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Abstract

The identification of the low-energy effective field theory associated with a given mi-

croscopic strongly interacting microscopic theory constitutes a fundamental problem

in theoretical physics, particularly challenging when the theory is not sufficiently

constrained by symmetries. Recently, a new approach has been proposed, which

addresses this problem for a large class of four-dimensional minimally supersym-

metric strongly coupled field theories, admitting a dual weakly coupled holographic

description in string theory. This approach includes a precise prescription for the

derivation of the associated effective theories through holography. The aim of this

thesis is to explore these techniques by specializing them to a specific model whose

effective theory has not been investigated before.
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Chapter 1

Introduction

Strongly-coupled quantum field theories represent canonical examples of physical

systems whose study is extremely challenging. Even the question of the mere

existence of any interacting QFT in four dimensions from a formal standpoint has

not been settled. In addition to this, strong couplings are not amenable to the

tools of perturbation theory. The interest in this class of theories stems actually

from practical considerations - many of them represent realistic models for physical

phenomena, e.g. the theory of strong interaction.

A subset of questions concerns whether a given strongly-interacting theory is des-

cribed at low energy by an effective local field theory, and if so, what are its degrees

of freedom and their precise dynamics. Often, part of the structure of the effective

theory is constrained by symmetries, but no general method exists to fix it comp-

letely. Recently[24], a novel approach for determining the effective Lagrangian was

introduced that makes use of tools from an apparently unrelated area of physics:

string theory.

It is remarkable that string theory was originally conceived as a description of

hadronic physics, so a low-energy effective theory for what ultimately turned out

to be a gauge theory, QCD. When string theory was found to have unsuitable quali-

ties for this application, it was replaced by the theory of quantum chromodynamics

- however it also proved to be effective for solving a seemingly unrelated problem

of fundamental physics: quantizing gravity. Since then, string theory blossomed

into a vast and rich field reaching into numerous areas of mathematics and physics,

and of course a candidate for a “Theory of Everything” describing the entirety of

fundamental physics.

Among the most unexpected discoveries in strings, made decades after their concep-

tion, is a series of unusual exact equivalences between string theories set in parti-

cular ten-dimensional backgrounds and four-dimensional gauge QFTs. More gen-

erally, one finds families of exact equivalences between local quantum field theories

and higher-dimensional theories containing gravity, which are termed “holographic”.

1



2 CHAPTER 1. INTRODUCTION

This explains the original partial success of strings in modeling strong interactions,

assuming that some or perhaps most gauge theories have or can be approximated

as having a holographic description as a ten dimensional theory involving strings.

This roundtrip has therefore brought strings back to strongly-coupled gauge theo-

ries. Various aspects, qualitative and most importantly quantitative, of QFTs can

be studied directly by means of their holographic string dual, a gravitational theory,

if it exists.

The first and most important case of such a duality[19] equates IIB superstring

theory set on the background

AdS5×S5 (1.1)

(the “bulk”) with maximally supersymmetric Yang-Mills theory on R1,3 (the “boun-

dary”), which is a conformal field theory. The denomination of “AdS/CFT” (anti-

de Sitter / conformal field theory) correspondence for holographic dualities stems

from this (even though cases either with no AdS geometry or not conformal are

known). One direction in which to generalize this construction is to replace S5 with

other compact 5-manifolds Y5. This yields dualities involving more complex and

interesting field theories, less constrained by symmetries; therefore this thesis will

be focused on this class of correspondences.

Actually, since string theory in general is very challenging to study, AdS/CFT only

becomes truly useful in terms of describing the dynamics of the CFT if string theory

can be approximated by a weakly coupled effective field theory of its own, supergra-

vity. This limit corresponds to the CFT being strongly-coupled and having a large

number of colours. Therefore the regime accessible through holography is precisely

the strongly-coupled region where the gauge theory would be normally impossible

to investigate.

Recently, a novel approach was introduced[24] for determining the effective theory

to such duals of AdS5×Y5. A procedure for identifying the degrees of freedom

and the Lagrangian for the effective low-energy theory for a class of gauge theories

with AdS5×Y5 holographic duals is provided, by expanding the supergravity action

on the dual bulk geometry. Interestingly, these are somewhat special in that they

include models of minimal supersymmetry (N = 1), which makes for more realistic

but by converse less constrained theories than typical holographic field theories, with

higher supersymmetry. The ability to pinpoint the exact effective Lagrangian is then

particularly noteworthy.

The original contribution in this work is the specialization of this construction to

a specific field theory, the Y 2,0 theory, a strongly-coupled superconformal quiver

theory for which we will therefore fix the exact effective Lagrangian, entirely through

the geometry of the relative string background. This will require necessarily the

determination of the general Calabi-Yau deformation of the background in complex



3

coordinates, which was not known previously.

This thesis will be structured as follows. We will first provide a general introduction

to IIB superstring theory, D-brane stacks on cones and the resulting gauge field the-

ories, and holography. Then, we will summarize the relevant results and techniques

from [24]. Finally, we will present a complete parametrization of the geometry of

the Y 2,0 theory and will apply those results and techniques to identify the exact

effective Lagrangian of the field theory.
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Chapter 2

IIB superstrings and branes

String theories are quantum theories involving 1-dimensional dynamical objects, the

fundamental strings. Therefore, they can be regarded as a generalization of systems

of 0-dimensional quantum particles, such as quantum field theories. This apparently

innocuous modification results in amazing depth and complexity of the structure of

the resulting theories. The celebrated inclusion of Einstein gravity is only a small

part of the large diversity of phenomena.

The downside is a significant difficulty in probing the general structure of these

theories. Only the behaviour in particular regimes is known, while the overall theory

interpolating between these limiting cases is mostly unknown, or at the very least

impossible to formulate. Consequently, we will only attempt an introduction to the

aspects of string theory relevant to our purposes, namely the conditions under which

strings can be approximated by an effective field theory (and which one), and stable

non-perturbative states known as D-branes.

Our interest will be directed towards string theories involving supersymmetry, and

in particular a specific variety known as type IIB string theory, set in ten dimensions,

which will always be involved in the holographic dualities we will study. In fact, IIB

will be both the background theory employed to construct the holographic duality,

and one side of the duality itself. Thus, we now provide a summary starting from

perturbative superstring theory to present some general aspects of type-IIB strings,

including the corresponding effective field theory and D-branes.

2.1 Superstring theory

String theory either does not admit a nonperturbative Lagrangian formulation, or

this formulation is unknown. An action functional can only be written upon choosing

a perturbative vacuum; since we anticipate a string theory must include gravity, a

choice of vacuum will also require a choice of background metric - in the simplest

case Minkowski spacetime. The configuration of a string moving in this spacetime

5



6 CHAPTER 2. IIB SUPERSTRINGS AND BRANES

(the target M) is then given by specifying the two-dimensional submanifold (the

worldsheet W1) it traces in it1, the worldsheet. In essence, this coincides with

providing an embedding of the worldsheet

Xµ(τ, σ) : W1 →M (2.1)

then quotiented under diffeomorphisms of the coordinates τ, σ on W1.

With a given choice of background metric the most natural action for a string is the

Nambu-Goto action, the worldsheet area:

SNG [X] = −T
∫
W 1

d volh = −T
∫
W 1

d2σ
√
−h (2.2)

where hab = ∂xµ

∂σa
∂xν

∂σb
Gµν is the induced metric on the worldsheet from the target

space metric Gµν under the embedding given by Xµ. T instead is a dimensionful

constant called the string tension; in fact it is the only free parameter in string

theory. We will also often refer to the entirely equivalent quantity α′, the Regge

slope.

T =
1

2πα′
(2.3)

The Nambu-Goto action is very difficult (if not impossible) to quantize. It proves

much easier to switch to the classically equivalent Polyakov action:

SB [X, g] = −T
2

∫
W 1

d2σ
√
−ggab∂aXµ∂bXνGµν (2.4)

where now gab is an independent auxiliary field, not the induced metric from the

Xµ. The equivalence is readily shown by computing the classical equation of motion

for gab and substituting back into SB to recover SNG.

There are essentially two2 different sensible choices for the topology of W1: either a

cylinder, with σ being the periodic variable running around, or a strip, so that σ is

limited to an interval [0, σ1]. These are respectively the closed and open string. The

former is always a closed loop at any given instant in time. The open string instead

has two endpoints for which we have to fix boundary conditions. One could choose

between either Neumann boundary conditions, meaning

∂Xµ

∂σ

∣∣∣∣
σ=0,σ1

= 0 (2.5)

1We note the worldsheet is just the obvious generalization of the concept of worldline of a particle
to the case of 1-dimensional strings.

2We ignore the question of orientability of the worldsheet, not important for our purposes.
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which is just the constraint that no momentum flows out of the string endpoints, or

Dirichlet boundary conditions, which fix

Xµ|σ=0 = Xµ
0 , Xµ|σ=σ1

= Xµ
σ1

(2.6)

where Xµ
0 , Xµ

σ1 are constants, essentially forcing the string endpoints to a specific

spacetime point. In general one could mix p+ 1 Neumann conditions and D− p− 1

Dirichlet conditions for different values of µ, so that the endpoints are constrained

to a p-dimensional submanifold in space, and can move freely within it. Dirichlet

conditions evidently break the symmetries of the target spacetime (Poincaré if we

choose a Minkowski background) as they specify a preferential frame and submani-

fold; this symmetry will be recovered when it is recognized that the p-dimensional

submanifold to which open strings attach is actually a dynamical object, a Dp-brane

(D alluding to Dirichlet). We will return to D-branes after studying the string spec-

trum.

The Polyakov action displays invariance under worldsheet diffemorphisms

σa → σ′a(σa) (2.7)

and Weyl transformations:

gab → eφ(σ)gab (2.8)

and thus perturbative string theory is naturally a two-dimensional conformal field

theory. These symmetries must be quotiented out someway on quantization. The

most straightforward way is to eliminate them by fixing a particular gauge and then

quantizing (canonical quantization). The three symmetry generators can kill the

three degrees of freedom in the metric to fix it to the 2D Minkowski: gab = ηab. We

get

SB = −T
2

∫
d2σ∂aX

µ∂aXµ (2.9)

where indices are raised with ηab.

The theory described so far would be what is known as bosonic string theory. There

are two issues with bosonic strings: the first is the presence of tachyons in both

the open and closed string spectrum, i.e. some string modes will have a negative

mass squared, signaling an instability of our choice of perturbative vacuum. The

second is that, as the name suggests, there are exclusively bosons in the spectrum,

which makes it unsuitable at the very least for phenomenological application. A

modification to include supersymmetry can be performed to solve both of these
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issues and produces a set of string theories with fermions and without tachyons, the

superstrings. We will in particular sketch the path from bosonic string theory to the

so-called type II superstrings, two slightly different theories IIA and IIB.

There are at least two different approaches to introducing supersymmetry into a

string theory. The path followed by the RNS (Ramond-Neveu-Schwarz) formalism

is to impose SUSY at the worldsheet level; explicitly, adding fermions ψµ to act

as superpartners to the bosons Xµ. We follow the derivation in [4]. The action is

extended to

S = SB + SF = −T
2

∫
d2σ ∂aX

µ∂aXµ + ψ̄µρa∂aψµ (2.10)

where the ρ1,2 are two-dimensional gamma matrices satisfying the Clifford algebra

{
ρa, ρb

}
= 2ηab (2.11)

The spinors’ equation of motion, the Dirac equation, is actually the Weyl condition

in two dimension. This brings the real degrees of freedom in the spinor for each

µ from 4 to 2. Recalling that in (2 mod 8) dimensions there exist Weyl-Majorana

spinors satisfying both the Weyl and Majorana conditions, imposing the latter on ψ

halves again the on-shell polarizations to 1. Thus we have a match between bosonic

and fermionic degrees of freedom. It can be proven the theory above is indeed

worldsheet supersymmetric.

To quantize canonically, we introduce canonical commutation/anticommutation re-

lations:

[Xµ(σ), Xν(σ′)] = ηµνδ2(σ − σ′) {ψµ(σ), ψν(σ′)} = ηµνδ2(σ − σ′) (2.12)

Note the X0 and ψ0 would create negative norm states, but these modes are elimi-

nated by resorting to superconformal invariance. Classically this symmetry imposes

the stress-energy tensor Tµν and the supercurrent Jaα vanish; imposing that in the

quantum theory they annihilate physical states yields the restriction that removes

the longitudinal ghosts from the spectrum. These take the name of super-Virasoro

constrain.

Then the procedure for building the string spectrum is to expand the classical solu-

tions in terms of Fourier modes, identify creators and destructors, and then select the

states of the Fock basis that satisfy the super-Virasoro constraints. There are various

ways to proceed at this point; the simplest and perhaps the most inelegant is light-

cone quantization, which we will refer to. Essentially, a subset of D − 2 transverse

directions i = 2, . . . , D− 1 are selected and only Xi and ψi are made to correspond

to operators, and the remaining longitudinal fields are to be determined from the
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former by the classical constraints. This procedure renders Lorentz-invariance non-

manifest - we will verify indeed it is actually recovered a posteriori. A different

common approach, more rigorous, takes the form of a BRST quantization, akin to

that employed in Yang-Mills theories, by exchanging superconformal gauge inva-

riance with the introduction of a series of Faddev-Popov ghosts. The final quantum

theories are identical and the choice of quantization is conventional.

Boundary conditions for ψµ for an open string can actually be satisfied in two

different by imposing periodicity or antiperiodicity, giving rise to the NS (Neveu-

Schwarz) and R (Ramond) sectors, built over two grounds |0〉NS and |0〉R. Closed

strings have four: |0〉NS−NS , |0〉R−R, |0〉R−NS , |0〉NS−R corresponding with different

choice periodicity conditions for left and right-movers.

2.1.1 Open strings

It can be shown that while the NS ground |0〉NS is unique, and thus a spacetime

scalar, |0〉R is eight-fold degenerate and this 8-plet transforms under the spinor

representation of transverse SO(8) - in other words, it is a spacetime spinor. In

particular, it is a chiral Weyl-Majorana spinor, so it can be taken to be either of

positive or negative chirality, choices we will denote as |+〉aR, |−〉ȧR, with a, ȧ =

1, . . . , 8 the spinor index.

The spectrum is built by acting on one of the grounds with bosonic and fermionic

creators, to obtain states of higher and higher mass. For the NS sector, there are

bosonic creators ai†n (n ≥ 1) and fermionic bi†r (r positive half-integer), and the mass

of the excited string is given by:

α′M2 =
∞∑
n=1

nai†n a
i
n +

∞∑
r=1/2

rbi†r b
i
r −

1

2
(2.13)

while for the R sector the fermionic creators are replaced by the integer-indexed d†in :

α′M2 =

∞∑
n=1

(
nai†n a

i
n + ndi†n d

i
n

)
(2.14)

The i indices here are target spacetime transverse indices, i = 1, · · · , 8. Therefore

each creator increases the spacetime spin of the string by one unit. We conclude the

NS sector contains only spacetime bosons, and the R sector only spacetime fermions.

The constant shift of −1/2 in (2.13) (and of 0 in (2.14)) actually results from an

ordering ambiguity of the creators and destructors a†n, an (omitting spacetime in-

dices for now) which introduces an arbitrary constant shift in the Hamiltonian upon

quantization. If we want a consistent quantum theory with Lorentz invariance, this

shift in the NS sector is fixed to −1/2; this is because for example the state
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bi†1/2 |0〉NS (2.15)

is a vector with (D−2) polarizations, and thus must be massless. However, it can be

shown that this shift is also related to the number of spacetime dimensions D, so that

a condition restrictingD to a particular value can be found. An intuitive and perhaps

heuristic explanation of this fact is as follows: the energy shift should be equal to the

sum of the zero-point energies (ZPE) of the infinite harmonic oscillators, bosonic for

n = 1, 2, . . . and fermionic for r = 1/2, 3/2, . . . We recall bosonic / fermionic QHOs

have Hamiltonians

H = ω

(
a†a+

1

2

)
H = ω

(
b†b− 1

2

)
(2.16)

Then for a given value of i the sum of all the ZPEs of the oscillators in the NS sector

would be

E0 =
∑
n∈N

n

2
−
∑

r∈N+ 1
2

r

2
=

1

4

∑
m∈N

(−1)mm (2.17)

The sum −1+2−3+ . . . is evidently divergent; we assume it is admissible to replace

it with its ζ-regularized value3 of −1/4. Therefore the ZPE per transverse direction

is E0 = −1/16; insisting the total ZPE is equal to −1/2 results in

− D − 2

16
= −1

2
⇒ D = 10 (2.18)

While this argument is not completely rigorous, it correctly identifies the existence

and value of the so called critical dimension D = 10 for superstring theories. In a

more formal setting (e.g., in BRST quantization) it can be shown that the classical

Weyl symmetry of the action is spoiled by quantization and a conformal anomaly

arises; this anomaly can be proven to cancel4 only for D = 10.

It may worry that the mass-shell formula above assigns a negative mass-squared to

the NS ground, which is therefore a tachyon. In addition, it is the only tachyon,

meaning this theory is not spacetime supersymmetric. We will see in the next section

how this state is actually removed and target supersymmetry recovered. For now,

we note the only massless states are

3The evaluation by analytic continuation of the divergent series is easily computed by considering
1− 2x+ 3x2 − . . . = (1 + x)−2, converging for |x| < 1. Setting x = 1, right on the edge of the disk
of convergence, yields the desired result.

4it is possible to have the conformal anomaly cancelled by the introduction of additional fields if
D < 10, resulting in non-critical string theories. These have properties that make them unsuitable
for our applications, however, and we will ignore them.



2.1. SUPERSTRING THEORY 11

bi†1/2 |0〉NS |+〉NS (2.19)

while the rest of the tower of states have string scale-large ∼ (α′)−1/2 masses. Our

interest in massless modes stems from the fact that in a low-energy (α′ → 0) the

strings can be approximated as pointlike particles (as their typical size ls ∼
√
α′)

and their quantum theory as the corresponding field theory, with a field for each

massless string mode, as the massive modes have decoupled. Such an effective low-

energy theory will be described in section 2.3.

The first of the two states in (2.19) is a massless spin-1 boson, so it must be a

photon associated with a U(1) gauge theory. The latter is its spin-1/2 superpartner,

a photino. It must be noted that what was described up to now holds for the

directions in which the string endpoints are free to move, hence those for which

Neumann conditions are imposed. As we have anticipated open strings in general end

on Dp-branes and D−p−1 directions are actually constrained by Dirichlet conditions

so as to keep the endpoints on the brane; the conclusion is the gauge interaction this

massless string mode mediates is actually confined to the p-dimensional volume of

the brane.

2.1.2 GSO projection

The construction above does not define a consistent theory. This is in part because it

is not spacetime supersymmetric, an essential requirement considering that, as will

be seen shortly, the closed string spectrum includes a gravitino (a massless spin-3/2

state) which must be associated with local supersymmetry. A procedure known as

the Gliozzi, Scherk, Olive (GSO) projection solves this issue and in addition also

eliminates the tachyonic state |0〉NS , to end up with a consistent quantum theory.

The following operator is introduced, acting on the NS sector as

G = (−1)1+
∑
r b
i†
r b

i
r = (−1)F̂+1 (2.20)

and on the R sector as

G = Γ11(−1)
∑
r d

i†
r d

i
r = Γ11(−1)F̂ (2.21)

F̂ is the worldsheet fermion number, and Γ11 = Γ0 · · ·Γ9 gives the chirality of the

state.

Then the spectrum is projected into the G = 1 subspace for the NS sector, and into

G = ±1 (either choice works) for the R sector. These two choices correspond to

keeping either |+〉aR or |−〉ȧR respectively and discarding the other.

When amputated with this precise prescription the spectrum is found to be space-



12 CHAPTER 2. IIB SUPERSTRINGS AND BRANES

time supersymmetric. The scalar tachyon |0〉NS in particular is eliminated, being

G-odd.

2.1.3 Closed strings

The closed string spectrum, in somewhat poetic language, is the “square” of the

open string spectrum. On closed strings, excitations are allowed to move in either

clockwise or counterclockwise direction along the string, forming a left-moving and

a right-moving spectrum5. As seen before the choice can be made for either NS or

R boundary conditions, and this can be performed separately for left-movers and

right-movers, giving four sectors. The GSO projection is performed separately on

left and right movers, so that one is presented with the choice of the relative chirality

of the two projections and so of the R grounds. These two possibilities will actually

result in two different string theories. Choosing opposite chiralities gives type IIA

strings, whose massless spectrum is given by

b̃i†1/2 |0〉NS ⊗ b
j†
1/2 |0〉NS (2.22)

b̃i†1/2 |0〉NS ⊗ |+〉
b
R (2.23)

|−〉ȧR ⊗ b
j†
1/2 |0〉NS (2.24)

|−〉ȧR ⊗ |+〉
b
R (2.25)

(the ∼ distinguishes creators/destructor for left movers from right movers). And

IIB strings arise from equal chiralities:

b̃i†1/2 |0〉NS ⊗ b
j†
1/2 |0〉NS (2.26)

b̃i†1/2 |0〉NS ⊗ |+〉
b
R (2.27)

|+〉aR ⊗ b
j†
1/2 |0〉NS (2.28)

|+〉aR ⊗ |+〉
b
R (2.29)

So the massless spectrum is composed of 4 sectors of 64 physical states, two of

them bosonic (NSNS, and RR) and the other fermionic (RNS and NSR). Massless

states will correspond to fields in the supergravity approximation, in which the

massive modes of the string decouple and the string theory is well described by the

corresponding variety of 10D supergravity.

To present these states in a less opaque manner, consider for example the NSNS

5In the open string, the boundary conditions fixed the right-movers in terms of the left-movers
(or vice versa) so that they were not independent.
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mode (2.22), (2.26), equal in both theories. This is a tensor H ij ; we can switch

the transverse indices i, j to Lorentz indices µν provided we keep memory of the

transversality constraint. Such a general tensor can be decomposed into Lorentz

irreps as a symmetric traceless, antisymmetric and trace parts, as

Hµν = G(µν) +B[µν] + ηµνφ (2.30)

The first of these is a transverse, massless, symmetric traceless rank-2 tensor, which

means it must be a graviton. The presence of a field describing variations in the

target spacetime metric from the chosen background metric signals that in general

string theory will contain gravity. So in general string theory is a consistent theory

of quantum gravity. We will describe the rest of the massless states better in the

next sections.

The type II theories defined above are not the only consistent superstring theories.

Three additional target-supersymmetric theories can be defined: type I, heterotic

SO(32), and heterotic E8×E8, all set in 10 dimensions, for a total of five superstring

theories. Our interest will be mainly focused on the type II theories, however.

A relevant point is that type II strings do not actually feature stable “free” open

strings with all Neumann boundary conditions. Open strings can only appear at-

tached to D-branes. (The discussion of section 2.1.1 was therefore mostly intended

as preparatory to the introduction of the closed string spectrum). This means for

example the closed-string spectrum above is sufficient to encompass the dynamics

in the absence of D-branes, and that type II supergravity will result only from the

massless closed string modes above.

2.1.4 Background fields, string coupling and loop expansion

It was already hinted that the massless string modes we found should give rise

to fields in some limit. In particular the NS-NS closed string ground (2.26) is a

spacetime rank-2 tensor, which can be split into symmetric, antisymmetric and

trace parts.

Non-zero values of these fields could be incorporated back into the background the

perturbative string is based on. In fact, since the symmetric tensor field above is

actually the graviton, we already have: the Polyakov action (2.4) already includes

a coupling of the string to the target background metric Gµν . This is just the

background value of the graviton.

The antisymmetric NS-NS Bµν field (equivalently, a 2-form B2 = 1
2Bµνdx

µ ∧ dxν),

called the Kalb-Ramond potential, is instead coupled to the fundamental string in

a way that resembles the generalization of the coupling of a particle to the EM

potential; a background value of Bµν would result in the addition to the action of a

term
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SB =
T

2

∫
W1

d2σεαβBµν(X)∂αX
µ∂βX

ν ∝
∫
W1

B2 (2.31)

this will result ultimately in a stringy generalization of electrodynamics with strings

coupling to a field strength 3-form H3 = dB2.

Finally, strings will also couple to the last NS-NS closed string field, the trace scalar

φ called the dilaton. The coupling to a background dilaton is of the form

Sφ =
1

4π

∫
W1

d2σ
√
g R(2)[g]φ(X) (2.32)

where R(2)[g] is the 2D Ricci scalar associated to g. Note that in the presence

of a constant background dilaton φ(X) = φ, the integral above is simply the Euler

characteristic χ(W1), an integer topological invariant, by the Gauss-Bonnet theorem.

χ has a simple expression in terms of the number of handles (the genus h), the

number of boundaries nb and the number of cross-caps nc of the surface:

χ = 2− 2h− nb − nc (2.33)

To understand the physical content of this contribution, we consider the simple case

of orientable closed strings, and we imagine computing the amplitude of a process

involving n external string states. Since only closed strings are involved, the only

boundaries are the nb = n boundaries at infinity of the asymptotic states, and thus

nb is constant. Therefore the action from a constant dilaton background reduces to

Sφ = φχ = φ(2− n− 2h) = const− 2hφ (2.34)

and the Euclidean path integral for the amplitude would take the form

A =

∫
DXDψDg e−SPe−2φh[g] (2.35)

apart from normalization, and the path-integral is over worldsheets that match the

external states. The integral over metric structures
∫
Dg splits into disconnected

components indexed by the genus, so that

A =

∞∑
h=0

Ah =

∞∑
h=0

(eφ)−2h

∫
h
DXDψDg e−SP (2.36)

This is a loop expansion, since the genus h counts the number of virtual string loops;

however it is also a perturbative expansion in the string coupling gs := eφ, giving the

strength of a cubic string interaction “vertex”. Therefore, we come to understand

that the applicability of the perturbative string theory, including what has been
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introduced in this chapter so far, rests on the smallness of this string coupling gs.

It is worth of notice that this coupling is not an external dimensionless parameter

of the theory (since string theory has none) but rather is related to the expectation

value of a scalar field.

