
university of padua

School of Engineering
Department of Information Engineering

Master of Science in
ICT for Internet and Multimedia

A D E E P L E A R N I N G - B A S E D A P P R O A C H F O R D E F E C T
C L A S S I F I C AT I O N W I T H C O N T E X T I N F O R M AT I O N I N

S E M I C O N D U C T O R M A N U FA C T U R I N G

Master Graduation Thesis by: simone arena

Student Id: 1175697

Supervisor: gian antonio susto

Academic Year 2019-2020

24/02/2020

Avevamo studiato per l’aldilà
un fischio, un segno di riconoscimento.
Mi provo a modularlo nella speranza

che tutti siamo già morti senza saperlo.

— Eugenio Montale

A B S T R A C T

In semiconductor manufacturing, machine learning and deep learning
techniques have already become crucial for many relevant tasks such
as anomaly detection, virtual metrology, predictive maintenance, fault
detection, and classification. Moreover, thanks to the availability of
large-scale image datasets and high-performance computing systems,
deep learning models have recently achieved great successes in almost
any large-scale image recognition task.
This thesis presents some methodological and experimental contribu-
tions to a deep learning-based approach for the automatic classification
of microscopic defects in silicon wafers with context information.
Although the classification of defect patterns in wafers has been hugely
studied in literature, the automatic categorization of microscopic de-
fects has not been adequately addressed yet.
Furthermore, canonical deep learning-based image classification ap-
proaches have the limitation of utilizing only the information con-
tained in the images. This work overcomes this limitation by using
some context information about the defects, like the position of the
defects in the wafer and in the die, to improve the current automatic
classification system.
Of course there can be several strategies to embed context information
with information extracted from images. In this work, we will anal-
yse and experiment with some of these strategies and we will try to
understand what are the most promising ones in the semiconductor
manufacturing field.

vii

S O M M A R I O

Nella produzione di semiconduttori, le tecniche di machine learning e
deep learning sono già diventate cruciali per molte attività rilevanti
come l’individuazione di anomalie, la metrologia virtuale, la manuten-
zione predittiva, il rilevamento dei guasti e la classificazione. Inoltre,
grazie alla disponibilità di dataset di immagini su larga scala e sistemi
di elaborazione ad alte prestazioni, i modelli di deep learning hanno
recentemente ottenuto grandi successi in quasi tutte le attività di ri-
conoscimento delle immagini.
Questa tesi presenta alcuni contributi teorici e sperimentali ad un ap-
proccio basato sul deep learning per la classificazione automatica dei
difetti microscopici nei wafer di silicio con informazioni di contesto.
Sebbene la classificazione di pattern di difetti nei wafer sia stata ampia-
mente studiata in letteratura, la categorizzazione automatica dei difetti
microscopici non è stata ancora adeguatamente affrontata.
Inoltre, gli approcci di deep learning canonici per classificazione delle
immagini hanno la limitazione di utilizzare solo le informazioni con-
tenute nelle immagini. Questo lavoro supera questo limite attraverso
l’utilizzo di alcune informazioni di contesto sui difetti, come la po-
sizione dei difetti nel wafer e nel die, per migliorare l’attuale sistema
di classificazione automatica.
Naturalmente ci possono essere diverse strategie per incorporare le
informazioni di contesto con le informazioni estratte dalle immagini.
In questo lavoro analizzeremo e sperimenteremo alcune di queste
strategie e cercheremo di capire quali sono le più promettenti nel
campo della produzione di semiconduttori.

viii

A C K N O W L E D G M E N T S

I would like to thank Prof. Gian Antonio Susto and Mattia Carletti
for supporting me throughout the duration of my thesis work. I will
bring with me pleasant memories of our "brainstormings".
My acknowledgments are addressed also to the Infineon team that
guided me in this use case and from which I learnt a lot.
Finally, I would like to thank the University of Padua for allowing me
to deepen my knowledge of my fields of interest and for introducing
me to other equally interesting topics.

ix

R I N G R A Z I A M E N T I

Ringrazio i miei genitori. Dal momento in cui metto piede all’aeroporto,
vi bastano pochi secondi per fare in modo che il tempo passato fuori
non fosse mai trascorso. Due cose sono certe: l’infinitezza dell’universo
e le vostre solite frasi a tavola, ma riguardo l’universo ho ancora dei
dubbi.
Ringrazio Adriele. Se non sei qui significa che non hai ancora dato
meccanica quantistica avanzata. . . o forse no. . . o forse entrambe.
Ringrazio il resto della famiglia, ormai tutti avanti con l’età (lol). Non
vi preoccupate dell’assenza, Emanuele e Damiano saranno i messag-
geri della corte Felina.
Ringrazio gli amici di sempre, da oltre 10 anni la mia seconda famiglia.
Probabilmente non sarete qua, ma ben mi sta dato che ho saltato la
maggior parte delle vostre lauree.
Ringrazio il TeamBallodiRiso, saggio oroscopo da consultare nei mo-
menti di incertezza.
Ringrazio i miei amici disagiati e “cuttigghiari” dell’Ederle. Non si
può dire che non abbiate messo alla prova la mia pazienza. Ma più che
altro, ho messo a dura prova la vostra. E adesso ho qualche fratello e
sorella in più.
Ringrazio gli altri amici non meno disagiati della Carli. Siete riusciti
a non farmi rimpiangere i due anni precedenti. Mi dispiace lasciarvi
prematuramente. Spero che capiate presto come fare la spesa per le
feste.

x

C O N T E N T S

I Problem description 1

1 introduction 3

1.1 Related work . 3

1.2 Handcrafted features . 7

1.2.1 Density-based features 7

1.2.2 Geometrical features 7

1.2.3 Gray features . 8

1.2.4 Texture features 8

1.2.5 Radon-based features 8

1.3 Classification with context 8

1.4 Overview . 10

II Industrial case study 11

2 dataset 13

2.1 Data cleaning pipeline 13

2.2 Dataset selection and preprocessing 15

3 data analysis 19

3.1 Data Analysis: Wafer level 19

3.2 Data Analysis: Die level 23

4 classification framework 27

4.1 Previous work . 27

4.2 New work . 28

4.3 Training multi-stream networks in Keras 31

4.4 Bayesian priors . 33

4.4.1 Example 1 . 33

4.4.2 Bayesian Priors on unbalanced datasets 34

4.4.3 Example 2 . 34

4.4.4 The value of K 35

4.4.5 Priors by lot . 37

5 experimental results and evaluations 41

5.1 Experimental Settings 41

5.2 Models’ comparison . 42

5.3 Effects of Bayesian priors 43

6 discussions and future work 47

6.1 Cost-Sensitive Learning 48

xi

xii contents

6.1.1 Rescale approach 49

6.1.2 Cost-Sensitive Deep Metric Learning 50

6.2 Semi-Supervised Learning 52

6.3 Transfer learning . 52

7 conclusions 55

III Appendix 57

a appendix 59

a.1 Very Deep Convolutional Networks 59

a.2 Inception . 61

a.3 Residual Networks . 63

a.4 Xception . 64

bibliography 67

L I S T O F F I G U R E S

Figure 1 Distribution of the classes 15

Figure 2 Clean SEM images belonging to different defect
classes . 16

Figure 3 Defect annotations on 3 different wafers. . . . 17

Figure 4 Tail distributions of the fraction of defects taken
from each wafer for three classes. 20

Figure 5 Heatmaps which represent how defects are dis-
tributed on the wafer for each class. 21

Figure 6 Example of heatmap. 21

Figure 7 Similarity matrix at wafer level. 22

Figure 8 Tail distribution of the estimated width and
length of dies for each basic type. 23

Figure 9 Tail distribution of the estimated area of dies
for each basic type. 23

Figure 10 Heatmaps which represent how defects are dis-
tributed on the die for each class 24

Figure 11 Similarity matrix at die level. 25

Figure 12 Classification framework (taken from Infineon). 27

Figure 13 Model1; context features are directly concate-
nated with the features extracted by Xception. 29

Figure 14 Model2; context features go through two fully-
connected layers before being concatenated with
the features extracted by Xception. A further
fully-connected layer is added before the clas-
sification layer. 30

Figure 15 Model3; context features go through two fully-
connected layers before being concatenated with
the features extracted by Xception. 30

Figure 16 Model4; context features are directly concate-
nated with the features extracted by Xception.
A further fully-connected layer is added before
the classification layer. 31

Figure 17 Neighborhood of a test defect for K=300. . . . 35

Figure 18 Neighborhood of a test defect for K=600. . . . 35

Figure 19 Neighborhood of a test defect for K=800. . . . 36

Figure 20 Neighborhood of a test defect for K=1000. . . . 36

Figure 21 Neighborhood of a test defect for K=1250. . . . 36

Figure 22 Neighborhood of a test defect for K=1500. . . . 36

Figure 23 Defect annotations and examples of neighbor-
hoods for a test lot. 37

xiii

xiv List of Figures

Figure 24 Example of arbitrarily shaped neighborhood
for K=30 and K=50. 40

Figure 25 Model history. 42

Figure 26 Softmax threshold simulation. 44

Figure 27 Per-class softmax threshold simulation. 45

Figure 28 Block structure of the confusion matrix. 47

Figure 29 VGG configurations (taken from [25]). 60

Figure 30 3x3 convolutions VS 5x5 convolution 61

Figure 31 Inception module (taken from [7]) 62

Figure 32 Inception module after the factorization of the
nxn convolutions 63

Figure 33 Residual learning building block (taken from
[22]). 64

Figure 34 The Xception architecture (taken from [8]). . . 65

L I S T O F TA B L E S

Table 1 Overview of context information 14

Table 2 Overview of training settings 41

Table 3 Models’ comparison 43

Table 4 Effects of Bayesian priors for different values of K 44

xv

A C R O N Y M S

CP circuit probe

IC integrated circuit

WBM Wafer Bin Map

ML machine learning

ART1 adaptive resonance theory network

SVM Support Vector Machine

ANN Artificial Neural Network

CNN Convolutional Neural Network

WMSR Wafer map similarity ranking

SOM Self Organizing Map

OPTICS Ordering Point To Identify the Cluster Structure

JLNDA Joint Local and Nonlocal Discriminant Analysis

SVE Soft Voting Ensemble

SEM Scanning Electron Microscopes

ACS American Community Survey

CDML Cost-sensitive Deep Metric Learning

xvi

Part I

Problem description

1

1
I N T R O D U C T I O N

In semiconductor manufacturing, a wafer is a thin slice of semiconduc-
tor used for the fabrication integrated circuits (ICs) and which serves
as substrate for microelectronic devices. The process of wafer fabrica-
tion involves several chemical and mechanical steps to produce ICs on
wafers. One of such steps is wafer dicing, during which the wafer is
divided into many dies. After the wafer fabrication, the wafer dies are
electrically tested by means of a circuit probe (CP) test to evaluate the
correct functionality of the integrated circuits. The resulting spatial
outcome of the CP tests on a wafer is called Wafer Bin Map (WBM). The
WBM may consist of binary values representing the pass/fail outcome
of the CP test in each die, or continuous values representing the elec-
trical measurements.

