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Abstract

Current quantum devices have limitations in terms of size and noise, then hybrid algo-
rithms are considered the most effective way to reach a quantum advantage in the near
term. Quantum versions of Neural Networks (QNNs) can be implemented as variational
quantum circuits, namely hybrid quantum-classical algorithms where unitaries typically
depend on a set of parameters, that are optimized to minimize a given cost function. In
this perspective, we study the role of entanglement as related to the expressibility of a
QNN. Starting from previous works, we consider the entanglement properties of random
instances of QNN, where parameters are sampled from a Gaussian distribution. By vary-
ing the distribution parameters and circuit connectivity, we study the generation of Haar
distributed states in terms of entanglement entropy.

Sommario

Gli attuali dispositivi quantistici hanno limitazioni in termini di dimensioni e rumore,
pertanto gli algoritmi ibridi sono considerati il modo più efficace per raggiungere un van-
taggio quantistico nel breve termine. Le versioni quantistiche delle reti neurali (QNNs)
possono essere implementate come circuiti quantistici variazionali, ossia algoritmi ibridi
quantistico-classici in cui gli operatori unitari dipendono tipicamente da un insieme di
parametri, che vengono ottimizzati per minimizzare una data funzione di costo. In questa
prospettiva, si studia il ruolo dell’entanglement in relazione all’espressività di una QNN.
Partendo da lavori precedenti, si considerano le proprietà di entanglement delle istanze
casuali di una QNN, in cui i parametri sono campionati da una distribuzione Gaussiana.
Variando i parametri della distribuzione e la connettività del circuito, studiamo la gene-
razione di stati distribuiti secondo la distribuzione di probabilità uniforme indotta dalla
misura di Haar in termini di entropia dell’entanglement.
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Introduction

In the 80s Feynman revolutionized the field of computing by envisioning quantum computers
as devices composed of quantum systems that perform operations according to the rules of
quantum mechanics [1]. The idea of a quantum simulator arose from the understanding that
determining properties of many-body quantum systems is computationally hard with classical
resources. Soon after [2, 3], this led to the development of quantum algorithms that exploit
quantum phenomena, such as superposition of quantum states and entanglement, as resources
during the computational process, to reach the solution of a given problem [4, 5].
In 1994, Peter Shor [6] proposed a quantum algorithm that efficiently factors prime numbers.

This algorithm has an exponential speed-up over any classical algorithms that have been dis-
covered to date, and, if implemented on a large-scale quantum computer, it could potentially
compromise the security of the RSA cryptosystem. Soon after Lev Grover [7] also proposed
a quantum algorithm for solving the search problem of a marked item in an unstructured
database. In this case, the gain with respect to the classical counterpart is only quadratic.
Currently, a universal, fault-tolerant quantum computer has not yet been developed. However,

the pursuit of quantum speed-up continues with Noisy Intermediate-Scale Quantum devices
(NISQ). These quantum computers have limited capabilities due to noise, and the number
of available qubits ranges from 50 to a few hundred [8, 9]. To overcome these limitations
Variational Quantum Algorithms (VQAs) are considered a promising alternative [10]. VQAs
are hybrid quantum-classical variational algorithms, where the quantum hardware is used to
accelerate specific tasks, similar to how GPUs are used in classical computers. Prototype
applications of VQAs already exist and have been executed on NISQ devices or quantum
computer emulators [11–19]. The optimization procedure in VQAs can be a bottleneck, and the
convergence to an optimal solution can be prevented by barren plateaus, namely the emergence
of exponentially vanishing gradients in the variational parameters with the number of qubits,
the expressibility of the variational Ansatz, or the non-locality of the cost function [20, 21].
Within the domain of VQAs we focus on quantum neural networks (QNNs), a possible quan-

tum alternative for classical supervised learning algorithms called neural networks (NNs) [22,
23]. QNNs are VQAs where the quantum circuit consists of parametrized quantum circuits
used to encode the classical inputs into a quantum state, followed by a layered structure of
variational circuits, which are trained in order to solve the desired learning task. The entan-
glement produced by the quantum circuit has an impact on the QNN performances due to its
connection with the onset of barren plateaus (BPs) [24]. This motivates the work developed in
this thesis. Here, we study the entanglement properties of QNNs where the initial parameters
are sampled from a Gaussian distribution, an initialization strategy argued to be efficient to
address the emergence of BPs [25]. Building on the entanglement analysis of uniformly initial-
ized QNNs [26], we examine instead how a different choice of the distribution parameters µ and
σ in the Gaussian initialization strategy affects the entanglement entropy production of QNNs.
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The following work is divided into three chapters. In Chapter 1, we introduce the basic
concepts of digital quantum computation and information. In Chapter 2 we give a general
description of VQAs, going into more detail on the particular case of the QNNs and their
entanglement properties. In Chapter 3, we show the results of our analysis on the entanglement
entropy produced by Gaussian initialized QNNs, and we give an outline for further analysis.



Chapter 1

Digital quantum computing

The theory of quantum computation is based on the idea of using quantum mechanics to
perform computations [4]. Digital quantum computing using the quantum circuit model is
the quantum version of classical digital computation [4, 5]. In the classical regime, we treat
each transistor as the physical implementation of a binary variable, which takes values 0 or 1,
neglecting the fact that the underlying technology is analog. The same way, in digital quantum
computing, we neglect the complex Hamiltonian evolution that underlies the computation,
restricting the problem to the one of a two-level system: the qubit. The qubit is a fundamental
concept of quantum computation. We are going to describe qubits as mathematical objects,
regardless of their realization as actual physical systems such as ion traps, superconducting
circuits, Rydberg atoms, and integrated photonic circuits [27–30]. Because we treat qubits as
abstract mathematical objects, we can discuss the general hardware-agnostic theory of quantum
computation.
In the following sections, we describe the basic concepts of quantum computation. Starting

from the basic building block, the qubit, passing through the principles of quantum mechanics,
we define the quantum circuit.