+ g2
s

+ . . .

Figure 2.1: First terms in the loop expansion of a closed string
four-point function. The worldsheets have been cut into “pair of
pants” surfaces to count string interactions.

The perturbation series (2.36) is the stringy analogue of the QFT sum over Feynman

diagrams. Its power comes from the fact that the genus-h contribution involves the

calculation of a single diagram - the multiplicity of inequivalent Feynman graphs of

a field theory (growing as ∼ eh) is then interpreted as the various inequivalent ways

in which the unique worldsheet topology of genus h can degenerate to a diagram

with pointlike particles and interactions as the string length is sent to zero.

Figure 2.2: The possible Feynman graphs from degeneration of the
genus-0 worldsheet from figure 2.1

Open strings interactions are instead controlled by a different coupling go. Consider

the addition of an open string loop. This introduces two open string vertices and

thus should result in a g2
o suppression. However, this operation results in the addition

of a boundary and no change in genus, so ∆χ = −1. Therefore the suppression is

also (eφ)−∆χ = gs and we find that

g2
o ∼ gs (2.37)

2.2 Type II supergravity and D-brane content

At energy scales much lower than the string scale (α′)−1/2, equivalently α′ → 0, all

massive modes of a string theory decouple and a good description is given by an

effective field theory comprising only the massless excitation. Since the string length

goes to zero in this limit strings in massless states are essentially pointlike and the
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quantum theory will correspond to a local quantum field theory.

The effective field theories of the five superstring theories are the five supergravity

(SUGRA) theories in 10 dimensions. The name of each SUGRA coincides with that

of the superstring theory it is the effective theory of (e.g., IIB SUGRA is the effective

theory of IIB superstrings). Supergravities are supersymmetric theories containing

general relativity, and are obtained by extending local Poincaré invariance to in-

clude local supersymmetry. Just like Einstein gravity, they are nonrenormalizable,

reflecting their origin as effective theories. As field theories, they are considerably

simpler than general strings to find background solutions to; therefore we will make

extensive use of the supergravity approximation in the context of holography.

10D SUGRAs are perhaps easier to introduce starting instead from the unique 11D

SUGRA. The field content of 11D SUGRA is as follows (we also note the number

of physical polarizations):

Bosons
Graviton g(M,N) 44

3-form C3 = 1
3!CMNLdx

M ∧ dxN ∧ dxL 84

Fermions Gravitino Majorana ψM 128

As required by supersymmetry, the number of on-shell boson and fermion states are

equal. These states form an irreducible supermultiplet, a gravity multiplet.

Upon dimensional reduction on a circle, in 10D these fields decompose into those of

type IIA SUGRA:

NSNS

Graviton g(µ,ν) 35

Kalb-Ramond B2 = 1
2Bµνdx

µ ∧ dxν 28

Dilaton φ 1

RR
1-form C1 = Cµdx

µ 8

3-form C3 = 1
3!Cµνρ dx

µ ∧ dxν ∧ dxρ 56

NSR, RNS
Two gravitinos Weyl-Majorana ψ

(L)
µ , ψ

(R)
µ 56 + 56

Two dilatinos Weyl-Majorana λ(L), λ(R) 8 + 8

where we have matched the fields with the massless modes of the four IIA string

sectors. In fact, these fields are just the ground states defined in (2.29), decomposed

in irreducible representations of SO(8). For example, the NS-NS ground Gµν =

b̃µ†1/2 |0〉NS ⊗ b
ν†
1/2 |0〉NS (reintroducing unphysical polarizations) is a spacetime rank-

2 tensor, decomposable as a symmetric form, an antisymmetric form, and a trace,

as in

8V ⊗ 8V = 35 + 28 + 1 (2.38)

These are respectively the graviton, the Kalb-Ramond field, and the dilaton. The

fields from the other sectors result accordingly from the decompostions:
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NSR 8V ⊗ 8R = 56 + 8L (2.39)

RNS 8L ⊗ 8V = 56 + 8R (2.40)

RR 8L ⊗ 8R = 56 + 8V (2.41)

where the three inequivalent SO(8) irreps 8V , 8L, 8R are respectively the vector

and negative and positive chirality Weyl-Majorana representations.

We note the two gravitinos and dilatinos are of opposite chirality, as do the RNS

and NSR sectors of IIA superstrings.

Obviously, again we find that the total bosonic states are 35+28+1+8+56 = 128 and

the fermions 2 · (56 + 8) = 128. There is therefore a match both with the number

of degrees of freedom of 11D SUGRA and with supersymmetry. IIA SUGRA in

particular is a theory with N = (1, 1) SUSY, meaning there are two Weyl-Majorana

SUSY generators of opposite chirality.

We will mainly be interested, however, in type IIB SUGRA, which is not obtainable

from dimensional reduction, and is the effective field theory for IIB strings. The

field content is as follows:

NSNS

Graviton g(µ,ν) 35

Kalb-Ramond B2 = 1
2Bµν dx

µ ∧ dxν 28

Dilaton φ 1

RR
0-form C0 1

2-form C2 = 1
2!Cµν dx

µ ∧ dxν 28

4-form C4 = 1
4!Cµνρσ dx

µ∧dxν∧dxρ∧dxσ 35

NSR, RNS
Two gravitinos Weyl-Majorana ψ

(1)
µ , ψ

(2)
µ 56 + 56

Two dilatinos Weyl-Majorana λ(1), λ(2) 8 + 8

The 4-form has its physical polarizations halved from
(

8
4

)
= 70 to 35 by the intro-

duction of a constraint we will specify shortly.

IIB SUGRA hasN = (2, 0) supersymmetry, with two equal-chirality Weyl-Majorana

generators. It is therefore a chiral theory. While IIA is non-chiral and thus auto-

matically anomaly free, IIB as a QFT has the potential to develop a gravitational

anomaly due to the chiral fermionic sector. It is however found that the total

anomaly miraculously cancels with the listed field content [15]. This cancellation

is obvious in light of the fact that IIB SUGRA is the effective field theory to IIB

superstrings, which are not just free from anomalies but from all UV divergences.

2.2.1 Gauge invariance of RR fields

In both IIA and IIB, the RR sector admits the following gauge transformations:
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B2 → B2 + dΛ1 Cp → Cp + dΛp−1 −H3 ∧ Λp−3 (2.42)

for any set of arbitrary p-forms Λp, leaving invariant the field strengths:

H3 := dB2

Fp+1 := dCp −H3 ∧ Cp−2

(2.43)

Where Cp,Λp with p < 0 is set to 0. Now, intuitively, the RR form Cp couples to

(p− 1)-dimensional objects ((p− 1)-branes) through an interaction term of the type

Sint =

∫
Wp−1

Cp (2.44)

integrated over the p-dimensional worldvolume Wp−1, a sensible generalization of the

coupling of the EM potential to a charged particle. In particular, as it was already

established that it is possible for open strings to end on D-branes, we would like

to investigate for which values of p a certain string theory admits stable D(p − 1)-

branes - certainly, if they have a conserved charge under a gauge field then they

are protected from decay. Therefore the set of RR fields in a superstring theory

determines the list of stable D-brane dimensionalities.

The above is an electric coupling of the (p − 1)-brane to Fp+1. The coupling how-

ever could also be magnetic, electric-magnetic duality being implemented in general

through Hodge duality. We define Fp for additional values of p > 5 (odd for IIA,

even for IIB) through

Fp = ?̃F10−p (2.45)

(Note that for the IIB F5 this would be actually a constraint, precisely the one that

acts on C4 to reduce its degrees of freedom; F5 = ∗F5 however is not the exact form

of the constraint, as will be clarified in section 2.3). The new field strengths can then

be locally trivialized as of (2.43) and so we end up with a complete set of potentials

C0, . . . C8 for IIB and C1 . . . C9 for IIA. The duality between potentials would act as

Cp ↔ C8−p, and if D(p− 1)-branes couple electrically to Cp, then D(7− p)-branes

couple magnetically to it, that is to say electrically to C8−p.

Therefore, the magnetic dual to a Dp-brane is a D(6 − p)-brane. So the definitive

list of stable D-branes in type II string theories along with the RR fields they are

charge under is given by:
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D(−1) C0 F1

D0 C1 F2

D1 C2 F3

D2 C3 F4

D3 C4 F5

D4 C5 F6

D5 C6 F7

D6 C7 F8

D7 C8 F9

D8 C9 F10

D9 C10 0

where shaded entries are for IIB, and unshaded for IIA, and arrows represent electric-

magnetic duality. We comment on a few apparent anomalies.

• The IIB D(−1)-brane would have a 0-dimensional worldvolume, hence a single

event. These type of branes are therefore actually instantons. They couple to

the C0 potential, which has axionic character.

• IIA D8-branes and the C9 potentials do not have duals, yet D8-branes can be

shown to exist and to couple to the F10 field strength, as was first noted in

[31]. However the action
∫
F10 ∧ ?F10 implies d ?F10 = 0 which means F10 is a

constant. Therefore there are no additional physical degrees of freedom from

C9.

• Space-filling D9 branes can be introduced in IIB superstrings, but the equation

of motion of the C10 form implies only special arrangements of D9s and anti-

D9s are allowed - this was first appreciated in [32].

2.3 Action functional for IIB SUGRA

There is a considerable obstacle to a covariant (i.e. explictly supersymmetric) for-

mulation of type IIB supergravity in the self-duality constraint for the field strength

5-form F5. We will take the common path of formulating the Lagrangian theory

ignoring the constraint (and thus in excess of bosonic polarizations with respect to

an explicity supersymmetric theory) and then imposing self-duality by hand after

deriving the equations of motion. Therefore the action will not be supersymmetric

itself, while the Euler-Lagrange equations augmented with the constraint will be.

This issue becomes very problematic on quantization, but, as we will prove, classical

supergravity will be sufficient for our purposes.

Actually, for the purpose of building classical solutions, where spinor fields vanish

anyway, the fermionic sector of the action will not be important. After introducing
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the “string length” `s through6

`s := 2π
√
α′ (2.46)

the bosonic sector is as such:

SIIB,B = SNS + SR + SCS (2.47)

where SNS is the action relevant to the fields originally from the superstring NS-NS

sector:

SNS =
2π

`8s

∫
d10x
√
−g e−2φ

(
R+ 4∂µφ∂

µφ− 1

2
|H3|2

)
(2.48)

where the p-form norm is |ω|2 = ω ∧ ?ω. Then SR is for R-R fields, essentially just

kinetic terms for the A forms:

SR = −2π

`8s

∫
d10x
√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
(2.49)

F̃3 := F3 − C0H3 (2.50)

F̃5 := F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (2.51)

And finally we supplement with a Chern-Simons type term:

SCS = −2π

`8s

∫
C4 ∧H3 ∧ F3 (2.52)

note the untilded F3. This is evidently a purely topological term.

The self-duality constraint is then imposed in terms of the modified field strength

F̃5

F̃5 = ∗F̃5 (2.53)

The action presented above is in what is known as the “string frame”. It becomes

convenient in many occasion to switch to an alternative formulation through a field

redefinition, to move to the “Einstein frame”. The change is

gEFµν = e−φ/2gSFµν (2.54)

6Care should be taken with inequivalent convention with the definition of the string length in
the literature. For the purpose of this work we will refer to this definition.
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and the action in terms of the new metric is [4]

(
`8s
2π

)
SEF =

∫
d10x
√
−g
(
R− 1

2
∂µφ∂

µφ− 1

2
e−φ|H3|2

)
− 1

2

∫
d10x
√
−g
(
e2φ|F1|2 + eφ|F̃3|2 +

1

2
|F̃5|2

)
− 1

2

∫
C4 ∧H3 ∧ F3

(2.55)

The advantage of this picture is the canonical Einstein-Hilbert and dilaton terms;

by converse exponential couplings of the dilaton with the form fields are introduced.

2.4 D-branes

2.4.1 D-brane action

D-branes appear as nonperturbative objects in string theories. They are themselves

dynamical and the dynamics are modeled in the string perturbative regime by an

action functional [15]. To formulate the action, we introduce coordinates σa on the

(p+1)-dimensional worldvolume Wp and functions Xµ(σa) describing the embedding

of Wp in spacetime as ι : σα 7→ Xµ(σa). It is then tempting to choose as bosonic

action the obvious generalization of the Nambu-Goto action:

SDp = −µDp
∫
Wp

dp+1σ
√
−det ι∗(G) = −µDp volWp (2.56)

the notation ι∗(T ) denotes the pull-back of a spacetime tensor to the worldsheet.

For example, ι∗(G) is the induced metric hab = ∂aX
µ∂bX

νGµν . µDp would be the

D-brane tension. The insight of (2.56) is correct, but incomplete; firstly it does not

include a coupling with possible background fields, but most importantly it does not

account for all of the open string modes living on the worldvolume.

In fact, if the quantization procedure we performed for the open string is repeated

with the endpoints constrained to a Dp-brane (i.e., with 9 − p Dirichlet and p + 1

Neumann conditions) then one finds among the massless bosonic states both scalar

(from the worldvolume point of view) fields Xp+1,...,9 which indeed correspond to

motion of the D-brane in the transverse directions, but also, as we have seen, a

massless vector potential mediating a U(1) gauge theory confined to the D-brane

volume. Therefore, it is directly from the modes of open strings that it is possible

to deduce the brane is itself a dynamical object, as its position is related to VEVs

of open-string scalars. Enforcing this idea that the D-brane dynamics should be

encoded in those of the open-string modes, D-branes should always host at least a
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U(1) gauge theory on them.

The bosonic part of the Dp-brane action is then found to be

SDp =− µDp
∫
W
dp+1σe−φ

√
−det (ι∗(g −B2)− 2πα′F ) (2.57)

+ µDp

∫
W

[
ι∗

(∑
k

Ck

)
∧ e2πα′F−B2 ∧ (1 +O(R2))

]
p+1

(2.58)

Where µDp can be fixed as

µDp = α′ −
p+1

2 (2π)−p (2.59)

and F is the field-strength 2-form of the U(1) gauge theory.

The first line (2.57) is the Dirac-Born-Infeld action and generalizes the Nambu-Goto

action; Setting only B = 0, φ = const and expanding SDBI in powers of α′:

SDBI = −
µDp
gs

∫
W
dp+1σ

√
−h +

α′−(p−3)/2

4gs(2π)p−2

∫
W
dp+1σ

√
−hFµνFµν + . . . (2.60)

the first term is the direct generalization of the Nambu-Goto action, allowing us to

identify the Dp-brane tension TDp =
µDp
gs

. The second is a Yang-Mills action for the

U(1) gauge field, restricted to the worldvolume.

It becomes clear D-branes carry a mass per unit p-volume TDp ∼ g−1
s and are thus

nonperturbative in terms of the string coupling. Note also the Maxwell action is

weighted by g−1
s , in agreement with what previously found for the relation between

open and closed string couplings: gYM ∼ g0 ∼ g
1/2
s . To be more exact, comparing

with the canonical Maxwell action one can deduce

g2
YM = 2πgs (2.61)

The second line (2.58) is a Chern-Simons type term coupling the brane to the RR

potentials. The sum over k only spans odd or even respectively for IIA or IIB,

and the [ ]p+1 notation means the p + 1-form component must be selected so as to

define a meaningful integral. We note that in vanishing curvature, and expanding

in 2πα′F −B2, the physical interpretation becomes less obscure:

SCS = µP

∫
W
Cp+1 + µP

∫
W
Cp−1 ∧ (2πα′F −B2) +O(F 2) (2.62)

so that there is a direct, standard coupling of the Cp+1 potential to the Dp-brane at
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the zeroth order in F . A Dp-brane is therefore also understood as a localized charge

for the Fp+2 field. Higher order terms mean a coupling with the lower RR potentials

and are due to nontrivial F configurations which induce lower-dimensional D-brane

charges localized inside the Dp-brane.

We touch briefly upon the easy generalization of the above action to the case of

N coincident Dp-branes, a “stack”. We imagine first taking 2 separated parallel

D-branes (1 and 2) and bringing them closer together. Normally, open string modes

stretching from 1 to 2 are suppressed by the increase in mass squared due to the

minimum elastic energy to span the inter-brane distance. In fact, the open string

spectrum is found to be identical except for the constant shift in the mass-shell

condition [4]:

∆M2 = T 2
9∑

i=p+1

(Xi
1 −Xi

2)2 (2.63)

If then the branes are brought to coincide, this shift vanishes and one must admit

an additional 1 → 2 sector of massless states has been created. In general, with N

coincident Dp-branes there will be an N ×N matrix of massless sectors indexed by

a, b = 1, . . . , N marking the starting and ending brane (Chan-Paton indices). This

means then a matrix of gauge vectors Aab generating U(N) gauge transformations;

this U(N) group is nothing else than transformations mixing the N identical, coin-

cident D-branes with eachother. Therefore they act on Chan-Paton indices in the

defining representation.

Then, it is clear the fields Φi
ab := (Xi

a −Xi
b), parametrizing relative D-brane trans-

verse position, transform in the adjoint of the gauge group. The action of separating

again the D-branes is then interpreted in this point of view as a Higgsing of the gauge

group by these scalars; when the stack of N branes splits into two groups of N1 and

N2 branes which are separated, this corresponds to the relevant Φ fields acquiring a

VEV, breaking part of the gauge group to the corresponding group for two separate

stacks

U(N)→ U(N1)× U(N2) (2.64)

and the gauge fields corresponding to the broken generators, which gain a mass

through the Higgs mechanism, are in fact modes of strings stretching between the

two stacks, so that the Higgsed mass can also be viewed as the elastic energy from

(2.63).

The salient point in any case is the extension of the gauge group from U(1) to U(N).

Essentially, the F 2 term (and higher) in (2.60) must be supplemented with gauge

traces.
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2.4.2 D-branes as supergravity solitons

As D-brane carry mass, a dual description of D-branes in terms of the warped space-

time they produce should be possible. These spacetimes indeed appear as solitonic

solutions in supergravity generalizing the usual four-dimensional black hole metrics,

under the name of p-branes or black branes. In particular, as Dp-branes are (for

certain values of p) stable objects, stabilized by Fp+2 charge, their supergravity des-

cription must be a zero-temperature state, unable to lose mass to Hawking radiation,

and thus extremal.

These solutions are constructed in complete analogy to the derivations of usual

general relativity black holes, by inserting an ansatz with the desired symmetries

into the supergravity action, and in fact are direct generalizations of the extremal

Reissner-Nordström hole. We provide a succint review of the derivation and result,

following for example [18]. Since the p-brane is stabilized by its charge under the

Cp+1 potential or the Fp+2 field strength, it can be assumed all the other form fields

vanish, including H3. Moreover the fermion fields vanish for classical solutions.

Therefore the Einstein frame IIB action reduces to

SIIB =
2π

`8s

∫ √
−g
(
R− 1

2
(dφ)2 − 1

2η
e

3−p
2
φ|Fp+2|2

)
(2.65)

if p = 3, the self-duality constraint F5 = F̃5 is to be imposed after finding the

Euler-Lagrange equations, and η = 2; otherwise η = 1.

It is clear one can assume the black p-brane has
(
Rp+1 o SO(1, p)

)
× SO(9 − p)

symmetry, so that we can introduce a set of longitudinal coordinates x0,...,p and

transverse coordinates yp+1,...,10 such that the dependence of all fields components

in this coordinates is reduced to the single radial transverse variable r2 = ~y · ~y. The

most general Einstein frame metric with these symmetries is then

ds2 = H−1/2
p dx · dx+H1/2

p dy · dy (2.66)

where the warp factor Hp(r) is a function of r only, and dx · dx and dy · dy =

dr2 + r2dΩ8−p are respectively the Minkowski and Euclidean metrics. Analogously,

the dilaton φ is also a function of r and the form potential must take the form

C012...p = C(r) (2.67)

After variation of the action (2.65) and insertion of the described ansatz in the

resulting equations of motion (plus simplifications in the p = 3 case since |F5|2 =

F5 ∧ ∗F5 = F5 ∧ F5 = 0), one is left with a differential equation for Hp. It is found,

remarkably, that (for r > 0)
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∇2Hp = 0 (2.68)

where ∇2 is the flat space Laplacian, hence a linear equation. This traces back to

the fact that multiple extremal black holes are non-interacting, as the gravitational

and electrostatic forces cancel - the same holds for D-branes in supergravity. This

makes it possible to construct exact solutions with multiple branes by superposition.

In any case, the linear equation has (taking into account the boundary condition of

asymptotic flatness Hp(∞) = 1) a simple solution as (for p < 7):

Hp(r) = 1 +

(
Rp
r

)7−p
(2.69)

for some Rp to be determined. Exploiting the equations of motion one finds also

eφ(r) = gsHp(r)
(3−p)/4 (2.70)

where gs = eφ(∞) is the background value of the string coupling, and

C01...p = H−1
p − 1 (2.71)

⇒ Fp+1 = d(H−1
p ) ∧ dx0 ∧ . . . ∧ dxp (2.72)

which completes the specification of the class of solutions. Now Rp is fixed by

matching the gravitational flux to the mass (per unit longitudinal volume) of the

D-brane. In fact, we are free to consider a set of N coincident Dp-branes, a “stack”,

an easy generalization which will prove very important in the context of AdS/CFT.

The exact dependence is

(Rp)
7−p =

(
(4π)

5−p
2 Γ

(
7− p

2

))
α′

7−p
2 gsN (2.73)

While this result was derived from the IIB action and so for p = 1, 3, 5, it actually

applies identically for IIA p = 0, 2, 4, 6 branes7. We single out from this the self-dual

case of the D3 brane which displays a uniform value for the dilaton. In general

instead from (2.70) and the warp factor (2.69) we have the near-horizon behaviour

e4φ ∼
( r
R

)(3−p)(p−7)
(2.74)

which means the local string coupling diverges for p < 3 and vanishes for p > 3.

7It should be remarked that similar D7 and D8 solutions are possible, but that the behaviour
of the warp factor is respectively logarithmic and linear in r, and so asymptotic flatness cannot be
enforced.
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p = 3 acts as a middle ground between these cases.



Chapter 3

D3-brane stacks on Calabi-Yau

cones

One of the most essential ingredients for the conception of the idea of holography was

the fact that a stack of coincident D3-branes naturally features a 4D gauge theory

on their world-volume, where the 4D fields emerge from the modes of open strings

stretching between them. In the simplest and most famous example, a stack of N

D3-branes is placed in otherwise Minkowski R1,9; the corresponding field theory is

the maximally supersymmetric Yang-Mills in four dimensions (N = 4 SYM ).

Setting the stack on a different background geometry instead gives rise to a large

family of different field theories; a particularly interesting subset is given by space-

times of the form

M = R1,3 ×X6 , (3.1)

where the R1,3 is parallel to the branes (and must be identified with the field theory

spacetime) and X6 is a 6-dimensional Calabi-Yau cone over a compact 5-fold base

Y5. By X6 being a cone it is meant there exists a conical radial coordinate r such

that the metric on X6 is of the form

ds2 = dr2 + r2ds2
5 (3.2)

With ds2
5 the metric on Y5.

In this language, the N = 4 SYM example above corresponds to X6 = R6 = C3,

which is (trivially) a cone over Y5 = S5. This is the only case where X6 turns out to

be smooth; in general it will feature a conical singularity in the origin. The moti-

vation for jumping so hastily to a generalization as radical as a singular spacetime,

instead of other smooth spacetimes, is that the latter will not actually introduce

any novel features. As will be clarified in a holographic context (see for example

27
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section 4.4), the flow towards the IR of the field theory will actually correspond to

“zooming in” on the D-branes, and any smooth spacetime will converge to flat R6

in this limit. Only a genuine singularity is going to introduce any novel behaviour

in the IR field theory, and conical defects are a well-known example of singularities

on which string theory is known to be formulable [11].

Non-trivial choices for the base will typically yield theories with reduced (even mi-

nimal) supersymmetry, which are considerably more challenging to study.

In this chapter, we will first describe some general features of the theories resulting

from the placement of D3-branes on these conical backgrounds. Then, we will con-

centrate in particular on a specific chain of field theories starting from the simplest

example of N = 4 SYM and ending up on the Y 2,0 theory, the study of which is the

main objective of this work.

3.1 Superconformal field theory

We now provide a short introduction to 4D conformal field theories, their supersym-

metric variants, and the relevant terminology.

Consider flat spacetime of dimension d and signature p, q, with p + q = d. Take a

coordinate chart xµ in which the metric takes the standard form ηµν . Conformal

transformations are defined to be diffeomorphisms xµ → x′µ which leave the metric

unchanged in form up to an x dependent scalar function (a conformal factor):

g′µν(x′) = Ω(x)ηµν . (3.3)

These maps form evidently a group, which is known as the conformal group CO(p, q).

We will mainly be interested in CO(1, d − 1), but most of what we will now show

applies in general signatures.

In d > 2, the conformal group will turn out to be a finite-dimensional Lie group, of

which we specify now the connected component. An obvious subgroup is maps that

leave the metric unchanged, so Poincaré transformations, with generators Pµ and

Jµν . A second easy guess is the subgroup with constant conformal factors, that is

scale transformations or dilations

xµ → λxµ ηµν → λ−2ηµν (3.4)

whose generator is called D. To generate the whole conformal group a final class of

transformations must be introduced, special conformal transformations, generated

by Kµ and with finite action1

1It should be noted special conformal transformations are not well-defined on Rp,q, as the de-
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xµ → xµ − bµx2

1− 2bνxν + b2x2
(3.5)

Together, Pµ, Jµν , D and Kµ generate the connected component of the conformal

group in d dimensions. The extension of the Poincaré algebra to the conformal one is

characterized by the following additional commutators (using hermitian generators)

[Jµν ,Kρ] = 2iηρ[µKν] (3.6)

[Jµν , D] = 0 (3.7)

[D,Pµ] = iPµ (3.8)

[D,Kµ] = −iKµ (3.9)

Equations (3.6) and (3.7) just confirm Kρ is a vector and D is a scalar. (3.8) and

(3.9) instead state that Pµ and Kµ are respectively raising and lowering operators for

D. It is worth of notice that this group CO(1, d−1) is actually SO(2, d), the Lorentz

group in mixed signature (2, d). This can be shown by combining the generators in

JMN =

 Jµν (Kµ − Pµ)/2 −(Kµ + Pµ)/2

(Pµ −Kµ)/2 0 D

(Kµ + Pµ)/2 −D 0

 (3.10)

and then it can be verified that JMN satisfy the algebra of so(2, D). This equiva-

lence will be relevant when we will introduce AdS/CFT, since SO(2, D) is also the

isometry group of AdSD+1.

