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Sommario

In questa tesi viene affrontato lo studio della dinamica dell’interazione fra un’onda d’urto obli-
qua e lo strato limite di un flusso laminare che riveste una piastra investita da esso.
Lo studio è motivato dalla carenza di dati accurati in tale ambito, sia sperimentali che numerici, e
dal fornire un punto di partenza per ulteriori studi maggiormente approfonditi nel regime turbo-
lento.
La tesi inizia con un quadro generale del fenomeno, per poi descrivere le varie parti che compongono
la simulazione volta a studiarlo, dopodichè viene presentata la sua validazione e infine si presentano
varie analisi sull’interazione sia per diversi numeri di Mach fissato l’angolo del generatore dell’onda
d’urto obliqua, sia fissando l’angolo dell’onda d’urto obliqua e variando il numero di Mach. In
particolare si osserva l’andamento della pressione a parete, l’andamento del coefficiente d’attrito il
quale è direttamente collegato allo sforzo di taglio viscoso, si osserva la dinamica del reflusso nello
strato limite e infine si studia il comportamento termico associato al fenomeno.
Ciò che si nota dallo studio è che all’interno della zona di interazione si hanno due compressioni suc-
cessive combinate ad un effetto dissipativo indotto dalla viscosità tanto maggiore quanto più alto
è il numero di Mach. Contemporaneamente all’aumentare del numero di Mach si riduce l’intensità
dell’onda d’urto, e con essa l’entità del fenomeno di ricircolo che prende atto nello strato limite, il
che si traduce in una riduzione delle dimensioni della regione di distacco dello strato limite. Par-
allelamente si nota un aumento dello scambio termico verso l’esterno a parete prevalentemente in
corrispondenza dei due gradienti avversi di pressione, il che significa un corrispondente aumento di
temperatura del flusso seguendo lo stesso pattern. Localmente però si nota una leggera riduzione
forzata della temperatura (non causata dallo scambio termico a parete bensì dal fenomeno di in-
terazione stesso) nella regione dell’interazione compresa fra i due gradienti di pressione. Pertanto
si ha un raffreddamento del flusso, inframezzato a due fenomeni di riscaldamento dello stesso.
Inoltre fissando l’angolo dell’onda d’urto e aumentando il numero di Mach si nota una crescente
intensità dell’interazione che aumenta le dimensioni della bolla di ricircolo e l’entità del reflusso.
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Abstract

This thesis deals with the study of the dynamics of the interaction between an oblique shock
wave and the boundary layer of a laminar flow that covers a plate hit by it.
The study is motivated by the lack of accurate data in this area, both experimental and numerical,
and by providing a starting point for further studies, more detailed, in the turbulent regime.
The thesis begins with a general picture of the phenomenon, then the various parts that make up
the simulation aimed at studying it get described, after that its validation is presented and finally
various analysis are carried out on the interaction both for different Mach numbers having fixed the
oblique shock wave generator and by fixing the shock wave angle and varying the Mach number.
In particular, the trend of the wall pressure is observed, the trend of the friction coefficient which
is directly connected to the viscous shear stress, then the dynamics of the reflux in the boundary
layer and finally the thermal behavior associated with the phenomenon get studied.
What can be seen from the study is that within the interaction zone there are two successive
compressions combined with a dissipative effect induced by viscosity, the greater the higher the
Mach number. Simultaneously with the increase in the Mach number, the intensity of the shock
wave decreases, and with it the extent of the recirculation phenomenon that takes place in the
boundary layer, which is translated into a reduction in the size of the detachment region of the
boundary layer. In parallel, there is an increase in the heat exchange towards the outside on the
wall mainly in correspondence of the two adverse pressure gradients, which means a corresponding
increase in the temperature of the flow following the same pattern. Locally, however, there is
a slight forced reduction in temperature (not caused by the heat exchange on the wall but by
the phenomenon of interaction itself) in the region of the interaction between the two pressure
gradients. Therefore there is a cooling of the flow, interspersed with two heating phenomena of
the same.
Furthermore, fixing the shock wave angle and increasing the Mach number, the intensity of the
interaction is observed to grow up leading to an increment of the recirculating bubble dimensions
and of the reflux entity.
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Nomenclature
Acronyms

[CSW] Crossing Shock Wave

[DSW] Downstream the Shock Wave

[ENO] Essentially Non-Oscillatory

[IBMs] Immersed Boundary Methods

[LODI] Local One Dimensional Inviscid

[NSCBC] Navier Stokes Characteristic Boundary Conditions

[SWBLI] Shock Wave Boundary Layer Interaction

[WENO] Weighted Essentially Non-Oscillatory

Variables

β Oblique shock wave angle [◦]

δ Boundary layer thickness [m]

δi,j Kronecker delta [−]

µ Dynamic viscosity [kg/m s]

ν Kinematic viscosity
[
m2/s

]
Φ Viscosity tensor

[
N/m2

]
E Deformation tensor [1/s]

I Identity matrix [−]

T Tension tensor
[
N/m2

]
∂V Frontier of the control volume

[
m2
]

ψ Stream function [−]

ρ Density
[
kg/m3

]
τ Viscous shear stress

[
N/m2

]
θ Density gradient (in convective terms discretization)

[
kg/m4

]
θ Oblique shock wave generator (wedge) angle [◦]

~L Vector of characteristic waves [−]
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~FS Surface forces
[
N/m2

]
~FV Volume forces

[
N/m3

]
~f Superficial forces [N/kg]

~Fi Vector of convective fluxes [−]

~Fvi Vector of viscous fluxes [−]

~S Vector of source variables [−]

~U Vector of conservative variables [−]

ξ, η Similarity variables [−]

Cf Skin friction [−]

e Internal energy [J/kg s]

E, ε Total energy [J ]

f, f ′, f ′′, f ′′′ Blasius functions for momentum [−]

f0, f1, f2 Auxiliary functions for Blasius functions for momentum [−]

g, g′, g′′ Blasius functions for energy [−]

g0, g1 Auxiliary functions for Blasius functions for energy [−]

H Total enthalpy [J ]

h Static enthalpy [J ]

k Thermal conductivity [W/m K]

M Mach number [−]

p Pressure [Pa]

Q Specific heat per unit of volume
[
J/kg m3

]
q Specific heat per unit of area

[
J/kg m2

]
Rex Abscissa Reynolds number [−]

s Entropy [J/K]

u Stream-wise component of the velocity [m/s]

V Control volume
[
m3
]

v Normal-wise component of the velocity [m/s]

w Work flux [J ]

x Stream-wise coordinate [m]

y Normal-wise coordinate [m]
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Parameters

α Boundary layer parameter ≈ 4.91

γ adiabatic index 1.4

C Chapman-Rubesin parameter ≈ 1

cp Specific heat at constant pressure [J/kg K]

Pr Prandtl number 0.72

S Sutherland’s law parameter (effective temperature) 110.4

T0 Sutherland’s law reference temperature 273.15 [K]

Subscripts

(∞) Property of the undisturbed flow far from the plate

(det) Boundary layer detachment location

(e) Variable of the external solution of the boundary layer

(i) Variable of the internal solution of the boundary layer

(max) Maximum value

(min) Minimum value

(reatt) Boundary layer reattachment location

(R) Recovery value

(sh) Nominal impingement location (inviscid case)

(tr) Threshold value

(V ) Property referred to the control volume

(W ) Property defined on the wall

Superscripts

(′) Differentiation in respect to η (in boundary conditions)

(′) Property determined inside the boundary layer (in boundary layer equations)

(∗) Non-dimensionalized variable(
0
)

Value on the surface of the plate(
∂V
)

Property referred to the frontier of the control volume(>) Transpose of a vector(
Cfmin

)
Property referred to the section where the minimum skin friction is(

global
)
Value referred to the global domain(

inv.
)

Property referred to the inviscid case
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1 Introduction
This thesis deals with the study of the dynamics of the boundary layer that covers a flat plate hit
by a uniform supersonic flow when it is incised by an oblique shock wave. This phenomenon is
usually called as Shock Wave Boundary Layer Interaction (SWBLI).
The work of this thesis has been carried out in collaboration with the group of research CFD and
Optimization METhods for Engineering and Science (COMETES) at the Industrial Engineering
department of the University of Padova, with the purpose of being a starting point for the study
of wall flows in compressible conditions and supersonic boundary layer problems.
The research in this area is rather active since the relevance of this topic in situations involving
systems interested by transonic and supersonic flows such as high-speed turbo-machinery, propul-
sion system nozzles, etc.
Acquiring awareness of the effects of this extremely complex phenomenon makes it possible to
develop more accurate engineering models to study the behaviour of systems that are interested in
it and also to provide a useful tool for forecasting and preventing the consequences that the onset
of this phenomenon has on the aforementioned systems.
The effects of the interaction of a shock wave with the boundary layer manifest themselves in the
thermal stress on the wall, in the loss of aerodynamic efficiency caused by the alteration, if not
detachment, of the boundary layer and in the mechanical fatigue induced on the wall due to of
turbulence.
The SWBLI dynamic in the case of a turbulent flow has a common background with the laminar
one, since the major effects regard low frequencies, therefore the study in the present thesis starts
with the laminar SWBLI case allowing future studies to exploit the results obtained in this one as
tools for the protraction to the study of the turbulent case.
Moreover the turbulent case is rather chaotic, then numerical instabilities become quite difficult
to be distinguished from the physical behaviour of the flow, therefore an accurate laminar model
must be made up before it.
The lack of experimental data on this topic is due to the difficulty in recreating the phenomenon
[16], keep in mind that the recreation of a laminar SWBLI is a rather delicate experiment that
requires an almost-cryogenic flow. More than that come difficulties in extracting the informations
of interest using an instrumentation which is relatively thick in comparison to the dimensions of
the region in contact with the wall, where the data of interest are located, causing the perturbation
of the field of motion. From the computational point of view, the non-absolute accuracy of ex-
perimental models and the complexity of analytical models forces the adoptions of simplifications
which introduce approximations that induce the engineers to consider the results in a qualitative
way. For example take into account a more realistic turbulent flow (e.g. [33], [26], [30], [14]), where
the approximations of its mathematical models cause a greater separation from the exact solution
due to the complexity of the problem, if for example comes the need to execute the modal analysis
of the structure subjected to vibrations induced by pressure oscillations on the wall, the knowledge
of frequencies involved must be as accurate as possible since these can provoke resonances that can
be dangerous for the structure itself.
Therefore, in order to being able to better describe the physics of SWBLI dynamics using more
accurate models, more research in fluid dynamics and in the mathematics associated to it are
required.
When the simulation models are realized, a very important step is the validation of the parts that
compound the model and the global model itself. This is due to the fact that small oversights can
lead to more or less marked deviations that unknowingly distort the results obtained. Then the
further analysis can be carried out.
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Thus, the steps that make up a research in this topic can be summarized as:

• realization of the model;

• validation of the model;

• further analysis.

While the wall pressure and the skin friction are always present in the majority of the researches,
one of the main aspects of the SWBLI that usually gets ignored by researchers is the description
of its the thermal behaviour. Probably this is due to the fact that this target is rather delicate
since approximations in the inlet conditions can lend to discrete differences in the thermal trend
along the plate making comparisons between different models difficult.
Nevertheless, while keeping the awareness of the approximations made to the model, a macroscopic
behaviour can still be described.

The present thesis is divided in five parts:

1. a first part regarding the presentation of the phenomenon (section 2);

2. a second part where the resolution model adopted gets described (sections 3 - 6);

3. a third part where the model gets validated (section 7);

4. a fourth part where analysis on the major aspects of the SWBLI for several Mach numbers
having fixed the shock wave generator angle (section 8) and for several Mach numbers having
fixed the shock wave angle (section 9) are made;

5. a fifth and last part concerning a summary of the results and tips on further studies (section
10).
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2 Phenomenon presentation
Now the parts that make up the SWBLI get presented:

• boundary layer covering a flat plate (sec. 2.1);

• oblique shock wave (sec. 2.2);

and then follows up the explanation in a qualitative way of the dynamic of their interaction (sec.
2.3).

2.1 Boundary layer
Generally in a fluid-dynamic domain, at the borders of which there is the presence of a wall, the
boundary conditions given there are those of adherence (tangential component of the flow speed
is zero) and impermeability, (normal component of the flow speed is zero). On the contrary, the
points of the flow far from the wall have their undisturbed velocity. This implies the existence of
a region in which the flow velocity is affected by the presence of the wall and it starts from zero in
contact with it and gradually recovers its undisturbed value moving far from it.
By boundary layer is intended the region in which the flow velocity is less than or equal to 99% of
the undisturbed one.

Figure 1: Boundary layer that covers a flat plate.

