a massless scalar field, m2
ϕ = V ′′(ϕ)=0 in pure De Sitter regime (a(t) ∝ eHt, and

H =const.) the equation simplifies to:

u′′k(τ) +

(
k2 − a′′

a

)
uk(τ) = 0, (2.64)

and using the definition of conformal time we get:

dτ =
dt

a
∝ dt

eHt
=⇒ τ ∝ − 1

H
e−Ht = − 1

aH
< 0 (2.65)

so conventionally, during inflation, τ is negative (τ ∈]−∞, 0[ ) and:

a(τ) = − 1

τH
=⇒ a′′

a
=

(
1

τ2H

)′
(−τH) =

2

τ2
= 2a2H2 =

2

r2H
. (2.66)

Now we can solve equation (2.64) in two different regimes:
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1. Sub-horizon regime: λ≪ H−1 ←→ k≫ aH
In this limit the equation of motion reduces to a harmonic oscillator equation:

u′′k + k2uk = 0 =⇒ uk(τ) =
1√
2k

e−ikτ , (2.67)

in agreement with the Bunch-Davies argument we have considered previously. In terms of the
field:

δϕk =
uk
a

=
1

a

1√
2k

e−ikτ , (2.68)

we notice that it has a decreasing amplitude |δϕ| = 1/(a
√
2k), so small scale fluctuations are

very suppressed during inflation.

2. Super-horizon regime: λ≫ H−1 ←→ k ≪ aH
In this limit the equation of motion reduces to:

u′′k −
a′′

a
uk = 0, (2.69)

whose general solution is:

uk(τ) = B(k)a(τ) +A(k)a−2(τ), (2.70)

where A and B are integration constant on τ which depend on k. In terms of the field:

δϕk =
uk
a

= B(k) +A(k)a−3(τ) ≈ B(k), (2.71)

where we neglected the decaying term which gets washed away by inflation. So we see that
Super-horizon fluctuations survive during inflation because they are constant.

At horizon crossing we can match the two behaviours to get:

|δϕk| = |B(k)| = 1

a
√
2k
|k=aH =

H√
2k3

. (2.72)

In general if we make an average of the quantum fluctuations on sub-horizon scales, in a macroscopic
time interval we get ⟨δϕ⟩ = 0 because positive fluctuations compensate negative fluctuations (in other
words particles are continuously created and annihilated). However, the background is exponentially
inflating so their physical wavelengths grow exponentially,

λ ∝ a(t) ∝ eHt, (2.73)

until they become greater than the horizon H−1. Once crossed the horizon these fluctuations get
frozen: they do not vanish if averaged on a macroscopic time interval. In other words we have realized
a state with a net number of particles. This is called gravitational amplification mechanism, which
the gravitational analogue of the creation of couples e+e− in a strong electromagnetic field.

Quasi-De Sitter solution

Now we want to solve equation (2.63) in the massless case and in the quasi-De Sitter regime,

which differs from De Sitter because H is not constant, but ε = − Ḣ
H2 ≪ 1. In this regime, using an

expansion at linear order in ε we obtain the following equation:

u′′k(τ) +

[
k2 −

ν2 − 1
4

τ2

]
uk(τ) = 0 with ν2 ≡ 9

4
+ 3ε. (2.74)

In this form it is equivalent to a Bessel equation, whose solutions are of the form:

uk(τ) =
√
−τ
[
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]
with H(2)

ν = (H(1)
ν )∗. (2.75)

14



where H
(1)
ν and H

(2)
ν are the Henkel functions of the first and the second type. Imposing the previous

solution on sub-horizon scale we find that c1(k) =
√
π
2 ei(ν+

1
2)

π
2 and c2(k) = 0, so on small scales we

get:

uk(τ) =
√
−τ
√
π

2
ei(ν+

1
2)

π
2
e−ikτ

−kτ
. (2.76)

On super-horizon scale instead we find:

uk(τ) =
1√
2k

ei(ν−
1
2)

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)
(−kτ)

1
2
−ν , (2.77)

in terms of the field:

|δϕk| =
H√
2k3

(
k

aH

) 3
2
−ν

, (2.78)

where the De Sitter solution is recovered with ε = 0, implying ν = 3/2.
If we consider a field with a small mass we get the same solution with a different scale dependence:

|δϕk| =
H√
2k3

(
k

aH

) 3
2
−ν

with
3

2
− ν = ηV − ε, (2.79)

where ηV = m2
ϕ/(3H

2) (we consider only light field because a heavy field would violate the slow-roll
condition ηV ≪ 1).

Notice that in our computation there is an inconsistency: we have perturbed the scalar field
without perturbing the spacetime metric. Indeed if we consider Einstein equations, assuming the
inflaton domination during inflation,

Gµν = 8πGT ϕ
µν , (2.80)

perturbations in the inflaton lead to perturbations in the energy-momentum tensor, which through
Einstein equations cause perturbations in the Einstein tensor and so in the metric:

δT ϕ
µν −→ δGµν −→ δgµν . (2.81)

In order to take into account both the metric and the inflaton perturbations we can define a gauge
invariant perturbation, called the Mukhanov-Sasaki variable:

vϕ = δϕ+
ϕ̇

H
φ̂ where φ̂ = φ+

1

6
∇2χ∥, (2.82)

where φ̂ is related to the scalar perturbations of the spatial part of the metric δgij :

gij = a2(τ)[(1− 2φ)δij + χij ]

χij = Dijχ
∥ + ∂iχ

⊥
j + ∂jχ

⊥
i + χT

ij

Dij = ∂i∂j −
1

3
δij∇2.

(2.83)

For a good review of cosmological perturbation theory see [15, 14].
One can show that the operator v̂ϕ = vϕ/a satisfies a Bessel equation,

v̂′′ϕ(τ) +

[
k2 −

ν2 − 1
4

τ2

]
v̂ϕ(τ) = 0 with ν2 =

9

4
+ 9ε− 3ηV , (2.84)

and the amplitude is found to be:

|vϕ| ≈
H√
2k3

(
k

aH

) 3
2
−ν

with
3

2
− ν ≈ ηV − 3ε, (2.85)

where we have approximated ν ≈ 3
2 + 3ε− ηV .

Another important predictions of the inflation theory is the production of primordial gravitational
waves (GWs) [2]. They are produced from the quantum vacuum fluctuations of the metric itself with
a similar mechanism to the one we already described, since the two polarization degrees of freedom of
the GWs evolve like two minimally coupled, massless scalar fields.
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2.2.2 From quantum fluctuations to primordial energy density perturbations

Since we do not observe directly the inflaton fluctuations, we need to connect them to the
primordial perturbations we observe today (e.g. CMB temperature anisotropies). In order to do
that a very useful quantity can be introduced: the curvature perturbation on uniform energy density
hypersurfaces, which will be simply called from now on curvature perturbation

ζ(x, t) = −φ̂−H
δρ

ρ̇
. (2.86)

In the spatially flat gauge φ̂ = 0, so:

ζ(x, t) = −Hδρ

ρ̇
. (2.87)

The great advantage of ζ is that it is constant, provided that the pressure perturbation is negligible
(see [2]). This turns out to be the case on scales well outside the horizon regardless of the matter
content of the Universe. Moreover, this definition is completely general, so it holds throughout the
evolution of the Universe, also when other fields are dominant. This allows us to consider for example

a scale k which crosses out the horizon during inflation (at the moment t
(1)
H (k)) and reenters the

horizon during the radiation epoch (at the time t
(2)
H (k)) and to compare the inflaton fluctuations with

radiation energy density perturbations:

ζ
∣∣∣
t
(1)
H (k)

= ζ
∣∣∣
t
(2)
H (k)

=⇒ −Hδϕ

ϕ̇

∣∣∣
t
(1)
H (k)

= −Hδργ
ρ̇γ

∣∣∣
t
(2)
H (k)

, (2.88)

but since in radiation epoch ρ̇γ = −4Hργ :

−Hδϕ

ϕ̇

∣∣∣
t
(1)
H (k)

=
1

4

δργ
ργ

∣∣∣
t
(2)
H (k)

, (2.89)

and using the fact that ργ ∝ T 4 we get δρ/ρ = 4δT/T we finally obtain:

ζϕ ∼
δT

T
∼ 10−5, (2.90)

so we found a direct link between the inflaton fluctuations and the CMB temperature anisotropies we
observe today.
Notice that ζϕ depends on the inflation model we consider, since ρ is proportional to the inflaton poten-
tial; so comparing the predictions of different inflationary models with the observed CMB anisotropies,
we can rule out some of these models.
Moreover, notice that the crossing time tH(k) depends on k, because depending on the scale considered
it will cross the horizon after or earlier.

2.3 Two-field inflation

In this section we want to briefly introduce two-field inflation and the concept of adiabatic
and entropic perturbations [16] which will be useful because in the model we will consider we will
have the interaction between an adiabatic and an entropic sector. Two-field inflation was studied
in several works, e.g. [17, 18]. An interesting aspect is that these models are the simplest where
non-gaussianities appear [19]. In the simplest models of inflation driven by a single scalar field, the
quantum fluctuations of the inflaton produce a primordial adiabatic spectrum whose amplitude can
be characterized by the comoving curvature perturbation ζ, which remains constant on super-Hubble
scales until the perturbation comes back within the Hubble scale long after inflation has ended. As
soon as one considers a model with more than one scalar field, one has to take into account also
non-adiabatic fluctuations. These new fluctuations can affect the curvature perturbation (which is
adiabatic) and can also generate isocurvature (or entropy) perturbations. First of all we need to
underline the difference between adiabatic and entropic fluctuations: the former correspond to a local
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Figure 2.2: An illustration of the decomposition of an arbitrary perturbation into an adiabatic (δσ) and entropy
(δs) component. The angle of the tangent to the background trajectory is denoted by θ. The usual perturbation
decomposition, along the ϕ and χ axes, is also shown. (The figure was taken by [16]).

perturbation in the total energy density of the Universe, while the latter correspond to perturbations
between the energy densities of the different components of the Universe (for this reason they appear
only if we consider at least two fields).

Let us consider a model with two interacting scalar fields, ϕ and χ. Given a generic perturbation
we can always decompose it in an adiabatic and an entropic fluctuation, by a simple rotation in field
space. We can define the adiabatic field as:

σ̇ = (cos θ)ϕ̇+ (sin θ)χ̇, (2.91)

where:

cos θ =
ϕ̇√

ϕ̇2 + χ̇2

sin θ =
χ̇√

ϕ̇2 + χ̇2

. (2.92)

The perturbation of the adiabatic field δσ represents the component of the total perturbation along
the trajectory of the background field. Instead fluctuations orthogonal to the background trajectory
represent the “non-adiabatic” fluctuations (see figure 2.2):

δs = (cos θ)δχ− (sin θ)δϕ. (2.93)

As it is explained in [16] the entropy and adiabatic perturbations satisfy the following equation of
motion:

δ̈s+ 3Hδ̇s+

(
k2

a2
+ Vss + 3θ̇2

)
δs =

θ̇

σ̇

k2

2πGa2
Ψ, (2.94)

Q̈σ + 3HQ̇σ +

[
k2

a2
+ Vσσ − θ̇2 − 8πG

a3

(
a3σ̇2

H

)·]
Qσ = 2

(
θ̇δs
)·
− 2

(
Vσ

σ̇
+

Ḣ

H

)
θ̇δs, (2.95)

where Vσ, Vss and Vσσ are related to the potential term, Ψ is the curvature perturbation in the
zero-shear gauge, Qσ is the Mukhanov-Sasaki variable for the adiabatic perturbation. The interesting
aspect we want to focus on is that the evolution equation for the entropy perturbation (2.94) is a
homogeneous equation decoupled from the adiabatic field [16], while if the background trajectory is
curved, i.e. θ̇ ̸= 0, the entropy perturbation acts as an additional source term in the equation of
motion for the adiabatic field perturbation (2.95). This means that we can have significant change in
the large-scale comoving curvature perturbation if there is a non-negligible entropy perturbation, and
the background trajectory in field space is curved.
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Chapter 3

Open Quantum System approach

In the previous chapter we have seen how we can trace back the origin of the primordial energy
density fluctuations we observe today to the quantum fluctuations of the inflaton field generated
during inflation. However, inflation theory does not answer an important question: the fluctuations
we observe in our Universe are classical, so how did the quantum fluctuations of the inflaton become
classical? There is still no clear answer to this question, and this problem was dubbed the “quantum-
to-classical transition”. In the last years this topic has generated a great debate, but the main question
remains: can we prove the quantum origin of the classical fluctuations we observe today? One of the
main obstruction to this observation is the phenomenon of quantum decoherence that could have
cancelled any quantum signature in the present Universe. This phenomenon is widely studied in the
OQS framework (a good introduction of Open Quantum Systems is found in [20]) and our goal in this
chapter is to show how to deal with the quantum decoherence during inflation within this framework.

First of all we are going to show that, in the free field case (without interaction, and so without
the possibility of decoherence), primordial quantum fluctuations are placed in a very peculiar quantum
state, called two-mode squeezed state [21]. We will understand why it has been proposed to interpret
these states within a classical stochastic theory [22] and why they are actually authentic quantum
states. Then we will introduce the concept of quantum decoherence applied to cosmology and the
OQS techniques to deal with it, along with the master equations that will be used in the next chapters.

3.1 Two-mode squeezed states

The linear action for the curvature perturbation is given by [23]:

S
(2)
ζ =

∫
dηd3xa2εM2

Pl

[
ζ ′2 − (∂iζ)

2
]
, (3.1)

we can introduce the “Mukhanov-Sasaki” variable v(η,x) ≡ z(η)ζ(η,x) where z(η) = a(η)
√
2εMPl.

In terms of this variable the previous action reads:

S(2)
v =

1

2

∫
dηd3x

[
(v′)2 − (∂iv)

2 +
z′′

z
v2
]
. (3.2)

From the action we can derive the Hamiltonian of the system, which reads:

H =
1

2

∫
d3x

[
p2 + (∂iv)

2 + 2
z′

z
vp

]
, (3.3)

where p is the conjugate momentum associated to the v variable. Now we promote the fields to
quantum operators and Fourier transform them as:

v̂ =

∫
d3k

(2π)3/2
v̂ke

ik·x,

p̂ =

∫
d3k

(2π)3/2
p̂ke

ik·x,

(3.4)
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then the two-mode Hamiltonian operator for a given k is given by:

Ĥk = p̂−kp̂k + k2v̂−kv̂k +
z′

z
(p̂−kv̂k + v̂−kp̂k). (3.5)

Decomposing the operators in terms of the mode functions as:

v̂k =
1√
2k

(
âk + â†−k

)
,

p̂k = −i
√

k

2

(
âk − â†−k

)
.

(3.6)

the two mode Hamiltonian can be rewritten as:

Ĥk = Fk

(
â†kâk + â†−kâ−k + 1

)
+ iRk

(
e−2iΘk âkâ−k − h.c.

)
, (3.7)

where we have defined [24]:

Fk =
k

2
,

Rk =

[(
k

2

)2

+

(
z′

z

)2
]1/2

,

Θk = −π

2
+

1

2
arctan

(
k

2

z

z′

)
,

(3.8)

where Fk is the frequency of the harmonic free evolution piece of the Hamiltonian, while Rk is the
parametric amplification of the squeezing part of the Hamiltonian which is due to the curvature of the
background that yields a time-dependent mass to the field, m2

eff = −z′′/z. The evolution operator
generated by this Hamiltonian can be factorized in three parts:

Û(η, η0) = R̂(φk)Ẑ(rk)R̂(θk), (3.9)

where R̂ is the phase-shift :

R̂(φk) = exp
(
iφk

[
â†kâk + â†−kâ−k + 1

])
, (3.10)

and Ẑ is the squeezer :

Ẑ(rk) = exp
[
rk

(
â†kâ

†
−k − âkâ−k

)]
, (3.11)

and (φk, rk, θk) are called squeezing parameters and characterize the dynamics of the state (their
explicit expression can be found in [24]).
Now we want to apply this evolution operator to a primordial vacuum. Let us start by the Bunch-
Davies vacuum:

|0(η0)⟩ =
∏

k∈R3+

|0k, 0−k⟩ , (3.12)

acting with the evolution operator defined above we get the following quantum state [24]:

∏
k∈R3+

|2MSSk⟩ =
∏

k∈R3+

[
eiφk

cosh rk

∞∑
n=0

(−1)ne2inθk tanhn rk |nk, n−k⟩

]
, (3.13)

where

|nk, n−k⟩ =
1

n!
(â†k)

n 1

n!
(â†−k)

n |0k, 0−k⟩ . (3.14)

This class of quantum states are called two-mode squeezed states, due to the entanglement between
the mode k and the mode −k. The squeezer, Ẑ(rk), is the responsible for the generation of infinite

pairs of pairs of entangled quanta, due to the operator â†kâ
†
−k. It can be shown that during inflation,

rk grows like the number of efolds and that θk gets aligned to the value of π/4 [3]. So the inflationary
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dynamics generates a two-mode squeezed state with a squeezing parameter of at least rk ∼ 50 − 60.
This value is way bigger than the typical values of the squeezed quantum states created in laboratory.
The discovery of the squeezed states as states describing the primordial fluctuations was first in-
terpreted as a way to justify the “classicalization” of the original quantum fluctuations [22]. To
understand better this statement we can consider the quantum state in the phase-space representa-
tion where it is described by the so-called Wigner function, defined for a two-mode squeezed state
as:

Wk[vk, pk] =

∫
dxe−ipkx

〈
vk +

x

2

∣∣∣2MSSk

〉〈
2MSSk

∣∣∣vk − x

2

〉
, (3.15)

with vk the eigenstate of the operator v̂k. In case of a gaussian state, the Wigner function reduces to:

Wk[vk, pk] =
1

(2π)2
√
detCov

exp

[
−1

2

(
vk pk

)
Cov−1

(
vk
pk

)]
, (3.16)

where the covariance matrix is defined in terms of the power spectra as:

Cov =

(
⟨2MSSk| v̂kv̂−k |2MSSk⟩ 1

2 ⟨2MSSk| {v̂k, p̂−k} |2MSSk⟩
1
2 ⟨2MSSk| {v̂k, p̂−k} |2MSSk⟩ ⟨2MSSk| p̂kp̂−k |2MSSk⟩ .

)
(3.17)

Inserting expression (3.13) we can compute the Wigner function as a function of the squeezing pa-
rameters. Representing this function in the large-squeezing limit we obtain an elongated ellipse. This
mechanism has been proposed [25] to interpret the system as a classical stochastic system. Indeed, in
this case, the position variable vk is free to take any value, but given the value of vk the momentum
variable, pk, is almost fixed. In this sense the system behaves as if it follows an infinite number of clas-
sical trajectories with a definite probability on each of them, defining essentially a classical stochastic
system. This interpretation must be confronted with the fact that a squeezed state is still a pure and
coherent quantum state and this apparent classicalization is only due to the peculiar organization of
the uncertainty principle:

∆v̂k∆p̂k =
1

2
, (3.18)

where for a squeezed state ∆v̂k ∼ er and ∆p̂k ∼ e−r, so the uncertainty over the momentum gets
rapidly suppressed. This is a consequence of the existence of a decaying mode in inflation, recast in
the language of squeezed quantum states.

3.2 Dissipation and Decoherence

The FLRW metric, describing the early Universe, is less symmetric than the Minkoswski one
because it is not invariant under time reversal. This implies that energy gets diluted with the ex-
pansion, a phenomenon resembling dissipation, so we need some techniques to take into account this
contribution. At the same time, as we said, it is believed that the early Universe underwent some
form of quantum decoherence during the inflationary period, which causes the primordial quantum
fluctuations to become classical. OQS techniques allow us to describe both dissipation and deco-
herence due to the interaction of a system with an environment. In particular the former describes
energy exchanges, while the latter describes the generation of entanglement. These effects cannot be
described by a unitary evolution, which only could describe the renormalization of the energy levels
due to the interaction with the environment, but we need also to consider non-unitary contributions.
Moreover, OQS techniques, are widely studied in the context of non-perturbative QFT, due to their
ability to resum late time effects. The idea behind non-perturbative resummation relies on deriving
perturbatively an object, such as the generator of the dynamical map and then solving the dynamics
non-perturbatively, without any further expansion [3].
Here we want to introduce the techniques which are typical of the OQS framework.

3.3 System-environment bipartition

The first thing to do when dealing with an open quantum system is to create a separation
between what we will consider as the “system” and what we will consider as the “environment” [3].
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This bipartition is fundamental and it will affect the results we will find. For this reason it is very
important to choose a reasonable, well justified bipartition. The idea is that the system is made of all
the degrees of freedom we have access to, while the environment is made of the unobservable degrees
of freedom about which we do not have (and we do not need to have) much information. A typical
example of system is provided by the curvature perturbation, whose imprints are observed today in
the CMB. An example of environment is given by the sub-Hubble modes which crossed the horizon
later than the scales we can observe with the CMB spectrum or a heavy field.

In order to make the discussion more quantitative, let us introduce two fields, ζ and F , with the
former representing an observable while the latter an unobservable degree of freedom. The action can
be split as:

S[ζ,F ] = Sζ [ζ] + SF [F ] + Sint[ζ;F ]. (3.19)

Now we are interested in the evolution of the system and we want to see how we can track down
the effect of the environment in this evolution, giving up a detailed description of the environment.
The basic idea, widely used also in the QFT context, is to integrate out, sum over or coarse-grain the
degrees of freedom we are not interested in. Let us see how to implement this procedure.

Consider a pure quantum state described by the ket |Ψ⟩. The density matrix ρ̂ = |Ψ⟩ ⟨Ψ| gives a
representation of the quantum state in the Hilbert space H = HS ⊗Hε, with HS and Hε the Hilbert
space of the system and the environment respectively. Since we are only interested in the system
degrees of freedom, we define the reduced density matrix as the partial trace of the full density matrix
over the environmental degrees of freedom:

ρ̂red ≡ Trε ρ̂ =
∑
α

⟨α| ρ̂ |α⟩ , (3.20)

where {|α⟩} represents a generic basis of the Hilbert space of the environment, Hε. This quantity
describes the state of the system, once taken into account the effect of the environment. For this
reason our goal is to derive an evolution equation for ρ̂red(t). In the context of OQS these equations
are called master equations.

3.4 Master equations

The exact evolution of the reduced density matrix is given by the Liouville equation [26]:

dρ̂red
dt

= LS [ρ̂red], (3.21)

where LS is the Liouvillian, which describes both the unitary and non-unitary effects. This is an exact
equation and starting from this, using various kinds of approximation we will see soon, we can obtain
different master equations, valid in different contexts.

The first approximation we can consider is the so-called Born approximation, consistent in as-
suming a weak coupling between the system and the environment. This is a reasonable approximation
because if the coupling were strong, we would have a strong mixing between system and environ-
ment and it would not make sense to distinguish a system and an environment at all. Consider a
Hamiltonian of the form:

Ĥ = ĤS + Ĥε + gĤint, (3.22)

where ĤS and Ĥε are respectively the free Hamiltonian of the system and the environment, Ĥint is
the interaction Hamiltonian and g is the coupling constant. Using the Born approximation we want
to expand the dynamics in powers of the coupling constant. We will work in the interaction picture
where quantum states evolve with the interaction Hamiltonian, Ĥint while operators evolve with the
free Hamiltonian, Ĥ0 = ĤS+Ĥε. From now on we will use an overall tilde to characterize quantities in
the interaction picture and an overall hat to characterize quantities in the Schrödinger and Heisenberg
picture. In the interaction picture the Liouville equation becomes:

dρ̃

dt
= −ig

[
H̃int(t), ρ̃(t)

]
. (3.23)
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Formally we can integrate this equation obtaining:

ρ̃(t) = ρ̃(t0)− ig

∫ t

t0

dt′
[
H̃int(t

′), ρ̃(t′)
]
. (3.24)

Putting (3.24) into (3.23) and tracing over the environmental degrees of freedom we obtain the fol-
lowing evolution equation for the reduced density matrix:

dρ̃red
dt

= −g2
∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̃(t′)
]]
. (3.25)

Under this form this equation is still exact and difficult to solve as the Liouville equation (3.23).