Typically, two kinds of defects occur in WBMs: global defects and
local defects. Global defects are distributed all over the wafer and do
not usually say much about the root problem that may have caused
them. Local defects, instead, are normally characterized by significant
spatial patterns that may provide useful information on specific man-
ufacturing issues. Typical spatial patterns are rings, scratches, centers,
donuts, circles, and semicircles. Some of these patterns are associated
with different manufacturing problems; for example, the linear scratch
is caused by the machine handling, the edge ring is caused by prob-
lems related to the etching process, and the center usually arises from
the thin film deposition [19] [31].

Traditionally, wafer map defect detection and pattern recognition
were performed by experienced human operators. However, according
to the study conducted by A. Drozda-Freeman [1] the defect detection
accuracy achieved by human experts is less than 45%. Furthermore,
the size of electronic dies has been decreasing over time and wafers are
getting larger, therefore human expert evaluation is getting impractical
and the need for automated systems is becoming crucial.

1.1 related work

Recently, many unsupervised and supervised machine learning (ML)
algorithms have been applied to defect pattern detection and recogni-
tion. Some important unsupervised learning-based techniques used
for wafer map defect classification are adaptive resonance theory net-
work (ART1) [10] [2], Self Organizing Maps (SOMs) [10], multi-step ART1

3

4 introduction

[11], K-means [3], fuzzy K-means [4], and particle swarm optimization
[13]. Yuan and Kuo proposed a model-based clustering algorithm
which models the distribution of defects on wafer surface [43]. Their
model is able to detect defect clusters with linear patterns, curvilinear
patterns and ellipsoidal patterns. Liu and Chien developed a WBM

clustering approach which integrates spatial statistics test, cellular neu-
ral network, adaptive resonance theory neural network and moment
invariant to cluster different patterns effectively [5]. Hsu proposed
a clustering ensemble approach to facilitate WBM defect pattern ex-
traction [13]. Firstly, the two-dimensional wafer maps are mapped to
one-dimensional data. Secondly, K-means and particle swarm opti-
mization clustering algorithms are used to generate various diversity
partitions. Finally, an adaptive response theory neural network is used
to aggregate the diversity partitions. In [30], SOMs are combined with
K-means clustering to extract systematic data patterns from spatially
oriented wafer maps. In their two-stage solution, data is first processed
by a SOM, and then the reference vectors of the SOM are clustered using
K-means.

When class labels are available, supervised learning techniques can
yield better results than unsupervised learning methods. Support Vec-
tor Machines (SVMs) [33], Artificial Neural Networks (ANNs), general
regression neural networks, back-propagation networks are usually
applied for wafer map defect classification. In [33], Wu et al. pointed
out that most of the previously developed wafer map failure pattern
recognition systems used raw wafer maps as input data, which is
not feasible for large-scale datasets. Moreover, wafer-based clustering
does not preserve the rotation-invariance property; namely, two iden-
tical failure patterns with different orientation might be classified as
different failure patterns. For these reasons, they proposed a set of
rotation-invariant and scale-invariant features for producing a reduced
representation of wafer maps. In their workflow, Radon-based and
geometry-based features were first extracted from wafer maps and
then combined; consequently, an SVM classifier was used to recognize
the failure pattern. The extracted features were also used for simi-
larity ranking. Wafer map similarity ranking (WMSR) is the task of
retrieving all the wafer maps which present similar failure patterns
to a queried wafer map. WMSR is motivated by the fact that similar
failure patterns may have identical failure causes. Wu et al. performed
WMSR in two stages. In the first stage, given a queried wafer map,
the top-n similar wafer maps were selected based on the Euclidian
distance among the extracted features. In the second stage, the top-n
wafer maps extracted in the previous step are ranked according to the
2D normalized correlation coefficient. They also built the WM-811K
dataset, which comprises 811457 real-world wafer maps collected from
46293 lots in real-world fabrication and divided into nine classes: Cen-

1.1 related work 5

ter, Donut, Edge-local, Edge-ring, Local, Near-full, Random, Scratch,
and Nonpattern.

The main limitation of [33] is that no more than one failure pattern
can be detected in a wafer map. Fan et al. overcame this issue by com-
bining the Ordering Point To Identify the Cluster Structure (OPTICS)
clustering method with SVM classifier [29]. OPTICS is a density-based
clustering technique which can detect arbitrarily shaped clusters with-
out fixing the number of clusters a priori. Their method is divided
into three steps: clustering, feature extraction and pattern recognition.
During the training phase, salient clusters of wafer maps are derived
through OPTICS and then density-based and geometry-based feature
are extracted; afterwards, failure patterns are detected by means of
SVM classifier. In the testing phase, instead, a test wafer map is labeled
as Nonpattern if no cluster is detected. Otherwise, if one or more
clusters are detected, features are extracted from each pattern and
SVMs are used to classify each cluster. Each wafer is finally labeled
accordingly to the classification result of each cluster.

Generally, the original feature set extracted from wafer maps is
high-dimensional. Yu and Lu proposed a new manifold learning algo-
rithm called Joint Local and Nonlocal Discriminant Analysis (JLNDA)
to reduce the dimensionality of the feature set [19]. JLNDA tries both to
maximize the inter-class separability by maximizing the distance of the
projected samples of different clusters, and to preserve the intra-class
local geometric structure. In this way both local and nonlocal informa-
tion are retained. In their workflow, wafer maps are firstly denoised by
means of a median filter. Secondly, geometrical features, gray features,
texture features, and projection features are extracted from wafer maps.
Then, local and nonlocal preserving projection-based and JLNDA-based
methods are used for dimensionality reduction.

Piao et al. proposed a decision tree ensemble-based approach to
aggregate and strengthen the contribution of different features sets in
the wafer map failure pattern recognition [31]. Differently from the
previous works, they only used Radon transform feature sets. After
denoising by means of a median filter, Radon transform is applied
to wafer maps and the maximum, minimum, average, and standard
deviation of the projections are computed. Then a tree committee is
built to aggregate the contribution of such features.

Each ML algorithm suffers from some limitations and the problem
of finding the most suitable algorithm for defect classification in wafer
maps is anything but trivial. Moreover, some classifiers may be spe-
cialized in detecting some defect classes, while other classifiers can
have great expertise in discriminating other classes. Motivated by this,

6 introduction

Saqlain et al. proposed a Soft Voting Ensemble (SVE) classifier with
multi-types features [32]. They first extracted density-, geometry-, and
radon-based features from wafer maps, and then applied an ensemble
of four classifiers: logistic regression , random forests, gradient boost-
ing machine, and ANNs.

Recently, deep learning models, and especially Convolutional Neu-
ral Networks (CNNs), have become a de facto standard for any pattern
recognition and image classification problem. Differently from other
ML techniques, CNNs often don’t need the preprocessing and feature
extraction steps because they are able to learn abstract features which
otherwise should be derived manually. Moreover, CNNs are robust
to random noise and enjoy the equivariance property, therefore they
are able to detect defect patterns regardless of the specific position
and orientation. In [41], 28600 wafer map images for 22 defect classes
were artificially generated and a CNN was employed for defect pattern
classification. Moreover, they generated binary codes for wafer maps
from the fully connected layer of the CNN and they used them for
wafer maps retrieval tasks. Kyeong and Kim proposed a new approach
for classifying mixed-type defect patterns using CNNs [24]. They built
an individual CNN classifier for each defect class. They considered four
classes, namely Circle, Scratch, Ring, and Zone, and they used both
real and simulated data for training. If two defect patterns coexist, two
classification models are expected to detect them, while the other two
models won’t notice them. Tello et al. used CNNs to improve classifica-
tion accuracy on wafers which present multiple defect patterns [12].
Their approach consists of three phases. In the first phase a spatial
filter is used to reduce random noise. In the second phase, 21 differ-
ent features are extracted from wafer maps and a splitter based on
information gain theory utilizes such features to build rules capable of
splitting wafers as single-pattern or mixed-pattern. In the third phase,
if the wafer has been labeled as single-pattern, then a randomized
general regression network is used to classify it, otherwise, if the wafer
has been labeled as mixed-pattern, a deep structured convolutional
network carries out the prediction. Furthermore, in [42] a CNN and
extreme gradient boosting are employed for wafer map retrieval tasks
and defect pattern classification.

While the problem of classifying defects on wafer-level images has
been widely studied in literature, the classification of microscopic
defects at chip-level on silicon wafers has not been adequately ad-
dressed. This thesis work deals with the almost unexplored world of
microscopic defects classification.

In the semiconductor fabrication process, ICs are made by linking
many circuit structures on many layers of a wafer. Each circuit layer

1.2 handcrafted features 7

is realised through the following steps: photolithography, etching,
deposition, ion implantation, diffusion, and chemical and mechanical
polarization. To fabricate high-density ICs, the wafer surface must be
extremely clean and the circuit layers should be aligned to each other
[36]. In order to inspect if there are any particles, spots, scratches, or
irregular connections caused by misaligned circuits on stacked layers,
Scanning Electron Microscopes (SEM) images of the wafer surface are
acquired after the completion of each layer (specially between the
etching and deposition steps). Such images can be used to detect
microscopic defects and classify them as repairable or unrepairable
defects. Repairable defects are limited to particle-type defects, which
can be reworked by cleaning the surface with an air blower [36].
Cheon et al. proposed a CNN-based automatic defect classification
system for classifying various types of wafer surface damages [36].
Moreover, they applied a k-NN anomaly detection algorithm to the
feature set extracted by the CNN to identify unseen classes during
training. Their CNN architecture consists of one input layer, two blocks
of convolutional-convolutional-pooling layers, one fully-connected
layer, and one output layer.

1.2 handcrafted features

This section overviews the manually-extracted features which have
been used so far for WMSR and defect pattern recognition before the
advent of deep learning techniques.

1.2.1 Density-based features

Density-based features are obtained by dividing the wafer maps into
n regions and by computing the failure density on each region. These
features turned out to be discriminative among classes since different
defect classes have different defect density distribution in each region.
[29] and [32] employed such kind of features.

1.2.2 Geometrical features

Geometry-based features are the most commonly employed features
for wafer map pattern recognition and can be extracted by comput-
ing the linear and regional attributes. The number of lines detected
through the Hough transform is often used as linear attribute. As
regards regional attributes, a region-labeling algorithm is firstly ap-
plied to identify multiple defect regions in each wafer map. Then
the most salient region, namely the region with the maximal area, is
selected. Finally, some properties of the maximal region, such as its
area, perimeter, eccentricity, compactness, and rectangular degree, are

8 introduction

chosen as regional attributes.

1.2.3 Gray features

The gray histogram characterizes the pixel distribution at different
grayscale in wafer maps. The mean, variance, skewness, peak, energy,
and entropy of the gray histogram of the most salient region can be
employed as gray features, as done by [19].

1.2.4 Texture features

The gray level co-occurrence matrix of an image is the distribution of
co-occurring grayscale pixel values at a given offset. In other words, it
tells us how often different combination of pixel gray levels occur in a
wafer map. Some typical statistics of this matrix, like the energy, con-
tract, correlations, entropy, and uniformity, can be utilized as texture
features, like shown by [19].