Let’s consider the case of the flat plate, the boundary layer thickness δ depends on the distance
between the considered point along x-axis and the leading-edge of the plate, in particular:

δ(x)

x
=

α√
Rex

(2.1.1)

where α is a parameter that depends on the model assumed to describe the shape of the velocity
profile u(y) and Rex represents the abscissa Reynolds Number,

Rex =
ρU∞
µ

x (2.1.2)

Generally can be assumed that the velocity profile respects the incompressible Blasius solution
(sec. 2.1.1) for which α ≈ 4.91.
Substituting in (2.1.1) is obtained:
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δ(x) =
4.91 x√
Rex

=
4.91 x√
ρU∞x
µ

=
4.91

√
x√

U∞
ν

= 4.91

√
νx

U∞
(2.1.3)

in which can be noted that the boundary layer thickness is proportional to
√
x.

The incompressible boundary layer gets described by the boundary layer equations (B.0.5) (see
appendix B):

However in the present thesis the flow is compressible, then let’s consider the Navier-Stokes
equations obtained in appendix A.

∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+
∂Φii
∂x

+
∂Φij
∂y

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+
∂Φji
∂x

+
∂Φjj
∂y

ρu
∂h

∂x
+ ρv

∂h

∂y
= u

∂p

∂x
+ v

∂p

∂y
+

∂

∂x

(
µ

Pr

∂h

∂x

)
+

∂

∂y

(
µ

Pr

∂h

∂y

)
+

+ Φii
∂u

∂x
+ Φij

∂u

∂y
+ Φji

∂v

∂x
+ Φjj

∂v

∂y

(2.1.4)

These equations describe the compressible flow of a continuum system. The procedure to obtain
the compressible boundary layer equations is similar to the one for the incompressible case, i.e.
introduction of coordinates transformation and neglect terms considering high Reynolds numbers.
Then considering the boundary layer approximations, the equations found are:

∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
∂p

∂y
= 0

ρu
∂h

∂x
+ ρv

∂h

∂y
= u

∂p

∂x
+

∂

∂y

(
µ

Pr

∂h

∂y

)
+ µ

(
∂u

∂y

)2

(2.1.5)

where Pr is the adimensional Prandtl number

Pr =
µ cp
k

(2.1.6)

which is a fundamental parameter related to properties of the fluid only.
Equations (2.1.5.b) and (2.1.5.c) are the momentum equations in x and y directions and equation
(2.1.5.d) is the energy equation in terms of enthalpy.
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2.1.1 Similarity solutions for compressible boundary layer

Consider equations (2.1.5) that describe a compressible steady flow.
These equations can be simplified by introducing transformations that convert the compressible
boundary layer into an equivalent incompressible one [47], [45], [5].
A common transformation adopted is the Illingworth transformation that will be explained below.

Illingworth transformation This transformation consists in the introduction of a function
called stream function ψ (x, y) which for compressible flows is defined in order to solve the continuity
equation, since the validity of Schwarz’s theorem:

∂ψ

∂y
= ρu

∂ψ

∂x
= −ρv (2.1.7)

The idea is to introduce two similarity variables (ξ and η) and to check when the stream function
ψ and the velocity profile u take the form:

ψ (ξ, η) =

∫
ρu dy = G (ξ) f (η)

u (ξ, η) = U∞ (ξ) f ′ (η)

(2.1.8)

Illingworth then assigned the viscosity effects in ξ and the density effects in η. This means that

ξ = ξ (x) =

∫ x

0

ρ∞ (x)U∞ (x)µ∞ (x)dx

η = η (x, y) =
U∞ (x)√

2ξ

∫ y

0

ρdy
(2.1.9)

where subscript ∞ indicates the value external to the boundary layer.
Substituting these definitions in (2.1.5.b) results in

(Cf ′′)
′
+ ff ′′ +

2ξ

U∞

dU∞
dξ

(
ρ∞
ρ
− f ′2

)
= 0 (2.1.10)

in which
C =

ρµ

ρ∞µ∞
∼ C (η)

is the Chapman-Rubesin parameter [4], [5].
The apex (′) denotes differentiation in respect to η.
Let’s consider the energy equation (2.1.5.d). The enthalpy can be divided into the product of a
magnitude function and a shape function

h (x, y) = h∞ (ξ) g (η) (2.1.11)

which substituted in (2.1.5.d) and considering H∞ = h∞ + U2
∞/2 the total entalphy, results in(

C

Pr
g′
)′

+ fg′ =

(
ξ

H∞

dH∞
dξ

)(
2g +

U2
∞
h∞

f ′2
)
f ′ − U2

∞
h∞

Cf ′′2 (2.1.12)
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The target of similarity for equations (2.1.10) and (2.1.12) is obtained only under some condi-
tions:

• C = const or is function of f and g;

• Pr = const or is function of f and g;

• ρ∞/ρ is function of f and g;

• (2ξ/U∞) dU∞/dξ = const;

• U2
∞/h∞ = const or negligible;

• (2ξ/H∞) dH∞/dξ = const

The first three conditions are verified assuming the gas to be perfect. This means that assuming
cp ≈ const

ρ∞
ρ (y)

=
T (y)

T∞
≈ h (y)

h∞

for (B.0.3) the pressure is constant along y-coordinate, so

ρ∞
ρ
≈ g (η)

h∞
h

µ

µ∞
≈
(
h

h∞

)−1(
T

T∞

)n
=

(
h

h∞

)n−1
= g (η)

n−1
= C (η)

for air n ≈ 2/3, that is
C =

ρµ

ρ∞µ∞
≈ gn−1 ≈ g−1/3 (2.1.13)

and the Prandtl number is assumed constant for air Pr = 0.72. Considering adiabatic flow over a
flat plate 4th to 6th conditions are satisfied since U∞ and H∞ are constant.
Using these conditions the (2.1.10) and (2.1.12) equations become

(Cf ′′)
′
+ ff ′′ = β

(
f ′2 − g

)
(2.1.14)

(Cg′)
′
+ Prfg′ = −PrC (γ − 1)M2

∞f
′′2 (2.1.15)

in which for a flat plate

β =
2ξ

M∞

dM∞
dξ

= 0

These equations are very similar to the incompressible solutions except for the C parameter that
couples them.
In order to simplify considerably their resolution the C parameter can be approximated to ≈ 1
since g−1/3 is rather small along y.
In this way they result in the Blasius relations for the compressible adiabatic flow over a flat plate

f ′′′ + ff ′′ ≈ 0 (2.1.16)

g′′ + Prfg′ = −Pr (γ − 1)M2
∞f
′′2 (2.1.17)

which can be solved in order to obtain the velocity, temperature and density profiles across the
boundary layer.
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2.2 Oblique shock wave
Consider an undisturbed supersonic flow and imagine to immerse a disturbing body into it. The
only way for the flow to know about the presence of the body is through shock waves that deviate
the flow in order to make it respect the just changed boundary conditions.

Figure 2: The direction of the flow gets deviated by the angle θ due to the
formation of the β-angled shock wave in order to make the flow respect the
change in boundary conditions caused by the sudden ramp on the bounding
wall.

A shock wave is an highly thin region where the flow properties can change drastically due to
an adiabatic compression phenomenon.
In the case of this thesis the undisturbed flow is the one bounded by the flat plate and the disturbing
body is the oblique shock wave generator which consists in a wedge.
Consider the properties of the flow, i.e. velocity, Mach number1, static pressure, total pressure,
density, static temperature and entropy. In general across the shock wave the velocity, Mach
number and total pressure decrease while static pressure, density, static temperature and entropy
increase. Since the component of the velocity parallel to the shock wave stays unchanged, usually
the Mach number downstream the oblique shock wave remains higher than 1, but still lower than
the upstream one.
The properties variation across the shock wave is described by the Rankine-Hugoniot equations
derived in appendix C, but in a more explicit way by equations (C.0.10)–(C.0.13).

1Mach number ahead of the shock wave must be higher than 1: let’s take into account the relation between
entropy variation and the upstream Mach

s2 − s1 ≈
2

3

γR

(γ + 1)2
(
M2

1 − 1
)3 (2.2.1)

if M1 < 1 the entropy would decrease across the shock wave which would violate the second principle of thermody-
namics.
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2.3 SWBLI
The interaction between the oblique shock wave and the boundary layer as said in the introduction
is complex and rather common in transonic and supersonic applications [1].

Figure 3: Dynamics of the shock wave boundary layer interaction.

Refer to figure 3. When the shock wave encounters the boundary layer a high adverse pressure
gradient takes place, which separates the boundary layer causing a thickening of it. The flow in
this region inverses its direction generating a recirculation bubble (a).
In order to respect the change in boundary conditions caused by the thickening of the boundary
layer due to the separation, a series of infinitesimal shock waves (compression fan) takes place
upstream the bubble (b) which generate a finite shock wave that interacts with the impingement
one slightly deviating it (c).
The separated boundary layer then reattaches at some point behind the impingement. For the
same reason of the compression fan, the flow that exceeds the recirculation bubble encounters an
expansion fan that deviates the flow against the plate (d).
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Figure 4: Field of vertical velocities showing the changes in direction of the
flow around the SWBLI in order to respect the local boundary conditions.

Once the flow reaches the nearest region to the plate where the boundary layer become relatively
thin, a reattachment shock wave takes place in order to make the flow respect the boundary
conditions (e).
In this region there is a high aerodynamic heating that stresses the plate.
Mainly the SWBLI affects the pressure, shear stress and heat transfer distributions along the wall.
Depending on factors such as the intensity of the shock wave and the viscosity of the boundary
layer, the recirculation bubble gets bigger or smaller with different vorticities and their sizing,
albeit in a qualitative way, it’s important and it’s the object of many researches in this topic.
By looking at this dynamic it is clear that its complexity is given by the fact that when the shock
wave interacts with the boundary layer that consequently deforms itself, the boundary conditions
get changed so that, in a way, the "new" boundary layer interacts with the impinging shock wave
that deforms as well. That is, the phenomenon is given by the reciprocal interaction between the
impinging shock wave and the boundary layer.
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3 Solver model
In order to carry out this thesis work, Francesco de Vanna’s PhD activity was took in advantage
[10], which consists in the realization from scratch of a numerical solver Unsteady Robust All-around
Navier-StOkes Solver (URANOS), with the purpose of the fluid simulation of compressible viscous
flows capable of dealing with moving bodies at high-Mach numbers with high order accuracy and
high resolution.
Whereupon, the work in this thesis focused on some parts of URANOS in order to set up the
SWBLI model.
The latter is based on the resolution of the Navier-Stokes equations (A.3.20). As said in appendix
A this system is made of 4 equations and 6 unknowns, so at least two more equations are needed
to close the system.
Then the hyperbolic equations of Navier-Stokes are solved time-wise using the 3rd order explicit
Runge-Kutta integrating method that limits the amount of oscillations among time maintaining
stability (see e.g. [15], [12]).
The main error sources are due to numerical approximations in calculations like integration and
differentiation, analytical approximations in setting boundary conditions and numerical instabilities
in the mathematical models used to solve the fluid domain [35].
In order to carry out the computation some assumptions must be done, which will be briefly
summarized below.

3.1 Solving considerations
As said above the resolubility of the Navier-Stokes system of equations can be achieved by consid-
ering two more equations.
The two adopted are an equation of state for the fluid

p

ρ
= RT (3.1.1)

that is, the fluid obeys the ideal gas state law, and an equation for the internal energy

e =
pR

γ − 1
(3.1.2)

where R is the universal gas constant and γ is the heat capacity ratio.
At this point the system is made of 7 equations and 7 unknowns, that means that the problem is
closed.
The molecular viscosity µ depends on the temperature for Newtonian fluids, since it is strictly
related to molecular interactions, and obeys the formula derived from the kinetic theory of Suther-
land, which is the Sutherland’s Law [47]:

µ =

(
S + T0
S + T

)
T 3/2 (3.1.3)

where T0 is the reference value of 273.15K and S is the constant effective temperature that de-
pends on the fluid involved. In the present thesis is assumed that S = 110.4 which is the value
corresponding to air.
The analytical model equations are made non-dimensional to carry out the computation.
Since the non-dimensional groups are given, the reference variables can be set to an arbitrary value,
and the most convenient choice is to put them unitary, i.e. T∞ = 1, p∞ = 1, ρ∞ = 1.
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4 Spatial discretization of the domain
The grid used to discretize the fluid domain has two dimensions: the stream-wise component (x )
and the vertical one (y).
Along x-axis the grid is uniform so that the flow can be uniformly described and in the case of
future works on turbulent flows it will be possible to easily capture the informations required to
take into account the Kolmogorov scales of the flow along the entire stream. The number of nodes
assigned along x must be high enough to represent the shock waves without having them to split
and diverge due to the numerical instability caused by the discretization of a continuous domain.
The y-axis discretization consists in an hyperbolic distribution, thicker near the plate, in order to
being able to describe as accurately as possible the dynamics occurring in the boundary layer, with
particular attention to the region interested by the recirculation bubble.
The law that defines the hyperbolic distribution is [10]

x (ξ) = 1 +
tanh [α (ξ − 1)]

tanh (α)
(4.0.1)

where α is a parameter that permits to manage the stretching of the distribution along y and
ξ is a coordinate on the uniform grid where the properties of the flow get computed and then get
converted into the non-uniform grid by coordinate transformation.
The number of nodes in the y dimension must respect a compromise: it must be high enough to
describe sufficiently well the boundary layer, but it mustn’t be too high since that means that cells
near the wall become very small and for the Courant-Friedrichs-Lewy problem [7], the steps of the
time discretization become highly thin causing an increment of the computation load.

