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Non-linear evolution of cosmological power-spectra using the Kinetic Field
Theory approach

by Luca TEODORI

We use the kinetic field theory approach to study the evolution of simple primordial
power spectra and related higher order correlators.

Kinetic field theory is a microscopic, non equilibrium statistical field theory that can
be accustomed to treat large scale structure formation. Due to its features, it over-
comes some difficulties arising in other perturbative approaches, the most famous
being shell crossing. In particular, we will use a non-perturbative approach we call
Born approximation, that involves a suitable averaging procedure to include grav-
itational interactions, to probe the non linear evolution of some class of simplified
primordial power spectra; one class will be related to the dark matter primordial
power spectrum but with a changing small scale slope. We will also analyze Gaus-
sian shape primordial power spectra; such spectra are cosmologically irrelevant, but
nevertheless it is interesting to see what kinetic field theory predicts also for such
cases.

We found that all these evolved power spectra have a small scale fall-off that goes
as k−3, where k is the wavenumber; this behavior seems thus to be valid for a wide
class of non-linearly evolved primordial power spectra. Another goal of this work is
to analyze higher order correlators (like the bispectrum) evolution within this frame-
work.
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Chapter 1

Introduction

When we look at our observable universe as a whole, we see galaxies (which in cos-
mology are seen as “the smallest constituent” our universe is made of, so to speak)
forming structures as large filaments surrounded by large voids. Try to understand
how galaxies form clusters, superclusters and in general the structures we see in
large scale surveys is the task of Large Scale Structure (LSS) formation studies.

An incredibly useful tool we have in cosmology to probe the so called early uni-
verse is the Cosmic Microwave Background (CMB); it is basically a snapshot of the
universe when it was almost 380 000 years old. Its spectrum is an almost perfect
black body spectrum with temperature T ' 2.7 K, and the temperature fluctuations
around this value we observe in the CMB (which are very tiny, δT/T ∼ 10−5) are
connected to the density fluctuations δρ/ρ, and hence to how the universe looked
like at that age. Our current best cosmological models (see for example [1]) explain
the existence of the fluctuations as the result of the evolution of primordial quantum
fluctuations of the inflaton field during the inflationary epoch (which must have oc-
curred in the very first instants of the universe life); then these primordial density
fluctuations evolved through gravitational interactions among overdense regions in
an overall expanding universe on the fluctuations we see in the CMB and on the
structures we see today.

The study of the CMB and LSS and the comparison with our models for the evolu-
tion of density fluctuations allows us to test our current knowledge of the universe
and also to measure some important cosmological parameters like the Hubble con-
stant today H0 or the density parameters for cold dark matter and dark energy (these
two seem to be most important components contributing to the energy-density of the
universe). The models we have at our disposal mostly use perturbative theories in
the density contrasts, velocity contrasts and the likes, so they work pretty well even
at linear level as long as these fluctuations remain small; as an example, linear the-
ory is expected to hold when dealing with the early universe, but also today if we
deal with fluctuations at very large scales. But linear theory breaks down as long
as we go to later times and/or smaller scales, so we need to push these perturba-
tive theories to the non-linear regime, but this does not give good results when one
compares predictions with N-body simulations. Then one can say that, to probe the
non-linear regime of LSS formation, it suffices to use these kind of simulations. In-
deed, N-body simulations applied to this problem have reached an high degree of
accuracy, but nevertheless, even with the computational power increase we experi-
enced in recent years, they are time consuming and they cannot span a large range
of parameters. Also they cannot shed light on the connection of physical properties
of LSS with the fundamental physics.
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It is thus of interest to try to find out suitable analytical means to probe the non
linear regime of LSS formation. Tools that use standard perturbation theory [2], ap-
proaches using renormalization group techniques and related [3–5] and others [6, 7]
showed that this is not easy to accomplish, as we have already remarked. The re-
cently developed “kinetic field theory for cosmic structure formation” [8–12] seems
a very promising tool to probe semi-analytically the non linear regime. It is based
on a microscopic statistical field theory, and enables to avoid notorious problems
arising in classical approaches like shell-crossing. In fact, standard perturbation the-
ories involve fluid dynamics equations for density and velocity contrasts, but when
different density streams meet (possible when dealing with collisionless cold dark
mater), these theories break down since they predict multi-valued velocity field [2].
Kinetic field theory, however, treats galaxies as “particles” moving in phase space
following the Hamilton flow, and since trajectories in phase space do not cross, we
do not have the shell-crossing problem. This is one of the advantages of kinetic field
theory with respect to other theories.

In this thesis, we will use this Kinetic Field Theory (KFT) approach to analyze the
non linear evolution of some simplified primordial power spectra and related higher
order correlators (the relevance of power spectra and in general of density correla-
tors in LSS formation and cosmology will be briefly seen in section 1.3.2).

We will take into account the fluctuation density field of collisionless dark matter
(we will thus ignore all the other species like baryons; nevertheless one can include
the effects of baryons in KFT, see [13]) in a standard ΛCDM cosmological setting.
In KFT framework, one can attempt to include gravitational interactions using a
perturbative approach [8, 11] or using some non perturbative scheme [14]. We will
focus on the latter approach for our analysis.

In this chapter we will show the notations and physical conventions we will use
throughout the thesis; also in section 1.3 we will summarize the cosmological set-
ting relevant for our work. In chapter 2 we review the basics of KFT, in particular
in section 2.4 we will show how the central object of KFT, the generating functional,
can be fully factorized [11], something useful for what we want to do; in chapter 3
we derive the propagator, accounting for the free evolution and a part of the interac-
tions, to use in our cosmological setting [15, 16], and describe our non-perturbative
approach to take into account gravitational interactions [14].

The original part of this work starts from chapter 4, where we describe the analysis
of the primordial power spectra; in chapter 5 we show how the KFT formalism can
be accustomed for the computations of higher order correlators like the bispectrum
and the trispectrum and we will analyze the bispectrum behavior; finally in chapter
6 one can find the conclusions and possible future developments of this work.

On my github page1, one can find the code I used to obtain the results shown in this
thesis.

1.1 Notations

Here we summarize the main notations we are using throughout the thesis.

1Link to the web page: https://github.com/lucateo/KFT_thesis_program .

https://github.com/lucateo/KFT_thesis_program
https://github.com/lucateo/KFT_thesis_program
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1.1.1 Mathematical objects

In the following, we tried to make the notation as simple as possible but searching
also to specify the kind of mathematical object we are dealing with.

We will use the vector symbol (like in ~k) to indicate three dimensional vectors or
generic n dimensional vectors (like ~ej, see (2.3)); a vector quantity will be written
without the vector symbol when we want to consider its module (for example k =

|~k|); quantities that are Kronecker products (defined in appendix A.1) are indicated
with boldface symbols (like in k); we didn’t find necessary to use a particular way
to denote matrices.

The functional integration in a function x(t) is denoted as
∫
Dx, whereas the ordi-

nary integration over a variable x is simply
∫

dx as usual.

1.1.2 Dependencies and integrals

To make the formulas not too lengthy, we will often use shortcuts for dependencies
or integrals. Since we will work with many quantities with phase space coordi-
nates dependencies, we will find useful to put the whole dependencies in a single,
integer-valued, label we will often generically indicate with the letter r. In general,
±r := {±~kr,±~lr, tr}, where~kr ,~lr are the Fourier conjugates of the real phase space
coordinates~qr , ~pr respectively. The corresponding shortcut for the integrals will be∫

r
:=
∫ d3kr

(2π)3

∫ d3lr
(2π)3

∫ tf

t(i)
dt ; (1.1)

when we will specify the dependence in this way for a function that depends only
on some of the phase space plus time quantities, the previous definitions will be
restricted to only the relevant quantities (for example for a quantity A that depends
only on~k and t, A(1) = A(~k1, t1) only).

Since we will also often not specify the dependencies at all when they are clear from
the context, we decided nevertheless to clearly specify them in the list of symbols,
that you can find in page xi, for quick reference.

1.1.3 Inner products

A generic inner product is denoted with the · symbol; its definition is slightly differ-
ent (but still very intuitive) based on the quantities it acts on:

Between ordinary vectors : ~a ·~b = ajbj ;

Between Kronecker products : a · b = (~aj ⊗~ej)(~bj ⊗~ej) =~aj ·~bj ;

Between tuples of fields : H ·Φ = (H f HB)(Φ f ΦB)
> = Hαj ·Φαj .

We can also extend the meaning of the inner product, meaning also integration over
the variables the quantities that are multiplied depend on, indicating it with •, so
that

A(r) • B(r) :=
∫

r
A(−r) · B(r) .
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We finally remark that we will always use, unless it is clearly specified otherwise,
the Einstein summation convention, i.e. summation over repeated indices is under-
stood.

1.1.4 Fourier transform

We will use the following convention for the Fourier transform

f (~x) =
∫ d3k

(2π)3 ei~k·~x f (~k) ,

where we indicate the Fourier transform of f simply by specifying its dependence
on~k.

Conversely, the inverse Fourier transform will be

f (~k) =
∫

d3x e−i~k·~x f (~x) ,

and thus the integral representation of the Dirac delta will be

δD(~x) =
∫ d3k

(2π)3 ei~k·~x .

1.2 Physical conventions

The metric signature we will use is the mostly positive (− + ++), often used in
general relativity. We will use natural units, with c = h̄ = 1. We will convert to
standard units (the one pertaining the international system of units or usual astro-
nomical units like Mpc) when we will do quantitative analysis.

Quantities evaluated at the initial time will be denoted with the superscript (i),
whereas quantities evaluated at the present time will be denoted with the subscript
0; we will also often indicate quantities evaluated in free theory (that is with the in-
teraction term set to zero) with the subscript 0, but we think confusion will not arise
since the difference between the two will always be clear.

As initial time, we will take one early in the matter dominated era (so that the initial
matter density parameter Ω(i)

m ' 1 ), and we will normalize the Robertson-Walker
scale factor a to be unity today, a0 := a(t0) = 1.

1.3 Cosmological setting summary

Here we will briefly summarize the cosmological model we will assume for our
discussion.
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1.3.1 Standard ΛCDM models

All cosmological models start from the following two assumptions, regrouped in
what is called cosmological principle:

• Isotropy. The universe, on large scales, is substantially isotropic;

• Homogeneity. The universe has no preferred place, i.e. it is homogeneous.

Of course this is true as a first approximation (but still a very good one, expecially
for early times and/or enough large scales, as the CMB spectrum and large scale
surveys show), otherwise we won’t see any structure at all and we won’t exist.

Upon an isotropic and homogeneous universe, the most general line element com-
patible with these two symmetries is the Robertson-Walker one, that in spherical
coordinates reads2

ds2 = gµνdxµdxν = −dt2 + a2(t)
(

dr2

1− κr2 + r2(dθ2 + sin2 θdϕ2)

)
,

where a(t) is the scale factor, encoding the expansion behavior of the universe, and
where we are using comoving coordinates3. The curvature parameter κ can assume
the values 0,+1,−1, representing a flat, closed and open universe respectively. This
line element is invariant under the redefinitions r → λr, a → λ−1a, κ → λ−2κ, so
that we can fix the normalization of a. In this work, we will choose a(t0) = 1.

Putting this line element in Einstein equations for general relativity

Rµν −
1
2

Rgµν = 8πGTµν + Λgµν ,

together with the stress-energy tensor for a perfect fluid (the appropriate choice
within the symmetries we are assuming)

Tµν = (P̄(t) + ρ̄(t))uµuν + P̄(t)gµν ,

we end up with the first two Friedmann equations4

(
ȧ
a

)2

=: H2 =
8πG

3
ρ̄− κ

a2 +
Λ
3

,

ä
a
= −4πG

3
(ρ̄ + 3P̄) +

Λ
3

;

the third Friedmann equation, also called continuity equation, can be derived from
the previous two or also from the zero component of the continuity equation Tµν

;ν =

2Recall that in the following we will use natural units, so in particular we set the speed of light
c = 1.

3The Robertson-Walker line element has this simple form only in comoving coordinates, i.e. with
coordinates comoving with the “cosmic fluid” (that can be represented by the CMB, so that comoving
coordinates are the ones which belong to an observer that does not see the dipole moment of the CMB).
We also recall that the comoving time coordinate is also called cosmic time.

4The notation we are using is pretty standard, but just to be clear: Rµν is the Ricci tensor, R is
the Ricci scalar, Λ is the cosmological constant (it is meant to represent dark energy here), P̄(t) and
ρ̄(t) are the (background) pressure and energy density of the cosmic fluid, dependent only on cosmic
time (otherwise they would break homogeneity and isotropy), uµ is the (covariant) four velocity and
˙ := d

/
dt .
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0, and reads
˙̄ρ + 3H(ρ̄ + P̄) = 0 .

Friedmann equations are two independent equations for three unknowns a, ρ̄, P̄, so
one usually assumes an equation of state like

P̄ = wρ̄ .

Exploiting the previous, using the third Friedmann equation, we have

ρ̄(t) = ρ̄(t0)

(
a(t)
a(t0)

)−3(1+w)

,

and since a(t0) = 1, we can ignore it in the following. Exploiting also the first
Friedmann equation (neglecting just for now curvature and cosmological constant),
we can derive from the previous

a ∝ t2/3(1+w) =⇒ H =
2

3(1 + w)t
.

Different components of the universe are characterized by a different equation of
state, in particular w = 0 for matter and w = 1/3 for radiation; using these behav-
iors, we can express the first Friedmann equation in terms of the various density
parameters today

Ωj,0 :=
8πG
3H2 ρ̄j,0 ,

where we used 0 as a subscript for quantities evaluated at the present time, and the
index j labels the various components (r = radiation, m=matter, md= (cold) dark
matter, mb = baryons, Λ = dark energy). So the first Friedmann equation becomes

H2 = H2
0

(
Ωr,0a−4 + Ωm,0a−3 + Ωκ,0a−2 + ΩΛ,0

)
. (1.2)

The parameter Ωκ,0, that refers to the contribution of the curvature, is very close to
zero [17] so that in the following we will consider the curvature κ to be negligible
(this is also coherent with inflationary models); the models in which κ = 0 are also
called Einstein-De Sitter models. Instead Ωr,0 refers to radiation, and it is of order
' 10−5, so the related term can be neglected during the matter and dark energy
dominated epochs (the ones we will consider).

