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Abstract

Neutral beam injectors are fundamental auxiliary heating systems for nuclear fusion ma-
chines.

The formation of the negative-ion beam, precursor of the neutral beam, occurs by extract-
ing the ions from aplasma through amulti-aperture,multi-electrode electrostatic accelerator.
In the case of the ITER neutral beam injector, to obtain sufficient current, the extraction
takes place through 1280 openings distributed over a very large area, which must be illumi-
nated by a sufficiently uniform plasma.

The plasma, formed in 8 radio-frequency drivers, passes through an expansion chamber
before reaching the extractor. The experimental study of the plasma parameters at the lo-
cation of the ion extraction, and of its expansion from the driver region, is possible using
Langmuir probes on mobile supports.

In this dissertation, apreparatory study is conducted for characterizingnegative ionplasma
in SPIDERnegative-ion plasma source. Abibliographic research is performed in order to un-
derstand how similar measures were taken in the past in similar devices, at the end of which
three different kind of probes are designed and tested: a Mach probe, a double Langmuir
probe and a planar Langmuir probe.

The Mach probe is composed of 4 cylindrical pins and is designed in order to measure
plasma flux and velocity drift. It was tested by assembling it on a rotating system inside an
Argon plasma, in order to verify its symmetry and if it is suitable for an RF source like SPI-
DER.

Next, the double probe (namedADEL, i.e. ADouble ElectrodeLangmuir probe) consists
of two parallel cylindrical electrodes, and it should give a completely floatingmeasures of the
plasma parameters. It was tested inside the CRISPy experiment (Compact RF Ion Source
Prototype for emittance scanner testing) in order to give an estimate of electron temperature
and plasma density.

Regarding the planar Langmuir probe, it is composed of two electrodes: a main electrode
and a compensation one. A model in LTSpice is used to simulate its behaviour in an RF
plasma, so as to find the optimum capacity to be put in parallel between the two electrodes.

Finally, a plan for probes installation andmeasurements in SPIDER is established in light
of the results obtained.
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1
Introduction

ITERandSPIDER The ITERNeutralBeamTest Facility (NBTF), calledPRIMA(Padova

Research on ITERMegavoltAccelerator), is hosted in Padova and includes two experiments:

MITICA (Megavolt ITER Injector Concept Advancement), the full-scale prototype of the

ITER heating neutral beam injector (HNB), and SPIDER (Source for Production of Ion

of Deuterium Extracted fromRF plasma), the full-size radio frequency negative-ions source,

which shall provide confirmations and key information before the construction of the corre-

sponding components in ITER.

The realization of these experiments has been recognized as necessary to make the future

operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to

the achievement of thermonuclear-relevant plasma parameters in ITER.
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Unit H D

Beam energy keV 100 100
Max beam source filling pressure Pa 0.3 0.3
Max deviation from uniformity % ±10 ±10
Current density of ions extracted from the plasma Am−2 > 355 > 285
Beam on time s 3600 3600
Co-extracted electron fraction (e−/H−) and (e−/D−) < 0.5 < 1

Table 1.1: SPIDER requirements for ITER.

Focusing on SPIDER, its main purpose is to optimize the performance of an ITERHNB-

like negative ion source bymaximizing the extracted negative ion current density and its spa-

tial uniformity and by minimizing the ratio of co-extracted electrons, in order to match the

ITER requirements, shown in Table 1.1 [1].

The target NI current in deuterium at the extraction was calculated from the desired neu-

tral beam current at the tokamak port, and proceeding backwards considering the beam

losses in the beamline, neutraliser and all along to the extraction region of the electrostatic

accelerator.

The part which is of interest in this dissertation is the RF ion source (see Figure 1.2 [2]). It

is a complex chamber, featuring a main space, enclosed in a structure called source case and

facing the plasma grid, on whose surface most of negative ions are generated, and eight rear

smaller chambers called drivers, where the gas is injected (hydrogen or deuterium). RF coils

wound around the lateral wall of the drivers, and connected to a 1MHz oscillator, transfer

the RF power and ionize the gas: the resulting plasma flows then into the main chamber,

where the additional presence of caesium enhances the number of negative ions generated

on the surface of the plasma grid, as it could be seen in Figure 1.1.

The nominal power of the RF generators is 800 kW for the whole ion source, composed

by 8 drivers.
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Figure 1.1: Simple circuit scheme of RF source and expansion chamber in SPIDER.

The RF ion source also includes a series of auxiliary systems (see [2] and references), such

as the electric circuits for power input, the cooling circuits for heated components, the gas

supply system, three ovens to dispense the caesium inside the source, starter filaments to ini-

tiate the plasma and several diagnostic sensors to monitor and control the source behaviour.

Ports are foreseen on the surface of several elements, in order to allow the connection of the

auxiliary systems and the diagnostic accesses.

In Figures 1.3, a detailed view of SPIDER’s RF ion source components.

Aim of the thesis This work focuses on the design of a diagnostic system composed of

different types of Langmuir probes, aimed at characterizing SPIDER’s plasma. The probes

will be positioned inside the experiment with metal moving supports, like in Figure 1.4.

The final goal is to have a detailed idea of how each type of probe works, what are their

limits and how they could be used in view of SPIDER’s future measurements.

This thesis is organised as follows. A bibliographic review is provided in Chapter 2, to

3



Figure 1.2: Overall section view of the SPIDER beam source.[2]
Figure 1.3: RF ion source: (a) rear view; (b)

front view.[2]
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Figure 1.4: Diagram of possible probe positioning inside SPIDER’s main plasma chamber.

identify the peculiarities of similar works in order to provide solid basis to the design of the

experimental setup for SPIDER. Chapter 3 describes design and following calibration of a

four pin Mach probe. The next chapter, instead, describes a double electrode Langmuir

probe, which collects totally floating data and is tested specifically to see its effectiveness in

a RF ion source. Chapter 5 contains details on the project of some planar Langmuir probes.

SomeLTSpice simulations and their analysis is conducted in order to predict their behaviour

in a RF plasma.

In Chapter 6, a plan for probes installation and measurements in SPIDER is established

in light of the results obtained. Finally, Chapter 7 includes the conclusions.
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If we knew what it was we were doing, it would not be

called research, would it?

Albert Einstein

2
Theoretical overview

2.1 Negative ion sources

Before starting analysing the diagnostic system designed, it is important to clear some major

physical aspects of negative ion sources, such as SPIDER, which are thoroughly described in

[3] and references.

Using negative ion sources is preferred because only through them the conditions ofTable

1.1 could be reached.

In fact, the adsorption length for neutral beam ionization in a plasma is roughly

λ =
E

18 · n ·M

withλ inm, n in 1019m−3,mi in u,E in keV. Depending on the plasmaminor diameter and

7



Figure 2.1: Maximum neutralisation efficiency of a fast D ion beam in a gas cell, as a function of the ion energy.[4]

density, aminimumparticle energy can be defined for the neutral beam, in order to deposit a

sufficient power on the plasma core rather than to the plasma edge. The required fast neutral

energy gets in the range of 1MeV. With this energy, it is increasingly difficult to obtain fast

hydrogen atoms starting from precursor beams composed of positive ions (Figure 2.1). For

that reason, recent and future heating neutral beams will be based on negative ion beams. In

the interaction with background gas, which is basically the common strategy to neutralise

the precursor ion beam, it is much easier to detach the extra-electron from a negative ion (H-

has a binding energy of 0.75 eV and a very large cross-section for electron detachment in this

energy range) rather than to attach one electron to a positive ion.

These are two main issues concerning negative ions: first, the formation of negative ions

is not so probable in a hydrogen plasma discharge, and a method to increase their density is

necessary to provide a sufficient beam current; secondly, that they are (obviously) negatively

charged particles, as are electrons, which are therefore co-extracted togetherwith the negative

8



ions by the electrostatic accelerator. They have a very small mass compared with that of

ions and they should not be accelerated to full energy in the accelerator, to avoid dissipation

of electrical power but especially to avoid damaging the beamline components with stray

energetic electrons.

The twomajor negative hydrogen ion formation processes are surface and volume produc-

tion.

Volume production occurs mainly in sources producing negative ions in the volume of

weakly ionised molecular gases (hydrogen, deuterium). It is generally accepted that this pro-

duction is due to dissociative attachment of low energy electrons to rovibrationally excited

molecules.

The main negative hydrogen ion formation process in pure hydrogen plasma is dissocia-

tive electron attachment to highly rovibrationally excited molecules: low energy electrons

can be very effective in generatingH- ions by this process. On the other hand,more energetic

electrons are necessary to create highly vibrationally excited molecules; therefore the volume

production is a two-step process which can be optimised by separating the plasma into two

regions, one with high electron temperature where excited molecules are produced, and one

region close to the extraction where excited molecules are dissociated by a low-temperature

electron population. This scheme can be obtained by separating the two plasma regions by

a a transverse magnetic field, featuring a much reduced perpendicular diffusivity for high-

energy tail of the electron energy distribution function [3].