3.4.1 Perturbative master equation

Notice that the derivative of the reduced density matrix is proportional to g2, thus at lowest

order in g, ρ̃red(t) is constant and for an initial state we can factorize it as ρ̂(t0) = ρ̂
(0)
S ⊗ ρ̂

(0)
ε (we used

the hat because at initial time the three pictures coincide) and then at a generic time:

ρ̃red(t
′) = ρ̂

(0)
S ⊗ ρ̂(0)ε +O(g), (3.26)

then at order O(g2) the master equation reads:

dρ̃red
dt

= −g2
∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̂
(0)
S ⊗ ρ̂(0)ε

]]
+O(g3). (3.27)

In order to make the physics more explicit let us rewrite this equation using the following decomposition
for the interaction Hamiltonian:

Ĥint(t) =

∫
d3xĴS(t,x)⊗ Ĵε(t,x), (3.28)

then:

dρ̃red
dt

= −g2
∫ t

t0

dt′Trε

[ ∫
d3xĴS(x)⊗ Ĵε(x),

[ ∫
d3yĴS(y)⊗ Ĵε(y), ρ̂

(0)
S ⊗ ρ̂(0)ε

]]
= −g2

∫ t

t0

dt′
∫

d3x

∫
d3yTrε

[
ĴS(x)⊗ Ĵε(x), ĴS(y)ρ̂

(0)
S Ĵε(y)ρ̂

(0)
ε − ρ̂

(0)
S ĴS(y)ρ̂

(0)
ε Ĵε(y)

]
= −g2

∫ t

t0

dt′
∫

d3x

∫
d3yTrε

[
ĴS(x)ĴS(y)ρ̂

(0)
S Ĵε(x)Ĵε(y)ρ̂

(0)
ε − ĴS(x)ρ̂

(0)
S ĴS(y)Ĵε(x)ρ̂

(0)
ε Ĵε(y)

− ĴS(y)ρ̂
(0)
S ĴS(x)Ĵε(y)ρ̂

(0)
ε Ĵε(x) + ρ̂

(0)
S ĴS(y)ĴS(x)ρ̂

(0)
ε Ĵε(y)Ĵε(x)

]
= −g2

∫ t

t0

dt′
∫

d3x

∫
d3y
{[

ĴS(x)ĴS(y)ρ̂
(0)
S − ĴS(y)ρ̂

(0)
S ĴS(x)

]
Trε

[
Ĵε(x)Ĵε(y)ρ̂

(0)
ε

]
−
[
ĴS(x)ρ̂

(0)
S ĴS(y)− ρ̂

(0)
S ĴS(y)ĴS(x)

]
Trε

[
Ĵε(x)Je(y)ρ̂

(0)
ε

]}
= −g2

∫ t

t0

dt′
∫

d3x

∫
d3y
{[

ĴS(x)ĴS(y)ρ̂
(0)
S − ĴS(y)ρ̂

(0)
S ĴS(x)

]
K>(x, y)

−
[
ĴS(x)ρ̂

(0)
S ĴS(y)− ρ̂

(0)
S ĴS(y)ĴS(x)

][
K>(x, y)

]∗}
,

(3.29)
where we have defined:

K>(x, y) ≡ Trε

[
Ĵε(x)Ĵε(y)ρ̂

(0)
ε

]
= ⟨Ĵε(x)Ĵε(y)⟩0, (3.30)

where K>(x, y) is called memory kernel and it takes into account the effect of the environment on
the system, indeed it has the form of a two-point correlation function of the environment, depending
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on its properties. Let us now try to explain why this object is called memory kernel. As we can see
it depends on two different times, let us call them t and t′. If the time over which the environment
evolves is much shorter than that of the system, the correlation function will rapidly decay as |t− t′|
and the integral appearing in (3.29) is dominated by the most recent contributions, i.e. those close to
the upper bound t. In this limit we can say that the dynamics “looses memory” of the past history
and it is only determined by the instantaneous interaction. This limit is called Markovian limit and
it will be more deeply analyzed in the following sections.

3.4.2 The exact Nakajima-Zwanzig master equation

Now we want to derive the so-called Nakajima-Zwanzig master equation [3] which is nothing
else that a recast of the exact Liouville equation, but it will be more useful to implement some
approximation schemes. Let us start from the Liouville equation:

dρ̃

dt
= −ig

[
H̃int(t), ρ̃(t)

]
≡ gL(t)ρ̃(t). (3.31)

Now we introduce the following projection super-operator which acts on the full density matrix:

P ρ̃ ≡ Trε(ρ̃)⊗ ρ̂(0)ε , (3.32)

and its complementary

Q = 1− P. (3.33)

P and Q are projectors, i.e. P2 = P, and one can show that P ρ̃ contains the same information that
are contained in ρ̃red. Acting with P and Q on the Liouville equation we obtain:

∂

∂t
P ρ̃(t) = gPL(t)ρ̃(t),

∂

∂t
Qρ̃(t) = gQL(t)ρ̃(t),

(3.34)

where we could commute the time derivative with the projectors because ρ̂
(0)
ε is time-independent.

Inserting the identity 1 = P +Q

∂

∂t
P ρ̃(t) = gPL(t)P ρ̃(t) + gPL(t)Qρ̃(t), (3.35)

∂

∂t
Qρ̃(t) = gQL(t)P ρ̃(t) + gQL(t)Qρ̃(t). (3.36)

The last equation is a first order linear differential equation which can be formally integrated as:

Qρ̃(t) = GQ(t, t0)Qρ̃(t0) + g

∫ t

t0

dt′GQ(t, t′)QL(t′)P ρ̃(t′), (3.37)

where GQ(t, t0) is the propagator defined as:

GQ(t, t0) ≡ T exp

[
g

∫ t

t′
dt′′QL(t′′)

]
. (3.38)

Inserting equation (3.37) in equation (3.35) we obtain:

∂

∂t
P ρ̃(t) = gPL(t)P ρ̃(t) + gPL(t)GQ(t, t0)Qρ̃(t0) + g2

∫ t

t0

dt′PL(t)GQ(t, t′). (3.39)

This is the so-called Nakajima-Zwanzig (NZ) equation. It is an exact equation for the reduced density
matrix evolution. We can make some assumptions to simplify this equation:
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• No correlations system-environment in the initial state:

ρ̃(t0) = Trε(ρ̃
(0))⊗ TrS(ρ̃

(0)) = ρ̂
(0)
S ⊗ ρ̂(0)ε ,

⇒ Qρ̃(t0) = (1− P)ρ̃(t0) = ρ̃(t0)− Trε ρ̃
(0)︸ ︷︷ ︸

ρ̂
(0)
S

⊗ρ̂(0)ε

︸ ︷︷ ︸
ρ̃(t0)

= 0.
(3.40)

• Interaction Hamiltonian vanishes in the reference state:

⟨Ĥint⟩0 = 0 always possible after a field redefinition. ⇒ PL(t)P = 0. (3.41)

Then the NZ equation reduces to:

∂

∂t
P ρ̃(t) = g2

∫ t

t0

dt′K(t, t′)P ρ̃(t′). (3.42)

Where the memory kernel is defined as:

K(t, t′) = PL(t)GQ(t, t′)QL(t′)P. (3.43)

This master equation is as difficult to solve as the complete Liouville equation, but it allows approxi-
mation schemes to be designed.

3.4.3 Perturbative Nakajima-Zwanzig equation (NZn)

We have already said that the bipartition system/environment only makes sense if the two sectors
are weakly coupled, this provides a natural small parameter, the coupling constant, with respect to
we can perturbatively expand the NZ equation. This is the Born approximation. There are several
ways to perform this approximation, the simplest one is to expand the memory kernel in powers of
the coupling constant. In particular we can expand Q = 1 + . . . and GQ(t, t′) = 1 + . . . and at order
O(g2) the NZ equation becomes:

∂

∂t
P ρ̃(t) = g2

∫ t

t0

dt′PL(t)L(t′)P ρ̃(t′) (NZ2 equation). (3.44)

In terms of the interaction Hamiltonian (making explicit P and L(t)):

∂

∂t

(
Trε(ρ̃(t))⊗ ρ̂(0)ε

)
= g2

∫ t

t0

dt′
{
(−i)(−i)P

[
H̃int(t),

[
H̃int(t

′), ρ̂red(t
′)⊗ ρ̂(0)ε

]]}
= −g2

∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̂red(t
′)⊗ ρ̂(0)ε

]]
⊗ ρ̂(0)ε

⇒ dρ̃red(t)

dt
= −g2

∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̂red(t
′)⊗ ρ̂(0)ε

]]
.

(3.45)

Comparing this equation with (3.27) we see that the only difference is that in (3.27) it appears the
initial state of the system while in (3.45) it appears ρ̃red(t

′). Due to this t′ dependence this equation
is still very hard to solve, even numerically. For this reason we need to exploit another assumption.

3.4.4 Time-Convolutionless master equation (TCL2)

The Time-Convolutionless method allows us to remove the convolution in (3.45) by noticing that
the non-local in time contributions are also organised in powers of the coupling constant g, which
therefore must be neglected if we focus on a given order. The TCL2 is indeed given by:

dρ̃red(t)

dt
= −g2

∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̂red(t)⊗ ρ̂(0)ε

]]
. (3.46)
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At a given order, let us say O(g2), NZ2 and TCL2 approximate the exact dynamics at the same
accuracy. Let us stress that despite being written in a time-local form, the TCL2 remains a non-
Markovian master equation. Indeed the definition of Markovian map is the following [27]: given a
dynamical map acting on the density matrix

ρ̃(t) → ρ̃(t′) = Vt→t′ ρ̃(t), (3.47)

it is said to be Markovian if it satisfies the semi-group property:

Vt→t′ = Vt′′→t′Vt→t′′ . (3.48)

In order for this property to be satisfied the environment must be much larger than the system,
such that it is not affected by the system dynamics. In this case the environment is called bath.
The assumption of Markovianity is related to the concept of irreversibility, since the information
can only flow from the system to the environment, but we never have a backreaction. Vice versa a
non-markovian master equation can account for memory effects and information backflow as we will
explain later. Notice that a Markovian master equation is necessarily local in time, but the opposite
is not generally true and this is the case of the TCL2 master equation. The lesson to learn from
this discussion is that Markovianity and time-locality are two different concepts and only the former
implies the latter, the vice versa does not hold in general.

3.4.5 Developing the TCL2 equation

Now we want to focus on the TCL2 master equation.

dρ̃red(t)

dt
= −g2

∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̂red(t)⊗ ρ̂(0)ε

]]
. (3.49)

Using again:

H̃int(t) =

∫
d3xJ̃S(t,x)⊗ J̃ε(t,x). (3.50)

We get again the previous equation with ρ̃red instead of ρ̂
(0)
S :

dρ̃red
dt

=− g2
∫ t

t0

dt′
∫

d3x

∫
d3y
{[

J̃S(x)J̃S(y)ρ̃red − J̃S(y)ρ̃redJ̃S(x)
]
K>(x, y)

−
[
J̃S(x)ρ̃redJ̃S(y)− ρ̃redJ̃S(y)J̃S(x)

][
K>(x, y)

]∗}
.

(3.51)

For simplicity we consider localised currents and bilinear interactions, which means:

J̃S(x) = J̃S(t)δ
3(x− x0) H̃int(t) = z̃T

ζ (t)V (t)z̃F (t), (3.52)

where V (t) is an arbitrary 2 × 2 matrix containing the linear coupling between the two fields and
z̃α = (α̃, p̃α)

T for α = ζ,F .
Now we can use the fact that in the interaction picture the operators evolve with the free Hamiltonian,
so:

z̃ζ(t
′) = T̄ exp

[
i

∫ t′

t
H̃0(t

′′)dt′′

]
z̃ζ(t)T exp

[
− i

∫ t′

t
H̃0(t

′′)dt′′

]
, (3.53)

but the linearity of the dynamics simplifies the computation as:

z̃ζ(t
′) = GS(t′, t)z̃ζ(t), (3.54)
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where GS(t′, t) is the Green’s matrix of the unperturbed system. Then the TCL2 becomes (here the
coupling constant g is put inside V (t)):

dρ̃red
dt

= −
∫ t

t0

Trε

[
H̃int(t)H̃int(t

′)ρ̃red(t)⊗ ρ̂(0)ε − H̃int(t)ρ̃red(t)⊗ ρ̂(0)ε H̃int(t
′)

− H̃int(t
′)ρ̃red(t)⊗ ρ̂(0)ε H̃int(t) + ρ̃red(t)⊗ ρ̂(0)ε H̃int(t

′)H̃int(t)

]

= −
∫ t

t0

dt′Trε

[
z̃ζ,i(t)Vij(t)z̃F ,j(t)z̃ζ,k(t

′)Vkl(t)z̃F ,l(t
′)ρ̃red(t)⊗ ρ̂(0)ε

− z̃ζ,i(t)Vij(t)z̃F ,j(t)ρ̃red(t)⊗ ρ̂(0)ε z̃ζ,k(t
′)Vkl(t

′)z̃F ,l(t
′)

− z̃ζ,k(t
′)Vkl(t

′)z̃F ,l(t
′)ρ̃red(t)⊗ ρ̂(0)ε z̃ζ,i(t)Vij(t)z̃F ,j(t)

+ ρ̃red(t)⊗ ρ̂(0)ε z̃ζ,k(t
′)Vkl(t

′)z̃F ,l(t
′)z̃ζ,i(t)Vij(t)z̃F ,j(t)

]

= −
∫ t

t0

dt′

{[
z̃ζ,i(t)Vij(t)z̃ζ,k(t

′)Vkl(t
′)ρ̃red(t)− z̃ζ,k(t

′)Vkl(t
′)ρ̃red(t)z̃ζ,i(t)Vij(t)

]
×

× Trε

[
z̃F ,j(t)z̃F ,l(t

′)ρ̂(0)ε

]
−
[
z̃ζ,i(t)Vij(t)ρ̃red(t)z̃ζ,k(t

′)Vkl(t
′)− ρ̃red(t)z̃ζ,k(t

′)Vkl(t
′)z̃ζ,i(t)Vij(t)

]
Trε

[
z̃F ,l(t

′)z̃F ,j(t)ρ̂
(0)
ε

]}

= −
∫ t

t0

dt′

{[
z̃ζ,i(t)Vij(t)G

(S)
kn (t′, t)z̃ζ,n(t)Vkl(t

′)ρ̃red(t)

−G
(S)
kn (t′, t)z̃ζ,n(t)Vkl(t

′)ρ̃red(t)z̃ζ,i(t)Vij(t)
]
K>

jl(t, t
′)

−
[
z̃ζ,i(t)Vij(t)ρ̃red(t)G

(S)
kn (t′, t)z̃ζ,n(t)Vkl(t

′)− ρ̃red(t)G
(S)
kn (t′, t)z̃ζ,n(t)Vkl(t

′)z̃ζ,i(t)Vij(t)
]
×

×
[
K>

jl(t, t
′)
]∗}

= −
∫ t

t0

dt′

{[
z̃ζ,i(t)z̃ζ,n(t)ρ̃red(t)− z̃ζ,n(t)ρ̃red(t)z̃ζ,i(t)

]
× Vij(t)K>

jl(t, t
′)Vkl(t

′)G
(S)
kn (t′, t)

−
[
z̃ζ,i(t)ρ̃red(t)z̃ζ,n(t)− ρ̃red(t)z̃ζ,n(t)z̃ζ,i(t)

]
× Vij(t)(K>

jl)
∗Vkl(t

′)G
(S)
kn (t′, t)

}

= −
∫ t

t0

dt′

{[
z̃ζ,i(t)z̃ζ,j(t)ρ̃red(t)− z̃ζ,j(t)ρ̃red(t)z̃ζ,i(t)

]
D>

ij(t, t
′)

−
[
z̃ζ,i(t)ρ̃red(t)z̃ζ,j(t)− ρ̃red(t)z̃ζ,j(t)z̃ζ,i(t)

]
D>∗

ij (t, t′)

}
,

(3.55)
where we have defined:

K>(t, t′) ≡ Trε

[
z̃T
F (t)z̃F (t

′)ρ̂(0)ε

]
, (3.56)

D>(t, t′) ≡ V (t)K>(t, t′)V T (t′)G(S)(t′, t). (3.57)

Now it is easy to express the previous equation in Schrödinger picture, using:

z̃(t) = Û †
0(t)ẑÛ0(t), (3.58)

ρ̃(t) = Û †
0(t)ρ̂(t)Û0(t), (3.59)
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so the LHS becomes:

dρ̃red
dt

=
d

dt

(
Û †
0(t)ρ̂red(t)Û0(t)

)
=

dÛ †
0

dt
ρ̂redÛ0 + Û †

0 ρ̂red
dÛ0

dt
+ Û †

0

dρ̂red
dt

Û0. (3.60)

Using the equation of motion of the evolution operator:

d

dt
Û0(t) = −iĤ0Û0(t), (3.61)

d

dt
Û †
0(t) = iÛ †

0(t)Ĥ0. (3.62)

Since Ĥ0 = ĤS + Ĥε is applied on ρ̂red, it reduces to ĤS

dρ̃red
dt

= iÛ †
0ĤS ρ̂redÛ0 − iÛ †

0 ρ̂redĤSÛ0 + Û †
0

dρ̂red
dt

Û0 = iÛ †
0

[
ĤS , ρ̂red(t)

]
Û0 + Û †

0

dρ̂red
dt

Û0, (3.63)

while in the RHS (we take only one term because for the others is the same):

z̃ζ,i(t)z̃ζ,j(t)ρ̃red(t) = Û †
0(t)ẑζ,iÛ0(t)Û

†
0(t)ẑζ,jÛ0(t)Û

†
0(t)ρ̂red(t)Û0(t)

= Û †
0(t)ẑζ,iẑζ,j ρ̂red(t)Û0(t).

(3.64)

So both in the LHS and the RHS we can cancel the Û †
0 at the beginning and the Û0 at the end to

obtain:

dρ̂red
dt

= −i
[
ĤS(t), ρ̂red(t)

]
−
∫ t

t0

dt′

{[
ẑζ,iẑζ,j ρ̂red(t)− ẑζ,j ρ̂red(t)ẑζ,i

]
D>

ij(t, t
′)

−
[
ẑζ,iρ̂red(t)ẑζ,j − ρ̂red(t)ẑζ,j ẑζ,i

]
D>∗

ij (t, t′)

}
.

(3.65)

Now we can use the following decomposition:

D>(t, t′) ≡DRe(t, t′) + iDIm(t, t′), (3.66)

Aij ≡ A(ij) +A12ωij with ω =

(
0 1
−1 0

)
, (3.67)

⇒ D>
ij(t, t

′) = DRe
(ij)(t, t

′) +DRe
12 (t, t

′)ωij + iDIm
(ij)(t, t

′) + iDIm
12 (t, t′)ωij . (3.68)

Now let us define:

∆ij(t) = 2

∫ t

t0

dt′DIm
(ij)(t, t

′), (3.69)

Dij(t) = 2

∫ t

t0

dt′DRe
(ij)(t, t

′), (3.70)

⇒
∫ t

t0

dt′D>
ij(t, t

′) =
1

2
Dij(t) +

∫ t

t0

DRe
12 (t, t

′)ωij +
i

2
∆ij(t) +

i

2
∆12(t)ωij . (3.71)
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So our equation becomes:

dρ̂red
dt

= −i
[
ĤS(t), ρ̂red(t)

]
−

{[
ẑζ,iẑζ,j ρ̂red(t)− ẑζ,j ρ̂red(t)ẑζ,i

][1
2
Dij(t) +

∫ t

t0

DRe
12 (t, t

′)ωij +
i

2
∆ij(t) +

i

2
∆12(t)ωij

]
+
[
ρ̂red(t)ẑζ,j ẑζ,i − ẑζ,iρ̂red(t)ẑζ,j

][1
2
Dij(t) +

∫ t

t0

DRe
12 (t, t

′)ωij −
i

2
∆ij(t)−

i

2
∆12(t)ωij

]}

= −i
[
ĤS(t), ρ̂red(t)

]
−

{
1

2
ẑζ,iDij(t)ẑζ,j ρ̂red(t)−

1

2
ẑζ,j ρ̂red(t)Dij(t)ẑζ,i +

i

2
ẑζ,i∆ij(t)ẑζ,j ρ̂red(t)

− i

2
ẑζ,j ρ̂red(t)∆ij(t)ẑζ,i +

i

2
∆12(t)ẑζ,iωij ẑζ,j ρ̂red(t)−

i

2
∆12(t)ẑζ,j ρ̂red(t)ωij ẑζ,i

+
1

2
ρ̂red(t)ẑζ,jDij(t)ẑζ,i −

1

2
ẑζ,iρ̂red(t)Dij(t)ẑζ,j −

i

2
ρ̂red(t)ẑζ,j∆ij(t)ẑζ,i +

i

2
ẑζ,iρ̂red(t)∆ij(t)ẑζ,j

− i

2
∆12(t)ρ̂redẑζ,jωij ẑζ,i +

i

2
∆12(t)ẑζ,iρ̂red(t)ωij ẑζ,j

}
,

(3.72)
where we noticed that calling Aij ≡

∫ t
t0
DRe

12 (t, t
′)ωij (antisymmetric)

Aij

[
ẑζ,iẑζ,j ρ̂red(t)− ρ̂red(t)ẑζ,j ẑζ,i − ẑζ,j ρ̂red(t)ẑζ,i − ẑζ,iρ̂red(t)ẑζ,j

]
= Aij

{
ẑζ,iẑζ,j︸ ︷︷ ︸

symmetric under i ↔ j

, ρ̂red(t)
}
−Aij

[
ẑζ,j ρ̂red(t)ẑζ,i︸ ︷︷ ︸

Tji

+ ẑζ,iρ̂red(t)ẑζ,j︸ ︷︷ ︸
Tij︸ ︷︷ ︸

2T(ij)

]
= 0, (3.73)

because the product of a symmetric and an antisymmetric matrix is zero.
Then, since ∆ij is symmetric, we can freely exchange i↔ j:

i

2

[
ẑζ,iρ̂red(t)∆ij(t)ẑζ,j − ẑζ,j ρ̂red(t)∆ij(t)ẑζ,i

]
= 0. (3.74)

So, using the symmetry and antisymmetry of ∆ij and Dij respectively, our equation becomes:

dρ̂red
dt

= −i
[
ĤS(t), ρ̂red(t)

]
− i

2

[
ẑζ,i∆ij(t)ẑζ,j , ρ̂red(t)

]
+Dij ẑζ,iρ̂red(t)ẑζ,j

− i∆12(t)ωij ẑζ,iρ̂red(t)ẑζ,j −
1

2
Dij

{
ẑζ,iẑζ,j , ρ̂red(t)

}
+

i

2
∆12(t)ωij

{
ẑζ,iẑζ,j , ρ̂red(t)

}
.

(3.75)

Now if we define:

ĤLS(t) ≡
1

2
ẑζ,i∆ij ẑζ,j , (3.76)

γij(t) ≡ Dij(t)− i∆12(t)ωij . (3.77)

We finally get:

dρ̂red
dt

= −i
[
ĤS(t) + ĤLS(t), ρ̂red(t)

]
︸ ︷︷ ︸

UNITARY CONTRIBUTION

+ γij(t)
(
ẑζ,iρ̂red(t)ẑζ,j −

1

2

{
ẑζ,j ẑζ,i, ρ̂red(t)

})
︸ ︷︷ ︸

NON-UNITARY CONTRIBUTION

. (3.78)

We see that the interaction with an environment has two main effects: the first one is the appearance
of ĤLS(t) which takes into account the renormalization of the energy levels due to the interaction
with the environment; the second one is the appearance of a non-unitary contribution, absent in the
free theory, that describes the effects of dissipation and decoherence induced by the environment. In
particular dissipation is due to the imaginary part of ∆12, whereas decoherence is described by the
real part of Dij .
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3.4.6 Transport equations

Now that we have derived a master equation, which describes the dynamics of the quantum state,
we want to use it to derive an evolution equation for the observables we are interested in. This kind
of equations are commonly called transport equations. Starting from the expression of the correlator
in the Schrödinger picture [3] (where operators do not evolve)

⟨Ô(t)⟩ = TrS
[
Ôρ̂red(t)

]
, (3.79)

and differentiate it with respect to time:

d

dt
⟨Ô(t)⟩ = TrS

[
Ô
dρ̂red(t)

dt

]
. (3.80)

Now injecting the master equation we have derived in this expression we obtain (let us consider term
by term):

• First term:

− iTrS

(
Ô
[

ĤS(t)︸ ︷︷ ︸
1
2
ẑζ,iĤ0ij ẑζ,j

+ ĤLS(t)︸ ︷︷ ︸
1
2
ẑζ,i∆ij ẑζ,j

, ρ̂red(t)
])

= − i

2
TrS

(
Ô
(
Ĥ0 +∆

)
ij

[
ẑζ,iẑζ,j , ρ̂red(t)

])

= − i

2

(
Ĥ0 +∆

)
ij
TrS

(
Ôẑζ,iẑζ,j ρ̂red(t)− Ôρ̂red(t)ẑζ,iẑζ,j

)
= − i

2

(
Ĥ0 +∆

)
ij
TrS

(
Ôẑζ,iẑζ,j ρ̂red(t)− ẑζ,iẑζ,jÔρ̂red(t)

)
=

i

2

(
Ĥ0 +∆

)
ij
TrS

([
ẑζ,iẑζ,j , Ô

]
ρ̂red(t)

)
=

i

2

(
Ĥ0 +∆

)
ij

〈[
ẑζ,iẑζ,j , Ô

]〉
.