In this thesis, as a background cosmological model, we will use a standard ΛCDM
model, i.e. a universe whose expansion and background values of quantities like
energy density and pressure are described by Friedmann equations, with parameters
[17]

H0 = 100 h
km

s Mpc
, h = 0.7 , Ωm = 0.3

{
Ωmb,0 = 0.04
Ωmd,0 = 0.26

, ΩΛ,0 = 0.7 , Ωr,0 ' 0 .
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1.3.2 Fluctuations and power spectra

In order to explain the growth of structures in the universe, we must deal with fluc-
tuations around the background values, in particular we must deal with

δ =
ρ− ρ̄

ρ
,

where ρ is the full density, comprehensive of the background mean density ρ̄ (obey-
ing Friedmann equations) and the fluctuation ρ̄δ.

We can view the density field as a stochastic field5. Inflation predicts primordial
fluctuations to be gaussian, and a gaussian random field is completely determined
once we know the first two correlators, i.e. the mean and the two-point correlation
function. Since for δ the mean is zero by definition, we need only〈

δ(~r, t)δ(~r′, t)
〉
=: ξδ(

∣∣~r−~r′∣∣) ,

where, due to homogeneity and isotropy, ξ can only depend on the distance between
the two points considered. The average is done over all the possible stochastic re-
alizations of different universes. Usually in cosmology one focuses on the power
spectrum, that is defined, in Fourier space, as〈

δ(~k, t)δ(~k′, t)
〉
=: (2π)3δD(~k +~k′)Pδ(k, t) ;

using this definition, it is easy to see that the power spectrum is the Fourier trans-
form of ξδ (this fact is also known as the Wiener-Khintchine theorem). We must
remark that higher order (connected) correlators will become different from zero
on later times even when dealing with initial Gaussian fluctuations, this is due to
gravitational interactions which are non-linear. We will thus need also them to char-
acterize the evolved density stochastic field.

Inflationary models predict the following primordial power spectrum

P(p)
δ ∝ kns , (1.3)

where the superscript (p) here means primordial (i.e. immediately after inflation)
and ns is the scalar spectral index; from CMB measurements, ns ' 0.96 [17]; it is
therefore very near unity (that is, the primordial power spectrum after inflation is
very near to a perfect Harrison-Zel’dovich spectrum, which has ns = 1).

We need then the equations of motion for δ and other fluctuation quantities like
the velocity contrast. In a full relativistic treatment, one should take into account
relativistic effects arising for scales larger than the comoving Hubble radius rH :=
1/aH; for example, modes that are outside the Hubble radius (that is modes whose
typical comoving length is greater than rH) cannot be in causal contact.

Of course rH is not constant in time, in particular during accelerated expansion (as
the one that hypothetically happened in the early universe during inflation, and
the one is happening now, in dark energy dominated era) it shrinks, so that modes

5We are forced to model our universe as a stochastic realization of a statistical ensemble of possibili-
ties, since we do not have direct observational access to the primordial perturbations seeds (which will
yield deterministic initial conditions) and also it is hopeless to study the evolution of a single, definite
large scale structure due to the time scales involved. See [2] for more on this.
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FIGURE 1.1: Behavior of the comoving Hubble radius with respect to
time in log-log axes around the inflationary epoch; ti is the time when
inflation begins, tf when inflation ends, teq the equivalence between
matter and radiation; here is represented a comoving scale λ, that ex-
its the horizon at texit during inflation (as most of the modes relevant
for structure formation do) and re-enters it at tentry during radiation

domination.

that were previously inside rH can go out of it and they could be no more in causal
contact. A picture of this behavior due to the inflationary epoch can be found in
figure 1.1.

For scales smaller than the Hubble radius, the equations of motion reduce to the
ones pertaining Newtonian gravity; the effects of the expansion of the universe are
encoded only in the redefinition of the coordinates used (comoving coordinates are
the proper ones) and in the redefinition of the gravitational potential.

1.3.3 Fluctuations evolution

We said that to find the equations for the fluctuations, the proper setting is of course
general relativity; however, a full relativistic treatment must deal with subtleties like
gauge problems and such (see [18]); for our purposes, since we will deal with cold
dark matter (which is non relativistic) the Newtonian approach we mentioned in the
previous section is more than enough.

Here we will briefly go through the standard Eulerian perturbation theory (where
one implements this Newtonian approach) by exploiting the so called Vlasov equa-
tion for collisionless dark matter particles (which are the most important when deal-
ing with LSS). Some of the results we will obtain in this section will be used in the
main body of the thesis.

Lagrangian of collisionless dark matter. We want here to derive an expression for
the lagrangian of collisionless dark matter particles in an expanding space-time. We
will need this in order to obtain the Vlasov equation.
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Consider at first the following lagrangian for a single particle of mass m

L =
1
2

mṙ2 −mϕ(~q, t) ,

where here we will consider~q =~r/a as a comoving quantity, ˙ := d/dt and ϕ(~q, t) as
the Newtonian gravitational potential satisfying

∇2
~q ϕ(~q, t) = 4πGa2ρ(~q, t) , (1.4)

where we recall ρ(~q, t) = ρ̄(t)(1 + δ(~q, t)). Since if we change the lagrangian adding
a total time derivative we won’t change the equations of motion, we pass to

L′ = L− dψ

dt
, ψ =

1
2

maȧq2 ,

and the new lagrangian becomes (we drop the prime)

L =
1
2

ma2q̇2 − m
2

aäq2 −mϕ =
1
2

ma2q̇2 −mφ , (1.5)

where in the last step, with φ := ϕ− ϕb, we exploited the second Friedmann equa-
tion (without the pressure term) and the expression for the background gravitational
potential (solution of (1.4) with ρ(~q, t) = ρ̄(t)), respectively

ä = −4πG
3

aρ̄(t) ; ϕb =
2
3

ρ̄(t)πGa2q2 .

Vlasov equation. We are interested in the collisionless Boltzmann equation, so we
need the hamiltonian

H = ~p ·~q−L =
p2

2ma2 + mφ ,

where we used
~p =

∂L
∂~q

= ma2~̇q .

The collisionless Boltzmann equation for the particle distribution function f (~q,~p, t)
is

C[ f ] = 0 =
∂ f
∂t

+ ~̇q · ∇~q f + ~̇p · d f
d~p

,

and using the Hamilton equations

~̇q =
∂H
∂~p

=
~p

ma2 ,

~̇p = −∂H
∂~q

= −m∇φ ,

we find the Vlasov equation

∂ f
∂t

+
~p

ma2 · ∇~q f −m∇~qφ · d f
d~p

= 0 (1.6)
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Continuity and Euler equations. Solving the non linear and non local Vlasov equa-
tion is not easy, so we consider its first two moments:

ρ(~q, t) =
m
a3

∫
d3 p f (~q,~p, t) (zero moment)

~v(~q, t) =
N
ma

∫
d3 p~p f (~q,~p, t) =

1
a4ρ

∫
d3 p~p f (~q,~p, t) (first moment)

where in the first we divided by a3 since we are interested in the physical volume and
not the comoving one, and on the last N = (

∫
d3 p f )−1 = m/a3ρ is a normalization

factor.

Now taking Vlasov equation, multiplying it by m and integrating over ~p we find

ρ̇ + 3Hρ +
1
a
∇~q · (ρ~v) = 0 , (1.7)

that is the continuity equation, whereas if again we multiply Vlasov by pi and inte-
grate over ~p we find (after some work)

∂vi

∂t
+ Hvi +

1
a

vj ∂vi

∂xj = −
1
a

∂φ

∂xi −
1
a

∂

∂xj

(
Πijρ

)
,

where at the end we have a second moment related quantity (that represents the
dispersion of velocity)

Πij =

〈
pi pj〉
m2a2 − vivj ,

where here the angle brackets means average over phase space coordinates. We
see that an equation for the n-th moment contains also the n + 1-th moment. To
truncate this set of equations, we can assume for example that the Πij term is zero
(i.e. negligible velocity dispersion, this is the so called single stream approximation),
thus obtaining

∂~v
∂t

+ H~v +
1
a
(~v · ∇)~v = −1

a
∇φ , (1.8)

that is the Euler equation for a non static background.

Fluctuation equations. Expressing (1.4) with respect to the fluctuation δ, we obtain
(exploiting the third Friedmann equation ˙̄ρ = −3Hρ̄ to get rid of the background
density)

δ̇ +
1
a
∇ · ((1 + δ)~v) = 0 ;

take its time derivative and exploit (1.8) and (1.4) to obtain, at linear level on the
fluctuations δ, v, φ

δ̈ + 2Hδ̇− 4πGρ̄δ = 0 . (1.9)

This is the equation for fluctuations at linear level, valid as long as the fluctuations
remain small. Using the first Friedmann equation, we can rewrite it as (assuming
the relevant Ω to be unity)

δ̈ + 2Hδ̇− 3
2

H2δ = 0 ; (1.10)
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the analogous treatment for radiation (accounting properly for the pressure [1])
brings one to the equation

δ̈ + 2Hδ̇− 4H2δ = 0 .

In Einstein-De Sitter models, H = 2/3(1 + w)t; with the ansatz δ ∝ tn, we find

n =

{
2/3 , −1 matter dominated,
±1 , radiation dominated.

We clearly see that we have a growing mode and a decaying mode, whose definition
can be respectively read in

δ(t) = δ(t(i))
D±(t)

D±(t(i))
.

The linearly evolved power spectrum, neglecting the decaying mode, will thus be
Plinear

δ ∝ D2
+P(i)

δ , where D+ here is the growing mode for pressureless matter.

We can insert D+ back in (1.10) and obtain (restoring Ωm)

D̈+ + 2HḊ+ −
3
2

H2ΩmD+ = 0 ;

a good fit formula for the solution of the previous for the standard ΛCDM model is
found to be (see [19–21])

D+(a) =
5a
2

Ωm

(
Ω4/7

m −ΩΛ +

(
1 +

Ωm

2

)(
1 +

ΩΛ

70

))−1

. (1.11)

Throughout this thesis, whenever we have to compute cosmological quantities, we
will use (1.2) and (1.11) respectively for H and for growth factor related quantities.
In chapter 4 we will mostly evaluate quantities using as a time coordinate the scale
factor a; to convert back to cosmic time, one can use simple redshift-time formulas
like

t =
1

H0Ω1/2
Λ,0

∫ a

0

da′

a′

(
Ωm,0

ΩΛ,0
a′−3 + 1

)−1/2

=
1

3H0Ω1/2
Λ,0

ln
ε + 1
ε− 1

, ε :=
(

Ωm,0

ΩΛ,0
a−3 + 1

)1/2

,

(1.12)

obtained integrating (1.2) for a flat ΛCDM model. It will be useful sometimes to
use the growing factor D+, instead of the cosmic time t as a time variable; this is
something we will also do, as one can see in section 3.1.

1.3.4 Power spectrum after radiation domination

According to the standard hot big bang model (see for example [1]), the Universe
at very early stages underwent an inflationary expansion, and the quantum fluctu-
ations of the hypothetical scalar field that caused it (the inflaton) are believed to be
the seeds of density fluctuations that, thanks to Jean’s instability mechanisms and
the likes, will form the structures we see all around us. Theories of inflation predicts
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the power spectrum to be very close (but not equal) to the Harrison-Zel’dovich one
(that is with ns = 1 in (1.3)); then the universe underwent the radiation dominated
era.

During radiation domination, we derived D+ ∝ t ∝ a2; but fluctuation modes that
were inside the Hubble radius were suppressed by radiation pressure, whereas the
ones that were outside of it keep increasing like a2, before entering again. This trans-
lates in a suppression factor proportional to k−2. The power spectrum at small scales
will thus have a k−4 suppression during this period, until the beginning of the matter
dominated era.

Taking as initial time one early in the matter dominated era, approximating ns ≈ 1,
we have thus

P(i)
δ (k) ∼

{
k k� keq

k−3 k� keq
, (1.13)

where keq is the wavenumber corresponding to the Hubble radius at matter-radiation
equivalence, keq ' 0.025 h Mpc−1. This is the typical behavior of power spectrum for
dark matter at the beginning of matter dominated era, where the large scale behavior
is still set by inflation whereas the small scale behavior feels the radiation damping.
We remark that, at the time of matter-radiation equivalence, linear theory is still
expected to hold.

We have a starting shape for the power spectrum; its overall amplitude can instead
be determined by the galactic variance today in a scale R = 8 Mpc h−1, defined by

σ8 =
∫ d3k

(2π)3 Pδ(k, t0)W2
R(k) , (1.14)

where WR(k) is the window function filtering a scale R. We will take a value of
σ8 = 0.8 throughout this thesis.

Eulerian theory we briefly sketched here and other perturbative approaches have
their problems, and it is difficult to make them work also in the non linear regime.
This is why one is interested in other possible approaches, attempting to at least
tackle the weakly non-linear regime of LSS formation. Kinetic field theory is one of
them, and we will introduce it to the reader on next chapter.
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Chapter 2

Kinetic Field Theory approach

Kinetic Field Theory (KFT) is basically a non equilibrium statistical field theory for
classical fields, in particular we will consider as fields the phase space coordinates
~xj = (~qj ~pj)

> for a system of N particles, where the index j, 1 ≤ j ≤ N, labels
the particle we are considering. These particles are meant to represent macroscopic
objects like galaxies and such (the usual starting point in cosmology); notice that this
is also the starting assumption of N-body simulations (see for example [22]).

For these particle phase space coordinates, the Hamilton equations

∂t~xj = J ∂jH , (2.1)

hold, whereH is the hamiltonian and J is the symplectic matrix

J =

(
0 13
−13 0

)
, (2.2)

and 1n is the n dimensional identity matrix.

It is important to remark at this point that, since the particles we are considering
follow the hamiltonian flow, and since trajectories in phase space do not cross, we
will avoid the notorious problem of shell crossing [2].

We want to consider systems of N particles, so we introduce the following Kronecker
products:

q = ~qj ⊗~ej , p = ~pj ⊗~ej ,

and also
x = ~xj ⊗~ej , (2.3)

where ~ej is the N dimensional vector whose the only non zero entry is the j-th one
and it is equal to one, (~ej)k = δjk, and the summation over j is implied. We will use
boldface symbols for quantities that are Kronecker products, all defined in the same
way as in (2.3), in the following. We introduce also the scalar product between two
Kronecker products as

a · b :=~aj ·~bj .