Besides, three volume destruction processes also exist: mutual neutralization in collision

with positive ions, electron detachment in collision with electrons, and associative detach-

ment in collision with atoms. Among the H- ion destruction processes the most important

one is mutual neutralization.

For what concern surface production, two types of H- ion emissions from a surface are

9



present: thermodynamic equilibrium surface ionization and non-thermodynamic equilib-

rium surface ionization (or secondary negative ion formation) processes.

In the case of thermodynamic equilibrium surface ionization, atoms impinging on a hot

metal surface may be emitted as atoms or ions in subsequent evaporation processes after

mean residence times long enough for the establishment of equilibrium. In this case the

probability of leaving the hot surface as a negative ion depends on the difference between

the electron affinity and the work function, φ, of the surface and is given by the Langmuir–

Saha relation. A low work function surface is required for negative ion formation.

However the H- ion emission from surfaces in surface plasma sources is the result of the

interactionof a fast particlewith the surface and is a non-equilibriumone. Itmaybeobtained

even from a surface with comparatively high work function, but no investigations of this

phenomenon were reported.

Efficiency of H-/D- ion generation could be enhanced by adding caesium. This is caused

by a substantial increase in the secondary emission of negative ions from the electrode bom-

barded by plasma particles. Caesium adsorption lowers the surface work function and this

increases the probability of sputtered particles escaping in the form of negative ions. This

probability increases with the decrease in work function and the increase in velocity of parti-

cles moving away from the electrode surface.

In a electronegative plasma, the interpretation of electrostatic probe characteristics if not

straightforward. Given these facts, the need for diagnostics specifically for negative ions plas-

mas is justified.

2.2 General information on Langmuir probes

Plasma diagnostics must serve a wide variety of roles. On the one hand, for applications

in basic plasma experiments, they are needed to determine the details of the electron and

10



ion distribution functions. In fusion experiments, just like SPIDER, they are required to

determine moments of the distribution functions such as temperature. On the other hand,

in plasma processing control, they may be needed to just give an indication that a plasma

processing device has the same plasma characteristics as on a previous occasion, but it may

not be necessary to know the characteristics.

Perhaps the simplest of all plasma diagnostic techniques involves the insertion of a solid

object into the plasma and the measurement of the particle and energy fluxes to the object,

i.e., a probe, objects which must serve a wide variety of roles.

Themost common type of diagnostic are Langmuir probes, which have been used to serve

the full range of roles over a wide range of plasma densities, from a few particles per cm3 to

greater than 1014cm−3.

Langmuir probes are often used as plasma diagnostics because of their relative ease to con-

struct. They measure electrical currents which depend on their bias voltage with respect to

the plasma potential. A very simple scheme of a probe in the plasma is shown in Figure 2.2.

Over a very wide range of situations, the details of the current-voltage I vs. V characteristics

can be related to the plasma parameters that are present in the absence of the probe.

Although probes perturb their local surroundings (and this nevertheless complicates the

interpretation of Langmuir probe characteristics), it is still possible to determine electron

temperature Te, electron density ne, plasma potential Vp, and electron and ion beam energy

over an extremely wide range of parameters.

Broadly speaking, if it is hypothesized the electrons to be Maxwellian and non-drifting,

which is a common yet effective assumption, the probe current Ie could be written ([5], (12)

formula):

11



Figure 2.2: Simple circuit diagram of a general Langmuir probe setup, source: https://www.davidpace.com/
example-of-langmuir-probe-analysis/.

Ie(V) = Ie,sat exp
−e(Vp − V)

kBTe
,V ≤ Vp

Ie = Ie,sat,V > Vp

where Ie,sat = Sne,∞e
√

Te/2πme is commonly referred to as the electron saturation cur-

rent, ne,∞ is the plasma electron density, and S is the collecting area of the probe.

The total current to the probe is the sum of the electron and the ion current. The ion sat-

uration current could be estimated in the same way as the upper formula only if ion temper-

ature is comparable with electron temperature (i.e., in fusion plasmas or in thermal plasma

processing plasmas). In the most common case of Te ≫ Ti the ion saturation current is

given by the Bohm current ([5], (29) formula):

Ii,sat ≃ 0.6ni,∞S
√

Te

mi

where mi is the ion mass. For further information on the interpretation of Langmuir

probes data, see [6].

12
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2.3 Previous measurements taken

One of the key issues considered in the development of negative ion sources is the transverse

magnetic filter field, which separates the hot plasma generation region (electron temperature

≈ 10 eV) from the cold plasma close to the extraction region (≈ 1 eV) and is exhaustively

studied in [7].

In the negative ion sources for fusion the filter field has three different tasks. First of all

it cools the electrons down to minimize the destruction of negative ions by collisions with

electrons, which is important for enhancing the negative ion production by dissociative elec-

tron attachment to rovibrationally excited hydrogenmolecules, and for electron stripping to

become negligible as destruction mechanism.

Secondly, the number of co-extracted electrons is reduced by the filter field due to the

reduced electron temperature and density and, thirdly, it increases the extraction probability

for the surface produced negative ions which are bent back from the surface to the extraction

apertures by the magnetic field.

On the other hand, the transverse magnetic field causes plasma drifts resulting in non-

uniform plasma illumination of the extraction area which can have consequences for the

beam homogeneity. Thus, the magnetic filter field plays a crucial role for the source perfor-

mance.

Prove of these phenomena were collected by a system of two Langmuir probes in the IPP

prototype source, an example of the complex magnetic field map in the source and the varia-

tion of the horizontal component of the magnet field in the axial direction with position of

the frame are given in Figure 2.3.

The plasma parameters obtained without magnetic filter field and with the filter frame

in the closest distance to the plasma grid as possible, i.e. the z = 9 cm position, are plotted

13



Figure 2.3: On top, structure of themagnetic field

generatedwith the filter frame at position z = 9 cm
(y = 0). Bottom pic: strength of the horizontal

magnetic filter field in the axial direction for differ-

ent positions of the filter frame and for the internal

magnets in the standard configuration (x = y = 0).

Figure 2.4: Plasma parameters in the axial direction

asmeasured by the Langmuir probes in the IPP

prototype source with the flexible filter frame at

z = 9 cmwith a very low amount of caesium in the

source andwithout filter field. Bothmeasurements

are carried out at 0.6Pa filling pressure and 40kW
RF power.
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in Figure 2.4. As expected the electron temperature is drastically reduced close to the extrac-

tion system by the influence of the magnetic filter. The field strength is sufficient to achieve

temperatures well below the desired 2 eV.

A comparison of the profile of the electron temperature (Figure 2.4(b)) with the profile of

the magnetic field (Figure 2.3(b)) suggests that the increasing part of the filter field strength

along the flux of the electrons from the driver towards the grid is predominantly responsible

for the electron cooling. The profile of the plasma potential is less pronounced with mag-

netic field. The plasma density shows higher values close to the driver compared with the

measurements without filter and the plasma symmetry is strongly distorted by the magnetic

field.

In order to study the influence of the magnetic filter field on the plasma flowing out of

the driver, in [7] the Langmuir probes are kept at fixed position (close to the driver exit at

z = 20 cm) and the position of the magnetic filter field is varied. Figure 2.5 shows that

the asymmetry in the plasma density and in the plasma potential increases with increasing

z-position of the magnetic frame.

Finally, Figure 2.6 shows the influence of caesium on the axial profiles. The plasma poten-

tial is remarkably reduced by caesium, i.e. the IV characteristic is basically shifted to lower

voltages. A change in the electron temperature is not observed. The plasma density, how-

ever, seems to be lower at the driver exit than without caesium and the plasma symmetry is

also improved.

The influence of themagnetic field position on the plasma parameters derived fromLang-

muir probe measurements in the expansion chamber of the IPP RF negative ion source was

examined in [8]. The use of twomovable Langmuir probes showed a strong and quite unex-

pected plasma inhomogeneity between the top and bottom parts of the expansion chamber.

The strongest inhomogeneity between top and bottom plasma parameters was observed to
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Figure 2.5: Plasma parameters in the IPP prototype

source at fixed position of the Langmuir probes (z =
20 cm) for different positions of the filter frame at 0.6Pa
filling pressure and 40kWRF power with a very low

amount of caesium in the source.

Figure 2.6: Plasma potential and positive ion density as

measured by the Langmuir probes in the IPP prototype

source in the axial direction with the filter frame at z =
9 cm at 0.6Pa filling pressure and 40kWRF power

with andwithout evaporation of caesium in hydrogen

discharges.
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be at the driver exit: this is clear if Figure 2.7 and 2.8 are compared. It is a reasonable assump-

tion that the interaction of several cross-B drift plays a key role in producing this inhomo-

geneity. When the magnetic field is present, the observation of the plasma inhomogeneity

right at the driver exit suggests that despite the energy of the driver being coupled into the

plasma uniformly, the potentials, temperatures and densities could show a significant differ-

ence between the top and bottom parts of it.

