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INTRODUCTION 
 

1) AGGREGATIONS IN THE MARINE REALM 
 

a. General definitions and relevance for conservation 
Aggregation of individuals during some phases of their life cycle is a well-

established process in the animal world (Lilly et al., 2020; Villegas-Ríos, 
Jacoby and Mourier, 2022). Research has shown that in the marine 
environment, many diHerent species of elasmobranchs, marine mammals, 
and teleosts interact and can create long-lasting associations (Croft et al., 
2005; Papastamatiou et al., 2020; Villegas-Ríos, Jacoby and Mourier, 2022). 

The possibility to find mates, escape from predators, improve strategies to find 
food, and initiate migrations are all aspects of the life history of marine 
organisms that are influenced by social processes (Ritz et al., 2011; Villegas-
Ríos, Jacoby and Mourier, 2022). Individual phenotypic attributes (sex, size, 
age, familiarity) aHect how they interact with other conspecifics (Wilson, Croft 

and Krause, 2014; Ward, Kent and Webster, 2020; McInturf et al., 2023). These 
attributes may lead individuals of populations to preferentially associate or, on 
the contrary, avoid, possibly leading to some spatial segregation between 
subpopulations inhabiting the same geographical area (Mourier, Vercelloni 
and Planes, 2012; Armansin et al., 2016; Schilds et al., 2019; Papastamatiou 
et al., 2020). Therefore, the social connectivity between individuals may 

influence the transfer of information, the spread of diseases, and also the gene 
flow among subpopulations (Perryman et al., 2022; Villegas-Ríos, Jacoby and 
Mourier, 2022), which in turn aHects the entire population structure and 
dynamics within the ecosystem (Mourier, Vercelloni and Planes, 2012; Wilson, 
Croft and Krause, 2014; Perryman et al., 2022; Villegas-Ríos, Jacoby and 

Mourier, 2022). Anthropogenic stressors (e.g., illegal fisheries, un-regulated 
dive tourism, pollution, noise) may disproportionally impact some individuals 
or groups of individuals more than others if they display a diHerent use of the 
space, which will aHect the entire population (Perryman et al., 2022; Villegas-
Ríos, Jacoby and Mourier, 2022). Understanding the social dynamics within 

populations is essential, as they might shape how the population is distributed 
over space and time. This information is of crucial relevance for marine spatial 
planning and the conservation of marine species (Wilson, Croft and Krause, 
2014; Papastamatiou et al., 2020; Perryman et al., 2022; Villegas-Ríos, Jacoby 
and Mourier, 2022). 
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b. Drivers and factors that shape aggregations 
Among the marine realm, the drivers that trigger associations among 

organisms and shape the community structure when they are formed are 
heterogeneous. Individuals may choose to aggregate to find food, to 
reproduce, to reduce the risk of predation, to reduce the risk of aggressions by 
conspecifics, or to save energy while moving (e.g. fish school) (Ritz et al., 2011; 

Ward, Kent and Webster, 2020). When these aggregations occur, they can 
display diHerent structures, depending on the species in question, the 
individual's phenotype, and the trade-oH between diHerent biotic (e.g. 
competitions for resources or predator defence) and abiotic contexts 
(favourable water temperature and availability of food) (Ritz et al., 2011; 
Wilson, Croft and Krause, 2014; Ward, Kent and Webster, 2020; Anderson et 

al., 2021; Weiss, Ellis and Croft, 2021; Villegas-Ríos, Jacoby and Mourier, 
2022; McInturf et al., 2023). When a group of individuals of the same species 
co-occur together at the same time, they may display preferred interactions or 
not. If the individuals do not show any preference for other conspecifics, we 
refer to these groups simply as "aggregations" (Ritz et al., 2011; Armansin et 

al., 2016; Findlay et al., 2016; Schilds et al., 2019; Lilly et al., 2020). On the 
other end, if some individuals co-occur frequently and maintain these 
cohesions, those kinds of associations are referred to as "social groups" (Ritz 
et al., 2011; Armansin et al., 2016; Findlay et al., 2016; Schilds et al., 2019; Lilly 
et al., 2020). Social groups are formed because individuals gain reciprocal 

advantages in collaborating, for example, for foraging or predator avoidance, 
and these associations should occur regardless of other environmental 
stimuli (Ritz et al., 2011; Mourier, Vercelloni and Planes, 2012; McInturf et al., 
2023). Individuals can associate because they share similar physical 
phenotypic attributes (e.g. sex and size) or because they have a similar 

behavioural phenotype compared to other members of the same population 
(Wilson, Croft and Krause, 2014; Ward, Kent and Webster, 2020; Weiss, Ellis 
and Croft, 2021). 
 

c. Examples of aggregations across elasmobranchs, marine 
mammals, and teleosts. 

Elasmobranch aggregations are widely reported in the marine literature 
(Mourier, Vercelloni and Planes, 2012; Armansin et al., 2016; Lédée et al., 
2016; Schilds et al., 2019; Lédée et al., 2021a; Perryman et al., 2022). Sharks 
and rays display a wide variety of behaviour that can go from solitary 
migrations among white sharks (Carcharodon carcharias) (Findlay et al., 2016; 

Schilds et al., 2019; Anderson et al., 2021) to more reef-associated species, 
like the blacktip reef sharks (Carcharhinus melanopterus) (Mourier, Vercelloni 
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and Planes, 2012) or ambush predators, like the spotted wobbegong 

(Orectolobus maculatus)(Armansin et al., 2016). Within these associations, 
elasmobranchs can interact with other individuals with which they share 
common features. Elasmobranchs associate with individuals of a similar size 
or sex because they are likely to have similar dietary needs or because they 
can protect themselves from aggressions from larger individuals (Findlay et 

al., 2016). For example, a previously believed unique population of blacktip 
reef sharks has been shown to be composed of four distinct communities 
(Mourier, Vercelloni and Planes, 2012). Individuals within communities display 
tighter associations within the community rather than between. The 
community had a heterogeneous demographic structure, but it has been 
shown that within the communities, individuals of similar sex and size tend to 

associate more frequently with each other (Mourier, Vercelloni and Planes, 
2012). Overall, the study demonstrated that individuals associate in distinct 
communities due to active choice rather than passive encounters, and food 
availability has been hypothesised to be the primary driver of associations in 
the area (Mourier, Vercelloni and Planes, 2012). White sharks exhibit a more 

solitary life history but are known to form aggregations at feeding sites, mainly 
driven by food availability and favourable water temperature (Anderson et al., 
2021). A study on adult white sharks in South Africa showed that individuals 
show non-random co-occurrences during these aggregations, and some 
communities can be formed. In this case, the pattern of aggregations is sex-

dependent, with males reducing their abundance and their associations at the 
feeding site when females peak their abundance (Schilds et al., 2019). It has 
been hypothesised that females, being larger than males, could outcompete 
them in the exploitation of resources, leading males to use the area at a 
diHerent time of the year (Schilds et al., 2019). Aggregations at these "feeding 

events" may benefit juveniles by facilitating the transfer of knowledge about 
prey locations and feeding strategies from older sharks to younger ones 
(Anderson et al., 2021). Associations in communities may not be ideal for 
small ambush predators, like wobbegong, in which large groups can increase 
the cost associated with feeding (Armansin et al., 2016). Despite that, there is 
evidence of non-random and repeated associations in these populations that 

can last in time. In this case, the persistence of some associations may reduce 
the occurrences of aggressive competition with neighbouring sharks. 
Moreover, in periods with high shark density, individuals tend to re-establish 
bonds with others they are already familiar with. The authors hypothesise that 
this probably occurs because keeping interactions with familiar individuals is 

comparatively less costly than establishing new relationships with each 
aggregation event (Armansin et al., 2016). 
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Among cetaceans, toothed whale social systems are more heterogeneous 

and can be more structured than baleen whales (Rendell et al., 2019). Toothed 
whale social networks are characterised by dense connections across the 
entire population and quick fission-fusion dynamics (groups of individuals 
frequently breaking up and reforming, depending on the context (Ritz et al., 
2011; Weiss, Ellis and Croft, 2021). The drivers of associations and factors 

that shape the community structure could diHer depending on the species 
and the environment (Weiss, Ellis and Croft, 2021). In the case of toothed 
whales, size does not have an evident role in shaping social communities 
within the same species. Where sexual dimorphism is evident, males are 
usually larger than females, and thus, they may pose a risk of harassment for 
females, leading to sexual segregation. However, this is not always the case. 

For example, in bottlenose whales (Hyperoodon ampullatus), even though 
males are 13% larger than females, there is no evidence of sexual segregation, 
as males do not manifest aggressive behaviour towards females (Weiss, Ellis 
and Croft, 2021). On the contrary, species mating systems have been 
highlighted as potentially leading to sexual segregation. In the case of Indo-

Pacific Bottlenose dolphins (Tursiops aduncus), males form small groups to 
cooperate and monopolise females, which, on the other end, associate 
together and tend to actively avoid males to reduce the risk of harassment 
(Galezo, Krzyszczyk and Mann, 2018; Weiss, Ellis and Croft, 2021). Individual 
behavioural phenotypes also play an interesting role in population structure. 

In Moreton Bay bottlenose dolphins (T. aduncus), individuals with a higher 
tendency to interact with trawl fishery formed a diHerent community 
compared to individuals who do not display the same behaviour (Weiss, Ellis 
and Croft, 2021). Maintaining social interactions is an expense of energy; 
therefore, keeping social bonds with individuals who share a similar behaviour 

is advantageous as it facilitates cooperation for feeding and transmission of 
information within groups that share similar foraging methods (Methion and 
Díaz López, 2020). 