Figure 5: Grid discretization along x-axis and y-axis.
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5 Discretization of terms regarding the spatial variation of
the flow properties

Terms that consider the spatial variation of the properties of the flow, i.e. convective and viscous
ones, can give numerical instabilities or inaccuracy if they are employed in a not appropriate way,
for example the encounter of a sharp gradient as the one given by the shock wave could generate
numerical oscillations around that region.
The objective of this section is to briefly present the shrewdnesses and solutions adopted to reduce
numerical instabilities.
Firstly will be described the treatment of convective terms in section 5.1, then will follow the
explanation of the treatment of viscous terms in section 5.2.

5.1 Discretization for convective terms
The discretization of convective terms requires particular attention since numerical instabilities
are easy to be protracted in the resolution of the flow, especially when facing cases that involve
particular behaviours of the flow as the one studied in this thesis.

5.1.1 WENO scheme

In the presence of sharp gradients of the flow variables, as in the case of shock waves, particular
attention must be payed since these get translated into discontinuites by the discretization of con-
tinuous fields, and using an usual discretization one can occur in numerical fluctuations around
them. This problem is well known as Gibbs phenomenon.
These fluctuations are taken into account by the solver and get propagated ending up perturbing
the solution.
In order to avoid this problem an appropriate discretizing method must be adopted, which is based
on Weighted Essentially Non-Oscillatory schemes (WENO) [3], [27].
The one used in the work of this thesis is called WENO-Z, which is a 5th order Weighted Essen-
tially Non-Oscillatory scheme, and it consists in the definition of an high-order polynomial centred
around the cell j + 1/2 through a non-linear weighted combination of other three support polyno-
mials.
In this way when a shock wave sharp gradient is encountered, the solution gets propagated auto-
matically with high accuracy and avoiding numerical fluctuations.
The WENO schemes are a subfamily of the older Essentially Non-Oscillatory schemes (ENO)
which use only one stencil instead of n of them (3 in this case).

5.1.2 Central scheme

Where the WENO method is not needed, i.e. far from the sharp gradients, it is better to adopt a
central scheme in order to save computational cost obtaining moreover an higher accuracy.
Convective terms contain the differentiation of the product of variables and when this operations
get handled by the solver, a numerical error get introduced in the resolution: the aliasing error.
This problem is shared by all type of schemes and causes an artificial shift of the spectral energy
content from low to high wave numbers, that is, there is a drop in energy at low wave numbers
simultaneously with an increase in energy at high wave numbers.
It is clear that this problem is related to the mathematical form of the convective terms, therefore
while different forms of them share the same physical meaning, the numerical results are different.
For this reason since the flow is compressible the low-dissipative, locally-conservative approximation
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realized by a 6th-order central fully split approximation2 of convective terms gets adopted, so called
KGP6 since developed by Kennedy-Gruber-Pirozzoli [20] (see also [28], [38]), which is currently
the most robust in literature for shock-free flows.
This scheme defines an expansion of convective terms in a local-conservative way in order to
preserve the total mass, the momentum and the energy of non-viscosity flows at low Mach numbers.

∂ρujψ

∂xj
=

1

4

∂ρujψ

∂xj
+

1

4

(
uj
∂ρψ

∂xj
+ ρ

∂ujψ

∂xj
+ ψ

∂ρuj
∂xj

)
+

1

4

(
ρuj

∂ψ

∂xj
+ ρψ

∂uj
∂xj

+ ujψ
∂ρ

∂xj

)
(5.1.1)

5.1.3 Hybrid scheme

Since this work involves the simulation of a fluid field of which only a minor portion is interested
by the presence of the shock wave, the two methods presented above must be implemented jointly.
That means that the spatial discretization is an hybrid that mutates as the shock wave(s) evolves
into the domain. For this reason an automatized method must be used in order to automatically
define where is appropriate to adopt the WENO scheme or the central one.
This methods are called shock detection techniques and consist in the determination of the regions
where the shock waves will be located [10].
In order to detect the shock waves the density gradient gets computed

θ = max

(
∂ρ

∂xj

)
j=1,3

(5.1.2)

Introducing a proper threshold value for θ the solver can distinguish where to implement the
WENO scheme (θ > θtr) and where the central one (θ < θtr).

5.2 Discretization for viscous terms
Viscous terms are present in the momentum equation and in the energy equation through the
viscosity tensor

momentum:
∂

∂xi
(µ∞Φji)

energy:
∂

∂xi

(
µ∞Φjiuj +

µ∞
Pr

γ

γ − 1
k
∂T

∂xj

) (5.2.1)

These terms are written in a form that introduces numerical errors due to the product of compo-
nents that depend on the differentiation variable xi.
The main purpose is to rewrite them avoiding these operations [38].
As can be seen in section A.2 of appendix A, the viscosity tensor Φ is defined as

Φ = µ

[
2E − 2

3
(∇ · ~v) I

]
(5.2.2)

where
E =

1

2

(
∇~v +∇~v>

)
(5.2.3)

2the accuracy order number is related to the number of terms considered in the Taylor series expansion to
compute derivatives.
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so that
Φ = µ

[(
∇~v +∇~v>

)
− 2

3
(∇ · ~v) I

]
(5.2.4)

thus, written in an indicial way

Φji = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂ui
∂xi

δji

)
(5.2.5)

Taking into account only terms containing the viscosity tensor in (5.2.1) and substituting (5.2.5),
results in

momentum: µ∞
∂

∂xi

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂ui
∂xi

δji

)]
energy: µ∞

∂

∂xi

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂ui
∂xi

δji

)
uj

] (5.2.6)

where µ = µ (xi).
Here the differentiation of products that depend on xi has been written explicitly. In order to avoid
numerical instabilities these operations can be solved analytically by expanding the derivatives
applying the following basic rules of differential mathematics

∂

∂x
(a · b) = a′ · b+ a · b′ (5.2.7)

∂

∂x
(a · b · c) = a′ · b · c+ a · b′ · c+ a · b · c′ (5.2.8)
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6 Boundary conditions
In this section the boundary conditions will be treated.

Figure 6: Boundaries of the simulation domain. Each of them requires condi-
tions to be applied to.

Referring to figure 6, the domain has 4 interfaces with the outer ambient:

• the inlet on the left;

• the undisturbed stream on top;

• the flat plate on the bottom;

• the outlet on the right.

For each of these boundaries one or more conditions must be declared, conditions that have to be
as faithful as possible to the dynamic of the phenomenon that wants to be represented in order to
obtain the desired results within a sufficiently small error due to mathematical approximations.
This section will start by presenting the inlet conditions in sec. 6.1, then will follow the upper
conditions in sec. 6.2, after that the flat plate conditions will be presented in sec. 6.3 concluding
with the presentation of the outlet conditions in sec. 6.4.

6.1 Inlet conditions
The inlet conditions regard the velocity, temperature and density profiles of the flow.
Then the pressure profile gets determined by the state law of ideal gas, using the known density
and temperature profiles. As described in appendix B (eq. B.0.3) this one should results constant
along y-axis.
As can be seen in appendix 2.1.1 the equations describing the compressible flow inside the bound-
ary layer can be solved separately, but the first one to be solved is the Blasius solution for the
velocity profile derived from the momentum equation. Once f and f ′′ are known, one can proceed
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to integrate the energy equation in order to obtain the temperature profile which leads to the
knowledge of the density profile as well.
The numerical resolutions for the two equations are very similar and rather stable.

6.1.1 Velocity profile - Blasius solution

The velocity profile given in the inlet respects the Blasius solution (see sec. 2.1.1):

ff ′′ + f ′′′ = 0 (6.1.1)

which is a non-linear differential equation of the third order.
This equation is the incompressible solution for the stream-wise velocity, which is an approximation
of the compressible case obtained with the assumptions made in section 2.1.1.
The velocity profile is described by f ′ : f ′(η) = u(η)/U∞
In order to solve the equation to get the profiles of f , f ′ and f ′′ a numerical method is used based
on the Shooting method algorithm coupled with Euler’s integration [25].

Resolutive method The known conditions for the resolution of the Blasius solution are:

1. Adherence condition: u| η=0 = 0 ⇒ U∞f
′(0) = 0 ⇒ f ′(0) = 0

2. Impermeability condition: v| η=0 = 0⇒ (−∂ψ/∂x) | η=0 = 0⇒
−U∞δ̇ [f(0)− f ′(0)η] = 0⇒ f(0) = 0

3. Junction condition: u| η→∞ = U∞ ⇒ U∞f
′| η→∞ = U∞ ⇒ f ′| η→∞ = 1

For the resolution of the problem the first two initial conditions are used f(0) = 0 and f ′(0) = 0,
but another condition is missing, in particular the one on the f ′′(0) which represents the derivative
of the velocity profile near the wall.
The Shooting method algorithm consists on the assumption of the initial condition for the f ′′(0),
then the solution get integrated and lastly the junction condition get exploited in order to verify
the correctness of the initial assumption made.
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Figure 7: Application of the Shooting method to the Blasius solution: in red
the wrong guesses, in blue the correct one.

In order to integrate the non-linear equation of the third order a simple system of the first order
get constructed making use of three auxiliary variables:

f0 = f , f1 = f ′ , f2 = f ′′ (6.1.2)

so that

∂

∂η
(f0) = f1

∂

∂η
(f1) = f2

∂2

∂η2
(f2) = −1

2
f0 f2

(6.1.3)

At this point the Euler’s integration is implemented between η = 0 and η → ∞, where this last
value must be chosen in an appropriate way, otherwise the Blasius solution won’t develop correctly
(usually η∞ ≥ 10).
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Generally:

f0(j) = f0(j − 1) + f1(j − 1) · dη
f1(j) = f1(j − 1) + f2(j − 1) · dη

f2(j) = f2(j − 1)− 1

2
f0(j − 1) f2(j − 1) · dη

(6.1.4)

from which f1(η →∞) is obtained and it get compared with the junction condition.
In order to find the correct assumption for the initial condition on f ′′ a numerical method can be
used, such as bisection (alternatively the secant method can be used for a boost in the convergency
speed which becomes super-linear of order 1+

√
5

2 ∼ 1.618).
At last the correct value for f ′′ converges to ∼ 0.3320547 which is the one of the blue curve in
(fig.7).
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Figure 8: Blasius solutions for f, f ’ and f”.

As can be seen in figure 8, f diverges to infinity, while f ′ and f ′′ converges asymptotically
respectively to 1 and to 0. Note that f ′′ starts from ∼ 0.332, and corresponding to ∼ 4.91 (dash-
dot line) the f ′ reaches the value of 0.99 which equals to the boundary layer thickness for the
Blasius solution.
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6.1.2 Vertical velocity profile

The inlet of the simulation domain is fixed at a certain distance from the leading-edge of the
plate. This means that the inlet conditions that are given have to respect the flow of a developed
boundary layer. Since the boundary layer thickens along the plate, a component of the velocity in
the vertical direction has to be given.
In contrary of the turbulent regime though, in the laminar one this condition is very weak and
does not affect the solution appreciably since its magnitude is negligible in respect to the one of
the stream-wise component. It follows that after a short distance from the inlet, the flow corrects
itself acquiring its vertical component of the velocity autonomously.
Then in order to slightly lighten the computation cost of the inlet conditions definition, it is decided
to omit it.
Anyway, from the theoretical aspect, it is important to take it into account, therefore the obtaining
of the analytical equation is explained below.

The solution for the vertical profile of the velocity is found by looking at the definition of stream
function ψ (sec. 2.1.1)

v = −1

ρ

∂ψ

∂x
(6.1.5)

The meaning of ψ can be found by integrating the velocity along y

ψ =

∫ y/δ(η)

0

u dy =

∫ y/δ(η)

0

U∞ g(η) dy =

∫ η

0

u δ g(η) dy = U∞ δ

∫ η

0

g(η) dη

where
g(η) =

u

U∞

then the equation for the stream function becomes

ψ = U∞ δ f(η) (6.1.6)

Let’s consider the definition of the thickness of the boundary layer for the Blasius solution:

δ = 4.91

√
νx

U∞
(6.1.7)

Then substituting (6.1.7) into (6.1.6) results in

ψ = 4, 91
√
xνU∞ f (6.1.8)

differentiating (6.1.8) in respect to x results in

∂ψ

∂x
=

4.91

2

√
νU∞
x3

f + 4.91
√
xνU∞

∂f

∂η

∂η

∂x
(6.1.9)

now

η =
y

δ
=

y

4.91
√

xν
U∞

=

√
U∞
xν

y

4.91
(6.1.10)

so
∂η

∂x
= −

√
U∞
ν

1

2
√
x

y

4.91
(6.1.11)
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which substituted into (6.1.9) leads to

∂ψ

∂x
=

4.91

2

√
νU∞
x

f − 4.91
√
xνU∞ f ′

√
U∞
νx3

y

2 · 4.91
(6.1.12)

Since ρ/µ = 1/ν, the definition (2.1.2) can be written as

Rex =
U∞
ν
x ,

ν

x
=
U∞
Rex

this one can be substituted into (6.1.12) in order to explicit Reynolds numbers:

∂ψ

∂x
=

4.91

2

√
U2
∞

Rex
f − 4.91

√
νU∞
x

f ′
√
U∞
ν

y

2 · 4.91

which can be simplified to obtain

∂ψ

∂x
=

1

2
U∞

(
4.91√
Rex

f − y

x
f ′
)

(6.1.13)

This last equation can be substituted into (6.1.5) to finally obtain

v = − 1

2ρ
U∞

(
4.91√
Rex

f − y

x
f ′
)

(6.1.14)

From this final equation can be seen that the vertical profile of the velocity on a fixed coordinate
x is given by the balance of two terms that diverge going to infinite, i.e. f (figure 8) and naturally
the coordinate y, that means that from a numerical point of view particular attention must be
given to the approximations done in the calculation of every term that makes up the equation,
otherwise one term could exceed the other one leading to the divergence of the velocity profile.
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Figure 9: Vertical velocity profile.