A further study on the effect of different gasses on plasma parameters is conducted by

McNeely et al. in [9], with the same plasma source.

Adding argon to the source resulted in an immediate increase in the positive ion density,

but no change in either the electron temperature or the plasma potential. When argon is

added and its concentration is> 10% then the ne is enhanced in the bulk region of the source.

However, near the extraction grid there is no significant increase in the density, as can be seen

in Figure 2.9. Figure 2.10 shows that the effect of adding argon on the values of ⟨E⟩ is at best

minimal. There is some small change near the grid but this is within experimental error. The

most significant change is that of the plasma potential, where in the bulk it increases by 15%

but this difference vanishes as the probe approaches the grid.

Adding caesium by seeding has proved to have a very similar effect (Figure 2.11 and 2.12).

Another interesting feature of [9] analysis is the introduction of a Faraday shield. Its im-

plementation was necessary to increase the pulse length of the source, to protect the probe

from sputtering and to prevent thermal failure. For the case of a pure hydrogen plasma com-

paring equivalent measurements with and without the Faraday screen are shown in Figures

2.13 and 2.14.

It can be seen that the electron density is enhanced by nearly a factor of 2. The values of

⟨E⟩with the Faraday screen seem to be slightly lower in the bulk but increased near the grid.

The biggest difference is in the values of Upl. The plasma potential with the Faraday screen is
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Figure 2.7: (a), (b) and (c) represent the variations of

the positive ion density, electron temperatures and

plasma potential for the two Langmuir probes, moving

along the expansion chamber and for themagnetic field

filter positioned at 9 cm from the plasma grid. Straight

and dashed lines refer to the top and bottom probe,

respectively. The position of themaximummagnetic field

strength is indicated.

Figure 2.8: (a), (b) and (c) represent the variations of the

positive ion density, electron temperatures and plasma

potential for the two Langmuir probes, moving along the

expansion chamber and for themagnetic field filter posi-

tioned at 9 cm from the plasma grid. Straight and dashed

lines refer to the top and bottom probe, respectively. For

the positions z = 2 and 4, only the positive ion den-
sity could be derived via the Chen formula due to a poor

signal-to-noise ratio in the electron branch. The position

of themaximummagnetic field strength is indicated.
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Figure 2.9: The effect of adding argon to a hydrogen

plasma on the electron density. The source pressure is

0.5Pa.

Figure 2.10: The effect of adding argon to a hydrogen

plasma on the average electron energy and plasma poten-

tial. The source pressure is 0.5Pa.

Figure 2.11: Mean values for electron density from 12

(4 without Ar, 8 with Ar) scans are compared to show the

effect of adding argon on a caesium seeded hydrogen

plasma at source pressure 0.5Pa.

Figure 2.12: Mean values for average electron energy

and plasma potential from 12 (4 without Ar, 8 with Ar)

scans are compared to show the effect of adding argon

on a cesium seeded hydrogen plasma at source pressure

0.5Pa.
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Figure 2.13: The effect on the electron density of

adding a Faraday screen to the Type VI source for a

pure hydrogen plasmawith source pressure 0.5Pa
and an applied RF power of 55 kW.

Figure 2.14: The effect on the average electron

energy and plasma potential of adding a Faraday

screen to the Type VI source for a pure hydrogen

plasmawith source pressure 0.5Pa and an applied
RF power of 55 kW.

much higher (between 35 and 170% higher) and the shape is much flatter; not following the

shape of the electron temperature at all. A possible explanation for this effect is due to the

fact that the Faraday screen is electrically connected to the backplate of the driver, which is

in turn connected to the rest of the source body.

Calculating electron energy distribution function could also be valuable for properly un-

derstanding the plasma’s characteristics.

In [10], a Langmuir probe system capable of directly measuring the 2nd derivative of the

I–V trace has been developed and tested in the KAMABOKO III source. The probe system

is also capable of analysing the I–V trace using a variety of common procedures (Figure 2.15).

Plasma parameters in the KAMABOKO III source were determined and the electron

energy distribution function (EEDF) was found to be non-Maxwellian with an effective

electron temperature higher than the inferred Maxwellian temperature, with all the conse-

quences related to the case. Hence, to model and optimize the production of negative ions,

it is clearly necessary to know the form of the EEDF.
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Figure 2.15: Plasma parameters as a function

of position from the edge to the centre of the

source. The arc power was 47kW and the

pressure was 0.3Pa.

Figure 2.16: 2nd derivative of the I–V curve showing the numerical

and BTmethod. Measurement taken at the centre of the discharge

with arc power is 47kW and the pressure was 0.3Pa.

The EEDF was determined by both numerical differentiation and the direct 2nd deriva-

tive (Boyd–Twiddy) method have been compared (Figure 2.16). Both methods gave a simi-

lar form for the EEDF but the form of the numerical method depended on the smoothing

method employed. Since the degree of departure of the EEDF fromMaxwellian may not be

known, measuring the EEDF is the most reliable way to use the Langmuir probe diagnostic,

which would so gives more trustworthy results.

Furthermore, plasma flux could also be measured through a Mach probe: an example of

this kind of measures could be find in [11]. In this thesis, the Mach probe used was designed

starting from the one in the article, shown in Figure 2.17.

It has been shown that the plasma flow velocity can approach Mach number of 1 and it

is strongly dependent on the transverse magnetic fields. The measurements done in BAT-

MAN ion source using a Mach probe along the axis comprehend plasma density, plasma

potential, electron temperature, and the barometrically measured background gas pressure
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Figure 2.17: Picture and schematic diagram of theMach probewith two orthogonal heads.

(Figure 2.18).

The analysis in [11] shows that plasma flow is an important characteristic of a plasma

source where a large gradient of plasma potential exists. The collisions between the plasma

ions and the background gas molecules create a pressure gradient along the flow direction.

This pressure gradient along the axis is proportional to the radio frequency power and the

filling gas pressure. Presence of transverse magnetic filter reduces the plasma flow velocity,

which could affect the negative ion production on the caesiated grid surface, given that the

surface production of negative ions also depends on the flux of the positive ions and energetic

atoms impinging the surface.

Finally, one could ask whether or not a presence of a proton flux is relevant to the esti-

mate of plasma parameters. This issue is of high relevance for further analysis of the negative

hydrogen ionproduction on the plasma grid surface aswell as the ion transport andbeam for-

mation and is analysed in [12], where a Monte Carlo code, ProtonFlow3D is described and

used to calculate the energy distribution of the protons impinging the plasma grid surface
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Figure 2.18: Relative plasma parameters and plasma flow for two different source configurations (onewith a strong

transversemagnetic filter applied along the y axis of the reference frame, the other without).
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Figure 2.19: Energy distribution of the protons impinging the plasma grid surface (top). Integrated energy distribution

(bottom).

(Figure 2.19). It can be stated that the conversion of positive hydrogen ions to negative ions

at the surface of the plasma grid is not the dominant process over the conversion of hydrogen

atoms.
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Knowledge and error flow from the same mental sources;

only success can tell one from the other.

Ernst Mach

3
Four pins Mach probe

The first probe analized was a Mach probe. It was relevant to test and verify its main

properties in order to evaluate if it could be of use in the characterization of SPIDER plasma

source.

If correctly calibrated, the probe could be used to measure electron drift velocity, which

would add information to the characterisation of SPIDER’s plasma. To obtain valuable re-

sult, however, it is needed to check the collecting areas of the four electrodes, and verify if

there are any geometrical asymmetries in the probe.

The probe has been tested twice in ATHENIS [13], an experiment in Consorzio RFX, in

two different versions.
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3.1 First prototype: preliminary measures and analysis

Settings The first probe is shown in Figure 3.1. It is composed of four cylindrical tung-

sten electrodes, each one 5mm long and with 0.8mm of diameter. The four pins are kept in

place by five alumina cylinders, welded with ceramic glue on the top of the probe and stuck

in an alumina base. The four electrodes are named like the four cardinal points, as shown

schematically in Figure 3.2. There is also a reference electrode, which can be also seen in 3.1:

it is a thin foil of tungsten covering the base of the probe.

In Figure 3.3, besides, you could find the scheme of the electronic connectors. In fact, each

electrode is tinned to a copper wire, properly shielded, and then attached to a female-female

junction, whose air-side is shown in the previously mentioned picture. Each letter in 3.3

represent an electrode, letter X is the reference one. The wires are connected to some shunt

resistances (Rshunt = 448(5)Ω)before being attached to the acquisition system (DL716Yoko-

gawa 16 channels digital scope). The plasma inwhich the probeworkedwas anArgonplasma

(mi = 6.6335 · 10−26kg).

Thewholeprobe, completewith cables, is bound to a supportwhich allow rotation around

its main axis. A rudimentary angular positioning system was built for taking the first sets of

measures, in order not to lose track of which electrode is which while the probe is installed

in the experiment.

In the next two figures (3.4, 3.5), the positioning inside the experiment is presented, from

two different points of view. In both pictures the plasma is on and can be clearly seen on the

filament on top.