Fewer studies have focused on teleost social systems than marine 
mammals or elasmobranchs, especially in their natural environment (Wilson, 
Croft and Krause, 2014; Lilly et al., 2020; Villegas-Ríos, Jacoby and Mourier, 

2022). Initially, those studies mainly focused on the behavioural ecology of 
smaller fishes that could be reared in laboratory conditions or observed in 
manipulative field experiments (Wilson, Croft and Krause, 2014; Lilly et al., 
2020; Villegas-Ríos, Jacoby and Mourier, 2022). In fish that move in groups, the 
maintenance of cohesion and coordination among individuals is essential, as 

this behaviour improves shoal movements and reduces energy expenditure 
(Aivaz and Ruckstuhl, 2011; Ward, Kent and Webster, 2020). Laboratory 
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experiments on the zebrafish (Danio rerio) showed that groups of similar-sized 

individuals have a higher degree of synchronicity compared with groups of 
odd-sized individuals (Aivaz and Ruckstuhl, 2011). Moving with individuals of 
similar size facilitates coordination and enhances the confusion eHect under 
the threat of predators (Jordan et al., 2010; Ritz et al., 2011; Ward, Kent and 
Webster, 2020). Moreover, similar-sized fish tend to associate with each other 

to reduce the risk of aggression from larger individuals and to exploit food 
resources that would otherwise be consumed by higher-ranking individuals in 
hierarchical groups (Jordan et al., 2010; Ward, Kent and Webster, 2020). Like 
sharks, fish can also choose to associate with individuals with which they are 
familiar. Grouping with familiar individuals reduces the risk of aggression and 
competition, allowing the individual to save more energy for other activities, 

such as searching for food or mating (Jordan et al., 2010; Ritz et al., 2011; 
Ward, Kent and Webster, 2020). In laboratory and manipulative field 
experiments, solitary individuals of humbag damselfish (Dascyllus aruanus) 
received significantly less hostility when re-joining a familiar group compared 
to a new one (Jordan et al., 2010). The role of sex presents more nuances, and 

so it is more complex to analyse. Similarly to some marine mammals, when 
sexual dimorphism is evident, like in guppies (Poecilia reticulata), females 
tend to shoal in the same groups to reduce the risk of harassment by males 
(Ward, Kent and Webster, 2020). Despite the absence of sexual dimorphism, 
males and females of common minnows (Phoxinus phoxinus) use diHerent 

parts of their habitats, even outside of the breeding seasons, leading to social 
sexual segregation (Ward, Kent and Webster, 2020). Sub-adult three-spine 
sticklebacks (Gasterosteus aculeatus), on the other hand, usually associate 
with individuals of the other sex under low-predation risk, but this behaviour 
changes under threat of predations, possibly to reduce the cost of behavioural 

asynchronicity derived from grouping with individuals of the opposite sex 
(Rystrom et al., 2018; Ward, Kent and Webster, 2020). 
 

2) HOW TO STUDY MARINE MOVEMENTS AND 
AGGREGATIONS 

The intrinsic nature of the aquatic environment has always caused 
diHiculties in studying the movements and associations of marine organisms 
(Hussey et al., 2015; Weiss, Ellis and Croft, 2021; Grémillet, Chevallier and 
Guinet, 2022; McInturf et al., 2023). To study animal movements, direct 

observations from vessels, or even from land, have been the most frequent 
solutions (Grémillet, Chevallier and Guinet, 2022). Later, advances in 
technology allowed the use of underwater cameras that could be manoeuvred 
by divers or even remotely sometimes (Grémillet, Chevallier and Guinet, 
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2022). A recent and powerful tool in marine conservation and spatial ecology 

is the discovery of eDNA to study animal movements and dispersal in the 
water (Grémillet, Chevallier and Guinet, 2022). Despite the variety of the 
methodologies mentioned above, more than half of the studies on animal 
movements are based on electronic tracking data (e.g. satellite transmitters, 
GPS) and bio-logging (Grémillet, Chevallier and Guinet, 2022). Fine-scale and 

three-dimensional data on animal movements are some of the advantages 
provided by these new methodologies compared to simple positioning 
information (Grémillet, Chevallier and Guinet, 2022). 

Aquatic telemetry requires the use of electronic tools (named 
"transmitters" or "tags") that are attached to marine animals (either externally 
or internally) and are capable of transmitting signals to diHerent types of 

receiver stations (Hussey et al., 2015; Matley et al., 2022). Acoustic and 
satellite telemetry are the two most frequently used methods (Hussey et al., 
2015). Acoustic tags emit encoded signals detected by receivers deployed at 
sea, anchored on the sea bottom, or in specific vessels. In contrast, satellite 
tags transmit the information to orbiting satellites, which then relay the 

information to land-based receivers (Hussey et al., 2015; Matley et al., 2022). 
Acoustic receivers have a maximum detection range of 1km, constraining their 
use mainly in coastal and estuarine regions, where receivers can be deployed 
and retrieved to download the movement data. Satellite tags are usually bigger 
and therefore limited to larger aquatic animals, but they may transmit 

information on the depth, temperature, and location of animals that travel 
many kilometres, especially those far from the coast, where acoustic 
receivers are harder to deploy and service (Hussey et al., 2015; Matley et al., 
2022). 

Network Analysis is a well-established method that has been proven very 

useful in studying social and spatial patterns within animal populations 
(Jacoby and Freeman, 2016; Lilly et al., 2020; Villegas-Ríos, Jacoby and 
Mourier, 2022). This type of analysis relies on graph theory, a branch of 
mathematics that allows the quantification of pairwise relationships between 
objects in the form of a network. In this context, the objects are called “nodes” 
or “vertex,” and their relationships are called “edges” (Jacoby and Freeman, 

2016). Acoustic telemetry can detect animals in their environment through 
correlative measures (e.g., presence/absence data) (Jacoby and Freeman, 
2016). This information can then be converted into a quantitative measure 
such as the “strength” of social bonds (edges) between individuals (nodes) 
(Farine and Whitehead, 2015; Psorakis et al., 2015; Lilly et al., 2020), or the 

“degree” of connectivity/movements (edges) between geographical locations 
(nodes) (Jacoby et al., 2012; Jacoby and Freeman, 2016). The possibility of 
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adopting node-based or network-based metrics helps explore the role of 

nodes within the network or understand the broader structural proprieties of 
the network itself (Farine and Whitehead, 2015; Jacoby and Freeman, 2016). 
 

3) ARGYROSOMUS REGIUS MIGRATIONS 
The Meagre (Argyrosomus regius – Asso 1801) is one of the largest 

members of the Sciaenidae family (Prista, 2013). It may attain over 180cm in 
total length and around 50 kg of weight (Prista, 2013). It has fast growth and 

high fecundity (HaHray et al., 2012; Prista, 2013), making it a valuable species 
for small-scale commercial fisheries and aquaculture (Prista, 2013). It is a 
coastal and semi-pelagic species, with a geographical distribution extending 
along the eastern Atlantic Ocean from Norway until the Gulf of Guinea, the 
Mediterranean Sea, the Black Sea, and the Gulf of Suez (González-Quirós et 

al., 2011; HaHray et al., 2012). This species is known to form spawning 
aggregations in estuarine and brackish water at six main sites: the Gironde 
(France), Tejo (Portugal) and Guadalquivir (Spain) along the European Atlantic 
coast, the Banc d'Arguin (Mauritania) in the African Atlantic Coast; the Nile 
(Egypt) and the Menderes (Turkey) deltas in the Mediterranean Sea (González-

Quirós et al., 2011; HaHray et al., 2012). Reproduction occurs mainly at these 
sites as they accomplish the fundamental requirements for larval recruitment 
and juvenile growth (HaHray et al., 2012). Meagre forms spawning 
aggregations (González-Quirós et al., 2011), which can be defined as 
“transient” (Domeier, 2012) as they occur during a specific portion of the year, 
usually from March to August, considering the population spawning in the 

Guadalquivir estuary (González-Quirós et al., 2011; Morales-Nin et al., 2012). 
During these aggregations, males produce species-specific sounds for their 
courtships with females (Lagardère and Mariani, 2006). The seasonal pattern 
of transient spawning aggregations makes them highly predictable and, 
therefore, vulnerable to unregulated fishing (Domeier, 2012; Molloy, Côté and 

Reynolds, 2012). Furthermore, transient spawning aggregations may 
represent the total reproductive eHort of the individuals involved (Domeier, 
2012; Molloy, Côté and Reynolds, 2012). These features, together with their 
life-history traits: late first reproduction (seven years old) and long 
generational interval (> 40 years), make this species particularly vulnerable to 

overexploitation (González-Quirós et al., 2011; HaHray et al., 2012; Prista, 
2013). Genetic studies on meagre have shown high genetic diHerentiation 
between the Atlantic and European populations (HaHray et al., 2012; Almeida 
et al., 2022; Abecasis et al., 2024a), and, more recently, within the Atlantic 
populations, clearly divided into four distinct subpopulations, depending on 
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the spawning site: Gironde, France; Tejo, Portugal; Guadalquivir, Spain; Banc 

D'Arguin, Mauritania (Almeida et al., 2022; Abecasis et al., 2024a). 
A general pattern of seasonal movements can be hypothesised concerning 

the population inhabiting the Iberian Peninsula Atlantic coast based on results 
from recent studies (González-Quirós et al., 2011; Gandra et al., 2024). Adult 
meagre approach coastal and shallow waters during spring, thanks to 

favourable water temperatures (>20 °C) to spawn near the Guadalquivir 
estuary (González-Quirós et al., 2011; Morales-Nin et al., 2012; Winkler et al., 
2023). There are still uncertainties around the precise spawning mechanism, 
and it has also been hypothesised that meagre spawning aggregations could 
occur outside estuarine waters (Abecasis et al., 2024b). After spawning, 
individuals leave the spawning areas and start migrating along the coast. 

Favourable water temperatures could likely trigger the migration during the 
summer months and the possibility of reaching highly productive areas along 
the Vicentine coast (SW Portugal) (Garel et al., 2024). Once there, individuals 
cross the St. Vincent cape (Sagres, Portugal), and there is evidence of fish 
aggregations along the Southwestern Portuguese coast (Sudoeste Alentejano 

and Vicentina Coast Natural Park). At this point, as highlighted in the previous 
studies using satellite telemetry, some fish keep the migrations until Lisbon 
and slightly beyond. In contrast, some of these individuals seem to migrate 
back and possibly spend the overwintering months in the Gulf of Cadiz 
(Gandra et al., 2024). 