1.1 Fundamentals of quantum computation
The elementary unit of classical information, the bit, is a binary variable that can assume values
0 or 1. In contrast, the qubit is a two-level quantum system described by a two-dimensional
complex Hilbert space [5]. Once defined a basis of the 2-dimensional Hilbert space {|0⟩, |1⟩},
usually called computational basis states, the general state of a qubit can be written as follows:

|ψ⟩ = a0 |0⟩ + a1 |1⟩ a0, a1 ∈ C. (1.1)
In contrast with classical computation where we can examine a bit to determine whether it is 0
or 1, when we measure a qubit we get either the result 0, with a probability |a0|2, or the result
1 with probability |a1|2. Since |a0|2 and |a1|2 represent probabilities, they must sum to one:

|a0|2 + |a1|2 = 1. (1.2)

This dichotomy between the unobservable state of a qubit and the observations we can make
lies at the heart of quantum computation and quantum information. In most of our abstract
models of the world, there is a direct correspondence between elements of abstraction and
the real world, but it is different in quantum mechanics. The property of a qubit to be in a
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superposition state is counterintuitive. While a classical bit can be only in either 0 or 1, a qubit
can exist in a superposition of the two states |0⟩ and |1⟩ until it is observed [4].
In the following work, to better visualize the qubit state, we focus on its geometric represen-

tation. Using the Equation (1.2) we can rewrite the qubit state as:

|ψ⟩ = cos θ2 |0⟩ + eiφ sin θ2 |1⟩ with 0 ≤ θ ≤ π 0 ≤ φ ≤ π, (1.3)

where θ and φ define a point on the surface of a unit three-dimensional sphere called the Bloch
sphere. In this framework, the state of a single qubit can be visualized as a vector pointing on
the surface of such a sphere.

Figure 1.1: Bloch Sphere representation of a qubit state. The angles θ and φ identify the single
qubit pure state as shown in Equation (1.3). The ẑ unit vector represent the |0⟩ basis state
and −ẑ the |1⟩ basis state.

The amount of information encoded in a qubit is the one included in two complex numbers
a0 and a1 defined in Equation (1.1), or likewise in the two angles θ and φ defined in Equation
(1.3), so it is potentially infinite. Nevertheless, to access that information we have to measure
the quantum state |ψ⟩. The result of the measurement is either |0⟩ or |1⟩: a classical bit. The
measurement projects the state of a qubit on |0⟩ or |1⟩, namely on the specific state consistent
with the measurement result. Therefore we obtain a single bit of information with a single
measurement and only by measuring infinite identically prepared qubits we would be able to
determine a0 and a1 of the qubit state in Equation (1.1).
If we don’t measure the qubit state, we can still exploit the extra information encoded in

|ψ⟩ thanks to the quantum phenomenon of superposition. The amount of extra information
grows exponentially with the number of qubits, thus enabling quantum algorithms to achieve
a possible speed up over the classical counterpart. It is the task of quantum algorithms, which
are based on quantum logic, to exploit the inherent quantum parallelism of quantum mechanics
to achieve the desired output [5].

1.2 Quantum state representation
A state in quantum mechanics is a mathematical object that contains the information of a
physical system. If a state contains the maximum amount of information it is called pure
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state. A pure state is represented by a vector in a Hilbert space over complex numbers with
unitary length. A quantum state with partial information on the physical system is defined as a
mixed state. To describe mixed states we have to introduce a new formalism: density matrices.
Density matrices are positive semi-definite operators that act on Hilbert spaces. A quantum
state, in its more general description, is represented as a density matrix ρ:

ρ =
∑︂

i

pi |ψ⟩i ⟨ψ|i , (1.4)

where pi is the probability for the system to be in the pure state |ψ⟩i. Introducing the trace
of an arbitrary matrix A as Tr(A) = ∑︁n

k ⟨k|A |k⟩, where {|k⟩}k=1,...,n is a basis of the Hilbert
space, ρ has the following properties:

• ρ is hermitian;

• ρ is a non-negative operator: ∀ |ψ⟩ ⟨ψ| Â |ψ⟩ ≥ 0

• Tr(ρ) = 1

We can recognize when ρ represents a pure state because in this case:

ρp = |ψ⟩ ⟨ψ| with pi = 0 ∀i ̸= ˜︁i, p˜︁i = 1, (1.5)

such state is a projector: ρ2
p = ρp, and it follows that Tr(ρ2

p) = 1. A mixed state instead
presents Tr(ρ2) < 1.
The expectation value of a generic observable Â relative to a state ρ is written as:

⟨Â⟩ = Tr
(︂
ρÂ
)︂
. (1.6)

We can represent a generic qubit as we did in Equation (1.3) but using the density matrix:

ρ(θ, φ) = |ψ⟩ ⟨ψ| =
(︄

cos θ
2

sin θ
2e

iφ

)︄
·
(︂

cos θ2 sin θ2e
iφ
)︂

=
(︄

cos2 θ
2 sin θ

2 cos θ
2e

−iφ

sin θ
2 cos θ

2e
iφ sin2 θ

2

)︄
. (1.7)

If we consider the change of variables from the spherical coordinates of the Block unitary sphere
in the Cartesian ones (x = sin θ cosφ, y = sin θ sinφ, z = cos θ), we can express the qubit state
on the basis of the Hermitian matrices 2 × 2 consisting of the identity and Pauli matrices
{1, xσx̂, yσŷ, zσẑ}:

ρ = 1
2

(︄
1 + z x− iy
x+ iy 1 − z

)︄
= 1

2(1 + xσx̂ + yσŷ + zσẑ). (1.8)

1.3 Composite systems and entanglement
Entanglement is the most counter-intuitive phenomenon of quantum mechanics observed in
composite quantum systems [5]. In this paragraph, we introduce a formalism for the descrip-
tion of composite systems and we give a general characterization of the entanglement and its
properties.
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1.3.1 Composite systems
A n-body quantum system lives in the tensor product space of the single Hilbert spaces of each
component:

H =
n⨂︂

i=1
Hi = H1 ⊗ ...⊗ Hn. (1.9)

In the Hilbert space H the most general state can be written as follows:

|ψ⟩ =
∑︂

j⃗

cj⃗ |j⟩1 ⊗ ...⊗ |j⟩n =
dimH∑︂

j⃗

cj⃗ |j1...jn⟩ with
∑︂

j⃗

|cj⃗| = 1, (1.10)

where {|j⟩i}i=1,...n are the orthonormal basis of each Hilbert space {Hi}i=1,...n.
Let us assume that the total system is described by the density matrix ρ:

ρ = |ψ⟩ ⟨ψ| =
∑︂

j⃗

∑︂
k⃗

cj⃗c
∗
k⃗

|j1...jn⟩ ⟨k1...kn| . (1.11)

Taking into consideration a local observable acting only on the subsystem i, we can express it
as an operator acting on the entire Hilbert space H:

Â = 11 ⊗ ...⊗ Âi ⊗ ...⊗ 1n. (1.12)
To compute the expectation value of such observable in a quantum many-body system we need
to define the reduced density matrix [4]. The reduced density matrix ρi is obtained by tracing
away all the other degrees of freedom except those relative to subsystem i:

ρi = Trk ̸=i(ρ). (1.13)

From the reduced density matrix the expectation value of the local observable Â, see Equation
(1.12), becomes:

Tr(ρÂ) = Tr(ρiÂi). (1.14)
Therefore, it is possible to compute the expectation value of an operator acting only on sub-
system i by means of the reduced density matrix ρi. We can conclude that ρi, obtained after
partial tracing over the other subsystems, describes the state of subsystem i [31]. It is impor-
tant to emphasize that ρi does not conserve the purity of the general matrix ρ, namely if ρ is
a pure state, there is no guarantee that ρi is pure too.

1.3.2 Entanglement
Entanglement is a uniquely quantum mechanical phenomenon that plays a key role in many
applications of quantum computation and quantum information [4]. A composite system that
has only classical correlations can be described as a separable state, a convex combination of
product states. Given a bi-partition of the system in two subsystems A and B, we can define
a separable state as:

ρS
AB =

∑︂
i

pi(ρA
i ⊗ ρB

i ) with
∑︂

i

pi = 1 (1.15)

where ρA
i ⊗ ρB

i is a product state. In this case, after the two classical systems A and B
have interacted, they are in well-defined individual states. In contrast, after two quantum
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systems have interacted, in general, they can no longer be described independently of each
other. There are purely quantum correlations between two such systems, independently of
their spatial separation [5]. When the state describing a composite system AB cannot be
written as separable is said to be entangled:

ρ ̸= ρS
AB. (1.16)

An example of a 2-qubits entangled state is the Bell couple |ϕ+⟩ ⟨ϕ+| = 1
2(|00⟩+|11⟩)(⟨00|+⟨11|).

To better understand the entanglement phenomenon, let us consider Bell’s experiment. We
produce an entangled 2-qubit state and then spatially separate the two qubits. If we perform
a measurement on one qubit A we can instantly have information on a possible measure result
of the state B without actually measuring it. This however does not violate special relativity
since the information obtained from system A must travel through a classical channel to reach
system B. A possible explanation for the two systems’ correlation could be the presence of some
additional local variables, called "hidden" because they are not contemplated in quantum me-
chanics. A theory supported by Einstein, Podolsky, and Rosen that, with the famous paradox,
argued that the description of physical reality provided by quantum mechanics was incomplete
[32]. The evidence that the quantum theory is complete was achieved through the violation of
Bell Inequalities [33]. This experimental evidence brings to the solution of the EPR paradox
and to the incompatibility of locality and realism in quantum mechanics.
The Von Newmann entanglement entropy quantifies the entanglement in pure quantum states.

Taking into consideration a state ρ, we can define the Von Newmann entropy as:

Svn = −Tr(ρ log ρ). (1.17)

Svn has three fundamental properties:

• If ρ is a pure state, then Svn(ρ) = 0;

• If ρ evolves unitarily in time its entanglement entropy does not change:

Svn(U(t)ρU †(t)) = Svn(ρ); (1.18)

• If the Hilbert space H dimension of the system is N, then:

0 ≤ Svn(ρ) ≤ log(N). (1.19)

For example, let us take ρ = |ψ⟩ ⟨ψ| as the quantum state of a system composed by n qubits
and consider a bi-partition A, B of such system with respectively nA and nB = n−nA number
of qubits. The entropy of the subsystem ρA = TrB(ρ) (1.13), defined as:

Svn(ρA) = −Tr(ρAlogρA), (1.20)

quantifies the amount of entanglement between subsystem A and its complement B. It is shown
that the entanglement entropy of the two subsystems is equal, namely Svn(ρA) = Svn(ρB).
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1.4 Quantum state evolution and projective
measurement

The evolution of a qubit in a pure state is described by Schrödinger’s equation:

iℏ
∂ψ

∂t
= Ĥψ, (1.21)

where Ĥ is a fixed Hermitian operator known as the Hamiltonian of the closed system. The
time evolution postulate requires the system to be closed, i.e. it is not interacting in any way
with other systems. We can write the solution of the Equation (1.21) as:

|ψ(t)⟩ = U(t) |ψ(0)⟩ , (1.22)

where we assume that the initial instant is zero t0 = 0, and that U(t) is the state evolution
unitary operator [34]. For this reason, we use unitary operators to describe quantum gates in
the next paragraph.
The unitary evolution of the density matrix ρ0 = |ψ(0)⟩ ⟨ψ(0)| can be written as:

ρ(t) =
∑︂

i

pi |ψ(t)⟩i ⟨ψ(t)|i = U(t)ρ0U
†(t). (1.23)

Closed quantum systems evolve according to unitary evolution. However, to extract informa-
tion from the system we observe it. The interaction needed to observe the system makes it
no longer closed, and thus not necessarily subject to unitary evolution [4]. The observation is
made by measuring. One kind of measurement is the projective measurement based on the Von
Neumann projection postulate [35]. We consider a generic quantum state |ψ(t)⟩, we measure
an observable Â at t = 0 finding a ∈ σ(Â), where σ(Â) is the spectrum of the observable Â.
The measurement projects the state |ψ(0)⟩ in an eigenstate |a⟩ of Â, referred to the eigenspace
with eigenvalue a. The mathematical object that performs this operation is the Projector
P Â

a = |a⟩ ⟨a|. Immediately after the measurement, we find the system in a state described as:

⃓⃓⃓
ψ(0+)

⟩︂
= P Â

a |ψ(0)⟩√︂
⟨ψ(0)|P Â

a |ψ(0)⟩
. (1.24)

1.5 Circuit model of quantum computation
A quantum computation can be divided into three main steps:

1. prepare the quantum computer in a well-defined initial state |ψi⟩;

2. manipulate the quantum computer state through unitary transformations: |ψf⟩ = U |ψi⟩;

3. performs measurements on a computational basis.