Calibration and full rotation of the probe With these settings, some measure-

ments were taken, despite some technical problems. In fact, in the first sets the North elec-
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Figure 3.1: First prototype of theMach probe,

with cables andmetal rotating support.

Figure 3.2: Electrodes positioning and labelling.

Figure 3.3: Female connectors scheme for the cables linked

to the electrodes, air side.

Figure 3.4: Mach probe inside ATHENIS, front view. Figure 3.5: Mach probe inside ATHENIS, side view.
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trode did not give any signal, so they were not analysed further. Probably, rotating the probe

caused the contact between electrode and the wire to disconnect. After re-attaching all the

contacts, two calibration curves were taken, at Vbias =−70V represented in Figure 3.6, 3.7.

The goal was to check for asymmetries and verify if the collecting areas of the four electrodes

were the same, so the probe was rotated of 360◦ around its axis.

The graphs display the plot of current collected by each electrode versus time. It can be

clearly seen that the North electrode behaves in a different way, as the shape of the curve has

less pronounced peaks and is almost flat. Moreover, it could be easily noticed that the South

electrode has a bigger average value with respect to others, and it also Has a greater slope in

the ionic branch of the curve. This tendency is present in both the set of data collected: it

could be assumed that the only two electrodes which can be used in the analysis areWest and

East, so the focus is moved on these two.

Other plots are presented (Figures 3.8, 3.10) in order to assess if there are significant changes

of the average value between the two electrodes. It can be seen that there are some evident

fluctuations in both of them, so it could be assumed that the system is not stable. Despite

this fact, the analysis is carried out, using the information collected to calibrate results and to

establish a method of analysis for future measurements.

The next step is to calculate theMach number. It is defined as the ratio of the flow velocity

to the ion sound speed[14], and it can be related to the ratio R of West (Jwest) to East (Jeast)

ion saturation current densities[15]:

R =
Jwest

Jeast
= exp(KM) =⇒M =

1
K ln

(
Jwest

Jeast

)
If it is supposed, given the initial parameters of the system, that the plasma fits the kinetic,

unmagnetized model (K = 1, Chung model in Table 3 of [15]), and assumed that the col-
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Figure 3.6: Voltages as a function of time during one full rotation of the probe around its axis, first sample.

Figure 3.7: Voltages as a function of time during one full rotation of the probe around its axis, second sample.
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Figure 3.8: Voltages of E-W electrodes and their aver-

age as a function of time during one full rotation of the

probe around its axis, first sample.

Figure 3.9: Mach number as a function of time, first

sample.

Figure 3.10: Voltages of E-W electrodes and their

average as a function of time during one full rotation of

the probe around its axis, second sample.

Figure 3.11: Mach number as a function of time, second

sample.

lecting areas of the two electrodes are equal, theMach number can be easily calculated as the

natural logarithm of the ratio of West-East currents (Ielectrode = Velectrode/Rshunt). A plot of

how theMach number changes through time (i.e. probe orientation) is shown in Figures 3.9

and 3.11.

One could observe that theMachnumber’s fluctuations are pretty relevant, as it changes in

a range between 0.6 and−0.2 in the first set of data, and between 1 and−0.2 in the second

one. However, the most important feature is that the plot of Mach number vs. time has

roughly the same shape (maximums and minimums) when the probe has the same position
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in plasma: indeed, the trend of all the graphs look similar but shifted. This may be a signal

of the presence of a drift velocity in a particular direction, but it cannot be assured because

of instabilities. Moreover, given the rough analysis of these graphs, it can be stated that the

probe, while rotating, is not properly centred and moves by some millimetres, length that is

comparable with the dimensions of the plasma. All this considered, East andWest electrodes

could be used for further measurements.

Angular analysis In order to properly estimateMach number for different angular po-

sitioning of the probe and to correctly evaluate the incidence of plasma drift in the collected

current, data needed to be analysed in ion saturation regime, so a bias tension of−60V was

chosen. At the beginning, only four main positions of the probe were considered: the cur-

rent at Vbias =−60V for East-West electrodes as a function of angular positioning is plotted

in Figure 3.12. The currents were then normalised to the average current for each angles (Fig-

ure 3.13).

From 3.13 it could be seen that theWest electrode collect about 30%more current than the

East one. Besides, a validation of the hypothesis of eccentricity of the probe could be find

if it is observed that current in S-E directions is greater for the West electrode: it might be

that the probe moves in a more vivid plasma when it is in this orientation. Further analysis

is conducted in the same way considering more angles; results are shown in Figures 3.14, 3.15.
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Figure 3.12: Angular diagram (4 angles), E-W current at

Vbias =−60V.
Figure 3.13: Angular diagram (4 angles), E-W current at

Vbias =−60V, normalised to the average current.

Figure 3.14: Angular diagram (8 angles), E-W

current atVbias =−60V.

Figure 3.15: Angular diagram (8 angles), E-W

current atVbias =−60V, normalised to the

average current.
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For the “45◦” measures, plasma is dif-

ferent (and likely stronger) than before,

as these measures were taken after some

time. Figure 3.16 suggests in any case that

current in S-E, S-W direction is greater.

Moreover, electrode West collects more

current than the East one even in these

samples (3.15).
Figure 3.16: Angular diagram (8 angles), av-

erage current collected by E-W electrodes at

Vbias =−60V.

Ion saturationcurrent Toproceedwithmore precise analysis, aMATLABprogram

was used to calculate ion saturation current for E-W electrodes in each position studied: a lin-

ear fit in the saturation regime of the I-V curve was made with fit function I = p1 · V + p2;

Isaturation was estimated as the ordinate of the fitted line when V = Vfloat, with Vfloat float-

ing potential obtained from the program. The results are shown in Table 3.1, while some

explanatory graphs display how the fit was done (Figures 3.17, 3.18, 3.19).

All the fits could be considered good as both sse and rmse are very close to zero* and data

are not scattered but follow a line properly.

Ion saturation current is confirmed to be about 30% more for West electrode even with

this more precise data. A correction factor of 1.3 is therefore used to calibrate the West elec-

trode: Mach number is calculated again (Mcorrected = ln( Isat,W
1.3·Isat,E )) and comparedwith the one

without correction (M = ln( Isat,W
Isat,E )), results are shown in Figure 3.20.

The two significant directions areN-S andW-E, because, as it could be seen in 3.21, E-cross-

*https://it.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html

33



p1(·10−6 A
V ) p2(·10−4A) sse dfe rmse ·10−6 Isat(·10−4A)

WW -1.3169 1.8655 7.2911E-07 1.2431E+05 2.4219 1.6886
WE -0.7851 0.8899 3.8959E-07 1.2431E+05 1.7703 0.7840
NW -1.1980 2.1038 9.4157E-07 8.6465E+04 3.2999 1.9443
NE -1.2492 1.4969 8.6181E-08 8.6465E+04 0.9984 1.3306
EW -1.4733 1.8727 1.2546E-06 1.7952E+05 2.6435 1.6506
EE -1.6295 2.0568 2.3828E-06 1.7952E+05 3.6432 1.8112
SW -2.1678 3.1752 1.9229E-06 1.7097E+05 3.3536 2.8372
SE -2.1273 2.8269 4.1370E-06 1.7097E+05 4.9190 2.4953

SWW -2.9894 4.1918 1.1782E-06 3.5239E+04 5.7823 3.6898
SWE -2.2231 2.2452 8.7045E-08 3.5239E+04 1.5717 1.8719
SEW -2.5324 3.0325 6.7137E-07 2.8889E+04 4.8207 2.6113
SEE -2.7167 3.0517 2.7454E-07 2.8889E+04 3.0827 2.5999

NWW -2.5130 3.4378 1.1902E-06 9.1051E+04 3.6155 3.0027
NWE -2.6374 3.1784 4.3662E-06 9.1051E+04 6.9248 2.7218
NEW -2.3754 2.9573 1.8444E-06 1.0844E+05 4.1241 2.5632
NEE -2.7347 3.2406 1.7730E-06 1.0844E+05 4.0435 2.7868

Table 3.1: Fit and goodness of fit parameters for each position of the probe. In particular: sse stands for Sum of

Squares Due to Error and evaluates the total deviation of the response values from the fit to the response values; dfe

is the number of degree of freedom; rmsemeans RootMean Squared Error. The first column refers to which position

andwhich electrode is considered, referred asPositionElectrode
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Figure 3.17: Current-voltage characteristic curve for N-orientatedWest electrode set of data. In pink the current

collected byW, in black the one collected by E.

Figure 3.18: Data chosen for the fit, fitted line and representation of the floating potential, East electrode.
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Figure 3.19: Data chosen for the fit, fitted line and representation of the floating potential,West electrode.

Figure 3.20: Angular plot of theMach number with

corrections.

Figure 3.21: Orientation of the probe in the plasma.
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B drift velocity is expected to be in W-E direction, while the azimuthal velocity along with

N-S axis.