 

4) AIM OF THE THESIS 
With the current study, we aimed to complement results from (Gandra et 

al., 2024) using a network analysis technique applied to the acoustic 
telemetry data coming from adult meagre tagged in Southern Portugal. 
Network analysis will allow us to display: 1) which locations along the 
southwest coast of Portugal display a higher rate of movement compared to 

others, possibly representing critical habitats during the migration; 2) which 
locations show high residency of adult meagre throughout the study period; 3) 
whether the aggregations observed at some locations are significantly 
diHerent from what could be expected from random, which may indicate a pre-
requisite for more complex interactions, as observed in other marine taxa.  
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MATERIAL AND METHODS 
 

1) GENERAL INFORMATION 
 

a. Fish capture and tagging 
Between 20/09/2018 and 30/07/2021, a total of 39 individuals were 

captured and tagged using acoustic transmitters (Innovasea© V16-5x model; 
162 dB power output, 60s to 120s nominal delay and expected lifetime of 1292 
days). The average size of the individuals was 128.6 +/- 12.64 cm, with the 

largest individual being 142 cm total length (TL) and the smallest 70 cm TL. All 
the individuals were caught in a tuna trap, a large, uncovered pound net off 
Fuzeta, on the southern coast of Portugal. The exceptions were two 
individuals captured and tagged in the Tejo estuary near Lisbon (Portugal) 
using a rod and reel. After capture, individuals were placed in an inverted 

position on a soft stretcher, and a continuous seawater flow through their 
mouths and gills was provided to reduce stress. A small incision on their 
ventral region was performed, and an acoustic transmitter was implanted in 
the abdominal cavity. The incision was closed after the insertion of the tag 
using absorbable sutures (BBraun, Novosyn). Tag performance tests 

performed before the study showed a detection range of around 800m. The 
capture and the tagging of the individuals were authorised by the ICNF 
(Instituto de Conservacão da Natureza e Florestas) permits 560/2018/CAPT 
and 143/2019/CAPT for the capture, tag and release of wild fish and DGAV 
(Direcão Geral de Alimentacão e Veterinaria) permit 0421/000/000/2018 

(29/08/2018) to perform experiments with live animals.  
 

b. Acoustic receiver deployments 
Acoustic receivers (model VR2W - Innovasea, Canada) were used to 

monitor the presence of the tagged individuals. The study area extended from 
the Gibraltar Strait until the Tejo (Lisbon, Portugal) estuary, encompassing 128 

receiver stations. Due to the large extension of the geographic region, the 
receiver stations were grouped into 12 receiver arrays to facilitate the 
subsequent network analysis. The arrays are named APPA (5 stations), 
Arrabida (28 stations), Guadalquivir (4 stations), Guadiana (4 stations), Lagos 
(1 station), Sado (2 stations), Sagres (25 stations), Sines (6 stations), Tejo (27 

stations), Tuna-Trap (21 stations), West-Coast North (2 stations) and West-
Coast South (3 stations). The acoustic receivers were deployed thanks to the 
collaboration of several projects, and acoustic detections were managed and 
downloaded from the European Telemetry Network (ETN) database.  
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Figure 1- Study area (SW, Iberian Peninsula) and locations of the arrays used in the study. The red cross 
represents the tagging locations of all but two individuals that were tagged in the Tejo estuary. 

 

2)  SPATIAL NETWORK ANALYSIS 
The spatial network analysis was conducted using R Statistical Software 

(v4.3.2; R Core Team 2023). Network and data visualisations were made using 
R packages ggplot2, ggraphs, sf, marmap and ggOceanmaps (Pante, Simon-

Bouhet and Irisson, 2023; Pebesma et al., 2024; Pedersen and RStudio, 2024; 
Wickham et al., 2024; Vihtakari, Bivand and Wickham, 2024). 
 

a. Residency index 
To investigate the space use patterns of the meagre, residency indexes 

were estimated (Kraft et al., 2023). The total number of unique days each fish 

was detected at each array was counted (Dd). We measured the monitoring 
interval (Dt) for each individual by considering how many days the array was 
available, ranging from the day of tag deployment (or receiver deployment if 
later) until the date of expected tag death (or receiver retrieval if earlier). This 
led to a unique monitoring interval for each combination of ID and array. The 

deployment period of the West-Coast North array was estimated considering 
the day of the first and last detections at one of its stations (Tel_036), as the 
data on the actual deployment period of this array were not available. For the 
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array of Guadalquivir, Guadiana, Tejo, and Tuna-Trap, there were 

discontinuities in the availability at sea of the stations composing the array. In 
this case, we have considered the actual period in which the array was 
available, manually removing days with no stations at sea for that array. The 
following formula has been applied: 
 

!!	 =	
$%
$&  

 
The resulting value can range from 0 (no residency) to 1 (full residency) and 

expresses the proportion of times (in days) in which fish have been detected 
at the array level out of all the availability periods of the array. For each 
individual, we obtained the residency index at each array where the individual 
was detected. We then averaged the indexes of every individual at the array 
level to obtain an estimate of the average proportion of time fish spent at each 

array. 
 

 
Figure 2 –Availability of the arrays in the study. Coloured lines represent the deployment period of the 
arrays considering the deployment of its single receiver stations. 
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b. Movement network 
We followed procedures from the available literature to generate a 

movement matrix that was then used to obtain the spatial network (Jacoby et 
al., 2012; Lea et al., 2016; Perryman et al., 2022). We counted the number of 
transitions the fish performed by looking at when they were detected at a new 
array throughout the study period. This procedure was applied without a 

temporal threshold to have a picture of the overall movement pattern that the 
individual follows moving along the coast. Each detection at a new array was 
considered a transition from the array where the individual was previously 
detected. This transition was counted as 1 in an N x N movement matrix, in 
which N represents the arrays in the study. After that, each cell in the 
movement matrix contained the number of transitions leaving from the 

'#$()*+) array and arriving at '#$(-*./01) array. The previous method 
provides the Absolute Movements of the individuals (Jacoby et al., 2012). To 
obtain the Relative Movements, we divided each absolute movement by the 

total number of transitions measured in the matrix. The Relative Movements 
represent the proportion of transitions between two arrays relative to the total 
transitions in the network (Jacoby et al., 2012). We obtained the spatial 
network from the relative movement matrix through the function 
"graph_from_adjacency_matrix" from the igraph package (Csárdi et al., 2024). 
The graphical representation of the spatial network is composed of 1) nodes, 

represented by each array in the study; coordinates of the single stations have 
been averaged to generate one set of coordinates for each array; 2) edges are 
the observed connections between arrays and 3) edge weights are 
represented as the relative transitions (fish movements) between the arrays. 
 

c. Null Models 
In the spatial network analysis context, we wanted to test whether fish 

were migrating homogeneously between arrays along the coast or whether 
they utilised some areas more than what would be expected if movements 
occurred at random (Jacoby et al., 2012). To verify that, we used the 

CoeHicient of Variation (CV) of the transition counts in the movement matrix, 
which is the most common test statistic in social network analysis (Farine and 
Whitehead, 2015). This measure was obtained by dividing the relative 
movements matrix's standard deviation (σ) by its mean value (µ) (Farine and 
Whitehead, 2015). The logic behind this is that an observed CV higher than a 

random distribution of CVs obtained from permutations implies that some 
edge weights between nodes are higher than what would be expected if nodes 
were connected from random movements. Nodes in a spatial network 
represent locations in the physical space. Therefore, it would not be wise to 
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randomly re-allocate single transitions among all the nodes, as this could 

create connections that are very unlikely to be observed. For these reasons, a 
random movement network must preserve some structure of the observed 
spatial arrangement in the movement network (Jacoby et al., 2012). To do that, 
we opted for randomising the single transitions only among nodes already 
connected between edges without creating new edges between arrays. We 

generated 10.000 random movement matrix, in which each node maintained 
its original edge, but edge weights resulted from random re-allocations of the 
single transitions in the movement matrix. For each random matrix, the CV was 
measured to generate a distribution of random CVs. The p-value was 
calculated by dividing the number of times the observed CV was smaller than 
the set of random CVs by the total number of permutations (Farine and 

Whitehead, 2015). A threshold of 97.5% has been chosen for a CV that is 
significantly higher than random (Lilly et al., 2020). 
 

d. Network metrics and node metrics 
Network-level metrics give a broad view of the network structure and of the 

pattern of connectivity within the observed network. The number of nodes, the 
number of edges, and the edge density (the observed number of edges out of 
all the possible edges) belong to this category (Farine and Whitehead, 2015; 
Ospina-Alvarez et al., 2020; Setyawan et al., 2024). Node-level metrics are 
influenced by the degree (number of connections) that a node has in the 

network, and they are used to describe the role that each node has in the 
network and how it is connected to other nodes (Farine and Whitehead, 2015; 
Ospina-Alvarez et al., 2020; Setyawan et al., 2024). We used two node-level 
metrics to assess the role of the nodes in the network: Betweenness-centrality 
and Eigen-vector centrality. Betweenness is the number of times a node is 

included in the shortest path generated by every combination of two other 
nodes. Nodes with high betweenness are frequently involved as passages 
between distinct areas of the network, acting like a bridge between different 
groups of nodes (Farine and Whitehead, 2015; Ospina-Alvarez et al., 2020). 
Betweenness centrality was calculated using an R function that considers 
edge weights as distances or costs. To convert edge weights into distances, 

we divided each edge weight by the average weight value (Farine and 
Whitehead, 2015; Ospina-Alvarez et al., 2020; Setyawan et al., 2024). Eigen-
vector centrality indicates the level of connection of a node to other well-
connected nodes. Nodes with high Eigen-centrality usually have either 1) a 
high number of connections (high degree) with other nodes or 2) strong 

connections with highly central nodes (Farine and Whitehead, 2015; Ospina-
Alvarez et al., 2020). In spatial network analysis, nodes with high Eigen-
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centrality represent strategic areas that are well-connected to many other 

locations in the network and where individuals frequently return (Jacoby et al., 
2012). All the previous metrics were measured using the appropriate function 
from the package igraph (Csárdi et al., 2024). 

 
e. Community detections algorithm  

There are situations in network analysis where networks display nodes that 
are highly connected within smaller sub-groups rather than showing a 
homogenous distribution of edges. These sub-groups are defined as 
communities within the network and can be identified using appropriate 
community detection algorithms (Ospina-Alvarez et al., 2020). The modularity 
of a network is a measure that aims to evaluate if a community algorithm has 

identified communities that will divide the network into discrete modules (Finn 
et al., 2014; Farine and Whitehead, 2015; Ospina-Alvarez et al., 2020; 
Setyawan et al., 2024). We used the "cluster_optimal” community detection 
algorithm to detect communities in this movement network (Setyawan et al., 
2024). The algorithm calculates the optimal community structure by 

maximising the modularity measure across all the possible partitions. The 
algorithm can be used for both directed and undirected networks, but in the 
case of directed networks it does not consider the directionality of the edge in 
the analysis (Pastor-Rollan et al., 2024). The "cluster_Infomap" community 
detection algorithm is also feasible for spatial networks as it excels in 

identifying flow patterns in directed spatial networks, aiming to detect clusters 
of nodes with stronger connections between them (Pastor-Rollan et al., 2024). 
Both community detection algorithms were estimated using the appropriate 
function from the igraph package (Csárdi et al., 2024). The clusters obtained 
were then tested using the "dCommSignif" function from the dnet package 

(Fang and Gough, 2014). For each node in a community, the function 
measures the degree of connections within the community and compares it 
with the degree of connections outside the community. It then performs a two-
sample Wilcoxon signed-rank test to evaluate whether the internal degree is 
significantly higher than the external degree (Fang and Gough, 2014). If the test 
returns a p-value less than 0.05, the community can be considered 

statistically significant, indicating that the algorithm has detected a “real” 
community with more internal connections than external ones (Finn et al., 
2014). 
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3) SOCIAL NETWORK ANALYSIS 
The social network analysis was carried out using R Statistical Software 

