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Abstract

Theproblemof finding theorbit that connects twoposition vectors in a certain time came
to light towards the end of the 18th century in connection with the determination of the
orbits of celestial bodies from observation made from Earth. Because of Lambert’s pio-
neering contributions (i.e. Lambert’s theorem) the problem (his original motivation was
the determination of cometary orbits) is typically referred to as Lambert’s problem. Even
Gauss (to cite explicitly [14, 10.1]), the Prince ofMathematicians, said that this particular
problem is “to be considered among the most important in the theory of the motions of
the heavenly bodies”. He published the first formal solution to the problem in his treaty
on the motion of celestial bodies in 1809 but some years before he was able to correctly
determine the orbit of the newly-discovered object Ceres (It was firstly discovered by the
astronomer Piazzi who observed it 24 times between 1 January and 11 February 1801when
observations were interrupted and the object was lost. On 31 December 1801 Ceres was
recovered thanks to what was an orbit determination problem solved by Gauss).
In modern Astrodynamics and Celestial Mechanics, thanks to the rise of interplanetary
exploration that has brought a renewed interest in Lambert’s problem, it has application
mainly on mission design: for example, to name a few, Lambert’s theorem has been used
to calculate the orbits of the Voyager interplanetarymissions, which required a very accu-
rate determination of orbital parameters in order to execute fly-bys of the outer planets
and it was also "present" in the Lambert Guidance Program which guided the Apollo
spacecrafts to their landing sites on the Moon [15, 7.2].

The purpose of this thesis work is to provide an introduction to Lambert’s theorem
and to do so the work has been divided into four parts. In Chapter 1 I analyze the two
body problem and derive its properties in order to get to the orbit equation. In Chapter
2 the aim is to derive Kepler’s equations, which relate position to time for the different
kinds of orbit. Chapter 3 is the heart of the thesis in which Lambert’s theorem is intro-
duced and demonstrated. Finally, Chapter 4 represents an attempt (just one of many in
literature) to get a unified formofLambert’s theoremwhich is valid for elliptic, hyperbolic
and parabolic orbits.
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Sommario

Il problema di determinare un’orbita dati due vettori posizione ed il relativo tempo di
percorrenza è nato verso la fine del XVIII secolo dall’obbiettivo di voler determinare le
orbite dei corpi celesti da osservazioni fatte dalla Terra. E’ divenuto noto come Problema
di Lambert in onore dei suoi pioneristici contributi (i.e. Teorema di Lambert) inizial-
mente rivolti verso le orbite cometarie. Anche Gauss (citando esplicitamente [14, 10.1]),
ha definito il problema come "uno tra i più importanti nella teoria del moto dei corpi
massivi". Nel suo trattato Theoria motus corporum coelestium in sectionibus conicis solem
ambientium del 1809 ha pubblicato la prima soluzione formale al problema dopo che al-
cuni anni prima aveva correttamente determinato l’orbita dell’allora appena scoperto as-
teroide(pianeta nano)Cerere (Lo individuòper la prima volta l’astronomoPiazzi che fu in
grado di compiere solo 24 osservazioni tra 1 gennaio e 11 febbraio 1801, prima di perderne
le tracce. Il 31 dicembre 1801 l’oggetto venne ritrovato grazie alle previsioni di Gauss che
ne aveva determinato l’orbita). Nell’ambito dell’Astrodinamica eMeccanica Celeste mod-
erne, grazie alla nascita dell’esplorazione interplanetaria che ha rinnovato l’interesse verso
questo tipo di problema, ha trovato la sua principale applicazione nel campo della proget-
tazionedimissione (rendezvous, targeting, determinazionepreliminare dell’orbita, ecc...):
per esempio, il teorema è stato utilizzato per calcolare le orbite delle missioni Voyager, le
quali richiedevano la determinazione molto accurata dei parametri orbitali al fine di es-
eguire i fly-bys dei pianeti esterni ed era anche alla base del Lambert Guidance Program
che ha guidato le sonde del programma Apollo sulla Luna [15, 7.2].

Lo scopo di questo lavoro di tesi è quello di presentare un’introduzione delTeorema di
Lambert; il lavoro è stato diviso in quattro parti. Nel Capitolo 1 ho analizzato il problema
dei due corpi e derivato le sue proprietà con lo scopo di arrivare all’equazione dell’orbita.
Nel Capitolo 2 l’obbiettivo è quello di derivare l’equazione di Kepler, la quale mette in
relazione la posizione con il tempo per i diversi tipi di orbita. Il Capitolo 3 rappresenta
il cuore della tesi in cui viene introdotto e dimostrato il Teorema di Lambert. Infine, nel
Capitolo 4 viene fatto il tentativo (seguendo uno dei tanti possibili metodi presenti in
letteratura) di ottenere una forma unificata del Teorema di Lambert valida per i tre tipi
di orbita (ellittica, iperbolica e parabolica).
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1 Two-Body Problem
SummaryThis chapter introduces theproblemofdetermining themotionof twobodies due solely to their
ownmutual gravitational attraction. We show that it can be treated as themotion of a point particle ofmass
equal to the reduced mass that is attracted by the origin and, with the demonstration of some fundamental
laws of conservation, we highlight some important properties associated to this kind of motion. It ends
with the derivation of the solution equation that represents conic sections whose shape is determined by
the eccentricity.

1.1 N-Body Problem
According to Newton’s law of gravitation, two particles attract each other with a force,
acting along the line joining them, which is proportional to the product of their masses
and inversely proportional to the square of the distance between them. Considering a sys-
tem ofP1, ..., Pn particles whosemasses arem1, ...,mn, the position and velocity vectors
of the ith particle expressed with respect to an inertial coordinate system can be written
as follow (Battin [1, pp.95])

ri = xiix + yiiy + ziiz and vi =
dri
dt

Furthermore, let
rij = |rj − ri| =

√
(rj − ri)(rj − ri)

denote the distance betweenPi andPj so that themagnitude of the force of attraction be-
tween the ith an the jth particles isGmimj

r2ij
whereG is the gravitational constant, amount-

ing toG = 6.67 · 10−11m3kg−1s−2. The force acting on Pi due to Pj has the direction
of (rj−ri)

rij
while the force on Pj due to Pi is oppositely directed (Newton’s third law).