1.2.5 Radon-based features

The Radon transform is the projection of an image along a radial line
oriented at a certain angle. Through several projections, the Radon
transform can be used to generate a bidimensional representation of
a wafer map. Therefore, a wafer map ca be described by a matrix G
where in each entry of G the radon transform computed at a certain
position and orientation is stored. Then the raw mean Gm and raw
standard deviation Gs are computed from G. Afterwards Gm and Gs

are resampled, for example by using cubic interpolation, to obtain the
final Radon-based features [33].

1.3 classification with context

Both classical ML and deep learning approaches have the limitation
of utilizing only the information contained in the image to classify
the defect. Differently, human experts also consider some domain
knowledge about the context in which the sample defects were ac-
quired. For instance, when performing defect classification by hand,
engineers take into account that some defect types can only appear in
the memory section of a chip.

1.3 classification with context 9

Actually, the problem of extracting useful information from con-
text metadata do not pertain only to the semiconductor manufactur-
ing world, but it’s a more general problem. The work by [21] deals
with object recognition and visual positioning in urban environments
through the use of geo-services on mobile devices. In their work, geo-
information was used in combination with visual features to constrain
the search to a local context. In [35], a set of priors acquired from
Geographical Information System databases was used to improve
object detection. The priors were extracted from the exact positions
of traffic signals, road signs, fire hydrants, and street lights in urban
areas. Divvala et al. classified contextual information of real-world
pictures into different categories: local pixel, 2D scene gist, 3D geo-
metric, semantic, photogrammetric, illumination, weather, geographic,
temporal, and cultural context [37]. Their main contribution was to
develop a standardized setting on which evaluating different types
of context. The work of [18] exploited context information extracted
from the season and rough location in which pictures were taken to
improve the performance of object region recognition and annotation.
Tang et al., in collaboration with Stanford University and with Face-
book AI Research group, tackled the problem of performing image
classification with location context [26]. By exploiting the GPS co-
ordinates of the images, they were able to use geographic datasets
and surveys collected by different institution and agencies to improve
classification performances. Their work mainly consists of two steps:

1. Constructing effective location features from GPS coordinates.

2. Incorporating such location features into the CNN architecture.

In the first step they extracted four types of features, namely geo-
graphic map, American Community Survey (ACS), hashtag context,
and visual context features.
Geographic map features were extracted by using 10 different types
of maps from Google Maps. Each map contains information about the
location in the form of a colored map, where different colors stand
for different features. For each image, they took the normalized pixel
color values in a 17x17 patch around the image coordinates and used
these values as geographic map features. Intuitively, features extracted
from precipitation, temperature or elevation maps may tell us how
likely is to see an umbrella, a coat or some snow in a picture.
They extracted ACS features by exploiting the ongoing ACS survey
which provides statistical data about the age, sex, income, health in-
surance, work status and other living conditions, arranged by zip
code. Statistics like age and income may convey information about the
probability of finding a toy or an expensive car in a picture.
A lot of context information lies directly on the internet. For this
reason, they employed the distribution of Instagram hashtags in a
neighborhood of the images as hashtag context features. Similarly,

10 introduction

visual context features were extracted by exploiting the visual signal
around the GPS coordinates of the images.
In the second step, they tried to concatenate the previously extracted
features in the CNN architecture at different depths.
In [17], context metadata was used to improve the classification accu-
racy on plankton images. In their work, they incorporated graphic,
geo-temporal, and geometric metadata to boost the performance of
CNN classifiers. Similarly to [26], they tried to combine the features
extracted from context metadata at different depth of the CNN archi-
tecture.

This work aims at using context information about the defects
to improve the current deep learning-based automatic classification
system. As we will see in Chapter 2, the contextual information avail-
able for our industrial case study is quite different from the context
information employed in the aforementioned works. However, the
methodology and some ideas can be extended to our use case as well.

1.4 overview

This section outlines the general structure of the thesis. Chapter 2

presents a description of the data cleaning pipeline and of the avail-
able context information, and an overview of the data pre-processing
strategy. Chapter 3 mainly analyses how different defect classes are
distributed over the wafer and over the die. Moreover, a metric to
measure distance between classes is formally defined. In Chapter 4

the methodology of the work is described. Firstly, some metrics to
evaluate the effectiveness of the model are defined. Secondly, two
different strategies to embed information from context attributes into
the network architecture are analysed. Particularly, a probabilistic
framework is formalised and applied to simple examples. Chapter 5

reviews the results of the several experiments. Chapter 6 sums up the
potentialities and limitations of current work and attempts to give
some guidelines for future improvements. In Appendix A some of
the most famous state-of-the-art architectures based on Convolutional
Networks are described.

Part II

Industrial case study

11

2
D ATA S E T

All the data described in this section has been provided us by Infi-
neon Technology. Specifically, the available data for the Defect Image
Classification use cases consists of a collection of 10 datasets with 2.5
million images. Images are taken by SEMs. A SEM is a type of electron
microscope which produces images of a specimen by scanning its
surface with a focused beam of electrons. The electrons, by interacting
with atoms in the specimen, produce several informative signals about
the surface topography and composition of the specimen. Secondary
electrons emitted by the specimen’s atoms excited by the electron
beam can be detected by using an in-lens detector or an external de-
tector. Depending on the type of detector, SEM images can be therefore
divided into in-lens detector images and external detector images. We
will refer to in-lens detector images as ‘000’ images and to external de-
tector images as ‘001’ images. SEM images can have resolution higher
than one nanometer.

Besides SEM images, some context information about defects is
available. Table 1 overviews some of the context attributes.

2.1 data cleaning pipeline

All datasets were cleaned according the following steps:

1. Remove missing, broken and duplicate images.

2. Remove all images whose resolution is not 480x480.

3. Remove all images whose image number is not ‘000’ or ‘001’

4. Remove all defects which don’t have both ‘000’ and ‘001’ images.

5. Remove all defects whose manual labels are invalid or don’t
exist in the defect catalog.

13

14 dataset

attributes explanation

Technology self-explanatory

Product self-explanatory

Lot uniquely identifies a
collection of 25 wafers,
which are processed
together

Wafer uniquely identifies a
wafer within a lot

Step operation number of
the defect inspection
step

defect id uniquely identifies a
defect

Equipment measurement tool
which detected the
defect

xsize[µm], ysize[µm] defect size as deter-
mined by the existing
defect detection soft-
ware

dsize[µm], area[µm2] die size as determined
by the existing defect
detection software

x(wafer)[µm], y(wafer)[µm] xy coordinates of the
defect on the wafer

x(die)[µm], y(die)[µm] xy coordinates of the
defect within the chip
on the wafer

die x, die y position of the chip on
the wafer

Timestamp self-explanatory

Table 1: Overview of context information.

2.2 dataset selection and preprocessing 15

2.2 dataset selection and preprocessing

Among all the available datasets, we decided to pick the biggest and
most tested one. Such dataset, which has been code-named as ’kiel’
dataset, contains both ’000’ and ’001’ SEM images taken at the second,
third, and fourth metal layers. The dataset has been cleaned according
to the procedure described in section 2.1. Moreover, for this work, only
‘000’ images have been used.
The clean Kiel dataset consists of about 320000 images from 52 classes;
however, only around 84% of the images have a corresponding data
entry in the context information table. Kiel dataset and its context
information have been joined by defect Id; after the join operation we
end up with about 268000 samples. Based on class distribution, 15 out
of 52 classes have been selected. Such classes cover 90% of the volume.
All the other classes have been grouped into a single class, which we
will name as ‘404’ class. The distribution of the classes is imbalanced.
Figure 1 shows an histogram representing the number of samples for
each class.

Figure 1: Distribution of the classes

The ‘wafer’ attribute shown in table 1 is an integer number between
1 and 25 which uniquely identifies a wafer within a lot; however, such
attribute is not unique in absolute. That’s why we needed to create
new wafer identifiers. Such identifiers can be created by simply con-
catenating the ‘lot’ attribute with the ‘wafer’ attribute.

Figure 2 shows some clean SEM images of defects belonging to
different classes. In figure 3, instead, we can find an example of defect
annotations in three different wafers. Notice that defects of different
classes are represented with different colours.

16 dataset

Figure 2: Clean SEM images belonging to different defect classes

2.2 dataset selection and preprocessing 17

(a) Annotation on wafer AB572058-08

(b) Annotation on wafer AB340943-25

(c) Annotation on wafer AB886432-15

Figure 3: Defect annotations on 3 different wafers.

3
D ATA A N A LY S I S

The data analysis described in this section has been performed on a
subset of 190000 samples e.g. the training set. However, similar results
have been observed also for the validation and test sets. The details
about the train/validation/test split are described in Chapter 4.
The analysis mainly focuses on understanding how different defect
classes are distributed over the wafer and over the die.

3.1 data analysis: wafer level

Defects on the training set are taken from 9236 wafers. Figure 4 shows
the tail distribution of the fraction of defects from each wafer for
classes ’26’, ’33’, and ’71’. All the other classes have tail distributions
almost identical to the distribution of class ’26’. On the other hand,
classes ‘33’ and ‘71’ have peculiar tail distributions which look more
skewed than the others.
The x and y coordinates of the defects in the wafer ranges from -100000

to +100000. The first step of the analysis is to build density matrices for
each defect class. In order to do so we divided the wafer space into a
square grid containing 400 “little” squares of dimension 10000x10000.
Then, for each class, we computed the number of defects which lie
on the same “little” square in the grid. Afterwards, we normalized
the obtained counts by dividing by the total number of defects per
each class. The heatmaps represented in figure 5 show the results we
obtained. It is possible to notice that some classes present specific
patterns on the wafer. For example, class ’51’ presents a ring pattern
near the edge of the wafer, and classes ’25’, ’26’, and ’27’ present a
high defect density in the bottom right edge of the wafer. Moreover,
we can notice that there are classes which present small regions with
high defect density. For instance, in classes ’33’ and ’404’ the defects
are mainly distributed on the small white squares shown in figure 5.
Such small regions with high defect density may be due to:

1. bugs in defects’ coordinates,

2. the fact that defects for a certain class are mostly taken from a
specific wafer.

We made further investigations on this issue and we discovered that
these two events do not actually occur. Therefore, we have reasons to
believe that high defect density regions are indeed a class property.

19

20 data analysis

(a) Class ’26’.

(b) Class ’33’.

(c) Class ’71’.

Figure 4: Tail distributions of the fraction of defects taken from each wafer
for three classes.

3.1 data analysis: wafer level 21

Figure 5: Heatmaps which represent how defects are distributed on the wafer
for each class.

Based on the heatmaps shown above, we defined a metric to mea-
sure similarity among classes. Consider the sample heatmap shown
below.

Figure 6: Example of heatmap.

Recall that, given a class C, each little square in the grid contains
the fraction of defects in that area. The distance between two classes
is defined as the sum of the pairwise differences between the values
stored in each little square of the grid.

22 data analysis

Formally, given two classes C1 and C2 and their respective density
matrices Dc1 and Dc2 , the distance between C1 and C2 is defined as:

dist(C1, C2) =
20

∑
i=1

20

∑
j=1

[Dc1
ij − Dc2

ij] (1)

where Dck
ij is the i, j entry of Dck for any class k.