6.1.3 Temperature profile

The temperature profile inside the boundary layer depends on the velocity profile which is found
solving the Blasius solution of the momentum.
The relationship between the temperature and the velocity is given by several models. More or
less all of them are basically derived from the energy equation adopting different assumptions.
In this thesis one of the most common of them gets explained, the solution found by Crocco-
Busemann [40], [45], and then is presented the resolution of the exact solution of Blasius for the
energy equation which is the one adopted in this work.

Crocco-Busemann profile This relation is valid even for Pr 6= 1 and dp/dx 6= 0, nevertheless
it is obtained in the simplified case of Pr = 1 and dp/dx = 0.
When Pr = 1 the total enthalpy is constant everywhere, so the wall is adiabatic ∂h/∂y = 0,
H = h+ 1/2 u2, where H is the total enthalpy.
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In order to keep the total enthalpy constant there’s a perfect balance between viscous dissipations
and heat exchange (energy balance).
Let’s consider the energy equation of the compressible boundary layer set of equations (2.1.5.d).
When Pr = 1 the equations of the energy and momentum become very similar, apart from the
dissipation term.
In order to solve this system of equations can be assumed

h = h(u) (6.1.15)

With Pr = 1 the energy equation becomes

dh
du

[
ρu
∂u

∂x
+ ρv

∂u

∂y
− ∂

∂y

(
µ
∂u

∂y

)]
=

(
1 +

d2h
dy2

)
µ

(
∂h

∂y

)2

(6.1.16)

with dp/dx = 0 the energy equation becomes

d2h
dy2

= −1 (6.1.17)

which has for solution
h = −1

2
u2 +A u+B (6.1.18)

In order to determine h, two boundary conditions are needed:

1. wall: u = uW = 0→ B = hW

2. undisturbed flow: u = u∞ = U∞ → A =
(
h∞ + 1

2U
2
∞ − hW

)
U∞

where subscripts W and ∞ denote the values referred near the wall and in the undisturbed region.
The boundary conditions above allow to obtain the total enthalpy

H = h+
1

2
u2 = hW + (H∞ − hW )

u

U∞
(6.1.19)

with CP = cost the equation for the temperature is obtained

T = TW + (TR − TW )
u

U∞
− γ − 1

2
Pr M2

∞T∞

(
u

U∞

)2

(6.1.20)

where M∞ and T∞ are respectively the Mach Number and temperature in the undisturbed region
and TR is the recovery temperature that is the temperature on the wall in thermal equilibrium
conditions:

TR = T∞

(
1 + r

γ − 1

2
M2
∞

)
(6.1.21)

r is called recovery factor and it is the ratio between the temperature increment due to wall friction
and the one due to adiabatic compression. For common gases with Pr ∼ 1 in a laminar flow it is
very well approximated by

√
Pr, otherwise in turbulent flow it becomes approximated by 3

√
Pr.

Substituting (6.1.21) into (6.1.20) the temperature equation can be written as

T = TW + (TR − TW )
u

U∞
− (TR − T∞)

(
u

U∞

)2

(6.1.22)

which is the Crocco-Busemann relation between temperature and velocity inside the boundary
layer.
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Blasius solution - resolutive method Another method to determine the temperature profile
inside the boundary layer is the Blasius solution for the energy equation.
Consider the equation derived in section 2.1.1

g′′ + Prfg′ = −Pr (γ − 1)M2
∞f
′′2 (6.1.23)

This equation allows to determine the temperature profile through the boundary layer having
solved the Blasius solution for the velocity in order to obtain f and f ′′.
As said in section 2.1.1 this equation is derived by an exact math but it is affected by an ap-
proximation which involves the uncoupling of the equation for the velocity and the equation for
the temperature. This approximation consists in considering the Chapman-Rubesin parameter C
constant and equal to 1, in other words is made the assumption that f and f ′′ do not depend on
g anymore.
The Blasius solution in the case of the boundary layer over a flat plate is more accurate than the
Crocco-Busemann relation, therefore it is the one adopted in this work.
Let’s introduce a constant parameter to simplify the equation (6.1.23)

A = Pr (γ − 1)M2
∞ (6.1.24)

so that it can be written as
g′′ + Prfg′ = −A f ′′2 (6.1.25)

The resolution procedure is strictly similar to the one for the velocity profile explained in section
6.1.1. The known boundary conditions are:

1. Adiabatic wall: ∂T
∂η |η=0 = 0⇒ g′(0) = 0

2. Junction condition: T |η→∞ = T∞ ⇒ g|η→∞ = 1

In order to solve this equation the Shooting method is implemented, coupling it with Euler’s
integration [25]. The boundary condition that is varied in the Shooting method is the value of
the temperature on the wall which should be approximately equal to the recovery temperature
(6.1.21).
Similarly to the velocity profile, a simple system of the first order is composed using two auxiliary
variables:

g0 = g , g1 = g′

considering also the variables introduced for the velocity profile (6.1.2) the system is

∂g0
∂η

= g1

∂g1
∂η

= −Prf0 g1 −A f22

(6.1.26)

This system gets integrated along η implementing Euler’s algorithm.
Generally:

g0(j) = g0(j − 1) + g1(j − 1) · dη
g1(j) = g1(j − 1)−

[
Prf0(j − 1) g1(j − 1) +A f2(j − 1)2

]
· dη

(6.1.27)

At the end the value of g0(η →∞) is found, which should be equal to 1 as stated by the junction
condition.
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In order to satisfy this condition a numerical method can be adopted, in this work the bisection
method is used.
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Figure 10: Temperature profiles based on Crocco-Busemann and Blasius solu-
tions.

In figure 10 there are represented the Crocco-Busemann and Blasius models for the temperature
profile and can be noticed the slightly difference between them. Nevertheless they both share the
same trend of the temperature increment inside the boundary layer.
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6.1.4 Density profile

Another condition to be defined at the inlet is the density profile. Once the temperature profile
has been obtained, this property is way simpler to be determined than the others above.
Since the boundary layer is thickening along x the particles of the flow must follow his way upward,
that means that the density near the plate decreases.
This can be seen in analytical way considering the state law for ideal gases

p

ρ
= RT (6.1.28)

for (B.0.3) along the boundary layer the pressure is constant, so

ρ ∝ 1

T
(6.1.29)

that is, the density decreases as the temperature increases.
The density profile obtained can be seen in figure 11.
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Figure 11: Density profile found having adopted the Blasius solution for tem-
perature profile.
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6.2 Upper conditions
The upper boundary of the simulation domain is in contact with the undisturbed flow. This
boundary is also interested by the entrance of the shock wave into the domain. The upper boundary
has to be split into two regions:

1. Crossing Shock Wave (CSW);

2. undisturbed region Downstream the Shock Wave (DSW).

Figure 12: Division of the upper boundary of the simulation domain, the two
regions can be distinguished.

Along the CSW the Rankine-Hugoniot equations (appendix C) are implemented in order to
take into account the variation of the properties due to the jump of the flow across the shock wave.
The separation between the two regions is based on the point where the shock wave entries into the
domain. This point depends on the angle of the shock wave which is defined with the θ − β −M
relation, that is, having fixed the impingement point on the plate and having obtained the β
angle from eq.(C.1.1) (known the angle θ of the oblique shock wave generator and the inlet Mach
number), the point on the upper domain where the shock wave entries gets defined. Then the
location where the change in boundary conditions occurs is taken a little downstream of the shock
wave in order to entirely include it.
Finally, in the DSW region the properties of the flow crossing the upper boundary get extrapolated
from the domain copying them on the first ghost node3 outside the simulation domain.

6.3 Flat plate conditions
For the lower bounder of the simulation domain, the adiabatic no-slip wall condition is assumed.
That means that (

∂T

∂y

)
y=0

= 0 (6.3.1)

as can be seen in figure 10.
The bottom boundary conditions are defined through the implementation of the Navier-Stokes
Characteristic Boundary Conditions (NSCBC) which are introduced here below for the general
case of a one dimension problem [35], [42].

3The ghost nodes are points outside the domain that are needed to execute derivatives on the borders or other
calculations like the implementation of boundary conditions.
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6.3.1 Navier-Stokes Characteristic Boundary Conditions

Considering a supersonic flow as the case of this work, the "physical" waves (known as ascendant
characteristics) cannot ascend from the outlet to the inlet since their propagation velocity is the
one of the sound and the flow descend faster, nevertheless the numerical waves, since they are not
physical, can do it, going to influence the flow and the solution as well.
In order to minimize the numerical instabilities and the spurious reflections of the characteristics
on the boundaries caused by the nature of the resolutive method, accurate boundary conditions
must be defined, these conditions are the Navier-Stokes Characteristic Boundary Conditions.
The assumption made is to consider that, limited to the boundary condition, the flow has only the
x component, that is

∂~U

∂t
= −∂

~F (~U)

∂x
(6.3.2)

The system of hyperbolic equations (6.3.2) can be written in a primitive form

∂~U

∂t
= −~S ∂~U

∂x
(6.3.3)

where
~S = ~A−1 ~E ~A (6.3.4)

where the rows of ~A are the left eigenvectors of ~S, the columns of ~A−1 are the right eigenvectors
of ~S and ~E is a diagonalized matrix with ~Eii = ei eigenvalues of ~S.
Thus

∂~U

∂t
= − ~A−1 ~E ~A

∂~U

∂x
(6.3.5)

Now the outgoing waves (those having ei ≤ 0 at x = xmin and ei ≥ 0 at x = xmax) are related to
informations contained in the domain, so their numerical approximations are stable.
However the incoming waves (those having ei > 0 at x = xmin and ei < 0 at x = xmax) are related
to informations external to the domain, so their numerical approximations are unstable since not
using external data.
Nevertheless, in common fluid-dynamic problems the flow behaviour at the outer locations is well
known, so accurate approximations can be often used in order to minimize reflections of outgoing
waves.
These approximations consist in a system of relations referred to an associated Local One-Dimensional
Inviscid (LODI) problem whose study allows to establish the values of the amplitude variations of
the waves crossing the boundary in the viscous multidimensional case.
Then defining the vector of characteristic waves

~L (~U) = ~E ~A
∂~U

∂x
(6.3.6)

the equation (6.3.5) becomes
∂~U

∂t
= − ~A−1L (~U) (6.3.7)
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with

L1 = e1

(
∂p

∂x
− ρc∂u

∂x

)
L2 = e2

(
c2
∂ρ

∂x
− ∂p

∂x

)
L3 = e3

∂v

∂x

L4 = e4
∂w

∂x

L5 = e5

(
∂p

∂x
+ ρc

∂u

∂x

)
(6.3.8)

Depending on ~U the LODI system assumes different forms, in the case of this thesis it is

∂ρ

∂t
= −d1

∂ρu

∂t
= −u d1 − ρ d3

∂ρv

∂t
= −v d1 − ρ d4

∂ρw

∂t
= −w d1 − ρ d5

∂ρE

∂t
= −1

2

(
u2 + v2 + w2

)
d1 −

d1
γ − 1

− ρ (u d3 + v d4 + w d5)

(6.3.9)

where the presence of the amplitude variations of the waves (ei) is explicated through the functions
di

d1 =
1

c2

[
L2 +

1

2
(L1 + L5)

]
d2 =

1

2
(L1 + L5)

d3 = − 1

2 ρ c
(L1 −L5)

d4 = L3

d5 = L4

(6.3.10)

in which Li = Li(ei).
Then the application of characteristic conditions to different cases is done by adapting the ~L
vector that describes characteristic waves.