Hence, the total force Fi affecting Pi, due to the presence of the other n− 1 masses is

Fi = G
n∑
j=1

mimj

r3ij
(rj − ri) for i 6=j (1.1)

In accordance with Newton’s second law of motion,

Fi = mi
d2ri
dt2

= mi
dvi
dt

(1.2)
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1 Two-Body Problem

so that the n vector differential equations

d2ri
dt2

= G
n∑
j=1

mj

r3ij
(rj − ri) (1.3)

together with appropriate initial conditions, constitute a completemathematical descrip-
tion of the motion of the system of nmass particles.
Let’s then consider, for our purpose, a systemofn = 2point particles ofmassm1 andm2

respectively and let (O,X, Y, Z) be an inertial frame with r1 and r2 their position vec-
tors. Thus (Battin [1, p.108]) themotion of two bodies is fully described by the following
pair of nonlinear second-order vector differential equations

m1r̈1 = G
m1m2

r3
r

m2r̈2 = −Gm1m2

r3
r

(1.4)

where r = r2−r1 = r12 (which defines the position ofP2 with respect toP1), together
with the position vectorsr1,2(t) and the velocities vectorsv1,2(t) specified at some partic-
ular instant of time. Finding the positions and velocities at future times is thewell known
two-body problem.

Figure 1.1: The position vectors of two point particles and of their center of mass are shown rela-
tive to an inertial frame of reference XYZ.

1.2 Integrals OfMotion
Equations (1.4) represents a system of 6 scalar differential equations of order 2 (we have
a differential equation of order 2 for each of the 3 components of the two vectors r1 and
r2; the equations are coupled to each other). Now (Celletti [2]), summing these two
equations one gets that

m1r̈1 +m2r̈2 = 0 (1.5)
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1.2 Integrals Of Motion

Since the masses are considered to be constant in our consideration, this equation can be
integrated twice:

m1ṙ1 +m2ṙ2 = C1 , m1r1 +m2r2 = C1t+ C2 (1.6)

withC1, C2 constant vectors.
LetM be the total mass, namelyM = m1 +m2. The location of the barycenter is given
byMrB = m1r1 + m2r2 where rB is the position vector of the barycenter B of the
system; it behaves like a point particle of mass equal to the total massM of the system
under the influence of the total force given by (1.5). Hence we obtain the equations

M ṙB = C1 , MrB = C1t+ C2 (1.7)

which express that the barycentermoveswith a constant rectilinear velocity (proportional
toC1). The non accelerating center ofmassB of a two-body system is then a good choice
for the origin of an inertial frame.
Quantities which remain constant during the motion (called integrals of motion) can be
used to reduce the degree of freedomof the systemof differential equations. For example,
dividing bym1 andm2 in the first and second equation of (1.4) respectively, subtracting
the resulting equations and accounting for the conservation of the integral of the center
of mass of the two-body system, one gets

r̈ + µ
r

r3
= 0 (1.8)

and this is a system of 3 scalar differential equations of order 2 (components of r are
defined by a system of 3 coupled equations of order 2) whereµ = GM and r = r2−r1
now referred to the new reference frame with origin inB.
These are the equations of relative motion, naturally termed as the equations of motion
of the reduced two-body problem. They can be seen as the equation of motion of a point
particle of mass equal to the reduced mass m1m2

(m1+m2)
attracted by the originO.

1.2.1 Integrals of angular momentum and energy
Before attempting to solve the equation (1.8) we shall derive some useful information
about the nature of that motion. For example, by taking the vector product of (1.8) with
the position vector r we have (Celletti [2])

r × r̈ = 0 (1.9)

and, remembering that d(r×ṙ)
dt

= r × r̈ (since ṙ × ṙ = 0), by integrating obtain

r × ṙ = h (1.10)
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1 Two-Body Problem

whereh is the integration constant that represents the angular momentum.
Since the cross product of the position vector and its velocity stays constant (property
true for any central force1), they must lie in the same plane, orthogonal to h (this means
that the two bodies move at any instant on what is called the orbit plane). Notice also, as
it will be useful in a while to find another integral of motion, that not only the direction
but also the magnitude of vectorh is conserved (|h| = const).
Now, using the previous results, (without loss of generality) we can restrict ourselves to
consider the motion of a point particle of mass equal to the reduced mass in the orbit
plane and consider (r, θ) as the polar coordinate system.
Let’s denote er = (cos θex + sin θey) and eθ = (− sin θex + cos θey) the unit vectors
of the radial and orthogonal components respectively, ez the unit vector normal to the
orbital plane and remember that d

dt
er = θ̇eθ while d

dt
eθ = −θ̇er. Then the position,

velocity and acceleration vectors can be written in polar coordinates as

r = rer, ṙ = ṙer + rθ̇eθ, r̈ = (r̈ − rθ̇2)er + [
1

r

d

dt
(r2θ̇)]eθ (1.11)

and calculating

det

∣∣∣∣∣∣
er eθ ez
r 0 0

ṙ rθ̇ 0

∣∣∣∣∣∣
one obtains that h = |h| = |r2θ̇ez| = r2θ̇ = const.
Now let’s consider the radius vector r in an interval dt, it sweeps out the angle dθ = θ̇dt
and the area

dA =
1

2
r(t)r(t+ dt) sin(dθ) .

The variation ofAwith respect to the time is then given by

dA

dt
=

1

2
r(t)r(t+ dt)

sin(dθ)

dθ

dθ

dt

and in the limit dt→ 0 one gets

Ȧ =
1

2
r2θ̇ =

1

2
h . (1.12)

1A type of motion characterized by (1.9) ∀t
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1.3 Equation Of Orbit

Since h is a constant, this implies that equal areas are swept out in equal times: hence this
is the mathematical form of Kepler’s second law of planetary motion.
Now, considering the scalar product of (1.8) with ṙ we have

ṙr̈ = −µ ṙr
r3

(1.13)

For the right-hand side, we know that

r · r = r2

so that
d

dt
(r · r) = 2r

dr

dt

But we also can observe that

d

dt
(r · r) = r

dr

dt
+
dr

dt
r = 2r

dr

dt

Thus, it is clear that ṙ · r = ṙr.
For the left-hand side, it holds

ṙ · r̈ =
1

2

d

dt
(ṙṙ) =

1

2

d

dt
ṙ2 =

d

dt
(
ṙ2

2
)

Substituting the previous results in (1.13) and integrating, it yields

1

2
ṙ2 − µ

r
= ε (1.14)

where ε is a constant while the first and the second terms are the kinetic and the potential
energy per unit mass respectively. This equation is a statement of the conservation of en-
ergy, namely, that the specific mechanical energy is the same at all points of the trajectory.
It is also known as the vis viva equation.
Recalling a system of n particles, as we started, no further integrals are obtainable in gen-
eral for the n-body problem.