A quantum field theory which has the conformal group as symmetries is called a

conformal field theory (CFT). In such a theory, particles lie in irreducible represen-

tations of the conformal group; since the mass P 2 is not a Casimir for the whole

group, it becomes useful to replace it with more relevant quantum numbers. Con-

sider the dilation operator: in the quantum theory it will be represented by

D = −i(xµ∂µ + ∆) (3.11)

where ∆ gives the intrinsic scaling dimension of a field, which will in general trans-

form as φ(x) → λ∆φ(λx). ∆ is therefore a good quantum number. Considering

the role of P and K as ladder operators, changing the conformal dimension by ±1,

we can deduce states will come in multiplets of ever-increasing dimension ∆(0) + n,

n ≥ 0, and that the lowest-dimension state will be annihilated by Kµ. Fields in the

kernel of Kµ will be called primary, and others, obtained by applying powers of Pµ

nominator can vanish. Indeed, these more naturally act on the conformal compactification Rp,q,
including points at infinity.



30 CHAPTER 3. D3-BRANE STACKS ON CALABI-YAU CONES

(hence, derivatives) will be called descendants.

A primary field is then identified by its conformal dimension and its representation

under the Lorentz group, so, now specializing to D = 4, by quantum numbers

(∆, jL, jR). We recall Lorentz irreps are indexed by two half-integers (jL, jR), for

example: (0, 0) is a scalar, (1
2 , 0) and (0, 1

2) are left/right Weyl spinors, (1
2 ,

1
2) is a

vector, and so on.

A classically conformal field theory very often fails to be conformal when quantized.

This happens because the dilation symmetry is anomalous. Classical scale invariance

clearly implies all couplings are adimensional; in the quantum theory these couplings

gi will run under renormalization with a corresponding β function, as in

dgi

d lnµ
=: βi(g) . (3.12)

The dependency of the running coupling on the energy scale, or equivalently the cre-

ation of a mass scale by dimensional transmutation, means the conformal symmetry

is spoiled2. This happens for example in quantum chromodynamics, a classically con-

formal theory with a scale anomaly giving rise to the ΛQCD mass scale, or quantum

electrodynamics where the scale is at the Landau pole. Since the Noether current

corresponding to dilations is the trace of the energy-momentum tensor, the anomaly

will be detectable by the appearence of a nonzero matrix element 〈Tµµ〉 ∝ β(g) 6= 0.

Only if all the β functions vanish identically, i.e. if the theory is finite, is quantum

conformal invariance guaranteed. We will encounter an example of such a theory in

section 3.3. Otherwise the theory will only be conformal for specific values of the

gi at which all the β functions vanish, that is to say at fixed points. In general a

quantum field theory will flow under renormalization from a non-conformal point

towards an attracting IR fixed submanifold, the locus of
{
βi(g) = 0

}
, called the

conformal manifold.

An important point is that after the theory has regained its classical conformal

symmetry after converging through RG flow to an IR fixed point, the quantum

scaling dimensions ∆ of operators will not coincide with the original value they

had in the classical theory, the canonical dimension ∆0. They will be modified by

quantum corrections that add an anomalous dimension

∆ = ∆0 + γ(g∗) , γ(g) = −1

2

d lnZ

d lnµ
, (3.13)

2We are here using conformal and scale (i.e. dilation) invariance interchangeably, but they are
not identical. Conformal symmetry obviously includes dilations, but scale invariance + Poincaré
does not generate the whole conformal group, as special conformal transformations are independent.
Scale invariant but not conformal theories are known explicitly [2], but they are rare. We will work
with the assumption dilation-invariant ⇒ conformal.
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where
√
Z renormalizes the wavefunction3, and g∗ are the values of the couplings at

the conformal fixed point.

Having introduced the extension of the Poincaré group to SO(2, 4), we would like

to press this further to include supersymmetry. Supersymmetry is implemented by

adding N ≤ 4 Weyl supercharges QA, QA (A = 1, . . . ,N ) to generate the super-

Poincaré supergroup ISO(1, 3| N ). The superconformal group SO(2, 4| N ) is then

the minimal supergroup containing both. The first important feature is that a second

set of supercharges SA, S
A

must be introduced to close the algebra, since

[Kµ, Q
A] = −σµS

A
, [Pµ, SA] = QAσµ ; (3.14)

so that superconformal symmetry SO(2, 4| N ) involves twice as many supercharges

as normal supersymmetry for a given N . Another relevant excerpt from the table of

commutators (which we do not reproduce in full) states QA and SA are also ladder

operators for dilations,

[D,QA] =
i

2
QA , [D,SA] = − i

2
SA , (3.15)

raising and lowering the dimension ∆ by ±1/2. In a superconformal field theory

(SCFT) we then expect multiplets of dimension ∆ = ∆0 + n
2 . Primary operators

must now be annihilated by both Kµ and SA, and are classified again by dimension

and spin (∆, jL, jR) but also by the U(1)× SU(N ) R-symmetry quantum numbers

(R, r) (r denoting a generic irrep of SU(N )). Then, by acting with the raising

operator QA charges one can reconstruct a finite-dimensional supermultiplet, as in

normal supersymmetry. Instead, powers of Pµ reconstruct the infinite ladder of

derivatives forming an infinite-dimensional representation of the conformal group;

these can be recombined into a field by Taylor expansion. In conclusion, an infinite-

dimensional representation of the superconformal group can be organized into a

superfield

Φ...(x
µ, θA, θ

A
) (3.16)

where . . . stands for Lorentz and R-charge-SU(N ) indices for the primary.

Actually, not all values for ∆ are allowed in a quantum theory. Imposing physi-

cal states have non-negative norm (i.e., unitarity) results in lower bounds for the

quantum scaling dimension [26],

3It should be noted some authors prefer to define γ = − d lnZ
d lnµ

. In addition, Z is generally a
matrix that mixes different fields together under RG flow; however in all of the cases considered in
this work this can be ignored, since only fields in the same gauge representation and with the same
spin could ever mix, and those will always turn out to be connected by a flavour symmetry.
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∆ ≥ f(j1, j2) ; (3.17)

moreover, since violation of the bound results in negative norms, by continuity when

it is saturated zero-norm states appear. This correspond in general to a shortening

of the multiplet, which becomes constrained to be annihilated by a polynomial of

Pµ. For example, for scalar fields

∆ ≥ 1 (3.18)

and ∆ = 1 iff ∂µ∂
µΦ = 0, that is, Φ is free. In the spin-1 case, ∆ ≥ 3 and equality

holds only if the field is a conserved current (∂µJ
µ = 0); for spin-2 ∆ ≥ 4 and ∆ = 4

only if ∂µT
µν = 0, that is to say Tµν must be the stress-energy tensor. This result

implies in particular that conserved operators must have fixed, canonical dimension

and so are not renormalized.

In N ≥ 1 SCFTs, more interesting unitarity bounds can be introduced by extending

the above reasoning to include superconformal symmetries. Introducing the U(1)

R-charge symmetry (and normalizing such that RQ = 1), one is led to bounds of

the type

∆ ≥ f(j1, j2, R) (3.19)

depending also on the R-charge of the superfield. Saturation corresponds to the

appearance of ghosts and a shortening of the multiplet, which is annihilated by a

polynomial of Pµ and Q. In particular, for scalars

∆ ≥ 3

2
R (3.20)

and equality holds iff Dα̇Φ = 0, i.e. if the superfield is chiral. Thus, chiral fields will

satisfy

∆ =
3

2
R . (3.21)

3.2 Features of D3-brane on Calabi-Yau cones

We consider a stack of N D3-branes on a ten-dimensional background of the form

R1,3 × X6. The branes are parallel to the R1,3 (which can be identified with the

worldvolume) and are essentially points from the point of view of the 6D manifold

X6. Since, as it was anticipated, there is an interest in having the D-branes probe a

conical singularity, we choose X6 to be a cone, in the sense that X6 = R+ × Y5 and
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ds2
6 = dr2 + r2ds2

5 (3.22)

If Y5 = S5 with the unit round metric then the cone is X6 = R6 and one returns to

the flat case. Therefore we include this as a trivial example of a cone.

In addition, we must require that the cone be Ricci-flat, so that it satisfies the

supergravity equations of motion in vacuum. This is equivalent to Y5 being Einstein

of positive curvature, as we now show. ds2
6 is conformally equivalent to the canonical

metric on a cylinder over Y5, as evidenced by the reparametrization φ = ln r:

ds2
6 = e2φ

(
dφ2 + ds2

5

)
; (3.23)

recalling the transformation law of the Ricci tensor in n dimensions under conformal

rescalings:

R′ij = Rij − (n− 2) (∇i∂jφ− ∂iφ∂jφ)

+
(
∇2φ− (n− 2)∇kφ∇kφ

)
gij ,

(3.24)

and noting that for the cylinder (which has a product metric) the restriction of Rij

to Y5 indices gives Y5’s own Ricci tensor R
(5)
ij , we obtain

R
(5)
ij = 4g

(5)
ij . (3.25)

A manifold with Rij = Λgij , with Λ a constant, is called Einstein.

Also, we require that X6 be Kähler, with the Ricci-flat metric gij being the Kähler

metric. This restrictive property is necessary [16] for the field theory to have at least

N = 1 supersymmetry.

Indeed, bein Kähler and Ricci-flat implies that X6 is a Calabi-Yau manifold, thus of

restricted holonomy ⊂ SU(3). More restricted holonomy results in enhanced super-

symmetry; in particular if the holonomy group is contained in SU(2) then the gauge

theory will have N = 2, and if the holonomy is trivial (i.e. X6 = R6) then the super-

symmetry will be maximal, N = 4. Intuitively, this is because supersymmetries of

X6 carry over as rigid supersymmetries of the field theory; this fact will be explained

more rigorously in the context of holography, however. An Einstein manifold Y5 such

that the corresponding cone X6 is Calabi-Yau is called Sasaki-Einstein.

Independently of the background, theories resulting from D3-brane stacks will always

be gauge theories, as gluons mode will always be present. In particular, the gauge

group will be a product of U(N) factors (nodes); the number of gauge factors is

related to the topology of the cone as it is its Euler characteristic χ [24].
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In addition, the theory will be populated by chiral fields in “bifundamental” repre-

sentations, i.e. with an index in the fundamental of one U(N) node and a second

in the antifundamental of another. These sort of theories are termed quiver gauge

theories and they can be encoded in a quiver diagram, where U(N) factors are de-

noted by nodes and bifundamental fields as directed arrows stretching between two

nodes. As an example, we present the quiver diagram for one of the CFTs we will

introduce in this chapter, the Klebanov Witten theory:

The diagram has a left and right node signaling each a U(N) gauge factor, so the

gauge group is SU(N)×SU(N). The two arrows moving from left to right represent

two different chiral fields A1 and A2 both in the (N,N) gauge representation, while

the lower arrows are two other fields B1 and B2 transforming as (N,N).

Let us review briefly the structure of the action of an N ≥ 1 gauge theory; we follow

[36]. There is a gauge vector superfield V (corresponding to an on-shell multiplet

(Aµ, λ)) with values in the algebra (that is V = T aVa with Va in the adjoint), with

an associated field-strength

Wα = −1

4
Dα̇D

α̇
DαV (3.26)

and the dynamics of the free vector are given by the Lagrangian

LSYM =
1

4

∫
d2θ TrWαWα + h. c. (3.27)

In addition, one can also include chiral superfields ΦI = (ϕI , ψI) charged under the

gauge group. These will have a kinetic term

LΦ =

∫
d4θΦ†Ie

gV ΦI (3.28)

which is a correction of the canonical
∫
d4θΦ†IΦI to implement gauge invariance.

g is the gauge coupling; note this means that one should really introduce separate

gauge fields for each simple factor in the gauge group, as each one will have an

independent coupling. Finally, one is free to add an interaction superpotential for

the chiral fields:

Lint =

∫
d2θW (Φ) + h. c. (3.29)
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provided W is a holomorphic, gauge invariant combination of the ΦI .

Actually, it still possible to add another term consistent with the symmetries to the

Lagrangian. In the non-supersymmetric case, the Maxwell action 1
2g2
YM

∫
TrF ∧ ∗F

can be supplemented by a topological term θ
8π2

∫
TrF ∧F fronted by a theta angle θ.

The same can be done in an N = 1 gauge theory by replacing the kinetic lagrangian

(3.27) with

LSYM =
1

32π
Im

(
τ

∫
d2θTrWαWα

)
(3.30)

after having introduced the complexified coupling

τ :=
θ

2π
+

4πi

g2
. (3.31)

3.2.1 Renormalization and supersymmetric beta functions

In the study of D3-brane quiver theories we will need to identify their conformal

manifolds as defined in 3.1, or less ambitiously just its dimension. This is the number

of marginal directions, deformations of the theory that preserve its superconformal

invariance. In general we will have a space of parameters (g1, g2, . . . , gχ, λ1, . . . , λk)

including gauge and superpotential couplings, and the conformal manifold will be

the submanifolds of values of these couplings for which βg1 = . . . = βgχ = βλ1 =

. . . = βλk = 0.

Thankfully, the renormalization structure of supersymmetric theories is in general

vastly simplified with respect to the general case. In the case of N ≥ 1 supersymme-

try, there is a remarkably simple formula for the gauge beta functions, connecting

them to the anomalous dimensions of the fields:

β(ga) = − g3
a

16π2

3T [Adj]−
∑

i T [Ri](1− 2γi)

1−Ng2
a/8π

2
. (3.32)

T [R] is the Dynkin index of the representation R of the gauge group. The sum is

over the chiral fields charged under the gauge group, and their representations and

anomalous dimensions Ri, γi. This is known as the Novikov-Shifman-Vainshtein-

Zakharov (NSVZ) β function, and is known to be correct to all orders in perturba-

tion theory [10]. A further simplifying step will be possible because in addition to

supersymmetry the theory has superconformal invariance, as the anomalous dimen-

sion γ = ∆− 1 will be connected to the R-charge at conformal points according to

(3.21).

For what concerns instead the β functions for superpotential couplings, it is easy

to see the scale-invariance of the action corresponds to an exact R-charge of 2 for
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the superpotential. Therefore the vanishing of these β functions is equivalent to

imposing the sum of R-charges of the entering chiral fields is 2.

We now are ready to begin our investigation of the following specific chain of theories:

Theory N Quiver diagram

N = 4 Super-Yang-Mills 4

↓ Z2 orbifold

C3/Z2 2

↓ mass deformation

Klebanov-Witten 1

↓ Z2 orbifold

Y 2,0 1

The transformations turning each theory into the next will be explained progres-

sively.

3.3 Brane stack in C3 and N = 4 super-Yang-Mills

If X6 = C3, the branes are invariant under half of the 16× 2 = 32 IIB supercharges.

This implies N = 4 for the field theory. Moreover, the theory features gluons as the

massless spin-1 modes for the sector of strings stretching between brane i and brane

j so that the gauge group is U(N), as seen in 2.4.1. The information that the theory

is a U(N) gauge theory and is maximally supersymmetric is enough to uniquely

fix it. Actually, since our main interest is in the IR limit, the U(1) gauge factor

decouples as we have explained in general, and the group is reduced to SU(N).

In N = 1 language (which we employ even though the model has N = 4) the

theory describes the dynamics of an U(N) gauge vector supermultiplet Vµ and three

complex chiral superfields (Xa)ij̇ , a = 1, 2, 3 in the adjoint of the gauge group (we

will frequently omit gauge indices). These are nothing else than the parametrization

of the D3-branes’ position in C3 and therefore transform in the fundamental of

SU(3). The superpotential is the only one allowed by gauge and SU(3) invariance,

W (X) = gεabc Tr(XaXbXc) ; (3.33)
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note the coupling g is also the coupling of the gauge group, not an indipendent

parameter. Since the theory has a single SU(N) factor in the gauge group, and

three fields in the adjoint (which is trivially a bifundamental with the same node at

the two ends), the quiver diagram is rather simple:

Note that the obvious global symmetries, the U(1) R-charge for N = 1 and the

SU(3) flavour symmetry acting on the Xa are actually just a subgroup of a SU(4)

R-symmetry group for the hidden N = 4 supersymmetry. To make this manifest,

split the N = 1 superfields as V → (Aµ, λ) and Xa → (φa, ψa), and regroup the

fields as

λα := (λ, ψ1, ψ2, ψ3) , φi =: ϕi + iϕi+3 , (3.34)

then (Aµ, λ
α, ϕi) form anN = 4 vector supermultiplet, the components transforming

respectively as 1, 4, 6 under R SU(4), and in the adjoint of gauge SU(N).

3.3.1 Marginal deformations

N = 4 (maximal) supersymmetry is extremely constraining, and indeed a non-

renormalization theorem (first proven nonperturbatively in [33]) states the theory is

exactly finite. No divergences means the β function (one for the only gauge coupling)

vanishes identically, and the theory is always superconformal. Indeed, there is a set

of additional 16 supercharges beyond the standard ones. These do not however find

a direct correspondence as supersymmetries of the D3-brane system, but only of the

“near-horizon” (α′ → 0) geometry of the brane stack.

However, one can also discuss the vanishing of the beta function in N = 1 language

as a trivial example. We note SU(3) flavour symmetry imposes that the R-charges

and anomalous dimensions of the three chiral fields are equal. Then, for the super-

potential to be scale invariant we need RW to be 2, so

RW = 2 = R+R+R⇒ R =
2

3
⇒ γ = 0 , (3.35)

where (3.21) was used; thus, the chiral fields have canonical dimension. Then the

NVSZ beta function for the gauge coupling reads
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βτ ∝ 3N − 3N(1− 2γ) = 3N − 3N = 0 . (3.36)

So, this vanishes identically, for all values of the coupling τ . Thus the conformal

manifold of such a theory is minimal: there is a single marginal deformation cor-

responding to changing τ , and the theory is a SCFT for every value of this unique

parameter.

3.3.2 Moduli space

One could wonder instead about the moduli spaceM of the theory. This is the space

of inequivalent vacua; classically, one plugs uniform vacuum expectation values Xa

for the chiral fields into the action to get an effective potential:

V(Xa) =
∂W †

∂X†a

∂W

∂Xa
=: F a†Fa , (3.37)

which is then minimized. Since V ≥ 0 and it equals zero at the special point Xa = 0,

its minima will coincide with its zeroes, which occurr when all of the F a vanish:

Fa :=
∂W

∂Xa
(3.38)

Fa is known as an F-term and the conditition (3.38) is known as an F-flatness

condition.

The moduli space of N = 4 SYM is then very easy to describe. The F-term condi-

tions simply read:

∂W

∂Xa
∝ εabcXbXc = 0 , (3.39)

so that the space of solution is given by (VEVs of) Xa that commute with eachother

as N ×N matrices. Therefore, they can be simultaneously diagonalized by a gauge

transformation, and the 3N eigenvalues xaI , I = 1, . . . , N are completely free. In

fact, these coincide directly with the coordinates of the N D3-brane on C3. The

moduli space is C3N , or to be precise, taking into account brane indistinguishability

(i.e., the residual permutation gauge symmetry after diagonalization of the Xa),

M = SymN C3 . (3.40)

In fact, this structure will always be present in D3-brane theories. Moduli space will

always include a Mmes ⊂ M describing the motion of the D-branes on X6, and it

will be true in general that Mmes = SymN X6. However, Mmes will not comprise

the totality of moduli space and in more complex theories additional directions to
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M will arise.

3.4 C3/Z2 orbifold

We now move to a less trivial case by performing an orbifold of the background.

Essentially, we act on C3 as such

(z1, z2, z3) 7→ (−z1,−z2, z3) (3.41)

and quotient under this Z2 group. This yields a Calabi-Yau manifold with a conical

singularity in z1 = z2 = 0. Equivalently, if the background is presented in polar

coordinates as R+ × S5, the orbifold produces R+ × (S5/Z2). Our interested is then

for the worldvolume theory of N D3-branes placed in this singular background.

To investigate this, we consider Ñ = 2N D3-branes on C3, producing N = 4 SYM

as seen in the previous section, then we act on the Aµ and Xa fields with the Z2

action and select the subset of invariant fields - these will be the degrees of freedom

of the orbifold theory.

We need to specify an action of Z2 on the gauge indices. The following choice is

convenient: act on an object in the fundamental Ñ = N⊕N as 1 on the first factor

and −1 on the second. This means, for example, that having decomposed Aµ in

subrepresentations its transformation under Z2 is

Aµ =

(
A0,0 A1,0

A0,1 A1,1

)
7→

(
A0,0 −A1,0

−A0,1 A1,1

)
, (3.42)

where Ai,j are N ×N matrices. We see the surviving gauge fields are A0,0 and A1,1,

adjoint for the U(N)×U(N) subgroup of U(2Ñ). The new gauge group is therefore

U(N)× U(N).

The same holds for X3, which becomes Φ := (X3)0,0 and Φ̃ := (X3)1,1, two chiral

fields each in the adjoint of one of the U(N) factors.

For X1, X2 instead one has to take into account both the action on the gauge indices

and the direct action on the C3 geometry. With i = 1, 2, the overall action is

Xi =

(
(Xi)0,0 (Xi)1,0

(Xi)1,0 (Xi)1,1

)
7→

(
−(Xi)0,0 (Xi)1,0

(Xi)1,0 −(Xi)1,1

)
, (3.43)

and one ends up with two pairs of chiral fields in bifundamentals, Ai := (Xi)0,1,

Bi := (Xi)1,0, in representations (N,N) and (N,N) of U(N) × U(N) respectively.

The structure of the theory can be more elegantly presented in a quiver diagram:
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The superpotential is just given by restriction of the N = 4 SYM potential (3.33)

to the surviving fields; after some algebra

W = µ
(

Tr Φ(A1B1 +A2B2) + Tr Φ̃(B1A1 +B2A2)
)

(3.44)

It is clear at this point that, given the introduction of an asymmetry between X3 and

X1,2, the N = 4 R-symmetry SU(4) is broken and so is maximal supersymmetry.

The orbifold theory has indeed N = 2 supersymmetry [12].

We will not concentrate on the details of this C3/Z2 theory; we use it as a stepping

stone from N = 4 SYM to the Klebanov-Witten theory, which we will introduce in

the next section as a deformation of the orbifold theory.

3.5 The conifold and the Klebanov-Witten model

In [16] the case of X6 being the conifold was studied. The conifold is a specific

Calabi-Yau 3-cone defined for example as the following variety in C4:

z2
1 + z2

2 + z2
3 + z2

4 = 0 , (3.45)

with the Kähler structure inherited from the standard one on C4, or, after a simple

change of variables:

uv − xy = 0 . (3.46)

The base can be found by quotienting by dilations zi → λzi (with λ ∈ R+) and

turns out to be the homogeneous space SO(4)/U(1) = SU(2)× SU(2)/U(1), where

the U(1) is a diagonal subgroup generated by, say, T 3
L + T 3

R. Topologically, this is

S2 × S3. We will therefore have SU(2) × SU(2) as part of the isometry group of

both Y5 and X6, and thus will also appear as a global symmetry of the wordvolume

theory. An equivalent description of the topology of the conifold is as a U(1) bundle

over CP 1 × CP 1 ∼= S2 × S2; in these terms the metric on this cone is
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ds2
6 = dr2 + r2ds2

5

ds2
5 =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6
(dΩ2

1 + dΩ2
2) (3.47)

where Ω2
i = dθ2

i + sin θ2
i dφ

2
i is the metric on the CP 1

i , and ψ is the fibral coordinate

with period 4π.

The corresponding field theory (which we will call the Klebanov-Witten model),

however, can also be found by applying a particular modification to the orbifold

theory of the previous section [16]. Let us derive the form of this SCFT in this way,

and then show how the above geometry reappears from the field theory side. The

modification is the addition of a relevant term to the Lagrangian, a mass for the Φ,

Φ̃ adjoint fields

M =
M

2

(
Tr Φ2 − Tr Φ̃2

)
, (3.48)

thus providing a possible UV completion for the C3/Z2 theory. These fields are then

eliminated using the resulting classical equations of motion. For example,

∂(M+W )

∂Φ
= 0⇒ Φ = − µ

M
(A1B1 +A2B2) (3.49)

and analogously for Φ̃. Finally, these are substituted back into the action, reducing

the chiral fields to just Ai and Bi and the superpotential to

W =
λ

2
εijεkl Tr (AiBkAjBl) (3.50)

having defined λ := µ2

2M . More formally, it is argued that after the introduction of

the relevant term (3.48) the C3/Z2 theory flows in the IR to the Klebanov-Witten

model.

Therefore, the worldvolume gauge theory is a U(N) × U(N) field theory featuring

two chiral doublets Ai, Bj with i, j = 1, 2 transforming in opposite bifundamentals,

that is Ai in (N, N̄) and Bj in (N̄ ,N). The quiver diagram is simpler:

The i and j indices, instead, are acted upon respectively by the global left and right

SU(2) symmetries. From the form of the superpotential and these symmetries,
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furthermore, it is possible to deduce the R-charges of Ai and Bi are 1/2, implying

a dimension of ∆ = 3/4 when the theory is conformal. A non-canonical scaling

dimension is a symptom that the CFT will always be strongly-coupled.

It is also clear the supersymmetry has been broken further to N = 1, since (3.48) is

not N = 2 invariant. The case at hand is thus a four-dimensional strongly-coupled

field theory with minimal supersymmetry.