In the case of the adiabatic no-slip wall the velocities on the plate are zeros and the heat flux
is zero either, then eq.(6.3.9.b) gives ρ d3 = 0 ⇒ d3 = 0 so eq.(6.3.10.c) gives L1 = L5 also
L2 = L3 = L4 = 0. By these results the density and the total energy can be obtained by integra-
tion.
Attention must be paid since the adiabatic condition is obtained by imposing the wall temperature
to the one of recovery (equation (6.1.21)), thus for an undisturbed flow over the flat plate the
adiabaticity is achieved, while in presence of an external disturbance that varies the temperature
of the flow such as the SWBLI, a heat exchange occurs so as to keep the wall temperature equal
to the recovery one.
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6.4 Outlet conditions
For the outlet conditions the most common used is the Neumann one, which is a "weaker" condition
than the one of Dirichlet. This last condition specifies the exact values of the properties on the
boundaries of the domain, while the Neumann condition consists in the imposition of the derivative
of the properties of the flow in respect to the stream-wise coordinate.
Usually the convective derivative normal to the boundary is set equal to zero which means that
the transported properties follow the stream-wise direction to leave the domain.

∂ (·)
∂x

= 0 (6.4.1)

Another choice could be to adopt the Navier-Stokes characteristic boundary conditions described
in sec.6.3.1 in order to reduce numerical instabilities.
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7 Model validation
The program must be validated. A popular author for validations is G. Degrez et alia (1987) [11].
Usually validations in this topic regard the overlapping of specific graphs, that means that there
are certain settings of the simulation that must coincide to those used by the reference one.
In particular:

• inlet Mach number: M∞ = 2.15

• wedge angle: θ = 3.75◦

• impingement Reynolds number: Rexsh = 105

that’s because the recirculating bubble dynamic strongly depends on the intensity of the shock
wave and the viscosity of the flow in the impingement location.
In section 6.1 is said that the inlet conditions are functions that are obtained by integration in
an unidimensional domain. This domain is arbitrary thus the results obtained are relative to a
generic boundary layer thickness, i.e. δ ∼ 4.91 for the Blasius solution. In practical terms though,
the latter increases along x as stated by equation 2.1.3 and also the abscissa Reynolds number do
so as can be seen in equation 2.1.2. That means that in order to obtain a certain Reynolds number
in correspondence of the impingement location and having set a certain distance of evolution of
the boundary layer between the inlet and the impingement point L = xsh − xinlet, it is necessary
to set a proper Reynolds number and a proper boundary layer thickness in correspondence of the
inlet location. The latter, having set L, is not arbitrary since it depends on the scale factor of the
system. Said that the solutions for the inlet conditions have to be interpolated on an adequate
unidimensional domain.
As said the validation consists in the overlapping of some graphs, but both the physics of the
recirculating bubble and the mathematics that describes it are rather delicate, i.e. little math-
ematical approximations are connected to appreciable physical differences. Once the boundary
conditions are well posed and the numerical stabilities of the solver are achieved, the major factor
that determines the shape of the recirculating bubble is the order of accuracy of the model adopted
for the solver. In particular in Degrez et al a 1st order4 central differences method is employed
while in the present thesis a 6th order one is used. This foreshadows that the graphs won’t be
exactly overlapped in the region of the interaction, but the model will be considered validated if
the trend obtained will be coherent with the trend expected for a higher order model. Then a
second author is taken into account in the validation: A. Lerat et alia (2001) [22] that compared
the results obtained from a 2nd order and a 3rd order model. In this way the correct behaviour of
the interaction region can be predicted.

The properties that get compared are the wall pressure trend in section 7.1 and the skin fric-
tion in section 7.2.
Then in section 7.3 some velocity profiles will be pointed out in some sections of the domain
corresponding to reference positions also cited by Degrez et al.

4the order of accuracy attributed to a model is the one adopted in the discretization of convective terms of the
Navier Stokes equations. Nevertheless the WENO scheme and the discretization of dissipative terms use or may use
different orders of accuracy, as for the case of Degrez which used a 4th order of accuracy for the discretization of
dissipative terms.
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7.1 Wall pressure
The first property taken into account is the pressure trend on the surface of the flat plate.
Its behaviour in the SWBLI phenomenon is characterized by an initial almost-plateau in the region
upstream the interaction where the shock wave still doesn’t show its effects, then there is an initial
rise, i.e. an adverse pressure gradient, in the region where the compression fan takes place (b in
figure 3) followed by a second rise downstream the nominal impingement location (the point where
the shock wave would intersect the flat plate in the case of perfectly inviscid fluid). After that the
pressure reaches a second almost-plateau where the interaction vanished and the pressure reaches
the value corresponding to the one determined by Rankine-Hugoniot equations.
In the following figure the pressure trend is adimensionalized by the minimum pressure along x,
which is the one just before the first rise of pressure.
Also the abscissa is adimensionalized in respect of xsh, which is the point where the nominal
impingement is.
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Figure 13: Wall pressure trend comparison between Degrez et al simulation and
those of Lerat et al. In graph has been also reported the experimental data
obtained by Degrez’ experiment.

From figure 13 it can be seen that the pressure trend of the present 6th order model lays within
an acceptable error band.
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The setting of the wedge angle and the inlet Mach number determine the intensity of the shock
wave, this fact has two intuitive influences in this graph: firstly on the dimensions of the interaction
region in terms of width and secondly on the adiabatic compression factor, i.e. the pressure value
reached downstream the interaction region. The first one is also influenced by the order of the
resolution model, but the second one is almost-univocal since it is principally related to macroscopic
effects and only partially on the behaviour of the SWBLI.
In figure 13 can be also noticed the trend of behaviours from low order models to high order models:
in low orders the second rise of pressure produces an overshoot that is not found in high order
models, the 6th order model presents a coherent behaviour of the flow in that region considering
Lerat’s simulations.

7.2 Skin friction
The second property compared is the skin friction along the plate. This property is very meaningful
in this topic since it describes the dynamics of the flow in two aspects.
The first one is the mere representation of the skin friction giving informations on the viscous shear
stress along the plate. The second one can be clearly seen by the analytical definition of the skin
friction.
Let’s consider the following relation

cf =
τW

1
2 ρ U

2
∞

(7.2.1)

where τw is the viscous shear stress along the wall, thus the skin friction is proportional to the
latter. For fluids the shear stress is a function of the strain rate dξ/dt, in particular, for Newtonian
fluids, through the Newton’s law

τW = µ
dξ
dt

(7.2.2)

where µ is the dynamic viscosity which depends on the kind of fluid involved.
Equation (7.2.2) shows that the deformation of the fluid in its motion along the stream-wise
direction causes a resulting tension on the plate which is proportional to the rate of deformation
through the viscosity of the fluid itself.
The strain rate can be written as

dξ
dt

=
u (y + δy)− u (y)

δy
(7.2.3)

which for small δy gives

dξ
dt

=
∂u (y)

∂y
(7.2.4)

thus

τ = µ
∂u

∂y
(7.2.5)

On the wall it can be written as

τW = µ

(
∂u

∂y

)
y=0

(7.2.6)
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which is a tension in the same direction of the flow, i.e. a viscous shear force per unit of area.
Substituing (7.2.6) into (7.2.1) results in

cf =
2µ

ρ U2
∞

(
∂u

∂y

)
y=0

(7.2.7)

as can be seen in equation (7.2.7) the skin friction directly depends on the derivative of the
velocity profile at the wall, this gives informations on the evolution of the velocity profiles in the
stream-wise direction, which can be used to validate the model since the behaviour of the flow in
the region outside the interaction one must be the one of the undisturbed flow over the flat plate,
so it has to be overlapped to the one of reference, and it also clearly says where the recirculating
bubble is located, i.e. the separation and reattachment points. The latter causes the skin friction
to be a very handy tool for the analysis of the shape and behaviour of the recirculating bubble.
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Figure 14: Skin friction on the wall along stream-wise direction.

In the skin friction graph (figure 14) results evident the strong dependency of the physical
results from the order adopted in the mathematical model. As for the pressure, also for the skin
friction, low order models see an overshoot of the property in correspondence of the junction with
the undisturbed region downstream the SWBLI, which means that, referring at equation (7.2.7),
the velocity profile near the wall is flatter, thus the boundary layer there is thinner. Moreover low

38



order models obtain a lower skin friction value downstream the nominal impingement, that means
that the recirculation is stronger, i.e. the flow has a more negative component near the wall.
In the present thesis the separation point is situated at x/xsh = 0.7652, while the reattachment
point lays at x/xsh = 1.2349, with a width of the separation region of width = 0.4697. The
minimum value of the skin friction is cfmin = −7.3116E − 04.
Figure 14 shows also that the SWBLI causes an inversion of the shear stress along the plate in the
region of the recirculation with a fluctuation of its magnitude along the stream-wise direction.

7.3 Velocity profiles
Considering an undisturbed flow, as discussed in section 6.1.1 the shape of the velocity profile is
determined by its derivative in y = 0. That means that the skin friction is strongly related to the
behaviour of the velocity profiles.
In this section are reported velocity profiles corresponding to the three different sections of the
flow in the stream-wise direction proposed by Degrez et al :

• x/xsh = 0.6;

• x/xsh = 0.95;

• x/xsh = 1.6.

The choice to visualize the velocity profiles in these section is motivated by the fact that the first
one is in a position upstream the SWBLI, the second one shows the recirculation and the third
one is downstream the SWBLI.
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(c) x/xsh = 1.6

Figure 15: Velocity profiles in different sections

By graphs 15a and 15c can be noticed that as expected the boundary layer thickens along
x, while in correspondence of the recirculating bubble (figure 15b) the boundary layer gets even
higher due to the interaction with the shock wave (see fig. 3).
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8 Analysis of SWBLI behaviour
In practical cases SWBLIs take place in different situations with different boundary conditions
regarding different fluids. For this reason specific studies of this topic have to be applied to the
related case in order to obtain accurate results. The work pursued in this thesis wants to be as
general as possible in order to give qualitative informations about the problem and to provide basic
engineering tools to permit a further study on specific situations that may be of interest.
One of the most general analysis that can be carried out is the study of the SWBLI behaviour
for different Mach numbers. This condition can be verified not only in different systems, but also
within the same one, for example the blades of a transonic turbo-machinery that increases its
rotational speed are interested by a relative Mach number that increases along time, leading to
different SWBLIs.
The Mach number required for the validation (section 7) is M = 2.15. Additional Mach numbers
valued are M = 2.50, M = 2.75, M = 3.00, M = 3.50. In this way a qualitative dependence of the
SWBLI phenomenon in respect to the Mach number can be observed. This dependence is related
to the distinct intensities of the oblique shock waves generated by different Mach numbers.

Figure 16: Portion of the θ−β−M graph (appendix C.1) representing oblique
shock wave angles corresponding to Mach numbers under study (blue lines)
having fixed the wedge angle at 3.75 degrees.
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As can be seen in figure 16, higher Mach numbers generate shock waves having lower angles in
respect to the stream direction (β) leading to weaker shock waves (see appendix C.1).
In particular

Table 1: Oblique shock wave angle values associated to Mach numbers under
study with fixed wedge angle.

M θ β

2.15 3.75° 30.75°

2.50 3.75° 26.41°

2.75 3.75° 24.07°

3.00 3.75° 22.16°

3.50 3.75° 19.23°

Firstly in this section are displayed some data fields (sec. 8.1).
Secondly, informations given in this section regard issues presented in the validation section (sec.
8.2-8.4), however the study on the velocities is focused on the recirculation region. Furthermore
additional studies about the thermal behaviour of the boundary layer are carried out (sec. 8.5).
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8.1 Data fields
In this section are shown several data fields for the different cases. This allows to visualize the
macroscopic behaviour of the SWBLI as a function of the Mach number given at the inlet.
Firstly are reported the velocity fields (8.1.1), then the pressure (8.1.2), density (8.1.3) and tem-
perature (8.1.4) fields are following.

8.1.1 Velocity fields

(a) Mach = 2.15

(b) Mach = 2.50

(c) Mach = 2.75

(d) Mach = 3.00

(e) Mach = 3.50

Figure 17: Velocity fields for different Mach numbers.
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8.1.2 Pressure fields

(a) Mach = 2.15

(b) Mach = 2.50

(c) Mach = 2.75

(d) Mach = 3.00

(e) Mach = 3.50

Figure 18: Pressure fields for different Mach numbers.
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8.1.3 Density fields

(a) Mach = 2.15

(b) Mach = 2.50

(c) Mach = 2.75

(d) Mach = 3.00

(e) Mach = 3.50

Figure 19: Density fields for different Mach numbers.
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8.1.4 Temperature fields

(a) Mach = 2.15

(b) Mach = 2.50

(c) Mach = 2.75

(d) Mach = 3.00

(e) Mach = 3.50

Figure 20: Temperature fields for different Mach numbers.
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8.2 Wall pressure for several Mach numbers
As said in section 2.2 the static pressure across a shock wave gets increased. By looking at equation
(C.0.11) the higher the upstream Mach number is, the more the static pressure gets increased.

Figure 21: Wall pressure trends corresponding to different Mach numbers. The
graph also shows the maximum pressures obtained in the perfectly inviscid case
(absent boundary layer) which are the dash-dotted lines.