1.3 Equation Of Orbit

In order to solve the equation for the relative motion, we substitute the expression for r̈
in (1.11) into (1.8). The radial component gives

r̈ − rθ̇2 = − µ
r2

, (1.15)
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1 Two-Body Problem

while the orthogonal component is equal to

rθ̈ + 2ṙθ̇ = 0 (1.16)

sincewe are dealingwith a central force. Such an equation, written in the form d
dt

(r2θ̇) =
0, provides again the constancy of the angular momentumh.
To solve (1.15) instead, since we are interested in r as a function of θ (an equation for
the orbit), there is a trick to change it into a much simpler differential equation. Let’s
replace r with a reciprocal radial variable u(θ) = 1/r(t(θ)) (the inverse function is well-
defined since θ̇(t) > 0 always; planets don’t backtrack along their orbits). Differentiating
r with respect to time using the chain rule and eliminating the time bymaking use of the
constant h = r2θ̇ we obtain

ṙ = − 1

u2
du

dθ
θ̇ = −hdu

dθ
and r̈ = −hd

2u

dθ2
θ̇ = −h2u2d

2u

dθ2
(1.17)

and hence (1.15) can be written

d2u

dθ2
+ u =

µ

h2
(1.18)

This is the Binet equation, a second-order linear differential equation (the equation of an
harmonic oscillator subject to a constant perturbation µ

h2
); solution of this equation is a

linear superposition of a general solution of the homogeneous equation and a particular
solution of the inhomogeneous one:

u =
µ

h2
+B cos (θ − ω) (1.19)

whereB andω are constants of integration (the amplitude and the phase of the oscillator
respectively) depending on the initial conditions.
This solution2 looks similar to a well-known analytic geometry expression for the recip-
rocal distance from a point on a conic to one of its foci,

p

r
= 1 + e cos f (1.20)

wheref is the true anomaly, that is, the angular separation of the point from the periapsis,
the point of the orbit where the distance r = rmin = p

(1+e)
takes its minimal value. The

quantity p = a(1−e2) is a constant parameter instead, called semilatus rectum, expressed

2Avariant of this proof couldhavebeen achievedusing theLaplace–Runge–Lenz vector ṙ×h−µr r = C
which is another constant of motion for the two body problem only. It lies in the orbital plane, so it’s
perpendicular to h, and points toward the periapsis. Using C , the true anomaly f is defined as the
angle between the eccentricity vector e and the position vector r, where e = C/µ.
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1.3 Equation Of Orbit

in terms of the semi-major axis a and eccentricity e.
To convert the resemblance to equivalence, one must choose the constants B and h in

Figure 1.2: Position of the periapsis and the angular variables f , θ and ω.

the following form

B =
e

a(1− e2)
=
e

p
and h =

√
µp (1.21)

and equate the angular variables f = θ − ω . After these identifications, the orbital
elements e and p turn out to be interconnected with the integrals of motion via formulae

p =
h2

µ
and e =

√
1 +

2εh2

µ2
(1.22)

so the constant B becomes

B =
µ

h2

√
1 +

2εh2

µ2
(1.23)

and the integral of the reduced total energy

ε =
µ

2p
(e2 − 1) . (1.24)

For different conics, the parameters of the orbit are defined as

conic eccentricity parameter
circle e = 0 p = r = const
ellipse 0 < e < 1 p = a(1− e2)
parabola e = 1 p = 2q
hyperbola e > 1 p = a(e2 − 1)

7



1 Two-Body Problem

Since the orbit equation describes conic sections, including ellipses, it is a mathematical
statement of Kepler’s first law, namely that the planets follow elliptical paths around the
Sun, having it as one of the foci (two-body orbits are often referred to as Keplerian or-
bits). The case of a parabola is exceptional in that its eccentricity e = 1, and the semilatus
rectum is defined as p = 2q, where q is theminimal distance of the orbit to the gravitating
center at body’s closest approach.

Equation for p in (1.22) demonstrates that the angular momentum h of the orbit only
depends on the focal parameter p and is never null for any type of orbit

h2 = µp > 0 (1.25)

the only case for which h = 0 is rectilinear motion, when position and velocity vectors
are parallel.
On the other hand, (1.24) reveals that the reduced total energy ε of the two-body system
depends only on the semi-major axisa andhas positive, negative or zero value for different
types of conics

conic energy
circle ε = − µ

2r
< 0

ellipse ε = − µ
2a
< 0

parabola ε = 0
hyperbola ε = µ

2a
> 0

8



2 Kepler’s equation

Summary From the previous chapter we know that the solution of the problem is represented by conic
sections. Now, in this chapter, we express the position as a function of time going through the various
forms of Kepler’s equation. To do so we introduce the concepts of eccentric anomaly and mean anomaly
relating them to the true anomaly already encountered previously.