In the following paragraph, we go into detail about the different steps and we focus on the
circuit model, one of the fundamental models of quantum computation.
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1.5.1 Quantum register of n qubits
A classical computer can be described as a finite register of n bits, likewise, a quantum computer
may be thought of as a quantum register of n qubits. The state of an n-qubit quantum computer
lives in a 2n-dimensional Hilbert space, constructed as the tensor product of n 2-dimensional
Hilbert spaces, one for each qubit:

|ψ⟩ =
1∑︂

in−1=0
...

1∑︂
i0=0

cin−1,...,i0 |in−1⟩ ⊗ ...⊗ |i0⟩ . (1.25)

Moving from binary to decimal notation, we can represent the same state as :

|ψ⟩ =
2n−1∑︂
i=0

ci |i⟩ with
2n−1∑︂
i=0

|ci|2 = 1. (1.26)

A set of n classical bits can store only a single integer i. The n-qubit quantum register can be
prepared in the corresponding state |i⟩ of the computational basis, but it can also exploit the
superposition principle. The number of states of the computational basis in a superposition
can be as large as 2n, so it grows exponentially with the number of qubits. When we perform
a computation on a classical computer, different inputs require separate runs. In contrast, a
quantum computer can perform a computation for exponentially many inputs on a single run
[5].

1.5.2 Quantum gates
The time evolution of a quantum register in Equation (1.25), is described by successive appli-
cations of unitary operations. In this work, we neglect non-unitary decoherence effects due to
the undesired coupling of the quantum computer to the environment. As we emphasized in
Section 1.4, the evolution of an n-qubit state is described by a 2n × 2n unitary matrix. This
unitary matrix can always be decomposed into a product of unitary operations acting only on
one or two qubits [5]. In particular, it can be shown that any unitary operation in the Hilbert
space of n qubits can be decomposed into the two-qubit CNOT and one-qubit gates. For this
reason, this set of gates is said to be universal for quantum computation [4, 5]. Therefore, we
introduce the fundamental qubit gates that can be part of the universal gate set.
Let us begin with one-qubit gates. Writing the computational basis as vectors in a 2-

dimensional Hilbert space:

|0⟩ =
(︄

1
0

)︄
|1⟩ =

(︄
0
1

)︄
, (1.27)

the operations on a qubit are described as 2 × 2 unitary matrices acting on such Hilbert space.
Two quantum gates that have a classical counterpart are the buffer gate and the not gate. Such
gates are respectively defined as:

12 =
(︄

1 0
0 1

)︄
, σx =

(︄
0 1
1 0

)︄
. (1.28)

The buffer acts on the computational basis {|0⟩, |1⟩} as an identity; while the not gate swaps
|0⟩ with |1⟩ and vice versa. Two quantum gates that do not have a classical counterpart are:
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• the Hadamard gate, defined as

H = 1√
2

(︄
1 1
1 −1

)︄
, (1.29)

it acts on the computational basis as follows

H |0⟩ = 1√
2

(|0⟩ + |1⟩) H |1⟩ = 1√
2

(|0⟩ − |1⟩), (1.30)

we can visualize its action on the Bloch sphere as a π
2 rotation of the state vector in the

(x, z) plane around the y-axis;

• the Phase shift gate, defined as

Rz(δ) =
(︄

1 0
0 eiδ

)︄
, (1.31)

it acts on a generic single qubit state written in Equation (1.3) as follows

Rz(δ) |ψ⟩ = cos θ2 |0⟩ + ei(φ+δ) sin θ2 |1⟩ with 0 ≤ θ ≤ π 0 ≤ φ ≤ π, (1.32)

we can visualize it on the Bloch sphere as a δ rotation of the state around the z-axis.

It is shown that any unitary operation of a single qubit can be constructed using only Hadamard
and phase-shift gates [5]. In fact, we can reach a generic state of the quantum Bloch sphere
starting from |0⟩ with the following sequence of single-qubit gates:

Rz(π2 + φ)HRz(θ)H |0⟩ = ei θ
2 (cos θ2 |0⟩ + eiφ sin θ2 |1⟩), (1.33)

where we can ignore ei θ
2 because is a global phase that has no observable effects [4].

To prepare an entangled state in a generic n-qubit system we need interactions between the
qubits, which is why using only single-qubit gates we are unable to generate entanglement.
We need to consider a two-qubit gate and the prototypical two-qubit gate able to generate
entanglement is the controlled-NOT gate [5]. Such gate in matrix representation can be written
as a 4 × 4 matrix:

CNOT =
(︄

12 02
02 σx

)︄
, (1.34)

in fact, acts on a 4-dimensional Hilbert space H. A computational basis for that Hilbert space
is {|i1i0⟩ = |00⟩ , |01⟩ , |10⟩ , |11⟩}. A CNOT gate takes as input a generic linear combination of
the two-qubit basis states, its action on this latter is:

CNOT |00⟩ = |00⟩ CNOT |01⟩ = |01⟩ CNOT |10⟩ = |11⟩ CNOT |11⟩ = |10⟩ . (1.35)
The first qubit of the input state is known as the control qubit and the second is the target
qubit. If the control qubit |0⟩, then the target qubit is unchanged; if the control qubit is |1⟩,
then the target qubit is flipped. It is easy to see that a CNOT can generate entanglement. For
example, starting from a generic two-qubit separable state:

|ψ⟩i = (α |0⟩ + β |1⟩) ⊗ |0⟩ with |α|2 + |β|2 = 1, (1.36)
by applying a CNOT gate we find:

CNOT |ψ⟩i = CNOT (α |00⟩ + β |10⟩) = α |00⟩ + β |11⟩ , (1.37)
which is a non-separable state if α, β ̸= 0, this way we create entanglement.
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1.5.3 Quantum circuits
The elements described in Subsections 1.5.1 and 1.5.2 are components of what is called a
quantum circuit. Let us consider the graphic representation of a generic example of a quantum
circuit to better describe what it is:

|0⟩ σx H

|0⟩ Rz(δ) σx

Figure 1.2: Quantum circuit consisting of: a NOT and a Hadamard gate applied to the first
qubit; a phase shift gate applied to the second qubit; a CNOT gate using the first qubit as the
control qubit and the second as the target; final measurements on both qubits.