3.5.1 Marginal deformations

The Klebanov-Witten theory will not be in general superconformal; it will flow

through renormalization in the IR to a conformal submanifold in the space of coup-

lings (λ, τ1, τ2), the locus where the β functions for these three couplings vanish. It

turns out these three conditions are all equivalent. In particular, requiring either

βτ1 = 0 or βτ2 = 0 and making use of the NSZV (3.32) this unique condition is

equivalent to

3T [Adj]−
∑
i

T [Ri](1− 2γi) = 0 . (3.51)

When evaluating this, care should be taken with the fact that Ai and Bj have a

U(N)2 index which is uncharged under U(N)1 and must be summed over. Noting

γA1 = γA2 and γB1 = γB2 because of the global flavour SU(2) × SU(2) symmetry,

this gives

γA + γB +
1

2
= 0 . (3.52)

Being γA,B functions of the couplings, this equation defines a critical 2-surface in

parameter space. Switching to R-charges, this means

RA +RB = 1 , (3.53)

but this is also the equation for the vanishing of the β function for the superpotential

coupling λ, since RW = 2 is just

RA +RB +RA +RB = 2 . (3.54)

Thus, since the three conditions are equivalent, the final conformal manifold is the

locus of a single equation in three variables (λ, τ1, τ2) and is then two-dimensional.

Therefore there will be two marginal deformations of the theory.
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3.5.2 Global U(1)

Let us comment briefly on the whereabouts of the abelian gauge factors of U(N)×
U(N) under RG flow towards the infrared. Denoting as T 1 and T 2 the generators of

the two trace U(1) of the left and right nodes, it is clear T 1 +T 2 is the overall comp-

letely decoupled U(1)trace that we can safely ignore. The only remaining abelian

factor is generated by B = T 1 − T 2. This symmetry is non-anomalous; since it is

an abelian gauge interaction with massless charged matter, under RG flow towards

the infrared its coupling vanishes and thus freezes into a rigid U(1)baryonic in the IR.

We call this charge, corresponding to the symmetry

Ai → eiθAi , Bi → e−iθBi (3.55)

a baryon number. This quantum number will become important in classifying gauge

invariant operators, as we will see shortly.

3.5.3 Moduli space

Position in moduli space M should be parametrized by the expectation values of

gauge-invariant operator (hadrons). This should be obtained, as it was sketched

for N = 4 SYM , by considering the locus of minima of the effective potential

V in the space of VEVs of the chiral fields, and then quotienting by complexified

gauge transformations. Taking for the moment a general N = 1 theory with gauge

generators T a and chiral fields φi, the effective potential can be found to be

V(φ) =
g2
a

2
(φ†T aφ)2 +

∂W †

∂φ†i

∂W

∂φi
=:

g2
a

2
(Da)2 + F †i F

i (3.56)

We have defined the F-terms and the D-terms:

F i =
∂W

∂φi
, (3.57)

Da =
∑
i

φ†iT
aφi . (3.58)

Again, V will be minimum when V = 0, thus when the F-term and D-term vanish,

conditions we will call F-flatness and D-flatness. The space of simultaneous solutions

to F i = Da = 0, quotiented by gauge transformations, will be moduli space M.

Specializing to the Klebanov-Witten model, Da = 0 will hold only with a spanning

over generators of SU(N)×SU(N), not involving the abelian factors U(1)1×U(1)2 =

U(1)trace×U(1)baryon, since according to our discussion in section 3.5.2 these do not

survive as gauge symmetries in the IR. The D-term of U(1)trace has no significance,
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since this is completely decoupled and vanishes identically. The baryon D-term

instead gets relaxed

DU(1)baryon = ξ (3.59)

where ξ is an arbitrary parameter. Actually, ξ is a modulus, parametrizing a di-

rection in M itself. Indeed, it is the only additional direction in M to those along

Mmes, which is a strict subset of the KW moduli space. Let us determineM, iden-

tifyMmes and verify these claims. The vanishing of the F-terms (3.57) and D-terms

(3.58), specialized to the particular case, are

εijAiBaAj = εijBiAaBj = 0 (3.60)

AiA
†
i −BiB

†
i = A†iAi −B

†
iBi = ξ1 (3.61)

the equation have to be understood to hold for VEVs. Note the first and second

D-term condition are respectively from the left and right gauge group.

Consider the subset of M with ξ = 0; our claim is this is precisely Mmes. To

reinterpret the F-flatness condition, we introduce the four matrices Φij = AiBj and

note

[Φij ,Φjk] = 0 (3.62)

Φ11Φ22 = Φ21Φ12 (3.63)

which can be immediately checked to follow from the vanishing of the F-term. Since

these commute, they can be simultaneously diagonalized and their N eigenvalues

(one for each brane) satisfy the conifold’s equation (3.46):

φI11φ
I
22 = φI21φ

I
12 (3.64)

so these quite literally parametrize the motion of the N D3-branes on the background

cone. These actually determine the VEVs of mesonic operators, mesons4 being

generated by prototipical trace operators:

M(ab...),(ij...) = Tr ((AaBi)(AbBj) · · · ) . (3.65)

4The meson/baryon terminology is meant to be a direct generalization of the concept of QCD
hadrons. A QCD meson is to a first approximation built from two quarks as a symmetric product
|M〉 ∼ δij |qiqj〉+O(gluons), while a baryon is |B〉 ∼ εijk |qiqjqk〉. In general, SU(N)-singlets can

be built by contracting gauge indices either with the symmetrical δij or the antisymmetric εa1...aN .
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This justifies the terminology of “mesonic moduli space” for the submanifoldMmes

of M they describe.

Note mesons are built by tracing over closed loops in the quiver diagram to make a

gauge-invariant operator. All of these operators are actually expressable as products

of Φ matrices, and as it was shown, only 3 out of 4 of those are independent. In

the end, there are (accounting for gauge indices) 3N independent mesons whose

VEVs parametrize mesonic moduli space, coincident with the SymN C, where C is

the conifold.

Operators of non-zero baryon number can also be constructed by using the antisym-

metric invariant gauge tensor εa1...aN , as such:

BA[k] = εa1...aN εb1...bn(A1)b1a1
. . . (A1)akbk (A2)

ak+1

bk+1
. . . (A2)bNaN (3.66)

where we have displayed gauge indices on the A fields. There are only N+1 different

assignment for the SU(2) indices because of antisymmetry, so that there are N + 1

fundamental baryons of the form of BA. The same could be done by swapping the

two gauge groups and using B fields, to get additional N + 1 BB baryons. These all

have baryon number N under U(1)baryonic while mesons have baryon number 0.

All gauge-invariant operators in the theory are built out of these fundamental

mesons, fundamental baryons, and their respective antiparticles (made out of the

conjugate fields A†, B†. However, as we have anticipated, we only expect g − 1 = 1

baryonic VEV to be independent. This VEV will be associated with the resolution

of the cone singularity into a CP1 ∼= S2, and will essentially coincide with ξ. To

see an example of this deformation of the background geometry, let us set ξ to a

constant nonzero value. Then hypothesizing for simplicity that the A1, A2, B1, B2

matrices commute, applying F-term conditions we get that each set of eigenvalues

satisfies

a1/a2 = b1/b2 (3.67)

So that ai and bi are proportional vectors of C2, therefore

ai = aeiθAni, beiθBni (3.68)

where a, b are real and ni belongs to a CP1. The phases are cancelled by modding

gauge invariance, and a and b then are involved in the D-term:

a2 − b2 = ξ (3.69)

so that essentially our mesonic VEVs are composed of N copies of one non-compact

radial coordinate (say, a) and a point on CP1. This means the conical singularity
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has disappeared to be replaced by a two-cycle on which the branes can move.

A more thorough investigation of the geometry probed by these mesonic directions

when ξ has a non-zero value would show the D3-branes are moving on the geometry

of the resolved conifold, the metric [29]

ds2
6 = κ−1dr2 +

1

9
κr2(dψ+cos θ1dφ1 +cos θ2dφ2)2 +

1

6
r2dΩ2

1 +
1

6
(r2 +a2)dΩ2

2 (3.70)

κ(r) =
r2 + 9a2

r2 + 6a2
(3.71)

parametrized by a modulus a. Turning on the ξ modulus corresponds to increasing

a (in fact, the two are proproportional [24]), and to the blow up of the two-sphere

at r = 0. Instead, for a = 0 one recovers the singular conifold (3.47).

Thus, we have uncovered the following structure forM. It is a (3N+1)-dimensional5

complex manifold on which one can define the coordinate ξ, a baryonic modulus.

The 3N -submanifold at ξ = 0 is Mmes, which is equal to the symmetric product

of N copies of the conifold and is parametrized by 3N complex moduli, VEVs

of particular combinations of mesonic operators, that can be identified with the

positions of the threebranes. If instead one consider a constant but nonzero value

ξ = ξ∗ for the baryonic modulus, the same mesonic directions define a submanifold

with the structure of the symmetric product of N copies of the resolved conifold

(3.70).

The explicit form of the baryon generating this deformation in terms of the funda-

mental hadrons is very challenging to determine [13]; fortunately, we will not need it

for our purposes. In any case, all of this information will be clarified in the context

of holography.

3.6 The Y 2,0 orbifold theory

The same construction on a Z2 orbifold of the conifold yields a quiver gauge theory

which will be the main interest of this work. This theory has a few interesting

additional features with respect to the Klebanov-Witten model while remaining

relatively simple, thus being an optimal candidate for the investigation of its effective

low-energy theory, which we will perform in chapter 6. It is, like the conifold theory,

an N = 1 SCFT but boasts three baryonic moduli, of which one has no clear

geometric interpretation, and two anomalous U(1)s. We now describe this theory

and extract these features.

5There is an obvious dimensional mismatch in that the complex modulus ξ corresponds to a real
parameter a in the metric. It turns out that when the real part of a modulus maps to a Kähler
deformation, the imaginary part describes instead a modulus for the C4 Ramond-Ramond form; we
will explain more in chapter 5
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The geometry of the base of the cone is very simply introduced in polar coordinates

as

ds2
6 = dr2 + r2ds2

5

ds2
5 =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6
(dΩ2

1 + dΩ2
2) (3.72)

i.e., exactly the same metric in form as the conifold, but with ψ now with period

2π. This background and the resulting worldvolume field theory are just one entry

Y 2,0 of an infinite class Y p,q of examples introduced in [5]. (To be precise, we will

use Y 2,0 to refer to the 5-dimensional base (3.72), following [21], and X2,0 for the

corresponding cone).

Following an identical procedure to that performed for the Z2 orbifold of N = 4

SYM , we can deduce the quiver diagram splits to yield four doublets Ai, Bi, Ci, Di

of bifundamental chiral fields stretching in a square between four nodes:

so that the gauge group is SU(N)4. The superpotential can be again obtained by

truncation, yielding

W = λεijεkl Tr (AiBkCjDl) (3.73)

from which it is clear that the SU(2)× SU(2) isometry of the cone, corresponding

to a global flavour symmetry of the field theory, must now act as

Ai ∈ (2,1)

Bi ∈ (1,2)

Ci ∈ (2,1)

Di ∈ (1,2)

(3.74)

Note (3.73) is also the only possible superpotential allowed by this symmetry [7], so

that the theory can also be constructed by starting with the flavour symmetry as

an assumption.
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3.6.1 Global U(1)s

The novelty in this model is the appearance of anomalous U(1)s. In detail, the

ultraviolet theory has the original gauge group U(N)4 ∼= U(1)1 × U(1)2 × U(1)3 ×
U(1)4 × SU(N)4. Of the four abelian U(1)s, the overall trace factor6

U(1)trace := U(1)1 + U(1)2 + U(1)3 + U(1)4 (3.75)

has no charged fields and is completely decoupled from the theory. The other three

independent combinations have a potential to develop an anomaly arising from

U(1)a − SU(N)2
b triangle diagrams; each chiral field in representation R provides a

contribution to the anomaly proportional to the group-theoretical factor [35]

Aab;ijR := Tr
(
QaR

{
T iR, T

j
R

})
(3.76)

where QaR is the generator of the U(1)a of interest, and T iR, T jR are generators of

SU(N)b in representation R. For any given gauge node SU(N)b, it is then clear

that the total anomaly is then proportional to the difference between the charges of

the incoming and outgoing chiral fields under the U(1)a

Aabtotal ∝ Qain −Qaout (3.77)

so that we can immediately identify one non anomalous U(1):

U(1)B := U(1)1 + U(1)3
∼= U(1)2 + U(1)4 . (3.78)

The last congruence is up to shifts by U(1)trace. U(1)B is thus a sensible abelian

gauge factor, in fact the same already present in the Klebanov-Witten theory, and

flows in the infrared into a rigid symmetry, which we define as a baryon number.

The baryonic charges of (Ai, Bi, Ci, Di) are respectively (+1,−1,+1,−1).

The other two independent U(1)s are anomalous. They are not uniquely identified

since they can be shifted by U(1)trace and U(1)B or mixed with each other; one

presentation would be

U(1)AN,1 := U(1)1 − U(1)3 , U(1)AN,2 := U(1)4 − U(1)2 . (3.79)

Thus, the charge assignments are as follows

6With the notation U(1)a +U(1)b we mean the U(1) generated by the sum of the generators Ta
and Tb of U(1)a and U(1)b respectively.
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charges of A, B, C, D U(1)

( 0 , 0 , 0 , 0 ) U(1)trace

(+1,−1,+1,−1) U(1)B
(+1,+1,−1,−1) U(1)AN,1

(+1,−1,−1,+1) U(1)AN,2

We have already commented on how the non-anomalous abelian factor becomes a

rigid global symmetry flowing down to the IR. However, the anomaly of the other

two abelian gauge symmetries is worrying as it would make the theory inconsistent.

Actually, it turns out these anomalies are cancelled at the level of the supergravity

background by the contribution of axionic fields charged under the anomalous U(1)s;

in particular the X2,0 cone has a 2-cycle S and a 4-cycle E such that the integrals

φ1 =

∫
S
A2 φ2 =

∫
E
A4 (3.80)

of some supergravity 2- and 4-form A2, A4 constitute dynamical four-dimensional

fields φ1(xµ), φ2(xµ) which cancel the anomaly, in a form of the Green-Schwarz

mechanism7. However, these fields transform as axions under the two anomalous

U(1), and so break the corresponding symmetry in a Stückelberg mechanism, thus

the corresponding photons become massive.

Therefore these do not exist anymore as gauge symmetries in the IR. They persist

in the IR theory as rigid symmetries of the classical Lagrangian, though broken

by quantum effects. Since they are not gauged, the anomaly does not make the

theory inconsistent, and does indeed occurr. Thus, even though the gauge anomaly

of these abelian factor is canceled in the string theory by the axion, the resulting

global U(1)AN symmetries are still anomalous.

3.6.2 Marginal deformations

We turn to the study of marginal deformations. Again, the flavour symmetry (3.74)

guarantees γA1 = γA2 = γA and so on. This time three of the four gauge β functions

are independent:

β1 = 0 ⇒ γA + γD +
1

2
= 0 ,

β2 = 0 ⇒ γB + γA +
1

2
= 0 ,

β3 = 0 ⇒ γC + γB +
1

2
= 0 .

(3.81)

7This is actually expected, as string theory is quantum consistent and no configuration in it can
display anomalies.
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In addition, βλ = 0 is also not independent: at any superconformal point, 3
2R−1 = γ,

so that the condition that W be scale invariant, which is equivalent to it having R-

charge 2, becomes

2 = RW = RA +RB +RC +RD

⇒ γA + γB + γC + γD + 1 = 0
(3.82)

which is indeed equivalent to the above system. Three independent equations in the

five-parameter space of (τ1, τ2, τ3, τ4, λ) define, again, a critical 2-submanifold.

3.6.3 Moduli space

Turning to the investigation of the moduli space, the F-term condition for the given

superpotential read

AαBσCβε
αβ = 0

BαCσDβε
αβ = 0

CαDσAβε
αβ = 0

DαAσBβε
αβ = 0

(3.83)

For what concerns the D-terms, as in the case of the conifold we only need to

consider those relative to the true gauge symmetries of the IR theory, so those for

SU(N)4. As we have seen in the previous section, the U(1) factors either become

rigid or broken. Accordingly, the abelian D-terms get relaxed into four arbitrary

parameters:

DU(1)i = ξi , i = 1, 2, 3, 4 (3.84)

Combining this information, the vanishing of the D-term takes the form

AiA
†
i −BiB

†
i = ξ11

BiB
†
i − CiC

†
i = ξ21

CiC
†
i −DiD

†
i = ξ31

DiD
†
i −AiA

†
i = ξ41

(3.85)

with the constraint
∑

i ξi = 0 (obvious by summing the four equations (3.85), and

clear since it corresponds to the trace U(1)). Thus ξi include 3 independent baryonic

moduli.
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We already expect that the solutions to (3.83) and (3.85) (modulo gauge symmetry)

should be parametrized by 3N mesonic operators measuring the positions of the

branes and 3 baryonic operators associated with the ξi, and that for ξi = 0 we recover

Mmes corresponding to the motion of the branes on the singular X2,0 (3.72). Instead,

for any generic non-zero constant values of ξi, the 3N mesons should describe the

motion of N D-branes on the general resolution of the cone.

Let us investigate the geometry of the latter by taking ξi to have generic non-

zero values (with
∑

i ξ = 0). Again we make the simplifying assumption the eight

A,B,C,D matrices commute and can be simultaneously diagonalized. So, for each

of the N rows of corresponding eigenvalues F-flatness (3.83) reads:

a1/a2 = c1/c2 b1/b2 = d1/d2 (3.86)

thus again aα ∝ cα and bα ∝ dα, so we can “projectivize”:

aα = a eiθAnα bα = b eiθBnα

cα = c eiθCmα dα = d eiθDmα

(3.87)

and again the phases are modded out by gauge symmetry, and the a, b, c, d real

numbers are reduced to a single coordinate (schematically r2) by the three inde-

pendent D-flatness conditions. Therefore the resolved geometry of the singularity

is now S2 × S2, parametrized by the (nIα,m
I
α) (I = 1, . . . , N) coordinates of the N

D3-branes. Thus again for generic values of the ξi the structure of mesonic moduli

space encodes the information that the branes are moving on a resolved version of

X2,0, where the singularity has been smoothed out into an S2 × S2.

More specifically, there are actually two moduli describing deformations of the back-

ground cone [7]. One considers the general Calabi-Yau deformation of Y 2,0, which

is given by [30]

ds2 = κ−1(r)dr2 +
1

9
κ(r)r2 (dψ + cos θ1dϕ1 + cos θ2dϕ2)2

+
1

6
r2dΩ2

1 +
1

6
(r2 + a2)dΩ2

2 ,

(3.88)

κ(r) =
1 + 9a2

r2 − b6

r6

1 + 6a2

r2

. (3.89)

It can be seen that the singular Y 2,0 cone is obtained as the two moduli a, b vanish.

Turning on the bmodulus the volume of the four-dimensional base S2×S2 is increased
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(one speaks of a blow up) and the singular tip8 of the cone is resolved as an S2×S2.

The modulus a instead controls the relative volume of the two spheres. Therefore

there are also specific values of (a, b) (or, equivalently, of the ξi) such that we have

a “partial” resolution where only one of the spheres is blown up and branes move

on an S2; this is the modulus inherited from the conifold.

In this case, the presence of g − 1 = 3 independent ξ parameters (matching with

three independent baryons) should perplex, as we have just seen the resolutions are

parametrized by two moduli. In fact, the general Calabi-Yau deformation of the

Y 2,0 metric will indeed depend on two moduli. In this case, the third modulus is not

interpretable as due to deformation of the background metric, but is actually con-

nected to the moduli of IIB two-form fields. We will review this fact in a holographic

context.

For completeness we adapt the construction of hadronic operators. We note funda-

mental mesons are now built using ABCD loops (omitting SU(2)2 indices):

M = Tr ((ABCD)(ABCD) . . .) (3.90)

and four classes of fundamental baryons can be introduced as before

BA[k] = εa1...aN εb1...bN (A1)b1a1
. . . (A2)bNaN (3.91)

where the first k instances of A have SU(2) index 1 and the remaining N − k have

2. Again k = 0, . . . , N means N + 1 different BA baryons. This can be repeated

for BB, BC , BD. Thus, we find 4 classes of N + 1 fundamental baryons each.

Similarly to the previous case, we expect the VEV of only three of these baryons to

be truly indepedent and a suitable triplet of combinations should generate the three

aforementioned flat shifts. We will verify this in a holographic context in chapter 6

when we will map these VEVs to effective fields.

3.7 Towards the general case

The properties introduced with the previous examples of field theories can be reex-

amined for the general case of a theory arising from D3-branes on R1,3 ×X6.

For example, we can provide a more systematic description of moduli space, so the

space of distinct vacua. Because of supersymmetry, the quantum moduli space will

often coincide with the classical one, which is intuitively the space of minima of the

potential quotiented by gauge transformations. As (see (3.56))

8This does not actually lie at r = 0 because of the way the r coordinate is defined, rather it
corresponds to κ(r) = 0; we will clarify this in our study of the Y 2,0 resolved geometry in chapter 6
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V =
g2
a

2
(Da)2 + F †i F

i (3.92)

the minima occur when the VEVs of the chiral fields φi satisfy both the F-flatness

conditions

F i =
∂W

∂φi
= 0 (3.93)

and the D-flatness conditions

Da = −
∑
i

φ†iT
aφi = 0 (3.94)

where T a are the gauge generators. The space M of solutions of both F and D-

flatness conditions (modulo gauge transformations) will be a complex manifold, the

moduli space.

A subspace of M is given by the so-called mesonic moduli space Mmes. Points

of Mmes will correspond to the position of the N branes on the background cone

- therefore dimCMmes = 3N . In fact, Mmes = SymN X6, where the symmetric

product has to be taken because of brane indistinguishability.

As it was seen in the explicit examples, however, in general the moduli space is

not exhausted in the purely mesonic directions; the additional “baryonic” directions

appear from the relaxation of the D-terms corresponding to the abelian factors

U(1)χ, because these do not appear as gauged symmetries in the IR theory.

Curiously, the reason for this can be different for each U(1). The situation is as

follows:

• Part of the U(1) factors are non-anomalous, and under RG flow their coupling

vanishes and become rigid global baryonic symmetries.

• The rest of the U(1) are actually anomalous, with the anomaly arising from

U(1)-SU(N)i-SU(N)j triangle diagrams. The anomaly is actually cancelled

by a supergravity axionic field as explained in section 3.5.2, and the associated

photon is made massive by a Stückelberg mechanism [22].

In a holographic context we will be able to provide an explanation of the cancellation

of this anomaly and also relate the number of anomalous and non-anomalous U(1)s

to the topology of the cone; for now we are satisfied with knowing their D-flatness

condition is relaxed and one is left with only the D-term for the SU(N)χ part. So

Da
SU(N)χ = 0 DU(1)i = V i (3.95)
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(i = 1, · · · , χ). V i are classically functions of the fields and in the quantum version

will be gauge-invariant operators. Their g VEVs 〈V i〉 =: ξi will parametrize the

missing flat directions of moduli space. To be precise, however, since the overall

trace U(1) (generated by the sum of the generators of the g abelian trace factors) is

completely decoupled, and the relative D-term DU(1)1 + . . . DU(1)χ vanishes identi-

cally, we have to impose
∑
ξi = 0. Therefore that there are really only χ−1 baryonic

moduli, and only χ(N2 − 1) + 1 independent remaining D-flatness conditions.

Thus we conclude dimM = 3N + g − 1. While the 3N mesonic directions have

a direct geometrical interpretation as D3-brane movement, the baryonic directions

correspond in terms of the superstring description to deformations of the X6 back-

ground metric itself - generally resulting in a resolution of the conical singularity.

A different kind of feature is the presence of marginal deformations of the theory. As

explained, the quantization of classically conformal field theories produces quantum

systems that are only conformal in a conformal submanifold of the space of parame-

ters. Therefore there will be a set of deformations of the couplings of the field theory

(gauge and superpotential) that keeps the theory conformal, and the number will

equate the dimension of the conformal manifold. These marginal deformations thus

parametrize motion along the conformal variety.

We have already seen in practice how the counting of marginal directions is very

easy for this type of superconformal quiver theories thanks to the NSVZ β function

(3.32) and the dimension/R-charge relationship (3.21) for chiral operators. However,

it turns out to be non-trivial to guess how many of these conditions are actually

independent in the general case. Thus, no “fits-all” procedure for counting marginal

deformations is known; we just limit ourselves to stating the conjectural relationship

with the topology of the cone:

# of marginal deformations = b3(Y5) + 1 , (3.96)

which has a clearer interpretation in holography, but no general proof purely from

the field theory side. We note (3.96) holds for our list of examples: b3(S5) = 0 and

N = 4 SYM has 1 marginal deformations, b3(S2 × S3) = b3(S2 × S3/Z2) = 1 and

indeed both the KW and the Y 2,0 models have 2 marginal directions.

Finally, we recap all information acquired for our chain of example theories:

Theory Y5 gauge group non-an. U(1)s an. U(1)s dimM

N = 4 SYM S5 SU(N) 0 0 3N

KW S2 × S3 SU(N)2 1 0 3N + 1

Y 2,0 S2 × S3/Z2 SU(N)4 1 2 3N + 3



Chapter 4

Holography

In the previous chapter we explained how the dynamics of D-brane stacks, in parti-

cular D3-branes in type IIB, are described by gauge field theories supported on

their worldvolumes. It is however important to note that in addition to this open

string picture of the brane system there is also a dual description in terms of the

curved spacetimes generated by their mass and Ramond-Ramond charge. Insisting

these two viewpoints are equivalent, one is able to deduce an exact correspondence

between the gauge theory and string theory on a specific background geometry.

This kind of duality is exotic as it connects a local field theory in four dimensions with

a ten-dimensional string (and so, inherently gravitational) theory through a perfect

mapping. It is reasonable in fact to identify the spacetime of the field theory with the

conformal boundary of the higher-dimensional dual gravitational background (the

bulk), for reasons we will clarify - so that in more colloquial language the dynamics

in the bulk is “encoded” in the screen at infinity, hence the adjective “holographic”

for this sort of correspondences.