With these definitions we can concisely express for example the Hamilton equations
(2.1) for all N particles, as

∂tx = FH , (2.4)

with
F := (J ⊗ 1N) · (∂j ⊗~ej) (2.5)
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(more insights on Kronecker products are given in appendix A.1). The advantage of
this notation with Kronecker products is thus clear, we can concisely express quan-
tities that involve all the particles we are considering without getting mad with too
many indices.

2.1 Generating functional formalism

We now develop, as it is common in statistical field theories, the generating func-
tional for our system of N classical particles.

At first we rewrite (2.4) in the form

E(x) = ∂tx + FH0 + ∂(−J xq)V = 0 , (2.6)

where we split the free part of the equation of motion (here represented by H0) and
the interaction part (with the interaction potential V(~q, t) ). We also used the notation

∂(−J xq) := − ∂

∂J~xqj

⊗~ej , ~xqj :=
(
~qj
0

)
. (2.7)

We want a path integral representation of our system. Since the system is classical,
the path that solves the equation of motion is unique, call it xcl; we can use the
functional Dirac delta and express the probability that the configuration x is in x(tf)
at a time tf given that at t = t(i) was at x(t(i)) as

P[x(tf), x(t(i))] =
∫
D′′x δD[x(tf)− xcl[tf, x(t(i))]] , (2.8)

where we remarked the fact that xcl is completely specified by the initial conditions,
and D′′x means that upon integration I keep x fixed at the two extrema t = t(i)

and t = tf. This is the expression for classical path integral (see also [23]), and its
meaning is simple: we are just summing over all paths x(t) at fixed extrema, and the
delta ensures that the only contribution is given by the solution of the equation of
motion (2.4).

We can exploit the integral representation of the delta to write

δD[ f (x)] =
∫
Dχ exp

(
i
∫

dt χ · f (x)
)

, (2.9)

with f a generic 6-N dimensional vector, where we introduced the auxiliary field

χ(t) :=
(
~χqj(t)
~χpj(t)

)
⊗~ej , (2.10)

that we needed to perform the integration. We thus find (see appendix B.1 for de-
tails)

P[x(tf), x(t(i))] =
∫
D′′xDχ eiS , (2.11)

where S is the action

S[x, χ] =
∫ tf

t(i)
dt χ · E[x] . (2.12)
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Introducing random initial conditions, we should average the (2.11) with∫
dx(i) P0(x(i)) =:

∫
dΓi , (2.13)

where x(i) := x(t = t(i)) and P0(x(i)) is the probability assigned to the initial config-
uration x(i). Notice that here we are not dealing with an integration over functions,
hence this is an ordinary integration over 6N dimensions.

In the end the generating functional is obtained by introducing the source fields

J(t) :=

(
~Jqj(t)
~Jpj(t)

)
⊗~ej , K(t) :=

(
~Kqj(t)
~Kpj(t)

)
⊗~ej , (2.14)

yielding the canonical generating functional1

ZC[J, K] =
∫

dΓi

∫
D′xDχ exp

(
i
∫ tf

t(i)
dt (χ · E[x] + J · x + K · χ)

)
, (2.15)

where we have integrated also over the final configurations, here represented byD′x
where the single prime means that the integration over the paths is made by keeping
fixed only the initial conditions.

Looking at the free generating functional ZC,0 (that is the previous with the substi-
tution E→ E0 := ∂tx + FH0, this last step coming from (2.6)), we can perform some
integrations to arrive at (see appendix B.1)

ZC,0[J, K] =
∫

dΓi exp
(

i
∫ tf

t(i)
dt J · x̄

)
, (2.16)

with x̄(t) as the solution of the free equation of motion coupled with the source K,
i.e.

x̄(t) = G(t, t(i))x(i) −
∫ tf

t(i)
dt′ G(t, t′)K(t′) , (2.17)

and with the propagator

G(t, t′) = G(t, t′)⊗ 1N , G(t, t′) =
(

gqq(t, t′)13 gqp(t, t′)13
gpq(t, t′)13 gpp(t, t′)13

)
. (2.18)

2.2 Collective fields

We want to use KFT in the cosmic structure formation setting, so we should now
connect the microscopic phase space coordinates fields with the macroscopic ones,
representing collective properties of the particle ensemble. Since the primary con-
cern of cosmic structure formation regards density fluctuations, we shall certainly
connect the collective density field with the particle ensemble properties. For N
point particles with equal mass (here supposed to be unity only for simplicity), the

1We are dealing with a canonical ensemble since we are considering the number of particles N as
fixed.
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collective density field is given by a sum of delta contributions,

ρ(~q, t) =
N

∑
j=1

δD(~q−~qj(t)) . (2.19)

Now assume that we can write the potential as a sum over all point-particle poten-
tials v as

V(~q, t) = ∑
j

v(~q−~qj(t)) ; (2.20)

with this (not severe) assumption we can recast in a useful form the interaction term
E1 coming from (2.6),

E1(q) :=
(

0
∂~qj

)
V ⊗~ej ;

we can express it in terms of the density field as

V =
∫

d3y v(~q−~y)
N

∑
j=1

δD(~y−~qj(t)) =
∫

d3y v(~q−~y)ρ(~y, t) . (2.21)

Exploit the Dirac delta to write

∂~qjV =
∫

d3q δD(~q−~qj)∂~qV = −
∫

d3q (∂~qδD(~q−~qj))V ;

defining the response field

B(~q, t) := ∑
j
~χpj · ∂~qδD(~q−~qj(t)) , (2.22)

we can write the interaction part of the action, exploiting also (2.21), as

S1 :=
∫

dt χ · E1(x) = −
∫

dt
∫

d3q
∫

d3y B(~q, t)v(~q−~y)ρ(~y, t) . (2.23)

From now on, we will use the shortcut notations for dependencies and integrals as
stated in section 1.1.2, i.e. we indicate only the label r (generally an integer number)
for the whole dependencies.

So expressing everything with respect to Fourier transform quantities the (2.23), one
can easily arrive at

S1 = −(2π)3
∫

r
B(−r)v(r)ρ(r)δD(~lr) , (2.24)

where δD(~lr) is there since the potential does not depend on momenta.

So we need the expression of ρ, B in Fourier space. Notice that, looking at (2.19)
and (2.22), they involve a sum over all the particles, so that we can consider their so
called one particle contribution. For the density field

ρj(~q, t) := δD(~q−~qj(t)) =
∫ d3k

(2π)3 ei~k·(~q−~qj(t)) =:
∫ d3k

(2π)3 ei~k·~qρj(~k, t) ,

so the one particle contribution to density field in Fourier space is

ρj(r) = e−i~kr ·~qj(tr) ; (2.25)
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analogously, the one particle contribution for the response field B in Fourier space
will be

Bj(r) = i~kr · ~χpj(tr)ρj(r) . (2.26)

We thus introduce the so called Klimontovich doublet of collective fields

Φ(r) =
(

Φ f (r)
ΦB(r)

)
:=

N

∑
j=1

(
ρj(~kr, tr)e−i~lr ·~pj(tr)

Bj(~kr, tr)e−i~lr ·~pj(tr)

)
, (2.27)

that reduces to ρ, B if they are evaluated at~l = 0. In the end we can write (explicit
calculations are made in appendix B.3)

S1 =
∫

r

∫
r′

Φ>(−r)σ(r,−r′)Φ(r) = Φ • σ •Φ , (2.28)

with

σ(r, r′) = −1
2
(2π)9δD(tr − t′r)δD(~kr +~k′r)δD(~lr)δD(~l′r)v(r)

(
0 1
1 0

)
. (2.29)

Since we have introduced these new fields, we should also introduce accordingly
other source fields, which will couple to the collective fields in the generating func-
tional, so we will introduce the term

exp
(

i
∫

r
H(−r) ·Φ(r)

)
= eiH•Φ , H(r) =

(
H f (r)
HB(r)

)
, (2.30)

inside ZC,0
2.

To finally write the full generating functional, we only need the operator form of the
new collective and source fields, so that, as it is common in QFT, we can write the
interaction part as an exponential of operators acting on the free functional ZC,0.

The operator form of (2.26) and (2.25) is given by the substitution

x(t)→ −i
δ

δJ(t)
, χ(t)→ −i

δ

δK(t)
, (2.31)

so that we can write3

ZC,0[H, J, K] = exp
(

i
∫

r
H(r) · Φ̂(r)

)
ZC,0[J, K] , (2.32)

2Notice that the source field H depends also on wavenumbers ~k and ~l differently from J, K that
depend only on time. This is coherent, since collective fields are macroscopic fields.

3Some insights on this approach in including terms on the generating functional by means of oper-
ators is given in appendix B.2.
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where Φ̂ is the operator version of (2.27), whose explicit expression is, with ~s =

(~k ~l)>

Φ̂(r) = ∑
j

 exp
(
−~sr · δ

/
δ~Jj(tr)

)(
~kr · δ

/
δ~Kpj(tr)

)
exp

(
−~sr · δ

/
δ~Jj(tr)

)
=: ∑

j
Φ̂(1)

j (r) =: ∑
j

Φ̂(1)
f j
(r)

Φ̂(1)
Bj
(r)

 (2.33)

where one can see from the structure of Φ̂Bj that we can write

Φ̂(1)
Bj

= b̂j(r)Φ̂
(1)
f j
(r) , b̂j(r) :=~kr ·

δ

δ~Kpj(tr)
. (2.34)

We can now include the interaction term (2.28) again using its operator form, ob-
tained with the substitution

Φ(r)→ Ĥ(r) := −i
δ

δH(−r)
, (2.35)

so that
Ŝ1 =

∫
r

∫
r′

Ĥ>(−r)σ(r,−r′)Ĥ(r′) = Ĥ • σ • Ĥ . (2.36)

At last, the full generating functional can be written as

ZC[H, J, K] = eiŜ1eiH•Φ̂ZC,0[J, K] . (2.37)

2.3 Initial phase space probability distribution

We need now to specify the initial probability distribution. Since our aim is to apply
the machinery we developed to cosmic structure formation, the microscopic degrees
of freedom need to be correlated in such a way that the corresponding density, a
macroscopic (or collective, since it resumes a collective property of the particle en-
semble we are considering) field, together with the comoving peculiar momenta
~P(i)(~q), become homogeneous and isotropic Gaussian fields4. Calling the density
contrast

δ(~q, t) :=
ρ(~q, t)− ρ̄

ρ̄
, (2.38)

where ρ̄ is the mean density, we recall that we can define the power spectrum as〈
δ(~k, t)δ(~k′, t)

〉
=: (2π)3δD(~k + ~k′)Pδ(k, t) . (2.39)

Since we are discussing random gaussian fields, the power spectrum (together with
the mean) is all we need to know; what we should do now is to see how our assump-
tions, made on the macroscopic density, affects P(x(i)) that involves particles. The

4Here we will not deal with primordial non Gaussianities, that to the best of our current knowledge
(see [24]) are not relevant.
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derivation is not straightforward, so we will do it in next subsection and summarize
the main formulas and results in subsection 2.3.2.

2.3.1 Derivation of P(x(i))

In order to derive a P(x(i)) relevant for cosmic structure formation, the standard as-
sumption is that the initial velocity field is irrotational5, i.e. we can define a velocity
potential ψ such that

~u(i) = ∇ψ , (2.40)

where in this whole subsection all the derivatives are done with respect to initial
configuration variables~q(i). Writing

~q(t) = ~q(i) + b(t)~u(i) , (2.41)

for a certain monotonic function b with normalization b(t(i)) = 1, we have, exploit-
ing continuity

ρ(t)d3q(t) =ρ(t(i))d3q(i) = ρ̄

∣∣∣∣∣det

(
∂~q(i)

∂~q(t)

)∣∣∣∣∣d3q(t)

=⇒ ρ(t) = ρ̄

∣∣∣∣∣∣det

δij + b(t)
∂2ψ

∂q(i)i ∂q(i)j

∣∣∣∣∣∣
−1

,

where ρ̄ = ρ(t(i)) is the mean density, and we used (2.41) to simplify the expression
of the jacobian; exploiting the generic approximation valid at linear level

det(1 + A) = eln det(1+A) = eTr ln(1+A) ' eTr A ' 1 + Tr A ,

that holds for a generic n× n matrix A (considered as a perturbation), we can write
(at linear level in the fluctuations)

ρ(t) 'ρ̄(1 + b(t)∇2ψ)−1 ' ρ̄(1− b(t)∇2ψ) =: ρ̄(1 + δ(t))

=⇒ δ(t(i)) =: δ(i) = −∇2ψ .
(2.42)

If we consider particles with unitary mass, we write for the initial momentum simply

~P(i) = ∇ψ , (2.43)

so that both the initial density contrast and the initial momentum are related by
the velocity potential. Since the remaining discussion in this subsection involves
quantities evaluated at initial time, we can drop the superscript (i) in the following.

We can write the probability for finding a particle labeled with j at position ~qj with
momentum ~pj as

P(~qj,~pj) =
∫

dδ(~qj)
∫

d~P(~qj) P(~qj|δ(~qj))P(~pj|~P(~qj))P(δ(~qj), ~P(~qj)) ; (2.44)

now, recalling the definition of density given in (2.19), the probability that the par-
ticle we are considering is in ~qj, given the density value at the same point, will be

5This assumption relies on the fact that, at linear level, vector perturbations usually decay (see [18])
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proportional to this value6, thus

P(~qj|ρ(~qj)) =
ρ(~qj)

N
,

where the factor N, the number of particles, comes from normalization condition∫
ρ(~q)dV = N. This, using the definition of the density contrast (2.38), implies

P(~qj|δ(~qj)) =
ρ̄

N
(1 + δ(~qj)) ;

using also
P(~pj|~P(~qj)) = δD(~pj − ~P(~qj)) ,

that means that ~pj and ~P(~qj) have basically the same meaning here (remember we
are evaluating everything at the initial time), we arrive at

P(~qj,~pj) =
ρ̄

N

∫
dδ(~qj) (1 + δ(~qj))P(δ(~qj),~pj) .

The generalization to the full Kronecker product is straightforward,

P(q, p) = V−N
N

∏
j=1

(∫
dδ(~qj) (1 + δ(~qj))P(δ(~qj),~pj)

)
, (2.45)

where V = Nρ̄−1.