(3.81)

• Second term:

TrS

(
Ôẑζ,iρ̂red(t)ẑζ,j −

1

2
Ô
{
ẑζ,j ẑζ,i, ρ̂red(t)

})
= TrS

(
Ôẑζ,iρ̂red(t)ẑζ,j −

1

2
Ôẑζ,j ẑζ,iρ̂red(t)

− 1

2
Ôρ̂red(t)ẑζ,j ẑζ,i

)
= TrS

(1
2
Ôẑζ,iρ̂red(t)ẑζ,j

1

2
Ôẑζ,iρ̂red(t)ẑζ,j −

1

2
Ôẑζ,j ẑζ,iρ̂red(t)

− 1

2
Ôρ̂red(t)ẑζ,j ẑζ,i

)
=

1

2
TrS

(
ẑζ,jÔẑζ,iρ̂red(t) + ẑζ,jÔẑζ,iρ̂red(t)− Ôẑζ,j ẑζ,iρ̂red(t)

− ẑζ,j ẑζ,iÔρ̂red(t)
)
=

1

2
TrS

(
ẑζ,j
[
Ô, ẑζ,i

]
ρ̂red(t)

)
+

1

2
TrS

([
ẑζ,j , Ô

]
ẑζ,iρ̂red(t)

)
=

1

2

〈
ẑζ,j
[
Ô, ẑζ,i

]〉
+

1

2

〈[
ẑζ,j , Ô

]
, ẑζ,i

〉
.

(3.82)

So putting together these results, we get:

d

dt

〈
Ô(t)

〉
=

i

2

[
Ĥ0(t) + ∆(t)

]
ij

〈[
ẑζ,iẑζ,j , Ô

]〉
+ γij(t)

[
1

2

〈[
ẑζ,j , Ô

]
ẑζ,i

〉
+

1

2

〈
ẑζ,j

[
Ô, ẑζ,i

]〉]
. (3.83)

If we consider as observable the covariance matrix:

Σab(t) =
1

2
TrS

[{
ẑζ,a, ẑζ,b

}
ρ̂red(t)

]
, (3.84)

and using the canonical commutation relations
[
ẑζ,l, ẑζ,a

]
= iωla, leading to:[

ẑζ,l,
1

2

{
ẑζ,a, ẑζ,b

}]
=

1

2

[
ẑζ,l, ẑζ,aẑζ,b

]
+

1

2

[
ẑζ,l, ẑζ,bẑζ,a

]
=

1

2

{
ẑζ,a
[
ẑζ,l, ẑζ,b

]
+
[
ẑζ,l, ẑζ,a

]
ẑζ,b + ẑζ,b

[
ẑζ,l, ẑζ,a

]
+
[
ẑζ,l, ẑζ,b

]
ẑζ,a

}
= iωlbẑζ,a + iωlaẑζ,b.

(3.85)
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So differentiating the covariance matrix and using the master equation:

dΣ

dt
=

1

2
TrS

[{
ẑζ,a, ẑζ,b

}dρ̂red(t)
dt

]
. (3.86)

Consider again term by term:

• First term (the complete computation is shown in appendix A.1):

− i

2
TrS

[{
ẑζ,a, ẑζ,b

}[
ĤS(t) + ĤLS(t), ρ̂red(t)

]]
= = ω

(
Ĥ0 +∆

)
Σ−Σ

(
Ĥ0 +∆

)
ω. (3.87)

• Second term

1

2
TrS

[{
ẑζ,a, ẑζ,b

}
Dij

(
ẑζ,iρ̂red(t)ẑζ,j −

1

2

{
ẑζ,j ẑζ,i, ρ̂red(t)

})]

=
1

2
Dij TrS

[
ẑζ,aẑζ,bẑζ,iρ̂red(t)ẑζ,j −

1

2
ẑζ,aẑζ,bẑζ,j ẑζ,iρ̂red(t)−

1

2
ẑζ,aẑζ,bρ̂red(t)ẑζ,j ẑζ,i +

(
a↔ b

)]

=
1

2
Dij TrS

[
ẑζ,j ẑζ,aẑζ,bẑζ,iρ̂red(t)−

1

2
ẑζ,aẑζ,bẑζ,j ẑζ,iρ̂red(t)−

1

2
ẑζ,j ẑζ,iẑζ,aẑζ,bρ̂red(t)

+ ẑζ,j ẑζ,bẑζ,aẑζ,iρ̂red(t)−
1

2
ẑζ,bẑζ,aẑζ,j ẑζ,iρ̂red(t)−

1

2
ẑζ,j ẑζ,iẑζ,bẑζ,aρ̂red(t)

]

=
1

2
Dij TrS

[
ẑζ,j

{
ẑζ,a, ẑζ,b

}
ẑζ,iρ̂red(t)−

1

2

{
ẑζ,a, ẑζ,b

}
ẑζ,j ẑζ,iρ̂red(t)−

1

2
ẑζ,j ẑζ,i

{
ẑζ,a, ẑζ,b

}
ρ̂red(t)

]

=
1

4
Dij TrS

[
ẑζ,j

{
ẑζ,a, ẑζ,b

}
ẑζ,iρ̂red(t) + ẑζ,j

{
ẑζ,a, ẑζ,b

}
ẑζ,iρ̂red(t)

−
{
ẑζ,a, ẑζ,b

}
ẑζ,j ẑζ,iρ̂red(t)− ẑζ,j ẑζ,i

{
ẑζ,a, ẑζ,b

}
ρ̂red(t)

]

=
1

2
Dij TrS

[[
ẑζ,j ,

1

2

{
ẑζ,a, ẑζ,b

}]
ẑζ,iρ̂red(t) + ẑζ,j

[1
2

{
ẑζ,a, ẑζ,b

}
, ẑζ,i

]
︸ ︷︷ ︸
−
[
ẑζ,i,

1
2

{
ẑζ,a,ẑζ,b

}] ρ̂red(t)

]

=
1

2
Dij TrS

[
iωjaẑζ,bẑζ,iρ̂red(t) + iωjbẑζ,aẑζ,iρ̂red(t)− i ωiaẑζ,j ẑζ,b︸ ︷︷ ︸

ωjaẑζ,iẑζ,b

ρ̂red(t)− i ωibẑζ,j ẑζ,a︸ ︷︷ ︸
ωjbẑζ,iẑζ,a

ρ̂red(t)

]

=
i

2
Dij TrS

[
ωja

[
ẑζ,b, ẑζ,i

]
ρ̂red(t) + ωjb

[
ẑζ,a, ẑζ,i

]]

= −1

2
Dij TrS

[
ωjaωbiρ̂red(t) + ωjbωaiρ̂red(t)

]
= −1

2
Dij

[
ωjaωbi + ωjbωai

]
TrS

[
ρ̂red(t)

]
︸ ︷︷ ︸

1

= −1

2
Dij

[
ωiaωbj︸ ︷︷ ︸
ωaiωjb

+ωjbωai

]
= −ωaiDijωjb = −ωDω.

(3.88)

• Third term: for the last term we can follow the same procedure using the antisymmetry of ωij

instead of the symmetry of Dij
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− i

2
∆12ωij TrS

[
iωjaẑζ,bẑζ,iρ̂red(t) + iωjbẑζ,aẑζ,iρ̂red(t)− iωiaẑζ,j ẑζ,bρ̂red(t)− iωibẑζ,j ẑζ,aρ̂red(t)

]

= − i

2
∆12ωij TrS

[
iωjaẑζ,bẑζ,iρ̂red(t) + iωjbẑζ,aẑζ,iρ̂red(t) + iωjaẑζ,iẑζ,bρ̂red(t) + iωjbẑζ,iẑζ,aρ̂red(t)

]

=
1

2
∆12ωij TrS

[
ωja

{
ẑζ,i, ẑζ,b

}
ρ̂red(t) + ωjb

{
ẑζ,i, ẑζ,a

}
ρ̂red(t)

]

= ∆12TrS

[
ωijωja︸ ︷︷ ︸

1

1

2

{
ẑζ,i, ẑζ,b

}
ρ̂red(t)︸ ︷︷ ︸

Σ

+ωijωjb︸ ︷︷ ︸
1

1

2

{
ẑζ,i, ẑζ,a

}
ρ̂red(t)︸ ︷︷ ︸

Σ

]

= 2∆12Σ.
(3.89)

Finally, putting together all the terms, we get the transport equation for the covariance matrix:

dΣ

dt
= ω

(
H0 +∆

)
Σ−Σ

(
H0 +∆

)
ω︸ ︷︷ ︸

UNITARY EVOLUTION

− ωDω︸ ︷︷ ︸
DECOHERENCE

+ 2∆12Σ︸ ︷︷ ︸
DISSIPATION

. (3.90)

As in the TCL2 master equation we have a unitary term, giving the renormalization of the energy
levels, a term proportional to ∆12 taking into account the dissipation process and a term proportional
to D characterizing the decoherence. In case of gaussian systems, the covariance matrix contains
all the information about the quantum state, for example it allows us to access to the curvature
perturbation power spectrum, simply through Σ11 = ⟨ζ̂2⟩.

Beyond the gaussian case, non-linearities prevent the set of coupled equations to close [3]. This
is a general problem, related to the non-integrability of non-linear system in absence of symmetries.
Just to sketch the problem, in a non-gaussian system the dynamical equation of the n-point function
requires the knowledge of the n+ 1-functions, indeed:

d

dt
⟨ζ̂n⟩ = F

(
⟨ζ̂n⟩

)
+G

(
⟨ζ̂n+1⟩

)
, (3.91)

where F and G are functions which depend on the details of the dynamics, so we need to know the
correlators at all order to fully specify the quantum state, then the covariance matrix, which includes
only the two-point functions, is not enough. In order for the system of differential equation to close,

one must perform an approximation scheme to express G
(
⟨ζ̂n+1⟩

)
in terms of the lower order statistics.

3.4.7 Lindblad equation

In this section we want to derive the most used master equation: the Lindblad equation. We
will highlight the assumptions it is based on, stressing the differences with the non-Markovian master
equation derived so far. We will follow closely the derivation done in [28].
Consider again the full density matrix ρ in interaction picture and its exact evolution equation:

dρ̃

dt
= −ig

[
H̃int, ˜ρ(t)

]
, (3.92)

which can be formally integrated as:

ρ̃(t+∆t) = ρ̃(t)− ig

∫ t+∆t

t
dt′
[
H̃int(t

′), ρ̃(t′)
]
. (3.93)

Using the Born approximation we can iteratively expand the density matrix on the RHS, obtaining
at order O(g2):

ρ̃(t+∆t)− ρ̃(t) = −ig
∫ t+∆t

t
dt′
[
H̃int(t

′), ρ̃(t)
]

− g2
∫ t+∆t

t
dt′
∫ t′

t
dt′′
[
H̃int(t

′),
[
H̃int(t

′′), ρ̃(t′′)
]]

+O(g3).
(3.94)
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From now on we will drop the O(g3), assuming we are working at order O(g2). Tracing out the
environment degrees of freedom we obtain the reduced density matrix of the system:

ρ̃red(t) ≡ Trε[ρ̃(t)]. (3.95)

Tracing out equation (3.94) we obtain:

ρ̃red(t+∆t)− ρ̃red(t) = −ig
∫ t+∆t

t
dt′Trε

[
H̃int(t

′), ρ̃(t)
]

− g2
∫ t+∆t

t
dt′
∫ t′

t
dt′′Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃(t′′)
]]
.

(3.96)

Analogously to (3.95) we can define a reduced density matrix for the environment, as:

ρ̃ε(t) ≡ TrS [ρ̃(t)]. (3.97)

It is important to stress that in general ρ̃(t) ̸= ρ̃red(t)⊗ ρ̃ε(t), but instead

ρ̃(t) = ρ̃red(t)⊗ ρ̃ε(t) + gpρ̃correl(t), (3.98)

where ρ̃correl describe the correlation between system and environment, with g appearing because if
we start with ρ̃correl(t0) = 0 it will get different from zero only if the interaction is switched on. p is
an unknown integer. Replacing (3.98) in (3.96) we obtain:

ρ̃red(t+∆t)− ρ̃red(t) = −ig
∫ t+∆t

t
dt′Trε

[
H̃int(t

′), ρ̃red(t)⊗ ρ̃ε(t)
]

− igp+1

∫ t+∆t

t
dt′Trε[H̃int(t

′), ρ̃correl(t)]

− g2
∫ t+∆t

t
dt′
∫ t′

t
dt′′Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃red(t
′′)⊗ ρ̃ε(t

′′)
]]

− gp+2

∫ t+∆t

t
dt′
∫ t′

t
dt′′Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃correl(t
′′)
]]
.

(3.99)

In order to understand if some of these terms can be neglected, we need to specify the interaction
Hamiltonian. Assume it can be written as:

H̃int(t) = Ã(t)⊗ R̃(t), (3.100)

with Ã acting on the system and R̃ acting on the environment Hilbert space. Consider the first term
of (3.99):

Trε

[
H̃int(t

′), ρ̃red(t)⊗ ρ̃ε(t)
]
= Trε

[
Ã(t′)⊗ R̃(t′), ρ̃red(t)⊗ ρ̃ε(t)

]
= Ã(t′)ρ̃red(t) trε

[
R̃(t′)ρ̃ε(t)

]
− ρ̃red(t)Ã(t′) Trε

[
ρ̃ε(t)R̃(t′)

]
= Trε

[
R̃(t′)ρ̃ε(t)

][
Ã(t′), ρ̃red(t)

]
.

(3.101)

Here we want to implement the approximations holding behind the Lindblad equation:

1. The system is small compared to the environment and it has no influence on the latter. So we
can assume:

ρ̃ε(t) ≃ ρ̃(0)ε ≡ ρ̃ε, (3.102)

constant in interaction picture.

2. The environment is in a stationary state, i.e. Hε does not depend explicitly on time, so [ρ̃ε, Hε] =
0. This implies that the evolution operator for the environment can be written as Uε = e−iHε(t),
then [ρ̃ε, Uε] = 0. This also implies that ρε(t) = e−iHε(t)ρ̃εe

iHε(t) is time independent, so ρε = ρ̃ε.
As a consequence [ρε, Hε] = 0 and the environment density operator can be decomposed as:

ρ̃ε =
∑
n

pn |n⟩ ⟨n| , (3.103)

with |n⟩ eigenvectors of Hε with eigenvalue En and pn real constant coefficients.
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3. The mean value of R(t) vanishes:

⟨R⟩ = Trε(Rρ̃ε) = 0, (3.104)

then using the ciclicity of the trace and the fact that ρ̃ε commutes with Uε we get:

Trε(R̃ρ̃ε) = Trε

(
U †
εRUερ̃ε

)
= Trε

(
U †
εRρ̃εUε

)
= Trε

(
UεU

†
εRρ̃ε

)
= Trε(Rρ̃ε) = 0. (3.105)

This implies that (3.101) vanishes.

Now we are able to determine the value of the integer p in equation (3.99). At leading order in g the
LHS of equation (3.99), ρ̃red(t + ∆t) − ρ̃red(t) must be proportional to gpρ̃correl since in absence of
the interaction term ρ̃red does not evolve in interaction picture. So the LHS is of order p, while on
the RHS we have terms of order 2, p+ 1 and p+ 2. The only possibility that allows us to recognize a
dominant term on the RHS is that p = 2, so that the terms of order p+ 1 and p+ 2 are subdominant
and can be neglected. Then finally:

ρ̃red(t+∆t)− ρ̃red(t) = −g2
∫ t+∆t

t
dt′
∫ t′

t
dt′′Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃red(t
′′)⊗ ρ̃ε(t

′′)
]]
. (3.106)

This holds at leading order so we need a fourth assumption, i.e. the interaction modifies the dynamics
of the system in the perturbative regime only. Let us now evaluate the remaining term:

Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃red(t
′′)⊗ ρ̃ε(t

′′)
]]

= Trε

[
Ã(t′)⊗ R̃(t′),

[
Ã(t′′)⊗ R̃(t′′), ρ̃red(t

′′)⊗ ρ̃ε(t
′′)
]]

= Ã(t′)Ã(t′′)ρ̃red(t
′′) Trε

[
R̃(t′)R̃(t′′)ρ̃ε

]
− Ã(t′′)ρ̃red(t

′′)Ã(t′) Trε

[
R̃(t′′)ρ̃εR̃(t′)

]
− Ã(t′)ρ̃red(t

′′)Ã(t′′) Trε

[
R̃(t′)ρ̃εR̃(t′′)

]
+ ρ̃red(t

′′)Ã(t′′)Ã(t′) Trε

[
ρ̃εR̃(t′′)R̃(t′)

]
= Ã(t′)Ã(t′′)ρ̃red(t

′′) Trε

[
ρ̃εR̃(t′)R̃(t′′)

]
− Ã(t′′)ρ̃red(t

′′)Ã(t′) Trε

[
ρ̃εR̃(t′)R̃(t′′)

]
− Ã(t′)ρ̃red(t

′′)Ã(t′′) Trε

[
ρ̃εR̃(t′′)R̃(t′)

]
+ ρ̃red(t

′′)Ã(t′′)Ã(t′) Trε

[
ρ̃εR̃(t′′)R̃(t′)

]
=
[
Ã(t′)Ã(t′′)ρ̃red(t

′′)− Ã(t′′)ρ̃red(t
′′)Ã(t′)

]
CR(t

′ − t′′)

−
[
Ã(t′)ρ̃red(t

′′)Ã(t′′)− ρ̃red(t
′′)Ã(t′′)Ã(t′)

]
CR(t

′′ − t′),

(3.107)
where we defined:

CR(t, t
′) ≡ Trε

[
ρ̃εR̃(t)R̃(t′)

]
, (3.108)

where due to the fact that the environment is a stationary state, one can show that CR(t, t
′) is a

function of τ ≡ t− t′ only:

CR(t, t
′) = Trε

[
ρ̃εe

iHεtR̃(0)e−iHεteiHεt′R̃(0)e−iHεt′
]

= Trε

[
ρ̃εe

iHεte−iHεt′eiHεt′R̃(0)e−iHετ R̃(0)e−iHεt′
]

= Trε

[
ρ̃εe

iHετeiHεt′R̃(0)e−iHετ R̃(0)e−iHεt′
]

= Trε

[
ρ̃εe

iHεt′eiHετ R̃(0)e−iHετ R̃(0)e−iHεt′
]

= Trε

[
eiHεt′ ρ̃εR̃(τ)R̃(0)e−iHεt′

]
= Trε

[
ρ̃εR̃(τ)R̃(0)

]
= CR(τ).

(3.109)
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Recalling equation (3.103):

CR(τ) = Trε

[
ρ̃εR̃(τ)R̃(0)

]
=
∑
m

⟨m|

[∑
n

pn |n⟩ ⟨n| R̃(τ)R̃(0)

]
|m⟩

=
∑
m,n

pn ⟨m|n⟩︸ ︷︷ ︸
δmn

⟨n| R̃(τ)R̃(0) |m⟩ =
∑
n

pn ⟨n| R̃(τ)R̃(0) |n⟩

=
∑
n

pn ⟨n| eiHετ R̃(0)e−iHετ R̃(0) |n⟩

=
∑

n,m,p,q

pn ⟨n| eiHετ |m⟩︸ ︷︷ ︸
eiEnτ

⟨m| R̃(0) |p⟩ ⟨p| e−iHετ |q⟩︸ ︷︷ ︸
e−iEpτ

⟨q| R̃(0) |n⟩

=
∑
n,p

pne
i(En−Ep)τ ⟨n| R̃(0) |p⟩ ⟨p| R̃(0) |n⟩

=
∑
n,p

pne
i(En−Ep)τ

∣∣∣⟨n| R̃(0) |p⟩
∣∣∣2.

(3.110)

In particular CR(−τ) = C∗
R(τ). We see that CR(τ) is a sum of exponential oscillating with frequencies

En − Ep. In the limit where the environment is large and has an almost continuous spectrum of
energy levels, the oscillating exponentials sum in a destructive way, rapidly driving CR(τ) to zero with
a characteristic time tc, such that CR(τ) ≃ CR(0)e

−|τ |/tc . Using our result, equation (3.106) becomes:∫ t+∆t

t
dt′
∫ t′

t
dt′′Trε

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃red(t
′′)⊗ ρ̃ε(t

′′)
]]

=

=

∫ t+∆t

t
dt′
∫ t′

t
dt′′
{[

Ã(t′)Ã(t′′)ρ̃red(t
′′)− Ã(t′′)ρ̃red(t

′′)Ã(t′)
]
CR(t

′ − t′′)

−
[
Ã(t′)ρ̃red(t

′′)Ã(t′′)− ρ̃red(t
′′)Ã(t′′)Ã(t′)

]
CR(t

′′ − t′)
}
.

(3.111)

We can reparametrize the integration domain in terms of t′ and τ = t′ − t′′ as:∫ t+∆t

t
dt′
∫ t′

t
dt′′ =

∫ ∆t

0
dτ

∫ t+∆t

t+τ
dt′. (3.112)

It can be shown [28] that the extended integration domain∫ ∞

0
dτ

∫ t+∆t

t
dt′, (3.113)

is a good approximation of the previous one in the limit tc ≪ ∆t, so when the environment dynamics
evolve in a much shorter time than the system dynamics. This is the fifth and last assumption in the
derivation of the Lindblad equation. Then we obtain:

ρ̃red(t+∆t)− ρ̃red(t) ≃ −g2
∫ ∞

0
dτ

∫ t+∆t

t
dt′
{[

Ã(t′)Ã(t′ − τ)ρ̃red(t
′ − τ)− Ã(t′ − τ)ρ̃red(t

′ − τ)Ã(t′)
]

× CR(τ)−
[
Ã(t′)ρ̃red(t

′ − τ)Ã(t′ − τ)− ρ̃red(t
′ − τ)Ã(t′ − τ)Ã(t′)

]
CR(−τ)

}
.

(3.114)
The time derivative of ρ̃red is obtained by dividing both sides by ∆t. If ∆t is much smaller than the
typical time scale of A we can approximate Ã(t′) ≃ Ã(t) and Ã(t′ − τ) ≃ Ã(t − τ). Given the fifth
assumption, tc ≪ ∆t this means that A should vary on scales much larger than the autocorrelation
time of the environment. Furthermore, the variation of ρ̃red between time t and t+∆t is of order g2.
Since the RHS is already of order g2, we can evaluate ρ̃red on the RHS as ρ̃red(t

′ − τ) ≃ ρ̃red(t). In
this way the integral over t′ becomes trivial and we obtain:

∆ρ̃red
∆t

= −g2
∫ ∞

0
dτ
{[

Ã(t)Ã(t− τ)ρ̃red(t)− Ã(t− τ)ρ̃red(t)Ã(t)
]
CR(τ)

−
[
Ã(t)ρ̃red(t)Ã(t− τ)− ρ̃red(t)Ã(t− τ)Ã(t)

]
CR(−τ)

}
.

(3.115)
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We see that the RHS depends only on t, consequence of the Markovian nature of this equation. We
can write this equation in a compact way by defining:

L1(t) ≡ g2
∫ ∞

0
dτCR(τ)Ã(t− τ)

L2(t) ≡ g2
∫ ∞

0
dτCR(−τ)Ã(t− τ) = g2

∫ ∞

0
dτC∗

R(τ)Ã(t− τ) = L†
1(t),

(3.116)

where we assumed Ã hermitian. Then the master equation becomes:

∆ρ̃red
∆t

= −Ã(t)L1(t)ρ̃red(t) + L1(t)ρ̃red(t)Ã(t) + Ã(t)ρ̃red(t)L2(t)− ρ̃red(t)L2(t)Ã(t). (3.117)

We can further simplify the operators L1 and L2 exploiting the condition tc ≪ ∆t and remembering
that CR(τ) = CR(0)e

−|τ |/tc goes rapidly to zero, the integrals in the definition of L1 and L2 are
dominated by the bottom of the integration interval. As we have said, in this short time Ã does not
evolve significantly and we can evaluate Ã(t− τ) ≃ Ã(t), so:

L1(t) = g2
∫ ∞

0
dτCR(τ)Ã(t− τ) ≃ g2

∫ ∞

0
dτCR(0)e

−τ/tcÃ(t) = g2CR(0)tcÃ(t) = L2(t). (3.118)

Then our master equation (3.117) gets rewritten as:

dρ̃red
dt

= −g2CR(0)tc

[
Ã,
[
Ã, ρ̃red

]]
. (3.119)

Going back to the standard picture (and using idUs
dt = HsUs):

dρ̃red
dt

=
d

dt

(
U †
sρredUs

)
= −g2CR(0)tc

[
U †
sAUs,

[
U †
sAUs, U

†
sρredUs

]]
=⇒ dU †

s

dt
ρredUs + U †

s

dρred
dt

Us + U †
sρred

dUs

dt
= −g2CR(0)tcU

†
s [A, [A, ρred]]Us

=⇒ iU †
sHsρredUs + U †

s

dρred
dt

Us − iU †
sρredHsUs = −g2CR(0)tcU

†
s [A, [A, ρred]]Us

=⇒ dρred
dt

= i[ρred, Hs]− g2CR(0)tc[A, [A, ρred]] .