It is finally obtained, by averaging West-East, North-South corrected Mach numbers:

ME⃗×B⃗ ≈ 0.43

Mazimuthal ≈ 0.13

Conclusion These problems were identified during the experiment and the analysis:

• the probe resulted not to be properly centred: while rotating, it moved about 1mm,
which might be the length of plasma channel: this could be a reason for the spiked
and asymmetrical shape of the angular diagrams.

• the collecting area of the electrodes was not likely the same: it could be the South
electrode was more exposed to the plasma then the others, given that it was more ra-
dially protruding. Probably also the correcting factor which was considered for West
electrode analysis was due to its bigger collecting area, but it cannot be assured.

• After the first measurements, the North electrode disconnected, so it cannot be as-
sured that contacts also of the other electrodes were perfectly isolated and welded.

The various construction imperfections and the variability in the experimental conditions

causes the probe not to be appropriate for further analysis. Anewprojectwas thereforemade

in order to estimate plasma parameters.

3.2 The new probe

New probe project Twomain adjustments were made in order to avoid the previously

mentioned problems:

• a new rotation system, with amore precisemanipulator and a steadier central axis, was
used (Figure 3.22). The wires were better shielded and tided to the support, their tin-
ning was also made with more attention. Moreover, the angle-measuring system im-
provedwith the newmanipulator. Finally, the vacuum isolationwas carefully checked
and improved, but the connection system remained the same of the old probe.
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Figure 3.22: New rotating system, assembled with the

new probe.

Figure 3.23: New probe tip, with Boron

Nitride support and ceramic glue.

• a new support made of Boron Nitride was prepared, in order to have equal collect-
ing areas on the four electrodes. Details on dimensions are specified in Figure 3.24.
The probe tip was protected by ceramic glue and better welded to the rotating system
(Figure 3.23).

Figures 3.25 and 3.26 are actual pictures of the installation of the probe inside ATHENIS.

Analysis The new probe proved to workmuch better than the old one: in fact the shape

of the voltagemeasured in time is roughly the same, like average values, which vary in a small

range.

It could be observed that South and East electrodes collected more current thanWest and

North ones: it may be that the collecting areas are not exactly the same, but differently than

before the difference is less important (≈ 20%). As a consequence, currents collected by

these two electrodes will be corrected considering this side effect. An interesting feature is ob-

served if opposite electrodes are coupled: it could be clearly seen that the differences evened
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Figure 3.24: Project of the BoronNitride support.

Figure 3.25: New probe inside ATHENIS, front view.

Figure 3.26: New probe inside ATHENIS, side view.
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Figure 3.27: Voltages vs. time for each electrode during one full clockwise rotation of the new probe.

Figure 3.28: Voltages vs. time for each electrode during one full anti-clockwise rotation of the new probe.
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Figure 3.29: Voltages vs. time for each electrode during one full clockwise rotation of the new probe.

out and that the shape of the voltage-time curve is symmetrical (Figures 3.29 and 3.30).

So it can be assumed that the probe is working properly. The analysis was then conducted

with two different methods: the linear fitting of the ion saturation, just like in Paragraph 3.1,

where ion saturation current Isat,0 and plasma density n0 =
Isat,0

0.6·A·e·cs0·
† are obtained, and the

4 parameter fit[16]. The fitting curve is the following one:

I = 0.6 · e ·A
√

eTe

mi
· n[1 + R(Vf − V)]

[
1− exp

(
e
V− Vf

kTe

)]

where the fitting parameters are:

• n: plasma density;

• Te: electron temperature;

• R: parameter for correction on the ion saturation;

• Vf: floating potential.

all obtained using MATLAB with a non-linear fitting method.

†where A is the collecting area, e is the electron charge, cs0 the ion sound speed with estimated electron
temperature of 5 eV and factor 0.6 is for considering the pre-sheath approximation([14], (3.2.20) formula).

41



Figure 3.30: Voltages vs. time for each electrode during one full anti-clockwise rotation of the new probe.

From n and Te, ion sound speed cs =
√

eTe
mi

and then ion saturation current Isat = 0.6 ·

e ·A · n · cs are calculated.

Four sets of data were collected and analysed, each one with a different orientation of the

probe (North electrode facing the four main cardinal points).

In the next figures some explanatory graphs are shown (3.31, 3.32, 3.33), while results are

presented in Table 3.2.

It can be observed that plasma densities and saturation currents have the same order of

magnitude in both fit models, but in the most rough one are a bit overestimated. They are

in any case comparable and that is a prove of consistency.

An estimate of plasma density and electron temperature can therefore be provided:

n = 2.6 · 1015m−3

Te = 4.6 eV

The next step is to evaluate Mach number and drift velocity.

By using the parameters derived from the fit and the fitting function, current at V =
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Figure 3.31: Characteristic curve for all the 4 electrodes while electrode North is facing up.

Figure 3.32: Data chosen for the fit, fitted line and representation of the floating potential, South electrode facing

down.
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Isat,0(·10−5A) n0(·1015m−3) n(·1015m−3) Te(eV) R(V−1) Vf(V) Isat(·10−5A)

W 2.0852 3.32327 2.6325 4.2627 0.014842 265.24 1.5251
E 0.8075 1.28695 1.6525 3.8647 0.025831 263.05 0.9116
N 2.9493 4.70042 3.7166 3.9909 0.01434 265.12 2.0834
S 3.2190 5.13025 4.3174 3.9126 0.010212 264.03 2.3964

W 2.2456 3.57890 2.8704 4.3918 0.010519 262.91 1.6880
E 1.0364 1.65175 2.2747 3.9861 0.023388 262.87 1.2744
N 1.9824 3.15943 2.1973 4.8289 0.016713 263.41 1.3549
S 2.1996 3.50559 2.8991 4.0777 0.015655 261.37 1.6427

W 2.0247 3.22685 2.6956 4.5898 0.01356 262.58 1.6205
E 1.2185 1.94197 1.4611 6.189 0.029424 261.85 1.0110
N 1.7084 2.72275 2.2989 4.5842 0.014724 262.9 1.3811
S 2.4858 3.96172 3.5728 4.4434 0.015393 263.15 2.1133

W 2.3832 3.79820 3.1421 4.9988 0.013339 262.69 1.9713
E 1.4964 2.38487 1.9265 5.4948 0.020428 261.55 1.2672
N 1.4872 2.37021 1.9996 5.3956 0.015922 261.08 1.3034
S 1.7834 2.84228 2.4717 4.8084 0.018114 262.09 1.5209

Table 3.2: Fit parameters for each position of the new probe. Different sets of data (i.e. each probe angular inclination)

are separated by a line, the letter points out which electrode is considered.
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Figure 3.33: Characteristic curve I vs. V for South electrode facing down and fitting 4-parameters curve.

−100V is calculated: this current is mainly due to ion movements and it is in full saturation

regime, so it is the most relevant to analyse.

The two axes of interest are, just like the previous section, theNorth-South (for azimuthal

drift velocity) and West-East (E⃗× B⃗ drift velocity). Mach number is calculated for each con-

figuration of the probe as the natural logarithm of the ratio of currents collected, after cor-

recting the offset pointed out in Figures 3.27 and 3.28 (i.e. the 20%more of current collected

by South and East electrodes). Respectively, Maz = ln
(

I↓
I↑

)
and ME⃗×B⃗ = ln

(
I→
I←

)
, where

subscripts refers to position of the electrode in a particular sample. After that, drift velocity

in each direction is calculated as vd = cs · M [15]. Results are presented in Tables 3.3 for

azimuthal direction and 3.4 for E⃗× B⃗.

The estimated values are comparablewith each other butwith some outliers, which can be

due to changes in the plasma, experimental issues or other systematic errors: proper average

values cannot be calculated, so the analysis is limited to a coarse but reasonable evaluation,
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I↓ (A) I↑ (A) I↓/I↑ M cs(m s−1) vd(m s−1)

1.29919E-04 1.13048E-04 1.4365 0.362243433 4595.208777 1664.584201
1.20897E-04 8.13165E-05 1.1894 0.173447234 4852.959615 841.7324241
1.39267E-04 8.76128E-05 1.2717 0.240320528 4911.132744 1180.246014
1.15082E-04 1.06263E-04 1.3537 0.302869726 5294.900114 1603.664944

Table 3.3: Currents collected in direction ↑, ↓, azimuthalMach number and drift velocity estimates.

I→ (A) I← (A) I→/I← M cs(m s−1) vd(m s−1)

9.79273E-05 9.46037E-05 1.2939 0.257671799 4659.843554 1200.710269
9.58420E-05 1.09361E-04 1.0955 0.091188878 4878.10892 444.8292801
1.18797E-04 9.58784E-05 0.9912 0.008810619 5366.371393 47.28105336
1.14961E-04 8.79645E-05 1.0455 0.044519701 5221.325208 232.4518373

Table 3.4: Currents collected in direction→,←, E⃗× B⃗Mach number and drift velocity estimates.

which gives:

ME⃗×B⃗ ≈ 0

vd,⃗E×B⃗ = 480ms−1 ≪ 0.1cs

Mazimuthal = 0.3

vd,azimuthal = 1300ms−1

So it can be concluded that there is a plasma drift along N-S direction detected from the

fluxes of positive ions, while it is almost absent in the other direction.