We need now to find P(δ(~qj),~pj). To evaluate it, we consider its characteristic func-
tion; since we are discussing gaussian random fields with zero mean, the corre-
sponding characteristic function, regrouping for brevity the random fields in the
doublet

d :=
(

δ(~qj)
~P(~qj)

)
⊗~ej =

(
δ(~qj)
~pj

)
⊗~ej =:

(
dδ

dp

)
,

will be

Φd(t) = exp
(
−1

2
t> · C · t

)
, (2.46)

with t as the Fourier conjugate of d and C as the N-point covariance matrix

C := Cjk ⊗ (~ej ⊗~ek) =:

(
Cδjδk

~C>δj pk

~Cpjδk Cpj pk

)
⊗ (~ej ⊗~ek) =:

(
Cδδ Cδp
Cpδ Cpp

)
,

with

Cjk :=

 〈δ(~qj)δ(~qk)
〉 〈

δ(~qj)~P(~qk)
〉>〈

~P(~qj)δ(~qk)
〉 〈

~P(~qj)⊗ ~P>(~qk)
〉
 .

6Here the label j means that we are considering the particle j, but the corresponding~qj can span over
all the possible values the coordinate can take; what we are saying here is that, since the contribution
to the density is a sum of Dirac delta contributions, the more "deltas" I have on the point ~q, the more
probable a particle can be found there, and if I have no deltas in the point~q, then of course I must have
a zero probability to find any particle there.
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We can connect every element of the covariance matrix with the power spectrum; in
fact, from the definition (2.39) it immediately follows

Cδjδk =
∫ d3k

(2π)3 Pδ(k)e−i~k·(~qj−~qk) ;

for the others, it suffices to exploit (2.43) and the last equation in (2.42) to write, in
Fourier space

~P(~k) = i
~k
k2 δ(~k) ,

so that 〈
~P(~qj)δ(~qk)

〉
=i
∫ d3k

(2π)3 k−2~kPδ(k)e−i~k·(~qj−~qk) ,〈
~P(~qj)⊗ ~P>(~qk)

〉
=−

∫ d3k
(2π)3

~k⊗~k k−4Pδ(k)e−i~k·(~qj−~qk) .

The probability function we are searching will be the inverse Fourier of (2.46)

P(d) =
∫ dtp

(2π)3N exp
(
−1

2
t>p · Cpp · tp + itp · p

)
×
∫ dtδ

(2π)N exp
(
−1

2
t>δ · Cδδ · tδ − t>δ · Cδp · tp + itδ · δ

)
;

now put the previous in (2.45), and define the part affected by the δ integration as

I1(tδ) :=
N

∏
j=1

(∫
dδ(~qj) (1 + δ(~qj))

)
exp(itδ · δ) ,

use the substitution zj := 1 + δ(~qj) to obtain

I1(tδ) = exp

(
−i

N

∑
j=1

tδj

)
N

∏
j=1

(∫
dzj zje

itδj zj

)
= exp

(
−i

N

∑
j=1

tδj

)
N

∏
j=1

(
−2πi

∂

∂tδj

δD(tδj)

)
,

where we exploited the integral representation of the delta on the last step. Then for
the tδ integration,

C(tp) :=
∫ dtδ

(2π)N exp
(
−1

2
t>δ · Cδδ · tδ − t>δ · Cδp · tp

)
I1(tδ) ,

exploit the derivatives of the Dirac deltas in I1 to obtain

C(tp) = iN
N

∏
j=1

(
∂

∂tδj

)
exp

(
−1

2
t>δ · Cδδ · tδ − t>δ · Cδp · tp − i

N

∑
j=1

tδj

)∣∣∣∣∣
tδ=0

;
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the explicit expression of the previous, playing with derivatives, can be seen to be

C
(
tp
)
=

N

∏
n=1

(
1− i

N

∑
m=1

~Cδn pm ·~tpm

)
+ ∑

i<j
Cδiδj ∏

{n}′

(
1− i

N

∑
m=1

~Cδn pm ·~tpm

)

+ ∑
{i<j,k<l}′i<k

Cδiδj Cδkδl ∏
{n}′

(
1− i

N

∑
m=1

~Cδn pm ·~tpm

)
+ . . . ,

where the primed set {n}′ excludes the previous indices picked up on the previous
sum, whereas the prime in {i < j, k < l}′i<k indicates that no label may be shared
between pairs in any individual term of the sum.

Finally, for the tp integration, we can write∫ dtp

(2π)3N C(tp) exp
(
−1

2
t>p · Cpp · tp + itp · p

)
= Ĉ

(
∂

i∂p

) ∫ dtp

(2π)3N exp
(
− 1

2
t>p

· Cpp · tp + itp · p
)
=

1√
(2π)3N det

(
Cpp

) Ĉ( ∂

i∂p

)
exp

(
−1

2
p> · C−1

pp · p
)

,

where on the first step we used the trick explained in appendix B.2 to put C out-
side the integral and on the last step we exploited the standard result for Gaussian
integrals (A.1).

2.3.2 Summary of initial phase space computations

The final expression for the initial phase space probability is

P0(x(i)) =
V−N√

(2π)3N det
(
Cpp

) Ĉ( ∂

i∂p(i)

)
exp

(
−1

2
p(i)> · C−1

pp · p(i)
)

, (2.47)

where C is the N-point covariance matrix, C := Cjk ⊗ (~ej ⊗~ek), with

Cjk :=

(
Cδjδk

~C>δj pk

~Cpjδk Cpj pk

)

:=

〈δ(i)(~q(i)j )δ(i)(~q(i)k )
〉 〈

δ(i)(~q(i)j )~P(i)(~q(i)k )
〉>〈

~P(i)(~q(i)j )δ(i)(~q(i)k )
〉 〈

~P(i)(~q(i)j )⊗ ~P(i)>(~q(i)k )
〉
 ;

(2.48)

since in cosmic structure formation the initial momentum field is irrotational and
related to density contrast via continuity equation, that is, with ~u(i) as the initial
velocity field and ψ the velocity potential,

~u(i) = ∇ψ , δ(i) = −∇2ψ ,
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we can express all the covariance matrix terms with respect to the density fluctuation
power spectrum:〈

δ(i)(~q(i)j )δ(i)(~q(i)k )
〉
=
∫ d3k

(2π)3 Pδ(k)e
−i~k·(~q(i)j −~q

(i)
k ) ,〈

~P(i)(~q(i)j )δ(i)(~q(i)k )
〉
=i
∫ d3k

(2π)3 k−2~kPδ(k)e
−i~k·(~q(i)j −~q

(i)
k ) ,〈

~P(i)(~q(i)j )⊗ ~P(i)>(~q(i)k )
〉
=−

∫ d3k
(2π)3

~k⊗~k k−4Pδ(k)e
−i~k·(~q(i)j −~q

(i)
k ) ,

(2.49)

and at last C is the operator

Ĉ
(

∂

i∂p(i)

)
=

N

∏
n=1

(
1− i

N

∑
m=1

~Cδn pm ·
∂

i∂~p(i)m

)
+ ∑

i<j
Cδiδj ∏

{n}′

(
1− i

N

∑
m=1

~Cδn pm ·
∂

i∂~p(i)m

)

+ ∑
{i<j,k<l}′i<k

Cδiδj Cδkδl ∏
{n}′

(
1− i

N

∑
m=1

~Cδn pm ·
∂

i∂~p(i)m

)
+ . . . , (2.50)

where the primed set {n}′ excludes the previous indices picked up on the previous
sum, whereas the prime in {i < j, k < l}′i<k indicates that no label may be shared
between pairs in any individual term of the sum.

2.4 Factorizing the free generating functional

Our primary interest regards the computation of the power spectrum, defined in
(2.39), that is related to the density correlator. In our formalism, this can be seen to
be given by

(2π)3δD(~k1 +~k2)Pδ(k, t) = Ĥ f1(1)Ĥ f2(2) ZC[H]

∣∣∣∣
H,~l1,~l2=0

=: Gρ(1)ρ(2) ; (2.51)

in general, we will thus need to evaluate density correlators of this kind. What we
want to show now is that, in the free case, density correlators expressions completely
factorize.

A general correlator has the form

Gα1(1)···αn(n) := 〈Φα1(1) · · ·Φαn(n)〉 = Ĥα1(1) · · · Ĥαn(n) ZC[H]

∣∣∣∣
H=0

, (2.52)

where αj can stand for f or B (density or respond field), or other macroscopic field
labels one could define from these two. Then, restricting to the free case, one sees,
from (2.32),

G(0)
α1(1)···αn(n)

=eiH•Φ̂Φ̂α1(1) · · · Φ̂αn(n) ZC,0[J, K]

∣∣∣∣
H,J,K=0

=

=

(
∑

j
Φ̂(1)

α1,j(1)

)
· · ·
(

∑
j

Φ̂(1)
αn,j(n)

)
ZC,0[J, K]

∣∣∣∣
J,K=0

;
(2.53)
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it is clear then that the previous is a sum of one-particle contribution terms like

Φ̂(1)
α1,1′ (1) · · · Φ̂

(1)
αn,n′ (n) ZC,0[J, K]

∣∣∣∣
J,K=0

,

where prime indices label the particular particle. Since we are considering an en-
semble of indistinguishable particles, the full correlator (2.53) will be a sum over all
possible ways of combining N indices in subgroups of n elements. Every term of
this sum will give an equal contribution, so what we need to consider is only one
one-particle contribution with arbitrary assignment of indices. Then the real result,
i.e. the sum, will contain only an overall, irrelevant constant factor.

Considering thus only n one-particle density operators, we can show that

Φ̂(1)
f j1
(1) · · · Φ̂(1)

f jn
(n) ZC,0[J, K]

∣∣∣∣
J,K=0

= ZC,0[L, 0] ,

with

L = −
n

∑
m=1

~smδD(t− tm)⊗~ejm = −
n

∑
m=1

(
~km
~lm

)
δD(t− tm)⊗~ejm , (2.54)

where jm labels the particle that corresponds to the dependence label m = (~km,~lm, tm).
In fact, using (2.16) and (2.33), we see that

Φ̂(1)
f jm
(m)ZC,0[J, K] =

∫
dΓi exp

(
i
∫ tf

t(i)
dt J · x̄

)
e−~sm·x̄jm (tm) = ZC,0[J + L, K] ,

where L is easily seen to be

L = −~smδD(t− tm)⊗~ejm ,

and the (2.54) easily follows in the general case.

The action of Φ̂B operators in this case is then straightforward; from (2.34), we see
that the only new thing is the action of b̂j(r), that can be considered after the evalu-

ation of all the Φ̂(1)
f j
(j) operators and after setting J = 0, so consider

b̂jr(r) ZC,0[L, K]

∣∣∣∣
K=0

=~kr ·
−iδ

δ~Kpjr
(tr)

{ ∫
dt

n

∑
i=1

(
δD(t− ti)~si ·

[
G(t, t(i))~x(i)ji

−
∫ t

t(i)
dt′ G(t, t′)~Kji(t

′)
])}

ZC,0[L, K]

∣∣∣∣
K=0

=i
n

∑
i=1

(
~kr ·~kigqp(tr, ti) +~kr ·~ligpp(tr, ti)

)
δjr ji ZC,0[L, 0] ,

where the last Kronecker delta refers to particle indices (the delta does not remove
the sum, since the sum is made with respect to dependence labels, and different
dependence labels can be shared by the same particle). Since response factors will
appear with the interaction potential σ that contains δ(~l) factors, usually the term
~kr ·~ligpp(tr, ti) on the last line can be safely put to zero.

We can give a more explicit expression if we consider only momentum-momentum
correlations in (2.47), that is if we put C = 1; This approximation is justified as
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long as we treat systems with unbound gqp component of the propagator and for
sufficiently late times7. Notice at first that we can write, using (2.16)

ZC,0[L, 0] =
∫

dΓi exp

(
− i

∫
dt ∑

m
δD(t− tm)

(
~km · (gqq(tm, t(i))~q(i)jm + gqp(tm, t(i))~p(i)jm )

+~lm · (gpq(tm, t(i))~q(i)jm + gpp(tm, t(i))~p(i)jm )
))

=:
∫

dΓi eiLq·q(i)+iLp·p(i)
, (2.55)

where we defined

Lq =−∑
m
(~kmgqq(tm, t(i)) +~lmgpq(tm, t(i)))⊗~ejm =: ∑

m

~Lqjm
⊗~ejm ,

Lp =−∑
m
(~kmgqp(tm, t(i)) +~lmgpp(tm, t(i)))⊗~ejm =: ∑

m

~Lpjm
⊗~ejm .

(2.56)

Inserting (2.47) with C = 1,

ZC,0[L, 0] =
V−N√

(2π)3N det
(
Cpp

) ∫ dq(i) dp(i) exp

(
− 1

2
p(i)> · C−1

pp · p(i)

+ iLp · p(i) + iLq · q(i)

)
= V−N

∫
dq(i) exp

(
−1

2
L>p · Cpp · Lp + iLq · q(i)

)
,

(2.57)

where on the last step we used the standard result (A.1).

It will be useful to consider

Cpp =
σ2

1
3

13 ⊗ 1N + ∑
j 6=k

Cpj pk ⊗~ej ⊗~ek ,

where

σ2
n :=

∫ d3k
(2π)3 k2n−4Pδ(k) ; (2.58)

it is then clear that we split the term that involve the same particle correlator and
different particle correlators. This reflects in

Q := L>p · Cpp · Lp =
σ2

1
3 ∑

j

~L2
pj
+ ∑

j 6=k

~L>pj
Cpj pk

~Lpk

=: Q0 −QD + ∑
j 6=k

~L>pj
Cpj pk

~Lpk ,
(2.59)

with the definitions

Q0 :=
σ2

1
3

(
∑

j

~Lpj

)2

, QD :=
σ2

1
3 ∑

j 6=k

~Lpj ·~Lpk ; (2.60)

these are meaningful, in fact we will see that Q0 will vanish in the important case
related to the power spectrum, and QD will be connected to the free streaming damp-
ing.

7It is still possible to exactly account also for the other correlations, see appendix D, but accounting
for those gives only a very small correction at the price of a way heavier computational effort.
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2.4.1 Deriving the factorization

Now we are ready to demonstrate that the generating functional can be completely
factorized. The derivation is quite technical, so we will summarize its most impor-
tant results and formulas in subsection 2.4.2.