As can be noticed by looking at figure 21 the maximum values of the pressure downstream the
SWBLI are lower than those obtained in the case without the presence of the boundary layer. This
is due to the fact that the dissipative effect in the SWBLI is proportional to the Mach number. In
particular this loss is caused by the presence of the compression fan upstream of the recirculating
bubble that deviates the flow.
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In the following table can be observed the reference values for the pressures

Table 2: Maximum values of pressure ratio along the plate for different Mach
numbers. The last column contains ratios between the 2nd and 3rd columns.

M pmax/pmin pinv.max/p
inv.
min pmax/p

inv.
max

2.15 1.5096 1.5300 0.9867

2.50 1.5778 1.6083 0.9812

2.75 1.6332 1.6699 0.9780

3.00 1.6805 1.7350 0.9686

3.50 1.7961 1.8778 0.9565

From table 2 can be confirmed that the attenuation of the compressive effect due to the presence
of the viscosity is higher as the Mach number increases.
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8.3 Skin friction for several Mach numbers
The skin friction highlights the dimensions of the recirculating bubble, thus it is very meaningful
in the study of the dependence between the SWBLI and the Mach number.
By looking at table 1 it can be seen that in the region of weak shocks, the higher the Mach number,
the weaker the shock wave is. That means that the recirculating bubble is expected to be narrower
for high Mach numbers.
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Figure 22: Skin friction trends along the plate for several Mach numbers.

As can be seen in figure 22 and in figure 23 the width of the SWBLI is strongly related to the
Mach number, i.e. to the shock wave intensity.
Moreover the minimum value of the skin friction in the SWBLI depends on the Mach number.
Here below is reported a table containing values extracted of separation and reattachment points
for each case. These points are identified where the skin friction changes in sign.
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Table 3: Positions of detachment and reattachment points at various Mach

M xdet/xsh xreatt/xsh

2.15 0.7652 1.2349

2.50 0.8043 1.1522

2.75 0.8125 1.1125

3.00 0.8333 1.0942

3.50 0.8417 1.0583

As said, the lower the Mach number, the further from x/xsh = 1.0 the two points get. Thus
the width of the recirculating bubble can be determined as a function of Mach. One must pay
attention in not confusing the width of the recirculating bubble from the width of the SWBLI:
the first one corresponds to the region where the velocity inside the boundary layer inverts its
direction, and it is situated between the detachment and the reattachment points, the second one
is the portion of boundary layer along the stream-wise direction affected by the presence of the
shock wave.
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Figure 23: Width of the recirculating bubble for several Mach numbers.
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Another important property of the SWBLI is the already-mentioned minimum value of the
skin friction reached. This gives informations about the highest negative-derivative of the velocity
profiles along the SWBLI, i.e. the entity of the recirculation.
In the following section (sec. 8.4) velocity profiles are presented, thus the relation between the
Mach number and the recirculation can be seen.
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Figure 24: Lowest values of the skin friction along the SWBLI for several Mach
numbers.

Figures 23 and 24 show that the width of the recirculating bubble and the Cfmin have a stronger
dependence on lower Mach numbers, this is due to the fact that, for low values of Mach, a little
variation in these reserves a higher change of the shock wave angle and so of its intensity. That
means that lower Mach numbers give a stronger and wider inversion of the shear stress along the
SWBLI with consequently a higher fluctuation entity.
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8.4 Recirculation for several Mach numbers
In the present section the velocity profiles in the location where the skin friction reaches its min-
imum value are compared between the different cases studied. These positions are meaningful
since there the maximum shear stress on the plate occurs. Nevertheless the global minimum of
the velocity do not correspond to these locations but it is situated in a section slightly upstream
of the latter.
Furthermore the comparison between the global minimum values of the velocity and the local min-
imum velocity relatively to sections corresponding to the minimum skin friction will be presented,
then velocity fields of the recirculation will be pointed out.
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Figure 25: Region near the wall of velocity profiles for different Mach numbers
of the flow in correspondence of the minimum skin friction location. These
profiles are non-dimensionalized to the relative undisturbed upstream velocity.
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In figure 25 are displayed the velocity profiles relatively to the corresponding upstream undis-
turbed velocity and it can be seen that the higher the Mach number, the lower the magnitude of
the slope of the profile at the wall is.
This result is strictly related to the global minimum value of the velocity
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Figure 26: Minimum values of the stream-wise velocity along the SWBLI for
different Mach numbers.

As can be noticed the figure above is rather similar to the one of the minimum skin friction
(figure 24).
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In the following table the numeric values of the global and local5 minimum velocities are shown

Table 4: Minimum values of the stream-wise component of the velocity in the
simulation domain.

M uglobalmin u
Cfmin
min

2.15 -0.1276 -0.1170

2.50 -0.1096 -0.1006

2.75 -0.0996 -0.0918

3.00 -0.0911 -0.0827

3.50 -0.0777 -0.0754

In the table below are reported the dimensions in terms of height and width of the reflux regions
of figure 27. The latter has been rescaled along the x coordinate in order to better visualize the
reflux behaviour.

Table 5: Dimensions of the reflux regions of the different cases studied.

M width height

2.15 0.4697 0.0122

2.50 0.3478 0.0101

2.75 0.3 0.009

3.00 0.2609 0.0083

3.50 0.2167 0.0076

5in sections corresponding to the minimum skin friction.
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(a) Mach = 2.15

(b) Mach = 2.50

(c) Mach = 2.75

(d) Mach = 3.00

(e) Mach = 3.50

Figure 27: Fields of the regions of the domain where the stream-wise component
of the velocity becomes negative for different Mach numbers. The images above
are rescaled along x in order to better visualize the reflux behaviour.

From the figures above can be noticed that the regions inside of the recirculating bubbles
where the stream-wise velocity reaches its minimum values (blue zones) are developed obliquely
from north-west to south-east with the global minimum value situated in the center of them, and
since the sections where the minimum value of the skin friction are where these regions are the
nearest to the plate, the global minimum of the velocity is upstream of the latter sections.
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8.5 Heat transfer for several Mach numbers
Another important result of the SWBLI is the heating of the flow near the plate. This is repre-
sented by the conversion of kinetic energy into thermal caused by the dynamics of the shock waves
that interact with the boundary layer, i.e. by the adiabatic compressions.
As said in section 6.3, the boundary condition set is the temperature of the plate which is the
one that guarantees the adiabaticity of the undisturbed flow over the flat plate, i.e. the recovery
temperature.
However immediately downstream of the inlet, an acoustic discontinuity deviates the temperature
from the recovery one. The presence of this discontinuity is due to the mathematical approxi-
mations assumed in the implementation of the physical model, in order to adapt the flow to be
coherent with the correct compressible one. That means that a little background heat transfer will
be present along the plate.
Said that, the SWBLI heathens the boundary layer in the impingement location causing little
gradients of the temperature profile near the wall, i.e. heat transfer with the plate.
When the temperature of the flow increases, the heat gets outside of the system, so it will be
considered negative.
In order to obtain informations about the heathen of the flow along the plate, the heat transfer is
displayed stream-wise for y = 0.
The latter is given by the Fourier law

q = −k
(
∂T

∂y

)
y=0

(8.5.1)

where k is the thermal conductivity of the flow in correspondence of y = 0.
This property of the flow depends on the local viscosity which depends on the temperature trend.
However on the plate the constant recovery temperature is imposed, so the viscosity and the
thermal conductivity are constants along x.

k =
µ cp
Pr

(8.5.2)

so that equation (8.5.1) becomes

q = −µ cp
Pr

(
∂T

∂y

)
y=0

(8.5.3)

Below is reported the graph regarding the interaction region
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Figure 28: Heat transfer trend in the SWBLI region for different Mach num-
bers.

As can be seen in figure 28 the trend of the heat transfer is given by the sum of two effects:
the first one is the increase of temperature of the flow due to the SWBLI and the second one is
the natural reduction of the magnitude of q due to the continuous tendency of the temperature to
the one of recovery causing a sort of dumping effect on the heat transfer which influence can be
better visualized in the region between x/xsh ∼ 0.8 ÷ ∼ 1.1.
As said before by this graph can be understood the entity of the increment in temperature along
the plate due to the SWBLI.
The latter consists in a first heathen, caused by the first compression fan, which has a (local)
maximum that increases and moves downstream as the Mach number increases, moreover there is
a second (global) maximum that increases with Mach number and moves upstream the plate.
Another important consideration about the figure above is the fact that in correspondence of
x/xsh ∼ 0.95 the heat transfer for some curves becomes positive. This means that downstream of
the first heathen of the flow, the SWBLI causes a forced reduction in temperature and consequently
the plate, which is at the temperature of recovery, returns heat to flow. In the case forMach = 3.5
the cooling is not enough relatively to the first heathen to reverse the direction of the heat transfer.
Contrary to the skin friction, the effect of the SWBLI in the heat transfer is directly proportional
to the Mach number since the viscosity and the energy content are also proportional to it.
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9 Analysis for different wedge angles θ and fixed shock wave
angle β

Another analysis that is carried out in this thesis regards the study of the different behaviours of
the SWBLI having fixed the shock wave angle β and varying the inlet Mach and the wedge angle
θ that generates the shock wave.
In particular β = 24.07◦ is fixed which is the one corresponding to M = 2.75 in section 8 and then
a M = 3.00 is chosen that implies a resulting wedge angle of θ = 6.167◦.

Figure 29: Portion of the θ−β−M graph (appendix C.1) highlighting the case
studied.

The comparison in behaviour is conducted for the simulation having M = 2.75 of section 8
which has the β angle equal to the one assumed in this study, and the newly presented simulation
having M = 3.00 (figure 29). Additionally the simulation having M = 2.15 of section 8 is taken
into account since it is the one having the largest interaction region encountered so far.

Table 6: Cases taken into account in the following study.

M wedge angle - θ shock wave angle - β

2.15 3.75◦ 30.75◦

2.75 3.75◦ 24.07◦

3.00 6.167◦ 24.07◦

Below are shown the density fields of the several cases under study in order to visualize and
qualitatively compare their macroscopic behaviour. Since the normal component of the flow ve-
locity in respect of the oblique shock wave is higher in the latter case, a more intense interaction
between the shock wave and the boundary layer is expected.
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(a) Mach = 2.15

(b) Mach = 2.75

(c) Mach = 3.00 (βM=2.75)

Figure 30: Density fields for different Mach numbers.

As can be noticed the dimensions of the SWBLI in the new case (fig. 33.c) are rather larger
than the other cases.
The properties studied are the pressure trend along the plate (sec. 9.1), the skin friction (sec. 9.2),
the reflux field and the dimensions of the recirculation region (sec. 9.3).
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9.1 Wall pressure analysis with fixed β

Here the pressure trend along the plate gets analysed.
As can be seen in figure 33 the width of the interaction region is larger than the other cases, then
the first pressure rise is expected to come earlier along x.

Figure 31: Wall pressure trends corresponding to different Mach numbers under
study. The blue line is the one of the case added.

As can be seen in figure 31 the interaction region of the case under study (blue line) is much
larger than the others, as expected.
The total rise of pressure expected by the inviscid theory of Rankine-Hugoniot (appendix C) is also
higher due to the combination of a higher Mach number and a lower shock wave angle in respect
of the case of fixed wedge angle of section 8.
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9.2 Skin friction analysis with fixed β

In this section the skin friction trend is pointed out, leading to the knowledge of some important
aspects of the SWBLI.
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Figure 32: Skin friction trend for the cases taken into account in the present
study. The blue line is the one of the case added.

As can be noticed in figure 32 the new curve corresponding to M = 3.00 has a recirculation
region much larger and a minimum value of the skin friction way lower in line with the previsions.
It can also be noticed that in the junction region downstream of the SWBLI (i.e. x/xsh >∼ 1.6)
the new case (blue line) presents a slight overshoot, that is, the boundary layer downstream of the
SWBLI is thinner compared to the other cases.
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In the tables below can be seen the comparison between the dimensions of the recirculating
region and the minimum values of the skin friction for the different cases.

Table 7: Positions of detachment and reattachment points at various Mach
numbers and width of the detached region.
( ∗) Mach number corresponding to βM=2.75

M xdet/xsh xreatt/xsh width

2.15 0.7652 1.2349 0.4697

2.75 0.8125 1.1125 0.3

3.00∗ 0.4783 1.3583 0.88

Table 8: Minimum Cf values at various Mach numbers.
( ∗) Mach number corresponding to βM=2.75

M Cfmin

2.15 -7.3089E-04

2.75 -5.3133E-04

3.00∗ -1.7058E-03
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9.3 Recirculation analysis with fixed β

In this section a closer look to the recirculation region is taken.
Here the main aspects observed are the general behaviour of the reflux and the dimensions of the
recirculation region.
Firstly the reflux fields are shown:

(a) Mach = 2.15

(b) Mach = 2.75

(c) Mach = 3.00 (βM=2.75)

Figure 33: Reflux fields for different Mach numbers.
In this image the fields are rescaled along x in order to better visualize the reflux
behaviour.