(v4.3.2; R Core Team 2023). Network and data visualizations were made using 

R packages ggplot2 and ggraphs (Pedersen and RStudio, 2024; Wickham et al., 
2024). 
 

a. Definition of the study period 
For the social network analysis, we needed acoustic detections to be 

normalised. For this reason, in the definition of the study period, we used a 
time interval in which all the individuals had an equal probability of being 
detected to avoid biased results for the social evaluations of co-occurrences. 
After visual observations of the dataset, we used the study interval from 
28/09/2019 until 04/04/2022 (when the first tag stopped emitting signals). The 

detections of all the individuals tagged after 28/09/2019 were removed. By 
doing this, the detection for the social network analysis comes only from 
individuals tagged before 28/09/2019 and with the same probability of being 
detected from that date until 04/04/2022. 
 

b. The Gambit of the Group Data 
Our social network analysis aimed to evaluate where and when the 

individuals aggregated during the migrations along the South-West Coast of 
the Iberian Peninsula and whether these co-occurrences can be considered 
random. The definition of co-occurrence is based on the "Gambit of the Group 
assumption", which posits that individuals have the possibility to associate if 

they are found to be in enough spatial and temporal proximity to one another 
(Farine and Whitehead, 2015; Psorakis et al., 2015; Lilly et al., 2020; Anderson 
et al., 2021). The approach mentioned above requires the definition of a 
temporal threshold within which, if at least two individuals are detected, we 
can assume they are co-occurring. This time interval is defined as the 

sampling period (Farine and Whitehead, 2015; Psorakis et al., 2015; Lilly et al., 
2020; Anderson et al., 2021). However, we point out that co-occurrence does 
not necessarily imply social interactions (Mourier, Vercelloni and Planes, 
2012; Schilds et al., 2019). We opted for a sampling period of one hour, as we 
considered it a reasonable time for individuals to co-occur in the same area, 

considering the spatial scale of our study. The same sampling period was used 
for another study on meagre (Gandra et al., 2024) and a social network 
analysis on white sharks (Anderson et al., 2021). Therefore, we considered all 
the detections of an individual occurring during the same hour at the same 
arrays as one single detection. Grouping of individuals in time and space was 

carried out using functions "group_times" and "group_space" from the 



 18 

package spatsoc (Robitaille, Webber and Vander Wal, 2019). Animals were 

considered to co-occur in space and time if they were detected at the same 
array within the same hour. Co-occurring animals were allocated into the 
same group, and this information was used to generate a group-by-individual 
matrix using the function "get_gbi" from spatsoc (Robitaille, Webber and 
Vander Wal, 2019). The matrix of co-occurrences was used to measure the 

Simple Ratio Index (SRI) using the "get_network" functions from the package 
asnipe (Farine, 2013). 
 

SRI = 
%

%&	'!"&'!&'"
 

 

The SRI represents the strength of the connections between individuals in an 
N x N adjacency matrix, in which N represents the number of individuals. It can 
range from 0 to 1, where 1 indicates individuals' high tendency to co-occur, 
and 0 indicates that individuals were never detected together during the same 
sampling period throughout the study. The number of sampling periods, where 

co-occurrences are scaled between 0 (individuals that were never observed 
together) and 1 (individuals that were always detected together), is 

represented by 2. 3()  is the total of sampling periods in which both meagre A 

and meagre B were detected, but at diHerent sites, 3(  is the total of sampling 
period where only individual A was detected and 3)  is the total of sampling 
period where only individual B was detected (Farine and Whitehead, 2015; 
Psorakis et al., 2015; Lilly et al., 2020). We opted for the SRI over other indices 

(e.g., Half Weight Index) because the intrinsic features of acoustic data make 
them solid enough to hold the required assumptions to use these indices: the 
associations that are detected must be symmetric and accurate, the 
probability to detect one individual is the same regardless it is associated or 
not and, when one individual is detected during the observation period, one 
should be able to detect all individuals that it is associated with that time 

(Stehfest et al., 2013; Lilly et al., 2020; Anderson et al., 2021). We obtained the 
social network from the adjacency matrix using the function 
"graph_from_adjacency_matrix" from the package igraph (Csárdi et al., 2024). 
In the context of a social network, 1) individuals represent the network’s 
nodes; 2) the edge between two individuals means that they were detected 

together at least within one sampling period, and thus they form a dyad; 3) 
social network’s edges are unidirectional, end their strength is represented by 
the SRI (Farine and Whitehead, 2015). 
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c. Null Models 
To test if the individuals aggregate more or less than what would be 

expected by chance, we need to compare a reliable test statistic that 
represents the observed network with the same test statistic from a set of 
permuted networks (Farine and Whitehead, 2015; Farine, 2017). The most 
applied test statistic for this type of analysis is the CoeHicient of Variation (CV) 

of the SRI (Mourier, Vercelloni and Planes, 2012; Farine and Whitehead, 2015; 
Lilly et al., 2020). This is a very powerful test statistic as it is independent of 
the size and can be used to compare diHerent types of datasets. The p-value 
is measured by dividing the number of times the observed CV is smaller than 
the set of random CVs by the number of permutations (Farine and Whitehead, 
2015). Pre-network, or data-stream, randomisations are usually preferred 

over network permutations (node-level permutations or edge-permutations), 
as they preserve some features of the original dataset, like the number of 
times individuals were seen and the number and size of groups (Farine, 2013, 
2017; Farine and Whitehead, 2015). The package asnipe was used with the 
default "network_permutation" function. We opted for swapping individuals 

between diHerent groups (the randomisations are applied on the group-by-
individual matrix) within the same day and array of detections to preserve 
some aspects of the original dataset (Farine, 2013, 2017; Farine and 
Whitehead, 2015). The number of permutations was increased by 10.000 
iterations over each run until the p-value stabilised at 60.000 iterations 

(Stehfest et al., 2013; Lilly et al., 2020). This process allowed us to generate a 
set of random association matrices, and then the random CVs were compared 
with the observed CV. The Null Hypothesis tested was that "individuals 
encounter each other with a random pattern"; thus, the observed CV should 
not significantly diHer from the random ones under the Null Hypothesis. If the 

observed CV is greater than 97.5% (p-value < 0.025) of the random CVs, we 
can reject the Null Hypothesis and assume that our network displays co-
occurrences that are "unlikely" to be observed by random chance (Mourier, 
Vercelloni and Planes, 2012; Farine and Whitehead, 2015; Farine, 2017; Lilly 
et al., 2020).  
 

d. Node-level metrics 
To describe the role of the individuals involved in the social network 

analysis, we used the same centrality metrics applied for the spatial network, 
as they reflect the same features of the arrays also for the individual. Again, in 
this context, high Betweenness centrality represents those fish that connect 

distinct groups of individuals, acting as a bridge in the social network. Eigen-
centrality highlights those individuals with many connections with other 
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relevant fish in the network, possibly representing social hubs, which facilitate 

the transfer of information or diseases in the populations (Farine and 
Whitehead, 2015; Ospina-Alvarez et al., 2020). Network metrics have been 
measured with the package igraph (Csárdi et al., 2024). 
 

e. Community detection algorithm 
To detect communities in a social network, a study on tropical fish 

compared several algorithms, and three of them, Louvain (or Multilevel), Fast-
Greedy, and Walk-Trap, yielded similar results and displayed comparable 
efficiency (Finn et al., 2014). Additionally, undirected methods such as the 
Louvain or Fast-Greedy algorithms are particularly well-suited for analysing 
networks where the interactions between nodes lack inherent directionality, 

such as in social networks (Pastor-Rollan et al., 2024). The Edge-Betweenness 
algorithm was also tested, as it should be well suited for identifying regions of 
the network that are sparser and attempting to include them in communities 
(Pastor-Rollan et al., 2024). Applying multiple community detection 
algorithms and comparing their results is recommended before determining 

the most suitable one (Hernández-García et al., 2024). Given each algorithm's 
strengths and limitations, our analysis includes all four algorithms (Louvain, 
Fast-Greedy, Walk-Trap, and Edge-Betweenness) to examine the network's 
community structure comprehensively. The communities were measured 
using the igraph package (Csárdi et al., 2024). The significance of a community 

was assessed using the function "dCommSignif" from the package dnet (Fang 
and Gough, 2014). Like the spatial network, a p-value below 0.05 indicates a 
significant community (Finn et al., 2014). 
 

f. Mantel test 
The Mantel test is a statistical test that detects whether there are 

correlations between two dissimilarity matrices (Farine and Whitehead, 
2015). This type of test has been largely applied in many other Animal Network 
Analyses (Stehfest et al., 2013; Anderson et al., 2021; Winter et al., 2021) to 
assess correlations between the association matrix (based on the SRI) and a 
matrix derived from different attributes of the individuals (e.g. sex, size or 

genetic relatedness) (Farine and Whitehead, 2015). The current analysis 
aimed to test if the presence of an edge between two individuals was 
positively correlated to the specific period in which the individual was tagged. 
The chosen explanatory periods were day, month, season, year, and whether 
the individuals were tagged within or outside the spawning season 

(considering a spawning period lasting from March until August (González-
Quirós et al., 2011)). Additionally, the same test was applied to detect 
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potential correlations between the presence of an edge between individuals 

and their body size (Stehfest et al., 2013; Anderson et al., 2021; Winter et al., 
2021). In this case, individuals were allocated to three different size classes 
defined by the mean length (128cm) and SD (12cm): small: <116cm (< mean – 
SD), medium: 116 – 141cm (mean +/- SD) and large: > 141cm (>mean + SD) 
(Winter et al., 2021). Dissimilarity matrices were created, with cells filled 

either with 0 (if the individual has not been tagged in the same period/does not 
belong to the same size class) or 1 (if the individual has been tagged in the 
same period/belongs to the same size class (Farine and Whitehead, 2015)). 
The association matrix was converted into a binary matrix, as we were only 
interested in the presence of an edge. Pearson's product-moment correlation 
was used to test the correlation between the binary matrix obtained from the 

association coefficient and the dissimilarity matrix based on the explanatory 
variables (Farine and Whitehead, 2015). Significant correlations were 
considered when the p-value was lower than a threshold of 0.05 (Farine and 
Whitehead, 2015). The test was performed with 10.000 permutations using 
the function "mantel" from the vegan package (Oksanen et al., 2024). 