The orbit formula (1.20), written in the form r(f) = p/(1 + e cos f), represents the
relationshipbetweenposition and true anomaly for the two-bodyproblem. However, for
many practical reasons, it is more useful to be able to determine the position as a function
of time.
Theproblemwewant to solve canbe stated as follow: givenmeasurements of theposition
of a body moving in the gravitational field of another one at various times, how can the
orbit be determined? This is referred asLambert’s problem and stated in another way, the
problem is the boundary value problem for the (1.8). It can be faced in two different ways:
throughKepler’s equation or usingLambert’s theorem. Let’s start deriving the first one as
it offers a way to demonstrate the theorem topic of this work.
As we are working in the orbital plane, we are just interested in the eccentricity e, the
semimajor axis a and the true anomaly f since the first two parameters define the shape
and size of the trajectory and the latter one the position of the orbiting body along the
trajectory. The other three parameters define the orientation of the orbital plane (i.e. of
the trajectory in the reference frame) instead and are not required for the proof; they are
the inclination i, the longitude of the ascending node Ω and the argument of periapsis
ω. Thus, the one equation we have that relates true anomaly directly to time is h = r2ḟ
which, written as

df

dt
=

h

r2

substituting r = p/(1 + e cos f) and separating variables, gives

µ2

h3
dt =

df

(1 + e cos f)2
(2.1)

9



2 Kepler’s equation

where we used ḟ instead of θ̇ since f = θ − ω and ω is a constant. After integration it
yields theKepler’s equation in true anomaly

µ2

h3
(t− tp) =

∫ f

0

df

(1 + e cos f)2
(2.2)

where the constant tp (usually set equal to 0 for convenience) is the time at periapsis pas-
sage, where f = 0 by definition. This equation is of fundamental importance in celestial
mechanics but cannot be directly inverted in terms of simple functions (that is no alge-
braic solution) in order to determine the position as a function of time. However, an
extra substitution can be added to simplify the problem but we have to deal with three
different cases as pointed out at the end of the previous chapter: 0 ≤ e < 1, e = 1 and
e > 1 or equivalently ε < 0, ε = 0 and ε > 0.

2.1 Elliptic orbits

Let’s introduce the so-called eccentric anomaly E (a parametrization of the polar angle).
Considering figure 2.1, we can define it as the angle between the major axis of the ellipse
and the radius from the centreO to the intersection pointQ on the circumscribed circle.
It follows thatE = 0 corresponds to f = 0 andE = π corresponds to f = π.

Figure 2.1: Relationship between the true anomaly f and the eccentric anomalyE. The semima-
jor axis of the ellipse a is also the radius of the circumscribed and concentric circle.

Trough some geometric considerations (Murray [12]), we can easily get

cos f =
cosE − e

(1− e cosE)
(2.3)

10



2.1 Elliptic orbits

Using the fact that sin2f + cos2f = 1, it is then easy to calculate also

sin f =

√
1− e2 sinE

(1− e cosE)
. (2.4)

A simpler relationship betweenE and f can be derived by writing

1− cos f =
(1 + e)(1− cosE)

(1− e cosE)
, 1 + cos f =

(1− e)(1 + cosE)

(1− e cosE)
(2.5)

With the aid of the half-angle formulae, these relations can be rewritten as

sin2f

2
=

1 + e

(1− e cosE)
sin2E

2
, cos2

f

2
=

1− e
(1− e cosE)

cos2
E

2
(2.6)

hence another elegant relationship between the true and eccentric anomaly

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (2.7)

Now, rewriting (2.3) as

cosE =
cos f + e

(1 + e cos f)
(2.8)

so that
1− e cosE =

1− e2

(1 + e cos f)
(2.9)

we get also

sinE =

√
1− e2 sin f

(1 + e cos f)
. (2.10)

Taking the derivative of (2.8) with respect toE it gives

sinEdE =
(1− e2) sin f

(1 + e cos f)2
df . (2.11)

that’s the Kepler equation (2.1) in terms of the eccentric anomalyE.
The next step is to substitute sin f with (2.4) and rewrite it as

df

(1 + e cos f)2
= (1− e2)−

3
2 (1− e cosE)dE (2.12)

11



2 Kepler’s equation

then, using the Kepler equation (2.1) and remembering the expression for the semilatus
rectum p = a(1− e2), we are led to

µ2

h3
dt = (1− e2)−3/2(1− e cosE)dE . (2.13)

Finally, with p in (1.22) in mind, it can be written as

(1− e cosE)dE =

√
µ

a3
dt . (2.14)

Introducing then a new quantity n =
√
µ/a3, calledmean motion, and integrating we

get the well knownKepler’s equation in the case of an elliptic orbit

(E − e sinE) = M = n(t− τ) (2.15)

whereM = n(t−τ) represents themean anomaly (a parametrizationof time). SolvingE
as a function ofM is the way to calculate the position of the object in two-body motion
but, since equation (2.15) is transcendent, it should be solved numerically. Analyzing
these methods is not the purpose of this dissertation but, before going through the other
cases, we can still derive some useful informations.
Let’s first analyze themean anomaly. Since τ represents the time atwhichM = 0, it is easy
to see from (2.15) that when t = τ the body is situated in its periapsis, i.e.M = E = 0.
In the special case of a bound orbit, that is when the conic is a circle or an ellipse1, this
result yields to an important property. In fact, since the interval between two successive
periapsis passages, that is fromM = 0 toM = 2π, gives nP = 2π, using n =

√
µ/a3,

we get
2π

P
=

√
µ

a3

where P is the orbital period while the previous n is also known as mean angular fre-
quency as it represents the pulsation of that period (P = 2π/n). In a more common
form it gives

P 2 =
4πa3

GM
(2.16)

that is Kepler’s third law in the two-body problem: the square of the orbital period of a
body is directly proportional to the cube of the semi-major axis of its orbit.

1 Proposition For e ∈ [0, 1) the motion is periodic. Demonstration We want to prove that for k > 0

such that r(t + k) = r(t), it is true that ṙ(t + k) = ṙ(t). Using (1.10): r(t + k) × ṙ(t + k) =
h(t+ k) = h(t) = r(t)× ṙ(t) = r(t+ k)× ṙ(t), hence ṙ(t+ k) = ṙ(t).

12



2.1 Elliptic orbits

The second point to highlight is that ∀M ∃! E such that (2.15) is true. It’s of funda-
mental importance knowing about existence and uniqueness of a solution when one is
faced with solving a transcendental equation. We would like to know if our numerical
methodmight converge to a solution and if that is the one we are seeking. The proof can
be done as follow (Klioner [9]).
Rewrite (2.15) in the form E − e sinE −M = 0 and keep in mind that 0 ≤ e < 1.
The solution for E is then a zero of the nonlinear continuous function F (E) = E −
e sinE −M , F : R→ R.