Below are reported the dimensions of the latter recirculation regions

Table 9: Dimensions of the reflux regions of the different cases studied.
( ∗) Mach number corresponding to βM=2.75

M width height

2.15 0.4697 0.0122

2.75 0.3 0.009

3.00∗ 0.88 0.0322

64



10 Summary and results
In the present thesis the study of a laminar Shock Wave Boundary Layer Interaction has been
carried out.
The model used computes the adimensional Navier-Stokes equations adopting a 6th order accuracy
hybrid scheme with a density gradient threshold.
Validations demonstrated that the results obtained by the solver laid within a sufficiently thin
error band considering the different accuracy orders adopted in the validation models, therefore
the further analysis protracted in this thesis could be considered valid.
The main aspects concerned were the pressure trend, the skin friction and the thermal stress along
the wall.
The analysis of the pressure trend showed that an attenuation of the pressure of the flow reached
downstream of the SWBLI occurred, caused by the upstream compression fan induced by the pres-
ence of the viscosity, and this effect was higher as the Mach number increased.
The analysis of the skin friction highlighted the effect of the intensity of the shock wave, i.e. the
Mach number, in the SWBLI dimensions through the width and in the intensity of the recircula-
tion through the Cfmin . That is, the SWBLI got thinner as the Mach number increased and the
intensity of the recirculation got lower as well.
Further the velocity profiles of the maximum recirculation for different Mach numbers were shown
in order to better compare the magnitude involved and they were coherent with the expectations
given by the skin friction trend for different Mach numbers.
Then heat exchange along the SWBLI was computed. The simplifying assumptions made caused a
shift of the temperature from the recovery value at the wall leading to a continuous heat transfer in
background along the whole plate. Nevertheless the temperature behaviour could be appropriately
described highlighting a fluctuation in the heat exchange along the SWBLI, i.e. in the temperature
dynamics of the fluid, that is, a first heathen in correspondence of the compression fan occurred,
followed by a cooling of the fluid across the separation, then a second heathen occurred in corre-
spondence of the reattachment location.
The results above were obtained for a few Mach numbers: 2.15, 2.5, 2.75, 3 and 3.5. In the case of
need of data for Mach numbers different than these, one can interpolate the results of this thesis
in order to obtain the desired prediction of the behaviour.
At last the behaviour for a fixed shock wave angle was investigated, in particular was simulated
an additional case having a M = 3.00 with the shock wave angle corresponding to the one with
M = 2.75 in the previous study, i.e. the shock wave generator angle was varied from 3.75◦ to
6.167◦. This study shown an high increment in the intensity of the interaction with a larger de-
tachment region, both in width and in height, and a stronger recirculation.

The work accomplished in this thesis allows the COMETES group of the Industrial Engineer-
ing department of the Univesity of Padova to protract the studies of the wall flows in compressible
conditions, therefore further analysis regard the study of the effects on the SWBLI of a forced
heathen or cooling of the flow by the plate. Besides studies on the dynamics involved by the
roughness of the plate can be carried out.
Moreover the implementation of the turbulent model will be followed out, which requires the add
at the inlet conditions of scattered values of the components of the properties to the mean ones,
within a certain standard deviation. Since the results for the turbulent flow are rather chaotic,
information about numerical instabilities cannot be distinguished from the physical solutions any-
more, so an accurate laminar model must be firstly built in order to being able to determine
whether the macroscopic results are established by physical behaviour or not.
Furthermore an interesting study regards the introduction of vortex generators upstream the
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SWBLI, where its locations can be predicted, in order to stir some momentum into the sepa-
ration region to help the reattachment of the boundary layer and to reduce the loss in efficiency.
The implementations of these models are based on the Immersed Boundary Methods (IBMs) [10].
These methods are used to describe flows moving around complex objects allowing the employment
of a Cartesian grid for the computation of the flow domain regardless the complexity of the objects
involved. That means that they are simple to be realized.
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A Appendix - Navier-Stokes equations
The Navier-Stokes equations are a system of equations that describe the physic of the fluids in the
most general way.
This means that they find a large utility in a wide number of technological and scientific sectors,
utility increased by the possibility of coupling them with the Maxwell equations allowing their
application to the study of magnetohydrodynamics.
The Navier-Stokes equations are obtained by three conservation principles applied to continuum
systems:

1. continuity principle (mass conservation)

2. second Newton’s law (momentum conservation)

3. first law of the thermodynamics (energy conservation)

A.1 Mass conservation
Let’s consider a material volume V and write the balance of mass

dm
dt

=
dmV

dt
+ φ∂Vρ (A.1.1)

where m is the mass enclosed in the material volume and ∂V is the frontier of the material volume.
That is, the total variation of mass inside the volume is given by the sum of the variation of mass
caused by the variation of the volume and the variation of mass caused by the flow of mass through
the surface ∂V .
However the mass conservation principle says that

dm
dt

= 0 (A.1.2)

so
dmV

dt
= − φ∂Vρ = −

∫
∂V

ρ ~V · ~n dS =
d
dt

∫
V

ρ dV (A.1.3)

where ~n is the normal versor external to the volume. Let’s take the last two members of (A.1.3)

d
dt

∫
V

ρ dV =

∫
∂V

ρ ~v · ~n dS (A.1.4)

Since the material volume is arbitrary, it can be considered fixed in time, so the total derivative
can be transported inside the integral transforming it into a partial derivative. Furthermore the
Stokes’ Theorem can be applied to the right side of the equation giving∫

V

∂ρ

∂t
dV = −

∫
V

∇ · (ρ~v)dV (A.1.5)∫
V

[
∂ρ

∂t
+∇ · (ρ~v)

]
dV = 0 (A.1.6)

and since V is arbitrary the integrand must be zero:

∂ρ

∂t
+∇ · (ρ~v) = 0 (A.1.7)

Which represents the conservative form of the continuity equation in Eulerian approach6.
6The Eulerian approach consists in the observation of the particles passing through a fixed point
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A.2 Momentum conservation
Let’s consider the momentum balance applied to the material volume:

d ~Q
dt

=
d ~QV
dt

+ φ∂Vρ~v (A.2.1)

where ~Q is the momentum.
That is, the total variation of momentum in the material volume V is given by the variation of
momentum caused by the variation of volume summed by the variation of momentum caused by
the flow of it through the frontier of the material volume ∂V .
Now

d ~QV
dt

=
d
dt

∫
V

ρ~v dV (A.2.2)

φ∂Vρ~v =

∫
∂V

ρ~v · (~v · ~n)dS (A.2.3)

and
d ~Q
dt

= Σ~F (A.2.4)

where the resultant of forces is given by the contribute of volume forces and surface forces:

Σ~F =

∫
V

d~FV +

∫
∂V

d~FS (A.2.5)

The forces acting on the volume are:
d~FV = ρ~fdV (A.2.6)

where ~f are specific volume forces per unit of volume.
On the frontier of the material volume are acting surface forces, i.e. tensions:

d~FS = ~tndS (A.2.7)

where ~tn are surface forces per unit of area.
From Cauchy-Poisson’s Theorem on continuum mechanics:

~tn = T · ~n (A.2.8)

where T is the tensions tensor.
Inserting these definitions into (A.2.4) results in

d ~Q
dt

=

∫
V

ρ~f dV +

∫
∂V

T · ~n dS (A.2.9)

and substituting (A.2.2), (A.2.3) and (A.2.9) into (A.2.1) gives

d
dt

∫
V

ρ~v dV = −
∫
∂V

ρ~v · (~v · ~n)dS +

∫
V

ρ~f dV +

∫
∂V

T · ~n dS (A.2.10)

As said before the material volume is arbitrary so it can be considered fixed in time and the time
derivative can be put inside the integral becoming a partial derivative. Let’s also apply Stokes’
Theorem where possible∫

V

∂ (ρ~v)

∂t
dV = −

∫
V

∇ · (ρ~v · ~v) dV +

∫
V

ρ~f dV +

∫
V

∇ · T dV (A.2.11)

68



∫
V

[
∂ (ρ~v)

∂t
+∇ · (ρ~v · ~v)− ρ~f −∇ · T

]
dV = 0 (A.2.12)

For the arbitrariness of the volume the integrand must be zero:

∂ (ρ~v)

∂t
+∇ · (ρ~v · ~v)− ρ~f −∇ · T = 0 (A.2.13)

∂ (ρ~v)

∂t
+∇ · (ρ~v · ~v) = ρ~f +∇ · T (A.2.14)

which is the motion equation of Cauchy and represent the momentum balance.
Let’s consider the case of a newtonian7 behaviour of the fluid, the tension tensor can be expressed
in terms of the type of fluid:

T = −pI + 2µE + λ (∇ · ~v) I (A.2.15)

where p is the pressure, I is the identity matrix, E is the deformation tensor, µ is the dynamic
viscosity and λ is the cinematic viscosity. That is, the tension tensor is composed by three terms:
the pressure term, the dynamic viscosity term and the cinematic viscosity one. The last two of
them can be collected according the Stokes’ hypothesis λ = − 2

3µ:

T = −pI + µ

[
2E − 2

3
(∇ · ~v) I

]
(A.2.16)

in which the last term represents the viscosity tensor Φ, and (A.2.16) can be written as:

T = −pI + Φ (A.2.17)

now substituting (A.2.17) into (A.2.14) results

∂ (ρ~v)

∂t
+∇ · (ρ~v · ~v) = −∇p+ ρ~f +∇ · Φ (A.2.18)

which is the conservative form of the momentum balance equation.

A.3 Energy conservation
Let’s consider the balance of energy

dε
dt

=
dεV
dt

+ φ∂Vε (A.3.1)

that means that, similarly to the other balances, the variation of the total energy in the volume V
is given by the variation of total energy due to the variation of volume plus the variation of total
energy caused by the flow of it through the frontier of it.
Now

dεV
dt

=
d
dt

∫
V

(
ρe+ ρ

v2

2

)
dV (A.3.2)

where ρe is the internal energy per unit of volume and ρv
2

2 is the kinetic energy per unit of volume.

φ∂Vε =

∫
∂V

(
ρe+ ρ

v2

2

)
(~v · ~n)dS (A.3.3)

7the tension which the fluid is subjected is proportional to its deformation velocity
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In order to define the variation of total energy let’s consider the first principle of the thermo-
dynamics

dε = dq + dw (A.3.4)

where ε is the total energy, q and w are respectively the heat and the work fluxes transferred by
and to the system.
Since the point of interest of the Navier-Stokes equations is the dynamic of the fluid, the derivative
of equation (A.3.4) is taken

dε̇ = dq̇ + dẇ (A.3.5)

Now the variation of heat exchanged is given by a volumetric contribute and a superficial one:

dq̇ = dq̇V + dq̇S (A.3.6)

dq̇V = ρ Q dV (A.3.7)

where Q is the specific heat transferred per unit of volume

dq̇S = −~q · ~n dS (A.3.8)

where ~q is the specific heat transferred per unit of area and it can be defined through the Fourier’s
law:

~q = − k ∇T (A.3.9)

where k is the thermal conductivity of the fluid which is related to the molecular viscosity by the
relation

k =
cpµ

Pr
(A.3.10)

Let’s take into account the variation of forces. Similarly to the variation of heat, it is given by the
sum of a volumetric term and a superficial one.

dẇV = ρ ~f · ~v dV (A.3.11)

which is the power of the volume forces

dẇS = ~v · ~tn dS = ~v · T · ~n dS (A.3.12)

That is, substituting (A.3.7), (A.3.8), (A.3.11) and (A.3.12) into (A.3.6) and inserting it into
(A.3.1) together with (A.3.2) and (A.3.3) results

d
dt

∫
V

(
ρe+ ρ

v2

2

)
dV +

∫
∂V

(
ρe+ ρ

v2

2

)
(~v · ~n)dS =

=

∫
V

ρ Q dV −
∫
∂V

~q · ~n dS +

∫
V

ρ~f · ~n dV +

∫
∂V

~v · T · ~n dS
(A.3.13)

which is the integral form of the derivative of the first principle of thermodynamics that contains
all of the contributes.
In order to obtaining the differential form let’s apply the Stokes’ theorem to surface integrals:∫

V

{
∂

∂t

(
ρe+ ρ

v2

2

)
+∇ ·

[(
ρe+ ρ

v2

2

)
· ~v
]
− ρ Q+∇ · ~q − ρ~f · ~v −∇ ·

(
~v · T

)}
dV = 0

(A.3.14)
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For the arbitrary of the material volume the integrand can be extracted

∂

∂t

(
ρe+ ρ

v2

2

)
+∇ ·

[(
ρe+ ρ

v2

2

)
· ~v
]

= ρ Q−∇ · ~q + ρ~f · ~v +∇ ·
(
~v · T

)
(A.3.15)

which is the differential equation of the energy balance.
According to (A.2.17) let’s explicit the tension tensor into the pressure and viscosity terms