Each line in the circuit is associated with a single qubit with time flowing left-to-right [4].
It is conventional to assume that all qubits are initialized in |0⟩. The boxes drawn on a
single wire are single qubit gates, and the symbols written inside the box identify the gate.
A box drawn on n wires of the circuit represents a gate acting on the n qubits. The CNOT
graphical representation is denoted by a point on the control qubit and a NOT gate on the
target qubit, sometimes the target qubit is represented with a crossed circle. We choose the
first representation to emphasize that we could apply any kind of gate on the qubit target and
define a generic control gate. The last symbol we see in Figure 1.2 is the "meter" symbol applied
on both qubits. Such a symbol identifies the projective measurement introduced in Equation
(1.24).



Chapter 2

Quantum neural networks

A universal fault-tolerant quantum computer that can perform quantum algorithms, like Shor’s
or Grover’s, is not available at the moment. While the experiments advance toward the real-
ization of such devices, the search for quantum speed-up proceeds with the currently available
noisy intermediate-scale quantum devices (NISQ). "Intermediate scale" refers to the size of
quantum computers with a number of qubits ranging from 50 to a few hundred, while "Noisy"
emphasizes that noise places limitations on quantum devices [8, 9]. Variational quantum algo-
rithms (VQAs) are considered a promising route to obtain a quantum advantage in the NISQ
era [10]. VQAs are a class of quantum algorithms that use a combination of classical and quan-
tum computation to solve optimization problems. A typical example is finding the ground state
of a quantum system, as it is common in quantum chemistry and condensed matter physics
[11]. In the machine learning context, quantum neural networks (QNNs) can be used as the
underlying architecture, i.e. the quantum circuit, of VQAs. Starting from its classical analog,
QNNs are a machine learning model designed to operate and manipulate quantum data, i.e.
data encoded into a quantum state. By combining the quantum circuit with classical optimiza-
tion, the parameters of the QNNs are optimized to minimize a cost function. QNNs seem to
represent a promising quantum alternative for classical supervised learning [22, 23].
In the following sections, we introduce variational quantum circuits, then we go into more

detail about quantum versions of neural networks (QNNs). Finally, we focus on how to calculate
the entanglement entropy produced by QNNs [26] and we introduce Haar distributed random
states with their entanglement properties, which are used as a comparison for the entanglement
produced in the variational quantum circuit [36, 37].

2.1 Variational quantum algorithms
Variational quantum algorithms are hybrid quantum-classical algorithms. The quantum part
is needed to implement the parametrized quantum circuits (PQCs), namely quantum circuits in
which some of the unitary operations depend on variational parameters to be optimized. The
classical computer instead, deals with the optimization of parameters through the minimization
of the so-called cost function, whose minimum represents the problem solution. The cost
function is optimized using methods based on its gradient or higher-order derivatives, the most
common is gradient descent [38].
Therefore the two basic elements of VQAs are the cost function and the PQCs ansatz. The

cost function encodes the problem we want to solve. More specifically, the cost defines a surface
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in a multidimensional parameter space, usually called the cost landscape, such that the task
of the optimizer is to navigate through the landscape and find the global minimum [10]. A
generic cost function can be expressed as:

C(θ⃗) =
∑︂

k

fk(Tr[ÔkU(θ⃗)ρkU
†(θ⃗)]), (2.1)

where {fk} are some set of functions, U(θ⃗) is a parametrized unitary, θ⃗ is composed of discrete
and continuos parameters, {ρk} are input states from a training set and {Ôk} are a set of
observables. C(θ⃗) should meet certain criteria to be an exploitable cost function [10]:

• C(θopt
⃗ ) corresponds to the solution of the problem;

• C(θ⃗) is efficiently estimated by performing measurements on a quantum computer and
possibly performing classical post-processing;

• C(θ⃗) is "operationally meaningful", e.g. smaller cost values indicate a better solution;

• C(θ⃗) is trainable, e.g. the parameters θ⃗ can be efficiently optimized.

An example of an efficient cost function is the expectation value of an observable Ô:

f(θ⃗) = ⟨Ô⟩ = Tr
[︂
ÔU(θ⃗)ρU †(θ⃗)

]︂
, (2.2)

where ρ is the initial quantum state generally set to ρ = |0⟩⊗n ⟨0|⊗n.
The unitary matrix U(θ⃗) describing the PQC can be defined by different gate arrangements. A

particular choice of gates is called ansatz. Besides the cost function choice, the ansatz selection is
an essential constituent of VQAs. If the choice of the ansatz depends on the task to accomplish,
such ansatzes are called problem-inspired ansatzes, otherwise, if they are independent of the
task, they are referred to as problem agnostic ansatzes [10]. In figure 2.1 we show a graphic
illustration of a hybrid quantum-classical algorithm:

Figure 2.1: A schematic representation of the VQAs hybrid loop consisting of a generic PQC
ansatz, from which the cost function C(θ⃗) = ⟨Ô(ψ)⟩ is estimated, and the classical optimization
process in which the parameters are updated. The process is repeated until convergence is
reached. The image is taken from [39].
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2.2 Quantum Neural Networks
Quantum neural networks (QNNs) are the quantum version of a subset of classical machine
learning called neural networks (NNs) [40]. As the name suggests, NNs are learning algorithms
inspired by the functioning of our neurological system. As biological neurons process multiple
inputs to generate a single output and then transmit it to other neurons, the fundamental
computational unit of a NN follows the same input-output model.

...
... ...