Explicit holographic correspondences are not only interesting by themselves as ele-

gant structures; they are also extremely practical tools for studying the theories

involved on both sides. It is certainly very attractive for the purpose of quantum

gravity or the definition of string theory - non-local theories without action func-

tionals - if these situations happen to be equivalent to a local quantum field theory.

However in this work our interest will be focused on the opposite direction, investi-

gating the dynamics of the field theory by exploiting the dual gravitational system.

The power of holographic dualities lies in the fact that they map the strongly-coupled

regime for the field theory to the regime where the bulk dynamics can be approxima-

ted by supergravity. The traditionally untreatable strong coupling region for some

gauge QFTs in four dimensions can then be probed by studying the relatively tamer

dynamics of a smooth dual spacetime.

55
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4.1 Maldacena duality

We introduce now the simplest and most celebrated example of holographic cor-

respondence [19]. Consider the IIB supergravity solution for the warped spacetime

created by a system of D3-branes in a background R1,9. We specialize the solution

of section 2.4.2 to p = 3:

ds2 = H−1/2dxµdx
µ +H1/2(dr2 + r2dΩ2

5) , (4.1)

eΦ = const =: gs , (4.2)

F5 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (4.3)

H(r) = 1 +

(
R

r

)4

, (4.4)

where xµ, µ = 0, . . . , 3 are coordinates parallel to the brane stack and dΩ5 is the

standard metric on S5.

The curvature radius R is given by (see (2.73))

R4 = 4πgsNα
′2 = 2g2

YMNα
′2 , (4.5)

where N is the number of D3-branes in the stack, and (2.61) was used.

We note an important peculiarity of this metric as opposed to analogous solution

for the Dp-brane with p 6= 3: there exists a horizon at r = 0, but this horizon is an

infinite distance away, namely

∫ r′

ε

(
1 + (R/r)4

)1/4
dr ∼ − ln ε (4.6)

therefore the “near-horizon” (r << R) geometry takes the form of an infinitely long

“throat”. This should be compared, just to make an example, to the Schwarzschild

solution where the horizon is at a finite distance from any given point in the exterior.

This throat feature will play a crucial role in the AdS/CFT correspondence, as will

be seen shortly.

We insist this system (IIB string theory on the metric (4.1)) is equivalent to the

stack of D3-branes in the background Minkowski, taking into account both open

and closed string interactions. This system will include the dynamics of the R1,9

background, the D-branes, and brane-background interactions. We are now set to

show that in the low-energy α′ → 0 limit1 the interactions are suppressed and the

1We emphasize that this is a formal limit, since α′ is dimensionful (analogously to how one
denotes the classical limit by ~ → 0). We mean more precisely that the typical energies involved
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branes and the background decouple; we follow [1]. We study such a picture in

the regime in which it admits the Lagrangian description, with the hope that an

analogous argument could apply in the general case. The three components become

then three terms in an effective action

S = SD3 + Sbg + Sint . (4.7)

Sbg is simply the string-frame IIB supergravity action (2.47) based on a Minkowski

background. Let us examine just the graviton and dilaton section as an example.

Linearizing the graviton as g = η + κh, with 1
2κ2 = 2π

`8s
, this is expanded as

S
[g,φ]
bg = − 1

2κ2

∫
d10x

√
−g e−2φ(R+ 4∂µφ∂

µφ) (4.8)

= −1

2

∫
d10x ∂µh∂

µh+O(κ) ; (4.9)

the normalization for h was chosen to guarantee a canonical kinetic term for the

graviton independent of α′. However, the kinetic action for the dilaton is still O(κ) =

O(α′2); the dilaton can however also be rescaled as eφ → gse
κϕ to make it canonical.

This procedure can be continued for the rest of the IIB fields.

Instead SD3 and Sint both come from an expansion of the Dirac-Born-Infeld action

in the background fields (h, ϕ, . . . ). The zeroeth order part is the pure D3-brane

action (see (2.60))

SD3 = − 1

gsα′2(2π)3

∫
d4x
√
−det ι∗(g) (4.10)

+
1

4(2π)gs

∫
d4x
√
−det ι∗(g) TrF 2 (4.11)

+O(α′2) , (4.12)

(ι∗(g))ab := ∂aX
µ∂bX

νgµν , (4.13)

or, if we define the transverse position fields Φi := Xi/(2πα′), i = 1, . . . , 6,

= − 1

g2
YM

∫
d4x

(
1

4
TrF 2 +

1

2
ηµν∂µΦi∂νΦi

)
+O(α′) ; (4.14)

i.e., the bosonic part of the action for N = 4 SYM, already discussed in 3.3.

All higher-order terms in (h,ϕ,. . . ) comprise brane-background interactions. For

are small compared to the energy scale defined by the Regge slope, E � (α′)−1/2, or equivalently
that the typical lengths are much larger than the string length, L� `s. So, it is the value of α′ in
the units given by E or L that is sent to zero.
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example, the first term in Sint is a dilaton-gluon-gluon vertex:

Sint = − 1

8πgs

∫
d4x(κϕ) TrF 2 + . . . (4.15)

and since all IIB fields are proportional to κ after the rescaling, Sint will be at least

O(α′), and will vanish in the low-energy limit.

Therefore, to conclude: in the α′ → 0 limit, the D3-brane stack is comprised of two

decoupled systems. One is IIB supergravity on flat R1,9 spacetime, and the other is

N = 4 super-Yang-Mills

We repeat this decoupling limit for the black three-brane metric(4.1). If α′ → 0,

so does R, and effectively the metric seems to converge to flat spacetime. We have

however to take into consideration the throat described before. The throat shrinks

as R2 ∼ α′ → 0; to maintain focus on it as we lower the Regge slope we need to

rescale our r coordinate. We can introduce φ = r/α′ and keep φ fixed as α′ goes to

zero. With this choice the metric actually reduces to

ds2 = α′
(
φ2

R2
dxµdxµ +

R2

φ2
dφ2 +R2dΩ2

5

)
(4.16)

which is actually the metric for the product space AdS5 × S5. However, this is no

evidence that this near-horizon geometry will be relevant to the low-energy limit; in

fact, since ds2 ∼ α′, we would expect string states deep in the throat (r � R) to

be very energetic and decouple in the α′ → 0 limit. Actually, one has to take into

account the redshift factor. A string state at a radius r � R with fixed energy Er
is measured by an observer at infinity to have a redshifted energy

E∞ = H−1/4(r)Er ∼
r

R
Er (4.17)

so that E∞ ∼ r and there are low-energy states in the region r � R. This establishes

two regions of low-energy states, an r � R Minkowski background and the r � R

throat, separated by an intermediate barrier of high-energy states mediating throat-

background interactions. As α′ → 0, the barrier rises and the two systems decouple.

Therefore under α′ → 0 also on the black brane side we have a decoupling of two

systems, IIB on Minkowski, and IIB on the near-horizon geometry.

The essential point is that if the two pictures are to be equivalent, and so N = 4

SYM plus decoupled IIB on Minkowski is to be equal to IIB on AdS5×S5 plus

decoupled IIB on Minkowski, then intuitively one expects to be able to “factorize

away” the decoupled theory from both sides and obtain an equivalence between the

gauge theory and the string theory on AdS5×S5 (see figure 4.1). The conclusion

of this intuition, in varying degrees of strength, forms the core of the AdS/CFT

conjecture, though the details of this equivalence still have to be specified.
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D3
R1,9

r

∼ R1,9

∼ AdS5×S5

+

R1,9

+

R1,9

coupling

N = 4 SYM

N = 4 SYM

+

R1,9

α′ → 0

α′ → 0

AdS5×S5

Figure 4.1: Scheme of the two interpretations of the D3 stack system
and the decoupling limit.

For example, in the above decoupling argument, by itself not particularly rigorous,

we approximated string theory as its effective field theory, two-derivative classical

supergravity. This means respectively that gs � 1, so that string loops and thus

quantum corrections are small, and the curvature is larger than the string scale:

R�
√
α′. Let us reinterpret these limits in the CFT side.

Weak string coupling gs � 1 maps to a “large N” limit. More precisely, keeping

constant the combination

λ := g2
YMN =

R4

α′2
, (4.18)

known as the ’t Hooft coupling, thus fixing the value of R in units of
√
α′, and then

sending N → ∞ (so that gYM → 0 accordingly) is equivalent to having gs � 1,

since

4πgs =
λ

N
. (4.19)

Weak string coupling amounts to a suppression of string loops and effectiveness of

the string perturbative expansion. A more surprising conclusion concerns however

the limit of large λ� 1, since

R2

α′
=
√
λ (4.20)



60 CHAPTER 4. HOLOGRAPHY

so that large coupling means a large S5 radius in units of
√
α′ (or the string length

`s) - a low-energy limit. Equivalently, choosing units that fix the value of R, we

have α′ → 0. Thus, the dual physics is well described by IIB supergravity instead

of the full string theory.

Combining both results, a large N , strongly-coupled gauge theory will be dual to

weakly-coupled supergravity. The strong/weak interchange is what earns the corres-

pondence the title of “duality”. In the next section the connotation of “holographic”

will also be justified.

In any case, the weakest form of the AdS/CFT conjecture limits itself to this regime,

and states N = 4 SYM in the large N , strong-coupling limit is equivalent to classical

IIB supergravity on AdS5×S5. A stronger form relaxes the λ → ∞ limit and

requires the equivalence of N = 4 SYM in the large N limit, for any value of λ, to

classical (i.e., weakly-coupled) IIB string theory on AdS5×S5. Finally, the strongest

conjecture relates N = 4 SYM with IIB strings on AdS5×S5 exactly, for all values

of the couplings.

Strength Bulk Boundary

Weakest gs � 1, α′ � 1 (classical SUGRA) N � 1, λ� 1

Stronger gs � 1, any α′ (classical string theory) N � 1, any λ

Strongest any gs, α
′ (string theory) any N,λ

All of these correspondences do not have a formal proof, but rather a large volume

of evidence for the equivalence in the form of nontrivial checks, with the weakest

form enjoying the greatest certainty. It is understood that difficulty in verifying the

conjecture in the general case is just a reflection of the difficulty of defining string

theory non-perturbatively; in any case, we will only make use of the weakest form,

which we will assume as true.

We add that the correspondence g2
YM ∼ gs = eφ can be extended slightly to include

complexified couplings. It is possible to show that the theta angle θ of the gauge

theory is holographically dual (up to constants) to the RR form C0. In fact, if one

defines the complex axio-dilaton scalar

τIIB = C0 + ie−φ (4.21)

and the complex gauge coupling

τYM =
θ

2π
+

4πi

g2
YM

, (4.22)

then these are holographically dual:

τIIB = τYM ; (4.23)
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and the string perturbative regime is Im τ � 1. We will omit the subscripts on τ

from now on in light of this correspondence and its generalizations.

4.1.1 Comment on non-coincident brane decoupling

We stress that the decoupling / near-horizon limit we implemented must be gene-

ralized carefully to the case of non-coincident branes, since we will be particularly

interested in those kind of configurations. As seen in section 2.4.2, it is easy to

construct multi-centre solutions for the warped geometry created by multiple, non-

coincident branes by simple superposition; the decoupling just described for N co-

incident branes can be adapted to this case too. If two branes are a distance ∆r

apart, there will be massive Higgses from open strings stretching between them, with

masses of the order of the string tension times the distance: m ∼ ∆r/α′. We would

like to keep these masses constant. The obvious choice is then to rescale the brane

r positions as φi = ri/α
′ and keep those constant as we zoom in. This is what we

will refer to as the near-horizon limit in the general case and the resulting geometry

as the near-horizon warped geometry.

4.2 Large N limit

It was just seen how the weak-coupling regime for the string theory maps to a “large

N” limit on the gauge theory side. How this limit is understood has to be explained

more carefully.

Consider a gauge theory of the type considered in chapter 3, with an SU(N)g gauge

group. The bosonic part of the Lagrangian is

L = Tr
(
F 2
)

+ . . . (4.24)

with Fµν = ∂µAν − ∂νAµ + igYM [Aµ, Aν ] and . . . can include fields in adjoint and

bifundamental representations2, and all irreps obtainable by tensoring these. Ulti-

mately, all fields will be representable as objects with a certain number of colour

indices, at most related by symmetries in those indices.

We can modify the standard Feynman prescription for pictorially representing am-

plitudes to get a ”double line” or ”ribbon” representation in which each colour index

is carried by a line. For example, the gluon self energy diagram becomes as such:

2The following construction can be extended to include particles in the (anti-)fundamental, but
the details are different and this case is not relevant to our interests.
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i

j
k

i

i

j

j

k

colour indices i, j = 1, . . . , N are fixed, while k must be summed over. The amplitude

has two three-gluon vertices, each carrying a factor of g2
YM , for an overall factor of

g2
YMN .

It is easy to convince oneself that as long as we restrict to planar diagrams, that is

diagrams that can be drawn on the plane (or more precisely the sphere), adding one

strip will always introduce exactly one additional loop and two additional vertices,

again carrying a factor of g2
YMN . The combination λ := g2

YMN is the ’t Hooft

coupling, and is better suited to represent the strength of the gauge interaction

than gYM if we are to modify the number of colours.

Then, the ’t Hooft large N limit is defined as:

N →∞, but keeping λ fixed. (4.25)

Equivalently, keeping λ constant and sending gYM → 0. As we will now show, this

corresponds to a suppression of non-planar graphs with respect to planar ones.

A useful rescaling of the fields shifts all the gYM dependence of the Lagrangian to a

factor in front:

L =
1

g2
YM

(
TrF 2 + . . .

)
(4.26)

so that now all types of vertices bring g2
YM = λ/N and propagators bring 1/g2

YM =

N/λ.

We extend to nonplanar graphs by noting these can always be drawn on some Rie-

mann surface of genus h, and, since they induce triangular tilings of said surface,

the famous formula for the Euler characteristic holds:

F − V + E = χ = 2− 2h (4.27)

F , V , E being the number of faces, vertices, edges respectively. Now each face (loop)

carries a factor of N , each vertex a factor of λ/N , and each edge N/λ, so that the
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total contribution is

λE−VNF−V+E = λE−VN2−2g (4.28)

so that at fixed λ, an expansion inN (or better 1/N) is a genus expansion reminiscent

of the loop expansion in perturbative string theory. This for example means that

an observable A admits a power expansion in 1/N :

A =

∞∑
g=0

Ag(λ)N2−2g . (4.29)

In conclusion, the ’t Hooft limit results in suppression of the higher-genus contribu-

tions by powers of N−2 with respect to the planar diagrams3, and is thus also known

as the planar limit. It is remarkable that this genus expansion parallels that of the

perturbative string theory, and that their regimes of effectiveness in holographic

dualities coincide.

4.3 Symmetries

If there is indeed an equivalence between anN = 4 superconformal theory in R1,3 and

IIB string theory (or just supergravity) on AdS5×S5, then verifying a match between

the global symmetries of both theories would be a first test of the correspondence.

The bosonic part of the superconformal group is composed by the conformal group

SO(2, 4) (or more precisely the fundamental cover SU(2, 2)) and the R-charge group

SU(4). These are also evidently the isometry groups of AdS5 (see appendix A.1),

and of S5 (which is SO(6), double covered by SU(4)), respectively.

In terms of supersymmetries, the bulk dual arises from a stack of D3-brane, which

preserve 16 of the 32 IIB supercharges. These map directly to the 16 QA super-

charges of N = 4 supersymmetry. Actually, however, the near-horizon geometry

(AdS5×S5 plus the self-dual F5 configuration (4.3)) has more supersymmetry than

the D3-branes themselves; it is actually is maximally supersymmetric, preserving

all 32 supercharges of IIB strings4. This provides the additional 16 supercharges to

pair with the SA superconformal generators.

There is therefore a perfect match between the symmetries on both sides.

3One could be perplexed by the N2 divergence of the genus zero contribution. This is not
problematic however; it is an artifact of the rescaling 4.26 which makes the Lagrangian itself diverge
as g−2

YM TrF 2 ∼ N/λ ·N , since the trace of a matrix in the adjoint scales as N .
4This fact can be proven in various way, but the most elegant perhaps is to recognize [25]

AdS5×S5 can be written as the bosonic part of the homogeneous superspace
SO(2, 4|4)

SO(1, 4)× SO(5)
so

that SO(2, 4|4) acts as an isometry supergroup.
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Because of the limpid correspondence of the 4-dimensional Poincaré group with the

obvious subgroup of SO(2, 4), it must be deduced that the duality must map local

CFT objects at boundary coordinates xµ to objects in the bulk computed at the

same coordinates xµ (in the Poincaré chart (A.4)). This fixes the interpretation of

the four xµ coordinates in the duality; the extra five (the radial r and those on S5)

remain to be understood.

If the field theory R-symmetry equals the SO(6) isometries of the 5-sphere, it must

be that whatever shape the correspondence takes on, it maps objects that transform

identically under this unique group. Thus it is sensible to decompose bulk fields

into irreducible representations of it [37]. This is done by decomposing the ten-

dimensional IIB fields into spherical harmonics to yield a tower of five-dimensional

fields; for example for a scalar field:

φ(r, xµ, yi) =
∑
R,i

φiR(r, xµ)Y R
i (yi) . (4.30)

The sum is over the irreps R of SO(6) (R = 1,6, . . .)5 while the index i =

1, . . . ,dim R transforms under R; the spherical harmonics have been arranged into

irreps themselves so that (Y R
1 , . . . , Y R

dimR) also lies in R. The five-dimensional the-

ory describing these fields on AdS5 is found by inserting these modes into the IIB

supergravity action. At the quadratic level, most of these fields φR will acquire a

mass in the AdS5 sense - even though the ten dimensional supergravity fields were

all massless.

Therefore, we can establish that boundary objects at position xµ and in the R-

symmetry representation R will be somehow related in holography to a five-di-

mensional bulk field φiR(r, xµ), which is one component in the Fourier expansion of

φ(r, xµ, yi) on S5.

Now, we are interested in the actual prescription for pairing bulk and boundary

objects, and in the meaning of the remaining extra dimension r.

4.4 Features of AdS/CFT

Having ascertained that a correspondence of some form exists, one would then seek

a more precise description of how the mapping between the four-dimensional gauge

theory (the boundary) and the supergravity side (the bulk) is structured. In general,

one has what is called an operator-state correspondence: operators in the boundary

are associated by a holographic dictionary to “states”, or classical solutions in the

bulk. More precisely, consider the weakest form of the correspondence, so that

N →∞, λ→∞ and the bulk is classical supergravity, and take a 4D local operator

5When repeating this argument for spinor fields, the universal cover Spin(6) = SU(4) should
rather be considered, so that all representations of SU(4) (1,4,6, . . .) appear.
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field φ̂(x). The generating functional for its correlation functions is given by coupling

it to a current h(x):

eW [h] =
1

ZCFT

∫
DψeiSCFT+

∫
d4xh(x)φ̂(x) (4.31)

then, the source h(x) is viewed as the limit as r → ∞ (or z = 1/r → 0 using

Poincaré coordinates (A.4)) of a five dimensional field configuration h5(x, r), given

by solving the equations of motion from SAdS with h(x) as a boundary condition.

The correspondence is between the “off-shell” boundary operator φ̂(x) and the “on-

shell” bulk field h5(x, r), and states [37] that the generating functional above is equal

to the bulk action computed on the specific classical solution h(x, r):

eW [h] = 〈e−
∫
d4xhφ̂(x)〉CFT = eiSAdS [h5] (4.32)

Therefore, correlation functions for the strongly-coupled CFT can be calculated en-

tirely through the weakly-coupled, two-derivatives bulk action.

One may then wonder about the interpretation one should employ for the fifth extra

dimension in the bulk from the CFT perspective. A tentative identification comes

from the fact that the AdS metric is invariant under dilations

xµ → λxµ, z → λz (4.33)

Since 1/z scales like an energy, it could be paired holographically with the boundary

energy scale. This turns out to be correct in the sense of renormalization: probing

AdS at large distances, closer to the boundary at infinity (as we did before by

coupling φ̂(x) with the value at infinity of a 5D field) coincides with probing the

microscopical, UV theory. Moving inwards, operators at larger values of z equate

probing the theory at a lower energy scale µ ∼ 1/z, up until the horizon which

is identified with the IR. The fifth dimension is to be roughly identified with the

renormalization scale of the field theory.

Therefore it might be useful to think of the UV microscopic field theory as being

someway literally located at the conformal boundary at infinity of the AdS dual.

Moving inwards, the highest-momentum modes get integrated out and the theory

flows towards the infrared. Hence the “boundary”/“bulk” terminology, and since

all of the physics in the 5D gravitational theory are encoded in a codimension-1

“screen” at infinity, one speaks of holography, in analogy with the real-life technique

of encoding three-dimensional objects in a two-dimensional hologram.

This concludes our brief discussion of the dictionary for the correspondence of bulk

and boundary dimensions:
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symmetries CFT AdS5×S5

SO(2, 4)
SO(1, 3) xµ xµ

dilations renormalization scale z

SO(6) R-symmetry indices yi

In light of the above energy-r relationship, our pairing of field configurations h5(x, z)

with boundary operators has to be corrected. If h5(x, z) is asymptotically constant

as z → 0 so that the limit h5 → h is well-defined, it must be that the corresponding

dual operator does not scale under dilations, so that its conformal dimension ∆ = 0.

The extension to CFT operators with arbitrary scaling dimensions is then realized

by adding the possibility of h5(x, z) diverging as a power of z as

h5(x, z)→ z∆h(x) (4.34)

so that h(x) can then be coupled as source to an operator of conformal dimension

∆. This in turn will induce a dependency of ∆ on the mass of the dual bulk field.

As an example, let us take a scalar field in AdS5 minimally coupled to the graviton:

S ∝
∫
d4x dz

√
g
(
gmn∂mh5∂nh5 +m2h2

5

)
, (4.35)

so that the classical equation of motion is (ignoring x dependency, since it does not

affect this argument)

∂z
(
z−3∂zh5

)
= z−5R2m2h5 . (4.36)

Plugging in a power law h5 = hz∆ yields the conformal dimension-mass relation for

a scalar:

∆(∆− 4) = R2m2 . (4.37)

So that a scalar field of mass m2 can only be dual to a boundary operator with

dimension ∆± = 2 ±
√

4 +R2m2, where ∆− needs to be excluded whenever it

violates the unitarity bound ∆ ≤ 1 (see (3.18)).

It would seem as if the smallest possible dimension of a boundary operator is 4,

however one should take into account the fact that the hyperbolic curvature of AdS

space produces an effective confining potential that allows particles with m2 < 0 to

be stable. It can be shown [27] that the bound

m2R2 ≥ −4 , (4.38)

known as the Breitenlohner-Freedman bound, holds for stable scalar fields in AdS5,
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so that it is possible to reach down to the unitarity limit at ∆ = 1. For the mass range

−4 < m2R2 < −3, both ∆+ and ∆− are viable dimensions for a dual operator; in

[17] it is argued that both choices are implemented in distinct holographic dualities,

and that ∆− should not be excluded.
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Figure 4.2: Scaling dimensions ∆ corresponding to a given bulk
mass for a scalar field, alongside the unitarity bound ∆ ≥ 1.

This was for scalar fields. Higher-spin fields will be dual to operators of the same

spin on the boundary and the m-∆ equation will be modified [39]. For example,

(1
2 ,

1
2) vectors will have

R2m2 = (∆− 1)(∆− 3) (4.39)

while (1, 1) symmetric tensor will instead have the same equation as scalars:

R2m2 = ∆(∆− 4) (4.40)

The relevance of this is that the operators coupled to massless spin 1 or 2 bosons must

be conserved currents by gauge invariance, and so the operators dual to a massless

bulk photon or graviton are a conserved vector current and the stress-energy tensor,

respectively. The anomalous dimensions of these conserved currents must vanish,

and indeed ∆J = 3 and ∆T = 4 are canonical.
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4.5 AdS/CFT over a cone

As seen above, the starting point for the AdS/CFT conjecture is the identification

of a system of N coincident D3-branes in a R1,9 Minkowski background and the

corresponding 3-brane supergravity solution. In an appropriate low-energy limit a

system of closed IIB strings on flat spacetime decouples in both pictures, suggest-

ing it should be conjectured that the remaining parts are equivalent. These are

respectively N = 4, SU(N) N = 4 SYM on R1,3 and IIB strings on AdS5×S5.

We repeat this reasoning, but in the more general case where the background for

the D3-branes is generalized as R1,3×X6, where X6 is a cone over a base 5-manifold

Y5. Our intention is to build holographic dualities for the larger set of theories

described in chapter 3. We anticipate that the bulk dual in this case is IIB strings

over AdS5×Y5.

After placing 3-branes in this R1,3 ×X6 background, parallel to the Minkowski, the

resulting geometry from their backreaction is [17]

ds2 = H−1/2(r, y) dxµdx
µ +H1/2(r, y) ds2

6 (4.41)

Where x0,...,3 are coordinates parallel to the brane stack, r is the radial coordinate

and the remaining y1,...,5 parametrize the cone’s base Y5. This is a simple general-

ization of the flat-background 3-brane solution of 2.4.2, by substitution of S5 with

Y5. The above form can be argued for purely in terms of the SO(1, 3) symmetry

acting on the xµ; the symmetry of the transverse dimensions is instead in general

broken unless the branes lie exactly on the singularity, therefore the warp factor will

depend also on yi.

The equations of motion implies the function H is harmonic ∇H = 0 for r > 0,

identically to the flat-space case, since the branes are again extremal states.

If the branes are coincident and on the singularity, the corresponding harmonic

potential is

H(r) = 1 +
R4

r4
, R4 = 4πgsNα

′2 . (4.42)

The near-horizon limit (r → 0) in that case can be read immediately:

ds2 =
dxµdx

µ + dz2

z2
+ ds2

5 (4.43)

where z := 1/r; this is evidently the product metric on AdS5×Y5.

Therefore, if it is possible to adapt the original argument for AdS/CFT for this sit-
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uation, the existence a holographic duality can be established between the D3-brane

worldvolume theory at the conical singularity and IIB strings (or, less ambitiously,

supergravity) on AdS5×Y5.