Consequently, the similarity between C1 and C2 is defined as:

sim(C1, C2) = 1− dist(C1, C2) (2)

We can easily notice that if C1 = C2, and therefore Dc1 = Dc2 , then
dist(C1, C2) = 0 and sim(C1, C2) = 1. Instead, if C1 and C2 present
defects in disjoint sets of "little" squares, then dist(C1, C2) = 1 and
sim(C1, C2) = 0

Figure 7: Similarity matrix at wafer level.

Based on this definition, class ‘33’ turns out to be very different
from all the other classes, as we can notice from figure 7. Class ‘51’
looks quite different from the other classes as well. Moreover, it can
be noticed that classes ‘23’, ‘24’, ‘25’, ’26’, ‘86’, ‘87’ are quite close to
each other.

3.2 data analysis: die level 23

3.2 data analysis: die level

Analogously to what has been done at wafer level, we derived the den-
sity matrices which represent how defects of each class are distributed
over the die. However, in this case the process was not straightforward
because the dies have different dimension depending on their basic
type as shown in figures 8 and 9. Therefore, for each basic type we
estimated the die dimension by taking the maximum x and y values.
Then, we normalized all defects’ coordinates between 0 and 1 by di-
viding the original coordinates by their respective die size.

Figure 8: Tail distribution of the estimated width and length of dies for each
basic type.

Figure 9: Tail distribution of the estimated area of dies for each basic type.

These plots show the dies’ sizes as function of the basic type. We
can observe that there are few basic types (about 10%) for which the
die dimension is noticeably bigger than the others.
Now that the coordinates of the defects in the die have the same scale,
it is possible to plot the heatmaps likewise to what was done for

24 data analysis

defects’ coordinates in the wafer. Also in this case, we divided the die
space into a square grid of 400 “little” squares and made normalized
counts of defects in each “little” square. The result is shown in figure
10.

Figure 10: Heatmaps which represent how defects are distributed on the die
for each class

From the previous figure it is possible to notice that some classes
present specific patterns in the die; for example for class ‘29’ the ma-
jority of defects do not lie in the border of the die, while for class ‘82’
most of defects lie in the border.
Subsequently, we used the same similarity metric adopted before to
measure distances among classes at die level. The similarity matrix is
shown in figure 11.
In this case, we can notice that classes ‘71’ and ‘82’ are very different
from the other classes; class ‘29’ is considerably different from the
other classes as well.

3.2 data analysis: die level 25

Figure 11: Similarity matrix at die level.

4
C L A S S I F I C AT I O N F R A M E W O R K

Figure 12 overviews the classification framework we exploited for
our experiments. Given an input image to the model, it outputs a
prediction X with a certain confidence. If X is a focus class (not a
’404’ class) and the confidence is high enough the prediction is taken
as good, otherwise it is manually reviewed. Specifically, a softmax
threshold is used to filter out uncertain predictions.
Therefore, besides classification accuracy, precision, and recall, it
makes sense to evaluate the effectiveness of the model also in terms
of:

1. Remaining effort: number of images that need to be manually
reviewed divided by the total number of images. This metric
states how much work is still to be done after the model is
introduced.

2. Effort reduction: 1 - remaining effort. It states how much effort
can be saved if the model is introduced.

3. Productivity gain: inverse of the remaining effort. This measures
how much more total volume an operator supported by a deep
learning model could handle.

Figure 12: Classification framework (taken from Infineon).

4.1 previous work

In the previous work, after data cleaning, the data was split into a
training and test set. The training and test sets consist of 80% and 20%
of the data respectively. The partition was done by using a stratified
5-fold split where all images were randomly assigned to one of the 5

folds while maintaining class balance within each fold.

27

28 classification framework

After that, some transfer learning strategies have been applied to well-
known architectures (like VGG-16 [25], ResNet [22] [23], Inception [7]
[6], and Xception [8]) trained on the ImageNet database [16]. For a
survey of transfer learning refer to [27]. Instead, a description of the
aforementioned network architectures is given in Appendix A.
Different hyper-parameter settings for such architectures were investi-
gated and the models were evaluated on actual production data.
As we saw in Chapter 2, the dataset is imbalanced. To tackle this
issue, the costs of the different classes were adjusted such that under-
represented classes were given more importance during training and
vice versa. Note that this is only a possible way to deal with class
imbalance problem; for example, Wang et al. proposed a novel loss
function for training deep neural networks on imbalanced datasets
[39]. Since the problem of class imbalance is out of the scope of this
work, we refer the curious reader to [28], [34], and [38].

4.2 new work

From previous work, we picked the best performing architecture,
that is Xception, with the best performing hyper-parameter settings
(learning rate, optimizer, momentum, and so on) and we used it as a
baseline.

As pointed out on Chapter 2, context information is available only
for 84% of the images, so we needed to work on a restricted dataset.
Moreover a different training/validation/test split was proposed. In
the new split, the wafers have been randomly divided into 7 folders.
Then, the defects of the wafers belonging to the first five folders were
used as training set, and the defects of the wafers belonging to the sixth
and seventh folders were used as validation and test sets respectively.
In this way defects of the same wafer cannot belong to different sets.
This novel split is motivated by the fact that defects belonging to the
same wafer may be correlated, as visually proved in Chapter 3.
Another reason for choosing this split is that some hyper-parameters
tuning can be safely performed on the validation set without the risk
of overfitting the test data. For example, in this use case, we selected
the "best weights" from the epoch in which we obtained the highest
validation accuracy, and then utilized such weights for the predictions
on the test set.
However, this use case does not aim at optimizing the hyper-parameter
configuration of the architecture, but rather at improving the defect
classification accuracy by using some context information. Among
the available context information, we decided to use only the XY
coordinates of the defects on the wafer and on the die.
We utilized this location information mainly in two ways:

4.2 new work 29

1. By combining in different ways the coordinates (both Cartesian
and polar) of the defects with the features extracted by the
network, as schematically shown in figures 13, 14, 15, 16. In these
figures we proposed four architectures. In the first and fourth
ones context features are directly concatenated with the features
extracted by Xception. Particularly, in the fourth architecture a
fully connected layer is added after the concatenation. In the
second and third architectures context features go through two
fully-connected layers before being concatenated with the image
feature vectors. Specifically, in the second architecture a fully
connected layer is added before the classification layer.

2. By using the XY coordinates of the defects to estimate some
prior probability distributions. Indeed, as we will see in detail
in section 4.4, the distribution of the K closest neighbors of a
sample defect can be used to approximate the probability that
the sample defect belong to a certain class given its Cartesian
coordinates. Such probability estimates can be combined with
the predictions of the network to produce a novel vector with
new predictions.

Figure 13: Model1; context features are directly concatenated with the fea-
tures extracted by Xception.

30 classification framework

Figure 14: Model2; context features go through two fully-connected layers
before being concatenated with the features extracted by Xception.
A further fully-connected layer is added before the classification
layer.

Figure 15: Model3; context features go through two fully-connected layers
before being concatenated with the features extracted by Xception.

4.3 training multi-stream networks in keras 31

Figure 16: Model4; context features are directly concatenated with the fea-
tures extracted by Xception. A further fully-connected layer is
added before the classification layer.

4.3 training multi-stream networks in keras

When training a deep learning model, loading a big dataset directly
into a machine is infeasible. For this reason, data generators are used
to generate real-time data and feed deep learning architectures with
such data in fixed-length batches.
The class DataGenerator of Keras provides some built-in data genera-
tors; however, they can’t be used for feeding user-defined multi-stream
models. The next lines of code present the data generator that we
needed to use to feed the architectures shown in figures 13, 14, 15, 16.

class DataGenerator(tf.keras.utils.Sequence):
"""Generates data for Keras."""
def __init__(self, img_files, context_info, labels,

batch_size=32, dim=(299,299), n_channels=3,
n_classes=16, shuffle=True):

self.img_files = img_files
self.context_info = context_info
self.labels = labels
self.batch_size = batch_size
self.dim = dim
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()

32 classification framework

def __len__(self):
"""Denotes the number of batches per epoch."""
return int(np.floor(len(self.img_files) /

self.batch_size))

def __getitem__(self, index):
"""Generate one batch of data."""
Generate indexes of the batch
indexes =

self.indexes[index*self.batch_size:(index+1)*self.batch_size]
Find list of IDs
img_files_temp = [self.img_files[k] for k in indexes]
Generate data
X, y = self.__data_generation(img_files_temp)
return X, y

def on_epoch_end(self):
"""Updates indexes after each epoch."""
self.indexes = np.arange(len(self.img_files))
if self.shuffle == True:

np.random.shuffle(self.indexes)

def __data_generation(self, img_files_temp):
"""Generates data containing batch_size samples."""
X_img = []
X_context = []
y = np.empty((self.batch_size), dtype=int)
Generate data
for i , img_file in enumerate(img_files_temp):

Read image
img = Image.open(join(’/images/kiel/’,img_file))
img = img.convert(mode=’RGB’) #convert to 3-channels
if self.shuffle:

img = img.rotate(random.uniform(-5,5))
Resize image
im = np.array(img.resize(size=self.dim) ,

dtype=np.float32)
Rescale image
im = im/255.0
X_img.append(im)
X_context.append(self.context_info[img_file])
y[i] = self.labels[img_file]

X = [np.array(X_img), np.array(X_context)]

return X, tf.keras.utils.to_categorical(y,
num_classes=self.n_classes)

4.4 bayesian priors 33

4.4 bayesian priors

Prior knowledge can help in improving the performance of a classifi-
cation system. By taking inspiration from [40], where spatio-temporal
prior was successfully used to improve the categorization of bird
species in a large-scale fine-grained dataset, we developed a strategy
to estimate prior probabilities about the defect classes, and to combine
such priors with the predictions of the CNN. Bayesian priors are esti-
mated from the XY coordinates of the defects in the wafer.

To take advantage of the positions of the defects we want to find
P[c|I, x, y], which is the probability that a defect belongs to class c
given the image of the defect I and the coordinates x and y. For Bayes’
rule we have that:

P(c|I, x, y) =
P(I, x, y|c)P(c)

P(I, x, y)
(3)

If we assume that the image and the coordinates are conditionally
independent given the defect class:

P(c|I, x, y) =
P(I|c)P(x, y|c)P(c)

P(I, x, y)
(4)

and by applying Bayes’ rule again to P(I|c) and P(x, y|c) we have that:

P(c|I, x, y) =
P(c|I)P(I)

P(c)
P(c|x, y)P(x, y)

P(c)
P(c)

P(I, x, y)
(5)

If we drop all the terms which do not depend on c and which do not
affect the classification:

P(c|I, x, y) ∼ P(c|I)P(c|x, y)
P(c)

(6)

where P(c|I) can be estimated from the softmax layer of the network,
P(c|x, y) can be estimated by considering the distribution of the K
nearest neighbors of the defect with coordinates (x, y), and P(c) is a
normalization factor.