∇·
(
~v · T

)
= ∇·

[
~v ·
(
−pI + Φ

)]
= ∇·

(
−pI · ~v

)
+∇·

(
~v · Φ

)
= −∇· (p~v) +∇·

(
~v · Φ

)
(A.3.16)

finally substituting (A.3.16) into (A.3.15) results

∂

∂t

(
ρe+ ρ

v2

2

)
+∇ ·

[(
ρe+ ρ

v2

2

)
· ~v
]

= −∇ · (p~v) + ρ Q−∇ · ~q + ρ~f · ~v +∇ ·
(
~v · Φ

)
(A.3.17)

which is the energy balance equation for a generic fluid.
From this differential equation can be seen that the total energy variation has several sources:

• work of pressure forces: −∇ · (p~v)

• rate of volumetric heating: ρ Q

• thermal flow for conduction: −∇ · ~q

• work of mass (volume) forces: ρ~f · ~v

• work of viscous forces: ∇ ·
(
~v · Φ

)
Gathering the three final equations of conservation found in the paragraphs above, the equations

of Navier-Stokes for continuum systems are obtained

∂ρ

∂t
+∇ · (ρ~v) = 0

∂ (ρ~v)

∂t
+∇ · (ρ~v · ~v) = −∇p+ ρ~f +∇ · Φ

∂

∂t

(
ρe+ ρ

v2

2

)
+∇ ·

[(
ρe+ ρ

v2

2

)
· ~v
]

= −∇ · (p~v) + ρ Q−∇ · ~q + ρ~f · ~v +∇ ·
(
~v · Φ

)
(A.3.18)

This system is made of 5 equations (1 + 3 + 1) in conservative formulation for compressible
flows in 7 unknowns (density, three components of the velocity, internal energy, pressure and
temperature).
In the two-dimensional case of the present thesis the system is made of 4 (1+2+1) equations with
6 unknowns (density, two components of the velocity, internal energy, pressure and temperature).
Nevertheless, the energy equation can be expressed in terms of static enthalpy instead of the
internal energy.
In the present case the volume forces and the volumetric heat exchange Q are neglected, and
considering a stationary regime and splitting the system in its components it becomes:
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∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+
∂Φii
∂x

+
∂Φij
∂y

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+
∂Φji
∂x

+
∂Φjj
∂y

ρu
∂h

∂x
+ ρv

∂h

∂y
= u

∂p

∂x
+ v

∂p

∂y
+

∂

∂x

(
µ

Pr

∂h

∂x

)
+

∂

∂y

(
µ

Pr

∂h

∂y

)
+

+ Φii
∂u

∂x
+ Φij

∂u

∂y
+ Φji

∂v

∂x
+ Φjj

∂v

∂y

(A.3.19)

The system can be written in vectorial form in order to distinguish the several terms that make
up the Navier-Stokes equations

∂~U

∂t
= −∂

~Fi(~U)

∂xi
+
∂ ~Fvi(~U)

∂xi
+ ~S(~U) (A.3.20)

where:

• ~U : contains the conservative variables;

• ~Fi: contains the convective fluxes;

• ~Fvi: contains the viscous fluxes;

• ~S: contains the source terms.

The left side of eq. (A.3.20) considers the temporal variation of the conservative properties
of the flow, while the right side is made up by their spatial variation and the source terms. The
first one of the latter is given by two contributes: a term concerning convective flux and a term
concerning diffusive flux. The first one regards the transportation of the properties driven by
pressure and velocity, such as the downstream flux imposed by the inlet Mach number, the second
one concerns the transportation of the properties due to the natural thermodynamic evolution of
the fluid, such as the normal-stream transportation of energy in the case of heated plate.
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B Appendix - Boundary layer equations
Let’s consider an incompressible stationary flow. This one can be described by the Stokes equations:

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
ρu
∂h

∂x
+ ρv

∂h

∂y
= u

∂p

∂x
+ v

∂p

∂y
+

µ

Pr

(
∂2h

∂x2
+
∂2h

∂y2

)
+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]

(B.0.1)

Where the last one is the energy equation written in terms of static enthalpy.
Introducing the Reynolds Number, these equations can be non-dimensionalized obtaining:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+

1

Re

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p

∗

∂y∗
+

1

Re

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
u∗
∂h∗

∂x∗
+ v∗

∂h∗

∂y∗
= u∗

∂p∗

∂x∗
+ v∗

∂p∗

∂y∗
+

1

Pr Re

(
∂2h∗

∂x∗2
+
∂2h∗

∂y∗2

)
+

2

Re

[(
∂u∗

∂x∗

)2

+

(
∂v∗

∂y∗

)2

+

(
∂u∗

∂y∗
+
∂v∗

∂x∗

)2
]

(B.0.2)

where apexes (∗) denote the adimensional values.
Arising the need to study the very thin region of the boundary layer it is convenient to execute a
change of variables in order to stretch the coordinates inside of it.

x′ = x∗ (x variable doesn’t change)

y′ =
y

δ
=
y

L

L

δ
but

y

L

.
= y∗ and

L

δ
≈ 1√

Re
so

y′ = y∗
√
Re, dy′ =

√
Re dy∗, dy∗ =

dy′√
Re

where apexes (′) denote variables determined inside the boundary layer.
Applying the coordinates transformation to the Laplace equation (B.0.2.a), results

∂u∗

∂x′
+
√
Re

∂v∗

∂y′
= 0

which, considering very large Reynolds Numbers, in order to be satisfied must give

∂u∗

∂x′
=
∂y∗

∂y′
= 0
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That means that not only the spatial parameters must be varied but also the velocities:{
u′ = u∗

v′ = v∗
√
Re

that gives

∂u′

∂x′
+
∂v′

∂y′
= 0

Let’s apply the coordinates transformation to the momentum equation along y (B.0.2.c):

u′
∂

∂x′

(
v′√
Re

)
+

(
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Re

)√
Re

∂
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(
v′√
Re
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√
Re
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1

Re

∂2
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(
v′√
Re

)
+

1

Re
Re

∂2
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(
v′√
Re

)
1√
Re

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′

)
= −
√
Re

∂p∗

∂y′
+

1

Re3/2
∂2v′

∂x′2
+

1√
Re

∂2v′

∂y′2

let’s divide all the equation for
√
Re in order to have powers of Re only in the denominator:

1√
Re

(
u′
∂v′

∂x′
+
v′∂v′

∂y′

)
= −∂p

∗

∂y′
+

1

Re2
∂2v′

∂x′2
+

1

Re

∂2v′

∂x′2

Now for Re→∞ all terms goes to zero except for the pressure one:

∂p∗

∂y′
= 0 (B.0.3)

that is, inside the boundary layer for large Reynolds Numbers the pressure is constant along y
coordinate: p∗ = f(x′).
The junction condition for the pressure is

lim
y′→∞

pi(x
′) = lim

y→0
pe (x∗, y) = p0e (B.0.4)

where the subscripts i and e mean respectively the internal and external values to the boundary
layer and the apex 0 is used to refer to the value on the surface.
Now let’s apply the coordinates transformation to the momentum equation along x (B.0.2.b):

u′
∂u′

∂x′
+

(
v′√
Re

)√
Re

∂u′

∂y′
= −∂p

∗

∂x′
+

1

Re

∂2u′

∂x′2
+

1

Re
Re

∂2u′

∂y′2

which for large Reynolds, and substituting (B.0.4) in it, becomes

u′
∂u′

∂x′
+ v′

∂u′

∂y′
= −dp0e

dx′
+
∂2u′

∂y′2

where the derivative of the pressure became total since it only depends by x′.
For the energy equation let’s consider

h′ = h∗

then, substituting the terms and taking into account the simplifications above, results

x′
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1
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∂y′

)2
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That is, four equations that describe the behaviour of the boundary layer were found and they are
called boundary layer equations:

∂u′

∂x′
+
∂v′

∂y′
= 0

∂p∗

∂y′
= 0

u′
∂u′

∂x′
+ v′

∂u′

∂y′
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dx′
+
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∂y′2

x′
∂h′

∂x′
+ v′

∂h′

∂y′
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∂p∗

∂x′
+

1

Pr

∂2h′

∂y′2
+

(
∂u′

∂y′

)2

(B.0.5)

These equations lend two boundary conditions for the u′ component of the flow:
u′ (x′, y = 0) = 0 (adherence condition)

lim
y′→∞

u′ = lim
y→0

U∞ (junction condition)

and one boundary condition for the v′ component of the flow:

v′ (x′, y′ → 0) = 0 (impermeability condition)
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C Appendix - Rankine-Hugoniot equations
The Rankine-Hugoniot equations are relations that describe the variation of the properties of the
flow when it crosses a shock wave.
These equations are valid for the normal shock wave but their validity can be extended to the
oblique shock wave considering the components of the vectorial properties of the flow normal to
it, i.e. the velocity and Mach Number.
Let’s consider a stationary shock wave crossed normally by a flow having velocity ~v1 = {u1, 0, 0},
pressure p1, density ρ1, temperature T1 and enthalpy h1 as can be seen in figure 34.
The properties of the flow once it has crossed the shock wave are ~v2 = {u2, 0, 0}, p2, ρ2, T2 and
h2. Let’s take a closed control surface containing the shock wave.

Figure 34: Scheme for the variation of the flow properties across a normal
shock wave. n̂ is the vector pointing out of the closed control surface.

Consider the process adiabatic, stationary and the viscous effects to be negligible on the sur-
faces S1, S2 and Sδ.
Then let’s integrate the motion equations (2.1.4) on the control surface.∫

V

∇ · (ρ~v) dV =

∫
S1∪S2∪Sδ

ρ (~v · ~n)dS (C.0.1)

where V is the volume contained in the closed control surface and n is the normal versor of the
local surface considered.
Solving the integral results in

− ρ1u1S1 + ρ2u2S2 + 0 = 0 (C.0.2)

but S1 = S2 so
ρ1u1 = ρ2u2 (C.0.3)

Let’s take into account the momentum equation which can be written as

∇ · (ρ~v · ~v) = −∇ ·
(
pI
)

+∇ · Φ (C.0.4)
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integrated becomes∫
S1∪S2∪Sδ

ρ~v (~v · ~n)dS +

∫
S1∪S2∪Sδ

pI · ~n dS =

∫
S1∪S2∪Sδ

Φ · ~n dS (C.0.5)

where the right side of the equal can be neglected and the equation becomes

ρ1u1 (−u1)S1 + ρ2u2u2s2 − p1S1 + p2S2 = 0 (C.0.6)

which leads to
ρ1u

2
1 + p1 = ρ2u

2
2 + p2 (C.0.7)

Finally since the flow is adiabatic, the conservation of the total enthalpy is valid

h0,1 = h0,2 (C.0.8)

h1 +
u21
2

= h2 +
u22
2

(C.0.9)

Equations (C.0.3), (C.0.7) and (C.0.9) are the Rankine-Hugoniot equations or jump equations of a
normal shock wave.
Using this formulation some useful relations can be obtained in order to explicitly describe the
properties downstream of the shock wave.
These equations are

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

(C.0.10)

p2
p1

= 1 +
2γ

γ + 1

(
M2

1 − 1
)

(C.0.11)

T2
T1

=

[
1 +

2γ

γ + 1

(
M2

1 − 1
)] 2 + (γ − 1)M2

1

(γ + 1)M2
1

(C.0.12)

M2

M1
=

1

M1

[
2 + (γ − 1)M2

1

2γM2
1 − (γ − 1)

]1/2
(C.0.13)

Equations (C.0.3), (C.0.7) and (C.0.9) become valid for an oblique shock when the parallel com-
ponent of the velocity to the shock wave gets considered.
Its equation is

w1 = w2 (C.0.14)

The normal Mach Number to the shock wave is defined as

Mn1 =
u1
a1

=
| ~v1 | sinβ

a1
= M1sinβ (C.0.15)

where β is the angle between the shock wave and the direction of the flow.
By substitutingMn1 instead ofM1 into the Rankine-Hugoniot equations, the system that describes
the jump of the properties across the oblique shock wave is obtained.
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C.1 θ − β −M relation
An important relationship regarding oblique shock waves is the θ − β −M relation.
The components of this relation are:

• θ: the angle of the oblique shock generator (wedge)

• β: the angle of the oblique shock wave

• Mach: the incident Mach Number

and it allows to determine one of the three components knowing the other two of them.
Using equation (C.0.15) the equation that can be obtained is

tanθ = 2 cotanβ
M2

1 sin
2β − 1

M2
1 [γ + cos (2β)] + 2

(C.1.1)

Figure 35: Curves for oblique shock wave angles, in function of the wedge angle,
generated by different Mach numbers.
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This graph shows that for a fixed Mach number and for a fixed wedge angle, β has two distinct
solutions. The maximum value of θ for a fixed upstream Mach number is the one at which the shock
wave is still oblique and a higher Mach number will make the shock wave to become a detached
bow shock. In particular the shock wave having for solution a β angle above θmax is conventionally
considered a strong shock wave, the one having a solution below θmax is considered a weak shock
wave.
Generally flows evolve giving a weak solution as in the case of this thesis, so higher Mach numbers
give weaker shock waves.
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