Start from

ZC,0[L, 0] = V−N
∫

dq(i) exp
(
−1

2
L>p · Cpp · Lp + iLq · q(i)

)
; (2.61)

the exponential actually depends only on l different particle labels due to the expres-
sion of Lp (see (2.56)), where l is the number of density operators acting on the gen-
erating functional. So, N− l integrations yield only a volume factor V. For the other
integrations, since Cpp depends only on the coordinate differences ~qij := ~q(i)j −~q(i)k ,
it is useful to rewrite the term in the exponential as

Lq · q = ~Lq1 ·~q
(i)
1 +~Lq2 · (~q21 +~q(i)1 ) + . . . =

(
l

∑
j=1

~Lqj

)
·~q(i)1 +

l

∑
j=2

~Lqj ·~qj1 ;

now the integration over the single ~q(i)1 can be done without any effect on the L>p ·
Cpp · Lp part (that depends only on coordinate differences), thus yielding a delta.
Changing also the integration variable, we have then

ZC,0[L, 0] =
(2π)3

V l δD

(
l

∑
j=1

~Lqj

)
l

∏
j=2

∫
d3qj1 exp

(
−1

2
L>p · Cpp · Lp + i

l

∑
j=2

~Lqj ·~qj1

)
;

now Cpp depends also on the other coordinate differences

~qab := ~qa1 −~qb1 , b = 2, . . . , (l − 1) , a = (b + 1), . . . , l , (2.62)

so the idea now is to integrate over all coordinate differences, by introducing appro-
priate deltas enforcing the constraint (2.62). So we write

ZC,0[L, 0] =
(2π)3

V l δD

(
l

∑
j=1

~Lqj

)
l

∏
j>k

∫
d3qjk

(
∏
a>b

δD(~qab −~qa1 +~qb1)

)

× exp

(
−1

2
L>p · Cpp · Lp + i

l

∑
j=2

~Lqj ·~qj1

)
.

(2.63)

Write the deltas using their integral representation

δD(~qab −~qa1 +~qb1) =
∫ d3kab

(2π)3 ei~k′ab·(~qab−~qa1+~qb1) ;

we can then regroup all the phase factors appearing in (2.63) as

l

∑
j=2

~Lqj ·~qj1 + ∑
a>b

~k′ab · (~qab −~qa1 +~qb1) =
l

∑
j=2

(
~Lqj −

j−1

∑
c=2

~k′jc +
l

∑
d=j+1

~k′dj

)
·~qj1

+ ∑
a>b

~k′ab ·~qab =:
l

∑
j>k

~k jk ·~qjk ,
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where a and b span over the indices subjected to the constraint in (2.62), and with

~k jk :=

{
~Lqj −∑

j−1
c=2

~k′jc + ∑l
d=j+1

~k′dj for k = 1, j ∈ {2, . . . , l}
~k′jk otherwise .

So (2.63) becomes (using also the splitting (2.59), and recalling that Q0, QD do not
depend on coordinate differences)

ZC,0[L, 0] =
(2π)3

V l δD

(
l

∑
j=1

~Lqj

)
e−(Q0−QD)/2 ∏

a>b

∫ d3kab

(2π)3 ∏
j>k

×
∫

d3q e
−~L>pj

Cpj pk
~Lpk+i~k jk ·~qjk ;

(2.64)

we have now to simplify only the last line of the previous.

Notice that we can correlate Cpj pk with the velocity potential correlation function

ξψ(qjk) =
∫ d3k

(2π)3 Pψ(k)ei~k·~qjk =
∫ d3k

(2π)3 k−4Pδ(k)ei~k·~qjk ,

(where on the last step we exploited (2.42) to write Pψ = k−4Pδ). In fact, looking at
the last of (2.49), we have

Cpj pk = −(∇⊗∇)ξψ(qjk) .

Due to isotropy, ξψ can only depend on the modulus of the coordinate vector differ-
ence, thus it is useful to express the derivatives with respect to it; writing only q as
the argument of ξψ for simplicity, exploiting

∂

∂~qi
=

∂q
∂~qi

d
dq

=
~qi

q
d
dq

= q̂i
d
dq

,

we have

∇⊗∇ = (q̂⊗ q̂)
d2

dq2 + (13 − q̂⊗ q̂)
1
q

d
dq

,

with q̂ as the unit vector pointing in the direction of~q. In the end, using the previous
two equations,

Cpj pk = −(q̂⊗ q̂)ξ ′′ψ(q)− (13 − q̂⊗ q̂)
ξ ′ψ(q)

q
.

We want to express it with respect to the projectors

π
‖
jk := k̂ jk ⊗ k̂ jk , π⊥jk := 13 − π

‖
jk ,

so we impose

(q̂⊗ q̂)ξ ′′ψ(q) + (13 − q̂⊗ q̂)
ξ ′ψ(q)

q
!
= a‖(q)π

‖
jk + a⊥(q)π⊥jk .
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In order to obtain the expressions for a‖, a⊥, multiply the previous by the projectors

π
‖
jk and by π⊥jk and take their trace; exploiting, with µ := k̂ jk · q̂,

Tr π
‖
jk = ∑

i=x,y,z
(k̂ jk)

2
i = 1 = Tr(q̂⊗ q̂) ,

Tr
(

π
‖
jkπ
‖
jk

)
= ∑

i,l
((k̂ jk)i(k̂ jk)l)

2 =

(
∑

i=x,y,z
(k̂ jk)

2
i

)2

= 1 ,

Tr
(

π
‖
jkπ⊥jk

)
= 0 ,

Tr
(

π
‖
jk q̂⊗ q̂

)
= ∑

i,l
((k̂ jk)i q̂l)

2 =

(
∑

i=x,y,z
(k̂ jk)i q̂i

)2

= µ2 ,

Tr
(

π⊥jk q̂⊗ q̂
)
= Tr

(
π
‖
jk(13 − q̂⊗ q̂)

)
= 1− µ2 ,

Tr
(

π⊥jk(13 − q̂⊗ q̂)
)
= 1 + µ2 ,

we end up with

a‖(q) = µ2ξ ′′ψ(q) + (1− µ2)
ξ ′ψ(q)

q
, a⊥(q) =

1− µ2

2
ξ ′′ψ(q) +

1 + µ2

2q
ξ ′ψ(q) .

Defining for simplicity

λ
‖
jk :=

~L>pj
π
‖
jk
~Lpk

g2
qp(t, 0)k2

jk
, λ⊥jk =

~L>pj
π⊥jk~Lpk

g2
qp(t, 0)k2

jk
,

we can rewrite the last line in (2.64) as∫
d3q eg2

qp(t,0)k2
jk(a‖λ

‖
jk+a⊥λ⊥jk)ei~k jk ·~q =: (2π)3δD(~k jk) + Pjk , (2.65)

with

Pjk(k jk, t) =
∫

d3q
(

eg2
qp(t,0)k2

jk(a‖λ
‖
jk+a⊥λ⊥jk) − 1

)
ei~k jk ·~q .

The particular splitting we made in (2.65) can be understood once we consider the
application to the power spectrum, something we will do in section 2.4.3.

2.4.2 Factorization final result

In the end the one-particle contribution of l density operators Φ̂ f
∣∣
~l=0 to the correlator

is

ZC,0[L, 0] =V−l(2π)3δD

(
l

∑
j=1

~Lqj

)
e−(Q0−QD)/2

l

∏
2≤b<a

∫ d3kab

(2π)3

×
l

∏
1≤k<j

((2π)3δD(~k jk) + Pjk) ,

(2.66)
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with8

Pjk(k jk, t) =
∫

d3q
(

eg2
qp(t,0)k2

jk(a‖λ
‖
jk+a⊥λ⊥jk) − 1

)
ei~k jk ·~q , (2.67)

as the non linearly evolved power spectrum, as we will see, and

~k jk :=

{
~Lqj −∑

j−1
b=2

~k′jb + ∑l
a=j+1

~k′aj for k = 1, j ∈ {2, . . . , l}
~k′jk otherwise ,

(2.68)

where the primed wave vectors are the Fourier conjugates of the coordinate differ-
ences~qij := ~qi −~qj; also

λ
‖
jk :=

~L>pj
π
‖
jk
~Lpk

g2
qp(t, 0)k2

jk
, λ⊥jk =

~L>pj
π⊥jk~Lpk

g2
qp(t, 0)k2

jk
, (2.69)

with the projectors (indicating as k̂ the unit vector pointing in the direction of~k jk)

π
‖
jk = k̂⊗ k̂ , π⊥jk = 13 − π

‖
jk , (2.70)

and with

a‖(q) = µ2ξ ′′ψ(q) + (1− µ2)
ξ ′ψ(q)

q
, a⊥(q) =

1− µ2

2
ξ ′′ψ(q) +

1 + µ2

2q
ξ ′ψ(q) , (2.71)

where µ is the angle between~q and~k21, µ := q̂ · k̂21, and ξψ is the correlation function
for the initial velocity potential

ξψ(qjk) =
∫ d3k

(2π)3 Pψ(k)ei~k·~qjk =
∫ d3k

(2π)3 k−4Pδ(k)ei~k·~qjk . (2.72)

We can simplify further these last expressions, in fact we can integrate on the solid
angle to find

ξψ(q) =
1

2π2q

∫ ∞

0
dk k−3Pδ(k) sin(kq) =

1
2π2

∫ ∞

0
dk k−2Pδ(k)j0(kq) , (2.73)

so that the derivatives are

ξ ′ψ(q) = −
q

2π2

∫ ∞

0
dk Pδ(k)

j1(kq)
kq

,

ξ ′′ψ(q) =
1

2π2

∫ ∞

0
dk Pδ(k)

(
j2(kq)− j1(kq)

kq

)
,

(2.74)

8Here q refers to the initial momentum integration, but since in the end is a dummy variable (i.e. it
is always integrated), we will not explicitly put the superscript (i) for simplicity.
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where j0, j1, j2 are the spherical Bessel functions

j0(x) :=
sin x

x
,

j1(x) :=
sin x

x2 −
cos x

x
,

j2(x) :=
(

3
x2 − 1

)
sin x

x
− 3 cos x

x2 .

(2.75)

We can recast (2.71) as

a‖(q) = a1(q) + µ2a2(q) , 2a⊥(q) = 2a1(q) + (1− µ2)a2(q) ,

with

a1(q) := − 1
2π2

∫
dk Pδ(k)

j1(kq)
kq

, a2(q) :=
1

2π2

∫
dk Pδ(k)j2(kq) . (2.76)

2.4.3 Power spectrum

Specializing the (2.66) for the action of two density operators, we obtain

Z0[L, 0] =
(2π)3

V2 δD(~Lq1 +~Lq2)e
−(Q0−QD)/2((2π)3δD(~k21) + P21) ; (2.77)

since it is a two-point density correlator, from (2.51), if computed at ~l = 0 and at
equal time, it contains informations regarding the free power spectrum. So in the
following we will assume~l1 = ~l2 = 0 and t1 = t2 ≡ t. The delta in (2.77) ensures
~Lq1 = −~Lq2 so that~k1 = −~k2, implying Q0 = 0 and

QD = −2
σ2

1
3

k2
1g2

qp(t, t(i)) ;

the only wave vector we have to consider is~k21 = ~Lq2 = −gqq(t, t(i))~k1; this implies

that the projector π
‖
21 points in the same direction of~k1; hence the (2.69) becomes

λ
‖
21 = −1 , λ⊥21 = 0 .

Collecting everything, we have (setting gqq ≡ 1 as it is often the case)

Z0[L, 0] =
(2π3)

V2 δD(~k1 +~k2)e−σ2
1 g2

qp(t,t(i))k2
1/3((2π)3δD(~k21) + P21) (2.78)

with
P21 =: P =

∫
d3q

(
e−g2

qp(t,t(i))k2
1a‖ − 1

)
ei~k1·~q . (2.79)

This last term, as can be seen from (2.78) (ignoring the δD(~k21) contribution, that only
sets~k21 = 0, thus representing an unimportant contribution to the mean), is indeed
the non linear evolved power spectrum apart for the exponential damping factor
involving QD; this damping is due to free streaming, that at late times damps the
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power spectrum given by the initial correlations; if interaction is not there to counter-
balance this damping, structures cannot form and the power spectrum becomes flat
(see [10] for more on the interplay between diffusion and interaction within KFT).

We can give an approximate expression for (2.67) and hence for (2.79) valid at early
times and/or large scales; in fact in this situation, the argument of the exponential is
little, so that we can write

Pij ' −g2
qp(t, t(i))k2

ij

∫
d3q (a‖(q)λ

‖
ij + a⊥(q)λ⊥ij )e

i~kij·~q ; (2.80)

to evaluate the last integral, we will need to evaluate quantities of the form

Iα
n(k) := 2π

∫ ∞

0
dq qnξ

(n)
ψ (q)

∫ 1

−1
dµ µαeiµkq ,

with ξ
(n)
ψ as the n-th derivative of (2.72); using

∫ 1

−1
dµ µαeiµkq =

1
(ik)α

∂α
q

∫ 1

−1
dµ eiµkq =

2
(ik)α

∂α
q

(
sin kq

kq

)
=

2
(ik)α

∂α
q j0(kq) =

2
iα

∂α
kq j0(kq) ;

exploiting the recurrence relation of the Bessel functions

jn(x) = (−x)n
(

1
x

d
dx

)n

j0(x) , (2.81)

we have, exploiting also the expressions (2.73) and (2.74)

I0
1 (k) =−

2
π

∫ ∞

0
dq
∫ ∞

0
dk′ Pδ(k′)

qj1(k′q)
k′

j0(kq) ,

I0
2 (k) =

2
π

∫ ∞

0
dq
∫ ∞

0
dk′ Pδ(k′)q2

(
j2(k′q)−

j1(k′q)
k′q

)
j0(kq) ,

I2
1 (k) =

2
π

∫ ∞

0
dq
∫ ∞

0
dk′ Pδ(k′)

qj1(k′q)
k′

(
j2(kq)− j1(kq)

kq

)
,

I2
2 (k) =−

2
π

∫ ∞

0
dq
∫ ∞

0
dk′ Pδ(k′)q2

(
j2(k′q)−

j1(k′q)
k′q

)(
j2(kq)− j1(kq)

kq

)
;

so we have (using the expressions (2.71) for for a⊥ and a‖)∫
d3q a‖(q)e

i~k·~q =2π
∫ ∞

0
q2
∫ 1

−1
dµ a‖(q)e

ikqµ = I2
2 (k) + I0

1 (k)− I2
1 (k) = −k−2Pδ(k1) ,∫

d3q a⊥(q)ei~k·~q =I0
2 (k) + I0

1 (k) + I2
1 (k)− I2

2 (k) = 0 ,

where we exploited the relation∫ ∞

0
dx x2 jn(αx)jn(βx) =

π

2α2 δD(α− β) .