4.4.1 Example 1

Let us consider the i-th defect in a ternary classification task with
classes A, B, C and K = 1000.
From the coordinates (xi, yi) we extract the 1000-closest-defects to
(xi, yi) and we discover that 500 of them belong to class A, 300 belong

34 classification framework

to class B, and 200 to class C. Therefore, P(c = A|xi, yi) ' 0.5, P(c =
B|xi, yi) ' 0.3, and P(c = C|xi, yi) ' 0.2.
Let di denote the image of the i-th defect and suppose that the output
of the softmax layer of the classifier is: P(c = A|di) ' 0.2, P(c =

B|di) ' 0.1, P(c = C|di) ' 0.7.
From (6) it follows that:

1. P(c = A|di, xi, yi) ' P(c=A|di)P(c=A|xi ,yi)
N

2. P(c = B|di, xi, yi) ' P(c=B|di)P(c=B|xi ,yi)
N

3. P(c = C|di, xi, yi) ' P(c=C|di)P(c=C|xi ,yi)
N

where N = P(c = A|di)P(c = A|xi, yi) + P(c = B|di)P(c = B|xi, yi) +

P(c = C|di)P(c = C|xi, yi).
The result for the proposed example is: P(c = A|di, xi, yi) ' 0.37,
P(c = B|di, xi, yi) ' 0.11, P(c = C|di, xi, yi) ' 0.52. Thus, the auto-
matic classifier would keep on predicting class C as defect class but
with less confidence.

4.4.2 Bayesian Priors on unbalanced datasets

On unbalanced datasets the number of the K-nearest-neighobors of
a defect is biased towards the majority classes. Therefore, Bayesian
priors should also take into account the cardinality of the classes.
Let n be the total number of defects, and nX the number of defects
belonging to a certain class X.
One way of weighting Bayesian priors is:

Pw(c = X|x, y) =
n− nX

n
P(c = X|x, y) (7)

making equation (6) become:

P(c = X|I, x, y) ' Pw(c = X|x, y)P(c|I)
P(c)

(8)

4.4.3 Example 2

Let us consider the previous example and suppose that there are
n = 12000 training defects.
Assume that nA = 10000 of them belong to class A, nB = 1000 to class
B, and nC = 1000 to class C.
From (8) it follows that:

1. P(c = A|di, xi, yi) ' P(c=A|di)Pw(c=A|xi ,yi)
N ' 0.1547

4.4 bayesian priors 35

2. P(c = B|di, xi, yi) ' P(c=B|di)Pw(c=B|xi ,yi)
N ' 0.5071

3. P(c = C|di, xi, yi) ' P(c=C|di)Pw(c=C|xi ,yi)
N ' 0.3381

where N is a normalization factor such that the probabilities sum up
to one. In this case the classifier would change prediction from class C
to class B.

4.4.4 The value of K

The value of nearest neighbors K can relevantly affect the predictions.
The proper value of K should be:

1. Small enough to catch the local dimension of prior distributions;

2. Big enough to get reliable statistics.

The figures below show the selected neighborhoods for some test
defects for different values of K. At the left of the figures we can see
a zoom of the neighborhood of a test defect represented by a red
cross, while at the right we can see how big is the neighborhood com-
pared to the wafer. The represented coordinates have been normalized.

Figure 17: Neighborhood of a test defect for K=300.

Figure 18: Neighborhood of a test defect for K=600.

36 classification framework

Figure 19: Neighborhood of a test defect for K=800.

Figure 20: Neighborhood of a test defect for K=1000.

Figure 21: Neighborhood of a test defect for K=1250.

Figure 22: Neighborhood of a test defect for K=1500.

4.4 bayesian priors 37

4.4.5 Priors by lot

The Bayesian method discussed so far is useful to derive some prior
knowledge about general local properties like "a certain defect is more
likely to belong to a class X if most of its closest neighbors belong to
class X" and general global properties such that "some kind of defects
are more likely to lie at the edge of the wafers". However, this method
gives us no insights on particular events which may occur on specific
wafers or lots.
To catch event-related priors we thought to estimate Bayesian priors at
wafer level. More precisely, given a defect of a test wafer, we wished
to compute Bayesian priors for that defect by solely considering all the
other neighboring defects of that test wafer. However, this approach
arises a problem: the number of defects per wafer is not enough to get
statistically reliable Bayesian priors. One solution may be to estimate
Bayesian priors at lot level; that is, given a defect of a test lot, we calcu-
late Bayesian priors for that defect by considering all the neighboring
defects of that specific test lot.
This approach requires a new train/validation/test split where defects
of the same lot must belong to the same set. Therefore, similarly to
what was done for the previous split, the lots have been randomly
divided into 7 folders and then the defects of the lots belonging to
the first five folders were used as training set, and the defects of the
lots belonging to the sixth and seventh folders were used as validation
and test sets respectively.
Figure 23 shows defect annotations for a test lot and the neighborhood
of a random defect for R = 10000, R = 20000, R = 30000, R = 40000,
where R is the radius of the circular neighborhood.

Figure 23: Defect annotations and examples of neighborhoods for a test lot.

38 classification framework

Algorithmus 1 : Priors by lot with true labels

defects = emptyList();
oldPredictions = emptyList();
newPredictions = emptyList();
for defect in lot do

prediction = predict(defect);
oldPredictions.append(prediction);
newPredictions.append(prediction);
neighbors = 0;
for otherDefect in defects do

d = computeDistance(defect,otherDefect);
if d < R then

neighbors += 1;
end

end
if neighbors > threshold then

prior = computePriors(defect);
newPredictions = updatePrediction(prediction,priors);

end
defects.append(defect);

end

Algorithm 1 describes the procedure to derive Bayesian priors for
defects of a test lot. This algorithm is applicable only to a scenario
in which the deep learning model is used as auxiliary tool for defect
classification (and therefore the classification process is not completely
automatised). In this scenario, the test defects are fed to the deep
learning model and then to an expert human operator one by one.
When the first test defect is fed to the automatic classification system,
the model tries to predict it. Afterwards, a domain expert checks the
prediction and assigns to the defect a "true label". Such label can be
then exploited to derive priors for future test defects belonging to the
same test lot in the following way. Suppose we are at test time and we
have a new test lot with new defects to categorize. For the first defects
that our model tries to predict it is not possible to derive Bayesian
priors because there are not enough defects in the neighborhood. After
some iterations, however, the lot starts "populating" of defects and we
can therefore exploit priors for new unseen defects.
The algorithm is sensitive to two hyper-parameters: R, which deter-
mines the width of the neighborhood to be analysed, and threshold,
which tunes the minimum number of defects that must be in a neigh-
borhood to estimate prior probabilities.

4.4 bayesian priors 39

Algorithmus 2 : Priors by lot with predictions

oldPred = emptyList();
for defect in lot do

oldPred.append(predict(defect));
end
newPred = oldPred;
for defect in lot do

if neighbors(defect) > threshold then
priors = computePriors(defect);
newPred = updatePrediction(oldPred,priors);

end
end

As we saw, with algorithm 1 we can exploit priors only for a re-
stricted number of defects. Instead of using true labels to derive priors,
we can use the network’s predictions themselves as explained in algo-
rithm 2. Let us suppose that we are at test time and we want to classify
defects of a new test lot. First, all the defects in the lot are predicted
by the network. Then, for each defect in the lot, if the number of the
defect’s neighbors is higher than a certain threshold, Bayesian priors
are computed and the prediction is updated.
Notice that prior probabilities computed with this method may be
ineffective because they reflect the distributions of network’s predic-
tions and not the real distributions of neighboring defects. Therefore,
algorithm 2 may help in improving the overall accuracy of the classifi-
cation system only if the automatic classifier is already very powerful.
As explained above, both algorithms consider a circular neighborhood
of a test defect to derive priors. However there are no guarantees
that the choice of a circular neighborhood is the best possible. For
this reason, algorithms 1 and 2 were revised by considering the K
nearest neighbors instead of circular neighborhoods in order to catch
arbitrarily shaped neighborhoods. Figure 24 shows an example of
arbitrarily shaped neighborhood for K = 30 and K = 50.

It is worth mentioning that some lots present a low number of
defects. For these lots is not possible to derive any kind of priors.
Therefore, algorithms 1 and 2 can be only applied to lots which have
enough defects. Now one question arises: when the number of defects
per lot is enough? Answering to this question is not easy since the
quantity of defects is not all that matter; indeed also the way in which
the defects are distributed over the lot matters. However, in practice
we ignored the issue of how defects are distributed and we applied
algorithms 1 and 2 to lots which have more defects than a certain
threshold value.

40 classification framework

Figure 24: Example of arbitrarily shaped neighborhood for K=30 and K=50.

5
E X P E R I M E N TA L R E S U LT S A N D E VA L U AT I O N S

The models were mainly evaluated in terms of overall and per-class
classification accuracy, precision, recall, and F1 score on actual pro-
duction data provided by Infineon Technology. Moreover, analogously
to what was done in previous work, we simulated how the overall
classification improves when the model does not predict the defects
on which it is less confident. This can be done by gradually increasing
a softmax filter threshold and it’s useful to estimate the remaining
effort, effort reduction, and productivity gain defined in Chapter 4.

5.1 experimental settings

hyper-parameters explanation value

lr learning rate 0.0004

batch size self-explanatory 32

optimizer type of stochastic gra-
dient descent algo-
rithm

Adam

patience stop number of epochs
without improvements
to wait before early
stopping

10

patience lr number of epochs
without improvements
to wait before learning
rate reduction

6

lr factor reduction factor by
which the learning rate
is multiplied when the
learning rate reduction
procedure is triggered

0.33

Table 2: Overview of training settings.

41

42 experimental results and evaluations

Xception architecture was trained for at most 50 epochs on Kiel dataset
described in Chapter 2. The most relevant hyper-parameter settings
are shown in table 2. The deep learning framework we worked on is
Keras with Tensorflow backend.

Some Keras callbacks like Reduce Learning Rate on Plateau and
Early Stopping were used during training. Callbacks are procedures
which are automatically triggered when specific events occur. For
example, in our case, when the validation accuracy has not been
improving for 6 epochs the Reduce Learning Rate on Plateau callback
is triggered and the learning rate is reduced by a factor of 0.33. If
the validation accuracy has not been improving for 10 epochs, then
the Early Stopping callback is triggered and the training ends. In
all the experiments we run the training finished due to the Early
Stopping callback. Figure 25 represents the model history by plotting
the training and validation accuracy and loss as functions of the
number of epochs. The two green spots highlight the epochs at which
we get the highest validation accuracy and lowest validation loss
respectively.

Figure 25: Model history.

5.2 models’ comparison

Table 3 compares the Xception architecture, which we will denote as
the baseline model, with the architectures described in section 4.2 in
terms of overall accuracy and per-class F1 score. We can notice that,
apart from model 2, which slightly surpasses the baseline model, com-
bining context features in the way we did is not beneficial. This may
be due to the fact that the information contained in context features’
vector is negligible (either in quantity or in importance) with respect to
the information embedded in the feature vector extracted by Xception.
Moreover, in previous work it was estimated by means of a cross-
validation strategy that the variance in overall accuracy due to the fact

5.3 effects of bayesian priors 43

of choosing a different train/validation/test split is about 0.03. There-
fore, the effects of combining context features with the image feature
vector are within the noise level of picking a certain split instead of
another.