(3.120)

This is the standard form of the Lindblad equation. It can be generalized for an interaction Hamiltonian
of the type:

Hint =
∑
i

Ai(t)⊗Ri(t), (3.121)

with the environment correlators given by:

CR,ij(t, t
′) ≡ Trε

[
ρ̃εR̃i(t)R̃j(t

′)
]
, (3.122)

and repeating all the previous steps we obtain:

dρs
dt

= i[ρs, Hs]− g2
∑
i,j

CR,ij(0)tc,ij [Ai, [Ajρs]], (3.123)

where we assumed CR,ij = CR,ji and tc,ij small for every i, j with respect to the typical time scale of
the system.
If we consider continuous indexes:

Hint =

∫
d3xA(t,x)⊗R(t,x), (3.124)

and we get:
dρs
dt

= −i[Hs, ρs]−
γ

2

∫
d3xd3yCR(x,y)[A(x), [A(y)ρs]], (3.125)

where CR(x,y) denotes CR,ij(0) and γ ≡ 2g2tc.
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3.5 Tracking quantum decoherence

OQS techniques allow us to to keep trace of the quantum information properties of the system we
are considering, and this is fundamental to describe the quantum decoherence of the system. There
are several criteria to assess the quantum nature of the system, as explained in [29] and here we will
review some of them. First of all we need to understand what is the physical process behind quantum
decoherence: the loss of coherence of a quantum system consists in the transfer of correlations initially
contained within the system into its surrounding environment. To keep track of the evolution of
the coherence of the system we can consider different quantities. One of these is the entropy of
entanglement, Sent, defined as the Von Neumann entropy of the system once the environment has
been traced over:

Sent ≡ −TrS (ρ̂red ln ρ̂red). (3.126)

This is a measure of the degree of quantum entanglement between two subsystems costituing a com-
posite quantum system (in our case system and environment). If it is non-vanishing the system and
environment are entangled.
Another quantity, which will be the one we will use in the following is the purity :

γ ≡ TrS
(
ρ̂2red

)
. (3.127)

The purity defines a measure on quantum states, giving information on how much a state is mixed,
with γ = 1 corresponding to a pure state and γ = 0 corresponding to a maximally mixed state.
Analogously the linear entropy is defined as Slin = 1− γ. In the case of a gaussian state with a single
degree of freedom, specifying the purity is enough to characterize all the others quantumness measures
[29], indeed they are related through:

Sent =
1− γ

2γ
ln

(
1 + γ

1− γ

)
− ln

(
2γ

1 + γ

)
. (3.128)

If the system is made of more than one degree of freedom this formula and the one-to-one correspon-
dence between entanglement and linear entropy does not hold.

Once the master equation is determined it provides the evolution of ρ̂red but in general this is
not enough to reach a close system of equations and one needs to rely on further assumptions in order
to obtain some results. However, in the case of a gaussian state, there is a simple relation linking the
purity with the observables of the system, which are fully contained in the covariance matrix Σ, that
is:

γ(t) =
1

4 detΣ
. (3.129)

Hence, the problem of accessing the quantum information properties of the system reduces to the one
of solving the transport equations. One can then assess decoherence by keeping track of the transition
of the purity from 1 to 0.
Decoherence is thought to erase all the quantum information which was present in the Early Universe,
but some works have tried to find an observational imprint of this quantum origin in the Universe we
observe today, e.g. [30].

3.5.1 Decoherence with Lindblad equation

In this section we want to find an evolution equation for the purity, using the Lindblad equation.
We will present this method [28] for a generic interaction and in the following we will use it in our
model with non-linear interaction. Here we will use the Heisenberg picture. In the linear case the
following factorization of the reduced density matrix holds:

ρ̂red(η) =
∏

k∈R3+

∏
s=R,I

ρ̂sk(η), (3.130)

but in the non-linear case this is no longer true. Anyway we can define the following effective density
matrix defined on the Fourier space characterized by s and k, obtained by tracing out all the other
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degrees of freedom:

ρ̂sk ≡ Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} (ρ̂red), (3.131)

with s̄ = R if s = I and vice versa. The purity is defined as:

γ = Tr{s
k

} (ρ̂s2k ). (3.132)

Using the linearity of the trace operator we can find an evolution equation for the purity as:

d

dη
Tr{s

k

} (ρ̂s2k ) = 2Tr{s
k

} [ρ̂skTr{ s′

k′ ̸= k

}
,
{

s̄
k

} dρ̂red
dη

]
. (3.133)

Now consider the Lindblad equation with Â = v̂2 with v̂ the Mukhanov-Sasaki variable:

dρ̂red
dη

= −i
[
Ĥv, ρ̂red

]
− γ

2

∫
d3xd3yCR(x− y)

[
v̂2(x),

[
v̂2(y), ρ̂red

]]
. (3.134)

It is difficult to incorporate the Hamiltonian term in the following calculation and since it vanishes in
the linear case we assume it is vanishing also in this case. Using the Fourier transform:

v̂(x) =
1

(2π)3/2

∫
d3kv̂k(η)e

ik·x, (3.135)

CR(x− y) =
1

(2π)3/2

∫
d3kCR(k)e

ik·(x−y), (3.136)

then the Lindblad equation in Fourier space becomes:

dρ̂red
dη

= −γ

2

1

(2π)3/2

∫
d3k1d

3k2d
3k3CR(k1)[v̂k2 v̂−k1−k2 , [v̂k3 v̂k1−k3 , ρ̂red]]. (3.137)

Since the RHS is of order γ, at leading order in γ the trace can be evaluated in the free theory where
we can use the factorization:

ρ̂red(η) =
∏

k∈R3+

∏
s=R,I

ρ̂sk(η). (3.138)

If k is different from all the other combinations of momenta, we can remove ρ̂sk from the trace in (3.133)
and we get a full trace that vanishes. Also in the case in which k is equal to only one wavenumber
we get a vanishing result [28], so we need to consider the cases where k is equal at least to two
wavenumbers.

1. k equal to two wavenumbers:
Consider the case k = k2 = −k3 and k1 ̸= 2k and take the second trace inside equation (3.133):

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} dρ̂red
dη

= −γ

2

1

(2π)3/2

∫
d3k1d

3k2d
3k3CR(k1)×

× Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}
([

v̂k2 v̂−k1−k2 ,
[
v̂k3 v̂k1−k3 ,

∏
k

∏
s

ρ̂sk

]])

= −γ

2

1

(2π)3/2

∫
d3k1d

3k2d
3k3CR(k1)×

× Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}
([

v̂kv̂−k−k1 ,
[
v̂−kv̂k+k1 ,

∏
k

∏
s

ρ̂sk

]])
.

(3.139)
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Here the only k′ ̸= k is k+ k1, so we have
∏

k

∏
s ρ̂

s
k = ρ̂skρ̂

s̄
kρ̂

s
k+k1

ρ̂s̄k+k1
. Then:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} ([v̂kv̂−k−k1 ,
[
v̂−kv̂k+k1 , ρ̂red

]])
=

= Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} (v̂kv̂−k1−kv̂−kv̂k+k1 ρ̂red − v̂kv̂−k1−kρ̂redv̂−kv̂k+k1

− v̂−kv̂k1+kρ̂redv̂kv̂−k−k1 + ρ̂redv̂−kv̂k1+kv̂kv̂−k−k1

)
= Tr{s̄

k

} [v̂kv̂−kρ̂
s
kρ̂

s̄
k

]
Tr{ s, s̄

k + k1

} [v̂−k−k1 v̂k+k1 ρ̂
s
k+k1

ρ̂s̄k+k1

]
− Tr{s̄

k

} [v̂kρ̂skρ̂s̄kv̂−k

]
Tr{ s, s̄

k + k1

} [v̂−k−k1 ρ̂
s
k+k1

ρ̂s̄k+k1
v̂k+k1

]
− Tr{s̄

k

} [v̂−kρ̂
s
kρ̂

s̄
kv̂k
]
Tr{ s, s̄

k + k1

} [v̂k+k1 ρ̂
s
k+k1

ρ̂s̄k+k1
v̂−k−k1

]
+Tr{s̄

k

} [ρ̂skρ̂s̄kv̂−kv̂k
]
Tr{ s, s̄

k + k1

} [ρ̂sk+k1
ρ̂s̄k+k1

v̂k+k1 v̂−k−k1

]
.

(3.140)

Now using the usual decomposition v̂k =
v̂Rk +iv̂Ik√

2
with v̂R−k = v̂Rk and v̂I−k = −v̂Ik:

=
1

4
Tr{s̄

k

} [(v̂Rk v̂Rk + v̂Ikv̂
I
k)ρ̂

s
kρ̂

s̄
k

]
Tr{ s, s̄

k + k1

} [(v̂Rk+k1
v̂Rk+k1

+ v̂Ik+k1
v̂Ik+k1

)ρ̂sk+k1
ρ̂s̄k+k1

]
− 1

2
Tr{s̄

k

} [v̂Rk ρ̂skρ̂s̄kv̂Rk + v̂Ikρ̂
s
kρ̂

s̄
kv̂

I
k

]
Tr{ s, s̄

k + k1

} [v̂Rk+k1
ρ̂sk+k1

ρ̂s̄k+k1
v̂Rk+k1

+ v̂Ik+k1
ρ̂sk+k1

ρ̂s̄k+k1
v̂Ik+k1

]
+

1

4
Tr{s̄

k

} [ρ̂skρ̂s̄kv̂Rk v̂Rk + ρ̂skρ̂
s̄
kv̂

I
kv̂

I
k

]
Tr{ s, s̄

k + k1

} [ρ̂sk+k1
ρ̂s̄k+k1

v̂Rk+k1
v̂Rk+k1

+ ρ̂sk+k1
ρ̂s̄k+k1

v̂Ik+k1
v̂Ik+k1

]
.

(3.141)
Writing all in terms of s = R and s̄ = I:

=
1

4
Tr{s̄

k

} [v̂skv̂skρ̂skρ̂s̄k + v̂s̄kv̂
s̄
kρ̂

s
kρ̂

s̄
k

]
Tr{ s, s̄

k + k1

} [v̂sk+k1
v̂sk+k1

ρ̂sk+k1
ρ̂s̄k+k1

+ v̂s̄k+k1
v̂s̄k+k1

ρ̂sk+k1
ρ̂s̄k+k1

]
︸ ︷︷ ︸

1

− 1

2
Tr{s̄

k

} [v̂skρ̂skρ̂s̄kv̂sk + v̂s̄kρ̂
s
kρ̂

s̄
kv̂

s̄
k

]
Tr{ s, s̄

k + k1

} [v̂sk+k1
ρ̂sk+k1

ρ̂s̄k+k1
v̂sk+k1

+ v̂s̄k+k1
ρ̂sk+k1

ρ̂s̄k+k1
v̂s̄k+k1

]
︸ ︷︷ ︸

2

+
1

4
Tr{s̄

k

} [ρ̂skρ̂s̄kv̂skv̂sk + ρ̂skρ̂
s̄
kv̂

s̄
kv̂

s̄
k

]
Tr{ s, s̄

k + k1

} [ρ̂sk+k1
ρ̂s̄k+k1

v̂sk+k1
v̂sk+k1

+ ρ̂sk+k1
ρ̂s̄k+k1

v̂s̄k+k1
v̂s̄k+k1

]
︸ ︷︷ ︸

3

.

(3.142)
Now focusing on the second traces and using Tr{ s

k + k1

} ρ̂sk+k1
= Tr{ s̄

k + k1

} ρ̂s̄k+k1
= 1 we get:

1) = Tr{ s
k + k1

} [v̂sk+k1
v̂sk+k1

ρ̂sk+k1

]
+Tr{ s̄

k + k1

} [v̂s̄k+k1
v̂s̄k+k1

ρ̂s̄k+k1

]
= 2Tr{ s

k + k1

} [v̂sk+k1
v̂sk+k1

ρ̂sk+k1

]
= 2Pvv(k+ k1),

2) = Tr{ s
k + k1

} [v̂sk+k1
ρ̂sk+k1

v̂sk+k1

]
+Tr{ s̄

k + k1

} [v̂s̄k+k1
ρ̂s̄k+k1

v̂s̄k+k1

]
= 2Tr{ s

k + k1

} [v̂sk+k1
ρ̂sk+k1

v̂sk+k1

]
= 2Pvv(k+ k1),

3) = Tr{ s
k + k1

} [ρ̂sk+k1
v̂sk+k1

v̂sk+k1

]
+Tr{ s̄

k + k1

} [ρ̂s̄k+k1
v̂s̄k+k1

v̂s̄k+k1

]
= 2Tr{ s

k + k1

} [ρ̂sk+k1
v̂sk+k1

v̂sk+k1

]
= 2Pvv(k+ k1),

(3.143)

where we recognized the power spectrum.
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Then we obtain:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} ([v̂kv̂−k−k1 ,
[
v̂−kv̂k+k1 , ρ̂red

]])
=

=
1

2

[
v̂skv̂

s
kρ̂

s
k + ρ̂skTr

{
s̄
k

} (v̂s̄kv̂s̄kρ̂s̄k)]Pvv(k+ k1)

−
[
v̂skρ̂

s
kv̂

s
k + ρ̂skTr

{
s̄
k

} (v̂s̄kρ̂s̄kv̂s̄k)]Pvv(k+ k1)

+
1

2

[
ρ̂skv̂

s
kv̂

s
k + ρ̂skTr

{
s̄
k

} (ρ̂s̄kv̂s̄kv̂s̄k)]Pvv(k+ k1)

=
1

2
[v̂sk, [v̂

s
k, ρ̂

s
k]]Pvv(k+ k1).

(3.144)

The same result is obtained with k = k2 = k3−k1, or k = −k1−k2 = −k3, or k = −k1−k2 =
−k1 + k3. The same result, with the only difference that the power spectrum is evaluated in
k− k1 instead of k+ k1, is obtained in the following cases:

• k = −k2 = k3,

• k = −k2 = k1 − k3,

• k = k1 + k2 = k3,

• k = k1 + k2 = k1 − k3.

2. k equal to three wavenumbers:
in this case we obtain a vanishing result.

3. k equal to four wavenumbers: in this case we obtain a non-vanishing result, but this con-
tribution is suppressed with respect to the case k equal to two wavenumbers, because here we
get a finite result only for a single configuration of k1,k2,k3, while the other case leaves one
wavenumber free.

Putting together our results we obtain:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} ([v̂k2 v̂−k1−k2 , [v̂k3 v̂k1−k3 , ρ̂red]]) =

=
1

2
[v̂sk, [v̂

s
k, ρ̂

s
k]]×

{
Pvv(k+ k1)

[
δ3(k2 − k)δ3(k3 + k) + δ3(k2 − k)δ3(k3 − k1 − k)

+ δ3(k3 + k)δ3(k1 + k2 + k) + δ3(k1 + k2 + k)δ3(k3 − k1 − k)
]

+ Pvv(k− k1)
[
δ3(k2 + k)δ3(k3 − k) + δ3(k2 + k)δ3(k1 − k3 − k)

+ δ3(k3 − k)δ3(k1 + k2 − k) + δ3(k1 + k2 − k)δ3(k1 − k3 − k)
]}

.

(3.145)

Plugging back this result in equation (3.139):

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} dρ̂red
dη

= −γ

4

1

(2π)3/2

∫
d3k1d

3k2d
3k3CR(k1)[v̂

s
k, [v̂

s
k, ρ̂

s
k]]×

×
{
Pvv(k+ k1)

[
δ3(k2 − k)δ3(k3 + k) + δ3(k2 − k)δ3(k3 − k1 − k)

+ δ3(k3 + k)δ3(k1 + k2 + k) + δ3(k1 + k2 + k)δ3(k3 − k1 − k)
]

+ Pvv(k− k1)
[
δ3(k2 + k)δ3(k3 − k) + δ3(k2 + k)δ3(k1 − k3 − k)

+ δ3(k3 − k)δ3(k1 + k2 − k) + δ3(k1 + k2 − k)δ3(k1 − k3 − k)
]}

= −γ 1

(2π)3/2
CR(k1)[v̂

s
k, [v̂

s
k, ρ̂

s
k]]
{
Pvv(k+ k1) + Pvv(k− k1)

}
.

(3.146)
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Using Pvv(k+ k1) = Pvv(k− k1) = Pvv(|k+ k1|):

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} dρ̂red
dη

= −2γ 1

(2π)3/2

∫
d3k1CR(k1)[v̂

s
k, [v̂

s
k, ρ̂

s
k]]Pvv(|k+ k1|)

= −1

4
[v̂sk, [v̂

s
k, ρ̂

s
k]]S2(k, η),

(3.147)

where we defined the source function:

S2(k, η) =
8γ

(2π)3/2

∫
R3

d3k′CR(k
′)Pvv(

∣∣k′ + k
∣∣). (3.148)

Inserting this result in the equation for the purity:

d

dη
Tr{s

k

} (ρ̂s2k ) = −1

2
Tr{s

k

} {ρ̂sk[v̂sk, [v̂sk, ρ̂sk]]S2(k, η)
}

= −1

2
S2(k, η)Pvv(k, η),

(3.149)

where we used the relation Tr (ρ̂sk[v̂
s
k, [v̂

s
k, ρ̂

s
k]]) = 2Pvv(k) which was shown in [28]. This method will be

used in the following chapters to compute the purity evolution in the case of a non-linear interaction.
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Chapter 4

Linear model

As we have said, observing a signature of the original quantum nature of the present fluctuations
is a hard task, mainly because of the phenomenon of quantum decoherence which is believed to erase
quantum signature, leaving a classical Universe. In this chapter we want to analyze the quantum
decoherence process in an extension of the simplest single-field slow-roll inflation. We will follow closely
[8]. Contrary to the common expectation, we will show that, after an initial period of decoherence,
the phenomenon of recoherence takes place, with the system showing a large level of self-coherence in
the final state.

Since inflation happened at very high-energy it is reasonable to consider a heavy field interacting
with the inflaton. From a bottom-up EFT approach the dynamics of the fluctuations in the adiabatic
direction ζ and the entropic direction F is given by the lagrangian density [31]:

L = a2εM2
Plζ

′2 − a2εM2
Pl(∂iζ)

2 +
1

2
a2F ′2 − 1

2
a2(∂iF)2 −

1

2
m2a4F2 − ρa3

√
2εMPlζ

′F , (4.1)

where η is the conformal time, a(η) the scale factor, (∂iζ)
2 ≡ δij∂iζ∂jζ, ε is the first slow-roll parameter

and MPl is the Planck mass. The curvature perturbation, ζ, is observed directly in the CMB, while
F describes an unobservable heavy field. ρ is the coupling constant of the interaction term ζ ′F , and
it represents the turn rate in the field space between adiabatic and entropic directions.
We define the following gauge-invariant variables, called Mukhanov-Sasaki variables:

vζ(η,x) = −a(η)
√
2εMPlζ(η,x → ζ(η,x) = −

vζ(η,x)

a(η)
√
2εMPl

,

vF (η,x = a(η)F(η,x → F(η,x) = vF (η,x)

a(η)
,

(4.2)

then the lagrangian density gets rewritten as:

L =
1

2
v′2ζ +

1

2

(a′
a

)2
v2ζ −

a′

a
v′ζvζ −

1

2
(∂ivζ)

2 +
1

2
v′2F +

1

2

(a′
a

)2
v2F −

a′

a
v′FvF −

1

2
(∂ivF )

2

− 1

2
m2a2v2F + ρavFv

′
ζ − ρa′vζvF .

(4.3)

From this we can derive the conjugated momenta:

pζ =
∂L
∂v′ζ

= v′ζ −
a′

a
vζ + ρavF → v′ζ = pζ +

a′

a
vζ − ρavF ,

pF =
∂L
∂v′F

= v′F −
a′

a
vF → v′F = pF +

a′

a
vF ,

(4.4)
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and finally the Hamiltonian density:

H(vζ , vF , pζ , pF , η) = pζv
′
ζ + pFv

′
F − L(vζ , vF , v′ζ(vζ , pζ , vF , pF ), v′F (vζ , pζ , vF , pF ))

=
1

2
p2ζ +

1

2
p2F +

1

2
(∂ivζ)

2 +
1

2
(∂ivF )

2 +
a′

a
vζpζ − ρavFpζ

+
a′

a
vFpF +

1

2
ρ2a2v2F +

1

2
m2a2v2F .

(4.5)

Using the Fourier decomposition for the Mukhanov-Sasaki variable and its conjugated momentum

vα(η,x) =
1

(2π)3/2

∫
d3kvα(η,k)e

ik·x, (4.6)

the Hamiltonian becomes:

H =
1

(2π)3

∫
d3x

∫
d3k

∫
d3k′

[
1

2
pζ(k)pζ(k

′)ei(k+k′)·x +
1

2
pF (k)pF (k

′)ei(k+k′)·x

+
1

2

(
∂ivζ(k)e

ik·x
)(

∂ivζ(k
′)eik

′·x
)
+

1

2

(
∂ivF (k)e

ik·x
)(

∂ivF (k
′)eik

′·x
)

+
a′

a

(
vζ(k)pζ(k

′)ei(k+k′)·x
)
+

a′

a

(
vF (k)pF (k

′)ei(k+k′)·x
)
− ρavF (k)pζ(k

′)ei(k+k′)·x

+
1

2
ρ2a2vF (k)vF (k

′)ei(k+k′)·x +
1

2
m2a2vF (k)vF (k

′)ei(k+k′)·x

]

=

∫
d3k

[
1

2
pζ(k)pζ(−k) +

1

2
pF (k)pF (−k) +

1

2
k2vζ(k)vζ(−k)

+
1

2
(k2 + (ρ2 +m2)a2)vF (k)vF (−k) +

a′

a
vζ(k)pζ(−k) +

a′

a
vF (k)pF (−k)− ρavF (k)pζ(−k)

]
,

(4.7)
which can be schematically rewritten as:

H =

∫
R3+

d3kz†
kH(η)z−k with z ≡ (vζ , pζ , vF , pF )

T , (4.8)

where

H(η) =

(
H(S) V

V T H(ε)

)
, (4.9)

with

H(S)(η) =

(
k2 a′

a
a′

a 1

)
H(ε)(η) =

(
k2 + (m2 + ρ2)a2 a′

a
a′

a 1

)
V (η) =

(
0 0
−ρa 0

)
, (4.10)

where the integral is performed over R3+ because of the condition z∗(η,k) = z(η,−k) due to the
reality of the original fields, ζ and F .
Following the canonical quantization prescription we can promote the fields to quantum operators and
split them in real and imaginary part in order to work with Hermitian operators:

ẑ =
1√
2

(
ẑR + iẑI

)
. (4.11)

In this basis the Hamiltonian takes the form:

Ĥ(η) =
1

2

∑
s=R,I

∫
R3+

d3k(ẑs)TH(η)ẑs. (4.12)

Being separable there is no mixing between different modes, nor between R and I sectors, so we can
focus on a given mode k and a given s-sector.