• F ′(E) = 1 − e cosE > 0, i.e. F (E) is a monotonically increasing function in
the domain, hence it is invertible;

• since for every fixedM

lim
E→−∞

F (E) = −∞ lim
E→+∞

F (E) = +∞ (2.17)

then 0 ∈ Range(F ) for every fixed M and hence for every fixed M there is a
unique solution of F (E) = E − e sinE −M = 0

Hence, at a given time t, we can calculateM(t), then using a numericalmethodwe can
solve (2.15) to find the value ofE(M) and finally, through (2.3) and (1.20) calculate the
position. This is not the problem we want to solve (Kepler’s equation, as it is, describes
an Initial Value Problem) but we can use this result for our goal. If we know the angleE
betweenE1 andE2 and the time interval t2 − t1 associated then (2.15) can be rewritten
as

M2 −M1 = (E2 − E1 − e(sinE2 − sinE1) (2.18)

or, expliciting the time interval and using Kepler’s third law,

t2 − t1 =
P

2π
[(E2 − E1 − e(sinE2 − sinE1)] (2.19)

It is then clear that the parameters that describe an elliptic orbit, the eccentricity e and the
semi-major axis a, can be simply determined bymaking twomeasurements. The first one
to get the orbital period P , which gives the semi-major axis a. The second one is about
the time interval t2 − t1 that it takes the object in the orbit to move through the angle
E2 − E1 and makes possible to determine the eccentricity e of the ellipse.
Once the orbital parameters are known, it is possible to follow r(t) at any given instant.
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2 Kepler’s equation

2.2 Hyperbolic orbits

The interest for the hyperbolic version of theKepler’s equation is based onmanydifferent
reasons. First of all, from the point of view of applied mathematics the solution of any
highly transcendental equation (as we are going to see) is interesting, in itself, but it has
an important role in many investigations in celestial mechanics as well as in other fields.
For example, from the correct determination of position and velocity of cometary orbits
to gravitational simulations (Rein & Tamayo (2015) MNRAS, 452, 376 ), quantumme-
chanics (Rauh & Parisi (2011) Phys. Rev. A, 83, 042101) and many others.

To derive Kepler’s equation in the case of elliptic orbits we have used the fact that an-
gular momentum is conserved. The same approach can be followed in the case of hyper-
bolic orbits but now (that e > 1) in the relations (2.8) and (2.10) sinE is imaginarywhile
cosE is real but can exceed unity. This means that for hyperbolic motionE is imaginary.
However, working directly with complex numbers it is not convenient and a quantity
analogous to the eccentric anomalyE must be defined.
Since eix = cosx + i sinx, remembering the exponential form of the trigonometric
functions and substituting x = iy it’s easy to find

cos iy = cosh y and sin iy = i sinh y

We can now introduce the new hyperbolic eccentric anomalyH defined asH = −iE,
so that

cosE = coshH and sinE = −i sinhH . (2.20)

In analogy to the elliptical case, it is nowpossible towrite thehyperbolicKepler’s equation
as

(e sinhH −H) = Mhyp =

√
µ

|a|3
(t− τ) (2.21)

whereMhyp =
√

µ
|a|3 (t − τ) is the hyperbolic mean anomaly and the signs are chosen

so that the body moves in the positive direction of the Y -axis for t = τ .
For the same considerations in the previous section, ∀Mhyp ∃! F such that the relation-
ship is verified. We can then write an analogous equation to (2.19) for the hyperbolic
orbit

t2 − t1 =
P

2π
[(e(sinhF2 − sinhF1)− (F2 − F1)] (2.22)

where the parameter P is still valid even though a body moving in a hyperbolic orbit has
no “period” in the usual sense.
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2.3 Parabolic orbits

2.3 Parabolic orbits

Aparticularly interesting case is the parabolic orbit, it’s a type of orbit rarely found in na-
ture although the orbits of some comets have been observed to be very close to parabolic.
It’s mathematically interesting because it represents the boundary between the bounded
and unbounded orbit forms, its eccentricity is equal to 1 and the total energy of the sys-
tem is exactly zero. For these reasons it represents an example of nonpredictable orbits:
slight changes in the initial conditions result in greatly different orbits.
The polar equation for the form of the orbit can be rewritten as

r =
p

1 + cos f
= q(1 + tan2f

2
) (2.23)

where q = p/2 is the periapsis of the parabolic orbit (r(0) = p/2).
Once again, the conservation of angular momentum permits the derivation of an equa-
tion analogous to Kepler’s equation. Consider

r2
f

dt
= h =

√
µp (2.24)

it follows that
4

√
µ

p3
dt = sec4

f

2
df . (2.25)

To perform the integration remember that secx = 1/cosx, so that∫
dx

cos4 x
=

∫
sin2 x

cos4 x
dx+

∫
cos2 x

cos4 x
dx

=
1

3
tan3 x+ tanx.

(2.26)

Finally, Kepler’s equation in the parabolic case, better known as Barker’s equation, is

1

3
tan3 f

2
+ tan

f

2
= Mpar = 2

√
µ

p3
(t− τ) (2.27)

whereMpar = 2
√

µ
p3

(t− τ) is the parabolic mean anomaly. The parabolic motion can
be represented by an explicit analytical formula using, for example, the Cardan formulas.
The solution for f requires the root of a cubic equation in tan f

2
and it is easy to show

that one and only one real root exists. To prove it (Battin [1]), let’s put

tan
f

2
= z − z−1 (2.28)
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2 Kepler’s equation

we get a quadratic equation in z3

z6 − 3Mparz
3 − 1 = 0 (2.29)

for which

z =

(
3

2
Mpar ±

√
(
3

2
Mpar)2 + 1

)1/3

(2.30)

and either sign produces the same solution for tan f
2
.
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3 Lambert’s theorem
Summary The aim in this chapter is to demonstrate Lambert’s theorem and to achieve this result we use
Kepler’s equation derived in Chapter 2. It is firstly prove for the elliptical path and then generalized to the
hyperbolic and parabolic cases.

In 1761, J. H. Lambert developed another method that can be used to establish orbits
from measurements made from Earth, the original motivation was to determine the or-
bits of comets and it is now known as Lambert’s theorem. In modern celestial mechanics
it has important applications in the area of orbit determination not to mention in that
of orbit design, space rendezvous and interception, space debris correlation. To be more
precise, since it is based on the two-body equations ofmotion, itmust be considered a pre-
liminary orbit determination technique because the actual orbit is perturbed over time
by other phenomena (e.g. gravitational forces, the asymmetric shape and non-uniform
mass distribution of objects, atmospheric drag, stellar winds, etc...).