Baseline Model 1 Model 2 Model 3 Model 4

Accuracy 0.7928 0.7924 0.7952 0.7878 0.7859

F1 Score - Cl. 11 0.83 0.84 0.84 0.81 0.82

F1 Score - Cl. 23 0.75 0.74 0.75 0.74 0.74

F1 Score - Cl. 24 0.78 0.78 0.78 0.78 0.77

F1 Score - Cl. 25 0.83 0.83 0.83 0.82 0.81

F1 Score - Cl. 26 0.83 0.83 0.83 0.82 0.83

F1 Score - Cl. 27 0.85 0.85 0.85 0.84 0.84

F1 Score - Cl. 29 0.70 0.70 0.72 0.71 0.70

F1 Score - Cl. 41 0.82 0.81 0.82 0.81 0.81

F1 Score - Cl. 51 0.89 0.89 0.89 0.87 0.88

F1 Score - Cl. 71 0.95 0.95 0.95 0.94 0.94

F1 Score - Cl. 86 0.80 0.80 0.80 0.79 0.80

F1 Score - Cl. 87 0.87 0.86 0.87 0.86 0.86

F1 Score - Cl. 33 0.73 0.73 0.73 0.72 0.72

F1 Score - Cl. 82 0.55 0.53 0.56 0.55 0.54

F1 Score - Cl. 98 0.78 0.79 0.79 0.79 0.78

F1 Score - Cl. 404 0.52 0.52 0.52 0.49 0.52

Table 3: Models’ comparison.

5.3 effects of bayesian priors

This section analyses the effects of weighting the network’s predictions
with Bayesian priors as explained in section 4.4. Table 4 shows how
the overall accuracy and per-class F1 score improve with respect to
the baseline model when using Bayesian priors for different values of
K. We can notice that the use of Bayesian priors is always beneficial
for these values of K; in particular for K = 1500 the overall accuracy
improves of the 0.9% with respect to the baseline (about 300 out of
39000 more defects are correctly classified).

44 experimental results and evaluations

Baseline K=800 K=1000 K=1250 K=1500

Accuracy 0.7928 0.8001 0.8008 0.8017 0.8018

F1 Score - Cl. 11 0.83 0.86 0.85 0.86 0.86

F1 Score - Cl. 23 0.75 0.75 0.75 0.75 0.75

F1 Score - Cl. 24 0.78 0.78 0.79 0.79 0.79

F1 Score - Cl. 25 0.83 0.83 0.83 0.83 0.83

F1 Score - Cl. 26 0.83 0.84 0.84 0.85 0.84

F1 Score - Cl. 27 0.85 0.85 0.85 0.85 0.85

F1 Score - Cl. 29 0.70 0.75 0.75 0.75 0.75

F1 Score - Cl. 41 0.82 0.82 0.82 0.82 0.82

F1 Score - Cl. 51 0.89 0.89 0.89 0.89 0.89

F1 Score - Cl. 71 0.95 0.95 0.95 0.95 0.95

F1 Score - Cl. 86 0.80 0.80 0.80 0.80 0.80

F1 Score - Cl. 87 0.87 0.86 0.86 0.86 0.86

F1 Score - Cl. 33 0.73 0.74 0.74 0.74 0.74

F1 Score - Cl. 82 0.55 0.60 0.60 0.61 0.60

F1 Score - Cl. 98 0.78 0.79 0.79 0.79 0.79

F1 Score - Cl. 404 0.52 0.55 0.55 0.55 0.56

Table 4: Effects of Bayesian priors for different values of K.

Figure 26: Softmax threshold simulation.

5.3 effects of bayesian priors 45

Figure 27: Per-class softmax threshold simulation.

Figures 26 and 27 compare the accuracy, the volume (fraction of
defects which are actually classified), the per-class precision and recall
as functions of the softmax filter threshold without and with priors
(K = 1500). From these plots we can visualize that the use of priors is

46 experimental results and evaluations

actually beneficent. Particularly, as we can see from table 4, the classes
which benefit most from Bayesian priors are classes ’29’, ’82’, and ’404’.
This does not surprise us since these classes are quite dissimilar from
all the other classes (see figure 7). From the analysis of Chapter 3, we
also expect that class ’33’ benefits from Bayesian priors because it has
a very different defect density distribution with respect to all the other
classes. Indeed, we noticed a small improvement in F1 score for such
class, therefore our expectations have not been refuted.

Algorithms 1 and 2 were tested according to the modalities de-
scribed in subsection 4.4.5. Algorithm 1 led to negligible improve-
ments while algorithm 2 turned out to be ineffective for improving
classification performances.

Bayesian priors can be used on their own to derive predictions;
indeed they can work as an out-and-out KNN classifier. Such classi-
fier achieves around 15% of accuracy on the test set, which is much
worse than CNNs’ performances but it outperforms the trivial models
which output random predictions or predictions only for the majority
class. Moreover, it was observed that this KNN classifier performs
relatively well only on classes ’26’, ’33’, and ’404’. It is noteworthy that
for such classes the accuracy, precision and recall always improves
when weighting the network’s predictions with Bayesian priors.

6
D I S C U S S I O N S A N D F U T U R E W O R K

As we saw in Chapter 5, some defect classes are hard to distinguish
from each other. For instance, classes’ pairs ’23’-’24’, ’25’-’26, and
’86’-’87’ are very similar to each other and therefore the network strug-
gles a bit in discriminating such pairs. Figure 28 visually shows the
confusion between the aforementioned pairs; indeed, in the main diag-
onal of the confusion matrix (at least) three blocks are easily detectable.

Figure 28: Block structure of the confusion matrix.

Consider now the similarity matrix represented in figure 7; we can
notice that the aforementioned pairs not only are hard to distinguish
at image level, but also they are very similar in the way they are
distributed over the wafer grid. This means that, although some infor-
mation can be extracted from defects’ positions, we are in the unlucky
case where similar defect classes are similarly distributed over the
wafer.

The block structure of the confusion matrix highlights the need
for reducing that confusion. One solution to this problem might be
hierarchical classification. Suppose we detect M blocks in the main

47

48 discussions and future work

diagonal of a confusion matrix C. In the first part of the training every
class of a block is given the same label. Then, M specialised models
are retrained (where the word retrain refers to the fact that the training
data has been already seen and not that the models have been previ-
ously trained) on each block to distinguish among intra-block classes.
Note that the retraining must not destroy what has been learnt in
the previous step. One big issue with hierarchical classification is that
M new models need to be trained, which implies higher and higher
computational overhead as M grows. A strategy which does not imply
the training of new specialised models is cost-sensitive learning and
will be discussed in the next section.

In semiconductor manufacturing, labelling microscopic defects is
a tedious and time-consuming task. However, many unannotated de-
fects’ images are often available and they are not exploited. We will
hint a semi-supervised learning framework to deal with this likely
situation.

6.1 cost-sensitive learning

Most classification models are cost-blind, that is they treat all the
misclassification errors equally. However, in several real-world appli-
cations the costs of different misclassification errors are not the same.
Cost-sensitive learning aims at making the optimal classification deci-
sions when different misclassification errors incur different penalties
[9]. Formally, let C be a cost matrix whose (i, j) entry reflects the cost
of classifying a test sample x as i when its true label is j. The optimal
prediction for x is the class i∗, where:

i∗ = arg min
i

∑
j
P(j|x)C(i, j) (9)

We conjecture that cost-sensitive learning may help in solving the
confusion discussed at the beginning of the chapter.
A possible cost-sensitive learning strategy could be the following. At
the beginning of the training do not give too much importance to
classification errors towards very similar classes. Then, as the model
gets more and more specialized, give more importance to errors be-
tween similar classes. In this way, in the first phase of the training the
network will learn to distinguish among the macro-classes, whereas
in the second phase the network will specialise in discriminating very
similar sub-classes.
The extreme version of cost-sensitive learning, where given a class i no
punishment is given to the model if it confuses i with a very similar
class, is often known as one-vs-most classification [40].

6.1 cost-sensitive learning 49

The following subsections will describe some cost learning approaches.
As we will see, such approaches can be used in combination with the
two-step cost-sensitive learning strategy proposed above.

6.1.1 Rescale approach

A typical strategy for cost-sensitive learning is rescaling the classes
such that their influences during the training are proportional to their
costs. This can be done by assigning different weights to training
samples of distinct classes, where the weights are in proportion to the
misclassification costs.
While classical Rescale approaches are optimal for cost-sensitive binary
classification, they are not for multi-class problems. To overcome this
limitation, Zhou and Liu [44] proposed the RESCALEnew approach.
Let εij be the cost of misclassifying a sample of class i to class j and
let C be cost matrix which can be constructed from such costs. Let c
denote the number of classes. Assume that the cost of making correct
classifications is always zero, therefore εii = 0, i = 1, 2, .., c. Moreover,
suppose that, at least for now, there is no class imbalance. The optimal
rescaling ratio of class i against class j can be defined as:

τopt(i, j) =
εij
εji

(10)

Suppose that each class can be assigned with a weight wi, i = 1, 2, .., c.
After rescaling, the weights should satisfy the relation:

wi

wj
= τopt(i, j), i, j = 1, 2, .., c (11)

which can be expanded into (c
2) constraints:

w1
w2

= ε12
ε21

, ..., w1
wc

= ε1c
εc1w2

w3
= ε23

ε32
, ..., w2

wc
= ε2c

εc2
...

wc−1,c
wc,c−1

=
εc−1,c
εc,c−1

which can be written as an homogeneous system of c(c−1)
2 equations

in c unknowns:

50 discussions and future work



w1 · ε21 − w2 · ε12 + ... + wc · 0 = 0

.. = 0

w1 · εc1 + w2 · 0 + ...− wc · ε1c = 0

w2 · ε32 + ...− w3 · ε23 + wc · 0 = 0

.. = 0

w1 · 0 + w2 · ε32 + ...− wc · ε2c = 0

.. = 0

... + wc−1,c · εc,c−1 − wc · εc−1,c = 0

If the rank of the system’s coefficient matrix is smaller than c, the
system has a non-trivial solution w, and therefore all classes can
be rescaled simultaneously. Thus, in this case, the multi-class cost-
sensitive learning problem can be solved directly. Instead, if the sys-
tem’s coefficient matrix is full rank, the system has only the trivial
solution and we need to decompose the multi-class problem into many
binary-class cost-sensitive problems.
Suppose now that the dataset is not balanced. As we mentioned in
chapter 4, a strategy to tackle class imbalance can be to adjust a weight
vector b such that more importance is given to under-represented
classes during training and less importance is given to classes with
higher cardinality. If we wish to solve the problems of class imbalance
and cost-sensitive learning simultaneously, we can just multiply vec-
tors b and w.