Since in this case the interaction is linear we can both study the decoherence in an exact way
and with the OQS approach we have introduced in the previous chapters.
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4.1 Exact approach

Consider the covariance matrix of the full setup (system + environment) in the Heisenberg
picture:

Σ
(S+ε)
ij (η) ≡ 1

2
Tr
{[

ẑi(η)ẑj(η) + ẑj(η)ẑi(η)
]
ρ̂0

}
. (4.13)

As we have already said, due to the linearity of the dynamics, the state remains gaussian and the
covariance matrix contains all the information about the quantum state. Now if we differentiate it
with respect to time, using the Heisenberg equation to evaluate dẑ/dη, with the Hamiltonian (4.12)
and using for ρ̂0 the Bunch-Davies vacuum, we obtain the following transport equation:

dΣ(S+ε)

dη
= ΩHΣ(S+ε) −Σ(S+ε)HΩ, (4.14)

where Ω is a four-by-four matrix defined as:

Ω =

(
ω 0
0 ω

)
with ω =

(
0 1
−1 0

)
. (4.15)

From this equation is easy to derive a transport equation for detΣ with Σ the system’s covariance:

d detΣ

dη
= Σ

(S+ε)
11

dΣ
(S+ε)
22

dη
+Σ

(S+ε)
22

dΣ
(S+ε)
11

dη
− 2Σ

(S+ε)
12

dΣ
(S+ε)
12

dη
. (4.16)

Making equation (4.14) and (4.16) explicit we get a system of eleven coupled ordinary differential
equations, that is:

dΣ
(S+ε)
11

dη
= 2
(a′
a
Σ
(S+ε)
11 +Σ

(S+ε)
12 − ρaΣ

(S+ε)
13

)
dΣ

(S+ε)
12

dη
= Σ

(S+ε)
22 − ρaΣ

(S+ε)
23 − k2Σ

(S+ε)
11

dΣ
(S+ε)
13

dη
= 2

a′

a
Σ
(S+ε)
13 − ρaΣ

(S+ε)
33 +Σ

(S+ε)
23 +Σ

(S+ε)
14

dΣ
(S+ε)
14

dη
= ρa

(
Σ
(S+ε)
12 − Σ

(S+ε)
34

)
+Σ

(S+ε)
24 −BΣ

(S+ε)
13

dΣ
(S+ε)
22

dη
= −2

(
k2Σ

(S+ε)
12 +

a′

a
Σ
(S+ε)
22

)
dΣ

(S+ε)
23

dη
= Σ

(S+ε)
24 − k2Σ

(S+ε)
13

dΣ
(S+ε)
24

dη
= −k2Σ(S+ε)

14 − 2
a′

a
Σ
(S+ε)
24 + ρaΣ

(S+ε)
22 −BΣ

(S+ε)
23

dΣ
(S+ε)
33

dη
= 2
(a′
a
Σ
(S+ε)
33 +Σ

(S+ε)
34

)
dΣ

(S+ε)
34

dη
= Σ

(S+ε)
44 + ρaΣ

(S+ε)
23 −BΣ

(S+ε)
33

dΣ
(S+ε)
44

dη
= 2
(
ρaΣ

(S+ε)
24 −BΣ

(S+ε)
34 − a′

a
Σ
(S+ε)
44

)
d detΣ

dη
= Σ

(S+ε)
11

dΣ
(S+ε)
22

dη
+Σ

(S+ε)
22

dΣ
(S+ε)
11

dη
− 2Σ

(S+ε)
12

dΣ
(S+ε)
12

dη
,

(4.17)

where we have defined:
B = k2 + (m2 + ρ2)a2 (4.18)
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We want to express Σ as a function of ln
(

a
a∗

)
with k = a∗H where a∗ is the scale factor at Hubble

crossing. We can use:

η = − 1

a(η)H
⇒ dη =

1

a2H
da but d

(
ln

a

a∗

)
=

a∗
a

da

a∗
=

da

a
, (4.19)

=⇒ dΣ

dη
= a2H

dΣ

da
= aH

dΣ

d ln
(

a
a∗

) =
a′

a

dΣ

d ln a
a∗

. (4.20)

Now we can rewrite our equations as a function of a
a∗
:

dΣ
(S+ε)
11

d ln ( a
a∗
)
= 2
(
Σ
(S+ε)
11 +

a∗
a

1

k
Σ
(S+ε)
12 − ρ

H
Σ
(S+ε)
13

)
,

dΣ
(S+ε)
12

d ln ( a
a∗
)
=

a∗
a

1

k
Σ
(S+ε)
22 − ρ

H
Σ
(S+ε)
23 − a∗

a
kΣ

(S+ε)
11 ,

dΣ
(S+ε)
13

d ln ( a
a∗
)
= 2Σ

(S+ε)
13 − ρ

H
Σ
(S+ε)
33 +

a∗
a

1

k

(
Σ
(S+ε)
23 +Σ

(S+ε)
14

)
,

dΣ
(S+ε)
14

d ln ( a
a∗
)
=

ρ

H

(
Σ
(S+ε)
12 − Σ

(S+ε)
34

)
+

a∗
a

1

k
Σ
(S+ε)
24 −

(a∗
a
k +

a

a∗
k
(m2

H2
+

ρ2

H2

))
Σ
(S+ε)
13 ,

dΣ
(S+ε)
22

d ln ( a
a∗
)
= −2

(a∗
a
kΣ

(S+ε)
12 +Σ

(S+ε)
22

)
,

dΣ
(S+ε)
23

d ln ( a
a∗
)
=

a∗
a

1

k
Σ
(S+ε)
24 − a∗

a
kΣ

(S+ε)
13 ,

dΣ
(S+ε)
24

d ln ( a
a∗
)
= −a∗

a
kΣ

(S+ε)
14 − 2Σ

(S+ε)
24 +

ρ

H
Σ
(S+ε)
22 −

(a∗
a
k +

a

a∗
k
(m2

H2
+

ρ2

H2

))
Σ
(S+ε)
23 ,

dΣ
(S+ε)
33

d ln ( a
a∗
)
= 2
(
Σ
(S+ε)
33 +

a∗
a

1

k
Σ
(S+ε)
34

)
,

dΣ
(S+ε)
34

d ln ( a
a∗
)
=

a∗
a

1

k
Σ
(S+ε)
44 +

ρ

H
Σ
(S+ε)
23 −

(a∗
a
k +

a

a∗
k
(m2

H2
+

ρ2

H2

))
Σ
(S+ε)
33 ,

dΣ
(S+ε)
44

d ln ( a
a∗
)
= 2
( ρ

H
Σ
(S+ε)
24 −

(a∗
a
k +

a

a∗
k
(m2

H2
+

ρ2

H2

))
Σ
(S+ε)
34 − Σ

(S+ε)
44

)
,

d detΣ

d ln ( a
a∗
)
= Σ

(S+ε)
11

dΣ
(S+ε)
22

d ln ( a
a∗
)
+ Σ

(S+ε)
22

dΣ
(S+ε)
11

d ln ( a
a∗
)
− 2Σ

(S+ε)
12

dΣ
(S+ε)
12

d ln ( a
a∗
)
.

(4.21)

Notice that we have eleven equations for ten unknowns, indeed the equation for the determinant
is redundant, but computationally it is more efficient to use all the eleven equations. Now we can
integrate this set of coupled equations from ln (a/a∗) = −15 to ln (a/a∗) = 15 using as initial conditions

those of the Bunch-Davies vacuum, where Σ
(S+ε)
11 = Σ

(S+ε)
33 = 1/(2k) and Σ

(S+ε)
22 = Σ

(S+ε)
44 = k/2, with

all the other correlation functions vanishing. As we have seen in section 3.5, for a gaussian state the
covariance matrix not only contains all the observables of the system, but it fully specifies the quantum
state of the system, i.e. ρ̂red, and this allows us to reproduce the transition from a pure state to a
statistically mixed state. This is possible through the purity parameter, γ = TrS

(
ρ̂2red

)
, which for a

gaussian system is simply related to the covariance matrix through γ = 1/(4 detΣ). So once solved
the previous system we can reproduce the purity as a function of time. The result is shown in figure,
where we choose as a scale k = 1.

In the top graph of figure 4.1 we fixed the mass and see how the decoherence changes for some
values of the coupling constant, while in the bottom graph we fixed the coupling constant and con-
sidered various values of the mass. In both cases we observe an initial decoherence, followed by an
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Figure 4.1: Purity as a function of the number of efolds since Hubble crossing of the reference scale k = a∗H = 1
for a fixed mass m and few values of the coupling constant ρ in the top figure and for a fixed value of ρ and
few values of m in the bottom figure. We observe an initial period of decoherence followed by a period of
recoherence where the purity saturates to 1 due to the effective turn off of the interaction explained in the main
text. We see that the turning point happens on sub-Hubble scale in both figures, but in the upper figure it is
exactly the same for all the values of the coupling constant, while in the bottom figure it depends on the mass,
turning earlier for heavier masses. This is in agreement with the effective field theory (EFT) idea that a heavier
environment leaves less imprint on the system.
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increasing of the purity parameter which at late time shows large levels of self-coherence. This be-
haviour is called recoherence. We see that the turning point for the purity happens before that the
scale of interest crosses the horizon, on sub-Hubble scale. 1 We also see that the decoherence is more
effective for smaller masses and stronger coupling constant, as we expect from an effective field theory
(EFT) intuition that heavier masses leave a smaller imprint on light degrees of freedom.

This recoherence can be interpreted as if the information that was transferred from the system
to the environment during the period of decoherence, is flowing back from the environment to the
system. This aspect could appear in contrast with the previous literature on decoherence, e.g. [28,
7], where due to the characteristics of the environment the information could not backflow to the
system as in this case. Actually there is no contradiction, because of the small size of the environment
in our model, where due to the linear coupling the system is coupled with a single Fourier mode of
the environment; in this sense we cannot speak of the environment as a thermal bath as it is usually
considered. In this case the bipartition between the system and the environment is based on the fact
that the environment, even if it has the same size of the system, is unobservable, because the field is
very massive. When the environment has many more degrees of freedom than the environment, the
leakage of quantum information from the system to the environment causes the decoherence and the
information backflow from the environment to the system is statistically suppressed given the enormous
difference in the number of degrees of freedom. In our model instead, the quantum information is
continuously exchanged between the system and the environment, given that they have the same
dimension. This continuous exchange can be better understood if we consider the same model in a
static spacetime [8]: in that case the purity appears to oscillate at frequencies 2ωs, 2ωε, ωS + ωε and
ωS − ωε where ωS ≡ k and ωε ≡

√
k2 +m2; if the coupling is turned off the purity freezes at the

time of the quench: this is exactly what happens in the case of a De Sitter spacetime where the the
expansion of the Universe causes the coupling to be turned off. To better understand this aspect we
can consider three regimes:

Figure 4.2: Same as figure 4.1, for lighter masses. We observe three different behaviours: m > 3H/2 recoherence,
m ≃ 3H/2 purity freezing and m < 3H/2 decoherence

• k ≫ am: in this case the mode functions of both fields oscillate at the same frequency k/a, in

1In the paper we are referring to, i.e. [8], it appears that the turning point is shifted on super-horizon scale. This is
an incongruence with what is said in the text, where indeed they say that the turning point is reached in the sub-Hubble
regime. To clarify this doubt, I contacted the author of the paper, Dr. Thomas Colas, to whom I am very grateful,
who explain to me that reproducing the same graphs, he obtained the same result of mine, so probably there was some
problem with the graphs in his paper.
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their vacuum state;

• am≫ k ≫ aH: in this regime the two frequencies differ, with the system oscillating at frequency
k/a, while the environment oscillating at frequency m, so the purity oscillates as in the flat space;

• k ≪ aH: in this regime we can observe three different behaviours, which are represented in
figure 4.2:

1. m > 3
2H : entropic fluctuations are heavy, so they oscillate and quickly decay. The same

happens for the curvature perturbation, since ζ ′ ∝ 1/a2 on super-Hubble scales. Then the
coupling between the adiabatic and entropic fluctuations is effectively turned off and the
purity freezes to one.

2. m < 3
2H : in this case, F acquires a growing mode that keeps the interaction term, ζ ′F

alive despite the decay of ζ ′F , leading to a complete decoherence.

3. m ≃ 3
2H : in this case the purity freezes to a value different from 0 and 1, strongly

dependent on the value of the coupling constant.

In all the cases we described, the system is driven towards a mixed state by the dynamical generation
of entangled pairs of quanta between ζ and F , which explains why decoherence happens even if the
environment is made of a single degree of freedom. It is interesting to highlight that even if we
are considering a heavy environment, varying the value of m we obtain three different behaviours:
recoherence, purity freezing and decoherence.

4.2 Master equation approach

As we have seen in the previous section the model being linear can be solved exactly, but this
is not possible in case of more complex interaction. For this reason we want also apply the OQS
approach, using the master equation we derived previously.

Given the peculiar nature of the environment in our model, we cannot use a Markovian master
equation, such as the Lindblad equation, that relies on the assumption that the environment is much
larger than the system, which implies a form of irreversibility in the information flow. Clearly this
is not the case in our model, and we need a non-Markovian master equation, like the TCL2 we have
derived in the previous chapter, which we report here:

dρ̂red
dη

= −i
[
ĤS(η) + ĤLS(η), ρ̂red(η)

]
+ γij(η)

(
ẑζ,iρ̂red(η)ẑζ,j −

1

2

{
ẑζ,j ẑζ,i, ρ̂red(η)

})
. (4.22)

From this equation, we derived a transport equation for the covariance matrix, which being the
evolution gaussian contains all the information about the quantum state and the observables we are
interested in:

dΣ

dη
= ω

(
H0 +∆

)
Σ−Σ

(
H0 +∆

)
ω − ωDω + 2∆12Σ. (4.23)

Then we can also obtain a transport equation for the determinant of the system’s covariance matrix,
using the property detΣ = eln detΣ = eTr lnΣ:

d detΣ

dη
= detΣTr

(
Σ−1dΣ

dη

)
= detΣTr

[
Σ−1

(
ω(H(S) +∆)Σ−Σ(H(S) +∆)ω − ωDω + 2∆12Σ

)]
= detΣTr

[
ω(H(S) +∆)− (H(S) +∆)ω −Σ−1ωDω + 2∆121

]
= 4∆12 detΣ− detΣTr

[
Σ−1ωDω

]
,

(4.24)
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where:

Σ−1 =
1

detΣ

(
Σ22 −Σ12

−Σ12 Σ11

)
⇒

⇒ Σ−1ωDω =

(
Σ22 −Σ12

−Σ12 Σ11

)(
0 1
−1 0

)(
D11 D12

D12 D22

)(
0 1
−1 0

)
=

1

detΣ

(
Σ12 Σ22

−Σ11 −Σ12

)(
−D12 D11

−D22 D12

)
=

1

detΣ

(
−D12Σ12 −D22Σ22 D11Σ12 +D12Σ12

D12Σ11 +D22Σ12 −D11Σ11 −D12Σ12

)
⇒ Tr

[
Σ−1ωDω

]
= −Tr [ΣD].

(4.25)

So finally we get:
d detΣ

dη
= 4∆12 detΣ+ detΣTr [ΣD]. (4.26)

Now we want to compute the various pieces of this equation. First of all we need to compute the
mode functions of the system and the environment.

4.2.1 Mode functions

In the interaction picture, operators evolve according to the free Hamiltonian Ĥ0(η) = ĤS
0 (η)⊗

Ĥε
0(η) where

ĤS
0 (η) =

1

2

(
v̂ζ p̂ζ

)(k2 a′

a
a′

a 1

)(
v̂ζ
p̂ζ

)
=

1

2

[
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}

]
, (4.27)

Ĥε
0(η) =

1

2

(
v̂F p̂F

)(k2 +m2a2 a′

a
a′

a 1

)(
v̂F
p̂F

)
=

1

2

[
p̂F p̂F +

(
k2 +m2a2

)
v̂F v̂F +

a′

a
{v̂F , p̂F}

]
. (4.28)

The quantum states and the density matrix evolve according to the interaction Hamiltonian:

Ĥint(η) =
(
v̂ζ p̂ζ

)( 0 0
−ρa 0

)(
v̂F
p̂F

)
= −ρap̂ζ v̂F . (4.29)

In this picture, the field operators admit the following mode-functions decomposition:

ṽα(η) = vα(η)âα + v∗α(η)â
†
α, (4.30)

where âα and â†α are the creation and annihilation operators of the uncoupled fields. Now using
Heisenberg equation:

dv̂ζ
dη

= i
[
ĤS

0 (η), v̂ζ

]
=

i

2

[
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}, v̂ζ

]
=

i

2
[p̂ζ p̂ζ , v̂ζ ] +

i

2

a′

a
[v̂ζ p̂ζ , v̂ζ ] +

i

2

a′

a
[p̂ζ v̂ζ , v̂ζ ]

=
i

2
p̂ζ [p̂ζ , v̂ζ ]︸ ︷︷ ︸

−i

+
i

2
[p̂ζ , v̂ζ ]︸ ︷︷ ︸

−i

p̂ζ +
i

2

a′

a
v̂ζ [p̂ζ , v̂ζ ]︸ ︷︷ ︸

−i

+
i

2

a′

a
[p̂ζ , v̂ζ ]︸ ︷︷ ︸

−i

v̂ζ

= p̂ζ +
a′

a
v̂ζ ,

(4.31)

dp̂ζ
dη

= i
[
ĤS

0 (η), p̂ζ

]
=

i

2

[
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}, p̂ζ

]
=

i

2
k2v̂ζ [v̂ζ , p̂ζ ]︸ ︷︷ ︸

i

+
i

2
k2 [v̂ζ , p̂ζ ]︸ ︷︷ ︸

i

v̂ζ +
i

2

a′

a
[v̂ζ , p̂ζ ]︸ ︷︷ ︸

i

p̂ζ +
i

2

a′

a
p̂ζ [v̂ζ , p̂ζ ]︸ ︷︷ ︸

i

= −k2v̂ζ −
a′

a
p̂ζ .

(4.32)
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So we have:

dv̂ζ
dη

= v′ζ(η)âζ + v
′∗
ζ (η)â

†
ζ =

(
pζ(η) +

a′

a
vζ(η)

)
âζ +

(
p∗ζ(η) +

a′

a
v∗ζ (η)

)
â†ζ

⇒ v′ζ(η) = pζ(η) +
a′

a
vζ(η),

dp̂ζ
dη

= p′ζ(η)âζ + p
′∗
ζ (η)â

†
ζ =

(
−k2vζ(η)−

a′

a
pζ(η)

)
âζ +

(
−k2v∗ζ (η)−

a′

a
p∗ζ(η)

)
â†ζ

⇒ p′ζ(η) = −k2vζ(η)−
a′

a
pζ(η).

(4.33)

So taking the second derivative:

v′′ζ (η) = p′ζ(η) +
a′′

a
vζ(η)−

a
′2

a2
vζ(η) +

a′

a
v′ζ(η)

= −k2vζ(η)−
a′

a
pζ(η) +

a′′

a
vζ(η)−

a
′2

a2
vζ(η) +

a′

a
pζ(η) +

a
′2

a2
vζ(η)

= −k2vζ(η) +
a′′

a
vζ(η) = −

(
k2 − 2

η2
vζ(η)

)
.

(4.34)

where we used the relation

2

η2
=

a′′

a
(1 +O(ε)), (4.35)

valid at lowest order in slow-roll parameters.
So we finally get:

v′′ζ (η) +

(
k2 − 2

η2

)
vζ(η) = 0 ⇒ v′′ζ (η) +

(
k2 −

ν2 − 1
4

η2

)
vζ(η) = 0 , (4.36)

with ν = 3/2.
Let us repeat the same procedure for the environment mode functions:

dv̂F
dη

= i
[
Ĥε

0(η), v̂F

]
=

i

2

[
p̂F p̂F +

(
k2 +m2a2

)
v̂F v̂F +

a′

a
{v̂F , p̂F}, v̂F

]
=

i

2
p̂F [p̂F , v̂F ]︸ ︷︷ ︸

−i

+
i

2
[p̂F , v̂F ]︸ ︷︷ ︸

−i

p̂F +
i

2

a′

a
v̂F [p̂F , v̂F ]︸ ︷︷ ︸

−i

+
i

2

a′

a
[p̂F , v̂F ]︸ ︷︷ ︸

−i

v̂F

= p̂F +
a′

a
v̂F ,

dp̂F
dη

= i
[
Ĥε

0(η), v̂F

]
=

i

2

[
p̂F p̂F +

(
k2 +m2a2

)
v̂F v̂F +

a′

a
{v̂F , p̂F}, p̂F

]

=
i

2

(
k2 +m2a2

)v̂F [v̂F , p̂F ]︸ ︷︷ ︸
i

+ [v̂F , p̂F ]︸ ︷︷ ︸
i

v̂F

+
i

2

a′

a

p̂F [v̂F , p̂F ]︸ ︷︷ ︸
i

+ [v̂F , p̂F ]︸ ︷︷ ︸
i

p̂F


= −

(
k2 +m2a2

)
v̂F −

a′

a
p̂F

⇒ v′F (η) = pF (η) +
a′

a
vF (η)

⇒ p′F (η) = −
(
k2 +m2a2

)
vF (η)−

a′

a
pF (η).

(4.37)
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Again, doing the second derivative:

v′′F (η) = p′F (η) +
a′′

a
vF −

a
′2

a2
vF +

a′

a
v′F

= −
(
k2 +m2a2

)
vF (η)−

a′

a
pF (η) +

a′′

a
vF −

a
′2

a2
vF +

a′

a
pF +

a
′2

a2
vF

= −
(
k2 +m2a2

)
vF (η) +

a′′

a︸︷︷︸
2/η2

vF = −
(
k2 − 2

η2
+m2a2

)

= −
(
k2 − 2−m2a2η2

η2

)
= −

(
k2 −

2− m2a2

a2H2

η2

)

= −

(
k2 −

9
4 −

1
4 −

m2

H2

η2

)
= −

(
k2 −

ν2F −
1
4

η2

)
,

(4.38)

where we used η = − 1
aH and νF ≡ 3

2

√
1− 4

9
m2

H2 ≡ iµF assuming m2 > 9
4H

2.

So finally:

v′′F (η) +

(
k2 −

ν2F −
1
4

η2

)
vF (η) = 0. (4.39)

Now we want to solve the mode functions equations by normalising the mode functions to the Bunch-
Davies vacuum in the asymptotic, sub-Hubble past.
Let us start with the first equation:

v′′ζ (η) +

(
k2 −

ν2 − 1
4

η2

)
vζ = 0 with ν =

3

2
. (4.40)

This is equivalent to a Bessel equation which has solution of the kind:

vζ(η) =
√
−η
[
c1(k)H

(1)
ν (−kη) + c2(k)H

(2)
ν (−kη)

]
H(2)

ν =
(
H(1)

ν

)∗
, (4.41)

where H
(1)
ν and H

(2)
ν are the Hankel function of the first and second type, respectively.

To determine the constants we require that on sub-Hubble scale

vζ(η) ∼
e−ikη

√
2k

for k ≫ aH, (4.42)

and

H(1)
ν (−kη) −kη≫1−−−−→

√
− 2

πkη
ei(−kη−π

2
ν−π

4 ) ≃ e−ikη

√
−kη

√
2

π
. (4.43)

Since H
(2)
ν ∼ eikη we can put c2(k) = 0 and comparing the two expressions we get c1(k) =

√
π
2 , then

⇒ vζ(η) =

√
π

2

√
−kη
k

H
(1)
3/2(−kη) = −

1

2

√
πz

k
H

(1)
3/2(z) =

(
1 +

i

z

)
eiz√
2k

, (4.44)

with z ≡ −kη.
The same discussion can be done for the second equation but this time ν = iµF , so the general solution
is:

vF (η) =
√
−η
[
c1(k)H

(1)
ν (−kη) + c2(k)H

(2)
ν (−kη)

]
. (4.45)

Imposing that on sub-Hubble scale

vF (η) ∼
e−ikη

√
2k

for k ≫ aH, (4.46)
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and using

H(1)
ν (−kη) −kη≫1−−−−→

√
− 2

πkη
ei(−kη−π

2
ν−π

4 ) for k ≫ aH (4.47)

⇒ c1(k) =

√
π

2
ei

π
2 (ν+

1
2). (4.48)

So finally:

vF (η) =
1

2

√
πz

k
e−

π
2
µF+iπ

4 H
(1)
iµF

(−kη). (4.49)

From these mode functions we can compute the conjugate momenta:

pζ = v′ζ −
a′

a
vζ = −i

√
k

2
eiz,

pF = v′F −
a′

a
vF

=
1

2

√
−π 1

2
√
η
e−

π
2
µF+iπ

4 H
(1)
iµF

(−kη) + 1

2

√
−kηe−

π
2
µF+iπ

4
dHiµF (−kη)

dη

+
1

2η

√
−πηe−

π
2
µF+iπ

4 H
(1)
iµF

(−kη),

(4.50)

using the property of the Hankel function:

dH
(1)
n (z)

dz
=

nH
(1)
n (z)

z
−H

(1)
n+1(z) ⇒

dH
(1)
iµF

(−kη)
dη

= −kn
H

(1)
iµF

(−kη)
−kη

+ kH
(1)
iµF+1(−kη), (4.51)

we get:

pF =
1

2
e−

π
2
µF+iπ

4

[
1

2

√
−π

η
H

(1)
iµF

(−kη) +
√
−π

η
H

(1)
iµF

(−kη)

+

√
−π

η

(
iµFH

(1)
iµF

(−kη) + kηH
(1)
iµF+1(−kη)

)]

=
1

2

√
kπ

z
e−

π
2
µF+iπ

4

[(
iµF +

3

2

)
H

(1)
iµF

(z)− zH
(1)
iµF+1(z)

]
.

(4.52)

So finally:

pζ = −i
√

k

2
eiz,

pF =
1

2

√
kπ

z
e−

π
2
µF+iπ

4

[(
iµF +

3

2

)
H

(1)
iµF

(z)− zH
(1)
iµF+1(z)

]
.

(4.53)

4.2.2 Master equation coefficients

Let us go back to the master equation we derived previously. First of all we want to derive the
memory kernel:

K> ≡ Tr
[
z̃TF (η)z̃F (η

′)ρ̂(0)ε

]
= Tr

[
z̃F (η

′)ρ̂(0)ε z̃F (η)
]
. (4.54)

Now using as initial state the vacuum state (i.e. the Bunch-Davies one, annihilated by âF ), ρ̂
(0)
ε =

|0⟩ ⟨0| and using the decomposition for the mode functions:

ṽF (η) = vF (η)âF + v∗F (η)â
†
F , (4.55)
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K>
11(η, η

′) = Tr
[
ṽF (η

′) |0⟩ ⟨0| ṽF (η)
]

= Tr
[(

vF (η
′)âF + v∗F (η

′)â†F

)
|0⟩ ⟨0|

(
vF (η)âF + v∗F (η

′)â†F

)]
= Tr

[
v∗F (η

′)â†F |0⟩ ⟨0| vF (η)âF
]
= vF (η)v

∗
F (η

′) Tr [|1⟩ ⟨1|]︸ ︷︷ ︸∑∞
n=0⟨n|1⟩⟨1|n⟩=⟨1|1⟩⟨1|1⟩=1

= vF (η)v
∗
F (η

′),

K>
12(η, η

′) = Tr
[
ṽF (η

′) |0⟩ ⟨0| p̃F (η)
]

= Tr
[(

vF (η
′)âF + v∗F (η

′)â†F

)
|0⟩ ⟨0|

(
pF (η)âF + p∗F (η)â

†
F

)]
= pF (η)v

∗
F (η

′),

K>
21(η, η

′) = Tr
[
p̃F (η

′) |0⟩ ⟨0| ṽF (η)
]

= Tr
[(

pF (η
′)âF + p∗F (η

′)â†F

)
|0⟩ ⟨0|

(
vF (η)âF + v∗F (η)â

†
F

)]
= vF (η)p

∗
F (η

′),

K>
22(η, η

′) = Tr
[
p̃F (η

′) |0⟩ ⟨0| p̃F (η)
]

= Tr
[(

pF (η
′)âF + p∗F (η

′)â†F

)
|0⟩ ⟨0|

(
pF (η)âF + p∗F (η)â

†
F

)]
= pF (η)p

∗
F (η

′).