This is consistent with the concept of Hall-thrusters, according to which positive ions are

accelerated along the azimuthal directionby the electric field (to realise thrust)while electrons

are confined in the E⃗× B⃗ drift (to sustain the ionization process).
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Final observations After all the measure-

ments were taken, the probe was extracted from

ATHENIS and resulted quite ruined (Figure 3.34):

as a matter of facts, the Argon plasma sputtered

significantly on the probe, this could result in a

change in the collecting area and generally on the ef-

fectiveness of the probe. This effect should be lim-

ited in SPIDERas the plasma ismade ofHydrogen,

which is less aggressive on the surface of the probe.

Figure 3.34: Sputtered probe after the

measures.

3.3 Conclusions

In conclusion, a workable design of the probe was obtained, at least in the second iteration.

In order to use it on ATHENIS:

1. the probe needs to be correctly centred and it needs to be able to rotate freely;

2. the manipulating system needs to be precise enough to guarantee appropriate orien-
tation of the probe inside the experiment;

3. connection and vacuum isolation are required to be adequate;

4. a full rotation of the probe is demanded in order to calibrate collecting areas of the
electrodes;

However, the probe cannot be rotated in SPIDER. For the next experimental campaign,

it is suggested to use the calibration that was found in ATHENIS, which showed that South

and East electrodes collect about 20% more current with respect to the others.
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The world ends with you. If you want to enjoy life, expand

your world. You gotta push your horizons out as far as

they’ll go.

Sanae Hanekoma

4
ADEL probe - A Double Electrode

Langmuir probe

Another type of probe was analysed: a double Langmuir probe. It is of interest because it

would consist in a totally floating measuring system; besides, testing this kind of probe in a

RF source would help understand if it is suitable for measurement on SPIDER. A collabora-

tion with the experiment CRISP (Compact RF Ion Source Prototype for emittance scanner

testing) permitted to do this. The goal was giving an estimate of the twomain plasma param-

eters: electron temperature Te and plasma electron density ne.
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Figure 4.1: ADEL assembled. Figure 4.2: Scheme of ADEL positioning inside CRISPy.

4.1 The probe and the experimental set-up

Theprobe (Figure 4.1) consists of two filamentsmadeof tungsten,whosediameter is 0.25mm

and height is 6mm, isolated with high-temperature compatible and plasma-compatible in-

sulation materials (i.e. alumina Al2O3 ceramic beads and alumina glue). The two electrodes

are 2.6mm apart and parallel (the angle between the wires was corrected after the picture in

Figure 4.1 was taken). The probe is inserted inside the plasma chamber of CRISPy as shown

in Figure 4.2, 4.3, 4.4.

The electronic acquisition system (Figure 4.5) is composedof a shunt resistance, that could

be changed according to the collected current, connected in series to a voltage regulator cir-

cuit. That circuit could control the output voltage within the range 0-36 V approximately,

it is based on four 9 V batteries and it is represented as Vfix in Figure 4.6. A variable num-
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Figure 4.3: CRISPy plasma chamber. Figure 4.4: ADEL positioning inside CRISPy.

ber of other batteries can be added in series in order to move (as an offset) the range of data

acquired. The shunt resistance used is Rshunt = 1105(11)Ω.

Measurements were taken in two different methods. The first sets were collected using

multimeters, tomeasureVbias andVshunt, and recordedmanually. The second sets, instead,

were collectedwith aDL716 Yokogawa 16 channels digital scope, with a 50 kHz filter on both

channel used and an acquisition rate of 10 kilosample per second.

For more details on the source and CRISPy experiment, see [17].

4.2 Analysis

Model used Let the following expressions be:

• α = Isat,A/Isat,B ratio between saturation current of the two probe electrodes;

• V := VB − VA;
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Figure 4.5: Metal box with electronic

components of the acquisition system.
Figure 4.6: Circuit scheme of the acquisition system.

• Vf := VfB − VfA difference between the two floating potentials;

It could be hypothesize, according to [5], that:

IA + IB = 0

IA,B = IsatA,B
(
1− exp

(e(VA,B − VfA,B)

kBTe

))
After some calculations, it could be obtained that:

I(V) = αIsat,A ·
exp

(
V−Vf
kBTe

)
− 1

α exp
(

V−Vf
kBTe

)
+ 1

and, if α = 1, id est the two electrodes are identical:

I = Isat,A tanh
(V− Vf

kBTe

)
As a consequence, the I−V curve should be symmetrical with respect to the origin of the
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Figure 4.7: ADEL in helium plasma. Figure 4.8: ADEL in air plasma.

axis.

The approximation with α = 1 was not used to fit data because one could not be sure of

the perfect symmetry of the probe, hence of the characteristic I-V curve.

Analysis Data were collected with two different RF frequencies (13MHz and 72MHz),

corresponding to the two main resonances, where the plasma generated is brighter. Plasma

was made with low pressure helium or air (pressure in the vessel was kept always around

≈ 20 Pa). Some pictures of the probe in the plasma can be found in 4.7 and 4.8.

For each set of data, the potentiometer was used to change the bias potential, and voltage

across the shunt resistance is registered.

As previously stated, measures were collected in two ways: by manually taking couples of

(Vbias,Vshunt) using two multimeters, or by using a digital scope.
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Gas M/D f(MHz) n(·1016m−3) Te(eV) R(V−1) Vf(V) α
Air M 13 4.4716 6.8496 0.0083438 -0.10985 0.93069
Air D 13 4.1305 6.5303 0.0028294 2.4439 1.2461
He M 13 2.7688 14.476 0.0010711 -0.22008 0.84512
He D 13 1.5521 11.284 0.011001 8.0448 1.2525
He M 72 1.9379 9.2694 0.009260 0.47409 0.87957
He D 72 1.7868 9.879 0.0094407 5.7351 0.84636
Air M 72 8.1875 2.6512 0.037926 1.0552 0.91902

Table 4.1: Fit results. Notation: M stands forManual acquisition, D for Digital scope. The Digital sample at 13MHz for

air is absent because plasmawas highly unstable, to the point that measurements were impossible.

In both cases, a MATLAB program was used to fit data with the following fitting expres-

sion:

I(V) = 0.6 · n ·
√

eTe

mi
·Acoll · e · (1 + R|Vf − V|) · α ·

exp (V− Vf)/Te − 1
α exp (V− Vf)/Te) + 1

where R is a parameter used to take into account the slope of ionic saturation branch of the

curve, n is the plasma density, mi is the ionic mass (which could be mAir = 4.83632 · 10−26kg

or mHe = 6.68 · 10−27kg) and Acoll = 4.3354 · 10−6m2 is the collecting area of the electrode.

Results of the fit are reported in Table 4.1, an explanatory graph is in Figure 4.9.

Observations As far as it is known, in each configuration the plasma could be very differ-

ent. Nevertheless, the two plasma parameters of our interest (Te and n) seem to be contained

in a limited range of values.

By comparing samples takenwith the sameplasma conditions, butwithdifferent approaches

(manual or digital), it could be observed that parameters are very close to each other: the

probe behave in the same way for the same setting.

It could be interesting to observe that themodel with theα = 1 approximationwould not
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Figure 4.9: I− V curve and fitted function for ADEL in helium plasma, RF frequency 72MHz

have fitted the data adequately: in fact, α varies in a range between 0.85 and 1.25, this is a clear

sign of the slight difference of the current collection between the two electrodes of the probe:

this could be due to a small geometrical asymmetry of the two electrodes, but more proba-

bly, it is due to the probe position inside the small plasma volume. The spacing between

the electrodes is about one tenth of the diameter of the plasma column; therefore, a small

positioning error with respect to the axis of the plasma chamber could cause the probe to see

radial plasma gradients and therefore asymmetry of the collected current to each electrode.

4.3 Conclusions

In conclusion, it can be stated that the probe works properly but is sensitive to sudden ten-

sion shifts. Thepreviously stated theory fittedproperly the data, so that electron temperature

and plasma density could be estimated.

55



The plasma in CRISP is not a particularly cold plasma (Te ≈ 10eV) but could reach a

good density (n ≈ 3 · 1016), enough for fulfilling its purpose.

Concerning the use in SPIDER, it is worth noticing that under certain conditions, the fit

of the current-voltage characteristics could provide a relatively low electron temperature (see

7th measurement in Table 4.1). It is also worth noticing that a reduced current unbalancing

among the electrodes is to be expected, as the plasma non-uniformities should be minimal

on the scale of the probe dimension.

56



Science, almost from its beginnings, has been truly inter-

national in character. National prejudices disappear com-

pletely in the scientist’s search for truth.