I1

I2

I3

In

H1

Hn

O1

On

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: Schematic representation of a classical neural network

Figure 2.2 represents a generic NN architecture formed by multiple layers consisting of different
computational units, represented by circles. An example of neural networks are those used
for supervised learning. NNs are "supervised" when both figures and labels are provided to
the algorithm to be trained. "Learning" refers to the learning procedure happening during
parameter optimization. Therefore a neural network is usually able to generalize and predict
well on previously unseen data [40, 41].
Quantum neural networks are a new class of machine learning models, based on classical NN

learning techniques, but deployed on quantum computers [22]. A QNN is a variational quantum
algorithm made of three main constituents: input data encoding, variational ansatz, and final
measurements with a classical update of the parameters [23]. The encoding scheme used to load
the input data into the quantum computer is known as feature map and consists of a unitary
operation, F(x⃗), parameterized by the input data x⃗. There is no fixed form for the feature
map, and we thus choose it based on the problem. The other basic element of a QNN is the
variational ansatz that we denote as V (θ⃗), where θ⃗ are the variational parameters. As their
classical counterpart, a QNN is composed of several repetitions called layers, we define each
layer as composed of a feature map F(x⃗) and a variational unitary V (θ⃗). Therefore a general
QNN can be expressed as:

UQNN(x⃗, θ⃗) = V (θ⃗L)F(x⃗)...V (θ⃗1)F(x⃗), (2.3)

where L is the number of layers and the unitary depends on the input data x⃗ and the set of
trainable parameters {θ⃗i}.
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LAYER 1

|0⟩

F(x⃗) V (θ⃗1)
|0⟩
|0⟩

|0⟩

...

LAYER L

F(x⃗) V (θ⃗L)

Figure 2.3: Schematic representation of a Quantum Neural Network.

Let us compare Figure 2.3 representing a generic QNN with its classical counterpart in Figure
2.2. We can see that in the latter there is just one input layer, instead in a QNN the input data
are uploaded multiple times inside the circuit. Such a procedure is a standard practice called
data re-uploading, and it is essential for QNN to model higher-order input parameters. [42–44].
After the application of the unitary UQNN(x⃗, θ⃗), we measure the qubits to infer some relevant
information about the system. Given the outcome, the parameters of the circuit are updated
through a classical optimizer to minimize the cost function defining the problem [23]. The
optimization of a QNN is usually performed by a first-order iterative optimization algorithm
called gradient descent [45].
Quantum neural networks are generally affected by a problem known as barren plateaus (BPs),

the gradient of the cost function vanishes exponentially with the number of qubits hindering
the optimization process [20, 21]. The emergence of BP is connected to different phenomena,
one of them is the amount of entanglement produced in the variational circuit [24], therefore
it is important to keep the entanglement growth under control. Further, different recent works
address the BP problem, and, in particular, discuss the relationship between the emergence of
BP and the random parameters of the variational quantum circuit. In [25] is shown that using
proper Gaussian initialization parameters the norm of the gradient decays at most polynomially
with increasing the qubit number and the circuit depth.

2.3 Entanglement entropy production in quantum
circuits and Haar-distributed states

Let us assume that we want to uniformly sample, i.e. extract uniformly at random, points in
a volume of the three-dimensional Euclidean space. If we consider a unit volume cube, it is
sufficient to randomly extract each Cartesian coordinate (x, y, z) of the point in [0, 1]. Whereas
to perform uniform sampling on the unit volume of a sphere it would be wrong to simply
sample each spherical coordinate (r, θ, ϕ) from a uniform distribution over its domain. We
must take into account the euclidean measure, which weights differently the distinct portions
of the sphere to properly sample points in the sphere volume uniformly at random. For a
practical visualization see Figure 2.4.
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Figure 2.4: Section of a spherical volume showing the difference between sampling points
in the spherical volume uniformly at random (uniform) and sampling points from a uniform
distribution over the sphere domain (not uniform).

Now, let us turn to the case of uniform sampling from quantum states, which are generated by
applying unitaries distributed according to a certain measure. Let us consider the elements U
of the group of n×n unitary matrices U(n). We can perform operations on the elements of U(n)
such as sampling uniformly over them, just as we can do to points on a sphere. Considering
an n-dimensional space, the Haar measure denoted as µ(U) is the measure that tells us how
to weigh the elements of U(n). To give a more precise definition we can say that the Haar
measure is the unique unitarily invariant probability measure µ(U) defined on the group of
n × n unitary matrices U(n) [37]. An important property of such a measure is its invariance
under unitary transformations:

µ(MU) = µ(UM) = µ(U), (2.4)

where U and M are unitary matrices that belong to U(n). P(n) is the uniform probability
induced by the Haar measure µ(U) on the space of unitary matrices U(n). We can sample
a quantum state according to the Haar measure by generating Haar-random unitaries and
applying them to a fixed basis state such as |0⟩⊗n. We can define such states as Haar-random
distributed states.
The comparison between the uniform distribution of Haar-random states and the distribution

of states obtained from sampling the parameters of a PQC is at the basis of the calculation
of expressibility [46]. Expressibility is defined as the ability of a PQC to uniformly address
the Hilbert space. In the case of the single qubit, this corresponds to a circuit’s ability to
explore the Bloch sphere. A weak correlation was found between the circuit expressibility
and the entanglement generated inside the circuit. Therefore let us consider the entanglement
properties of Haar-distributed states. Starting from a Haar-distributed quantum state of n
qubits |ψ⟩ ∈ (C2)⊗n, we create a bi-partition of the n-qubit system into two subsystems A and
B, with nA and nB = n − nA qubits respectively. For nA ≤ nB, the expectation value of the
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entanglement entropy, calculated as in Equation (1.20), can be written as:

E[S(ψA)] =
dAdB∑︂

j=dB+1

1
j

− dA − 1
2dB

, (2.5)

where dA = 2nA and dB = 2nB are the dimensions of the two subsystems, and the expectation
value is taken over the probability distribution P(n) [36, 37]. Using this expectation value, it
can be shown that Haar-distributed states are generally highly entangled [37]. This is why such
states can be used as a comparison for the entanglement entropy production in a circuit, for
example in a quantum neural network [26]. We can study the entanglement entropy production
of a generic QNN of n qubits by considering every possible linear bi-partition A and B of the
system, with respectively nA and nB = n− nA qubits, as shown in Figure 2.5:

A

q1 qi

B

qi+1 qn

Figure 2.5: Example of a bi-partition of the system. The subsystem A is composed of the
qubits qi with i ∈ [1, i], while the subsystem B is composed of the qubits qj with j ∈ [i+ 1, n]
for i ∈ [1, n− 1]

Denoting ρ[1:i] the reduced density matrix of the subsystem A composed of all qubits up to
the i-th one, we calculate the entanglement entropy of the considered subsystem division using
(1.20) as:

Si = −Tr[ρ[1:i] log ρ[1:i]], (2.6)

where ρ = U(x⃗, θ⃗) |0⟩⊗n ⟨0|⊗n U(x⃗, θ⃗)† is the quantum neural network state obtained by applying
the unitary representing the QNN as in (2.3) to the computational basis state |0⟩⊗n ⟨0|⊗n [26].
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Results

In this chapter, we study the production of entanglement entropy in a quantum neural network.
Our results build on [25, 26] by considering the case where random parameters in the circuit
are initialized by sampling from a Gaussian distribution with tunable variance and mean. The
considered QNN is composed of several layers, each one consisting of a feature map F(x⃗) and
a variational unitary V (θ⃗) as in Figure 2.3. For both F(x⃗) and V (θ⃗) composing each layer, we
used a particular ansatz introduced in [22] and consisting of single qubit rotations followed by
entangling operations as in Figure 3.1:

...

F(x⃗) V (θ⃗)

Ry(x0) Ry(θj+0)

Ry(x1) Ry(θj+1)

Ry(x2) Ry(θj+2)

Ry(x3) Ry(θj+3)

...

Figure 3.1: Layer (j + 1) of the L-layered QNN under consideration, with j = 0, ..., L− 1. The
quantum circuit used as feature map F(x⃗) and variational unitary V (θ⃗) ansatz is composed
of: a series of single qubit rotations around the ŷ axis applied to each qubit of the initial state
|0⟩⊗n; a series of CNOT gates applied to each qubit, where the i-th qubit is the control and the
(i+1 )-th qubit is the target. This figure shows an example of the ansatz for a 4-qubit system,
but it can be generalized to n qubits.

Taking into consideration UL(x⃗, θ⃗), a particular QNN with L layers as in Equation (2.3), we
denote the input state as x⃗ = (x1, ..., xm) ∈ Rm, where m corresponds to the number of qubits,
and the variational parameters as θ⃗ = (θ1, ..., θp) ∈ Rp, where p is the total number of parameters
in the QNN. We sample x⃗ and θ⃗ according to a Gaussian distribution xi, θi ∼ N(µ, σ) and we
study the entanglement entropy produced by the QNN by varying the Gaussian parameters
µ, σ. It is important to emphasize that the QNN entanglement entropy is calculated as the
average among M trials of such quantum neural network and M is set to 100, if not specified
otherwise.
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3.1 Entanglement entropy production depending on
the Gaussian parameters

We compare the entanglement entropy produced in a quantum neural network initialized with
Gaussian parameters with that of Haar-random distributed states, in search of the particular
value of µ and σ that make the entanglement entropy of the QNN converge to that of Haar-
random states.

3.1.1 Gaussian distribution with fixed mean and variable variance
We start by sampling the initial parameters xi, θi from a Gaussian distribution with a fixed
µ = 0.5π and variable σ. We compute the entanglement entropy of quantum neural networks
UL(x⃗, θ⃗) with an increasing number of layers L = 1, ..., Lmax = (n− 1), where n is the number
of qubits in the system. In particular, we consider all possible linear bi-partitions A and B of
the QNN with respectively nA and nB = n− nA number of qubits as shown in Figure 2.5, and
we compute the entanglement entropy as explained in Section 2.3. In this setting, we compare
the UL(x⃗, θ⃗) entanglement entropy production to that obtained from Haar-random distributed
states.
It is shown that sampling initial parameters from a uniform distribution Unif(0, π), the en-

tanglement entropy produced by UL(x⃗, θ⃗) converges to that of Haar-random distributed states
as the number of layers approaches the number of qubits L ≈ n [26]. Therefore we vary the
Gaussian parameter σ in the search for the same convergence to the entanglement entropy of
Haar-random distributed states.
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Figure 3.2: Average entanglement entropy depending on the number of qubits nA in subsystem
A for a system composed of n = 8 qubits. The curves represent different numbers of layers L
in the QNN. (a) The initial parameters xi, θi are sampled from a Gaussian distribution N(µ =
0.5π, σ = 0.1π). (b) The initial parameters xi, θi are sampled from a Gaussian distribution
N(µ = 0.5π, σ = 0.25π).

We notice that the findings in Figure 3.2 generally agree with the results in [26]: the entangle-
ment increases with the circuit depth, in particular, when L = Lmax the entanglement entropy
has a maximum in nA = n

2 . As panel (a) in Figure 3.2 shows, using σ = 0.1π the entanglement
entropy produced by ULmax(x⃗, θ⃗) is still distant from that of Haar-random distributed states.
While in panel (b), where σ = 0.25π, we can highlight a behavior similar to the one found in
[26].
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To quantify the comparison between the entanglement entropy produced by a QNN and that of
Haar-random states, we compute the normalized difference dmax between the maximum values
of entanglement entropy produced in the two cases:

dmax =
(Sn

2
)Haar

max − (Sn
2
)Lmax

max

(Sn
2
)Haar

max

, (3.1)

where (Sn
2
)Haar

max is the maximum entanglement entropy value of Haar random states correspond-
ing to a bi-partition with an equal number of qubits nA = n

2 ; while (Sn
2
)Lmax

max is the maximum
entanglement entropy produced by the maximum-layered QNN, to which corresponds to the
same bi-partition.
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Figure 3.3: Normalized difference between entanglement entropy maximum dmax for systems
with n = 8, 10, 12, 14 qubits. Mean value fixed to µ = 0.5π and σ ∈ [10−3π, 10π]. We highlight
that the proper variance value σ must be calculated by multiplying the values reported on the
x-axis by π. The x-axis and y-axis are log scaled.

In Figure 3.3 we show dmax depending on the Gaussian parameter σ for systems with n =
8, 10, 12, 14 qubits. We can outline three different regions for any system size n:

1. for a variance σ ≲ 10−2 no entanglement is produced in the system;

2. in the region 10−2 ≲ σ ≲ 1 there is a growth of entanglement entropy produced in the
quantum neural network;

3. for a variance σ ≳ 1 the entanglement entropy stabilizes on a maximum value close to
that of Haar-random states.