In the end, (2.80) becomes

Pij(kij, t) ' −g2
qp(t, t(i))λ‖ijPδ(kij) ; (2.82)
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for the power spectrum, λ
‖
ij = −1 so we have

P(k1, t) ' g2
qp(t, t(i))Pδ(k1) . (2.83)

This is thus the expected linear growth of the power spectrum, and this justifies, as
we anticipated, the splitting we made in (2.65).
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Chapter 3

Propagators and interactions

We have seen in the previous chapter how to compute the free correlators with some
approximations. In order to go further and give specific (and computable) expres-
sions of the quantities of interest, we need an initial power spectrum, the Green
function for the free evolution and the interaction term; these three ingredients are
basically the only parameters in our theory.

To study the evolution of some given initial power spectrum, we must first establish
the free propagator that is more suitable to describe cosmological situations and a
way to implement gravitational interactions. As we will see, it is possible to com-
pute exactly the Green function for point particles in cosmology, but nevertheless
one could be interested in improved forms, that could already contain part of the
interaction (think about the Zel’dovich approximation); but to fully account for the
interactions of course we are forced to rely on some approximation scheme; in this
chapter we will introduce a non perturbative scheme, based on the Born approxima-
tion.

3.1 Trajectories in an expanding space-time

To describe the trajectories of collisionless dark matter particles in an expanding
space time and thus derive the associated propagator, we must refer to what we did
in section 1.3.3; in particular, we will need the Lagrangian (1.5) we derived there and
the Poisson equation (1.4).

We want here to use as a time coordinate the growth factor D+(a(t)), that is we will
use

τ := D+(t)− D(i)
+ , (3.1)

with D(i)
+ as the growth factor at the initial time (so that τ(i) = 0). We can relate the

new time coordinate with the old one,

d
dt

= H f D+
d

dτ
, (3.2)

with
f =

d ln D+

d ln a
, H =

1
a

da
dt

. (3.3)
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Under this change of time coordinate, the Lagrangian (1.5) changes, using the in-
variance of the action, as

S =
∫

dtL(~q, d~q
/

dt , t) =
∫

dτ L′(~q, d~q
/

dτ , τ) =
∫

dt
dτ

dt
L′ =⇒ L =

dτ

dt
L′ ;

using

g(τ) := a2D+ f HH(i)−1
, (3.4)

with H(i) as the initial Hubble parameter, we can write the new Lagrangian, factor-
izing the constant mH(i), dropping the prime and redefining ˙ := d

/
dτ , as

L(~q,~̇q, τ) =
g(τ)

2
q̇2 − v(~q, τ) ,

with the effective gravitational potential

v(~q, τ) =
a2φ

g(τ)H(i)2 .

The Poisson equation for the fluctuation φ can be written, exploiting (1.4), in terms
of comoving densities ρc , ρ̄c as

∇2
~qφ =

4πG
a

(ρc − ρ̄c) ; (3.5)

recall that the matter density parameter is defined, specialized at the initial time, as

Ω(i)
m =

8πG

3H(i)2 ρ̄(i) ; (3.6)

since the mean mass density scales as ρ̄ ∝ a−3, the comoving ρ̄c = a3ρ̄ is constant,
so that we can write the previous substituting ρ̄(i) with ρ̄c. We can thus rewrite the
Poisson equation (3.5) as

∇2
~qv(~q, τ) =

3a
2g(τ)

Ω(i)
m δ . (3.7)

The canonically conjugate momentum is

~p :=
∂L
∂~̇q

= g(τ)~̇q ,

so the hamiltonian is

H = ~p · ~̇q−L =
p2

2g(τ)
+ v(~q, τ) ,

and the Hamilton equations yield

~̇q = g−1(τ)~p , ~̇p = −∇~qv =⇒ ~̈q +
ġ
g
~̇q +∇

(
v
g

)
= 0 . (3.8)
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We can rewrite them as

~̇x +

(
0 −g−113
0 0

)
~x =

(
0

−∇~qv

)
,

whose retarded solution is (see also appendix A.3 )

~x(τ) =
∫ τ

0
dτ′

(
0

−∇~qv

)
exp

(
−
∫ τ

τ′
dτ′′

(
0 −g−1(τ′′)13
0 0

))
=
∫ τ

0
dτ′

(
0

−∇~qv

)(
13

∫ τ
τ′ dτ′′ g−1(τ′′)13

0 13

)
where on the last step we exploited, with

A :=
(

0
∫ τ

τ′ dτ′′ g−1(τ′′)13
0 0

)
,

the fact that A2 = 0, so that exp(A) = 16 + A; this implies that the retarded Green
function is

G(τ, τ′) =
(

13 gqp(τ, τ′)13
0 13

)
Θ(τ − τ′) , (3.9)

with Θ as the Heaviside function, and

gqp(τ, τ′) :=
∫ τ

τ′

dτ′′

g(τ′′)
.

Thus the free trajectories are given by

~q(0)(τ) = ~q(i) + gqp(τ, 0)~p(i) . (3.10)

3.1.1 Alternative formulation

We can express the results of previous section also using as time coordinate

η := ln

(
D+

D(i)
+

)
, (3.11)

a choice that sometimes is preferred to τ; it is easy to see that the choice of η instead
of τ as a time coordinate does not change much the discussion we made in section
3.1; provided that one redefines

g(η) :=
g(τ)
D+

,

you can trust all the formulas we used in section 3.1 from (3.4) to (3.10) with the

substitution τ → η and g(τ)→ g(η) = a2H f H(i)−1
.

If we decide to express the equation of motion in terms of a rescaled momenta

~p′ := g−1(η)~p ,
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we have to compute its time derivative (in this subsection, ˙ := d
/

dη )

~̇p′ = −g−1(η)∇~qv− g−1(η)~p′ ġ(η) ,

exploiting H f = D−1
+ dD+

/
dt , Ḋ+/D+ = 1 and

d2D+

dt2 + 2H
dD+

dt
=

3
2

ΩmH2D+ ,

(see (1.9), with δ = D+δ(i) ) we have

ġ
g
=

1
a2 f H

(
2aȧ

1
D+

dD+

dt
+

a2

H f

(
1

D+

d2D+

dt2 −
(

1
D+

dD+

dt

)2
))

= −
(

1− 3
2

Ωm

f 2

)
,

so that, redefining V := g−1v and dropping primes from the new momentum, we
have

~̇q = ~p ,

~̇p =

(
1− 3

2
Ωm

f 2

)
~p−∇~qV ≈ −1

2
~p−∇~qV ,

where on the last step we used Ωm/ f 2 ≈ 1, approximation that is valid for most
of ΛCDM cosmologies (see [25]). In this approximation, the Green function, analo-
gously to what we did previously, is

G(η, η′) = exp
(
−
∫ η

η′
dη′′

(
0 −13
0 13/2

))
Θ(η − η′) ;

to compute the exponential, notice that, using schematically(
0 13(η − η′)
0 −13(η − η′)/2

)
=:
(

0 2a
0 −a

)
=: A ,

we have

A2 =

(
0 −2a2

0 a2

)
, A3 =

(
0 2a3

0 −a3

)
=⇒ eA =

(
1 2(a− 1

2 a2 + 1
3! a

3 + . . .)
0 1− a + 1

2 a2 − 1
3! a

3 + . . .

)
,

and thus it is easy to see that the free propagator for dark matter particles in Newto-
nian dynamics in this alternative approach will be

G(η, η′) =
(

13 2(1− exp
(
− 1

2 (η − η′)
)
)13

0 exp
(
− 1

2 (η − η′)
)
13

)
Θ(η − η′) . (3.12)

The new V obeys, looking at (3.7), the Poisson

∇2
~qV(~q, η) =

3a
2g2(η)

Ω(i)
m δ =

3
2

Ω(i)
m H2

i
a3H2 f 2 δ =

3
2

Ωm

f 2 δ ≈ 3
2

δ ,

where on the third step we used

Ωm =
8πG
3H2 ρ̄ =

8πG
3a3H2 ρ̄c =

Ω(i)
m

a3H2 H2
i ,
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where on the last step we exploited (3.6).

So in this setting, the single-particle gravitational potential in Fourier space, from

V(~q, η) =
N

∑
j=1

v(
∣∣~q−~qj(η)

∣∣) ,

and using the single-particle density contrast δ = ρ̄−1δD(~q)− 1, reads

v(k) = −3
2

1
ρ̄k2 , (3.13)

where we neglected the contribution given by the Fourier transformed unity 1̂, since
the zero mode of the potential cannot affect correlators.

3.2 Improved Zel’dovich propagator

We would like to search for propagators that already capture part of the interaction,
like for example the one given by the Zel’dovich approximation [26].

Inspired by (A.3), we search for solutions of the form

~q(τ) = ~q0 + gqp(τ, 0)~̇q0 +
∫ τ

0
dτ′ gqp(τ, τ′)~f (τ′) , (3.14)

where ~f (τ) can be regarded as an effective force term, whereas gqp is now the im-
proved propagator we are searching for. In the Zel’dovich approximation, the trajec-
tories are straight ones provided that one uses as time coordinate the linear growing
factor τ; the propagator within this approximation is thus

gqp(τ, τ′) = τ − τ′ . (3.15)

Taking two times the derivative of (3.14), we have

~̈q(τ) = g̈qp(τ, 0)~̇q + ġqp(τ, τ)~f (τ) +
∫ τ

0
dτ′ g̈qp(τ, τ′)~f (τ′) .

The matching of the last of (3.8), that is the equation of the trajectories in an expand-
ing space-time, with the previous using the Zel’dovich propagator (3.15) implies

~f (τ) = − ġ
g
~̇q−∇v .

This is the effective force corresponding to the Zel’dovich approximation. An im-
provement to this picture (see also [15]) can be given by the following effective force

~f (τ) =
ġ
g

h(τ)~̇q−∇v , h(τ) :=
1
g
− 1 ; (3.16)
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for early times, we have h(τ) → 0 so that with this choice you don’t have an initial
velocity dependent contribution1. With this new ~f , we can rewrite (3.8) as

~̈q(τ)− ḣ(τ)~̇q(τ) = ~f (τ) .

This equation has the same structure of (A.2), so it has the same solution (A.3), that
is

~̇q(τ) = eh(τ)~̇q0 + eh(τ)
∫ τ

0
dτ′ ~f (τ′)e−h(τ′) ; (3.17)

this implies that the improved propagator is

gqp(τ, τ′) =
∫ τ

τ′
dτ′′ eh(τ′′)−h(τ′) . (3.18)

Notice that, since for late times h(τ) → −1, the previous reduces to the Zel’dovich
propagator (3.15) times e−1.

Finally, we want to find an expression for the effective force in this improved Zel’dovich
picture. Using (3.17) and (3.16), we obtain the following equation for ~f ,

~f (τ) =
ġ
g

h(τ)eh(τ)
(
~̇q0 +

∫ τ

0
dτ′ ~f (τ′)e−h(τ′)

)
−∇v ; (3.19)

we want to put it in the form of (A.2), so redefine for simplicity

α−1(τ) :=
ġ
g

h(τ)eh(τ) ,

multiply the (3.19) by α(τ), derive with respect to τ and obtain

~̇f +
α̇

α
~f − e−h

α
~f = −1

α

d
dτ

α∇v ;

this has indeed the same form of (A.2), and has the particular solution (exploiting
(A.3) and integrating by parts)

~f (τ) = −∇v− ġh
g2

∫ τ

0
dτ′ g∇v . (3.20)

This can be seen as the effective force particles in this improved Zel’dovich picture
feel, and we will use this to account for interactions in next section.

3.3 The Born approximation

Return back at equations (2.16) and (2.17); one way we could have to include in-
teractions is to consider the interaction term together with the source term K in the
solution of the equation of motion, that is

x̄(t) = G(t, t(i))x(i) −
∫ tf

t(i)
dt′ G(t, t′)

(
Kq(t′)

Kp(t′) +∇qV

)
;

1With this “improved Zel’dovich approximation”, you reduce the removal of structures that affects
the Zel’dovich approximation (in Zel’dovich approximation structures are driven apart by inertial mo-
tion), see [15].
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then to account for the action of the density operators, consider the (2.16) with J = L
and K = 0 with our new solution of the equation of motion; this changes the (2.55)
as (putting also~l = 0)

ZC[L, 0] =
∫

dΓi eiLq·q(i)+iLp·p(i)
exp

(
i ∑

m

~km ·
∫ tm

t(i)
dt′ gqp(tm, t′)∇jmV

)
:=
∫

dΓi eiLq·q(i)+iLp·p(i)+iSI ,

(3.21)

where we have the new interaction term

SI = ∑
m

~km ·
∫ tm

t(i)
dt′ gqp(tm, t′)∇jmV ; (3.22)

what we want to do now is to consider an effective force for ∇jmV like the one in
(3.20), with

~f j = −∇jV ,

where j labels the particle over which the effective force acts. Having in mind the for-
mula for the power spectrum (2.78), taking into account the Dirac delta that ensures
~k1 = −~k2, we can write

SI = −~k1 ·
∫ t

t(i)
dt′ gqp(t, t′)(~f1(t′)− ~f2(t′)) .

We can consider for example the force acting on particle 1 as the sum of all forces
acting on it due to other particles; so we can recast the force terms as

~f1 − ~f2 =
N

∑
j 6=1

~f1j −
N

∑
j 6=2

~f2j = 2 f12 +
N

∑
j=3

(~f1j − ~f2j) ,

where we exploited Newton’s third law ~f12 = −~f21. The sum involving particles
with j ≥ 3 can be put to zero, since in an isotropic field we should expect that the
average of the forces that acts on particle one and two (not including their mutual
interaction) should vanish. So we end up with

SI = −~k1 ·
∫ t

t(i)
dt′ gqp(t, t′)~f12(t′) .