(4.56)

So we finally have:

K>(η, η′) =

(
vF (η)v

∗
F (η

′) pF (η)v
∗
F (η

′)
vF (η)p

∗
F (η

′) pF (η)p
∗
F (η

′).

)
(4.57)

In an analogous way we find the Green’s matrix of the system, G(S)(η′, η) = Tr
{[

z̃Tζ (η
′), z̃ζ(η)

]
ρ̂S

}
,

with ρ̂S the initial state of the system:

G(S)(η′, η) = 2

− Im
[
pζ(η)v

∗
ζ (η

′)
]

Im
[
vζ(η)v

∗
ζ (η

′)
]

− Im
[
pζ(η)p

∗
ζ(η

′)
]

Im
[
vζ(η)p

∗
ζ(η

′)
]
.

 (4.58)

Now we want to compute the master equation coefficients which are defined as:

∆ij(η) = 2

∫ η

η0

dη′DIm
(ij)(η, η

′),

Dij(η) = 2

∫ η

η0

dη′DRe
(ij)(η, η

′),

(4.59)

where the memory kernel is defined as:

D>(η, η′) = V(η)K>(η, η′)VT (η′)G(S)(η′, η), (4.60)

and it can be decomposed as:

D>(η, η′) = DRe(η, η′) + iDIm(η, η′), (4.61)

leading to:

D>(η, η′) =

(
0 0

−ρa(η) 0

)(
vF (η)v

∗
F (η

′) pF (η)v
∗
F (η

′)
vF (η)p

∗
F (η

′) pF (η)p
∗
F (η

′)

)(
0 −ρa(η′)
0 0

)
G(S)(η′, η)

=

(
0 0

−ρa(η)vF (η)v∗F (η′) −ρa(η)pF (η)v∗F (η′)

)(
0 −ρa(η′)
0 0

)
G(S)(η′, η)

= 2

(
0 0
0 ρ2a(η)a(η′)vF (η)v

∗
F (η

′)

)− Im
[
pζ(η)v

∗
ζ (η

′)
]

Im
[
vζ(η)v

∗
ζ (η

′)
]

− Im
[
pζ(η)p

∗
ζ(η

′)
]

Im
[
vζ(η)p

∗
ζ(η

′)
]

= 2

(
0 0

−ρ2a(η)a(η′)vF (η)v∗F (η′) Im
[
pζ(η)p

∗
ζ(η

′)
]

ρ2a(η)a(η′)vF (η)v∗F (η′) Im
[
vζ(η)p

∗
ζ(η

′)
]).

(4.62)

54



So from the definition we see that the master equation coefficients are the following:

∆11(η) = 0,

∆12(η) = ∆21(η) = −2ρ2a(η)
∫ η

η0

dη′a(η′) Im
[
pζ(η)p

∗
ζ(η

′)
]
Im
[
vF (η)v

∗
F (η

′)
]
,

∆22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′) Im
[
vζ(η)p

∗
ζ(η

′)
]
Im
[
vF (η)v

∗
F (η

′)
]
,

D11(η) = 0,

D12(η) = D21(η) = −2ρ2a(η)
∫ η

η0

dη′a(η′) Im
[
pζ(η)p

∗
ζ(η

′)
]
Re
[
vF (η)v

∗
F (η

′)
]
,

D22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′) Im
[
vζ(η)p

∗
ζ(η

′)
]
Re
[
vF (η)v

∗
F (η

′)
]
,

(4.63)

By simple manipulations, using Im z = z−z∗

2i and Re z = z+z∗

2 , we can rewrite:

∆12(η) = −
2ρ2

4i2
a(η)

∫ η

η0

dη′a(η′)
[(
pζ(η)p

∗
ζ(η

′)− p∗ζ(η)pζ(η
′)
)(
vF (η)v

∗
F (η

′)− v∗F (η)vF (η
′)
)]

=
ρ2

2
a(η)

∫ η

η0

dη′a(η′)
[
pζ(η)vF (η)p

∗
ζ(η

′)v∗F (η
′)− pζ(η)v

∗
F (η)p

∗
ζ(η

′)vF (η
′)

− p∗ζ(η)vF (η)pζ(η
′)v∗F (η

′) + p∗ζ(η)v
∗
F (η)pζ(η

′)vF (η
′)
]

=
ρ2

2
a(η)Re

[
pζ(η)vF (η)

∫ η

η0

dη′a(η′)p∗ζ(η
′)v∗F (η

′)

− pζ(η)v
∗
F (η)

∫ η

η0

dη′a(η′)p∗ζ(η
′)vF (η

′) + h.c.
]

= ρ2a(η)Re
[
pζ(η)vF (η)

∫ η

η0

dη′a(η′)p∗ζ(η
′)v∗F (η

′)

− pζ(η)v
∗
F (η)

∫ η

η0

dη′a(η′)p∗ζ(η
′)vF (η

′)
]
.

(4.64)

Now using z = −kη ⇒ η = − z
k = − 1

aH dη = −dz
k ⇒ a(η) = − 1

ηH = k
zH :

∆12(z) = −
ρ2

H2

k

z
Re
[
pζ(η)vF (η)

∫ z

z0

dz′

z′
p∗ζ(η

′)v∗F (η
′)− pζ(η)v

∗
F (η)

∫ z

z0

dz′

z′
p∗ζ(η

′)vF (η
′)
]
,

∆22(η) = 2
ρ2

H2

k

z
Re

[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′)− vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
,

D12(η) =
ρ2

H

k

z
Im

[
pζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + pζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
,

D22(η) = −2
ρ2

H

k

z
Im

[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
(4.65)

where the explicit computation is shown in appendix A.2.
To obtain analytical expressions for the master equation coefficients, we have to compute two integrals.
The first one is:

I1(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′). (4.66)

Inserting the mode functions:

I1(z, z0) =

∫ z

z0

dz′

z′

(
1

2

√
kπz′H

(1)∗
1/2 (z′)

)
︸ ︷︷ ︸

i
√

k
2
e−iz′

(
1

2

√
πz′

k
e−

π
2
µF−iπ

4 H
(1)∗
iµF

(z′)

)

=
i

2

√
π

2
e−

π
2
µF−iπ

4

∫ z

z0

dz′√
z′
e−iz′H

(2)
−iµF

(z′),

(4.67)
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where we used the property of the Hankel function H
(1)∗
α = H

(2)
−α. Working with Mathematica, the

last integral gives:∫ z

z0

dz′√
z′
e−iz′H

(2)
−iµF

(z′) = 2i2−iµF z
1
2
−iµF

0 ×

×

[
z2iµF
0

1

sin(πiµF )

2F2

(
1
2 + iµF ,

1
2 + iµF ;

3
2 + iµF , 1 + 2iµF

)
(−2iz0)

(1 + 2iµF )Γ(1 + iµF )
+

+ 22iµF (cot(πiµF )− i)
2F2

(
1
2 − iµF ,

1
2 − iµF ; 1− 2iµF ,

3
2 − iµF

)
(−2iz0)

(2iµF − 1)Γ(1− iµF )

]
−

− 2i2−iµF z
1
2
−iµF

[
z2iµF

1

sin(πiµF )

2F2(
1
2 + iµF ,

1
2 + iµF ;

3
2 + iµF , 1 + 2iµF )(−2iz)

(2iµF + 1)Γ(1 + iµF )
+

+ 22iµF (cot(πiµF )− i)
2F2(

1
2 − iµF ,

1
2 − iµF ; 1− 2iµF ,

3
2 − iµF )(−2iz)

(2iµF − 1)Γ(1− iµF )

]
,

(4.68)

then using the following trigonometric properties:

sin(πiµF ) = −i sinh(−πµF ) = i sinh(πµF ),

cotx =
cosx

sinx
=

cosh(ix)

−isinh(ix)
= i coth(ix).

(4.69)

So we get:

= 21−iµF

{
z

1
2
−iµF

[
− z2iµF

sinh(πµF )

2F2(
1
2 + iµF ,

1
2 + iµF ;

3
2 + iµF , 1 + 2iµF )(−2iz)

(2iµF + 1)Γ(1 + iµF )
−

− 22iµF (coth(πµF ) + 1)
2F2(

1
2 − iµF ,

1
2 − iµF ;

3
2 − iµF , 1− 2iµF )(−2iz)

(2iµF − 1)Γ(1− iµF )

]
− (z → z0)

}

= 2

{
√
z

[(z
2

)iµF −1
sinh(πµF )

1

Γ(1 + iµF )

1

1 + 2iµF
2F2(

1

2
+ iµF ,

1

2
+ iµF ;

3

2
+ iµF , 1 + 2iµF )(−2iz)+

+
(z
2

)−iµF 1 + coth(πµF )

Γ(1− iµF )

1

1− 2iµF
2F2(

1

2
− iµF ,

1

2
− iµF ;

3

2
− iµF , 1− 2iµF )(−2iz)

]
− (z → z0)

}
.

(4.70)
Now defining the following functions:

γµF (z) ≡
1 + coth(πµF )

Γ(1 + iµF )

(z
2

)iµF
,

δµF (z) ≡
−1

sinh(πµF )

1

Γ(1− iµF )

(z
2

)−iµF
,

gµF (z) ≡
1

1− 2iµF
2F2

(
1

2
− iµF ,

1

2
− iµF ;

3

2
− iµF , 1− 2iµF

)
.

(4.71)

So that ∫ z

z0

dz′√
z′
e−iz′H

(2)
−iµF

(z′) = 2
√
z
[
γ∗µF (z)gµF (z) + δ∗µF (z)g−µF (z)

]
− (z → z0). (4.72)

Then:

I1(z, z0) = FI1(z)− FI1(z0), (4.73)

with

FI1(z) = i

√
π

2
e−

π
2
µF−iπ

4
√
z
[
γ∗µF (z)gµF (z) + δ∗µF (z)g−µF (z)

]
, (4.74)
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where g∗µF (z) = g−µF (−z).
The second integral to compute is:

I2(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′). (4.75)

Inserting the mode functions we get:

I2(z, z0) =
i

2

√
π

2
e−

π
2
µF+iπ

4

∫ z

z0

dz′√
z′
e−iz′H

(1)
iµF

(z′). (4.76)

Again using Mathematica we get:∫ z

z0

dz′√
z′
e−iz′H

(1)
iµF

(z′) = 2
√
z[γµF (z)g−µF (z) + δµF (z)gµF (z)]− (z → z0). (4.77)

So we can write the second integral as:

I2(z, z0) = FI2(z)− FI2(z0), (4.78)

with:

FI2(z) = i

√
π

2
e−

π
2
µF+iπ

4
√
z[γµF (z)g−µF (z) + δµF (z)gµF (z)]. (4.79)

Notice that the master equation coefficients are expressed as an integral between t0 and t, so
they can be formally written as:

D11 = FD11(η, η)− FD11(η, η0), (4.80)

where FD11(η, ·) is the primitive of the integrand appearing in the definition. The second term, the
one depending on the initial time η0 is dubbed “spurious” for several reasons [32].

First, the spurious terms involve a dependence on the initial time η0 and if the environment mem-
ory kernel (4.54) is dominated by contributions around η′ = η, then this contributions get suppressed
with respect to the non-spurious one. This is essentially a Markovian limit, but we are considering a
non-Markovian dynamics, so this argument is not enough to justify the erase of the spurious terms in
our model.

Second, and more important point in our case, in the exact solution we derived in the previous
section, there is no initial time dependence and indeed one can show [32] that the spurious terms
cancel out at all orders in perturbation theory. This is consistent with the fact that, at leading order,
TCL coincides with the exact theory, which contains no spurious terms.

Third, it has been proved [32] that if we solve the transport equation for the covariance matrix
using also the spurious terms, the result quickly blows up, while removing them provides a remarkably
well-behaved result. For all these reasons we will remove by hand the spurious terms in the following.

Thus finally our master equation coefficients are:

∆12(z) = −
ρ2

H2

k

z
Re [pζ(z)vF (z)FI1(z)− pζ(z)v

∗
F (z)FI2(z)],

∆22(z) = 2
ρ2

H2

k

z
Re [vζ(z)vF (z)FI1(z)− vζ(z)v

∗
F (z)FI2(z)],

D12(z) =
ρ2

H2

k

z
Im [pζ(z)vF (z)FI1(z) + pζ(z)v

∗
F (z)FI2(z)],

D22(z) = −2
ρ2

H2

k

z
Im [vζ(z)vF (z)FI1(z) + vζ(z)v

∗
F (z)FI2(z)].

(4.81)
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4.2.3 Perturbative limit

Now we want to compute the previous transport equation in the perturbative limit, keeping only
contributions up to order O(ρ2). This amounts to replace Σ by its free-theory counterpart Σ(0), when
multiplied by ∆ or D (that are already at order O(ρ2)), so we get the following equation:

dΣ(2)

dη
= ωH(S)Σ(2) −Σ(2)H(S)ω + ω∆Σ(0) −Σ(0)∆ω − ωDω + 2∆12Σ

(0), (4.82)

d detΣ(2)

dη
= Tr

(
Σ(0)D

)
+∆12, (4.83)

where we used detΣ(0) = 1
4 .

Explicitly we have:

dΣ
(2)
11

dη
= 2

(
a′

a
Σ
(2)
11 +Σ

(2)
12 + 2∆12Σ

(0)
11 +∆22Σ

(0)
12

)
+D22,

dΣ
(2)
12

dη
= Σ

(2)
22 − k2Σ

(2)
11 +∆22Σ

(0)
22 −D12 + 2∆12Σ

(0)
12 ,

dΣ
(2)
22

dη
= −2

(
k2Σ

(2)
12 +

a′

a
Σ
(2)
22

)
,

(4.84)

and for the detΣ:

d detΣ(2)

dη
= Tr

[(
Σ
(0)
11 Σ

(0)
12

Σ
(0)
12 Σ

(0)
22

)(
0 D12

D12 D22

)]
+∆12 = Tr

(
D12Σ

(0)
12 D12Σ

(0)
11 +D22Σ

(0)
12

D12Σ
(0)
22 D12Σ

(0)
12 +D22Σ

(0)
22

)
+∆12

= 2D12Σ
(0)
12 +D22Σ

(0)
22 +∆12.

(4.85)

So in terms of ln
(

a
a∗

)
≡ t

dΣ
(2)
11

dt
= 2Σ

(2)
11 +

e−t

k

[
2
(
Σ
(2)
12 + 2∆12Σ

(0)
11 +∆22Σ

(0)
12

)
+D22

]
,

dΣ
(2)
12

dt
=

e−t

k

[
Σ
(2)
22 − k2Σ

(2)
11 +∆22Σ

(2)
22 −D12 + 2∆12Σ

(0)
12

]
,

dΣ
(2)
22

dt
= −2Σ(2)

22 − 2ke−tΣ
(2)
12 ,

d detΣ(2)

dt
=

e−t

k

[
2D12Σ

(0)
12 +D22Σ

(0)
22 +∆12

]
.

(4.86)

In figure 4.3 we can see the result obtained using the master equation and its perturbative limit,
compared with the exact result found previously. We see an excellent agreement, in particular the
turning point is well reproduced. Notice that the full master equation solution does not improve
significantly the perturbative result. This is what we expected, since the main non-perturbative effect
is the resummation at late time, but in this case we know that at late time the interaction is quenched
off, so there is no effect to be resummed and the perturbative limit gives almost the same prediction
of the complete master equation.
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Figure 4.3: Same as figure 4.1 and 4.2, with the exact result compared with the full master equation result and
the perturbative limit of the master equation. In this case we use as a scale k = 0.2. The agreement is excellent
and get even better decreasing ρ or increasing m.
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Chapter 5

Non-linear model

In this chapter we will present our original contribution to the quantum-to-classical transition
problem. In the previous part we considered a model describing a system made of the curvature
perturbations which are measurable in the CMB and in the LSS and an environment made of a heavy
scalar field. In that case the interaction was linear, leading to a gaussian dynamics that could be
solved both exactly and with a master equation approach and we observed that both methods give a
good result. In this chapter we want to extend the previous model by adding a non-linear term in the
environment sector and we want to study how the purity is changed by this interaction. This addition
leads to a more realistic model than the previous one and will lead to some form of non-gaussianities
[33]. Our expectation would be that this new term “increases” the interaction between system and
environment, spoiling somehow the recoherence phenomenon and amplifying the decoherence period.
Given the non-linear interaction this model is not solvable exactly and we will rely only on the master
equation approach.

The new interaction term is given by

Lint = µF3 [µ] = E F =
vF
a
. (5.1)

Then the total lagrangian reads:

L =
1

2
v′2ζ +

1

2

(a′
a

)2
v2ζ −

a′

a
v′ζvζ −

1

2
(∂ivζ)

2 +
1

2
v′2F +

1

2

(a′
a

)2
v2F −

a′

a
v′FvF −

1

2
(∂ivF )

2

− 1

2
m2a2v2F + ρavFv

′
ζ − ρa′vζvF +

µ

a3
v3F .

(5.2)

The conjugated momenta are the same of the linear case:

pζ =
∂L
∂v′ζ

= v′ζ −
a′

a
vζ + ρavF → v′ζ = pζ +

a′

a
vζ − ρavF ,

pF =
∂L
∂v′F

= v′F −
a′

a
vF → v′F = pF +

a′

a
vF ,

(5.3)

and the Hamiltonian density gets modified as:

H(vζ , vF , pζ , pF , η) =
1

2
p2ζ +

1

2
p2F +

1

2
(∂ivζ)

2 +
1

2
(∂ivF )

2 +
a′

a
vζpζ − ρavFpζ

+
a′

a
vFpF +

1

2
ρ2a2v2F +

1

2
m2a2v2F −

µ

a3
v3F .

(5.4)

Using the Fourier decomposition for the Mukhanov-Sasaki variable and its conjugate momentum

vα(η,x) =
1

(2π)3/2

∫
d3kvα(η,x)e

ik·x. (5.5)
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The only term different from the linear case is the last one, which after integrating over x (to get the
Hamiltonian) and decomposing in Fourier space becomes:

− µ

a3
1

(2π)9/2

∫
d3x

∫
d3kd3k′d3k′′vF (k)vF (k

′)vF (k
′′)ei(k+k′k′′)·x

= − µ

a3
1

(2π)9/2

∫
d3kd3k′d3k′′vF (k)vF (k

′)vF (k
′′)δ3(k+ k′ + k′′)

= − µ

a3
1

(2π)9/2

∫
d3kd3k′vF (k)vF (k

′)vF (−k− k′).

(5.6)

So the final Hamiltonian (multiplied by 2 and integrated over R3+ due to the reality condition) is:

H = 2

∫
R3+

d3k

[
1

2
pζ(k)pζ(−k) +

1

2
pF (k)pF (−k) +

1

2
k2vζ(k)vζ(−k)

+
1

2
(k2 + (ρ2 +m2)a2)vF (k)vF (−k) +

a′

a
vζ(k)pζ(−k) +

a′

a
vF (k)pF (−k)− ρavF (k)pζ(−k)

− µ

a3
1

(2π)9/2

∫
d3kd3k′vF (k)vF (k

′)vF (−k− k′)

]
.

(5.7)

Now we promote the field variables to quantum operators and in order to work with Hermitian
operators we split the field in real and imaginary parts:

χ̃α =
1√
2
(χ̃R

α + iχ̃I
α), (5.8)

where χ = v, p and α = ζ,F . Then using χ(−k) = χ∗(k) the linear part gives:

H̃linear(t) =
1

2

∑
s=R,I

∫
R3+

d3k(z̃s)TH(t)z̃s, (5.9)

where we used the same notation as equation (4.12). The non-linear part gives:

H̃non-linear(t) = −
µ√
2a3

1

(2π)3/2

∫
d3kd3k′(ṽRF (k, t) + iṽIF (k, t)

)(
ṽRF (k

′, t) + iṽIF (k
′, t)
)

(
ṽRF (k+ k′, t)− iṽIF (k+ k′, t)

)
= − µ√

2a3
1

(2π)3/2

∫
d3kd3k′

[
ṽRF (k, t)ṽ

R
F (k

′, t)ṽRF (k+ k′, t)− iṽRF (k, t)ṽ
R
F (k

′, t)ṽIF (k+ k′, t)+

+ iṽRF (k, t)ṽ
I
F (k

′, t)ṽRF (k+ k′, t) + ṽRF (k, t)ṽ
I
F (k

′, t)ṽIF (k+ k′, t) + iṽIF (k, t)ṽ
R
F (k

′, t)ṽRF (k+ k′, t)+

+ ṽIF (k, t)ṽ
R
F (k

′, t)ṽIF (k+ k′, t)− ṽIF (k, t)ṽ
I
F (k

′, t)ṽRF (k+ k′, t) + iṽIF (k, t)ṽ
I
F (k

′, t)ṽIF (k+ k′, t)
]

= − µ√
2a3

1

(2π)3/2

∫
d3kd3k′

∑
s,q,q̄=R,I

Csqq̄ṽ
s
F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t),

(5.10)
where we defined:

CRRR = 1, CRRI = −i, CRIR = i, CRII = 1, (5.11)

CIRR = i, CIRI = 1, CIIR = −1, CIII = i. (5.12)

So we can write the interaction Hamiltonian as:

H̃int(t) = −
∫

d3kρa(t)
∑
s

ṽsF (k, t)p̃
s
ζ(k, t)−

− µ√
2a3(t)

1

(2π)3/2

∫
d3kd3k′

∑
s,q,q̄

Csqq̄ṽ
s
F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t),
(5.13)
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H̃int(t
′) = −

∫
d3pρa(t′)

∑
l

ṽlF (p, t
′)p̃lζ(p, t

′)−

− µ√
2a3(t′)

1

(2π)3/2

∫
d3pd3p′

∑
l̄,n,n̄

Cl̄nn̄ṽ
l̄,
F (p, t

′)v̂nF (p
′, t′)ṽn̄F (p+ p′, t′).

(5.14)

So, working in perturbation theory, neglecting O(µ2) contributions we get:

H̃int(t)H̃int(t
′) =

∫
d3kd3pρ2a(t)a(t′)

∑
s,l

ṽsF (k, t)p̃
s
ζ(k, t)ṽ

l
F (p, t

′)p̃lζ(p, t
′)+

+

∫
d3kd3p

[
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄ṽ
s
F (k, t)p̃

s
ζ(k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)+

+
ρµa(t′)√
2a3(t)

1

(2π)3/2

∫
d3k′

∑
l,s̄,q,q̄

Cs̄qq̄ṽ
s̄
F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t)ṽlF (p, t
′)p̃lζ(p, t

′)

]
,

(5.15)

H̃int(t
′)H̃int(t) =

∫
d3kd3pρ2a(t)a(t′)

∑
s,l

v̂lF (p, t
′)p̃lζ(p, t

′)ṽsF (k, t)p̃
s
ζ(k, t)+

+

∫
d3kd3p

[
ρµa(t′)√
2a3(t)

1

(2π)3/2

∫
d3k′

∑
l,s̄,q,q̄

Cs̄qq̄ṽ
l
F (p, t

′)p̃lζ(p, t
′)ṽs̄F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t)+

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄ṽ
l̄
F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)p̃

s
ζ(k, t)

]
.