Actually, we restrict to X6 being Calabi-Yau, that is being Kähler with holonomy

⊂ SU(3), because as detailed in section 3.2 this guarantees at least N ≥ 1; equi-

valently, we only consider Sasaki-Einstein 5-folds for bases. A rough explanation

of the holographic interpretation of the connection between special holonomy and

supersymmetries is as follows: the holonomy of X6 will determine how many inde-

pendent Killing spinors are on X6 and thus the background R1,3×X6 - in particular

it will result in a reduction of the number of supersymmetries of the background

from R1,3 × R6 as

holonomy SUSY charges

trivial (X6 = R6) −→ 32

SU(2) −→ 16

SU(3) −→ 8

However, it can also be shown [16] that the Killing spinor equation on R1,3 ×X6 is

actually equivalent to the Killing spinor equation on AdS5×Y5, including the effect

of the F5 five-form. Therefore the AdS5×Y5 dual has as many supersymmetries

as the background R1,3 × X6. Note that, again, this is only true for the near-

horizon geometry; the brane themselves break half of the supersymmetries of the

background. Consequently, the field theory acquires this enhanced supersymmetry

only in the IR limit. There, it flows to a superconformal field theory, with 4N +

4N = 8N supercharges. Matching with the supercharges count of the dual theory,

the supersymmetry is respectively N = 4, 2, 1. In particular, only X6 = R6 has

N = 4; every other choice of cone will result in a boundary theory with reduced

supersymmetry.

Finally, we also require X6 to be a proper supergravity background, which would

be stable without the introductions of the D-branes. This means in particular it

should satisfy the vacuum Einstein field equations, and thus should have Rab = 0.

A conjecture of Calabi, proven in [38], states that Calabi-Yau manifolds admit a

Ricci-flat metric compatible with the Kähler structure6. Thus ds2
6 can always be

taken as equal to this unique metric, and ds2
5 is Sasaki-Einstein.

4.5.1 Moduli and marginal directions

On the quiver theory side, it was already seen how generalizing S5 → Y5 introduces

novel features such as baryonic moduli and marginal deformations in addition to the

coupling τ . Holographically, we see this as possible deformations of the AdS5×Y5

6more precisely, this means that if the cone is Calabi-Yau with Kähler form J , then the coho-
mology class [J ] ∈ H2(X6) contains another J ′ whose associated metric is Ricci-flat.
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IIB background. For example, it was already seen that turning on mesonic moduli

corresponds to motion of the D3-branes on X6, from, say, ziI = 0 (z1,2,3 are a complex

chart on X6) to some generic positions ziI = (rI , y
i
I); in that case the bulk dual has

the warped geometry (4.41) with warp factor given by the solution of [24]

∇H(z) =
∑
I

δ6(z − zI) (4.44)

the kind of multicentre solutions we have anticipated in section2.4.2. This is a

possible deformation of the original IIB supergravity background, and these 3N

moduli in the supergravity solution are clearly holographically paired with the 3N

field theory mesonic moduli. This first matching set of bulk and boundary moduli

is not special to conical X6; they are of course also present in the N = 4 case.

The novel feature in the moduli space of conical CFTs is the appearance of χ − 1

baryonic moduli7; these are dual to deformations of the various form fields of IIB

supergravity: φ, B2, C0,2,4, and of course the Kähler form J . These are only made

possible by a non-trivial topology of X6: the introduction of homology k-cycles in

the warped geometry allows for the supergravity forms to have non-zero integrals

on them.

Let us sketch for example the case of the Klebanov Witten model [16] introduced in

section 3.5, which by the above argument should be dual in the large N , strongly-

coupled limit to IIB supergravity on AdS5×T 1,1. This has the topology of S2 × S3

[8]. The gauge group is SU(N) × SU(N) and so there is 2 − 1 = 1 baryonic

modulus. We have already seen that the turning on of this modulus corresponds to

a Kähler deformation of the conical background X6 = R+ × T 1,1 with a blowing up

of a two-cycle S, which would otherwise collapsed in the singularity, to result in a

regular geometry. On the supergravity dual, set on the warped geometry, this will

be reflected in a modulus for the Kähler 2-form J wrapping on the two-cycle S, so

a quantity of the type

∫
S
J = volS . (4.45)

Other supergravity form integrals on S will map to the marginal deformations of the

KW theory. There are two, since the conformal manifold is a surface in (g1, g2, λ)

space (see section 3.5.1). It can be shown [1] that the IIB string coupling (itself a IIB

modulus, being essentially the VEV of the scalar dilaton) are dual to a symmetric

combination of the gauge couplings

4π

g2
1

+
4π

g2
2

= e−φ , (4.46)

7We recall χ is the number of nodes in the gauge group G = SU(N)χ, and also the Euler
characteristic of X6.
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while the antisymmetric part corresponds to the integral of the Kalb-Ramond form

over S:

4π

g2
1

− 4π

g2
2

= e−φ
(
−1 +

1

2π2α′

∫
S
B2

)
. (4.47)

This can actually be extended to complexified couplings as such

τ1 + τ2 ←→ τ , (4.48)

τ1 − τ2 ←→
∫
S

(C2 − τB2) . (4.49)

Thus, new features in moduli and marginal couplings on the KW model with respect

toN = 4 SYM are due to the appearance of a single new two-cycle S in the cone. The

precise relationship between the number of k-homology cycles of X6 (Betti numbers)

and moduli and marginal deformations in the general case will be established in the

next chapter.
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Chapter 5

Holographic effective field

theories

In this chapter, we present the technique and results introduced in [24] to find the

effective theory for strongly-interacting CFTs with holographic duals. Instead of

repeating the arguments presented therein, we will strive to provide an intuitive

summary of the concepts involved.

Since we are considering strongly-interacting quantum field theories with minimal

supersymmetry, the problem of identifying the low-energy effective field theory di-

rectly is generally untractable. However, as we have seen, the strong-coupling regime

for the CFT corresponds to effectiveness of the supergravity approximation on the

holographically dual string side. Therefore, the low-energy dynamics of the dual

system can in principle be read and the resulting theory will coincide with the ef-

fective theory for the original QFT. Having been obtained by passing through the

holographic dual, these will be termed holographic effective field theories (HEFTs).

In practice, it is found that for any given point in the longitudinal coordinates x0,...,3

the transverse supergravity configuration will belong to a space of different supergra-

vity vacua, and that this space is finite-dimensional, in the sense that there is only

a finite number of moduli parametrizing deformations of the vacuum configurations.

This moduli space coincides of course with the field theory moduli space.

A first class of moduli are given by deformations of the dual geometry. These include

moduli of the geometric structure (Kähler moduli) of the background cone in which

the branes are placed in, and then the position of the D3-branes themselves on that

background - which manifests as a deformation in the resulting warped geometry.

Another class of moduli instead will correspond to the deformations of the B2 and R-

R fields of IIB supergravity; while these would be full fields defined on the internal

six-dimensional background, gauge invariance will result in only a finite number

of topological invariants of the field configuration to enter the physical massless

spectrum.

73
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Figure 5.1: Schematic depiction of the three type of moduli of the
dual vacuum: motion of D3-branes, deformation of Kähler struc-
ture of the background, generally involving resolution of the conical
singularity, and field fluxes.

In short, there will be a finite number of flat directions parametrizing moduli space,

and each of these moduli will result in a corresponding scalar field when we extend

these deformations to depend on the external point xµ. Reintroducing N = 1

supersymmetry, these will be the lowest components of chiral supermultiplets which

will exhaust the degrees of freedom of the low-energy effective field theory.

Then, expanding the supergravity action in these modes the action governing these

chiral fields can be found. This is nothing else than the explicit form of the effective

theory for our original strongly-interacting theory.

5.1 Topology of X6

It is necessary to quickly introduce a certain fact about the topology of X6 for us to

distinguish between normalizable and non-normalizable Kähler deformations. The

relevant topological information is encoded in the homology groups1 Hk(X) of X6;

in particular the rank bk(X), which is known as the k-th Betti number. Intuitively,

bk(X) counts the number of independent2 k-dimensional cycles in X6. We now follow

[22]. First of all, we take as an assumption that the third Betti number of the cone

vanishes:

b3(X) = 0 (5.1)

1We will freely omit the 6 and 5 subscripts on the cone X6 and the base Y5 where it is clear for
context, to streamline notation.

2This does not include torsional elements, i.e. cycles C such that nC = 0 for some n > 1.
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Moreover, it can be proven [34] from Myers’ theorem [28] that Y5 being Sasaki-

Einstein means the following Betti numbers vanish3:

b1(Y ) = b4(Y ) = 0 (5.2)

We recall the long sequence involving relative cohomology groups:

. . .→ H i−1(Y )→ H i(X,Y )→ H i(X)→ H i(Y )→ H i+1(X,Y )→ . . . (5.3)

where H i(X,Y ;R) is the relative cohomology group - closed k-forms on X vanishing

on Y modulo exact forms with the same property - and when the ;R is omitted we

implicitly mean the base field is R. We cut the sequence short by setting i = 2 and

noting H1(Y ) = 0 according to (5.2) and H3(X,Y ) ⊂ H3(X) = 0 as of (5.1); the

short exact sequence is

0→ H2(X,Y )→ H2(X)→ H2(Y )→ 0 (5.4)

Implying H2(X) = H2(Y ) ⊕ H2(X,Y ). Applying Poincaré duality4 on the two

components yields

H2(X) = H3(Y )⊕H4(X) , (5.5)

so that, taking the ranks5:

b2(X) = b3(Y ) + b4(X) . (5.6)

This identity will be necessary in the decomposition of harmonic 2-forms.

We can also now compute the Euler characteristic of the cone, which coincides as

was seen in chapter 3 with the number of SU(N) nodes in the gauge group:

χ =
∑
k

(−1)kbk(X) = b0(X) + b2(X) + b4(X) (5.7)

= 1 + b2(X) + b4(X) . (5.8)

3More in detail, Myers’ theorem implies π1(Y5) is a finite group. Thus the abelianization H1(Y )
is also finite, and the rank b1(Y ) must vanish. By Poincaré duality b4(Y ) = 0 follows.

4We note in the case of non-compact manifolds, such as X6, Poincaré-Lefschetz duality is actually
an isometry between Hk(X) and H6−k(X,Y ), instead of H6−k(X).

5The universal coefficient theorem implies rkHk(X) = rkHk(X) = bk(X).



76 CHAPTER 5. HOLOGRAPHIC EFFECTIVE FIELD THEORIES

5.2 Kähler moduli

We now consider the moduli describing the deformation of the Kähler (so, geometric)

structure of the background. Since b3(X) = 0 by hypothesis, the complex structure

is rigid. There are instead moduli for the Kähler form J := igi̄ dz
i∧dz̄ ̄; in particular

it can be proven [14] that every cohomology class [J ] of H2(X) contains a single

representative Ricci-flat Kähler form J , so that H2(X) is the moduli space for the

Kähler structure. We can expand the cohomology class as

[J ] = va[ωa] , a = 1, . . . , b2(X) (5.9)

with [ωa] being a basis for the integral cohomology H2(X;Z), as the latter modulo

torsion is a lattice sitting in H2(X;R). The b2(X) parameters va are the Kähler

moduli. This means

δ[J ] = δva[ωa] (5.10)

meaning there exist representatives in the classes such that the equation without

square brackets holds. Since small variations of the Kähler form must be (1, 1)

harmonic forms [9], we then know there exist (1, 1) harmonic representatives ωa for

the aforementioned basis of classes. Returning to (5.9) we can rewrite it as

J − vaωa ∈ [0] (5.11)

But for the LHS to belong to the zero class just means to be exact. Therefore

J = J0 + vaωa (5.12)

with J0 being exact and (1, 1). Note the linearity of this parametrization is an

illusion of notation: the condition ∆ωa = 0 depends on the metric and so the ωa
depend on the va moduli.

It is then useful to decompose this set of b2(X) harmonic forms according to iden-

tity (5.6) into b3(Y ) noncompact elements ω̃β and b4(X) normalizable forms ω̂α.

By “normalizable” it is meant the hatted forms have finite norm according to the

product

∫
X
ωa ∧ ?ωb =:Mab (5.13)

while the other b3(Y ) do not. They are however all normalizable according to the

“warped” product
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∫
X
e−4Aωa ∧ ?ωb =: Gab (5.14)

where the factor e−4A, as will be explained later, is the warp factor resulting from the

backreaction of the D-branes. This facilitates convergence since (as we will show)

e−4A ∼ r−4 for large r, the regime in which the deformed X6 is asymptotic to a

cone. In detail this means that ||ω̂α||2 must drop at least as fast as r−8, while ||ω̃β||2

will go as r−4.

In any local chart the ωa forms will be generated by potentials κa as6

ωa = i∂∂κa (5.15)

just like J is generated by the Kähler potential as

J = i∂∂k (5.16)

This means in particular κa will coincide with ∂k
∂va up to a zi, z̄i-independent piece,

that is a function of the {va} only. To fix this arbitrariness, the κa potentials are

required to satisfy

∂κa
∂va
∼ r−k , k ≥ 2 (5.17)

so that they are determined up to a constant. This asymptotic condition must be

enforced for the following analysis to be meaningful.

5.3 Remaining moduli

We are now in position to classify flat deformations of the axio-dilaton τ and the

2-forms C2 and B2, which we compose into a single complex 2-form C2 − τB2, plus

τ itself. The former field’s flat deformation will be generated by cohomology classes

of H2(X), so in practice the harmonic forms ωa found above can be used as a basis.

Therefore the following decomposition is possible:

C2 − τB2 = l2s

(
βαω̂α + λβω̃β

)
(5.18)

The b4(X) moduli βα weighing the compact forms ω̂α will result in dynamical chiral

6We recall on a complex manifold the Dolbeault operators ∂ and ∂̄ can be constructed as such:
given a (p, q)-form α, then ∂α and ∂̄α are defined as the projections of dα respectively in the spaces
Ωp+1,q and Ωp,q+1 of differential (p+ 1, q)- and (p, q + 1)-forms. More intuitively, ∂ is d restricted
to only the zi dependence, while ∂̄ to the z̄ı̄ dependence.
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fields in the HEFT. Instead, the b3(Y ) λβ moduli, to which we add one complex

modulus for τ , parametrize deformations which will turn out to be non-dynamical.

The reason is precisely that the kinetic matrix for these fields will turn out to be

the inverse of Mab, which is only finite for the normalizable form.

Then, an obvious set of moduli ziI (I = 1, · · · , N , i = 1, 2, 3) are to be introduced

to parametrize the motion of the N D3-branes on the background. As was hinted

before, these alone are coordinates for the submanifold Mmes in M, which to be

precise should be quotiented by permutation of the branes. Therefore, Mmes based

at any given point of moduli space is the symmetric product of N copies of the

background geometry, as it for those particular values of the Kähler moduli.

There is a final class of flat shifts that should be considered, those of the C4 potential.

These moduli should (very schematically) better be thought of as paired with the va

to form complex moduli. In the end, it turns out it is not really necessary to study

the C4 moduli explicitly for the purpose of finding the HEFT.

5.4 Chiral fields

Finally, we have to introduce the correct chiral fields parametrizing the dynamical

moduli. We use the moduli βα and ziI directly as the lowest component of the

corresponding superfield, while to va = (v̂α, ṽβ) we associate fields ρa = (ρ̂α, ρ̃β),

obtained by a particular transformation:

Re ρa =
1

2

∑
I

κa(zI , z̄I ; v)− 1

2 Im τ
Iaαβ Imβα Imββ− 1

Im τ
Iaασ Imβα Imλσ , (5.19)

where the κa are the potentials for the ωa forms as defined in 5.2. The imaginary

part of ρa instead as expected is related to the C4 moduli; the explicit form of Im ρa
is not necessary for our purposes.

To wrap up, the dynamical chiral fields in the effective field theory are

b4(X6) ρ̂α norm. Kähler and C4 deformations

b3(Y5) ρ̃σ non-norm. Kähler and C4 deformations

b4(X6) βα norm. C2 − τB2 deformations

3N ziI D3-brane positions

plus the following non-dynamical marginal parameters:

b3(Y5) λσ non-norm. C2 − τB2 deformations

1 τ axio-dilaton
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The identification of the meaning of these fields and parameters in terms of the

four-dimensional side is as follows. The ziI correspond clearly to the VEVs of the

3N independent mesons of the CFT, as it was already established. The ρ and β

fields instead are the independent VEVs of baryons. Their total number is

2b4(X) + b3(Y ) = b2(X) + b4(X) = g − 1 (5.20)

where we’ve used respectively identity (5.6) and the fact that the number of gauge

groups is χ(X6) =
∑

k bk(−1)k = 1 + b2(X) + b4(X). There is therefore a match

with the number of baryonic moduli of the CFT as it was determined by solving the

F- and D-term conditions.

λσ and τ instead are dual to the marginal deformations of the CFT, that is of the

gauge and superpotential couplings. The b3(Y )+1 such marginal moduli correspond

directly to the b3(Y ) + 1 marginal couplings that were found in the study of the

conformal manifold of the quiver theory in section 3.7. (Thus, this constitutes the

bulk-side proof of the conjecture (3.96)). A general feature is that the axio-dilaton

τ will always be paired with the symmetric combination of the complexified gauge

couplings (see (3.31)):

τ ←→ τ1 + τ2 + . . .+ τχ , (5.21)

while the b3(Y ) parameters λσ will be dual to the other b3(Y ) independent combi-

nations that generate marginal deformations.

5.5 Effective action

It now remains to specify the dynamics of these chiral fields through an effective

action. A way to proceed is to start with the similar case of compactifications [23],

where the Calabi-Yau transverse space X6 is actually compact, unlike the asymp-

totically conical noncompact 6-folds encountered until now. That is, N D3-branes

are placed on the background metric

ds2
10 = l2S(ds2

4 + ds2
X) (5.22)

where
∫
X d volX = V0 is the unwarped volume of the compact space (d volX is the

volume form associated with ds2
6), and as a result the geometry is warped into

ds2
10 = l2S(e2Ads2

4 + e−2Ads2
6) , (5.23)

∇e−4A(zi) = ? l4S
∑
I

δ6(zi − ziI) + (fluxes . . .) (5.24)
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with warped volume
∫
X e
−4Ad volX =: Vw =: aV0. a is known as the universal

modulus. In [23] it is argued that the low-energy effective four-dimensional theory

resulting from such a compactification can be formulated as a superconformal su-

pergravity theory, and that the total Kähler potential takes a remarkably simple

form:

K = −3 ln(4πVw) = −3 ln(4πV0a) . (5.25)

The effective Lagrangian is then obtainable directly by differentiating the Kähler po-

tential with respect to the moduli of the compactification, provided the dependency

of the universal modulus from the latter is known. Just like in the non-compact case,

it s possible to expand variations of the Kähler form in a basis of harmonic forms as

J = vaωa, and the ziI moduli also reappear identically, mapping the positions of the

D3-branes in the compact dimensions rather than the noncompact resolved cone.

The β and λ - type moduli are set aside temporarily. The Lagrangian is composed

by a chiral part for the chiral fields corresponding to the moduli plus a set of N fully

decoupled U(1) super-YM sectors due to the open string modes on each isolated

D3-brane (as we’re in a generic point ofM where no branes coincide7). The bosonic

part of the chiral sector is

L = −πG̃ab∇ρa ∧ ?∇ρ̄b − 2π
∑
I

Ji̄dz
i
Idz̄

̄
I (5.26)

where also in this case the ρa fields are obtained by a transform of the va Kähler

moduli similar to (5.19):

Re ρ =
1

2
aIabcv

bvc +
∑
I

κ(zI , z̄I ; v) + (fluxes . . .) , (5.27)

and the kinetic matrix and connection are given by

G̃ab =
1

2V0a
vavb − Gab (5.28)

∇ρa = dρa +
∑
I

AIaidziI , AIai =
∂κa

∂zIi
(5.29)

(we recall the matrix of warped products Gab is as defined in (5.14)).

This result is then first “decompactified” by taking the limit V0 →∞, so as to extend

7In the case where n of the zI coincide and they do not lie at a singular point, there is an
enhancement of the gauge symmetry of their decoupled sectors so that an additional decoupled
N = 4, SU(n) Yang-Mills appears.
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to the case of non-compact X6 as in our case. This is also describable as a “rigid”

limit in the terminology of compactifications, since it’s equivalent to M
(4)
P → ∞

for the four-dimensional effective Planck mass (M
(4)
P )2 ∼ V0. Then a second limit,

a → 0, is considered, equivalent to the near-horizon limit we require to get into

the holographic regime. Under this limit, Re ρ(v) turns into the form (5.19) we

introduced earlier, G̃ab reduces to Gab, and the Lagrangian simplifies to:

Lρ,z = −πGab∇ρa ∧ ?∇ρb − 2π
∑
I

Ji̄dz
idz̄ ̄ (5.30)

It can happen that in decompactification some of the ωa will have turned into non-

warp-normalizable forms for which Gab diverges. In that case the corresponding ρ

fields decouple from the dynamics8. Therefore it is understood that the a, b indices

span only over warp-normalizable Kähler moduli of the non-compact X6.

Finally, one adds back the C2, B2 moduli by again expanding C2− τB2 in the basis

of ωa forms to obtain the βα, λσ fields as explained before; then it is shown that they

contribute to the action with a kinetic matrix proportional to the unwarped product

matrix Mab defined in (5.13). This means that only the βα fields, modulating

unwarped-normalizable flat shifts are dynamical fields. The final chiral Lagrangian

is:

Lchiral = Lρ,z −
π

Im τ
Mαβ dβ

α ∧ ?dβ̄β (5.31)

where one must also take into account the fact that the β fields couple to the ρ fields

through an addition to the latter’s covariant derivative, whose final form is

∇ρa = dρa −AIaidziI −
i

Im τ

(
Iaαβ Imββ + Iaασ Imλσ

)
dβα (5.32)

This theory is actually the bosonic part for an N = 1 supersymmetric field the-

ory, but not manifestly so. It can be cast in superspace form by considering the

decompactification of the Kähler potential (5.25). This turns out to be, recalling

k0(z, z̄; va) is the potential generating the metric of the unwarped cone according to

(5.16),

K = 2π
∑
I

k0(zI , z̄I ; v
a) . (5.33)

The zI , z̄I dependence generates the σ-model on the cone that describes the motion

of the D-branes on it, while the dependence on the moduli will encode the dynamics

of the corresponding ρ fields. The chiral lagrangian (5.31) is then
∫
d4θK and is

8This is not completely obvious; the decoupling can be proven [24] by switching to the equivalent
formulation with linear multiplets, performing the limit, and switching back to chiral fields.
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explicitly N = 1 supersymmetric.

With this information, it is now possible to compute the HEFT corresponding to

a given conical background provided the Kähler form for the generic Calabi-Yau

deformation is known in complex coordinates. The following identity for Gab can be

proven [24] and is a useful computational shortcut:

Gab = −∂κa
∂vb

(5.34)

Therefore, to outline a systematic procedure: once the general Kähler potential and

Kähler form are known, derivatives with respect to the moduli yield the κ potentials,

from which one computes the G matrix and the A connection; the intersection

numbers and in particular the Mαβ matrix are instead invariants independent of

the moduli and are readily evaluated on geometrical grounds.

5.5.1 Anomalous U(1)s

We very briefly comment on the holographic interpretation and counting of the

anomalous abelian gauge factors. Again, we only provide an intuitive summary of

the concepts presented in [24]. We know the overall number of U(1), excluded the

overall trace, is

χ− 1 = b2(X) + b4(X) . (5.35)

Now, before decompactification, all of these will have associated axions as in section

3.6.1. These will be formed respectively by integrating some 2- and 4- form on a

basis of 2- and 4-cycles of X:

∫
Ca2

A2 ,

∫
Cσ4

A4 . (5.36)

However, while the b4(X) 4-cycles Cσ4 will remain compact under decompactification

of X6, the b2(X) 2-cycles Ca2 will split into b4(X) compact and b3(Y ) non-compact

cycles. This is nothing else than the Poincaré dual to the normalizability of 2-forms

discussed in section 5.2. These last b3(Y ) axions will have infinite kinetic terms

and will decouple, turning into non-dynamical marginal parameters λσ. Thus the

corresponding b3(Y ) U(1) will not be broken by a Stückelberg mechanism and will

actually survive as global gauge symmetries into the field theory - hence they will

not be anomalous.

The remaining (b2(X)+b4(X))−b3(Y ) = 2b4(X) abelian factors will have associated

axions with finite mass and will thus be anomalous.
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5.6 Example: the Klebanov-Witten HEFT

As an example, we now summarize a direct application of this method to the conifold

theory described in (3.5).

It is essential for the metric for the background to be presented in complex coordi-

nates for the construction above to be applicable. We exploit the fact that at any

generic point of moduli space except when baryonic moduli vanish and the back-

ground is the singular conifold, the geometry is that of a smooth complex 3-fold

describable as the total space of the sum of the tautological bundle9 on a CP1 with

itself: OCP1(−1) ⊕ OCP1(−1). The base CP1 ∼= S2 of the bundle is the “resolu-

tion” of the conical singularity. We use this to build a chart on the resolved coni-

fold by extending a stereographic chart on the base to get the complex coordinates

zi = (λ,U, Y ), the first stereographic for the base and the latter two fibral.

With this presentation, it is clear that the only 2-cycle of X6 is the base S2, so that

b2(X) = 1. Moreover, we already know that as a real cone the conifold has base

SU(2) × SU(2)/U(1) ∼= S2 × S3, and that the resolution cannot really change the

topology of the base at infinity, so that the only 3-cycle in Y5 is the S3 and b3(Y ) = 1.

Furthermore, according to (5.6) there are no compact 4-cycles: b4(X6) = 0. This

will mean, according to the previous identification, that we will have a single ṽ =: v

modulus parametrizing a warp-normalizable Kähler deformation and dual to a single

chiral field ρ̃ =: ρ, no β fields, and two non-dynamical marginal parametres λ and

τ .