Orbits along conic sections present many surprising properties, maybe the most sur-
prising is that some of the more important orbital quantities are independent on the ec-
centricity. The fact that the period of an elliptic motion depends only on the semimajor
axis is an example ((2.16)), the total energy of the orbit (i.e. the velocity as a function of
the radius given by the vis-viva equation ((1.14) together with 1.3)) is another one.
Lambert discovered another remarkable theorem in this connection with regard to the
time to traverse an elliptic arc. Actually the theorem has been proved to be true for a gen-
eral conic.
It can be derived from Kepler’s equation (2.19) and it is generically the same kind of rela-
tionship, the only difference is essentially the choice of origin of the coordinate system in
which the measurements to determine the orbits are made. In the case of Kepler’s equa-
tion, a time interval between twopositions and the value of the eccentric anomaly at these
two times are measured. The use of the eccentric anomaly is not always convenient and
the advantage of Lambert’s theorem is that themeasurements thatmust bemade to deter-
mine the orbital parameters can be performed from the focus of the elliptic orbit (more
useful in some applications).

Theorem 1. The time required to traverse an elliptic arc between specified endpoints de-
pends only on the semi-major axis a of the ellipse and on two geometric properties of the
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3 Lambert’s theorem

Figure 3.1: Geometry of the boundary-value problem.

space triangle, namely the chord length C and the sum of the radii r1 + r2 from the focus
to the initial and final points (see figure 3.1).

If t2 − t1 = ∆t is the time to describe the arc from P1 to P2, then Lambert’s theorem
states that

∆t = ∆t(a, C, r1 + r2) (3.1)

To prove it (Szebehely’s [15] and Battin’s [1] approaches have been used to analyze the
problem), let’s start considering figure 3.1. From geometrical considerations, we canwrite
the following relations for the radius r and the chordC:

r = a(1− e cosE) (3.2)

C2 = a2(cosE2 − cosE1)
2 + a2(1− e2)(sinE2 − sinE1)

2 (3.3)

where (3.2) is analogous to (1.20) since it represents the equation of an ellipse but now in
terms of the eccentric anomalyE (for a detailed geometrical derivation of (3.2) and (3.3)
see [15, pp.102,116]). Then, using (3.2), we have that

r1 + r2 = a(1− e cosE1) + a(1− e cosE2)

= 2a(1− 1

2
e(cosE2 + cosE1))

(3.4)

and remembering the prosthaphaeresis formulae, we can rewrite

cosE2 + cosE1 = 2(cos(
1

2
(E2 + E1))(cos(

1

2
(E2 − E1)) (3.5)

so that, definingE+ = 1
2
(E2 + E1) andE− = 1

2
(E2 − E1), we get

r1 + r2 = 2a(1− e cosE+ cosE−) (3.6)
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The previous results ((3.6) and (3.3)) come from a purely geometrical analysis of the el-
liptic orbit. It’s time now to consider the dynamic (that is, time dependent) relationships
for the remainder of the derivation.
Remember, from the previous chapter, that the time difference t2− t1 is one of the mea-
sured quantities.
Kepler’s equation associated to a general point P , representing the dynamic of the mo-
tion, is

t =
P

2π
(E − e sinE) (3.7)

If we calculate it in two different points P1 and P2, then we can write

t2 − t1 =
P

2π
((E2 − E1)− e(sinE2 − sinE1)) (3.8)

and, again through the prosthaphaeresis formulae

sinE2 − sinE1 = 2(cos(
1

2
(E2 + E1))(sin(

1

2
(E2 − E1)) (3.9)

we get

t2 − t1 =
P

2π
((E2 − E1)− 2e cosE+ sinE−) (3.10)

This equation represents the measured quantity from the dynamics of the system, that
is, the moving body (asteroid, comet, planet, satellite, etc...).
Rewriting (3.3) in a more convenient form (through prosthaphaeresis formulae, in par-
ticular (cosE2 − cosE1) = −2(sin(1

2
(E2 + E1))(sin(1

2
(E2 − E1)))

C2 = 4a2(sin2E−)(1− e2 cos2E+) (3.11)

we can now solve it together with (3.6) and (3.10) to obtain Lambert’s theorem.
Since our aim is to write the time difference as a function of a, C and r1 + r2, the next
step is to get rid of the eccentric anomalyE. First of all, let’s introduce

ξ = e cosE+ (3.12)

so that (3.11), (3.6) and (3.10) can be rewritten as

t2 − t1 =
P

2π
(2E− − 2ξ sinE−) (3.13)

r1 + r2 = 2a(1− ξ cosE−) (3.14)

C2 = 4a2(sin2E−)(1− ξ2) (3.15)
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3 Lambert’s theorem

Now (3.14) and (3.15) can be combined to obtain

r1 + r2 + C = 2a(1− ξ cosE− +
√

1− ξ2) sinE−

r1 + r2 − C = 2a(1− ξ cosE− −
√

1− ξ2) sinE−
(3.16)

To achieve a solution we are now obliged to perform another variable change

ξ = cos
1

2
(α + β) = cosQ+ and E− =

1

2
(α− β) = Q− (3.17)

which leads to

r1 + r2 + C = 2a(1− cosQ+ cosQ− + sinQ+ sinQ−)

= 2a(1− cosα) = 4a sin2 α

2
r1 + r2 − C = 2a(1− cosQ+ cosQ− − sinQ+ sinQ−)

= 2a(1− cos β) = 4a sin2 β

2

(3.18)

where the last two equalities are obtained using prosthaphaeresis and half-angle formulae
respectively. With variables defined in (3.17) and considering the prosthaphaeresis formu-
lae again, (3.13) can be rewritten as

t2 − t1 =
P

2π
((α− β)− (sinα− sin β)) (3.19)

where the parameters α and β are defined using (3.18)

sin
α

2
=

1

2

(
r1 + r2 + C

a

)1/2

and sin
β

2
=

1

2

(
r1 + r2 − C

a

)1/2

. (3.20)

Equation (3.19), also known as Lambert’s equation, proves the theorem: it is clear the re-
lationship of the time interval t2 − t1 from a, r1 + r2 and C trough the parameters α
and β. As Kepler’s equation, also (3.19) is a transcendental equation and some numerical
analysis must be applied for the resolution.