6.1.2 Cost-Sensitive Deep Metric Learning

Zhao and Peng proposed Cost-sensitive Deep Metric Learning (CDML),
an approach which integrates confusion analysis, confusion deep met-
ric learning and weighted sofmax for learning the differences among
hard-to-distinguish sub-classes [20]. In the confusion analysis phase
the confusion degrees among different sub-classes is estimated from
the confusion matrix. In the confusion deep metric learning phase a
triplet loss is defined and used to focus on learning the difference
among sub-classes with small variance. In this phase, a triplet distri-
bution matrix M is iteratively constructed as well. In the last phase,
a weighted softmax loss function is defined in the hope of learning
more discriminative features for hard-to-distinguish sub-classes. Such

6.1 cost-sensitive learning 51

loss puts more cost on sub-classes with higher misclassification rates
as follows:

So f tmaxw(I, L) =
1
n

n

∑
i=1
−Wi ∗ log(s(Li)i) (12)

where I is the image set, L stands for the sub-classes set, n is the total
numbers of samples in L, and:

s(Li)i =
(1/k) ∗ e(Ii, Li)

∑k
j=1 Mij ∗ e(Ii, Lj)

(13)

Actually, the term "softmax loss" is often misused, because we
may use the softmax activation in combination with any other loss
function. However, in ML community the softmax activation is often
followed by the caterogical cross-entropy loss. For this reason, the
terms "softmax loss" and "caterogical cross-entropy loss" are often
used interchangeably.
The following lines of code show a vectorized implementation of the
weighted categorical cross-entropy loss in Tensorflow.

class WeightedCategoricalCrossentropy(CategoricalCrossentropy):

def __init__(self, cost_mat,
name=’weighted_categorical_crossentropy’, **kwargs):
assert(cost_mat.ndim == 2)
assert(cost_mat.shape[0] == cost_mat.shape[1])

super().__init__(name=name, **kwargs)
self.cost_mat = K.cast_to_floatx(cost_mat)

def __call__(self, y_true, y_pred):

return super().__call__(
y_true=y_true,
y_pred=y_pred,
sample_weight=get_sample_weights(y_true, y_pred,

self.cost_mat),
)

def get_sample_weights(y_true, y_pred, cost_m):
num_classes = len(cost_m)

y_pred.shape.assert_has_rank(2)
y_pred.shape[1].assert_is_compatible_with(num_classes)
y_pred.shape.assert_is_compatible_with(y_true.shape)

y_pred = K.one_hot(K.argmax(y_pred), num_classes)

y_true_nk1 = K.expand_dims(y_true, 2)
y_pred_n1k = K.expand_dims(y_pred, 1)

52 discussions and future work

cost_m_1kk = K.expand_dims(cost_m, 0)

sample_weights_nkk = cost_m_1kk * y_true_nk1 * y_pred_n1k
sample_weights_n = K.sum(sample_weights_nkk, axis=[1, 2])

return sample_weights_n

The proper usage of this loss function is:

m.compile(loss=WeightedCategoricalCrossEntropy(cost_matrix),...)

which send us back to the problem of choosing an effective cost matrix.
Notice that if we choose the cost matrix such that it also considers
the class imbalance, we can address the problems of cost-sensitive
learning and class imbalance simultaneously.

6.2 semi-supervised learning

Let us consider a multi-class classification task. Assume we have a
training set D with N labelled images and a set U with M unlabelled
images, where usually M� N. Semi-supervised learning deals with
exploiting both sets in the learning process. In this section we will de-
scribe the interesting semi-supervised image classification framework
proposed by [14].
In their approach, an hopefully powerful teacher model is first trained
on D to label the samples in U. Then, for each target label the top-K
examples are selected and are used to construct a new training dataset
D̂. It is worth noticing that only the top-K examples are selected in
order to limit the labelling noise. Afterwards, a new student model is
trained on D̂. Finally, the student model is fine-tuned on set D.
This approach suits well to our industrial case study since there are
many unlabelled images which can be potentially exploited to improve
the current automatic classification system.

6.3 transfer learning

The Xception architecture we used was pre-trained on the ImageNet
dataset. Therefore, we utilized the weights of ImageNet challenge
as initialization and then we trained the network on Kiel dataset.
However, the morphology of SEM images is completely different from
the morphology of the images of ImageNet dataset, thus the weights
initialization we used is very likely to be nonoptimal. Moreover, there
are no significant publicly available SEM images datasets to exploit for
transfer learning. For this reasons, we believe that future work need

6.3 transfer learning 53

to be done to build a proper dataset on which pre-training the network.

Recall that Kiel dataset is composed of SEM images taken at the
second, third, and fourth metal layers. Thus, the information of defect
images taken at previous layers is not exploited. Future work should
also address the issue of developing a transfer learning strategy to
convey knowledge from layer to layer.

7
C O N C L U S I O N S

In this work we presented our methodological and experimental contri-
butions to deep learning-based automatic classification of microscopic
defects in silicon wafers with context information. Although the clas-
sification of defect patterns in wafers has been hugely studied in
literature, the automatic categorization of microscopic defects has not
been adequately addressed yet.
Thanks to the availability of huge amount of data and high-performance
computing systems, deep learning models, and especially CNNs, have
achieved great results in almost any image recognition task. Several
architectures have been proposed to improve the performance and the
efficiency of CNNs in some challenges like the ImageNet large scale
visual recognition challenge [15]. Some of these well-known architec-
tures, which are described in Appendix A, can be effectively used for
defect classification as well.
Canonical deep learning-based microscopic defect classification ap-
proaches have the limitation of utilizing only the information con-
tained in the images. For example the information "some defect types
can only appear in the memory section of a chip" cannot be discovered
by classical deep learning models. This work overcame this limitation
by using some context information about the defects, like the position
of the defects in the wafer and in the die, to improve the current deep
learning-based automatic classification system.
One way of combining context information with the information ex-
tracted from the image is to merge context features with the features
extracted by the CNN. There can be several ways of merging these
two kind of features; some examples of merging procedures were
schematically shown in Chapter 4.
Another way to extract information from context attributes is to use
the coordinates of the defects to estimate local prior probability distri-
butions. Indeed, the distribution of the closest neighbors of a sample
defect can be used to approximate the probability that the sample
defect belong to a certain class given its Cartesian coordinates. Such
probabilistic framework was formalised in Chapter 4.
These strategies to extract information from context were tested on
actual production data provided by Infineon Technologies, and the
results were presented in Chapter 5. The peculiarity of some results
was discussed in Chapter 6 and some hints for future works were
proposed.

55

Part III

Appendix

57

A
A P P E N D I X

CNNs have recently achieved great successes on large-scale image
recognition tasks. This has been possible thanks to the availability of
large-scale image datasets and high-performance computing systems
like GPUs and distributed clusters. This section overviews some of
the most famous state-of-the-art architectures based on Convolutional
Networks.

a.1 very deep convolutional networks

Historically, CNN architectures were only few layers deep and large
kernel sizes, and therefore wide receptive fields, were used in the first
convolutional layers.
Simonyan and Zisserman investigated on how the depth of a network
impacts on large-scale image recognition tasks [25]. By using small
(3x3) convolution filters and by pushing the architecture’s depth to 16-
19 weight layers, they achieved state-of-the-art results in the ImageNet
Challenge 2014.
The input to their network is a fixed-size 224x224 image. After some
simple preprocessing, the image is passed through a stack of con-
volution layers with filter of size 3x3 and stride 1. The padding is
done such that the spatial resolution is preserved after convolution (so
the padding is 1 for 3x3 convolution layers). Five max-pooling layers
perform spatial pooling after some convolution layers. Max-pooling is
done over a 2x2 window with stride 2. A stack of convolution layers is
then followed by three fully-connected layers. All hidden layers utilize
the ReLu activation function.
The architecture described above is widely known as VGG. Figure 29

overviews different VGG configurations.

Figure 30 shows that two stacked 3x3 convolution layers have the
same receptive field as a 5x5 convolution layer. Analogously, it can
be shown that a stack of three 3x3 convolution layers can replace a
7x7 convolution layer. Replacing a 7x7 convolution layer with three
3x3 convolution layers has mainly two advantages. Firstly, three ReLu
non-linearity are used instead of a single one, which makes the model
more discriminative. Secondly, the number of parameters is widely
reduced. For example, if both the input and output of a stack of three
3x3 convolution layers have C channels, the stack is parametrised
by 3(32C2) = 27C2 parameters, while a single 7x7 convolution layer

59

60 appendix

requires 72C2 = 49C2 parameters.

Figure 29: VGG configurations (taken from [25]).

A.2 inception 61

Figure 30: 3x3 convolutions VS 5x5 convolution

a.2 inception

The deployment of VGG can be computationally expensive even in
GPUs. Indeed VGG is a densely-connected architecture, where, in a
convolution operation, each input channel is connected to each output
channel.

Szegedy et al. built Inception based on the idea that the optimal
network topology can be constructed layer by layer by analizing the
correlations of the activations of the preceding layer and clustering
neurons with highly correlated outputs [7]. Thus, they claim that the
optimal network topology can be represented by a sparse architec-
ture. However, the available computing infrastructures are inefficient
with calculations on sparse data. In order to put in practice this idea,
GoogLeNet devised a module, called Inception module, which is able
to both approximate a sparse CNN and use the computing tools which
are optimised for densely-connected architectures [7].

In its naive version, the Inception module concatenates 1x1, 3x3, and
5x5 convolutions in order to extract abstract features at different scales
simultaneously. Moreover, a 3x3 max-pooling operation is added at
each module. However, even a small number of 5x5 convolutions can
be computationally heavy. Therefore, to reduce the computational
burden, they introduced a 1x1 convolution layer, which is often known
as bottleneck layer, before applying larger sized kernels.
Figure 31 shows the Inception module.

62 appendix

(a) Inception module, naive version

(b) Inception module with dimension reductions

Figure 31: Inception module (taken from [7])

As we saw in the previous section, convolutions with filters larger
than 3x3 can be reduced into a series of 3x3 convolutions. However it
turns out that a 3x3 convolution can be replaced by a 3x1 convolution
followed by a 1x3 convolution [6]. Assuming that the number of input
and output channel is C, the latter configuration is parametrised by
3C2 + 3C2 = 6C2 parameters instead of the 32C2 = 92C2 parameters
of the former configuration. Theoretically, this reasoning can be gener-
alised to any nxn convolution.
Figure 32 depicts the Inception module after the factorization of the
nxn convolution.

A.3 residual networks 63

Figure 32: Inception module after the factorization of the nxn convolutions

GoogLeNet also replaced the fully-connected layers at the end with
a simple global average pooling which averages over the values of the
bidimensional feature maps, after the last convolutional layer. This
drastically reduces the total number of parameters.

a.3 residual networks

Consider an architecture and its deeper counterpart obtained by
adding identity layers onto it. One may expect that a deeper model
should not perform worse of its shallower counterpart. But in prac-
tice that does not happen (shallower architectures produce smaller or
equal training errors). This issue, which is not due to overfitting, is
known as the degradation problem and it was addressed by He et al.
in [22] and [23] through deep residual learning.

Let x be the input to few stacked layers and let H(x) be an underly-
ing mapping to be learnt. If multiple non-linear layers can asymptot-
ically approximate any function H(x), then they can asymptotically
approximate the residual function F(x) = H(x)− x. The only differ-

64 appendix

ence in approximating H(x) and F(x) may be the ease of learning.
Figure 33 shows a building block of the residual leaning framework.

Figure 33: Residual learning building block (taken from [22]).