The Kähler modulus v is identified with the volume of the base,

v ∝
∫
S2

J = volS2 . (5.37)

Therefore, all Calabi-Yau deformations of the conifold are a one-parameter family

and the singular conifold itself lies at the origin, v = 0. The Kähler potential for X6

in stereographic coordinates is detailed for example in [29], and takes the form:

k(z, z̄; v) =
1

2

∫ s2

0
d lnx γ(x; v) +

v

2π
ln(1 + |χ|2) (5.38)

where s2 = (1 + |χ|2)(|U |2 + |Y |2) and γ must satisfy the following for the metric to

be Ricci-flat:

γ3 +
3v

2π
γ2 − x2 = 0 (5.39)

9We recall projective space CPn−1 is Cn modulo proportionality (thus, the space of complex
lines in Cn); this defines an obvious projection Cn → CPn−1 sending each point in Cn to the line
that contains it. Then, the tautological bundle O(−1) on CPn−1 is defined to have total space Cn
and this projection.
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The potential κ generating the unique harmonic form ω̃ is given simply by derivative

of k with respect to the modulus, plus a v-dependent piece fixed by the asymptotic

condition (5.17):

κ = −1

4

∫ s2

0
d lnx

γ

πγ + v
+

1

2π
ln(1 + |χ|2)− 3

8π
ln v (5.40)

This in turn defines the relationship between ρ and v as

Re ρ = −1

8

∑
I

∫ s2I

0
d lnx

γ

πγ + v
+

1

4π

∑
I

ln(1 + |χI |2)− 3N

16π
ln v (5.41)

from which one can readily find the 1× 1 G matrix:

G = −∂ρ
∂v

=
3

16π

∑
I

(v + πγ)−1 (5.42)

All ingredients for writing down the HEFT are now available. The chiral part of the

bosonic lagrangian for the effective low-energy theory of the KW model is given by

L = −πG−1∇ρ ∧ ?∇ρ̄− 2π
∑
I

Jij̄dz
i
I ∧ ?dz̄

j̄
I (5.43)

where of course Jij̄ = ∂i∂̄jk(z, z̄; v) is the metric tensor of the resolved conifold.

The expressions here are deceivingly simple: both G and J depend on the modulus

v which must be understood as a function of the chiral field ρ by inversion of the

Legendre transform. The connection for the covariant derivative, being a simple

derivative of the Kähler potential, can also be explicited:

Aidzi = (4v + 4πγ)−1

(
2v + πγ

π(1 + |χ|2)
χ̄dχ−

γ
(
ŪdU + Ȳ dY

)
|U |2 + |Y |2

)
(5.44)



Chapter 6

The Y 2,0 HEFT

Having secured the tools required, we are now ready to take on the holographic

effective theory of the Y 2,0 theory introduced in section 3.6, to which this thesis

is dedicated, and whose low-energy effective dynamics has not been investigated so

far.

Exploiting the architecture established in the previous chapter, we will identify the

fields and parameters on the gravitational dual which enter in the low-energy descrip-

tion, and determine the exact form of the effective action for this strongly-coupled,

minimally supersymmetric gauge theory.

The bulk of this calculation turns out to be occupied by the determination of the

Ricci-flat metric of the general Calabi-Yau deformation of the X2,0 cone over the

Sasaki-Einstein base Y 2,0; the deformations are in this case parametrized by two

moduli, measuring the volumes of a pair of 2-cycles. Since the 4-cycle product

of the 2-cycle is non-zero, this model features the possibility for the blowup of a

4-cycle. Due to the introduction of this 4-cycle blowup (ultimately arising from

the Z2 orbifold) the metric is quite more complicated than the deformation of the

conifold, which only featured a single 2-cycle. As part of our original contributions

we will thus present therefore our determination of the deformed metric in complex

coordinates for generic values of the two moduli.

6.1 General properties

The features of the SCFT analyzed in section 3.6 can be rederived holographically.

First of all, the homology of the singular cone will allow for the counting of super-

gravity moduli and marginal deformations that can be seen to match with those

found from the field theory side. We recall (see (3.72)) the metric on the X2,0 cone

is

85
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ds2
6 = dr2 + r2ds2

5 (6.1)

ds2
5 =

1

9

dψ +
∑
i=1,2

cos θidφi

2

+
1

6

∑
i=1,2

(
dθ2
i + cos2 θidφ

2
i

)
(6.2)

ψ ∈ [0, 2π] (6.3)

Since the conifold base had topology S2×S3[8], this base will be Y 2,0 ∼= (S2×S3)/Z2.

The new Betti numbers of the cone are easily read from the fact that the generic

resolution of X2,0 is a bundle C→ CP1×CP1, which we will prove in the next section.

First, we have b3(Y 2,0) = b3(S2 × S3) = 1, while b4(X2,0) = b4(CP1 × CP1) = 1.

Finally, using (5.6), b2(X6) = 2. To summarize:

b2(X6) = 2, b4(X6) = 1, b3(Y5) = 1 . (6.4)

According to the discussion of section 5.2, there will be b2(X) = 2 independent

harmonic forms ωa from the two 2-cohomology classes, and these will parametrize

deformations of the Kähler form:

J = J0 + vaωa , (6.5)

with two associated moduli va. These forms will be divided in b3(Y ) = 1 “non-

compact” form ω̃ = ω2, and b4(X) = 1 “compact” form ω̂ = ω1. The latter,

associated with the blow-up of the 4-cycle CP1 × CP1, is the novel feature with

respect to the Klebanov-Witten model, which only featured ω̃.

In addition, ωa will generate A2 − τB2 deformations:

(A2 − τB2) = l2s (β ω̂ + λ ω̃) . (6.6)

However, only the normalizable 2-form ω̂ will yield a dynamical field β, as shown

in section 5.3. The parameter λ will be a marginal parameter, alongside the axio-

dilaton τ .

Once the va = (v̂, ṽ) Kähler moduli have been transformed into the ρa = (ρ̂, ρ̃) fields

according to (5.19), it is now possible to match the counting of moduli and marginal

parameters between the bulk and the Y 2,0 CFT as following:
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AdS5×Y 2,0 CFT

ziI 3N VEVs of mesons

dynamic ρ̂

χ− 1 = 3 VEVs of baryonsmoduli ρ̃

β

marginal τ
2 marginal deformations

parameters λ

Since the dynamical fields of the effective theory have been identified and matched,

the explicit construction of the ωa forms will allow for the specification of their

dynamics. In practice, this requires determining the metric in complex coordinates

of the general Calabi-Yau deformation of the X2,0 cone. This metric is known [30]

in real, “polar” coordinates (see (3.88)) but we need its explicit form in a chart

compatible with the Kähler structure. In the next section, we present our solution

to this problem in the form of an explicit expression for the Calabi-Yau metric in a

set of complex coordinates, and verify the match with the known parametrization

(3.88).

6.2 Kähler form

The metric of the general Calabi-Yau deformation of the X2,0 cone is already well-

known in real coordinates as (repeating (3.88))

ds2 = κ−1(r) dr2 +
1

9
κ(r)r2(dψ + cos θLdφL + cos θRdφR)2

+
1

6
r2dΩ2

L +
1

6
(r2 + a2)dΩ2

R ,

(6.7)

κ(r) =
1 +

9a2

r2
−
b6

r6

1 +
6a2

r2

, (6.8)

with a, b the two unique real moduli. The topology is that of an R2 bundle over

S2 × S2. We take it as an assumption that this matches with the complex structure

associated to the Kähler form so that this is the total space of a C bundle over

CP1 × CP1 - we will confirm this a posteriori when we will provide the complex-

coordinates expression and show it agrees with the real form.

With this assumption, we search for the general CY metric on a C → CP1
L × CP1

R

bundle; on the spheres of the base we take the round metric, given by the Kähler
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forms jL and jR generated by Kähler potentials1 kL, kR. We thus, having chosen

any local complex charts yL, yR on the two basal spheres (e.g.: stereographic)

and a fibral coordinate ζ on C, have a local chart zi = (yL, yR, ζ) for the bundle.

Asymptotically (that is, |ζ| → ∞) yL,R and arg ζ parametrize Y5, while |ζ| maps to

the radial coordinate; the precise relationship will be clarified shortly.

It is easy to verify explicitly that, given any set of complex coordinates on the base

(yL, yR),

jL ∧ jR = e−Λ(kL+kR)
(
dyL ∧ dyR ∧ dȳL ∧ dȳR

)
, (6.9)

for some Λ depending on the overall size of the spheres (for the unit sphere, Λ = 1).

While (6.9) is true in any chart, let us show it explicitly for the standard stereo-

graphic coordinates. If yL is a stereographic coordinate on CP1, the Kähler potential

is

kL = log(1 + |yL|2) , (6.10)

and the Kähler form is given by the Fubini-Study metric:

jL = i∂∂̄ ln(1 + |yL|2) =
dyL ∧ dȳL

(1 + |yL|2)2 . (6.11)

Then clearly

jL = e−2kL dyL ∧ dȳL . (6.12)

We also introduce the radial coordinate t(ζ, yL, yR) as

t := |ζ|2eΛ(kL+kR) . (6.13)

We then propose the following ansatz for the Kähler potential of the resolved cone:

k0 = f(t;α, α̃) + αkL + α̃kR (6.14)

where the moduli α, α̃, controlling the volume at t = 0 of the base 2-spheres, should

parametrize the Ricci-flat Kähler resolutions of the cone. We now prove that there

is always an f(t;α, α̃) that makes the metric Ricci-flat.

The Kähler form generated by (6.14) is straightforward:

1Attention should be paid to the fact that the potentials are different for different coordinates.
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J = (α+ Λtf ′)jL + (α̃+ Λtf ′)jR

+ ieΛ(kL+kR)(f ′ + tf ′′) (dζ + Λζ∂k) ∧ (c.c.)
(6.15)

The form J = Ji̄ dz
i∧dz̄ ̄ defines a hermitian metric ds2 = Ji̄ dz

idz̄ ̄, or equivalently

gi̄ = Ji̄ . We would like to identify the condition on f(t) for such a metric to be

Ricci-flat. In a Kähler manifold, and in a given local chart, the Ricci form2 is given

by [3]

ρ = i∂∂̄ log
√

det gi̄ , (6.16)

so that Ricci-flatness, ρ = 0, means det g = det Ji̄ is a constant. On the other hand,

note the volume form induced by the metric would be

d volX6 =

(
i

2

)3

(det gi̄) d
6z (6.17)

with d 6z = dζ∧dyL∧dyR∧dζ̄∧dȳL∧dȳR. However, for a Kähler 3-fold the volume

form admits the equivalent expression in terms of the Kähler form:

3! d volX6 = J ∧ J ∧ J (6.18)

Having defined e3 := dζ + Λζ∂(kL + kR), this is

= 3(α+ Λtf ′)(α̃+ Λtf ′)ieΛ(kL+kR)
(
f ′ + tf ′′

) (
jL ∧ jR ∧ e3 ∧ ē3̄

)
(6.19)

and using (6.9):

= ((α+ Λtf ′))((α̃+ Λtf ′))
(
f ′ + tf ′′

)
d 6z (6.20)

By comparing (6.20) with expression (6.17) for the volume form, we have to deduce

that Ricci-flatness is equivalent to the following expression being constant:

(α+ Λtf ′)(α̃+ Λtf ′)
d

dt
(Λtf ′) =: c (6.21)

or, having defined Y (t) := Λtf ′(t),

(α+ Y ) (α̃+ Y )Y ′ = c . (6.22)

2the Ricci form on a Kähler manifold is related to the Ricci tensor as ρ = iRi̄ dz
i ∧ dz̄̄, thus

Ri̄ = 0 iff ρ = 0.
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This differential equation (second order in f(t)) is thus the condition for the me-

tric resulting from the ansatz (6.14) to be Ricci-flat, and therefore a supergravity

solution.

Since f(t) and f ′(t) must be regular as t = 0, and Λtf ′(t) = Y , it must be that Y → 0

as t→ 0; this condition eliminates the freedom from the constant of integration for

equation (6.22). The constant c on the other hand can be readily reabsorbed into

a t rescaling. Therefore there should be a unique Y (and so a unique f up to

unconsequential constant shifts) that gives a Ricci-flat metric. In appendix A.3 we

prove that the solution is indeed unique, and the solution to (6.22) is given by

Y (t;α, α̃) = |α− α̃| cosh

(
1

3
cosh−1

(
12

ct+D

|α− α̃|3

))
− α+ α̃

2
, (6.23)

D :=
1

12
(−α3 + 3α2α̃+ 3αα̃− α̃3) . (6.24)

While essential for our derivation of the HEFT, the explicit form above of Y (t;α, α̃)

is not necessary to verify this metric matches with the real-coordinate form (6.7):

let us express the Kähler form in terms of Y and show it actually coincides with the

latter. We have

J = (α+ Y )jL + (α̃+ Y )jR +
ieΛ(kL+kR)

Λ
Y ′e3 ∧ ē3̄ (6.25)

= (α+ Y )jL + (α̃+ Y )jR +
ieΛ(kL+kR) c

Λ(α+ Y )(α̃+ Y )
e3 ∧ ē3̄ (6.26)

Now, we parametrize the fiber as (compatibly with (6.13))

ζ = e−Λk/2
√
t eiψ , (6.27)

and the 2-spheres with spherical coordinates θi, φi which fixes Λ = 1. Then the

metric corresponding to J is

ds2
6 = (α+ Y ) dΩ2

L + (α̃+ Y ) dΩ2
R +

Y ′

t

(
dt2

4
+ t2(dψ + σ)2

)
, (6.28)

where

σ := −iΛ
2

(∂k − ∂̄k) = cos θLdφL + cos θRdφR (6.29)

and dΩ2
L,R = dθ2

L,R + sin2 θdφ2
L,R. But the (t, ψ) part of the metric (6.28) is simply
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ds2 =
1

4y′t
dy2 + (y′t)(dψ + σ)2 (6.30)

Exploiting both the Ricci-flatness condition (6.22) and its integrated form (A.10)

we rewrite the expression Y ′t as

Y ′ t =

(
1

(α+ Y )(α̃+ Y )

)(
Y 3

3
+
α+ α̃

2
Y 2 + αα̃Y

)
(6.31)

= 3c r2

(
1 +

3

2

α̃− α
r2

+ α2(α− 3α̃)2r6

)/(
1 +

α̃− α
r2

)
(6.32)

= 3c r2

(
1 +

9a2

r2
− b6

r6

)/(
1 +

6a2

r2

)
(6.33)

= 3c r2κ(r) (6.34)

provided we make the identifications

a2 =
1

6
(α̃− α) , b6 =

α2(3α̃− α)

2
, r2 = Y + α (6.35)

Therefore, the final coordinate change to the (asymptotically) conical r coordinate

is then given by r2 := y + α - note this renders the inherent symmetry between the

left and right 2-cycles non-manifest3. The resulting metric, after taking c = 1/3,

is precisely the known real-coordinate metric (6.7). Thus, as the latter is the most

general Calabi-Yau deformation of the X2,0 cone, we have to conclude that the

two-parameter family of metrics (6.25) in complex coordinates coincides with it.

Using the freedom to scale t to fix c = 1/3 for future convenience and introducing

the notation

χ := α− α̃ , σ := α+ α̃ , (6.36)

the Ricci-flat Kähler form is explicitly given by

J(σ, χ) =
(
Z +

χ

2

)
jL +

(
Z − χ

2

)
jR + iekL+kRZ ′e3 ∧ ē3̄ (6.37)

Z(t;σ, χ) := χ cosh

(
1

3
cosh−1

(
χ−3

(
4t+

σ(3χ2 − σ2)

2

)))
. (6.38)

Or, equivalently, in terms of the Y function (6.23):

3Clearly, we could swap α and α̃ in all of the above definitions, with no consequence.
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J(σ, χ) = (Y + α)jL + (Y + α̃)jR + iekL+kRY ′e3 ∧ ē3̄ (6.39)

Unfortunately, a closed-form expression for the Kähler potential seems impossible.

The function f(t) can nevertheless be written in integral form, as such:

f(t;σ, χ) =

∫ t

0
d ln t′ Y (t′) (6.40)

6.3 Kähler moduli

As we have seen, a very convenient basis of moduli for the Kähler structure is given

by the sum and difference σ and χ of the volume of the base spheres defined in

(6.36), up to a normalization which we will shortly determine. These correspond

respectively to blowing up the two basal 2-cycles (which equates to a blowup of the

product 4-cycle of the base) and to an antisymmetric blowing and shrinking of the

two S2 (a blowup of the difference 2-cycle). We’ll examine this geometric structure

in more detail in this section.

We will construct the two harmonic forms ω̂ and ω̃ by differentiating J directly with

respect to the relevant moduli, since (see (5.12))

J = J0 + v̂ ω̂ + ṽ ω̃ (6.41)

A basis (ω̂, ω̃) of harmonic two-forms will allow us to also parametrize deformations

of the A2 and B2 fields according to (5.18), in addition to J . Thus, the choice of ωa
reduces to a sensible choice of moduli v̂, ṽ.

As it is clear from our general discussion, we expect to be able to choose (ω̂, ω̃) such

that ω̂ is normalizable in the sense of (5.13) - this would be the form generating

the blowup of the 4-cycle. The other form ω̃ will be non-normalizable (but warp-

normalizable according to (5.14)) and will correspond to a 2-cycle blowup, the same

that was already present in the Klebanov-Witten theory. It is easy to see that the

modulus v̂ relative to ω̂ must be proportional to the sum σ of the basal volumes,

since the corresponding harmonic form ∂J
∂σ is normalizable. To show this, we consider

the asymptotic behaviour of the Kähler form as t→∞. Defined

T :=

(
4t+

σ(3χ2 − σ2)

2

)
(6.42)

we have
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Z ∼ T 1/3 , Z ′ ∼ T−2/3 , (6.43)

∂Z

∂σ
∼ ∂T

∂σ
T−2/3 ,

∂Z ′

∂σ
∼ ∂T

∂σ
T−5/3 , (6.44)

where we have omitted constant factors. Therefore we have the following asymptotic

behaviour for J

J ∼
(
T 1/3 +

χ

2

)
jL +

(
T 1/3 − χ

2

)
jR + iekL+kRT−2/3e3 ∧ ē3̄ , (6.45)

and for its derivative with respect to the sum modulus σ

∂J

∂σ
∼ ∂T

∂σ

(
T−2/3jL + T−2/3jR + iekL+kRT−5/3e3 ∧ ē3̄

)
, (6.46)

so that the norm goes as
∥∥∂J
∂σ

∥∥2
=
(
∂J
∂σ ∧ ?

∂J
∂σ

)
1

d vol ∼ t−2 ∼ r−12, which is inte-

grable4.

By contrast, the remaining harmonic form must be nonrenormalizable. For example,

differentiating with respect to χ, we obtain

∂J

∂χ
∼ jL − jR + iekL+kR

∂T

∂χ
T−4/3e3ē3̄ (6.47)

with norm
∥∥∥∂J∂χ∥∥∥ ∼ t−2/3 ∼ r−4, not integrable. We note however that it is still

warp-integrable, in accordance with our general discussion in 5.2.

Having ascertained we would like v̂ ∝ σ and ṽ ∝ χ, one would like to also fix the

right normalization for the Kähler moduli. For this, note that5 , denoted C1, C2

the basis 2-spheres, and αi = (α, α̃),

∫
Ci

∂J

∂αj
= 4π δij (6.48)

These are also the intersection number of C1, C2 with the Poincaré dual 4-cycles of

these forms ∂J
∂αi

; since the Ci form a basis, a pair 4-cycles with the same intersection

numbers will necessarily belong the dual classes. We consider the (noncompact)

4-cycles D1, D2 given respectively by the fibres of C1, C2, recalling the cone is a

C→ CP1 × CP1 bundle. Since it is easily seen that

4Asymptotically, as t � α, α̃, the metric reduces to the sharp cone dr2 + r5ds2
5, and in this

regime t ∝ r6; therefore a function on X is integrable if it decays faster than r−6 ∼ t−1.

5We note that
∫
C1

∂J
∂α

=
∫
C1

∂(y+α)
∂α

∣∣∣∣
t=0

jL =
∫
C1 j

L = 4π, where we’ve exploited the fact that

y(t = 0) = 0, as it is clear from (A.10). The other three cases are identical.
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D1 · C1 = 0 , D1 · C2 = 1 , D2 · C1 = 1 , D2 · C2 = 0 , (6.49)

then we can identify the Poincaré duals:

− 1

4π

∂J

∂α
←→ D2 (6.50)

− 1

4π

∂J

∂α̃
←→ D1 . (6.51)

Then a useful normalization for ω̂ would be

ω̂ = ω1 =
1

2π

(
∂J

∂σ

)
=
∂J

∂v̂
, with v̂ := 2πσ (6.52)

which makes it so
∫
Ci ω̂ = 2 is integer. The dual to ω̂ is

E := −2(D1 +D2) ; (6.53)

it is easy to show this is actually the base CP1×CP1. Thus, not only does ω̂ generate

the blowup of the 4-cycle made by the product of the two basal spheres E = S2×S2

(and v̂ parametrizes its volume), ω̂ and E are actually Poincaré dual.

C2 C1

C1

D2

C2

D1

E

Figure 6.1: Schematic representation of the resolved X2,0 as a line
bundle, with the relevant 2- and 4-cycles.

Similarly, we choose

ω̃ = ω2 =
1

2π

(
∂J

∂χ

)
=
∂J

∂ṽ
ṽ := 2πχ (6.54)

dual to the 4-cycle
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F := 2(D1 −D2) . (6.55)

Actually, there is an inherent arbitrariness in the non-renormalizable form ω̃ as it

could be shifted by an arbitrary multiple of the normalizable form ω̂. Still, we stand

by choice (6.54) for ṽ and ω̃ as it proves to be convenient for explicit calculations.

This choice for the harmonic 2-forms and the moduli va allows for easy computation

of the intersection numbers:

I0 =

∫
ω̂ ∧ ω̂ ∧ ω̂ = E · E · E = 8 (6.56)

I1 =

∫
ω̂ ∧ ω̂ ∧ ω̃ = E · E · F = 0 (6.57)

I2 =

∫
ω̂ ∧ ω̃ ∧ ω̃ = E · F · F = −8 (6.58)

6.4 Chiral fields and effective Lagrangian

Now that we have parametrized the Kähler structure and identified a basis of har-

monic 2-forms, we are now able to specify the chiral content of the effective theory,

and its Lagrangian, putting to use the results detailed in sections 5.4, 5.5.

The HEFT will feature the following 3N + 3 chiral fields:

ziI = (y1
I , y

2
I , ζI) D3-brane positions on X

ρ̂ = ρ1 related to v̂ 4-cycle blowup deformation of X

ρ̃ = ρ2 related to ṽ 2-cycle blowup deformation of X

β C2 − τB2 normalizable deformation

and the following 2 non-dynamical chiral parameters:

λ C2 − τB2 non-renormalizable deformation

τ axio-dilaton

We can match these directly with the field theory objects discovered in section 3.6.

ziI map directly with the 3N mesonic VEVs parametrizing Mmes. ρ̂, ρ̃ match with

the two VEVs of baryons generating the resolution of the cone as in section 3.6.3,

while β is the third “non-geometric” baryonic modulus. The axio-dilaton τ is dual

to the marginal coupling relative to the sum of the gauge couplings τ1 + τ2 + τ3 + τ4,

while λ correspond to the second marginal deformation found in section 3.6.2.

The chiral fields ρa = (ρ̂, ρ̃) are related to the moduli va = (v̂, ṽ) by the transform

(5.19) described in the previous chapter; as anticipated we will only need to specialize

the precise form of the real part of ρa(va):
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Re ρ̂ =
1

2

∑
I

κ̂(zI , z̄I ; v)− 1

2 Im τ
I0(Imβ)2 − 1

Im τ
I1 Imβ Imλ

=
1

2

∑
I

κ̂(zI , z̄I ; v)− 4

Im τ
(Imβ)2

(6.59)

Re ρ̃ =
1

2

∑
I

κ̃(zI , z̄I ; v)− 1

2 Im τ
I1(Imβ)2 − 1

Im τ
I2 Imβ Imλ

=
1

2

∑
I

κ̂(zI , z̄I ; v) +
8

Im τ
Imλ Imβ

(6.60)

where κa(zI , z̄I ; v) = (κ̂, κ̃) are defined as the potentials that generate the ωa =

(ω̂, ω̃), as in

ωa = i∂∂̄κa (6.61)

and also satisfy the following asymptotic condition for their derivatives:

∂κa
∂va
∼ r−k ∼ t−k/6, k ≥ 2 (6.62)

We are now able to present the bosonic part of the effective Lagrangian. This holds

in a generic moduli space point where no D3-branes coincide, therefore there is first

of all a decoupled sector of N copies of U(1) SYMs, the normal abelian gauge theory

each D-brane hosts6. Then, the rest of the bosonic effective Lagrangian describes

the chiral fields listed above:

Lchiral = −πGab∇ρa ∧ ?∇ρ̄b − 2π
∑
I

Jij̄dz
idz̄j̄ − πM

Im τ
dβ ∧ ?dβ̄ (6.63)

where the kinetic factors are computable as follows (using (5.34)):

Gab =

∫
X
e−4Aωa ∧ ?ωb = −

∫
X
e−4AJ ∧ ωa ∧ ωb = −∂ Re ρa

∂vb
(6.64)

M =

∫
X
ω̂ ∧ ?ω̂ = −

∫
J ∧ ω̂ ∧ ω̂ = −v̂I0 = 8v̂ (6.65)

(Gab being of course the inverse matrix of Gab) and the covariant derivative ∇ is

6Again, in the case of n branes coinciding, a decoupled N = 4 SU(n) Yang-Mills sector appears.
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∇ρ̂ = dρ̂−AI1idziI −
8i

Im τ
Imβ dβ (6.66)

∇ρ̃ = dρ̃−AI2idziI +
8i

Im τ
Imλ dβ (6.67)

AIai =
∂κa(zI , z̄I ; v)

∂ziI
(6.68)

To compute the coefficients G,A we first determine the form of the κ potentials.