For the potential, we will use the one we derived in (3.8), v/g =: v̄, that, exploiting
(3.7), obeys the Poisson

∇2
~q v̄(~q, τ) =

3a
2g2(τ)

Ω(i)
m δ ,

so the one particle equivalent in Fourier space will obey (look also at (3.13) for a
similar reasoning)

v̄(~k, τ) = − 3a
2g2(τ)ρ̄k2 Ω(i)

m =: −A(τ)

ρ̄k2 , A(τ) :=
3a

2g2(τ)
Ω(i)

m ;
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so we can write, in real space, the gradient of potential of particle 2 at the position of
the particle 1 (that will enter in ~f12), as

∇~q1(τ)v̄2(~q, τ) =: ∇1v̄2 = −i
A(τ)

ρ̄

∫ d3k
(2π)3

~k
k2 ei~k·(~q1(τ)−~q2(τ)) .

Now enters the approximation: the idea is to substitute the previous by a suitable
average over the particles 1 and 2, so that one can factorize out of the generating
functional the whole interaction term2. This average can be done using the corre-
lation function; in fact we can express the probability to find particle 1 and 2 at a
separation q12 := |~q1 −~q2| as

P12 = ρ̄(1 + ξ12(q12)) ,

where ξ12 is the correlation function, representing the excess probability over the
mean, random ρ̄ one to find particle 2 at a distance q12 from particle 1. We use this
probability to make the average, yielding, in Fourier space (dropping the constant
mean term)

〈∇1v̄2〉 (~k) = ρ̄
∫

d3q12 ξ12(q12)∇1v̄2(q12, τ)e−i~k·(~q1−~q2) ; (3.23)

using the convolution theorem, we can express the previous as the convolution of
the Fourier transform of ξ12, that is related to the power spectrum, and ∇1v̄2; for
the power spectrum, we can use the linearly evolved one damped on free streaming
scale, that is use

D2
+P̄δ(k) := D2

+e−σ2
1 g2

qpk2/3P(i)
δ (k) .

So we can write (3.23) as

〈∇1v̄2〉 (~k, τ) = −iA(τ)D2
+

∫ d3k′

(2π)3

~k−~k′
|~k−~k′|2

P̄δ(k′) ;

we can simplify the previous by integrating over the angles; with µ := k̂ · k̂′, where
hatted quantities are the corresponding unit vectors, and y := k′/k, we have

∫ d3k′

(2π)3

~k−~k′
|~k−~k′|2

P̄δ(k′) =
1

(2π)3

∫ 2π

0
dφ
∫ 1

−1
dµ
∫ ∞

0
dk′ k′2

k(k̂− yk̂′)
k2(1 + y2 − 2yµ)

P̄δ(k′)

=
k2k̂

(2π)2

∫ ∞

0
dy y2 J(y)P̄δ(ky) ,

where

J(y) :=
∫ 1

−1
dµ

1− µy
1 + y2 − 2µy

= 1 +
1− y2

2y
ln

1 + y
|1− y| .

In the end the gravitational potential gradient average reads (by truncating the inte-
gration at y = 1 in order to cut modes on scales smaller than the density fluctuation
considered)

〈∇1v̄2〉 (~k, τ) = −iA(τ)D2
+

k2k̂
(2π)2

∫ 1

0
dy y2 J(y)P̄δ(ky) ; (3.24)

2One can call such an approximation “Born approximation” since it is similar in spirit to the one
used in scattering theory.
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insert this in (3.20), yielding what we denote with
〈
~f12

〉
, in order to obtain the aver-

aged interacting action

〈SI〉 (~k, τ) = −~k ·
∫ τ

t(i)
dτ′ gqp(τ, τ′)

〈
~f12

〉
(~k, τ′) . (3.25)

This averaged action does not depend anymore on initial positions and momenta,
so we can factorize it out of the integral from (3.21) and obtain the final result for the
non linearly evolved power spectrum of KFT within our assumptions and approxi-
mations

P̄(~k, τ) = eQD/2+i〈SI〉P(~k, τ) (3.26)

where the free part eQD/2P was obtained in section 2.4.3 (in particular look at equa-
tions (2.78), (2.79)).
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Chapter 4

Power spectra analysis

After all the efforts we made in the previous chapters, we are finally ready to analyze
the non linear evolution of primordial power spectra using KFT approach.

As initial power spectra, in this work we will study the evolution of two types: one
is

P(i)
δ (k) = Ak

(
1 +

(
k

keq

)2
)−n/2

, (4.1)

with keq as the wavevector corresponding to the Hubble horizon scale at matter-
radiation equality; for n > 2, the related σ1 converges (see equation (4.4)) and it goes
like k for k � k0, whereas it goes like k1−n for k � k0, thus mimicking the dark
matter behavior (1.13) for n = 4. Its interest comes from the study of its small scale
behavior; we thus would like to see, by varying n, what is its asymptotic behavior, if
it always falls like k−3 or it has a certain dependence on the choice of n. We will call
this initial spectrum the “dark matter power spectrum”.

Another type of power spectrum we will analyze is the one with Gaussian shape

P(i)
δ (k) = A exp

(
− (k− k0)2

2σ2

)
; (4.2)

a power spectrum like that is very unusual in cosmology, but nevertheless it could
be interesting to see what KFT predicts for its evolution, since such kind of initially
localized power spectra are difficult to numerically simulate due to inevitable shot
noise and the likes. We will call this initial spectrum the “Gaussian power spec-
trum”.

The constant A appearing in front of these initial power spectra is a normalization
constant, to be determined using the value for today’s variance σ8, whereas k0 is a
reference wavenumber.

The evolution equation we will use will be the (3.26) derived within the Born ap-
proximation. Regarding the parameters and setting of our discussion:

• we will take as the initial time one near the beginning of matter dominated
epoch, so that Ω(i)

m = 1;

• as background cosmological model, we will assume a standard ΛCDM uni-
verse with Ωmd = 0.26, ΩΛ = 0.7, Ωmb = 0.04, h = 0.7, σ8 = 0.8 at zero
redshift (i.e. today);
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• the free propagator will be the improved Zel’dovich one (3.18), that already
accounts for part of the interaction;

• interactions are taken into account within the non-perturbative Born approxi-
mation, using the effective force term (3.20) and the averaging scheme depicted
in section 3.3.

We summarize here all the equations implied by (3.26) we should try to solve (writ-
ten explicitly): from also (2.78), (2.79) (neglecting the δD(~k) term, that only sets~k = 0,
thus representing an unimportant contribution to the overall mean)

P̄(~k, τ) = exp

(
−1

3

(∫ d3k′

(2π)3

P(i)
δ (k′)
k′2

)
g2

qp(τ, 0)k2 + i 〈SI〉
)( ∫

d3q

×
(

exp
{
−g2

qp(τ, 0)k2
[

1
2π2

∫ ∞

0
dk′ P(i)

δ (k′)
(
(k̂ · q̂)2 j2(k′q)−

j1(k′q)
k′q

)]}
− 1
)

ei~q·~k
)

;

with τ = D+(t)− D(i)
+ and from (3.18)

gqp(τ, τ′) =
∫ τ

τ′
dτ′′ exp

((
a2D+ f HH(i)−1)−1

(τ′′)−
(

a2D+ f HH(i)−1)−1
(τ′)

)
,

with f = d ln D+

/
d ln a ; and also from (3.25), (3.20)

〈SI〉 (~k, τ) = −2~k ·
∫ τ

0
dτ′ gqp(τ, τ′)

(
− 〈∇1v̄2〉 (~k, τ′)−

(
2

ȧ
a
+

ḟ
f
+

Ḣ
H

)

× 1− a2D+ f HH(i)−1

a4D2
+ f 2H2H(i)−2

∫ τ′

0
dτ′′ (a2D+ f HH(i)−1

)(τ′′) 〈∇1v̄2〉 (~k, τ′)

)
,

and finally from (3.24)

〈∇1v̄2〉 (~k, τ) = −i
3H(i)2

2a3D+ f 2H2
k2k̂

(2π)2

∫ 1

0
dy y2

(
1 +

1− y2

2y
ln

1 + y
|1− y|

)
× exp

(
−1

3

(∫ d3k′

(2π)3

P(i)
δ (k′)
k′2

)
g2

qp(τ, 0)k2y2

)
P(i)

δ (ky) .

(4.3)

Apart from the initial power spectrum, what we need are the cosmological func-
tions a(t), D+(t) (and hence H, H(i), f ), to be determined by using our background
cosmological model.

4.1 Solving the integrals

The expression we need to analyze is not easy to handle, so we cannot expect to find
an analytical solution for P̄ .
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4.1.1 Dark matter spectrum

The first integrals we can try to solve are the ones that do not depend on cosmologi-
cal quantities; one is

σ2
1 =

A
(2π)3

∫
d3k

1
k

(
1 +

(
k

keq

)2
)−n/2

=
A

2π2

∫ ∞

0

k dk(
1 +

(
k/keq

)2
)n/2 ;

for n > 2, this integral converges and can be easily solved (putting for example
x = k/k0), yielding

σ2
1 =

A
2π2

k2
eq

n− 2
, n > 2 . (4.4)

The integrals that involve the Bessel functions can be solved numerically using meth-
ods suitable for fast oscillating integrals (see for example the Levin collocation scheme
in [27, 28]); we have

a1(q) =−
A

2qπ2

∫ ∞

0
dk′
(

1 +
(

k′

keq

)2
)−n/2

j1(k′q) ,

a2(q) =
A

2π2

∫ ∞

0
dk′ k′

(
1 +

(
k′

keq

)2
)−n/2

j2(k′q) ,

the integral we have to solve then becomes

P(k, τ) = 2π
∫ ∞

0
dq q2

∫ 1

−1
dµ
(

e−g2
qp(τ,0)k2(a1(q)+µ2a2(q)) − 1

)
eiqkµ ; (4.5)

the integral in µ can be seen to be

(4.5)µ-part =
∫ 1

−1
dµ
(

e−g2
qp(τ,0)k2(a1(q)+µ2a2(q)) − 1

)
cos(qkµ) ,

this comes from the fact that the imaginary part of the integrand, being an odd func-
tion in µ, gives zero. This last integral admits a representation involving the error
function erf, where

erf x =
2√
π

∫ x

0
e−t2

dt ,

but from a numerical point of view, it is better to directly solve (4.5) using 2-D Levin
collocation scheme.

The other integrals involve cosmological quantities, so we shall use some fit formula
for the cosmological functions of interest. On their implementation, we used as time
coordinate the scale factor normalized to unity today; on the time integral one must
then consider also the jacobian dτ

/
da to take into account this change of coordinate.

We recall that one can return to the cosmological time associated using for example
the time-redshift formula (1.12).

We used (1.2) to determine the behavior of H(a) and (1.11) to determine D+(a) and
hence f (a). Then the integrals, again, must be solved numerically, and we used some
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standard integration routine like the 15 point Gauss-Kronrod rule, implemented in
the Gnu Scientific Library (GSL) [29].

4.1.2 Gaussian spectrum

For the Gaussian power spectrum case, the results for the integrals we know how to
solve is

σ2
1 =

A
(2π2)

∫ ∞

0
dk exp

(
− (k− k0)2

2σ2

)
,

put x = (k− k0)/
√

2σ and the result is

σ2
1 =

√
π

2
σ

(
1− erf

(
− k0√

2σ

))
.

Then the steps for the evaluation of the integrals are the same we have already ex-
plained in section 4.1.1.

4.2 Dark matter spectrum results

In table 4.1 we summarize the analysis of the dark matter power spectrum (4.1) by
varying the index n, non-linearly evolved until the present time a = 1. To simplify
the notation in the following, we denote the free linearly evolved power spectrum
as

Pd := eQD/2P . (4.6)

The first remarkable thing one can notice is that the fall-off on small scales always
goes like k−3 regardless of the initial index n (we remark that the initial power spec-
trum fall-off is k1−n).

In figure 4.2, 4.3 we put some plots of different cases.

One can notice that, in cases where n is higher than 10, there is a change in the
steepness for high values of k. Actually this change is always there, and what causes
it is the decrease the averaged interacting action 〈SI〉 experiences for high k1. This
will lead the Born averaged power spectrum to asymptotically reach the free non-
linearly evolved one, that is Pd. An example of this behavior, common for every
case, is shown in figure 4.4. Since we expect the Born approximation to break down
for such small scales, on the fall-off analysis we did in table 4.1 we didn’t take into
account this very large k behavior of the full P̄ .

The analysis of cases with n < 4 gave some problems of numerical convergence;
in general initial power spectra that are too enhanced on small scales (like the ones
with “gentle” slopes) are not suitable for our numerical methods of integration, and
thus are left out from our analysis. We leave improvements to our code and analysis
on such initial power spectra for future works.

1This comes from the exponential free streaming damping factor in the averaged gradient of the
potential, see equation (4.3).
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n P̄ fall-off Pd fall-off k of P̄ peak [h Mpc]

4 -3.203241 ± 0.001225 -3.206744 ± 0.001685 0.175426
5 -3.001858 ± 0.000100 -3.001866 ± 0.000102 0.093005
6 -3.000029 ± 0.000004 -3.000031 ± 0.000004 0.070859
7 -3.000005 ± 0.000002 -3.000006 ± 0.000002 0.053986
8 -3.000004 ± 0.000002 -3.000004 ± 0.000002 0.045034
9 -3.000003 ± 0.000002 -3.000003 ± 0.000002 0.041131
10 -3.000002 ± 0.000003 -3.000001 ± 0.000003 0.037567
17 -3.049102 ± 0.018668 -3.000002 ± 0.000002 0.023876
18 -3.010402 ± 0.005326 -3.000002 ± 0.000003 0.023876
22 -3.000004 ± 0.000003 -3.000001 ± 0.000004 0.019917
26 -3.006900 ± 0.003935 -3.000000 ± 0.000003 0.018190
30 -3.028725 ± 0.012968 -3.000000 ± 0.000003 0.016614
35 -3.008317 ± 0.004770 -3.000007 ± 0.000004 0.015174

TABLE 4.1: Summary of the dark matter power spectrum results. The
first column is the n index of the initial power spectrum in (4.1); the
second and third column represent the fall-off k−nfall on small scales
of the non-linearly evolved Born approximated and free power spec-
trum respectively, and the last column is the value of k corresponding

to the peak in P̄ .
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FIGURE 4.2: Non-linearly evolved dark matter power spectrum plot
for n = 4.
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FIGURE 4.3: Non-linearly evolved dark matter power spectrum plot
for n = 17.
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FIGURE 4.5: Comparison of non-linearly evolved Gaussian power
spectra at different times. The one on the left is evolved until a = 0.03,

the one on the right is evolved until a = 1 (today).