 
g. Assortativity analysis 
Assortativity analysis aims to evaluate whether individuals who share 

some features (for example, sex, size, or also habitat preferences) have a 
higher tendency to be connected between them compared to other individuals 

in the network (Farine and Whitehead, 2015; Perryman et al., 2022; Shizuka et 
al., 2022). In our network, we wanted to test whether individuals who display 
a higher residency index in one area also have a higher tendency to be 
associated. To do that, we measured the observed weighted assortative 

coeHicient ()*+) which depends on the spatial community membership of each 

individual (Perryman et al., 2022). We allocated the arrays into the three 
spatial communities identified by the "cluster_optimal" algorithm, regardless 
of their significance, as they were the most representative of the actual spatial 
division of the study area: community 1, representing the arrays of Lagos, 

APPA, Guadiana, Guadalquivir, and Tuna-Trap; community 2 is represented by 
the array of Sagres, West-Coast South and West-Coast North and community 
3 represented by Sines, Arrabida, and Tejo (Sado has been excluded has none 
of the fish were detected there). Given their locations, we referred to 
community 1 as the South Coast community and community 2 as the South-

West community. The spatial membership of an individual to one of the three 
communities was determined based on the array where they exhibited the 
highest residency index. The goal was to determine whether individuals within 
the same spatial community aggregated more frequently with others from the 
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same community compared to those from diHerent communities. To test our 

hypothesis, we used the “assortment.discrete” function, which returns: 1) the 

weighted assortativity coeHicient ()*+), a value that quantifies the degree to 
which nodes having the same discrete attribute (e.g., membership in the same 
community) tend to be connected; 2) the standard error associated with the 

assortativity coeHicient, 3) and a mixing matrix, which shows the distribution 
of the edges by category (in our study, the spatial membership). The function 
mentioned above belongs to the assortnet package (Farine, 2023). To test the 
significance of the assortment, we generated a permutation test by randomly 
shuHling the community membership among the individuals involved in the 

social network and measuring the assortativity coeHicient from each 
permutation. A total of 10.000 permutations were applied (Perryman et al., 
2022). The p-value was calculated by dividing the number of times the 

observed assortativity coeHicient ()*+) was smaller than the set of random 

coeHicients by the number of permutations. The observed coeHicient is 
considered significant if it is greater than 97.5% of the random coeHicients. 
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RESULTS 
 

1) PASSIVE ACOUSTIC TRACKING 
Overall, the detection data was composed of 155.552 data points, 

corresponding to detections coming from 38 unique individuals as corvina #04 
(23799) was re-captured a few months after its tagging, and its detection data 

were not considered. The resulting information consisted of Tag-metadata 
(Tag-ID, Individual Length (cm), Date of tagging and Date in which tags stopped 
emitting signals, day of the first and last detections, and an overall number of 
detections for each ID) and Receiver-metadata (date-time include the time of 
each detection in YY-MM-DD: HH-MM-SS, receiver-ID, Tag-ID, station name, 

acoustic project code, coordinates of the station and array at which the station 
belong). The first detections occurred on 07/12/2018, whereas the last were 
on 14/10/2023, leading the overall study period to spread across almost six 
years, or a total of 1092 unique days of detections. Of the 128 receiver stations 
available during the study period, we had detections from 106 unique stations. 

The only array from which we have no detections is the array of Sado, as 
receiver stations Sado 2 and Sado 4 never detected individuals while they were 
deployed. 

 
Figure 3 – Coloured dots represent unique days of detection of an individual at that array. Red vertical 
dotted lines represent the start and end of the spawning season, ranging from March until August. 
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2) SPATIAL NETWORK ANALYSIS 
 

a. Residency index measurements 

 
Figure 3 - Average residency index of each array for the entire study period.  

Tejo displayed the highest residency index among all the arrays (0.425). Other 

than Tejo, the arrays of Tuna-Trap and West-Coast-North display a high 
residency index (0.026 and 0.017, respectively) compared to the other arrays 
(Figure 3).  
 

b. Observed movement network 
The overall movement network of the 38 detected individuals was 

composed of 12 nodes (the array stations) and 29 edges, corresponding to the 
observed connections between arrays, with a resulting edge density of 
21.96%. The edges were composed of a total of 162 measured transitions 
between arrays, of which 89 (54,93%) involve the arrays of Sagres, West-Coast 
North and West-Coast South (Figure 5). With respect to the season, 103 

transitions were observed during summer and 42 during fall (Figure 6). 
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Figure 4 - Movement network showing the array location along the Portuguese coast and the 
connectivity between the diOerent arrays. 

 
Figure 5 – Number of transitions occurring at each array 

Spain

Portugal

100 km

36.5°N

37.0°N

37.5°N

38.0°N

38.5°N

39.0°N

39.5°N

 9°W  8°W  7°W  6°W

array
APPA

ARRABIDA

GUADALQUIVIR

GUADIANA

LAGOS

SADO

SAGRES

SINES

TEJO

TUNA-TRAP

WEST COAST NORTH

WEST COAST SOUTH

0

10

20

30

APPA

ARRABIDA

GUADALQ
UIVIR

GUADIANA
LA

GOS

SAGRES
SINES

TE
JO

WEST C
OAST N

ORTH

WEST C
OAST S

OUTH

Array

Tr
an

sit
io

ns



 26 

 
Figure 6 – Number of transitions for each month of the year. 
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c. Null models 
The randomisation test suggests strong evidence that the observed CV 

(2.65) was significantly higher than what would be expected if movements 
between arrays occurred randomly (p-value = 0). This indicates that certain 
arrays played a more relevant role than others during the migrations of meagre 
along the coast (Figure 7). 

 

 
Figure 7 - Distribution of the random CVs obtained after the 10.000 permutations of the observed 
transition in the movement matrix. The observed CV is 2.65 (red vertical line). 

d. Movement metrics 
The arrays of APPA, Sagres and West-Coast North displayed the highest 

betweenness centrality (Table 1, Figure 8). This means that these nodes were 

frequently involved in the transitions of meagre between two distinct locations 
along their path. These nodes likely represent a “corridor” during the 
migrations from the southern coast towards the western coast of Portugal. The 
two main arrays of the West Coast (West-Coast North and South), Sagres and 
APPA, show a higher Eigen-Vector centrality (Table 1, Figure 9). These nodes 

can be considered the “core” of the movement network, meaning they are not 
only well-connected themselves but also connected to other highly 
connected nodes. This makes them relevant locations for meagre to access, 
and from where they can easily reach other favourable areas. 
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Table 1 – Values of Betweenness centrality and Eigen-centrality of the arrays in the movement network. 

Arrays  Betweenness-
centrality 

Eigen-centrality  

APPA  0.418 0.969 

ARRABIDA  0.082 2.086* 10^-3 

GUADALQUIVIR  0.082 0.068 

GUADIANA  0  0.561 

LAGOS  0  0.318 

SADO  0  9.751 * 10^-17 

SAGRES  0.363 1 

SINES  0.154 0.059 

TEJO  0.073 7.3 * 10^-5 

TUNA-TRAP  0 9.751 * 10^-17 

WEST COAST NORTH  0.273 0.852 

WEST COAST SOUTH  0  0.952 

 

 
Figure 8 - Movement network displaying Betweenness-centrality. The node’s colour intensity is 
proportional to the magnitude of the Betweenness-centrality. 
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Figure 9 - Movement network displaying Eigen-centrality. The node’s colour intensity is proportional to 
the magnitude of the Eigen-centrality. 

e. Community detection algorithm 
The Optimal community detection algorithm identified three distinct 

communities and yielded a modularity score of 0.15. Sado, not being 
connected to any nodes, was not included in any of the communities. The 
three major communities have a p-value > 0.05 (Appa, Guadiana, 

Guadalquivir and Tuna-Trap = 0.243 – Sagres, West-Coast South and West-
Coast North = 0.658 – Sines, Arrabida and Tejo = 0.814) (Figure 10). The 
Infomap algorithm identified no communities in the movement network 
(modularity = 0). However, the unique cluster had a significant p-value 

(2.52 ∗ 10,-), implying an overall homogeneous distribution of the edges in the 

movement network (Figure 11). 
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Figure 10 – Movement network with the three communities identified by the Optimal algorithm 

 
Figure 11 – Movement network with the unique community identified by the Infomap algorithm 
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3) SOCIAL NETWORK ANALYSIS 
 

a. Selection of the study period 
The normalized study period consisted of 391 unique days, with 

detections spread across almost three years. The final period encompassed 
19 individuals for the Social Network Analysis. The number of unique days of 
detections for each individual ranged between 1 and 272 (for ID 23827, which 
remained within Tejo for the entire study period and, therefore, kept being 

detected by the receivers placed in the estuary). 
 

 
Figure 12 – Abacus plot showing the daily detection of the 19 individuals involved in the social network 
analysis. The Date ranges from 28/09/2019 until 04/04/2022. Red dashed lines represent the length of 
the spawning season, lasting from the beginning of March until the beginning of August (González-Quirós 
et al., 2011).  
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b. General stats about the social network analysis 
Of all the 171 possible dyads that could have been observed 

throughout the study period, only 31 dyads (from 13 individuals) have occurred 
(SRI > 0), with a resulting edge density of 18.13%. The total number of co-
occurrences of at least 2 individuals during the whole study period is 146, of 
which 88 (60.27%) were registered only in West-Coast North (Figure 13, 14, 

15). 83 co-occurrences were registered in the Summer and 63 during the Fall 
Seasons, with no co-occurrences detected outside of these seasons (Figure 
13). The largest co-occurrences (6, 4 and 3 unique individuals) occurred 
between West-Coast North and West-Coast South (Figure 15). 
 

 
Figure 13 –Number of co-occurrences detected at each of the 6 arrays that yielded detections during 
the study period. Colours represent the season in which the co-occurrences happened. 
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Figure 14 - Number of co-occurrences detected at each of the 6 arrays that yielded detections during 
the study period. Colours represent the year in which the co-occurrences took place. 

 
Figure 15 - Number of co-occurrences detected at each of the 6 arrays that yield detections during the 
study period. Colours represent the number of unique_ID detected during the same one-hour interval 
at the array. 
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c. Results of the permutation tests 
The mean observed SRI was 0.0089 +/- 0.0298, and the resulting 

CoeHicient of Variation of the observed indices was not significantly higher 
than the CoeHicient of Variation from the random distributions (Permutations 
test: CV = 3.32, CVr = 3.25, p-value = 0.034, two-tailed test) (Figure 16). 
 

 
Figure 16 – Distribution of the CoeOicient of Variation from the randomization test. The vertical red line 
represents the observed CV (3.32). 
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d. Results of the metrics. 
Overall, individual 23829 displayed the highest betweenness centrality 

metrics (be = 0.23), followed by 23798 (be = 0.13) (Figure 17, Table 2). IDs 
23829, 23833, 23804, 23800 and 23836 displayed the highest values of Eigen-
Vector centrality (Figure 18, Table 2). 
 