6.5 κ potentials

The harmonic forms ω̂, ω̃ must be generated by potentials κ̂, κ̃ as in (6.61). These

potentials are necessary to compute the transformation from the Kähler moduli va

to the chiral fields ρa.

In accord to what was discussed in section 5.2, since

J0 = i∂∂̄k0 (6.69)

and so

ωa =
∂J

∂va
= i∂∂̄

∂k0

∂va
(6.70)

and we would like ωa = i∂∂̄κa, it must be that

κa =
∂k0

∂va
+ h(v) (6.71)

with h(v) an arbitrary function of the moduli which would then be fixed as to satisfy

the condition (6.62) (up to an additive constant). However, as will be seen shortly,
∂k0
∂va itself satisfies the asymptotic condition, so that h(v) is actually a constant,

which we will omit.

Recalling (see (6.14)) k0 = f(t) + σ+χ
2 kL + σ−χ

2 kR, and f(t) =
∫ t

0 d ln(t′)Y (t′), we

find
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2π κ̂(t;σ, χ) =
∂k0

∂σ
=

(∫
d ln t′

∂y

∂σ

)
+

1

2
kL +

1

2
kR (6.72)

2π κ̃(t;σ, χ) =
∂k0

∂χ
=

(∫
d ln t′

∂y

∂χ

)
+

1

2
kL − 1

2
kR (6.73)

so that the derivatives of the κ potentials become

∂κa
∂vb

=
∂2k0

∂va∂vb
=

1

4π2

∫ t

0
d ln(t′)


∂2Y
∂σ2

∂2Y
∂σ∂χ

∂2Y
∂σ∂χ

∂2Y
∂χ2


ab

(6.74)

The explicit forms of the second derivatives of the Y function, rather convoluted, are

listed in appendix A.4. It is clear they have at most asymptotic behaviour ∼ t−2/3,

which will be the same as that of their
∫
d ln t′, so that the κa defined above satisfy

(6.62) and no addition of a function of the moduli h(v) is necessary.

Then, this allows immediately for the computation of the Gab matrix:

Gab = −∂ Re ρa
∂vb

= −
∑
I

∂κa(zI , z̄I ; v)

∂vb
= − 1

4π2

∑
I

∫ tI

0
d ln t′

∂2Y

∂va∂vb
(t′; v) (6.75)

again resting on the explicit form of the second derivatives of Y . The integrals are

not solvable in closed form. The matrix will always be invertible and its inverse Gab

is the kinetic matrix for the ρ fields.

The connection AIai instead can be found more explicitly. We treat the z3
I = ζI and

z1,2
I = yL,R cases separately.

AiaI =
∂2k0

∂ζI∂va
=

∂2f

∂ζI∂va
(6.76)

but, recalling t = |ζ|2ekL+kR , ∂f(t)
∂ζ = ζ̄ ekL+kR f ′(t) = ζ̄ ekL+kR Y (t)/t = (ζ̄)−1Y (t)

so that this is simply

= ζ̄−1 ∂y

∂va
(6.77)

and
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A3
1I =

1

2π
ζ̄−1∂Y

∂σ
(6.78)

A3
2I =

1

2π
ζ̄−1∂Y

∂χ
(6.79)

The i = 1, 2 components, instead, are

AiaI =
∂2k0

∂yiI∂v
a

=
∂2(αiki)

∂yiI∂v
a

=
∂αi

∂va
∂ki

∂yiI
(6.80)

(no summation on i is implied), so essentially:

A1
1I = A1

2I =
1

4π

∂kL

∂yL
(6.81)

A2
1I = −A2

2I =
1

4π

∂kR

∂yR
(6.82)

This concludes the computation of the kinetic terms and couplings in the effective

theory. While these results are, unfortunately, implicit, they encode exactly the

dynamics of the HEFT.

6.6 Baryonic VEVs

We now sketch how the moduli ρ̂, ρ̃, β reconnect with the VEVs of the funda-

mental baryonic operators BA,B,C,D defined in section 3.6.3. In [24], these VEVs

are computed starting from the non-perturbative contributions from Euclidean D3-

branes (E3-branes) wrapping four-cycles, and it is found that for a generic baryonic

operator B

〈B〉 ∝ A(β)
∏
I

ζD(zI) e
−2πnαρα (6.83)

D is the divisor around which the E3-instanton wraps, and ζD(z) is the section such

that D = {z : ζ(z) = 0}. na are the coefficients in the expansion of D in the basis

given by the duals of (ω̂, ω̃):

D = n̂E + ñF ; (6.84)

where E and F are defined as in (6.53), (6.55).

A(β) is a holomorphic function, actually a theta function of β. The proportionality
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factor in (6.83) depends only on the marginal parameters τ , λ, and is not important

for our purposes.

Now, parametrize the basal spheres CP1
L, CP1

R with projective coordinates [z1
L : z2

L]

and [z1
R : z2

R]. Then the two families of divisors

ζ[a1:a2](z) := a1z
1
L + a2z

2
L = 0 (6.85)

ζ̃[b1:b2](z) := b1z
1
R + b2z

2
R = 0 (6.86)

can be easily mapped respectively with BA, BC and BB, BD. Topologically, they

are simply D2 and D1 respectively. Since D1 = 1
4(F −E) and D2 = −1

4(F +E) this

means (6.83) can be specialized as

〈BA〉 ∝ A(β)
∏
I

ζ[a1:a2](zI) e
π
2

(ρ̂+ρ̃)

〈BB〉 ∝ A(β)
∏
I

ζ̃[b1:b2](zI) e
π
2

(ρ̂−ρ̃)

〈BC〉 ∝ Ã(β)
∏
I

ζ[a1:a2](zI) e
π
2

(ρ̂+ρ̃)

〈BD〉 ∝ Ã(β)
∏
I

ζ̃[b1:b2](zI) e
π
2

(ρ̂−ρ̃)

(6.87)

The difference between the BA and BC VEVs is that the D-brane gauge field is

asymptotic to two different classes of the torsional part of H3(Y ), which is Z2; this

reflects in different functions A, Ã of β. An identical relationship holds between BB

and BD.

The zI -dependent piece is actually a homogeneous degree-N polynomial in a1, a2

(or b1, b2). The resulting N + 1 coefficients (for the monomials aN1 , aN−1
1 a2, . . . )

correspond naturally with the N + 1 baryons in each class.

This rough identification will be essential in translating the symmetries of the quiver

theory into the effective theory.

6.7 Comments on the effective theory

We summarize the results obtained. The HEFT for the Y 2,0 model will be an N = 1

field theory, with chiral superfields ρ̂, ρ̃, β, and Lagrangian given by (6.63). The

kinetic matrices G, M, and connection A are given respectively in (6.75), (6.65),

(6.79) and (6.80). These quantities are expressed in terms of the y function and its

derivatives with respect to the moduli; these are listed in appendix A.4.
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We note part of the complexity of the effective Lagrangian computed in this chapter

is due to our insistence in writing it explicitly. In fact, as it was seen in section

5.5, there is a much more compact, though opaque, formulation in terms of a sim-

ple implicit Kähler potential K, function of (ρ̂, ρ̃, β, ziI) and their conjugates. The

Lagrangian (6.63) can then be reformulated as a superspace integral:

Lchiral =

∫
d4θK (6.88)

and K is, according to (5.33):

K = 2π
∑
I

k0(zI , zI , v̂, ṽ) (6.89)

=
∑
I

(
2πf(tI) + v̂ (kL + kR) + ṽ (kL − kR)

)
, (6.90)

which is deceivingly simple-looking, since the moduli (v̂, ṽ) are complicated functions

of the fields (ρ̂, ρ̃).

As a sanity check, we verify the effective theory found implements the original

symmetries of the Y 2,0 theory.

For example, the action of the flavour symmetry SU(2)L × SU(2)R is evident: it

is the isometry group of CP1 × CP1 ∼= S2 × S2. SU(2)L acts on yLI as rotations7,

moving the positions of the D-branes on the left CP1; similarly SU(2)R acts on yRI .

All the other fields, ζI , ρa, β are untouched.

A less trivial example concerns symmetries that are spontaneously broken in the

generic moduli space point, like the superconformal group. There must be a non-

linear implementation of the broken generators in the effective theory. Let us verify

this explicitly for dilations. For the action to be scale-invariant, the Kähler potential

K must scale with dimension ∆K = 2.

We recall the resolved cone is a bundle C → CP1 × CP1; dilations will only act on

the asymptotically conical coordinate, thus the norm of the fibral coordinate ζI ∈ C,

and will leave the phase of ζI and the coordinates yL,RI unaffected. So the yiI do not

scale, and neither do the basal Kähler potentials ki. Thus, ∆K = 2 can occur only

if we assign, consistently with (6.90), the scaling dimensions

∆v̂ = ∆ṽ = ∆f = ∆K = 2 (6.91)

Now, since f =
∫
d ln t′ Y (t′; va), then f(t; va) scales like Y (t; va); we recall Y is

7Very explicitly, if y is a stereographic coordinate on CP1, then SU(2) matrices

(
a b
c d

)
act on

y directly as fractional transformations: y → (ay + b)/(cy + d).
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schematically (see (6.23))

Y ∼ ṽF
(
t

ṽ3

)
− v̂ , (6.92)

where F is a non-homogeneous function. For this to scale with dimension 2 it is

clear we should have tI scaling as ṽ3, or ζI ∼ ṽ3/2 ⇒ ∆ζ = 3. With the given

assignment of scaling dimensions the theory is clearly scale-invariant. However, we

still need to specify the (non-linear) action of dilations on the chiral fields (ρ̂, ρ̃, β),

instead of the Kähler moduli va.

We exploit the expressions (6.87) for the VEVs of fundamental baryons. We note

that since the four fundamental chirals A, B, C, D all scale with ∆ = 3
4 , the

fundamental baryons BA, BB, BC , BD have well-defined dimension 3N
4 . Moreover,

the z-dependent part in (6.87) does not scale, as it only depends on the yiI .

Finally, the scaling can not come from A(β), Ã(β) and in fact it is easily shown that

∆β = 0. This means that

∆
(
e
π
2

(ρ̂+ρ̃)
)

=
3N

4
, ∆

(
e
π
2

(ρ̂−ρ̃)
)

=
3N

4
; (6.93)

that is:

∆
(
eπρ̂
)

=
3N

2
, ∆

(
eπρ̃
)

= 0 . (6.94)

Thus, only these particular exponentials of ρa are dilation eigenstates. Dilations

therefore act like shifts of Re ρ̂, Re ρ̃, which is not C-linear.

There is yet another simple geometric symmetry. The resolved cone is a C →
CP1 × CP1 fibration, thus also trivially a U(1) fibration considering the phase ψ

of the fibral coordinate ζ. This means there is a simple symmetry of the effective

theory consisting in the rotation of the position of the branes along each U(1) fiber:

ζI → eiθζI , yiI → yiI , va → va , β → β . (6.95)

It is easy to recognize this the action of R-charge (up to constants). The Kähler

potential (6.90) does not depend on the phase of ζI and thus has vanishing R-charge.

Therefore the field theory R-charge survives in the HEFT as a global symmetry. The

action of this symmetry on the ρa is again unusual. We note that the fundamental

baryons BA, . . . have R-charge N
2 . Thus, according to (6.87), under R-charge we

should have the transformation law

eπρ̂ → e−iNθeπρ̂ , eπρ̃ → eπρ̃ (6.96)
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The bottom line is that it is the combinations eπρ̂, eπρ̃ that have definite R-charge.

An R-transformation is therefore implemented as a shift in the imaginary part of

ρa, which is related, as it was seen in section 5.4, to moduli of the C4 form. This

is somewhat expected, since the D3-branes being rotated along the U(1) fiber carry

F5 charge; we do not investigate this aspect further, however.

The fact that the superpotential K has ∆K = 2 and RK = 0 (under some imple-

mentation of dilations and R-charge we have provided) is actually sufficient data [35]

to deduce the effective theory has full N = 1 superconformal symmetry - though

non-linearly implemented.

Finally, we can also verify the implementation of the three non-geometric U(1)

symmetries described in section 3.6.1. Being non-geometric, these will not act on

ziI , but only on the baryonic moduli ρ̂, ρ̃, β. Take the non-anomalous baryon number

U(1)B, and consider the operator VEVs

〈BABA〉 ∝ A2(β)eπρ̂ , 〈BCBD〉 ∝ Ã2(β)eπρ̂ . (6.97)

Both these operators have baryon number N −N = 0. Therefore, both ρ̂ and β are

uncharged under U(1)B. Instead, since

〈BA〉 ∝ eπρ̃ (6.98)

has baryon number N , then it’s clear U(1)B acts as shifts of Im ρ̃. This is evidently

a symmetry of Lagrangian (6.63), since the latter does not depend on the imaginary

part of ρ̃.

Analogously, we have two extra symmetries relative to the shifts of Imβ, Im ρ̂, since

these also do not appear in the effective Lagrangian. These are immediately matched

to the two anomalous U(1)AN,1, U(1)AN,2 symmetries.

6.8 Non-perturbative breaking of anomalous U(1)s

As seen in section 4.1, the holographic dual to the quiver field theory is correctly

modeled by supergravity only in the strong-coupling limit, and even then only by

classical, or equivalently weakly-coupled supergravity in the large N limit. The

action found up to here is therefore inherently a perturbative result, and one should

be concerned about the possibility of unaccounted non-perturbative phenomena. We

give a relevant example pertaining the question of the anomalous U(1)s: these are

two anomalous rigid symmetries of the microscopic field theory, yet appear as exact

symmetries of the effective Lagrangian.

Indeed, these symmetries are broken by non-perturbative string effects on the bulk

side. A class of non-perturbative corrections in string theory arises from “Euclidean”
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Dp-branes, or Ep-branes, whose worldvolume is a spacelike submanifold parallel to

the internal space X6. From the point of view of the four-dimensional theory on

R1,3, these appear as point-like instantons. In the specific case, E1- and E3-branes,

respectively two- and four-dimensional, can wrap around two- and four-cycles D2,

D4 in the cone X6. Their (Euclideanized) action is schematically (see section 2.4.1)

SE1 =
1

gs

∫
D2

d vol +i

∫
D2

C2 ,

SE3 =
1

gs

∫
D4

d vol +i

∫
D4

C4 ,

(6.99)

i.e., the volume of the worldvolume, plus a coupling to the relevant RR potential.

As instantons, they contribute to amplitudes a factor

e−SEp = exp

(
− 1

gs
vol(Dp+1)− i

∫
Dp+1

Cp+1

)
. (6.100)

The e−1/gs dependence, invisible to a series expansion in the string coupling, es-

tablishes this is a non-perturbative effect. In the specific case of the Y 2,0, we note

integrals of the RR forms around cycles are related to the imaginary part of the

baryonic moduli and the marginal parameter λ:

Imλ ∼
∫
P
C2 , Imβ ∼

∫
S
C2 ,

Im ρ̂ ∼
∫
E
C4 , Im ρ̃ ∼

∫
F
C4 .

(6.101)

Here, E and F are the compact and non-compact 4-cycles respectively Poincaré

dual to ω̂, ω̃. P and S are the two-cycles arising from the decomposition (5.5); in

particular S corresponds to the four-cycle E and P to the S3 3-cycle of Y5, according

to that relationship. (We note S is just the difference CP1
L − CP1

R).

Then, evidently the action (6.99) for an E-brane wrapping a cycle D is not invariant

under shifts of the imaginary part of the corresponding baryonic modulus. Therefore

the Imβ shift symmetry is broken non-perturbatively by E1-branes wrapping S, and

the Im ρ̂ by E3-branes wrapping E.

Instead, the baryonic symmetry given by shifts of Im ρ̃ is protected from this effect

because the 4-cycle F is non-compact, thus no E3-brane with finite volume, and so

finite action, can be wrapped on it. This matches perfectly with the vanishing of

the U(1)B anomaly in the holographic dual.
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6.9 Conclusions

We take the reappearance of the symmetries of the field theory, alongside a dual

description of anomalies, as nontrivial evidence our effective description is accurate.

Therefore, the main objective of this thesis, the determination of the holographic

effective for the Y 2,0 theory at a generic moduli space point has been successfully

reached. A posteriori, we can now understand the significance of this specific result:

the Y 2,0 is the absolutely simplest theory for which all possible distinct features of

a HEFT are present. The theory includes one single chiral field from each class

(normalizable Kähler modulus, non-normalizable Kähler modulus, 2-form-field mo-

dulus), one extra marginal parameter, one non-anomalous U(1) and two anomalous

U(1)s (the minimal non-zero number, since this is 2b4(X)). Thus, this model is a

perfect testbed for the general techniques described in [24] for constructing HEFTs,

and the present work and its conclusions confirms that the techniques presented

therein are valid.

Nevertheless, it is important to keep in mind the limited range of applicability of

this result. We list a few directions in which it is susceptible of generalization;

accordingly, these correspond to interesting extensions that could be investigated in

further work.

First of all, the HEFT is ultimately based on classical supergravity on a smooth

dual spacetime, and it is a correct description only in the large N , large λ limit (the

“weakest” form of holography, in the language of section 4.1). We have only sketched

an example of non-perturbative and stringy corrections in section 6.8 (which was

of order e−1/gs ∼ e−N ), but we expect additional, similar steps in the direction of

quantum string theory can be taken. Matching of bulk and boundary phenomena

and observables of this kind would provide non-trivial evidence for the AdS/CFT

hypothesis beyond the weakest form.

In addition, the exact effective Langrangian found is in an implicit and extremely

convoluted form. It could be susceptible to some series expansion in the chiral fields;

it is possible this would elucidate some aspects currently buried in the complex

dependencies, and most certainly would enhance the practical applicability of the

result. In [24] an example of such an expansion is performed for the Klebanov-Witten

HEFT we introduced in section 5.6.

And finally, the Y 2,0 geometry is actually one entry in an infinite family of Y p,q

Sasaki-Einstein metrics, each dual to a quiver SCFT, introduced in [5]. We note

also the existence of an interesting generalization in the Lp,q|r manifolds [20], whose

dual SCFT has also been identified [6]. While we only discussed Y 2,0 as a minimal

example, we hope similar arguments can be repeated for the Y p,q or Lp,q|r theories,

though there is a significant complication in that the resolved metric of the corres-

ponding cones is in general unknown. In any case, it should be possible to identify

important shared features of these quiver theories and their effective theories.
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Appendix A

Appendix

A.1 Anti-de Sitter space

Anti-de Sitter n-space AdSn is best understood as the Lorentzian analogue of hy-

perbolic n-space. It can be built by considering the following locus in the mixed-

signature space R2,n−1:

xµxµ = −(t1)2 − (t2)2 +

n−1∑
i=1

(xi)2 = −R2 (A.1)

which is reminiscent of the embedding of hyperbolic n-space in R1,n:

xµxµ = −t2 +
n∑
i=1

(xi)2 = −R2 (A.2)

Equation A.1 is explicitly preserved by SO(2, n − 1), and this group acts tran-

sitively on it, so that the locus inherits a Lorentzian metric from the ambient

Minkowski space with that same symmetry group. This means the locus is a

maximally symmetric space, having the same number of symmetries as R1,n−1

since dimSO(2, n − 1) = dim (Rn o SO(1, n)). (To press on with the analogy,

in the Riemannian case Hn has the same number of Killing vectors as Rn since

dimSO(1, n) = dim (Rn o SO(n))).

Said otherwise, AdSn is the homogeneous manifold SO(2, n − 1)/SO(1, n − 1), a

description that makes it evident SO(2, n− 1) is the isometry group.

The locus has constant negative scalar curvature (using S for the Ricci scalar to

avoid confusion with the R radius introduced above):

S = −n(n− 1)

R2
(A.3)

107
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However, the locus built above is not suitable to be used as a spacetime for a

reasonable physical theory, as it contains closed timelike curves (CTCs), signaling

a pathological causal structure. An example of CTC is the unit circle in the t1t2

plane. It is possible however to consider the covering space of the locus, which will

be what we will refer to as anti-de Sitter n-space, AdSn. The covering space is again

a maximally symmetric space, but it is now simply-connected and CTC-free.

AdS, similarly to dS, admits multiple useful coordinate charts. The Poincaré chart

is the analogue of the Poincaré half plane model, and the metric is:

ds2 =
R2

z2

(
dz2 + dxµdxµ

)
(A.4)

where z > 0, xµ ∈ R1,n−2, and dxµdxµ is the standard Minkowski metric on R1,n−2.

The Poincaré chart, unlike the Riemannian case, is not global and only maps a

particular wedge of the full AdS. A global chart would be given by the following

coordinates, accordingly called global coordinates or cylindrical coordinates:

ds2 = R2
(
− cosh2 χdτ2 + dχ2 + sinh2 χdΩ2

)
(A.5)

With dΩ2 the line element on Sn−2. Note that constant τ slices are copies of Hn−1.

Remapping the radial coordinate as dχ = dρ/ cos ρ to a finite range (0 ≤ ρ ≤ π/2)

this can also be rewritten as

ds2 = R2 1

cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

)
(A.6)

A.2 Conformal boundary and symmetries

The last set of coordinates A.6 are a starting point for building the Penrose diagram

of AdS. For fixed Ωi the t,ρ part of the metric is sent to the flat metric by multipli-

cation with the conformal factor cos2 ρ. AdS is thus represented as an infinite solid

cylinder.

We can read the induced topology and metric on the boundary, with the caveat that

the conformal factor was arbitrary (provided it was such the metric did not diverge),

and thus the boundary’s metric will be defined up to a conformal rescaling - we can

only identify a natural conformal class for the boundary. This will prove to have

physical relevance as possible holographic duals will be conformal theories.

The topology of the boundary is therefore Sn−2 × R and a representative of the

conformal class is given by setting ρ = π/2:

ds2 = dt2 − dΩ2 , (A.7)
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AdS5 tR× S3

z = 0

H4

S3

Figure A.1: Penrose diagram of AdS5. The tiling of the hyperbolic
plane represents the fact that the constant-time slices of AdS5 are
hyperbolic 4-space.

which is a Lorentzian metric. The conformal boundary of AdS is itself a spacetime;

this is a nontrivial fact which has to be compared with the other constant-curvature

manifolds of the same signature: the boundary of Minkowski space R1,n−1 has a

vanishing (null) metric, being composed of null past and future, while the positive

curvature case, de Sitter, has two spacelike boundaries in the infinite past and future.

The relevance of this for the realization of holography should be evident. Only

the negative curvature case seems to be able to naturally incorporate a Lorentzian

structure on the boundary.

It will be much more useful for the application to holography to consider the bound-

ary in the form it comes out from the Poincaré patch. This is located at z = 0

and is only a part of the full boundary. Taking the metric A.4 and cancelling out a

conformal factor z2 one obtains

ds2 = xµxµ , (A.8)

that is, the boundary is (locally) Minkowski (n− 2)-space. This will be our prefer-

ential choice of representative metric.

A.3 Solution of Ricci-flatness equation

We have seen how Ricci-flatness for the Y 2,0 reduces to the equation (6.22)

(α+ Y )(α̃+ Y )Y ′ = c (A.9)



110 APPENDIX A. APPENDIX

which we now provide an explicit solution to. We integrate (A.9) to obtain

Y 3

3
+
α+ α̃

2
Y 2 + αα̃Y = ct+ d (A.10)

And then the regularity condition Y (0) = 0 is satisfied with d = 0, and this cubic

equation for Y

Y 3

3
+
α+ α̃

2
Y 2 + (αα̃)Y = ct (A.11)

is immediately seen to have one single real solution for any positive values of α, α̃,

c.

Now we’re left with solving for the explicit form of Y . Switching temporarily to

Z = Y + (α+ α̃)/2 equation (A.10) is brought into the depressed form

Z3 − 3

4
(α− α̃)2Z = ct+D , (A.12)

where

D :=
1

12
(−α3 + 3α2α̃+ 3αα̃− α̃3) =

b6 − 36a6

3
, (A.13)

so that the explicit solution for Z and Y is

Z = |α− α̃| cosh

(
1

3
cosh−1

(
12

ct+D

|α− α̃|3

))
, (A.14)

Y = Z − α+ α̃

2
. (A.15)

That (A.14) solves (A.12) can be readily verified by means of the trigonometric

identity cosh(3x) = 4 cosh3(x)− 3 cosh(x).

A.4 Derivatives of Y

We list the explicit derivatives of the Y (t) function required for the formulation of

the HEFT. We recall Y is

Y (t;σ, χ) = χC1/3

(
χ−3T

)
− σ

2
(A.16)

where
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T := 4t+
σ(3χ2 − σ2)

2
, (A.17)

and

C1/3(x) = cosh

(
1

3
cosh−1(x)

)
, (A.18)

and we will denote the first and second derivatives of this function as C ′1/3, C ′′1/3.

The first derivatives are:

∂Y

∂σ
= χ−2∂T

∂σ
C ′1/3(T )− 1

2
(A.19)

∂Y

∂χ
= C1/3(T ) +

(
−3χ−3T + χ−2∂T

∂χ

)
C ′1/3(T ) (A.20)

And the second derivatives:

∂2Y

∂σ2
= χ−2

(
∂2T

∂σ2
C ′1/3(T ) +

(
∂T

∂σ

)2

χ−3C ′′1/3(T )

)
(A.21)

∂2Y

∂χ∂σ
=

(
−2χ−3∂T

∂σ
+ χ−2 ∂2T

∂σ∂χ

)
C ′1/3(T )+χ−2∂T

∂σ

(
−3χ−4T + χ−3∂T

∂χ

)
C ′′1/3(T )

(A.22)

∂2Y

∂χ2
=

(
−4χ−3∂T

∂χ
+ χ−2∂

2T

∂χ2

)
C ′1/3(T ) + χ−1

(
−3χ−3T + χ−2∂T

∂χ

)
C ′′1/3(T )

(A.23)

The asymptotic behaviour can be read easily by noting T ∼ t, C1/3(T ) ∼ t1/3,

C ′1/3(T ) ∼ t−2/3, C ′′1/3(T ) ∼ t−5/3, and that derivatives of T with respect to the

moduli do not depend on t.
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