(5.16)
Inserting these results in the TCL2 master equation (the explicit computation is shown in appendix
A.3):

dρ̃red(t)

dt
= −

∫ t

t0

dt′Trε

[
H̃int(t),

[
H̃int(t

′), ρ̃red(t)⊗ ρ̂(0)ε

]]
= −

∫ t

t0

dt′

{∫
d3kd3pρ2a(t)a(t′)

∑
s,l

(
p̃sζ(k, t)p̃

l
ζ(p, t

′)ρ̃red(t) Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
− p̃sζ(k, t)ρ̃red(t)p̃

l
ζ(p, t

′) Trε

[
ṽsF (k, t)ρ̂

(0)
ε ṽlF (p, t

′)
]
− p̃lζ(p, t

′)ρ̃red(t)p̃
s
ζ(k, t) Trε

[
ṽlF (p, t

′)ρ̂(0)ε ṽsF (k, t)
]

+ ρ̃red(t)p̃
l
ζ(p, t

′)p̃sζ(k, t) Trε

[
ρ̂(0)ε ṽlF (p, t

′)ṽsF (k, t)
])

+

∫
d3kd3p

[
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄

(
p̃sζ(k, t)ρ̃red(t) Trε

[
ṽsF (k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)

]
× ṽn̄F (p+ p′, t′)ρ̂(0)ε − p̃sζ(k, t)ρ̃red(t) Trε

[
ṽsF (k, t)ρ̂

(0)
ε ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)

]
− ρ̃red(t)p̃

s
ζ(k, t) Trε

[
ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ρ̂(0)ε ṽsF (k, t)

]
+ ρ̃red(t)p̃

s
ζ(k, t) Trε

[
ρ̂(0)ε ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)

])
(5.17)

63



+
ρµa(t′)√
2a3(t)

1

(2π)3/2

∫
d3k′

∑
l,s̄,q,q̄

Cs̄qq̄

(
p̃lζ(p, t

′)ρ̃red(t) Trε

[
ṽs̄F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t)ṽlF (p, t
′)ρ̂(0)ε

]
− ρ̃red(t)p̃

l
ζ(p, t

′) Trε

[
ṽs̄F (k, t)ṽ

q
F (k

′, t)ṽq̄F (k+ k′, t)ρ̂(0)ε ṽlF (p, t
′)
]

− p̃lζ(p, t
′)ρ̃red(t) Trε

[
ṽlF (p, t

′)ρ̂(0)ε ṽs̄F (k, t)ṽ
q
F (k

′, t)ṽq̄F (k+ k′, t)
]

+ ρ̃red(t)p̃
l
ζ(p, t

′) Trε

[
ρ̂(0)ε ṽlF (p, t

′)ṽs̄F (k, t)ṽ
q
F (k

′, t)ṽq̄F (k+ k′, t)
])]}

.

(5.18)

Using the cyclicity of the trace the term inside the last round brackets vanishes and we finally
get:

dρ̃red(t)

dt
= −

∫ t

t0

dt′

{∫
d3kd3pρ2a(t)a(t′)

∑
s,l

(
p̃sζ(k, t)p̃

l
ζ(p, t

′)ρ̃red(t) Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
− p̃sζ(k, t)ρ̃red(t)p̃

l
ζ(p, t

′) Trε

[
ṽlF (p, t

′)ṽsF (k, t)ρ̂
(0)
ε

]
− p̃lζ(p, t

′)ρ̃red(t)p̃
s
ζ(k, t) Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
+ ρ̂red(t)p̃

l
ζ(p, t

′)p̃sζ(k, t) Trε

[
ṽlF (p, t

′)ṽsF (k, t)ρ̂
(0)
ε

])

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3kd3p

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄(
p̃sζ(k, t)ρ̃red(t) Trε

[
ṽsF (k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)

]
ṽn̄F (p+ p′, t′)ρ̂(0)ε

− p̃sζ(k, t)ρ̃red(t) Trε

[
ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)ρ̂

(0)
ε

]
− ρ̃red(t)p̃

s
ζ(k, t) Trε

[
ṽsF (k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ρ̂(0)ε

]
+ ρ̃red(t)p̃

s
ζ(k, t) Trε

[
ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)ρ̂

(0)
ε

])}

= −
∫ t

t0

dt′

{∫
d3kd3pρ2a(t)a(t′)

∑
s,l[(

p̃sζ(k, t)p̃
l
ζ(p, t

′)ρ̃red(t)− p̃lζ(p, t
′)ρ̃red(t)p̃

s
ζ(k, t)

)
Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
−
(
p̃sζ(k, t)ρ̃red(t)p̃

l
ζ(p, t

′)− ρ̂red(t)p̃
l
ζ(p, t

′)p̃sζ(k, t)
)
Trε

[
ṽlF (p, t

′)ṽsF (k, t)ρ̂
(0)
ε

]]

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3kd3p

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄

[
p̃sζ(k, t), ρ̃red(t)

]
(
Trε

[
ṽsF (k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ρ̂(0)ε

]
− Trε

[
ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)ρ̂

(0)
ε

])
.

(5.19)
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In order to compact our equation let us define the following quantities:

Dsl
kp(t, t

′) ≡ Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
,

Dls
pk(t

′, t) ≡ Trε

[
ṽlF (p, t

′)ṽsF (k, t)ρ̂
(0)
ε

]
,

Dsl̄nn̄
kpp′p+p′(t, t

′, t′, t′) ≡ Trε

[
ṽsF (k, t)ṽ

l̄
F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ρ̂(0)ε

]
,

Dl̄nn̄s
pp′p+p′k(t

′, t′, t′, t) ≡ Trε

[
ṽ l̄F (p, t

′)ṽnF (p
′, t′)ṽn̄F (p+ p′, t′)ṽsF (k, t)ρ̂

(0)
ε

]
.

(5.20)

These quantities are 2-point and 4-point functions of the environment.
Then the master equation gets rewritten as:

dρ̃red(t)

dt
= −

∫ t

t0

dt′

{∫
d3kd3pρ2a(t)a(t′)

∑
s,l[(

p̃sζ(k, t)p̃
l
ζ(p, t

′)ρ̃red(t)− p̃lζ(p, t
′)ρ̃red(t)p̃

s
ζ(k, t)

)
Dsl

kp(t, t
′)

−
(
p̃sζ(k, t)ρ̃red(t)p̃

l
ζ(p, t

′)− ρ̂red(t)p̃
l
ζ(p, t

′)p̃sζ(k, t)
)
Dls

pk(t
′, t)

]

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3kd3p

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄

[
p̃sζ(k, t), ρ̃red(t)

]
(
Dsl̄nn̄

kpp′p+p′(t, t
′, t′, t′)−Dl̄nn̄s

pp′p+p′k(t
′, t′, t′, t)

)
.

(5.21)

Now using the decomposition in creation and annihilation operators, ṽF (k, t) = vF (k, t)âF (k) +

v∗F (k, t)â
†
F (k) (in our case we are working separately with real and imaginary part, so vs∗F = vsF )

and using the Bunch-Davies vacuum for the environment (annihilated by âF ) we can compute the
quantities we just defined:

Dsl
kp(t, t

′) = Trε

[
ṽsF (k, t)ṽ

l
F (p, t

′)ρ̂(0)ε

]
= Trε

[
ṽlF (p, t

′)ρ̂(0)ε ṽsF (k, t)
]

= Trε

[
vlF (p, t

′)
(
âlF (p) + âl†F (p)

)
|0⟩ ⟨0| vsF (k, t)

(
âsF (k) + âs†F (k)

)]
= vlF (p, t

′)vsF (k, t)δlsδ
3(k− p) Trε (|1⟩ ⟨1|)︸ ︷︷ ︸

1

= vlF (p, t
′)vsF (k, t)δlsδ

3(k− p),

Dls
pk(t

′, t) = Trε

[
ṽsF (k, t)ρ̂

(0)
ε ṽlF (p, t

′)
]
= vsF (k, t)v

l
F (p, t

′)δlsδ
3(k− p),

(5.22)

Dsl̄nn̄
kpp′p+p′(t, t

′, t′, t′) = Trε

[
ṽnF (p

′, t′)ṽn̄F (p+ p′, t′)ρ̂(0)ε ṽsF (k, t)ṽ
l̄
F (p, t

′)
]

= Trε

[
vnF (p

′, t′)(ânF (p
′) + ân†F (p′))vn̄F (p+ p′, t′)(ân̄F (p+ p′) + ân̄†F (p+ p′))

|0⟩ ⟨0| vsF (k, t)(âsF (k) + âs†F (k))v l̄F (p, t
′)(âl̄F (p) + âl̄†F (p))

]
= Trε

[
vnF (p

′, t′)vn̄F (p+ p′, t′)ânF (p
′)ân̄†F (p+ p′) |0⟩ ⟨0| vsF (k, t)v l̄F (p, t′)âsF (k)â

l̄†
F (p)

]
+Trε

[
vnF (p

′, t′)vn̄F (p+ p′, t′)ân†F (p′)ân̄†F (p+ p′) |0⟩ ⟨0| vsF (k, t)v l̄F (p, t′)âsF (k)âl̄F (p)
]
.

(5.23)

In the first trace the only possibility is that ân̄†F (p+p′) and ânF (p
′) respectively create and annihilate

the same particle, while in the second trace we can have a 2-particle state or two different 1-particle
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state. For this reason we need to distinguish different cases:

Dsl̄nn̄
kpp′p+p′(t, t

′, t′, t′) = vnF (p′, t′)vn̄F (p+p′, t′)vsF (k, t)vl̄F (p, t′)


δnn̄δsl̄δ3(p)δ3(k− p) + δnn̄δsl̄δsnδ3(p)δ3(k− p)δ3(k− p′)

δnn̄δsl̄δ3(k− p) + δsn̄δl̄nδ3(k− p− p′)δ3(p− p′)

δnn̄δsl̄δ3(k− p) + δn̄l̄δsnδ3(k− p′)δ3(p′)

(5.24)

where we used Trε (|1, 1⟩ ⟨1, 1|) = Trε (|2⟩ ⟨2|) = 1.
Analogously:

Dl̄nn̄s
pp′p+p′k(t

′, t′, t′, t) = vnF (p′, t′)vn̄F (p+p′, t′)vsF (k, t)vl̄F (p, t′)


δsn̄δnl̄δ3(k− p− p′)δ3(p− p′) + δsn̄δnl̄δsnδ3(k− p− p′)δ3(p− p′)δ3(k− p′)

δsn̄δnl̄δ3(k− p− p′)δ3(p− p′) + δsnδn̄l̄δ3(k− p′)δ3(p′)

δsn̄δnl̄δ3(k− p− p′)δ3(p− p′) + δsl̄δnn̄δ3(k− p)δ3(p)

(5.25)

Now, let us focus the first combination of delta, as we will see the result is the same for the other
combinations, and replacing in the master equation we get:

dρ̃red(t)

dt
= −

∫ t

t0

dt′
{∫

d3kd3pρ2a(t)a(t′)
∑
s,l

[(
p̃sζ(k, t)p̃

l
ζ(p, t

′)ρ̃red(t)− p̃lζ(p, t
′)ρ̃red(t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃red(t)p̃

l
ζ(p, t

′)

− ρ̂red(t)p̃
l
ζ(p, t

′)p̃sζ(k, t)
)
vsF (k, t)vlF (p, t′)δlsδ

3(k− p)
]
+

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3kd3p

∫
d3p′

∑
s,l̄,n,n̄

Cl̄nn̄

[
p̃sζ(k, t), ρ̃red(t)

]
×

× vnF (p′, t′)vn̄F (p+ p′, t′)vsF (k, t)vl̄F (p, t′)
(
δnn̄δsl̄δ3(p)δ3(k− p) + δnn̄δsl̄δsnδ3(p)δ3(k− p)δ3(k− p′)

− δsn̄δnl̄δ3(k− p− p′)δ3(p− p′)− δsn̄δnl̄δsnδ3(k− p− p′)δ3(p− p′)δ3(k− p′)
)

= −
∫ t

t0

dt′
{∫

d3kρ2a(t)a(t′)
∑
s

[(
p̃sζ(k, t)p̃

s
ζ(k, t

′)ρ̃red(t)− p̃sζ(k, t
′)ρ̃red(t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t

′)

− ρ̂red(t)p̃
s
ζ(k, t

′)p̃sζ(k, t)
)
vsF (k, t)vsF (k, t′)

]

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

[∫
d3p′

∑
s,n

Csnn

[
p̃sζ(0, t), ρ̃red(t)

]
vnF (p′, t′)vnF (p′, t′)vsF (0, t)vsF (0, t′)

+
∑
s

Csss

[
p̃sζ(0, t), p̃

s
ζ(0, t), ρ̃red(t)

][
vsF (0, t′)

]3
vsF (0, t)

−
∫

d3p
∑
s,n

Cnns

[
p̃sζ(2p, t), ρ̃red(t)

]
vsF (2p, t′)vsF (2p, t)vnF (p, t′)vnF (p, t′)

−
∑
s

Csss

[
p̃sζ(0, t), p̃

s
ζ(0, t), ρ̃red(t)

][
vsF (0, t′)

]3
vsF (0, t)

]}
.

(5.26)

Renaming indexes and momenta we get:

dρ̃red(t)

dt
= −

∫ t

t0

dt′

{∫
d3kρ2a(t)a(t′)

∑
s

[(
p̃sζ(k, t)p̃

s
ζ(k, t

′)ρ̃red(t)− p̃sζ(k, t
′)ρ̃red(t)p̃

s
ζ(k, t)

− p̃sζ(k, t)ρ̃red(t)p̃
s
ζ(k, t

′)− ρ̂red(t)p̃
s
ζ(k, t

′)p̃sζ(k, t)
)
vsF (k, t)v

s
F (k, t

′)

]

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3k

∑
s,n

[
Csnn

[
p̃sζ(0, t), ρ̃red(t)

]
vnF (k, t

′)vnF (k, t
′)vsF (0, t)v

s
F (0, t

′)

− Cnns

[
p̃sζ(2k, t), ρ̃red(t)

]
vsF (2k, t

′)vsF (2k, t)v
n
F (k, t

′)vnF (k, t
′)
]}

.

(5.27)

Now we want to express the operators computed in t′ in terms of t using:

z̃ζ(t
′) = G(S)(t′, t)z̃ζ(t), (5.28)
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(
ṽζ(t

′)
p̃ζ(t

′)

)
=

(
G

(S)
11 (t′, t) G

(S)
12 (t′, t)

G
(S)
12 (t′, t) G

(S)
22 (t′, t)

)(
ṽζ(t)
p̃ζ(t)

)
, (5.29)

ṽζ(t
′) = G

(S)
11 (t′, t)ṽζ(t) +G

(S)
12 (t′, t)p̃ζ(t), (5.30)

p̃ζ(t
′) = G

(S)
12 (t′, t)ṽζ(t) +G

(S)
22 (t′, t)p̃ζ(t). (5.31)

So the first term of the master equation gets modified as:

[
p̃sζ(k, t)

(
G

(S)
12 (t′, t)ṽsζ(k, t) +G

(S)
22 (t′, t)p̃sζ(k, t)

)
ρ̃red(t)

−
(
G

(S)
12 (t′, t)ṽsζ(k, t) +G

(S)
22 (t′, t)p̃sζ(k, t)

)
ρ̃red(t)p̃

s
ζ(k, t)

− p̃sζ(k, t)ρ̃red(t)
(
G

(S)
12 (t′, t)ṽsζ(k, t) +G

(S)
22 (t′, t)p̃sζ(k, t)

)
+ ρ̃red(t)

(
G

(S)
12 (t′, t)ṽsζ(k, t) +G

(S)
22 (t′, t)p̃sζ(k, t)

)
p̃sζ(k, t)

]
vsF (k, t)v

s
F (k, t

′)

=
[
G

(S)
12 (t′, t)p̃sζ(k, t)ṽ

s
ζ(k, t)ρ̃red(t) +G

(S)
22 (t′, t)p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)

−G
(S)
12 (t′, t)ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)−G

(S)
22 (t′, t)p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

−G
(S)
12 (t′, t)p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t) +G

(S)
22 (t′, t)p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

−G
(S)
12 (t′, t)ρ̃red(t)ṽ

s
ζ(k, t)p̃

s
ζ(k, t)−G

(S)
22 (t′, t)ρ̃red(t)p̃

s
ζ(k, t)p̃

s
ζ(k, t)

]
vsF (k, t)v

s
F (k, t

′)

=
{[

p̃sζ(k, t)ṽ
s
ζ(k, t)ρ̃red(t)− ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
12 (t′, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
22 (t′, t)

−
[
ρ̃red(t)ṽ

s
ζ(k, t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t)

]
G

(S)
12 (t′, t)

−
[
ρ̃red(t)p̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
22 (t′, t)

}
vsF (k, t

′)vsF (k, t).

(5.32)

So our master equation becomes:

dρ̃red(t)

dt
= −

∫ t

t0

dt′

{∫
d3kρ2a(t)a(t′)

∑
s[[

p̃sζ(k, t)ṽ
s
ζ(k, t)ρ̃red(t)− ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
12 (t′, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
22 (t′, t)

−
[
ρ̃red(t)ṽ

s
ζ(k, t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t)

]
G

(S)
12 (t′, t)

−
[
ρ̃red(t)p̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
G

(S)
22 (t′, t)

]
vsF (k, t

′)vsF (k, t)

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∫
d3k

∑
s,n

[
Csnn

[
p̃sζ(0, t), ρ̃red(t)

]
vnF (k, t

′)vnF (k, t
′)vsF (0, t)v

s
F (0, t

′)

− Cnns

[
p̃sζ(2k, t), ρ̃red(t)

]
vsF (2k, t

′)vsF (2k, t)v
n
F (k, t

′)vnF (k, t
′)
]}

.

(5.33)
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Then:

dρ̃red(t)

dt
= −

∫
d3k

{
ρ2a(t)

∑
s

[
p̃sζ(k, t)ṽ

s
ζ(k, t)ρ̃red(t)− ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

− ρ̃red(t)ṽ
s
ζ(k, t)p̃

s
ζ(k, t) + p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t)

]
vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
12 (t′, t)vsF (k, t

′)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

− ρ̃red(t)p̃
s
ζ(k, t)p̃

s
ζ(k, t)ρ̃red(t) + p̃sζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

]
vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
22 (t′, t)vsF (k, t

′)

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∑
s,n

[
Cnns

[
p̃sζ(2k, t), ρ̃red(t)

](
−vsF (2k, t)

∫ t

t0

dt′vsF (2k, t
′)vnF (k, t

′)vnF (k, t
′)

)

+ Csnn

[
p̃sζ(0, t), ρ̃red(t)

](
vsF (0, t)

∫ t

t0

dt′vsF (0, t
′)vnF (k, t

′)vnF (k, t
′)

)]}

= −
∫

d3k

{
ρ2a(t)

∑
s

[
p̃sζ(k, t)ṽ

s
ζ(k, t)ρ̃red(t)− ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

− ρ̃red(t)ṽ
s
ζ(k, t)p̃

s
ζ(k, t) + p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t)

]
vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
12 (t′, t)vsF (k, t

′)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− ρ̃red(t)p̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)

]
vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
22 (t′, t)vsF (k, t

′)

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∑
s,n

[
Cnns

[
p̃sζ(2k, t), ρ̃red(t)

](
−vsF (2k, t)

∫ t

t0

dt′vsF (2k, t
′)vnF (k, t

′)vnF (k, t
′)

)

+ Csnn

[
p̃sζ(0, t), ρ̃red(t)

](
vsF (0, t)

∫ t

t0

dt′vsF (0, t
′)vnF (k, t

′)vnF (k, t
′)

)]}
.

(5.34)
Now if we define:

Ds
1(k, t) = vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
12 (t′, t)vsF (k, t

′),

Ds
2(k, t) = vsF (k, t)

∫ t

t0

dt′a(t′)G
(S)
22 (t′, t)vsF (k, t

′),

Dsn
3 (k, t) = vsF (2k, t)

∫ t

t0

dt′
1

a3(t′)
vsF (2k, t

′)vnF (k, t
′)vnF (k, t

′),

Dsn
4 (k, t) = vsF (0, t)

∫ t

t0

dt′
1

a3(t′)
vsF (0, t

′)vnF (k, t
′)vnF (k, t

′),

(5.35)

we finally get:

dρ̃red(t)

dt
= −

∫
d3k

{
ρ2a(t)

∑
s

[
p̃sζ(k, t)ṽ

s
ζ(k, t)ρ̃red(t)− ṽsζ(k, t)ρ̃red(t)p̃

s
ζ(k, t)

− ρ̃red(t)ṽ
s
ζ(k, t)p̃

s
ζ(k, t) + p̃sζ(k, t)ρ̃red(t)ṽ

s
ζ(k, t)

]
Ds

1(k, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃red(t)− ρ̃red(t)p̃

s
ζ(k, t)p̃

s
ζ(k, t)

]
Ds

2(k, t)

+
ρµa(t)√
2a3(t′)

1

(2π)3/2

∑
s,n

[
Csnn

[
p̃sζ(0, t), ρ̃red(t)

]
Dsn

4 (k, t)− Cnns

[
p̃sζ(2k, t), ρ̃red(t)

]
Dsn

3 (k, t)

]}
.

(5.36)
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5.1 Linear part

Now following the reasoning of [28] we define the following effective density matrix:

ρ̂sk = Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} ρ̂red(t) ⇒ γ = Tr{s
k

} (ρ̂s2k ), (5.37)

and using the linearity of the trace operator we get:

dγ

dt
=

d

dt
Tr{s

k

} (ρ̂s2k ) = 2Tr{s
k

} [ρ̂skTr{ s′

k′ ̸= k

}
,
{

s̄
k

}(dρ̂red(t)

dt

)]
. (5.38)

Let us focus on the last trace and replace the linear term of the master equation:

Tr{ s′

k′ ̸= k

}
,

{
s̄
k

}(dρ̂red(t)

dt

)
= −ρ2a(t)

∫
d3k1

∑
r

Tr{ s′

k′ ̸= k

}
,

{
s̄
k

}
{[

p̃rζ(k1, t)ṽ
r
ζ(k1, t)ρ̃red(t)− ṽrζ(k1, t)ρ̃red(t)p̃

r
ζ(k1, t)

+ ρ̃red(t)ṽ
r
ζ(k1, t)p̃

r
ζ(k1, t)− p̃rζ(k1, t)ρ̃red(t)ṽ

r
ζ(k1, t)

]
Ds

1(k1, t)

+
[
p̃rζ(k1, t)p̃

r
ζ(k1, t)ρ̃red(t) + ρ̃red(t)p̃

r
ζ(k1, t)p̃

r
ζ(k1, t)ρ̃red(t)− 2p̃rζ(k1, t)ρ̃red(t)p̃

r
ζ(k1, t)

]
Dr

2(k1, t)

}
.

(5.39)

At leading order in ρ2 we can factorize ρ̃red(t) =
∏

k

∏
s ρ̃

s
k. If k ̸= k1 we can remove ρ̃sk from

(5.38), getting a full trace instead of a partial trace and we get zero. So the only possibility is that
k = k1 and we can factorize ρ̃red(t) = ρ̃skρ̃

s̄
k, so we obtain:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}(dρ̂red(t)

dt

)
= −ρ2a(t)

∫
d3kδ3(k− k1) Tr{s̄

k

} [p̃sζ(k, t)ṽsζ(k, t)ρ̃skρ̃s̄k − ṽsζ(k, t)ρ̃
s
kρ̃

s̄
kp̃

s
ζ(k, t)

+ ρ̃skρ̃
s̄
kṽ

s
ζ(k, t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃

s
kρ̃

s̄
kṽ

s
ζ(k, t)

]
Ds

1(k, t)

+
[
p̃s̄ζ(k, t)ṽ

s̄
ζ(k, t)ρ̃

s
kρ̃

s̄
k − ṽs̄ζ(k, t)ρ̃

s
kρ̃

s̄
kp̃

s̄
ζ(k, t)

+ ρ̃skρ̃
s̄
kṽ

s̄
ζ(k, t)p̃

s̄
ζ(k, t)− p̃s̄ζ(k, t)ρ̃

s
kρ̃

s̄
kṽ

s̄
ζ(k, t)

]
Ds̄

1(k, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃

s
kρ̃

s̄
k + ρ̃skρ̃

s̄
kp̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃

s
kρ̃

s̄
k − 2p̃sζ(k, t)ρ̃

s
kρ̃

s̄
kp̃

s
ζ(k, t)

]
Ds

2(k, t)

+
[
p̃s̄ζ(k, t)p̃

s̄
ζ(k, t)ρ̃

s
kρ̃

s̄
k + ρ̃skρ̃

s̄
kp̃

s̄
ζ(k, t)p̃

s̄
ζ(k, t)ρ̃

s
kρ̃

s̄
k − 2p̃s̄ζ(k, t)ρ̃

s
kρ̃

s̄
kp̃

s̄
ζ(k, t)

]
Ds̄

2(k, t).