 
Figure 17 - Social network of the 19 individuals involved in the analysis. The node’s colour intensity is 
proportional to the magnitude of the Betweenness-centrality. 
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Figure 18 - Social network of the 19 individuals involved in the analysis. The node’s colour intensity is 
proportional to the magnitude of the Eigen-centrality. 

Table 2 – Table displaying the node metrics for each individual ID 

ID Betweenness-
Centrality 

Eigen-Centrality 

23797 0 1.75*10^-17 

23798 0.13 0.338 

23799 0.072 0.17 

23800 0 0.423 

23801 0 0.167 

23802 0 0.033 

23803 0 1.75*10^-17 

23804 0.092 1 

23805 0 0.029 

23827 0 1.75*10^-17 

23828 0 1.75*10^-17 

23829 0.229 0.932 

23830 0 1.75*10^-17 

23831 0 1.75*10^-17 

23832 0 0.037 
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23833 0.092 0.8 

23834 0 0.013 

23835 0.072 0.199 

23836 0.052 0.808 

 
e. Results of the Mantel tests  
The Mantel test for the correlations between the tagging period and the 

presence of an edge between individuals did not identify any significant 
relationships. The observed correlations (Mantel-Statistic r) were weak, and 

the p-values were largely non-significant. The Mantel test for the association 
matrix and size classes provided a weak (r = 0.269) and non-significant (p-
value = 0.052) relationships (Table 3). 
 
Table 3- results of the Mantel test performed with Pearson's product-moment correlations method. 

Test-Type Explanatory Mantel-Statistic r Significance 
Pearson Day 0.086 0.161 

Pearson Month 0.009 0.508 

Pearson Season 0.009 0.501 

Pearson Year -0.071 0.774 

Pearson Spawning 0.009 0.503 

Pearson Size 0.269 0.052 

 
f. Community detections algorithms 
All three of the community detection algorithms produced similar 

modularity scores (Fast-Greedy algorithm Q = 0.299; Louvain algorithm Q = 

0.287; Walk-Trap algorithm Q = 0.251). However, none of them was able to 
divide the social networks into real communities, as the detected p-values 
were all above the significance level of 0.05 (Figure 19, 20, 21). On the other 
hand, although the Edge-betweenness algorithm did not find any communities 
and grouped all the individuals connected by edges in a unique cluster, the 

resulting module yielded a significant p-value of 3.87	=	10,. (Figure 22). 
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Figure 19 - social network showing the communities identified by the Fast-Greedy algorithm 

 
Figure 20 – social network showing the communities identified by the Louvain algorithm 
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Figure 21 – social network showing the communities identified by the Walk-Trap algorithm 

 
Figure 22 – social network showing the communities identified by the Edge-Betweenness algorithm 
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g. Assortativity analysis 
The weighted assortative mixing ()*+  ) analysis showed that 78.37% of the 

edges in the social network occurred among individuals with had their highest 
residency index in the spatial community of the West Coast (composed of 
Sagres, West-Coast South, and West-Coast North). Additionally, 87% of all the 

edges in the network connect with the spatial community of the West Coast, 
which agrees with the results of the Eigen-centrality metrics that see 
individuals belonging to this community having high centrality. The overall 
assortative coeHicient was 0.26+/-0.25, suggesting that there was a weak 
tendency for individuals to connect with individuals of the same spatial 

community. The p-value, obtained after 10.000 permutations was 0.216, 
indicating that individuals were not aggregating significantly more with others 
in the same spatial community. 
 

 
Figure 22 - Social network plot showing the output from the community detection analysis using the 
edge-betweenness algorithm. Individuals are coloured according to the spatial community in which they 
display the highest residency index: Tuna-trap, Guadalquivir, Guadiana, Appa, and Lagos in light blue; 
Sagres, West-Coast South, and West-Coast North in pale green; Sines, Arrabida, and Tejo in pale orange. 
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DISCUSSION 
 

1) SUMMARY OF THE MAIN RESULTS 
The current study relied on 155.552 acoustic detections from 38 unique 

IDs to study meagre migrations along the South-West Coast of the Iberian 
Peninsula. The two arrays of Tuna-Trap and West-Coast North displayed the 
highest residency index, excluding Tejo, meaning that fish spent a significant 
proportion of time there and didn’t use these locations just as passage points. 
Nevertheless, we point out that the deployment period of the West-Coast 
North array was nearly double that of the Tuna-Trap array (1261 and 624 days, 

respectively), which might have slightly inflated the residency index of the 
latter. Moreover, the high residency observed at Tuna-Trap is attributed to 
detections from a single ID (23820), recorded in that array for 14 unique days 
between March and April 2023. One possible explanation for this high number 
of detections might be that this particular individual might have been captured 

by the tuna trap at that location. Conversely, the residency index of West-
Coast North was derived from nine distinct individuals detected at that 
location across the entire study period. Combined with the fact that West-
Coast North displayed the highest number of co-occurrences and the fourth 
Eigen-centrality metric, despite the array being composed of only two receiver 

stations, it may indicate the animal’s strong site fidelity for this area. The high 
residency obtained from Tejo occurred for two main reasons. Firstly, the two 
individuals (ID 23808 and 23827) tagged there were not detected at any other 
array during the study period, and probably remained within or near the 
estuary for most of the time. Secondly, the receiver stations within the estuary 

of Tejo have a heterogeneous distribution, allowing good coverage across the 
estuary. The fact that these two individuals were the smallest among all the 
others (70cm TL and 100cm TL, respectively) aligns with information from 
other studies, which suggest that immature and pre-adult meagre (70-110cm 
TL) tend to remain in estuarine and shallow waters before reaching sexual 
maturity (González-Quirós et al., 2011; Morales-Nin et al., 2012). A total of 162 

transitions between arrays were detected throughout the study period, mainly 
involving the arrays of APPA, Sagres, West-Coast North and West-Coast 
South. Coupled with the high Eigen-centrality centrality of these arrays, this 
information suggests these areas are involved in frequent movements 
between the two Portuguese coasts. Our community analysis aimed to 

determine if fish movements segmented the spatial network into sub-groups 
of densely connected nodes. Although the “cluster_optimal” algorithm 
produced a positive modularity score of 0.15, none of the three identified 
communities had statistically significant p-values. These results suggest that 
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nodes within the community were not significantly more connected than 

outside of the community but moving any nodes to a new community would 
reduce the modularity of the entire network (Finn et al., 2014). The 
“cluster_infomap” algorithm, being appropriate for sparse networks, includes 
all the nodes within the same community, possibly indicating that no nodes 
were tight enough to represent a “real” community. We highlight that some 

direct transitions observed between arrays far from each other (such as Tejo 
to Sagres or APPA to West-Coast North) may have occurred because some 
receivers in between might have “missed” the passage of adult meagre during 
their migrations. Given some limitations of aquatic telemetry (Lédée et al., 
2021b; Setyawan et al., 2024), the possibility of integrating biotelemetry 
techniques with other approaches, like oceanographic modelling and 

molecular technique, is recommended to obtain a complete picture of aquatic 
megafauna migration in their natural environment (Abecasis et al., 2024a). 

The present study observed 146 co-occurrence events among at least two 
individuals. These aggregation events occurred between 13 distinct 
individuals, mainly located between West-Coast North and West-Coast South 

and occurred primarily in summer-autumn months. The observed CoeHicient 
of Variations (3.32) from the social network analysis was non-significant (p-
value = 0.034) across the entire social network study period; thus, we cannot 
claim that the observed number of co-occurrences were significantly diHerent 
from what would be expected if fish aggregated with a random pattern. Our 

Mantel test analysis detected a weak (0.269) and non-significant (p-value = 
0.052) correlation between the presence of an edge in the adjacency matrix 
and the size class of the fish. None of the five Mantel tests for the tagging 
period yielded a significant p-value. Three out of four community detection 
algorithms identified at least two communities, despite none of them 

providing a significant p-value. Like our spatial network, also for the social 
network community analysis the only significant p-value was obtained when 
the algorithm groups all the individuals with at least one edge within the same 
cluster.  
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2) SIGNIFICANCE OF THE RESULTS FOR ARGYROSOMUS REGIUS 
MIGRATIONS 
The results of the current analysis are in agreement with those of 

Gandra et al., (2024) and underscore the critical role of the Southwest coast 
of Portugal (Sudoeste Alentejano and Vicentina Coast Natural Park) as a 
potential feeding ground during the migrations of adult meagre. This region 

exhibited the highest number of fish detected within the same one-hour 
interval as in September 2020, six unique individuals were detected in the 
West-Coast South, and we had multiple occurrences of four and three 
individuals simultaneously detected between Sagres, West-Coast South, and 
West-Coast North. The Marine Protected Area (MPA) in this region, combined 
with localised upwelling and a heterogeneous habitat, provides robust 

support for extensive marine biodiversity (Vargas et al., 2003; Gandra et al., 
2024; Garel et al., 2024). Adult meagre migrates along the coast during the 
summer and the fall seasons, with the highest number of co-occurrences and 
transitions observed during these periods. This agrees with previous studies 
that observed meagre preferentially using shallow waters during these 

seasons, likely driven by the favourable thermal range and the higher prey 
availability during warmer months (Winkler et al., 2023; Gandra et al., 2024; 
Garel et al., 2024). Seasonal shift in habitat preferences has also been 
reported in two closely related species: Argyrosomus japonicus in South 
Australia (Barnes et al., 2019) and Argyrosomus coronus oH the Angolan coast 

(Potts et al., 2010, 2018). During the fish migration, the array of APPA was 
involved as a considerable passage point towards the West Coast, as 
suggested by his high Betweenness centrality. The narrow continental shelf in 
this area likely forced meagre to use it as a corridor, and the fact that tuna 
traps have been deployed in this location supports this phenomenon. In 

contrast, the very low centrality of Lagos and the low number of detections in 
that array suggests that individuals did not use this area to reach the West 
Coast but prefer to move directly from APPA to Sagres, likely aided by warm 
coastal currents (Garel et al., 2024) and the wider continental shelf outside 
Lagos compared to where the array of APPA is located. The array of Sagres 
also represents a transition point between the South and West Coast. The low 

residency index suggests that individuals do not remain in this area for 
extended periods. Instead, the high Betweenness centrality values imply that 
fish were frequently transiting through this region to reach the South-West 
Coast. Once they arrived in these areas, fish likely remained there for feeding, 
as suggested by the high residency index of West-Coast North. The high Eigen-

centrality showed by Sagres, West-Coast South and West-Coast North, 
indicates that these arrays were frequently involved in back-and-forth 
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movement between the Southern and Western Coast of Portugal. In fact, as 

highlighted by Gandra et al., (2024), some individuals continued their 
migrations towards the northern region, whereas others returned to the 
Southern Coast. Our permutation test results also support the hypothesis that 
meagre did not homogeneously transit along the coast but rather that the high 
number of movements observed in some locations means they were 

significantly more involved in the migration. Identifying relevant habitats for 
marine species has been crucial for the designation and subsequent 
implementation of MPAs, which enhance the viability and maintain 
biodiversity of the marine environments (Lea et al., 2016; Perryman et al., 
2022; Setyawan et al., 2024). A recent study on reef Manta ray (Mobula alfredi) 
combining acoustic telemetry and spatial network analysis was able to 

identify critical habitats in the Manta ray migration patterns, calling for the 
need to include these sites within an MPA network to enhance the 
conservation of the manta ray population in the Indonesian archipelago 
(Setyawan et al., 2024).  