The results shown in Figure 3.2 are confirmed through this analysis: for a fixed mean value
µ = 0.5π, the variance value σ ≈ 0.25π seems to be the turning point value after which the
entanglement entropy produced by the quantum neural network ULmax(x⃗, θ⃗) is approximately
the same of that of Haar-random distributed states.
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3.1.2 Gaussian distribution with fixed variance and variable mean
We select one variance value σ = 10−3π from the first region outlined by Figure 3.3, two values
σ = 0.1π, σ = 0.175π from the central region and one σ = 10π from the last region. For each
one, we compute dmax depending on the mean value µ, namely where the Gaussian distribution
is centered. We analyze systems with a number of qubits n = 8, 10, 12, 14, which present the
same trend shown in Figure 3.4.
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Figure 3.4: Normalized difference between entanglement entropy maximum dmax depending on
a mean value µ ∈ [0, 2π]. The curves represent different variance values σ. We highlight that
the proper mean value µ must be calculated by multiplying the values reported on the x-axis
by π. We show plots only for a number of qubits n = 8, but we performed simulations for
systems with n = 10, 12, 14 obtaining similar results.

If the variance is fixed to σ = 10π the QNN produces an entanglement entropy close to that of
Haar-random states regardless of the mean value. We expect such behavior since σ = 10π lies
within the third region outlined in Figure 3.3, namely where the variance σ is large enough that
the Gaussian distribution tends to a Uniform one, showing the same behavior of the results in
[26].
In Figure 3.4 we notice a periodic pattern: dmax oscillates and the amplitude increases as

the variance sigma decreases. While we show the plots only up to σ = 10−3π, we performed
also the simulation for lower σ up to σ = 10−8π, where the same periodic trend was found.
Analyzing the case of σ = 10−3π, for µ = 0.5π, the entanglement entropy production in the
QNN is zero, in agreement with the trend in the low sigma limit shown in Figure 3.3. However,
when µ = 0.25π the entanglement entropy produced by the QNN is close to that of Haar
random states regardless of the variance value.
By decreasing the value of the variance σ the Gaussian distribution tends to the Dirac delta

function. This is equivalent to stating that xi, θi are not random anymore as they all assume the
same value µ. By initializing all the initial parameters to a specific value, we find a confirmation
of the periodic trend.
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To summarize, if we initialize all the parameters xi, θi to the same value µ, the analyzed QNN
produces a certain average value of entanglement entropy depending on the chosen value µ.
Moreover, there are special initialization values that cause the entanglement entropy produced
to be zero or maximum.

3.2 Circuit connectivity and adjacency matrix
Further analyses can be done by investigating how a different choice of ansatz for the feature
map F(x⃗) or the variational unitary V (θ) affect the results exposed in Section 3.1. In particular,
the choice of ansatz may differ based on circuit connectivity, namely how the different qubits
of the circuit are connected by multiple qubit gates, such as the CNOT gate. For this reason,
we add to the available circuits in the qucircha library, used in [26], a new kind of circuit
based on a CNOT gate map. The circuit CNOT map is represented by a graph, in which the
vertices are the qubits and the edges connecting two of them represent the CNOT gates [47]. To
mathematically represent the graph we use the adjacency matrix. Specifically, the adjacency
matrix of a finite graph G on n vertices is the n × n matrix where the non-diagonal entry
aij is the number of edges connecting vertex i to vertex j, and the diagonal entry aii are all
zero, since edges from a vertex to itself are not allowed here. In our case, the dimension of the
adjacency matrix is given by the number of qubits and the matrix is symmetrical because the
graph is undirected [47, 48]. In particular, we implement the possibility of choosing a circuit
with linear connectivity, meaning that the qubit i can only be connected to the qubit i+1. The
circuit added to the qucircha library [26] has also Ry(θ) rotations before and after the CNOT
map, with the possibility of disabling the rotations after. For example, if the input adjacency
matrix Madj is the following:

Madj =

⎡⎢⎢⎢⎣
0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , (3.2)

the correspondent circuit is:

Ry(θ0) Ry(θ4)

Ry(θ1) Ry(θ5)

Ry(θ2) Ry(θ6)

Ry(θ3) Ry(θ7)

Figure 3.5: The circuit composed of: a series of single qubit rotations around the ŷ axis applied
to each qubit of the initial state |0⟩⊗n; a series of CNOT gates based on the input adjacency
matrix. This figure is shown an example of the ansatz for a 4-qubit system, but it can be
generalized to n-qubits.



Conclusions

In this thesis, we study the entanglement entropy produced by a quantum neural network
(QNN) and compare it to the entanglement of Haar-random distributed states. Starting from
the analysis of the entanglement generated by QNNs initialized with uniform random param-
eters [26], we extend the study to the case of Gaussian distributed initial parameters. This
is motivated by the effectiveness of Gaussian initialization in preventing the emergence of the
barren plateau problem [25]; for this reason, we want to investigate the link between Gaussian
initialization and entanglement generation in QNNs, another feature commonly associated with
the barren plateau [24].
Once properly defined the QNNs in terms of feature map and variational quantum circuit, we

compute the entanglement entropy produced depending on the chosen Gaussian parameters
µ and σ. Interestingly, for vanishing variance σ, we find an almost periodic trend in the
entanglement entropy depending on the mean value. In particular, there are distinct mean
values µ where the entanglement produced is zero and others for which it tends to that of Haar
random states. For those mean values that maximize entanglement, the change in sigma has
no effect; while for mean values where entanglement is minimal, the entanglement produced
depends on the chosen σ value. Specifically, for large sigma values, we recover the same trends
we would have by choosing the initial parameters from a uniform random distribution [26].
The entanglement production in various random parametrized QNNs architectures with dif-

ferent feature maps and variational ansatz is discussed in [26], likewise a promising future
direction is to investigate also the connection between the entanglement production of Gaus-
sian initialized QNNs to different feature maps and variational ansatzes, for example exploiting
the adjacency map circuit developed in this thesis.
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