Let’s end this sectionwith a simple case (Szebehely[15]): in 3.1, considerP1 with a true
anomaly f1 = 0 and P2 with a true anomaly f2 = π/2.
We get

r1 = a(1− e) and r2 = a(1− e2) = p , (3.21)

it follows that
C = a(1− e)

√
2 + 2e+ e2 (3.22)

20



3.1 Hyperbolic and parabolic cases

while for the time interval we have

t2 − t1 =
P

2π
(arccos e− e

√
1− e2)) (3.23)

whereα and β are obtained troughLambert’s equation. Applying some numerical meth-
ods for the resolution, orbital parameters can then be obtained from these last two equa-
tions.

3.1 Hyperbolic and parabolic cases

A similar proof shows the theorem to be true for the hyperbola as well. As in the elliptical
case, we need the sum of the radial distances, the length of the chord and the hyperbolic
semi-major axis.
Now, keeping in mind the use of the hyperbolic functions, the radial distance is written
as

r = a(e coshF − 1) (3.24)

and the chord length becomes

C2 = a2(coshF2 − coshF1)
2 + a2(e2 − 1)(sinhF2 − sinhF1)

2 . (3.25)

Remembering Kepler’s equation in the hyperbolic case (2.22), with the analogous path
done to demonstrate the elliptic Lambert’s equation and rewriting the terms sin(α/2)
and sin(β/2) in (3.20) with the corresponding hyperbolic functions

sinh
γ

2
=

1

2

(
r1 + r2 + C

a

)1/2

and sinh
δ

2
=

1

2

(
r1 + r2 − C

a

)1/2

(3.26)

we get the Lambert’s equation for the hyperbolic orbits case

t2 − t1 =
P

2π
((sinh γ − sinh δ)− (γ − δ)) (3.27)

The special case ofLambert’s theoremfor theparabola canbeproven following the idea
(Szebehely [15]) that the parabolic orbit can be seen as a stretched ellipse with an infinite
semi-major axisa. This approach, which implies the use of the small-angle approximation
forα and β in (3.19), gives us the possibility to eliminate the transcendental terms and to
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3 Lambert’s theorem

achieve an analytic solution just as in the Kepler’s equation case.
Equations in (3.20) can then be rewritten as

sin
α

2
≈ α

2
with α ≈ 1

2

(
r1 + r2 + C

a

)1/2

sin
β

2
≈ β

2
with β ≈ 1

2

(
r1 + r2 − C

a

)1/2
(3.28)

Now, to obtain Lambert’s equation we first need to evaluate the previous expansions till
the third order (to avoid a null result)

sinα = α− α

3!
and sin β = β − β

3!
(3.29)

then, substituting in (3.19) we get

t2 − t1 =
P

12π
((
r1 + r2 + C

a
)3/2 − (

r1 + r2 − C
a

)3/2) . (3.30)

At this point, we make use of Kepler Third Law written in this way (keeping in mind
that a parabolic orbit is characterized by an infinite period P and an infinite semi-major
axis a)

P

2π

1

a3/2
=

1
√
µ

(3.31)

so that (3.30) can be rewritten as

t2 − t1 =
1

6
√
µ

((r1 + r2 + C)3/2 ∓ (r1 + r2 − C)3/2) (3.32)

with the upper or lower sign taking effect if the transfer angle (angle between r1 and r2)
is < or > than 180◦ respectively.

We conclude this analysis noting another practical information that can be provided
by the theorem (Szebehely [15, p.123]): the radius of curvature, i.e. if the object is in an
external or internal orbit with respect to the Earth.

22



4 Literature on Lambert’s
problem

Summary In this last chapter we want to write a unique equation that is valid for all the three orbital cases
presented previously. The method we use is that of the Universal variables formulation but since it’s just
one ofmany different ways to solve the problemwe also give a general overview of the large literature about
it without dig deep to each technique.

In Chapter 2we studiedKepler’s equation in the three different cases inwhich an orbit
can be found and in Chapter 3 we proved Lambert’s theorem to be true for each one of
those cases. The complication here is that those relations are valid for a particular type
of orbit only and in our problem we cannot know a priori which type of conic will de-
scribe the orbit of the object. Then, it is necessary a general formulation valid for any
type of orbit. This approach uses theUniversal variables formulation and it’s just one of
several different methods. It utilizes those variables, parameters or formulas that can be
used with any of the two-body conic section orbits. It’s a useful method since it permits
a nonsingular transition between orbits of different type and also because it reduces the
programming necessary to treat an orbit that changes shape (for example during a mis-
sion).

We follow the idea presented by E. R. Lancaster & R. C. Blanchard [11] whose works
represented an outstanding contribution to the subject and inspired some later authors
(Gooding [7] before and Izzo [8] later, to name a few, who focused on the computational
aspects).
Their method is particularly useful as it reduces the solution of Lambert’s problem to
require the computation of one only inverse trigonometric or hyperbolic function. This
is made possible by the appropriate choice of an independent variable x and a parameter
q such that the time interval between the initial and final points (see figure 3.1) ∆t =
∆tq(x) is a single-valued function of x for each value of q. The parameter q depends
only upon known quantities while∆t = ∆tq(x) is known so the problem is reduced to
find x (which will define the type of orbit) for given values of q and ∆t.
Since ∆t is a monotonic function of x for each value of q (in the case of less than one
revolution) there is a unique solution x of the problem (analogous to the demonstration
of the existence and uniqueness of the solution done in Chapter 2).
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4 Literature on Lambert’s problem

In the case of a multi-revolution object instead, the time interval has a single minimum
for each q. In this case (3.19) can be written as

t2 − t1 =
P

2π
(2mπ + (α− β)− (sinα− sin β)) (4.1)

wherem is the number of complete revolutions made during the transfer from r1 to r2.
As in the previous chapter, without loss of generality for our purpose, we will consider
in the following the casem = 0 sincem 6= 0 makes sense for the elliptic case only

t2 − t1 =
P

2π
((α− β)− (sinα− sin β)) (4.2)

Let’s first introduce the parameter q defined as

q =
(r1r2)

1/2

s
cos

θ

2
(4.3)

where θ ∈ [0, 2π] is the angle between the two position vectors in figure 3.1 and it is
linked to the chordC by the expressionC2 = r1

2 + r2
2 − 2r1r2 cos θ (refer to [11]).