The current analysis suggests that adult meagre can form large 

aggregations even in areas far from their spawning grounds and outside the 
spawning season, as also indicated by Gandra et al., (2024). Many co-
occurrences in Sagres, West-Coast South, and West-Coast North were 
observed from the end of July until the middle of September between 2019 and 
2020. Since the spawning season is usually reported to last from March until 

August (González-Quirós et al., 2011; Winkler et al., 2023), some of the 
aggregations we observed are outside that range. However, we cannot claim 
that the observed pattern diHered from what would be expected under the null 
hypothesis of random co-occurrences, as our permutation test was not 
significant. Nevertheless, when considering the combined results from our 

social and spatial network analyses (permutation test and residency indexes), 
we found that certain locations, like West-Coast South, West-Coast North, 
and Sagres, showed frequent movements of adult meagre and a high number 
of co-occurrences within the same one-hour interval. Together with other 
studies (Winkler et al., 2023; Abecasis et al., 2024a, 2024b; Gandra et al., 
2024; Garel et al., 2024), this information can be relevant for the species 

conservation and management planning, as predictable marine aggregations 
of fish are an easy target for fisheries (Phelan, Gribble and Garrett, 2008). 
Instances of long and seasonal migrations back and forth from their spawning 
grounds have been reported among other species of the genus Argyrosomus, 
like the mulloway (Argyrosomus japonicus) along the South Coast of Australia 

(Barnes et al., 2019) and in South Africa (GriHiths, 1996) and the West Coast 
dusky kob (Argyrosomus coronus) oH the Angolan coast (Potts et al., 2010, 
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2018). The observed seasonal movement patterns suggest a likely philopatric 

strategy (GriHiths, 1996; Potts et al., 2010; Barnes et al., 2019), commonly 
seen in other Sciaenid (Barnes et al., 2019) and also in meagre (Winkler et al., 
2023; Abecasis et al., 2024a; Gandra et al., 2024). There are few studies, 
however, that confirm whether these species form large aggregations at sites 
diHerent from the spawning grounds. The Blackspotted croaker (Protonibea 

diacanthus), another member of the Sciaenidae family, is reported to form 
large aggregations oH the northern Australian waters. Although evidence on 
the real drivers of these aggregations is lacking, they may be primarily 
resource-driven (Phelan, Gribble and Garrett, 2008). Among teleosts, the 
anadromous Atlantic Sturgeon (Acypenser oxyrinchus oxyrinchus) performs 
extensive marine migrations and can form aggregations between feeding, 

breeding, and overwintering sites (Lilly et al., 2020), and aggregations at 
feeding sites are widely reported among elasmobranchs (Schilds et al., 2019; 
Papastamatiou et al., 2020; Anderson et al., 2021). Aggregating with familiar 
individuals during feeding events can oHer several advantages for 
elasmobranchs and marine teleosts. Such behaviour may reduce the risk of 

aggression from conspecifics and facilitate the transfer of knowledge about 
prey availability and foraging strategies from older to less experienced 
individuals (Armansin et al., 2016; Meager, Fernö and Skjæraasen, 2018; 
Schilds et al., 2019; Lilly et al., 2020; Papastamatiou et al., 2020; Anderson et 
al., 2021). It is worth mentioning that, even if the random test would have 

yielded a significant p-value, demonstrating that groups of individuals were 
co-occurring more than expected by chance would not necessarily imply that 
they were interacting (Wilson, Croft and Krause, 2014). Nevertheless, patterns 
of co-occurrences higher than random could provide the basis for social 
interaction (Findlay et al., 2016; Schilds et al., 2019). Yet, to discriminate 

whether the observed aggregations result from the active choice of the 
individuals, they should be observed regardless of the presence of 
environmental drivers (like food resources) (Mourier, Vercelloni and Planes, 
2012; Findlay et al., 2016; Lilly et al., 2020). In the current study, we could not 
properly characterise social interactions among individuals, as acoustic 
telemetry data could only provide information on whether individuals were 

present or absent within the range of the receiving station (Lilly et al., 2020). 
Future studies on meagre and other Sciaenids should include information on 
localised primary productivity, upwelling, and other environmental variables 
to be able to assess if the pattern of aggregations observed in the current study 
could be distinguished from the availability of food resources or other 

environmental drivers and to evaluate whether social interactions are actually 
occurring. 
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Aggregations among individuals of similar size are a common pattern 

in the marine realms, as they usually provide several benefits due to similar 
physiological and dietary requirements (Jordan et al., 2010; Mourier, 
Vercelloni and Planes, 2012; Wilson, Croft and Krause, 2014; Findlay et al., 
2016; Ward, Kent and Webster, 2020). In our study, fish of the same size class 
were not aggregating more with each other than with odd-sized individuals, as 

suggested by the results of the Mantel test. Notably, 15 out of 19 individuals 
were assigned to the "medium" size class. For these reasons, the positive 
correlation might also be an artefact due to the small sample size and limited 
size range rather than an actual positive correlation driven by the active choice 
of the individuals. There are diHerent results on the correlations between 
dyadic relationships and tagging periods across the available literature. In a 

study on the Yellowfin Tuna (Thunnus albacares) social network, the 
individuals displayed significantly stronger association indices with those they 
were tagged (Stehfest et al., 2013). Conversely, the tagging period did not 
correlate with association strength in a social network analysis of Atlantic 
Sturgeon (Acipenser oxyrinchus oxyrinchus) (Lilly et al., 2020). In our study, 

there was not a significant correlation between the presence of an edge 
forming a dyad and the period in which the individuals were tagged in none of 
the five explanatory periods considered (day, month, season, year, and 
spawning vs. non-spawning period). This result suggests that being tagged 
within the same period does not significantly influence the likelihood of 

individuals being detected together at other times during the study period for 
the social network. Results from the community detection algorithms indicate 
that we cannot conclusively divide the individuals in the social network into 
distinct communities based solely on their association strength. The Fast-
Greedy algorithm, which yielded the highest modularity score, divided the 

associating individuals into three communities, although none obtained a 
significant p-value. While this algorithm is considered well-suited for 
detecting social network communities (Finn et al., 2014; Pastor-Rollan et al., 
2024), the low number of individuals displaying associations (13 out of 19) and 
the resulting low edge density (18.13%) may reduce the algorithm's eHiciency. 
The Edge-Betweenness algorithm, which is more appropriate for sparse 

networks (Pastor-Rollan et al., 2024), successfully identified the only possible 
community based on the measured associations in the social network. 

It did not seem that individuals belonging to the same spatial 
community associated significantly more among them than with individuals 
assigned to a diHerent community. Despite that, when observing the results 

from the spatial memberships, we found that some of the highly central fish in 
the social network (from the Eigen-centrality value) were the ones that 
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presented a higher residency index on the West Coast and were assigned to 

community number 2 (IDs 23798, 23804, 23829, 23833, and 23836). In 
contrast, many of the marginal individuals, with few or no edges with others, 
usually have no detections at the array along the West Coast and were 
assigned to community number 1 (IDs 23797, 23802, 23805, 23828, 23830, 
23831, 23832). Moreover, we underscore that all individuals belonging to this 

community had the potential to be detected along the West Coast (i.e., both 
the tag and the array were available during the social study period), but only a 
few were detected by those stations, with the majority remaining in the 
Southern Coast. For instance, IDs 23797, 23802, and 23828 were detected in 
Sagres for a few days. In contrast, IDs 23805, 23830, 23831, and 23832 were 
only detected in the Southern region throughout the entire study period and 

seemed never to have reached Sagres. The results from Gandra et al. (2024) 
partially support these findings. Using models derived from satellite 
detections Gandra et al., (2024) study showed that individuals 23797 and 
23828 clearly passed the West-Coast North array and migrated even northern, 
arriving in the highly productive region between Ericeira and Peniche, even if 

no acoustic receiver was able to detect their passage. Furthermore, satellite 
data suggests that IDs 23800 and 23834 also performed long migrations when 
they passed the West Coast and arrived at the Northern regions. On the other 
side, the same models show that even if some individuals arrived in the West 
Coast region (like 23798, 23829), they did not continue the migration towards 

the northern region but rather migrated back to the south, and acoustic 
detections corroborated these observations. This behaviour might be the 
reason for 23798 and 23829 high Betweenness centrality in the social network. 
It is, therefore, evident that there was a heterogeneous tendency for 
movement among the individuals tagged in the study period, with some 

performing extensive migrations, whereas others remained more resident 
near the putative spawning estuary and the tagging region. This behaviour has 
also been observed in the mulloway (Argyrosomus japonicus) along the south 
coast of Australia (Barnes et al., 2019). This species performs horizontal 
migrations after the spawning season; however, not all the individuals showed 
the same horizontal distributions, with some being more resident than others 

(Barnes et al., 2019). Size has been hypothesised as the reason for the 
observed pattern, despite not being statistically significant (Barnes et al., 
2019). A similar pattern has also been hypothesised for one South African 
population of A. japonicus, where diHerences in the distributions between 
nuclear and mitochondrial markers might be caused by females being more 

philopatric than males (Mirimin et al., 2015; Barnes et al., 2019). Nevertheless, 
the lack of information on the sex of the individuals sampled in the study 
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prevented the authors from confirming the previous hypothesis (Mirimin et al., 

2015).  
Long migrations are energetically costly; thus, they take place only 

when the benefits of the migrations, like the reduced competition between 
individuals, exploitation of areas with more favourable resources, or escape 
unfavourable habitat, outweigh the costs of such migration (Bowler and 

Benton, 2005; Espinoza et al., 2021). However, within the same populations, 
individuals may exhibit a diHerent tendency to migrate among them, a 
phenomenon known as "partial migrations" and described in many marine 
teleosts (Chapman, Hulthén, et al., 2012; Chapman, Skov, et al., 2012; 
Meager, Fernö and Skjæraasen, 2018; Bryan et al., 2021). Variations in 
competitive abilities among individuals, along with diHerences in dietary and 

physiological requirements, may cause some individuals to migrate towards 
more favourable grounds while others may choose to remain closer to the 
spawning ground as it is not advantageous for them to perform long migrations 
(Chapman et al., 2011; Chapman, Hulthén, et al., 2012; Chapman, Skov, et 
al., 2012). Nevertheless, the choice to migrate or not is always based on a 

trade-oH between the benefits and the costs that adopting a migratory 
behaviour could have on the individual's fitness (Childs et al., 2015). A case of 
partial migrations has been reported within a population of juveniles of 
Argyrosomus japonicus in South Africa (Childs et al., 2015). In this case, the 
population of juveniles was divided into two "contingents", one inhabiting 

estuarine water and one more associated with marine waters. Despite that, 
around one-third of the fish of each contingent frequently made excursions to 
the other habitat (Childs et al., 2015). Nevertheless, as the estuarine-
associated contingents were more vulnerable against possible perturbations, 
the diHerence in behaviours between the two subpopulations significantly 

contributes to maintaining the connectivity among the habitats and, therefore, 
the whole population's resilience against anthropogenic or environmental 
stressors (Childs et al., 2015). On a larger geographical scale, individuals with 
a higher tendency to move may play an essential role in linking distant 
communities, as was observed in a population of Manta rays in Raja Ampat, 
West Papua (Perryman et al., 2022).  