(5.40)
Using Tr{s̄

k

} (ρ̃sk) = 1 we obtain:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}(dρ̂red(t)

dt

)
= −ρ2a(t)

[
p̃sζ(k, t)ṽ

s
ζ(k, t)ρ̃

s
k − ṽsζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

+ ρ̃skṽ
s
ζ(k, t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃

s
kṽ

s
ζ(k, t)

]
Ds

1(k, t)

+
[
ρ̃skTr

{
s̄
k

} (p̃s̄ζ(k, t)ṽs̄ζ(k, t)ρ̃s̄k)− ρ̃skTr
{

s̄
k

} (ṽs̄ζ(k, t)ρ̃s̄kp̃s̄ζ(k, t))
+ ρ̃skTr

{
s̄
k

} (ρ̃s̄kṽs̄ζ(k, t)p̃s̄ζ(k, t))− ρ̃skTr
{

s̄
k

} (p̃s̄ζ(k, t)ρ̃s̄kṽs̄ζ(k, t))]Ds̄
1(k, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃

s
k + ρ̃skp̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃

s
k − 2p̃sζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

]
Ds

2(k, t)

+
[
ρ̃skTr

{
s̄
k

} (p̃s̄ζ(k, t)p̃s̄ζ(k, t)ρ̃s̄k)+ ρ̃skTr
{

s̄
k

} (ρ̃s̄kp̃s̄ζ(k, t)p̃s̄ζ(k, t))− 2ρ̃skTr
{

s̄
k

} (p̃s̄ζ(k, t)ρ̃s̄kp̃s̄ζ(k, t))]Ds̄
2(k, t)

= −ρ2a(t)
{[

p̃sζ(k, t)
[
ṽsζ(k, t), ρ̃

s
k

]
−
[
ṽsζ(k, t), ρ̃

s
k

]
p̃sζ(k, t)

]
Ds

1(k, t)

+
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃

s
k + ρ̃skp̃

s
ζ(k, t)p̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)− p̃sζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

]
Ds

2(k, t)
}

= −ρ2a(t)
{[

p̃sζ(k, t),
[
ṽsζ(k, t), ρ̃

s
k

]]
Ds

1(k, t) +
[
p̃sζ(k, t),

[
p̃sζ(k, t), ρ̃

s
k

]]
Ds

2(k, t)
}
.

(5.41)
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Putting this result in the equation for the purity (5.38):

d

dt
Tr{s

k

} (ρ̂s2k ) = −2ρ2a(t) Tr{s
k

}
{[

ρ̃skp̃
s
ζ(k, t)ṽ

s
ζ(k, t)ρ̃

s
k − ρ̃skṽ

s
ζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

+ ρ̃skρ̃
s
kṽ

s
ζ(k, t)p̃

s
ζ(k, t)− ρ̃skp̃

s
ζ(k, t)ρ̃

s
kṽ

s
ζ(k, t)

]
Ds

1(k, t)

+
[
ρ̃skp̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃

s
k + ρ̃skρ̃

s
kp̃

s
ζ(k, t)p̃

s
ζ(k, t)ρ̃

s
k − 2ρ̃skp̃

s
ζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

]
Ds

2(k, t)

}

= −2ρ2a(t) Tr{s
k

}
{[

ρ̃skρ̃
s
kp̃

s
ζ(k, t)ṽ

s
ζ(k, t)− ρ̃skṽ

s
ζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)

+ ρ̃skρ̃
s
kṽ

s
ζ(k, t)p̃

s
ζ(k, t)− ρ̃skp̃

s
ζ(k, t)ρ̃

s
kṽ

s
ζ(k, t)

]
Ds

1(k, t)

+ 2
[
p̃sζ(k, t)p̃

s
ζ(k, t)ρ̃

s
kρ̃

s
k − p̃sζ(k, t)ρ̃

s
kp̃

s
ζ(k, t)ρ̃

s
k

]
Ds

2(k, t)

}
= −2ρ2a(t) Tr{s

k

} {[ρ̃sk[ρ̃sk, ṽsζ(k, t)]p̃sζ(k, t) + ρ̃sk
[
ρ̃sk, p̃

s
ζ(k, t)

]
ṽsζ(k, t)

]
Ds

1(k, t)

+ 2ρ̃sk
[
ρ̃sk, p̃

s
ζ(k, t)

]
p̃sζ(k, t)D

s
2(k, t)

}
.

(5.42)
Then using the expression that was shown in [28]:

Tr
(
ρ̃sk
[
ρ̃sk, ṽ

s
ζ(k, t)

]
ṽsζ(k, t)

)
= Pvv(k), (5.43)

and generalizing it as

Tr
(
ρ̃sk
[
ρ̃sk, χ̃

s
ζ(k, t)

]
χ̃s
ζ(k, t)

)
= Pχχ(k), (5.44)

with χ̃s
ζ = ṽsζ , p̃

s
ζ . Finally we find:

dγ

dt
=

d

dt
Tr{s

k

} (ρ̂s2k ) = −2ρ2a(t)[(Pvp + Ppv)D
s
1(k, t) + 2PppD

s
2(k, t)], (5.45)

which can be integrated to find:

γ = −2ρ2
∫ z

−∞

k

z′H
[(Pvp + Ppv)D

s
1(k, t) + 2PppD

s
2(k, t)]. (5.46)

This is the evolution of the purity considering only the linear interaction term ζ ′F . It would be
interesting to compute this integral and compare the resulting purity evolution with figure (4.1) and
(4.2), in order to verify the goodness of our result, which was computed with a different method with
respect to the one used in [8]. We are trying to perform this computation but in this moment we have
some numerical issues.
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5.2 Non-linear part

Let us now replace the non-linear part of the master equation in the trace within the equation
for the purity (5.38):

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}(dρ̃red
dt

)
= − ρµa(t)√

2(2π)3/2

∫
d3k1

∑
r,n

{
Crnn

[
p̃rζ(0, t), ρ̃red(t)

]
Drn

4 (k1, t)

− Cnnr

[
p̃rζ(2k1, t), ρ̃red(t)

]
Drn

3 (k1, t)
}

= − ρµa(t)√
2(2π)3/2

∫
d3k1

∑
r

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} {(p̃rζ(0, t)ρ̃red(t)− ρ̃red(t)p̃
r
ζ(0, t)

)
×∑

n

CrnnD
rn
4 (k1, t)−

(
p̃rζ(2k1, t)ρ̃red(t)− ρ̃red(t)p̃

r
ζ(2k1, t)

)∑
n

CnnrD
rn
3 (k1, t)

}
= − ρµa(t)√

2(2π)3/2

∫
d3k1Tr{ s′

k′ ̸= k

}
,
{

s̄
k

} {(p̃rζ(0, t)ρ̃red(t)− ρ̃red(t)p̃
r
ζ(0, t)

)
CrnnD

rn
4 (k1, t)

+
(
p̃rζ(0, t)ρ̃red(t)− ρ̃red(t)p̃

r
ζ(0, t)

)
Crn̄n̄D

rn̄
4 (k1, t)

+
(
p̃r̄ζ(0, t)ρ̃red(t)− ρ̃red(t)p̃

r̄
ζ(0, t)

)
Cr̄nnD

r̄n
4 (k1, t)

+
(
p̃r̄ζ(0, t)ρ̃red(t)− ρ̃red(t)p̃

r̄
ζ(0, t)

)
Cr̄n̄n̄D

r̄n̄
4 (k1, t)

−
(
p̃rζ(2k1, t)ρ̃red(t)− ρ̃red(t)p̃

r
ζ(2k1, t)

)
CnnrD

rn
3 (k1, t)

−
(
p̃rζ(2k1, t)ρ̃red(t)− ρ̃red(t)p̃

r
ζ(2k1, t)

)
Cn̄n̄rD

rn̄
3 (k1, t)

−
(
p̃r̄ζ(2k1, t)ρ̃red(t)− ρ̃red(t)p̃

r̄
ζ(2k1, t)

)
Cnnr̄D

r̄n
3 (k1, t)

−
(
p̃r̄ζ(2k1, t)ρ̃red(t)− ρ̃red(t)p̃

r̄
ζ(2k1, t)

)
Cn̄n̄r̄D

r̄n̄
3 (k1, t)

}
.

(5.47)

Now following the reasoning of [28], if k ̸= 0,k1,k2 we get a full trace instead of a partial trace,
so we get zero. Consider now the possible cases:

1. k = 0 ̸= k1 ̸= 2k1 :
so k′ = k1,k2 with k2 ≡ 2k1. At linear order in ρ we can factorize:

ρ̃red(t) = ρ̃r0ρ̃
r̄
0ρ̃

r
k1
ρ̃r̄k1

ρ̃rk2
ρ̃r̄k2

. (5.48)

Then:

Tr{ s′

k′ ̸= k

}
,
{

s̄
k

}(dρ̃red
dt

)
= − ρµa(t)√

2(2π)3/2

∫
d3k1δ

3(k) Tr{s, s̄
k1

}
,
{
s, s̄
k2

}
,
{
s̄
0

}×
×
{(

p̃sζ(0, t)ρ̃
s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃sζ(0, t)
)
CsnnD

sn
4 (k1, t)

+
(
p̃sζ(0, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃sζ(0, t)
)
Csn̄n̄D

sn̄
4 (k1, t)

+
(
p̃s̄ζ(0, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃s̄ζ(0, t)
)
Cs̄nnD

s̄n
4 (k1, t)

+
(
p̃s̄ζ(0, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃s̄ζ(0, t)
)
Cs̄n̄n̄D

s̄n̄
4 (k1, t)

−
(
p̃sζ(k2, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃sζ(k2, t)
)
CnnsD

sn
3 (k1, t)

−
(
p̃sζ(k2, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃sζ(k2, t)
)
Cn̄n̄sD

sn̄
3 (k1, t)

−
(
p̃s̄ζ(k2, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃s̄ζ(k2, t)
)
Cnns̄D

s̄n
3 (k1, t)

−
(
p̃s̄ζ(k2, t)ρ̃

s
0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2
− ρ̃s0ρ̃

s̄
0ρ̃

s
k1
ρ̃s̄k1

ρ̃sk2
ρ̃s̄k2

p̃s̄ζ(k2, t)
)
Cn̄n̄s̄D

s̄n̄
3 (k1, t)

}
.

(5.49)
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Acting with the trace:
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k′ ̸= k

}
,
{

s̄
k

}(dρ̃red
dt

)
= − ρµa(t)√

2(2π)3/2

∫
d3k1δ

3(k)

{(
p̃sζ(0, t)ρ̃

s
0 − ρ̃s0p̃

s
ζ(0, t)

)
CsnnDsn

4 (k1, t)

+
(
p̃sζ(0, t)ρ̃

s
0 − ρ̃s0p̃

s
ζ(0, t)

)
Csn̄n̄Dsn̄

4 (k1, t)

+

(
ρ̃s0Tr

{
s̄
0

} (p̃s̄ζ(0, t)ρ̃s̄0)− ρ̃s0Tr
{
s̄
0

} (ρ̃s̄0p̃s̄ζ(0, t)))︸ ︷︷ ︸
0

+ . . .︸︷︷︸
0

}

= − ρµa(t)√
2(2π)3/2

∫
d3k1δ

3(k)
{[

p̃sζ(0, t), ρ̃
s
0

](
CsnnD

sn
4 (k1, t)− Csn̄n̄D

sn̄
4 (k1, t)

)}
,

(5.50)
Putting this result inside the equation for the purity we obtain:
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(5.51)

where we get zero because of the ciclicity of the trace and the dots represent other contributions
similar to the last one that give zero as well.

2. k = k1 ̸= 0 ̸= k2

so k′ = 0,k2 and at linear order in ρ we can factorize the reduced density matrix as in (5.48).
Then:
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(5.52)
where using the ciclicity of the trace the term we wrote down disappears and the dots represent
other contributions similar to the previous one which go to zero.

3. k = k2 ̸= 0 ̸= k1

The computation is analogous to the case 1 and gives zero as well.

4. k = k1 = k2 = 0
In this case the only trace that survives is the trace Tr{s̄

0

} and the reduced density matrix can
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be factorized as:
ρ̃red(t) = ρ̃s0ρ̃

s̄
0. (5.53)

Then:
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(5.54)
Replacing this expression in the equation for the purity we obtain:
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(5.55)

The same result is obtained if we consider all the other combinations of Dirac delta contained in
(5.24) and (5.25) because the reason why every term goes to zero is the presence of the commutator,
together with the ciclicity property of the trace.

We found that the non-linear part does not affect the evolution of the purity. This result is not
what we expected naively at the beginning of this work, since, as we explained at the beginning of this
chapter, we expected that the non-linear interaction would have spoiled the perfect recoherence we
observe in the linear model, favouring the decoherence. Instead we found that the new interaction has
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no effect on the quantum properties of the system. There are at least two ways to physically interpret
this result: the first one is simply that the new interaction is a self interaction in the environment
sector and it looks like it does not affect the system; this explanation seems quite improbable, since
the new interaction should have the effect that every mode of the system couple to all the modes
of the environment through the quadratic coupling and it seems unreasonable to think that this has
no effect on the system. The second interpretation is that actually the non-linear interaction has
a double effect, but these effects cancel each other out. Indeed, the non-linear coupling leads to a
mode-mixing between system and environment, amplifying the number of environment modes with
which every system mode can couple. We expect that this effect leads to a more effective transfer of
the information from the system to the environment, leading to an increase of the decoherence. At the
same time, the non-linear interaction will generate some form of non-gaussianities in the environment
(differently from the linear coupling which yields a gaussian model), and this can be seen as an
increase of the information that can flow from the environment to the system, favouring the process
of recoherence. Since the cause of these two opposite effects is the same, i.e. the introduction of a
non-linear coupling in the environment sector, we could think that the two effects compensate exactly
each other, leading to a null net effect.
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Chapter 6

Conclusions and future prospects

In this thesis project I tried to study the phenomenon of quantum decoherence in a cosmological
setting, considering a model with both a linear interaction term and a non-linear term between the so
called system and environment bipartition (within the formalism of Open Quantum System).

First of all I gave an introduction about the inflation mechanism, starting with the presentation
of the shortcomings of the Hot Big Bang model, like the horizon, the flatness and the unwanted relics
problem, showing how an accelerated expansion of the primordial Universe provides a solution to
these issues. Then I focused my attention to the simplest mechanism that can drive this inflationary
period, which is the slow-roll single-field inflation, where we assume the dominance of a scalar field,
the inflaton, during the early times of the Universe. We studied the dynamics of this scalar field,
considering both the background dynamics (in a completely homogeneous and isotropic Universe)
and the fluctuations dynamics. We are mainly interested in the latter because the inflaton quantum
fluctutations can be considered as the seeds of the large scale structure of the Universe we observe
today, indeed they can be directly connected to the temperature CMB anisotropies. The question that
arises at this point is: how did the transition from quantum to classical fluctuations happen? This is
the so-called quantum-to-classical transition problem and one of the main obstruction to the direct
observation of quantum properties in our Universe is due to the phenomenon of quantum decoherence.

Quantum decoherence is widely studied in the context of open quantum systems and in this thesis,
inspired by other works such as [28, 8, 34], I wanted to apply these techniques in a cosmological setting.
In chapter 3 we derived the quantum state of the primordial fluctuations in the case of a free scalar
inflaton field, showing its peculiar behaviour that historically led to interpret it as a highly quantum
state or a highly classical state. Then we introduced the system-environment bipartition, typical of
the OQS context, defining in particular the reduced density matrix which describe the state of the
system once the environment has been integrated out. At this point we introduced the so-called master
equations that are evolution equations for the reduced density matrix, starting with the Nakajima-
Zwanzig master equation which is exact and then implementing some approximations leading to the
perturbative NZn and the TCL2 equation. The latter is a non-Markovian master equation and it is the
equation we used to study our model in chapter 4 and 5. Finally we derived the Lindblad equation, the
most known Markovian master equation, and showed various techniques to monitor the quantumness
of the system, in particular in this thesis we used the purity, defined as γ = Trε(ρ

2
red).

In chapter 4 we studied a model for the inflaton fluctuations which was proposed in [31] and was
studied in [8]. This model contains a linear interaction term, ζ ′F , with ζ the curvature perturbation
and F an entropic field, leading to a Gaussian dynamics. Given the linearity of the evolution this model
could be studied both with an exact approach and with a OQS approach and given the gaussianity of
the dynamics, all the relevant information on the state of the system are contained in the covariance
matrix, Σ, which can be simply related to the purity, γ, through γ = 1/(4 detΣ). Computing the
purity we found that the system undergoes an initial period of decoherence, followed by a growth
of the purity which saturates to 1. This phenomenon, called recoherence, is due to the smallness of
the environment, that has dimensions comparable to those of the system in the linear case, and is
able to give back the information to the system. In particular in a Minkowski Universe the purity
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is observed to oscillate, alternating periods of decoherence with period of recoherence, but in an
expanding Universe, the coupling between system and environment is quenched off after a while, so
we see a first period of decoherence, followed by a phase of recoherence and then the purity saturates
to 1, due to the turn-off of the interaction. The recoherence is a non-Markovian phenomenon, so in
an OQS context can only be faced using a non-Markovian master equation, like the TCL2.

Finally, in chapter 5, we gave our original contribution trying to generalize the previous model,
inserting a cubic term in the entropic sector, in order to make this model more realistic. In this case we
could not use an exact approach, but only the master equation method and given the non-gaussianity
of the dynamics the purity was not simply connected to the covariance matrix of the system, so we used
another method to compute the purity evolution, which was already introduced in chapter 3 where
it was used to track the decoherence using the Lindblad equation. We derived a new non-Markovian
master equation, containing the linear term we alredy had and a non-linear term and surprisingly we
found that the non-linear term does not contribute to the purity evolution. The interpretation to this
result is that the new term provides two opposite effects that cancel each others out: on one hand the
non-linear interaction increases the number of modes the system is coupled with and this favours the
information flow from the system to the environment, increasing the decoherence phenomenon. On
the other hand, the introduction of a non-linear term lead to the production of some non-Gaussianities
in the environment, that can be transferred to the system, increasing the information that can flow
from the environment to the system and so the recoherence.

In this thesis we tried to generalize a model which was already studied through the introduction of
a non-linear interaction term in the environment. Another case of study would be to consider another
kind of interaction of the type Lint ∼ (∂ζ)2F , which introduce a non-linear interaction between the
system and the environment and not only on the environment. Actually I have started to study
this kind of interaction but the computations got much more involved than our case, so I leave this
idea for future work. More generally it would be interesting to understand if there are other type of
interactions leading to the recoherence phenomenon. Finally, since non-linear interaction terms are
related to non-Gaussianities, it would be interesting to see what type of bispectrum and trispectrum
are generated by the term we have considered. Some references that work in this direction are [33, 34,
35, 36]. In the end, the computation of equation (5.46) should be performed to verify the validity of
the previous method to compute the purity evolution. 1

1Some recent papers [37, 38] appeared to investigate similar issues of this Master Thesis work.
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Appendix A

Explicit computations

A.1 Transport equation

Here we make explicit the computations whose result was shown in section (3.4.6). The first term
in the transport equation for the covariance matrix is:

− i

2
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}[
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ẑζ,j , ρ̂red(t)

]]
= − i

4

(
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[
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ẑζ,aẑζ,b, ẑζ,iẑζ,j
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ẑζ,aẑζ,i

[
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Ĥ0 +∆

)
ij

{
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A.2 Master equation coefficients

Here we provide the explicit computation of the master equation coefficients whose final form is
shown in (4.2.2):
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A.3 Non-linear purity evolution

Here we show explicitly the computations for the purity evolution in case of non-linear interaction,
whose result is shown in chapter 5.
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s
ζ(k, t)

+ ρ̃red(t)⊗ ρ̂(0)ε ṽlF (p, t
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′)ṽs̄F (k, t)ṽ
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ε ṽlF (p, t

′)
]
− p̃lζ(p, t

′)ρ̃red(t)p̃
s
ζ(k, t) Trε

[
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′)ṽnF (p
′, t′)

]
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ρ̂(0)ε ṽ l̄F (p, t
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′, t)ṽq̄F (k+ k′, t)
])]}

.

85



86



Bibliography

[1] Alan H Guth. “Inflationary universe: A possible solution to the horizon and flatness problems”.
In: Physical Review D 23.2 (1981).

[2] Andrew R Liddle and David H Lyth. Cosmological inflation and large-scale structure. Cambridge
university press, 2000.

[3] Thomas Colas. “Open Effective Field Theories for cosmology”. In: arXiv preprint arXiv:2405.09639
(2024).

[4] Michel Brune et al. “Observing the progressive decoherence of the “meter” in a quantum mea-
surement”. In: Physical review letters 77.24 (1996).

[5] Tomislav Prokopec and Gerasimos I Rigopoulos. “Decoherence from isocurvature perturbations
in inflation”. In: Journal of Cosmology and Astroparticle Physics 2007.11 (2007).

[6] Patrick Martineau. “On the decoherence of primordial fluctuations during inflation”. In: Classical
and quantum gravity 24.23 (2007), p. 5817.

[7] CP Burgess et al. “Minimal decoherence from inflation”. In: Journal of Cosmology and Astropar-
ticle Physics 2023.07 (2023), p. 022.

[8] Thomas Colas, Julien Grain, and Vincent Vennin. “Quantum recoherence in the early universe”.
In: Europhysics Letters 142.6 (2023).

[9] Edwin Hubble. “A relation between distance and radial velocity among extra-galactic nebulae”.
In: Proceedings of the national academy of sciences 15.3 (1929), pp. 168–173.

[10] Arno A Penzias and Robert W Wilson. “A measurement of excess antenna temperature at 4080
MHz”. In: A Source Book in Astronomy and Astrophysics, 1900–1975. Harvard University Press,
1979.

[11] Alexei A Starobinsky. “A new type of isotropic cosmological models without singularity”. In:
Physics Letters B 91.1 (1980).

[12] Peter Coles and Francesco Lucchin. Cosmology: The origin and evolution of cosmic structure.
John Wiley & Sons, 2003.

[13] Scott Dodelson. “Coherent phase argument for inflation”. In: AIP Conference Proceedings.
Vol. 689. 1. American Institute of Physics. 2003.

[14] David H Lyth and Andrew R Liddle. The primordial density perturbation: Cosmology, inflation
and the origin of structure. Cambridge university press, 2009.

[15] Hideo Kodama and Misao Sasaki. “Cosmological perturbation theory”. In: Progress of Theoret-
ical Physics Supplement 78 (1984).

[16] Christopher Gordon et al. “Adiabatic and entropy perturbations from inflation”. In: Physical
Review D 63.2 (2000).

[17] David Wands et al. “Observational test of two-field inflation”. In: Physical Review D 66.4 (2002).
[18] Courtney M Peterson and Max Tegmark. “Testing two-field inflation”. In: Physical Review

D—Particles, Fields, Gravitation, and Cosmology 83.2 (2011).
[19] Courtney M Peterson and Max Tegmark. “Non-Gaussianity in two-field inflation”. In: Physical

Review D—Particles, Fields, Gravitation, and Cosmology 84.2 (2011).
[20] Angel Rivas and Susana F Huelga. Open quantum systems. Vol. 10. Springer, 2012.
[21] Carlton M Caves and Bonny L Schumaker. “New formalism for two-photon quantum optics. I.

Quadrature phases and squeezed states”. In: Physical Review A 31.5 (1985).
[22] David Polarski and Alexei A Starobinsky. “Semiclassicality and decoherence of cosmological

perturbations”. In: Classical and Quantum Gravity 13.3 (1996).

87



[23] Daniel Baumann. “TASI lectures on inflation”. In: arXiv preprint arXiv:0907.5424 (2009).
[24] Andreas Albrecht et al. “Inflation and squeezed quantum states”. In: Physical Review D 50.8

(1994).
[25] Claus Kiefer and David Polarski. “Why do cosmological perturbations look classical to us?” In:

Advanced science letters 2.2 (2009).
[26] Fabrizio Minganti et al. “Spectral theory of Liouvillians for dissipative phase transitions”. In:

Physical Review A 98.4 (2018).
[27] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford

University Press, USA, 2002.
[28] Jerome Martin and Vincent Vennin. “Observational constraints on quantum decoherence during

inflation”. In: Journal of Cosmology and Astroparticle Physics 2018.05 (2018).
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[36] Jérôme Martin and Vincent Vennin. “Non Gaussianities from quantum decoherence during in-

flation”. In: Journal of Cosmology and Astroparticle Physics 2018.06 (2018), p. 037.
[37] Thomas Colas et al. In-in formalism for the entropy of quantum fields in curved spacetimes.

2024. arXiv: 2406.17856 [hep-th]. url: https://arxiv.org/abs/2406.17856.
[38] CP Burgess et al. “Cosmic Purity Lost: Perturbative and Resummed Late-Time Inflationary

Decoherence”. In: arXiv preprint arXiv:2403.12240 (2024).

88

https://arxiv.org/abs/2403.15742
https://arxiv.org/abs/2406.17856
https://arxiv.org/abs/2406.17856

	Introduction
	Inflation
	Hot Big Bang model
	Big Bang cosmology
	Shortcomings of the Big Bang model
	The inflationary solution
	The inflaton field

	Quantum fluctuations of the inflaton field
	Solution to the equation of motion
	From quantum fluctuations to primordial energy density perturbations

	Two-field inflation

	Open Quantum System approach
	Two-mode squeezed states
	Dissipation and Decoherence
	System-environment bipartition
	Master equations
	Perturbative master equation
	The exact Nakajima-Zwanzig master equation
	Perturbative Nakajima-Zwanzig equation (NZn)
	Time-Convolutionless master equation (TCL2)
	Developing the TCL2 equation
	Transport equations
	Lindblad equation

	Tracking quantum decoherence
	Decoherence with Lindblad equation


	Linear model
	Exact approach
	Master equation approach
	Mode functions
	Master equation coefficients
	Perturbative limit


	Non-linear model
	Linear part
	Non-linear part

	Conclusions and future prospects
	Explicit computations
	Transport equation
	Master equation coefficients
	Non-linear purity evolution

	Bibliography