It can also be written as (Izzo [8])

q2 =
s− C
s

(4.4)

where s = (r1 + r2 + C)/2 while the parameter q ∈ [−1, 1] is positive when θ ∈
[0, π] and negative when θ ∈ [π, 2π]. Values of q2 close to unity represent a curious case
since corresponds to a chord of zero length, an interesting case in interplanetary trajectory
design as it is linked to the design of resonant transfers (Izzo [8]).
It is also convenient to introduce a normalized time-of-flight defined as

T =

√
2µ

s3
(t2 − t1) (4.5)

Now we can proceed with the new formulation. With reference to Lambert’s equations
(previous chapter) it’s convenient to consider a new independent variable

x =

{
cos α

2
− 1 ≤ x ≤ 1

cosh γ
2

x > 1
(4.6)

so we have for elliptic, hyperbolic and parabolic (in this case x = 1) transfer

x2 − 1 = − s

2a
= W . (4.7)
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The following relations can be easily derived using (3.20) and (3.26). Analyzing first the
elliptic case, let’s define

y = sin
α

2
= (−W )

1
2 (4.8)

z = cos
β

2
= (1 + q2W )

1
2 (4.9)

f = sin
1

2
(α− β) = y(z − qx) (4.10)

g = cos
1

2
(α− β) = xz − qW (4.11)

h =
1

2
(sinα− sin β) = y(x− qz) (4.12)

λ = arctan
f

g
. (4.13)

Considering these newvariables, (3.19) can be rewritten in the followingnew formulation

T =
2(λ− h)

y3
. (4.14)

For the hyperbolic case instead, let’s rewrite the previous variables considering the hyper-
bolic functions

y = sinh
γ

2
= W

1
2 (4.15)

z = cosh
γ

2
= (1 + q2W )

1
2 (4.16)

f = sinh
1

2
(γ − δ) = y(z − qx) (4.17)

g = cosh
1

2
(γ − δ) = xz − qW (4.18)

h =
1

2
(sinh γ − sinh δ) = y(x− qz) (4.19)

χ = tanh−1
f

g
. (4.20)

Then for the hyperbolic case we get

T =
2(h− χ)

y3
. (4.21)
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Finally it is clear that, given x and q values, we can get the normalized time T for all cases
trough

T =
2(x− qz − d

y
)

W
(4.22)

where

d =

{
λ W < 0

χ W > 0
(4.23)

With (4.22) it is clear the advantage of using a universal variable (in this case x) that’s
independent on the type of the orbital path: x > 1 implies hyperbolic motion, x =
1 corresponds to parabolic motion while x < 1 to elliptic motion. The case of x =
0 corresponds to the minimum energy ellipse (particularly useful in applications) since
(Izzo [8])

1− x2 = sin2 α

2
=

s

2a
=
amin
a

. (4.24)

where amin represents the semi-major axis of the lowest energy ellipse.
Finally it’s interesting to note that x it’s not just an universal variable but it is also a Lam-
bert invariant parameter because different Lambert’s problems having identical q values
(i.e. sameC/s) share also the same x value. To clarify, we introduce the concept of Lam-
bert invariance which derives directly from Lambert’s theorem and the triangles equiva-
lence classification that this makes possible (cited Gooding [7]).
To be more precise, there are two different equivalence classifications based on two dif-
ferent possible relations: triangles that share the same values of s andC are defined as L-
congruent while (as in geometry the congruence relation suggests the similarity relation,
in fact) those that have in common the same value ofC/s ratio are defined as L-similar.
On this basis, we can also give a definition of a Lambert invariant parameter (geometric
or dynamic) which is then a variable, for either relation, that keep the same value for all
the problems that belong to the same equivalence class.
Two different problems are equivalent, on a congruent basis, if they share the same s, C
and ∆t values; on a similarity basis instead, for two problems to be equivalent it is suffi-
cient that only theC/s ratio and the adimensional ∆t are the same. Then it is clear that
the last one is normally themore useful type of equivalence (it’s the one thatwe encounter
in Lancaster and Blanchard paper [11]).

Solutions to Lambert’s problem abound in literature since Lambert’s time (who pro-
vided the equations to determine the minimum-energy orbit), noteworthy are also those
by Lagrange and Gauss (who formed his formulation trying to rediscover Ceres a year
after its last observation (Vallado [17])). We conclude presenting all the methods (refer
to the cited authors for a deeper description of each method) grouped (de la Torre San-
grà & Fantino [16]) into the major lines of research on the basis of the free parameter
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adopted (indicated in italic); the first author of every line represents that of the progenitor
ideawhile the successive made improvements on it:

• Universal variables: (refer to the beginning of the Chapter for a description)
– Lancaster & Blanchard [11]; Gooding [7]; Izzo [8].
– Bate; Vallado [17]; Luo; Thomson; Arora.
– Battin-Vaughan; Loechler; Shen; MacLellan.

• Semi-major axis: the "simple" application of Lambert’s theorem for which there is
a particular value of the semi-major axis associated with a single conic transfer arc
that will uniquely satisfy the associated boundary conditions.

– Lagrange; Thorne; Prussing; Chen; Wailliez.

• Semi-latus rectum (p-iteration): this method consists of guessing a trial value of p
from which we can compute the other two unknowns, a andE.

– Bate.

• Eccentricity vector: (to cite (Avanzini, “A Simple LambertAlgorithm” )) this parametriza-
tion makes use of a property of the eccentricity vector e, i.e. that it has a constant
component in the direction of the chord r1 − r2. The idea is that the transfer
time is a monotonic function of eT (transverse eccentricity component) so that it
is possible to consider eT as the unknown for solving the problem.

– Avanzini; He; Zhang; Wen.

• Kustaanheimo-Stiefel (K-S) regularized coordinates: theKustaanheimo-Stiefel trans-
formation turns a gravitational two-body problem into an harmonic oscillator, by
going to four dimensions. In addition to themathematical-physics interest, for ex-
ample, it has proved to be very useful inN-body simulations, where it helps handle
close encounters.

– Kriz; Jezewsky.
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