Highly mobile individuals are fundamental in maintaining the 
connectivity between distinct subpopulations and, potentially, some level of 
gene flow (Perryman et al., 2022). As highlighted in a recent study, there is an 
evident genetic structure between the subpopulation spawning in Tejo and the 
one spawning in the Guadalquivir (Abecasis et al., 2024a). Larval dispersal has 

been shown to play little or no role in population connectivity; therefore, the 
presence of migratory individuals in the Guadalquivir subpopulation is of great 
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relevance for species conservation (Abecasis et al., 2024a). Adult meagre is 

suspected to spawn always in the same estuary, a behaviour known as “natal 
philopatry”, which may further limit the possibility of gene exchange between 
the two subpopulations (Abecasis et al., 2024a; Gandra et al., 2024). However, 
a recent study suggests that this phenomenon may be less marked than 
previously taught, as an individual tagged in the Algarve in 2018 was detected 

within Tejo during the 2019 spawning season (Abecasis et al., 2024b). 
Therefore, the long migrations of individuals from the Algarve regions towards 
the estuary of Tejo possibly support the limited genetic exchange still 
occurring between these two subpopulations (Abecasis et al., 2024a). 
Maintenance of gene flow among discrete subpopulations is crucial for 
conservation purposes (Pavlova et al., 2017). On the one hand, some level of 

genetic diversity within populations is essential, as it can maintain traits 
providing advantageous adaptations against environmental changes (Gandra 
et al., 2021). However, once this phenomenon becomes excessive, it can 
result in high genetic drift in the population and, ultimately, local extinction 
(Pavlova et al., 2017). Within the context of marine spatial planning, it has 

been suggested that “several small” marine reserves, located in the proximity 
of pivotal spawning grounds, may be the ideal solution for meagre, given this 
species' low larval dispersal and high genetic fragmentation (Abecasis et al., 
2024a). However, with several other studies, we highlight that even migratory 
individuals can be threatened along their path (e.g., stationary fishing gear) 

and during their aggregations along the South-West Coast. This information 
must, therefore, be considered in future conservation projects aimed at 
protecting this species (Abecasis et al., 2024a; Gandra et al., 2024). 
 

3) RELEVANCE OF NETWORK ANALYSIS FOR MEAGRE CONSERVATION 
Individuals' physical and behavioural phenotypes influence their role 

within a social network and, in turn, the population structure and distribution 
in space (Childs et al., 2015; Ward, Kent and Webster, 2020; Weiss, Ellis and 
Croft, 2021; Perryman et al., 2022). Therefore, studying social network 
systems will be relevant, as it can lead to a better understanding of how 
external perturbations and disturbances aHect the whole population structure 

(Perryman et al., 2022). As in our study all individuals were approximately the 
same size and were considered adults (González-Quirós et al., 2011; Morales-
Nin et al., 2012); sex could be one variable, other than a possible behavioural 
phenotype (Perryman et al., 2022), potentially explaining the observed 
diHerence in the movement pattern. An individual's sex influences spatial 

distribution, physiological requirements, and dietary needs (Findlay et al., 
2016; Ward, Kent and Webster, 2020; Weiss, Ellis and Croft, 2021; Kraft, 
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Winkler and Abecasis, 2024). For these reasons, it is essential also to consider 

this information when managing and conserving marine species, as one sex 
could be more impacted by fisheries' pressure than the other (Kraft, Winkler 
and Abecasis, 2024). As far as we know, none of the studies on meagre 
considered the sex of the individuals in their analysis. Including this 
information in future studies could be relevant to enhance the conservation 

and management of this species.  
Fish Spawning Aggregations (FSAs) are common across many marine 

teleost (Claydon, McCormick and Jones, 2012; Meager, Fernö and 
Skjæraasen, 2018; Lilly et al., 2020; Bryan et al., 2021; Ellis et al., 2023) and 
Sciaenid species (Phelan, Gribble and Garrett, 2008; Potts et al., 2010; 
Semmens et al., 2010; Barnes et al., 2019). Unfortunately, little is known about 

possible aggregations of Sciaenid outside the spawning season and the 
spawning grounds, with only another paper reporting aggregations of 
individuals that may not be driven by reproductive purposes (Phelan, Gribble 
and Garrett, 2008). Life-history traits of many large Sciaenid make them 
vulnerable to over-exploitation: late attainment of sexual maturity, high 

longevity, and spawning aggregation that are easy to predict in space and time 
(GriHiths, 1996; Semmens et al., 2010; Mirimin et al., 2015; Barnes et al., 2019; 
Winkler et al., 2023). Many studies have already called for a better assessment 
of their stock and an improvement in their management strategies to avoid 
population collapse (Phelan, Gribble and Garrett, 2008; Semmens et al., 2010; 

Mirimin et al., 2015; Potts et al., 2018; Abecasis et al., 2024a; Stratoudakis et 
al., 2024). Several studies on meagre highlight that the population inhabiting 
the Portuguese coasts can be divided into two distinct subpopulations: one 
spawning in the estuary of Tejo and the other in the Guadalquivir estuary 
(HaHray et al., 2012; Almeida et al., 2022; Abecasis et al., 2024a; Gandra et 

al., 2024). Based on results obtained by Gandra et al., (2024), which shares 
some individuals with the present study, we hypothesise that the individuals 
tagged in the southern Algarve most likely belong to the population spawning 
in the Guadalquivir. After spawning, adults migrate towards Sagres and reach 
potential feeding grounds along the Southwestern Portuguese coast, as these 
areas are known to harbour heterogeneous biodiversity and high primary 

productivity (Vargas et al., 2003; Gandra et al., 2021; Garel et al., 2024). 
Combined results from the residency index (high values for West-Coast North 
array), the movement networks (more than 50% of the overall transitions took 
place in that region), and the social network (high frequency of co-occurring 
individuals in that zone) corroborate previous findings, highlighting the 

importance of that area for meagre migrations and as potential feeding 
grounds. Migrations between breeding and feeding grounds are a typical 
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behaviour shared by other teleost fishes and elasmobranchs (Lilly et al., 2020; 

Espinoza et al., 2021). They could be driven by diHerent factors, like changes 
in environmental features or density-dependent processes (Bowler and 
Benton, 2005; Espinoza et al., 2021). The migrations of meagre towards Cape 
St. Vincent are likely triggered by the warm temperature of the westward water 
currents during summer, which could favour horizontal movements of adults 

from their spawning sites towards potential feeding sites along the Vicentine 
coast (Winkler et al., 2023; Gandra et al., 2024; Garel et al., 2024).  
 

4) CONCLUSION 
Our study confirms the relevance of applying Network analysis 

methodology with acoustic telemetry data to disentangle patterns of space 

use and social structure among teleost fishes. These results further improve 
the knowledge of the spatial and behavioural ecology of meagre, a relevant fish 
for recreational, artisanal, and commercial fishery along the Spanish and 
Portuguese coast (González-Quirós et al., 2011; Morales-Nin et al., 2012). 
Future studies should aim to include further information in the available data, 

like the sex of the individual and the spatial and temporal distributions of 
resources, to elucidate better patterns of fish associations at the feeding 
ground, which can significantly contribute to increasing the knowledge about 
population structure and connectivity along the Iberian Peninsula. 
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APPENDIX 
 
Table 4 – Tagging metadata displaying the individual’s ID, tagging date, Expected drop date and Length 

ID Tagging date Expected tag drop date Length (cm) 
23797 2018-09-20 2022-04-04 131 
23798 2018-09-20 2022-04-04 128 
23799 2019-07-10 2022-12-21 125 
23800 2018-09-20 2022-04-04 131 
23801 2018-09-20 2022-04-04 127 
23802 2018-09-20 2022-04-04 142 
23803 2019-07-10 2023-01-22 134 
23804 2019-07-10 2023-01-22 134 
23805 2019-07-10 2023-01-22 134 
23806 2019-07-10 2023-01-22 128 
23807 2020-10-15 2024-04-29 132 
23808 2020-05-28 2023-12-11 70 
23809 2021-07-29 2025-02-10 128 
23810 2020-10-15 2024-04-29 120 
23811 2020-10-15 2024-04-29 132 
23812 2021-07-30 2025-02-11 136 
23815 2021-07-30 2025-02-11 130 
23816 2021-07-29 2025-02-10 134 
23817 2021-07-29 2025-02-10 138 
23818 2021-07-29 2025-02-10 131 
23819 2021-07-29 2025-02-10 136 
23820 2021-07-29 2025-02-10 126 
23821 2020-10-15 2024-04-29 128 
23822 2020-10-15 2024-04-29 128 
23823 2020-10-15 2024-04-29 138 
23824 2021-07-30 2025-02-11 138 
23825 2020-10-15 2024-04-29 140 
23826 2020-10-15 2024-04-29 139 
23827 2019-07-22 2023-02-03 100 
23828 2019-09-27 2023-04-11 143 
23829 2019-09-27 2023-04-11 131 
23830 2019-09-27 2023-04-11 130 
23831 2019-09-27 2023-04-11 112 
23832 2019-09-27 2023-04-11 126 
23833 2019-07-09 2023-01-21 124 
23834 2019-07-09 2023-01-21 122 
23835 2019-07-09 2023-01-21 135 
23836 2019-07-09 2023-01-21 126 
mean   128.605 
Sds   12.639 
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