Irving Langmuir

5
Langmuir probes

The Langmuir probe is the last type of probe analysed. The main issue with the present

Langmuir probe design is that it cannot be tested in a RF plasma, similar to the the SPIDER

source plasma and so its correct behaviour cannot be confirmed. On the other hand, testing

the probe in an even slightly different system would not provide certainty as to the compen-

sation method, so that a numerical analysis was considered more sensible and effective.

5.1 Statement of the problem

The use of Langmuir probes in DC plasmas is now well established. However, in RF plas-

mas the RF component across the probe sheath distorts the I–V curve and shifts it, making
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it more negative, so that DC theory cannot be used directly ([18]). This mainly happens

because plasma potential Vp could be oscillating with an average value Vp0 due to radio-

frequency component Ṽp:

Vp = Vp0 + Ṽp

In literature, it can be found that a way to solve this issue is direct application to the probe

tip of a RF signal that is matched both in amplitude and in phase to that of the plasma, so

that the RF component across the sheath is effectively removed ([19], [20]).

A very common and firmly rooted technique is to use choke filters in order to cut AC

component of radio-frequency, in addition to a larger, floating compensation electrode fac-

ing the plasma, coupled with the probe and linked in parallel to the probe tip by a capacitor,

necessary to drive the probe tip to follow the RF fluctuations.([21])

In this way, only DC component is collected and analysed and AC component is elimi-

nated or in any case becomes irrelevant.

The choice of construction parameters of the probe (namely the area of the compensation

electrode, and the value of the capacity connecting the latter to the probe electrode) depends

on expected plasma conditions, specifically from:

• frequency of oscillation f;

• amplitude of RF oscillating component Ṽp.

In commonapplications, the lower the electron temperatureTe, the greater the error intro-

duced by the RF component. As the expansion region of SPIDERplasma source is designed

with the purpose of minimising the electron temperature, a particular care was put on the

design of the compensation scheme.

In the following, an equivalentmodel of the probe is developed to obtain a synthetic I−V

characteristics; then the characteristics is analysed to estimate the error on the plasma param-
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Figure 5.1: Langmuir probe components ready to be assembled.

eters that one would obtain. The analysis was carried out focusing on the effect of various

Cp and Ṽp values.

Costruction parameters The Langmuir probes built consist of two Molybdenum

electrodes isolated and assembledwith high-temperature compatible andplasma-compatible

insulation materials (i.e. alumina Al2O3 ceramic beads and alumina glue). All the compo-

nents are shown in Figure 5.1.

The main electrodes are nail-shaped with a flat head, displayed in 5.1 in the blue box. The

collecting area of this electrode is the head, whose diameter is d = 8mm and height is h =

0.8mm. The electrode shaft is isolated with Al2O3 beads to the the compensation electrode,

of cylindrical shape. In order to maintain insulation and allow cabling of the compensation

electrode, the inner surface of the active electrode, a threaded shaft connecting to its support,

is covered with Al2O3 glue (like the electrode in the black box in 5.1 and in Figure 5.2) and

is about 3 cm long. At the end the spike is threaded in order to easy the installation of the
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Figure 5.2: Langmuir probemain electrodes isolated with allumina ceramic glue.

Figure 5.3: Fully assembled Langmuir probe tip.

probe to its support and the linking with wires.

In the red box, one can see the compensation electrodes: they are 16mm (2d) high and

8mm diameter (d). Finally, in the green box, some allumina tubes used to isolate the two

electrodes composing one probe.

In Figure 5.3 one can see a completely assembled Langmuir probe tip.
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5.2 LTSpice model

The analysis started then from an LTSpice model which simulated the plasma and the ac-

quiring system as components of an electrical circuit. Two circuit models were made and

compared: a DC reference, which should provide the current-voltage characteristics of an

equivalent DC plasma, and a sinusoidal one, which included a fluctuation of the plasma po-

tential at the radio frequency. They are displayed schematically in Figures 5.4, 5.5.

In Figure 5.4, V3 is a DC voltage generator which gives 20V constantly; B3 is a tension-

driven current generator which simulates the plasma. The current collected by the plasma-

facing electrodes is: I = A · (jsaturation − jelectrons). For the sake of simplicity, it was assumed

the simplest behaviour for the ion and electron saturation currents, that is, the collection area

does not depend on the applied voltage difference Vplasma3−Vprobe3. The following function

was included in the spice model [22]:

I(DC) = Aprobe · Jsaturation ·
(
1− jelectrons

jsaturation

)

with:

• Aprobe = π(d/4)2 + πdh = 7.037 · 10−5m2 collecting area of the probe;

• Jsaturation = 0.6 · n · e ·
√

eTe
2mi

ion saturation density of current, with Te =1 eV and
n = 1017m−3;

The acquisition system for the current is modelled as a simple shunt resistor in series,

schemed by V4 and a shunt resistance Rshunt2 of 10Ω.

Regarding Figure 5.5, the plasma potential is applied through the V1 independent voltage

source, which gives a sinusoidal signal, with a DC offset of 20V, a frequency of oscillation

of 1MHz. In the absence of any indication about the actual Ṽp in SPIDER, two cases of
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Figure 5.4: LTSpicemodel used for plasma simulation, DC reference.

Figure 5.5: LTSpicemodel used for plasma simulation, AC reference.
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Ṽp = ±5 V and Ṽp = ±50 V were studied. Cp is the variable capacity between the two

electrodes, object of our analysis.

B1 and B2 are two tension-driven current generator, which are used to simulate plasma

current, according to the following formulas:

I(B1) = Aprobe · Jsaturation ·
(
1−

√ me

πmi
·min

[
1, exp

(
−

V(PLASMA) − V(PROBE)

Te

)])

I(B2) = Acomp · Jsaturation ·
(
1−

√ me

πmi
·min

[
1, exp

(
−

V(PLASMA) − V(PROBE2)

Te

)])
where:

• Aprobe = π(d/4)2 + πdh = 7.037 · 10−5m2 is the collecting area of the probe;

• Acomp = 2π · d2 = 4.021 · 10−4m2 is the area of the compensation electrode;

• Jsaturation = 0.6 · n · e ·
√

eTe
2mi

is the ion saturation density of current, with Te =1 eV
and n = 1017m−3;

• me,mi are respectively electron and ion masses;

• V(PLASMA),V(PROBE2),V(PROBE) are tensions measured in the nodes indicated by Figure
5.5.

To complete the scheme, a bias generator V2 and a shunt resistance Rshunt =10Ω are

added. Two high-frequency filters (choke filters) are also included, as it is common practice

in the literature (Figure 5.6).

Finally, in order to better simulate the acquisition system, a diagram of a transmission line

is placed in series to the plasma, before the two filters (Figure 5.7). The complete circuit is

shown in 5.8. All the parameters used are indicated in the pictures.
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Figure 5.6: LTSpicemodel used for plasma simulation, with high frequency filters.

Figure 5.7: LTSpicemodel for the transmission line of the acquisition system.

Figure 5.8: LTSpicemodel used for plasma simulation, with high frequency filters and transmission line.
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Simulations Different simulations were made, in various configurations. The parame-

ters which were changed were:

• capacity Cp, which assumed one of these values: 0.2 nF, 0.4 nF, 1 nF, 2 nF, 4.7 nF,
9.4 nF;

• thepresenceornotof the transmission line, indicated inTable 5.1 belowas y=simulation
with transmission line (circuit of Figure 5.8), n=without transmission line (circuit of
Figure 5.8);

• the amplitude A of oscillation, either of 5 V or 50V.

5.3 Results and discussion

Fit For each configuration discussed, the characteristic I-V curve was studied. First of all,

the ion saturation regimewas fitted with a straight line, so that to eliminate ion contribution

to the curve. The line found was then subtracted to the original data, which were at this

point fitted with a 4-parameter fit* ([16]). The parameters resulting from the fitting for each

simulation are reported in Table 5.1, while in Figures 5.9, 5.10 there are some graphs by way

of example.

*See 3.2: I = 0.6 · e ·A
√

eTe
mi
· n[1 + R(Vf − V)]

[
1− exp

(
eV−Vf

kTe

)]
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A (V) TLine? Cp (nF) Te(eV) n(·1016m−3) Vf(V) R(V−1)

DC Reference 1.0054 9.89767 17.161 9.5177E-09
50 y 0.2 1.9867 7.14119 12.366 5.5295E-08
50 n 0.2 1.0263 9.75658 17.146 2.5165E-09
5 y 0.2 1.0506 9.66707 17.093 6.4798E-09
50 y 0.4 1.3987 8.46992 14.837 2.2299E-08
50 n 0.4 1.0397 9.63324 17.147 2.7197E-09
5 y 0.4 0.97637 10.0144 17.1 1.3453E-08
50 y 1 1.054 9.44802 16.468 0.0003418
50 n 1 1.0723 9.52557 17.16 6.5307E-09
5 y 1 0.98228 9.95253 17.153 5.7586E-09
50 y 2 1.0327 9.73101 16.924 1.89E-09
50 n 2 1.1053 9.27599 17.156 9.1461E-09
5 y 2 0.97896 9.91499 17.135 3.9129E-09
50 y 4.7 1.0135 9.63159 17.074 2.141E-08
50 n 4.7 1.0715 9.17616 17.139 8.8894E-09
5 y 4.7 0.97859 9.77391 17.121 5.6753E-09
50 y 9.4 1.0325 9.32055 17.087 1.3793E-08
50 n 9.4 1.0795 9.02683 17.113 1.1319E-08
5 y 9.4 0.99465 9.44389 17.119 1.857E-09

Table 5.1: Results of the 4-parameter fit for each simulation considered.