The degradation problem suggests that multiple non-linear layers
struggle in approximating identity mappings. With residual learning,
the block of layers can learn the identity mappings by simply pushing
their weights to zero. In practice, identity mappings hardly ever are
the optimal functions we want to approximate, but it can be shown
that they are often close to such optimal functions. Therefore, it turns
out that learning residual functions is easier than learning the under-
lying mappings.
Residual learning can be realised by feed-forward neural networks
with shortcut connections. In [22], shortcut connections simply per-
form identity mappings. It is worth noticing that identity shortcut
connections add no extra complexity.

a.4 xception

As we saw, Inception is based on the hypothesis that cross-channel
correlations and spatial correlations are partially decoupled. Indeed,
the Inception module first looks at cross-channel correlations through
1x1 convolutions, mapping the input data into 3 or 4 spaces of smaller
dimension, and then looks at spatial correlations through regular
3x3 and 5x5 convolutions. In [8], an extreme version of the Inception
module is proposed under the assumption that cross-channel correla-
tions and spatial correlations are completely decoupled. This extreme
version of the Inception module first uses 1x1 convolutions to map
cross-channel correlations, and then separately maps the spatial corre-
lations of each output channel. The proposed module is very similar to
depthwise separable convolutions (independent spatial convolutions

A.4 xception 65

over each input channel followed by pointwise convolutions) [8].

The Xception architecture has 36 convolutional layers structured
into 14 modules. Each module, except for the first and last ones, have
linear residual connection among them.
Figure 34 describes the specifications of the Xception architecture.

Figure 34: The Xception architecture (taken from [8]).

B I B L I O G R A P H Y

[1] M. Retersdorf C. Wooten X. Song A. Hesse A. Drozda-Freeman
M. McIntyre. “Recognition of Systematic Spatial Pattern in Sil-
icon Wafers Based on SOM and K-means.” In: IEEE/SEMI Ad-
vanced Semiconductor Manufacturing Conference (2007).

[2] S. C. Hsu C. F. Chen and Y. J. Chen. “A system for online
detection and classification of wafer bin map defect patterns for
manufacturing intelligence.” In: International Journal of Production
Research 51.8 (2013).

[3] W. C. Wang C. F. Chien and J.-C. Cheng. “Data mining for yield
enhancement in semiconductor manufacturing and an empirical
study.” In: Expert Systems with Applications 33.1 (2007).

[4] S.-J. Wang C.-H. Wang and W.-D. Lee. “Automatic identification
of spatial defect patterns for semiconductor manufacturing.” In:
International Journal of Production Research 44.23 (2006).

[5] C. Chien C. Liu. “An intelligent system for wafer bin map defect
diagnosis: An empirical study for semiconductor manufactur-
ing.” In: Engineering Applications of Artificial Intelligence (2013).

[6] S. Ioffe J. Shlens Z. Wojna C. Szegedy V. Vanhoucke. “Rethink-
ing the Inception Architecture for Computer Vision.” In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(2016).

[7] Y. Jia P. Sermanet S. Reed D. Anguelov D. Erhan V. Vanhoucke
A. Rabinovich C. Szegedy W. Liu. “Going deeper with convolu-
tions.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2015).

[8] F. Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions.” In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017).

[9] Charles Elkan. “The Foundations of Cost-Sensitive Learning.”
In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence 2 (2001), 973–978.

[10] S. F. Liu F. L. Chen. “A neural-network approach to recognize
defect spatial pattern in semiconductor fabrication.” In: IEEE
Transactions on Semiconductor Manufacturing 13.3 (2000).

[11] C. Ha G. Choi S.-H. Kim and S. J. Bae. “Multi-step ART1 al-
gorithm for recognition of defect patterns on semiconductor
wafers.” In: International Journal of Production Research 50.12

(2012).

67

68 bibliography

[12] P. D. Yoo Y. Al-Hammadi S. Muhaidat U. Lee G. Tello O. Y.
Al-Jarrah. “Deep-Structured Machine Learning Model for the
Recognition of Mixed-Defect Pattern in Semiconductor Fabrica-
tion Process.” In: IEEE Transactions on Semiconductor Manufactur-
ing 31.2 (2018).

[13] C. Y. Hsu. “Clustering ensemble for identifying defective wafer
bin map in semiconductor manufacturing.” In: Mathematical
Problems in Engineering (2015).

[14] K. Chen M. Paluri D. Mahajan; Facebook AI I.Z. Yalniz H. Jégou.
“Billion-scale semi-supervised learning for image classification.”
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019).

[15] ImageNet Large Scale Visual Recognition Challenge (ILSVRC). url:
http://www.image-net.org/challenges/LSVRC/.

[16] ImageNet. url: http://www.image-net.org/.

[17] M. D. Ohman J. S. Ellen C. A. Graff. “Improving plankton
image classification using context metadata.” In: Limnology and
Oceanography (ASLO) (2019).

[18] J. Luo J. Yu. “Leveraging Probabilistic Season and Location
Context Models for Scene Understanding.” In: International Con-
ference on Image and Video Retrieval (CIVR) (2008).

[19] X. Lu J. Yu. “Wafer Map Ddefect Detection and Recognition
Using Joint Local and Nonlocal Linear Discriminant Analysis.”
In: IEEE Transactions on Semiconductor Manufacturing 29.1 (2016).

[20] Y. Peng J. Zhao. “Cost-Sensitive Deep Metric Learning for Fine-
Grained Image Classification.” In: 24th International Conference
on Multimedia Modeling (2018).

[21] P. Luley A. Almer L. Paletta K. Amlacher G. Fritz. “Geo-Contextual
Priors for Attentive Urban Object Recognition.” In: International
Conference on Robotics and Automation (ICRA) (2009).

[22] S. Ren J. Sun; Microsoft Research K. He X. Zhang. “Deep Resid-
ual Learning for Image Recognition.” In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

[23] S. Ren J. Sun; Microsoft Research K. He X. Zhang. “Identity
Mappings in Deep Residual Networks.” In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

[24] H. Kim K. Kyeong. “Classification of mixed-type defect patterns
in wafer bin maps using convolutional neural networks.” In:
IEEE Transactions on Semiconductor Manufacturing 31 (2018).

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/

bibliography 69

[25] Department of Engineering Science University of Oxford K.
Simonyan A. Zisserman; Visual Geometry Group. “Very Deep
Convolutional Networks for Large-scale Image Recognition.”
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015).

[26] L. Fei-Fei R. Fergus L. Bourdev Computer Science Depart-
ment of Standford University Facebook AI Research K. Tang M.
Paluri. “Improving Image Classification with Location Context.”
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015).

[27] D. Wang K. Weiss T. M. Khoshgoftaar. “A survey of transfer
learning.” In: Journal of Big Data (2016).

[28] B. Krawczyk. “Learning from imbalanced data: open challenges
and future directions.” In: Progress in Artificial Intelligence (2016).

[29] B. van der Waal M. Fan Q. Wang. “Wafer Defect Patterns Recog-
nition Based on OPTICS and Multi-Label Classification.” In:
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC) (2016).

[30] Y. Hiltunen M. Liukkonen. “Recognition of Systematic Spatial
Pattern in Silicon Wafers Based on SOM and K-means.” In: Inter-
national Federation of Automatic Control (IFAC) 51 (2018), pp. 439–
444.

[31] J. Y. Lee J. Byun M. Piao C. H. Jin. “Decision Tree Ensamle-
Based Wafer Map Failure Pattern Recognition Based on Radon
Transform-Based Features.” In: IEEE Transactions on Semiconduc-
tor Manufacturing 31.2 (2016).

[32] J. Y. Lee M. Saqlain B. Jargalsaikhan. “A Voting Ensemle Clas-
sifier for Wafer Map Defect Pattern Identification in Semicon-
ductor Manufacturinf.” In: IEEE Transactions on Semiconductor
Manufacturing (2019).

[33] J. L. Chen Ming-Ju Wu Jyh-Shing R. Jang. “Wafer Map Fail-
ure Pattern Recognition and Similarity Ranking for Large-Scale
Data Sets.” In: IEEE Transactions on Semiconductor Manufacturing
(2015).

[34] A. More. “Survey of resampling techniques for improving clas-
sification performance in unbalanced datasets.” In: Applications
(stat.AP) arXiv:1608.06048 (2016).

[35] A. Torroella M. Shah S. Ardeshir A. R. Zamir. “Gis-assisted
object detection and geospatial localization.” In: European Con-
ference on Computer Vision (ECCV) (2014).

[36] C. O. Kim S. H. Lee S. Cheon H. Lee. “Convolutional Nerual Net-
work for Wafer Surface Defect Classification and the Detection of
Unknown Defect Class.” In: IEEE Transactions on Semiconductor
Manufacturing (2018).

70 bibliography

[37] J. H. Hays A. A. Efros M. Hebert S. K. Divvala D. Hoiem. “An
Empirical Study of Context in Object Detection.” In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2009).

[38] P. Pintelas S. Kotsiantis D. Kanellopoulos. “Handling imbal-
anced datasets: A review.” In: GESTS International Transactions
On Computer Science And Engineering 30 (), 25–36.

[39] J. Wu L. Cao Q. Meng P.J. Kennedy S. Wang W. Liu. “Training
deep neural networks on imbalanced data sets.” In: International
Joint Conference on Neural Network (2016).

[40] S. W. Lee M. L. Alexander D. W. Jacobs P. N. Belhumeur T. Berg
J. Liu. “Birdsnap: Large-scale fine-grained visual categorization
of birds.” In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014).

[41] D. V. Kulkarni T. Nakazawa. “Wafer Map Defect Pattern Classi-
fication and Image Retrieval Using Convolutional Neural Net-
work.” In: IEEE Transactions on Semiconductor Manufacturing 31.2
(2018).

[42] Yuan-Fu Yang. “A Deep Learning Model for Identification of
Defect Patterns in Semiconductor Wafer Map.” In: Annual SEMI
Advanced Semiconductor Manufacturing Conference (ASMC) (2019).

[43] Kuo Yuan. “A model-based clustering approach to the recogni-
tion of the spatial defect patterns produced during semiconduc-
tor fabrication.” In: IIE Transactions 40 (2007).

[44] X. Liu Z. Zhou. “On Multi-Class of Cost-Sensitive Learning.” In:
Proceedings of the 21st national conference on Artificial Intelligence 1

(2006), 567–572.

	Dedication
	Abstract
	Sommario
	Acknowledgements
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Acronyms
	I Problem description
	1 Introduction
	1.1 Related work
	1.2 Handcrafted features
	1.2.1 Density-based features
	1.2.2 Geometrical features
	1.2.3 Gray features
	1.2.4 Texture features
	1.2.5 Radon-based features

	1.3 Classification with context
	1.4 Overview

	II Industrial case study
	2 Dataset
	2.1 Data cleaning pipeline
	2.2 Dataset selection and preprocessing

	3 Data Analysis
	3.1 Data Analysis: Wafer level
	3.2 Data Analysis: Die level

	4 Classification Framework
	4.1 Previous work
	4.2 New work
	4.3 Training multi-stream networks in Keras
	4.4 Bayesian priors
	4.4.1 Example 1
	4.4.2 Bayesian Priors on unbalanced datasets
	4.4.3 Example 2
	4.4.4 The value of K
	4.4.5 Priors by lot

	5 Experimental Results and Evaluations
	5.1 Experimental Settings
	5.2 Models' comparison
	5.3 Effects of Bayesian priors

	6 Discussions and Future work
	6.1 Cost-Sensitive Learning
	6.1.1 Rescale approach
	6.1.2 Cost-Sensitive Deep Metric Learning

	6.2 Semi-Supervised Learning
	6.3 Transfer learning

	7 Conclusions

	III Appendix
	A Appendix
	A.1 Very Deep Convolutional Networks
	A.2 Inception
	A.3 Residual Networks
	A.4 Xception

	Bibliography