Discussion The relevant parameters are Te and n, which can be comparedwith the refer-

enceDCmodel (first rowof 5.1). The goal is to understandwhich value ofCp provides results

closer to the expected results (the results of theDC reference), as it is wished the probe tomit-

igate the distortion effects expected from the RF component.

By observing the tendency of both graphs, it can be assumed that whether or not a ca-

pacity is present is really influential on the estimate of both Te and n: in fact, while Te is

overestimated if the capacity is not present, n is clearly underestimated. So it is proved that

the presence of a capacity between the two electrodes of the probe is essential. The values

tend to reach a balance close to DC reference very quickly, so that a little capacity of only

2 nF is enough, while increasing Cp is not particularly relevant.
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Figure 5.9: Voltage as a function of time curves for two different capacities (top: Cp =4.7nF, bottom: Cp =9.4nF).
The green curve is the reference DC tension, the blue is the AC one. Both were simulated with transmission line and

amplitudeA =50V.

Figure 5.10: Left: I-V curve after subtracting ion saturation current with fitted line, forA =50V, with transmission

line andCp =4.7nF. Right: same graph but with logarithmic scale on I-axis.
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Figure 5.11: Electron temperatureTe as a function
of capacityCp. In green: simulations with transmis-

sion line and amplitude of 50V; in red: simulations

without transmission line and amplitude of 50V; in

blue: simulations with transmission line and ampli-

tude of 5V; in orange the DC reference.

Figure 5.12: Plasma density n as a function of capac-

ityCp. In green: simulations with transmission line

and amplitude of 50V; in red: simulations without

transmission line and amplitude of 50V; in blue: sim-

ulations with transmission line and amplitude of 5V;

in orange the DC reference.

Conclusion In conclusion, a capacity put between the two electrodes is compulsory in

order to properly estimate electron temperature and plasma density. The capacitor needs to

be ceramic so as to be suitable for high temperatures and compatiblewith highRF frequency;

in addition, the probe is required to be very compact in order to fit in the narrow space

between the two electrodes. Given all of this and availability of the components, the closest

capacity value is Cp = 4.7 nF.
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A goal without a plan is just a wish.

Antoine de Saint-Exupéry

6
Project on SPIDER

In this last chapter, the details of a planning for the measures on SPIDER will be anal-

ysed.

In the final project, 4 different types of probes are present and shown in Figure 6.1:

1. 8 planar Langmuir probes, assembled as in Chapter 5 (see 5.1);

2. a double probe (ADEL), characterized in Chapter 4 (4.1);

3. a Mach probe designed as described in Chapter 3 (in particular, 3.24, 3.1);

4. 2 Compact Retarding Field Energy Analysers (RFEA probes).
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Figure 6.1: All the probes used assembled on their support. The planar probes aremarkedwith a black 1, the double

probewith a blue 2, theMach probewith a blue 3, the RFEAswith a red 4.
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Figure 6.2: Wires ready for the vacuum, appropriately shielded and tinned.

6.1 Assembly and alignment

The probes are set up on top of hollow [metal] pipes, long enough to cover the whole

distance between the plasma grid and the drivers. Wires, after being welded and properly

shielded with Kapton tape, in order to be suitable for vacuum (Figure 6.2), could pass inside

the tubes to preserve them from damages due to the plasma. Some aligning and centring

devices ( in Figure 6.3, b) and c)) are assembled around the probes: their role is to properly

centre and align the probes when attached to the framework, as shown in 6.4 and 6.5. The

framework and supports are designed so that they can hold the probes with a well-defined

inclination (i.e. parallel to the ground). The centring and alignment method is very precise

and employs some laser system exhibiting high accuracy.
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Figure 6.3: In a), a view on the end of the pole, with a wire con-

nected passing through it. In b) the devices used for centring

and alignment of the probes on the framework, one of them is

assembled on one of the RFEAs and shown in c).

Figure 6.4: The frameworkwhich will be used

as support inside SPIDERwith two probes

ready.

Figure 6.5: Two probes alignedmounted on the framework.
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6.2 Experimental planning proposal

In the scheme reported in Figure 6.6, a proposal for the experimental campaign is reported.

For each type of probe the main goals and an estimate of timing is provided.

The first step for all the probes is to get an I− V characteristic curve, in order to calibrate

properly the system.

Then, themainparameters are obtained, such as electron temperature, plasmadensity and

floating potential forADEL and the planar probes, radio frequency potential component Ṽp

and ion energy density function for RFEAs, and ion saturation current for the 4 electrodes

in the Mach probe.

The next stage is the construction of an axial profile along z axis (Figure 1.1 for orienta-

tion): the position of the probes is changed thanks to the movable supports so that plasma

parameters could be obtained as a function of the distance from the plasma grid. Possible

non homogeneities are underlined, also in the vertical direction.

Finally, amoredetailed analysis is conducted to thoroughly examinedependenceofplasma

drifts on key parameters (ADEL and Mach probe), verify connections between control pa-

rameters (RFEAs) and fully explore functionalities of the two-chamber (tandem) concept

(planar probes).

Furthermeasures could be takenbymoving theLangmuir planar probes inside the drivers,

by opening the vessel and repositioning them, and changing the operating gas for plasma,

thus studying a different hydrogen isotope (deuterium) for more interesting comparisons.
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Figure 6.6: Aims and experimental duration of the proposed experimental sessions for SPIDER.
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7
Conclusion

The realization of SPIDER is necessary to make the future operation of the ITER heating

neutral beam injectors efficient and reliable, fundamental to the achievementof thermonuclear-

relevant plasma parameters in ITER.

SPIDER’s purpose, as stated in 1, is to optimize the performance of an ITER HNB-like

negative ion source by maximizing the extracted negative ion current density and its spatial

uniformity andbyminimizing the ratio of co-extracted electrons, in order tomatch the ITER

requirements.

The experimental study of the plasma parameters at the location of the ion extraction, and

of its expansion from the driver region, is possible using Langmuir probes on mobile sup-

ports. Using these probes would give a full picture of plasma parameters, both as a function
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of time and of distance from the plasma grid, which would provide complete understanding

of spatial uniformity and plasma homogeneity.

In conclusion, it can be stated that each type of probe, tested or simulated, was validated.

The probes should operate properly in SPIDER, reaching the goals of the experimental cam-

paign, provided some precautions are taken.

Concerning the Mach probe:

1. being careful about the sputtering phenomenon is fundamental, as it alters the col-
lecting area of the electrodes, hence it could heavily influence the estimate of Mach
number and therefore of the velocity drift;

2. collecting at least a set of data with a 360° rotation of the probe is required to cali-
brate the collecting areas of the electrodes, evenmore importantly in SPIDER then in
ATHENIS because of the higher currents and voltages involved;

3. from angular diagrams and characteristic curves themain plasma parameters could be
estimated, in addition to Mach number for each direction (vertical, horizontal);

4. the direction of possible plasma drifts could be predicted if the magnetic field were
well defined, which is the case of the B filter in SPIDER: the probe could be oriented
so that the measure is eased.

Furthermore, regarding the double probe:

1. the probe proved to be effective in evaluating the twomain plasma parameters Te and
n, however, floating potential estimate resultedmore difficult andmore dependent on
the range of the parameters used to fit the I− V curve;

2. the goal of obtaining a floating measure was fulfilled as it could be stated from the
accordance between theory and experimental data. However, particular care in the
installation phase (i.e. use of appropriate cables, cable shielding, and cable routing)
must be taken in SPIDER tominimise parasitic capacities and induced currents, given
the much longer path the cables must follow;

3. it cannot be assured that the two electrodes are perfectly symmetrical, so the fit with-
out theα = 1 approximation (see 4.2) is more appropriate and considers also eventual
plasma asymmetries.

Finally, for the planar Langmuir probes:
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1. the ceramic capacitor introduction between the two electrodes (themain and the com-
pensationone) cleans the signal and allowsproper analysis, even though its value is not
the optimum one but the closest available;

2. the study of the I − V characteristic curve of the 8 probes, positioned in different
points of the plasma, could give a good scan of the plasma parameters as a function of
the distance from the plasma grid, considering also eventual vertical drifts and other
phenomena that could occur;

3. by changing their position, both the expansion chamber and the drivers plasmas could
be studied and characterized;

4. more sets of data could be collected after changing discharge gas (from hydrogen to
deuterium), which would give further information;

5. dependence of plasma parameters on bias potential, B filter and RF power could also
be studied in detail.
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