4.3 Gaussian spectrum results

In this section we summarize the analysis we did for the Gaussian spectrum initial
condition. Such primordial spectra are cosmologically artificial, and this could mean
that the time scale when the Born approximation can fail could be much different.
See for example figure 4.5 on the right; one easily sees that for that choice of param-
eters, the Born approximated power spectrum just gets crazy if you let it evolve to
a = 1. A similar behavior actually holds also for the dark matter power spectrum
case, but you must let it evolve for much larger values of a (see figure 4.6). This
because we expect the Born approximation not to hold for small scales (see [14]) and
this suggests also its breakdown for very late times, as our analysis shows. This sug-
gested to span also over earlier times for these initial Gaussian power spectra, where
the Born approximation still gives a reasonable result (see figure 4.5 on the left).

In figure 4.7 we show the behavior of power spectra with the same parameters
evolved at different times. That behavior is actually common for all the other cases,
where the time scales seem to be dictated by high σ and/or high k0 (that is, for high
σ and/or k0, the behavior one can see on figure 4.7 happens before and it is more
pronounced, see for example figure 4.8). As a first guess, we can say that the main
reason that causes this behavior is a too strong enhancing of power on middle/small
scales. An excess of power on those scale is anyway expected to yield shorter time
scales for power spectra evolution (an enhanced power on small scales means that
collapse happens more easily). Such kind of power spectra could arise if dark matter
is initially “sticky” so that power on small scales is more easily achieved; but this is
strongly against what we observe today.

In tables 4.9-4.11 we show again also the slopes of the fall-off. Given the behavior of
the Born approximated power spectrum case, to compute its slope we restricted to
the part from the maximum value to the point in which it starts reaching asymptot-
ically the free non-linearly evolved one, the same thing we did for the dark matter
power spectrum case. We see also here that late-time evolution implies again a k−3

behavior.

Similarly to what happened on the dark matter spectrum case, we had problems of
numerical convergence for initial power spectra with k0 & 10 h Mpc−1, so they are
not treated in our analysis.



50 Chapter 4. Power spectra analysis

10−3 10−2 10−1 100 101 102

k [h Mpc−1]

1014

1050

1086

10122

10158

10194

10230

10266

10302

P
ow

er
sp

ec
tr

a
[h
−

3
M

pc
3 ]

Dark matter power spectrum at a = 5, n = 6

Free non-linearly evolved Pd

Born approximated P̄

10−3 10−2 10−1 100 101 102

k [h Mpc−1]

10−3

10−1

101

103

105

107

109

1011

P
ow

er
sp

ec
tr

a
[h
−

3
M

pc
3 ]

Dark matter power spectrum at a = 1, n = 6

Free non-linearly evolved Pd

Born approximated P̄

FIGURE 4.6: Non-linearly evolved power spectra for n = 6; on the
left, it is evolved until a = 5 whereas on the right is evolved until
today (a = 1). Notice how, in the case of very late times, the Born
approximated spectrum gives unreasonable results, the same way the

Gaussian spectra do for earlier times.
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FIGURE 4.7: Gaussian power spectra plot corresponding to different
times. This kind of evolution behavior is common to basically every

case, with the difference that the time scales are different.
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FIGURE 4.8: Gaussian power spectra plots for different times. Notice
how, with respect to the case showed in figure 4.7, the evolution time

scale is shorter.

σ [h Mpc−1] P̄ fall-off Pd fall-off k of P̄ peak [h Mpc−1]

0.1000 -3.001808 ± 0.000233 -2.998890 ± 0.000150 1.075220
0.1668 -3.000999 ± 0.000129 -2.997981 ± 0.000272 1.385900
0.2154 -3.000729 ± 0.000094 -2.997233 ± 0.000372 1.573440
0.2783 -3.000527 ± 0.000068 -2.996183 ± 0.000511 1.786360
0.4642 -3.000204 ± 0.000027 -2.992615 ± 0.000979 2.614100
0.7743 -3.000098 ± 0.000014 -2.985564 ± 0.001886 3.369450
1.2915 -3.000030 ± 0.000011 -2.971784 ± 0.003608 4.343050
2.1544 -2.999981 ± 0.000009 -2.945460 ± 0.006761 5.597980
3.5938 -2.999861 ± 0.000021 -2.896717 ± 0.012287 7.215520
5.9948 -2.999486 ± 0.000068 -2.809006 ± 0.021759 9.300450

TABLE 4.9: Summary of the Gaussian power spectrum results for
k0 = 0.01 h Mpc−1 evolved until a = 1.
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σ [h Mpc−1] P̄ fall-off Pd fall-off k of P̄ peak [h Mpc]

0.0100 -3.008955 ± 0.001162 -2.999745 ± 0.000035 0.389539
0.0215 -3.007050 ± 0.000913 -2.999626 ± 0.000051 0.502097
0.0464 -3.003693 ± 0.000476 -2.999330 ± 0.000091 0.734754
0.1000 -3.001655 ± 0.000214 -2.998582 ± 0.000192 1.075220
0.2154 -3.000512 ± 0.000066 -2.996627 ± 0.000453 1.786360
0.4642 -3.000187 ± 0.000025 -2.991422 ± 0.001134 2.614100
1.0000 -3.000060 ± 0.000009 -2.977516 ± 0.002899 3.825400
2.1544 -2.999955 ± 0.000038 -2.941308 ± 0.007245 5.597980
4.6416 -2.999713 ± 0.000038 -2.852180 ± 0.017127 8.191920

TABLE 4.10: Summary of the Gaussian power spectrum results for
k0 = 0.1 h Mpc−1 evolved until a = 1.

σ [h Mpc−1] P̄ fall-off Pd fall-off k of P̄ peak [h Mpc−1]

0.5000 -3.000005 ± 0.000006 -2.946057 ± 0.006691 3.825400
0.6975 -2.999992 ± 0.000006 -2.938285 ± 0.007596 4.343050
0.9729 -2.999971 ± 0.000008 -2.926194 ± 0.008985 4.930750
1.3572 -2.999934 ± 0.000015 -2.908535 ± 0.010975 5.597980
1.8932 -2.999875 ± 0.000018 -2.883433 ± 0.013745 6.355500
2.6410 -2.999770 ± 0.000031 -2.848200 ± 0.017554 7.215520

TABLE 4.11: Summary of the Gaussian power spectrum results for
k0 = 1 h Mpc−1 evolved until a = 1.

4.4 Conclusions

The main result of our analysis is the small scale fall-off of non-linearly evolved
power spectra. In general, KFT prediction can be helpful in the study of the evolu-
tion of such steep (large n for dark matter-like spectrum case) or localized (Gaussian
case) initial power spectra, since numerical simulations are unable to study such
spectra due to inevitable shot noise. Thanks to KFT, we saw that for a wide class
of initial power spectra, small scale fall-off follows a k−3 behavior. This asymptotic
behavior is expected if one looks for asymptotic series expansion for P (as the recent
work [30], yet to be published, is trying to show), and our analysis for these cases
confirms this.

The large n case for dark-matter like initial power spectra is interesting also because
axions (or axion-like particles) are indeed expected to yield initial power spectra
with a similarly steep shape [31, 32].
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Chapter 5

Higher order correlators

We now want to analyze higher-order correlators like bispectrum and trispectrum
similarly to what we did for the power spectrum in the previous chapters. Differ-
ently from the power spectrum case, a mean-field approach to include interactions
is not known; one could then rely on perturbation theory (see [8],[12]).

Here we will focus our interest only on the behavior of free non-linearly evolved
higher order correlators and we leave the analysis including interactions (within
perturbation theory or within a new developed mean-field approach) to future work.

We have then to specialize equation (2.66) for the correlator we need. Let’s say we
want to compute a density correlator of order l; we will need to evaluate the prod-
ucts

l

∏
1≤k<j

(
(2π)3δD(~k jk) + Pjk(~k jk)

)
=:

l

∏
1≤k<j

(∆ + P)jk ,

where we have defined ∆jk := ∆(~k jk) := (2π)3δD(~k jk) for convenience. There are
n = l(l − 1)/2 factors appearing in the previous product, and in terms of ∆ and P
factors, we can schematically write

l

∏
1≤k<j

(∆ + P)jk ∼
n

∑
m=0

(
n
m

)
∆n−mPm ; (5.1)

of course actually the ∆ and P factors differ due to the particular~k jk they depend on,
but the useful splitting we can make is between internal and external wavevectors,
i.e. wavevectors which are integrated and which are not, respectively1. Looking at
(2.68), we see that there are n − l + 1 internal wavevectors and thus l − 1 external
ones. We can then further decompose (5.1) as(

n
m

)
∆n−mPm =

m

∑
e=0 , l−1≥e ,
n−l+1≥m−e

(
l − 1

e

)(
n− l + 1

m− e

)

×P e
extPm−e

int ∆l−e−1
ext ∆n−l+1−m+e

int ,

(5.2)

where quantities with the subscript int refer to the ones that depend on internal
wavevectors (that is ~k jk with k 6= 1) and quantities with the subscript ext refer to
the ones that depend on external wavevectors (that is~k jk with k = 1). To properly

1The former would be loop terms, the latter would be tree level terms in diagrammatic language,
see also section 5.3.
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understand how to get advantages from this splitting, it is better to make the ex-
plicit example for l = 3; since we want to arrive at an explicit expression for the
bispectrum, this will be useful anyway.

So for the case l = 3, we have one internal wavevector~k32 = ~k′32 and two external
(look at (2.68))

~k21 = ~Lq2 +~k′32 , ~k31 = ~Lq3 −~k′32 .

The relevant terms, from (5.2) and (5.1), are

∆3 =∆int∆2
ext =⇒

∫ d3k32

(2π3)
∆32∆31∆21 =

3

∏
j=2

∆(~Lqj) , (5.3)

3∆2P =2Pext∆ext∆int + ∆2
extPint =⇒∫

d3k32/(2π)3
∆(~Lq2)P31(~Lq3)

+ ∆(~Lq3)P21(~Lq2) + ∆(~Lq2 +~Lq3)P32(~Lq3) ,
(5.4)

3∆P2 =2Pext∆extPint + ∆intP2
ext =⇒∫

d3k32/(2π)3
P31(~Lq2 +~Lq3)P32(−~Lq2)

+ P21(~Lq2 +~Lq3)P32(~Lq3) + P21(~Lq2)P31(~Lq3) ,
(5.5)

P3 =P2
extPint =⇒∫

d3k32/(2π)3

∫ d3k32

(2π3)
P32(~k32)P21(~Lq2 +~k32)P31(~Lq3 −~k32) . (5.6)

On the second and third line, we exploited the various ∆ to perform the internal
integration, and we can also exploit the overall Dirac delta in (2.66) to set~Lq2 +~Lq3 =

−~Lq1 .

It is then clear what are the main steps one can do to simplify (5.2) for a generic l:

• use the ∆int factors, if any, to integrate and set to zero the corresponding inter-
nal wavevector;

• use the ∆ext factors, if any, to integrate over the remaining internal wavevec-
tors, in such a way as to remove as many internal wavevectors as possible from
the P arguments.

5.1 The expression for the bispectrum

To recover the full expression for the bispectrum, write (2.66), with l = 3, as

ZC,0[L, 0] =V−3(2π)3δD

(
3

∑
j=1

~Lqj

)
e−(Q0−QD)/2

∫ d3k32

(2π)3

×
3

∏
1≤k<j

(
(2π)3δD(~k jk) + Pjk

)
;

(5.7)
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the overall Dirac delta, given the expressions of~Lqj , sets~k1 = −~k2 −~k3 ; since~Lpj =

−gqp(τ, 0)~k j , this also implies~Lp1 = −~Lp2 −~Lp3 , so that, from (2.59), we have

Q0 = 0 ; QD = −2
3

σ2
1 g2

qp(k
2
2 + k2

3 +~k2 ·~k3) .

We need now to compute the last line of (5.7) by using the splitting (5.3)-(5.6); we
basically need to determine, looking also at (2.67), the λ

‖
jk , λ⊥jk factors in (2.69) for the

relevant Pjk(~k jk).

As an example, let’s determine λ
‖
31 for P31(~Lq2 +~Lq3) on (5.5); there,~k32 is set to−~Lq2

due to the ∆21 factor, so

~k31 = ~Lq2 +~Lq3 = −~k3 −~k2 =~k1 ,

where the last step comes from the overall Dirac delta. So k̂31 points in the same
direction of~k1, and thus we have

~L>p3
π
‖
31
~Lp1 = g2

qp(τ, 0)~k>3 π
‖
31
~k1 = g2

qp(τ, 0)~k3 ·~k1 ,

so

λ
‖
31 =

~k3 ·~k1

k2
1

= −
~k2 ·~k1

k2
1
− 1 , λ⊥31 = 0 .

Similar reasoning can be applied to all the other terms.

Connected contributions. When one studies an n-th order correlator, one is inter-
ested in the connected contribution, that is the part of the correlator that involves
the n-body interaction only2. In general, we can write〈

δ(~k1) · · · δ(~kn)
〉

c
=
〈

δ(~k1) · · · δ(~kn)
〉
− ∑

S∈σ({1,...,n})
∏
s∈S

〈
δ(~ks(1)) · · · δ(~ks(#s))

〉
c

,

(5.8)

where the subscript c means connected, S belongs to the proper partitions (that is
partition not including the set itself) σ({1, . . . , n}) of n elements, and s is a subset of
{1, . . . , n}, belonging to a particular partition S with #s elements. For a connected
3-rd order correlator, we have〈

δ(~k1)δ(~k2)δ(~k3)
〉

c
=
〈

δ(~k1)δ(~k2)δ(~k3)
〉
−
〈

δ(~k1)
〉 〈

δ(~k2)
〉 〈

δ(~k3)
〉

−
(〈

δ(~k1)
〉 〈

δ(~k2)δ(~k3)
〉
+ cyc.

)
,

where cyc. means cycling over the indices {1, 2, 3}. It is then clear that (5.3) and
(5.4) are non-connected contributions to the 3-rd order correlator. In general, as we
will see in section 5.3, all the terms corresponding to m < n− l + 1 in (5.1) are non-
connected contributions and can thus be neglected.

2Indeed a connected contribution is characterized by the fact that, by letting a coordinate difference
among two points go to infinity, then the whole contribution vanishes (something that is not true for
non-connected contribution). This can also be seen as a criterium to determine whether a contribution
is connected or not.
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Final result. In the end, using the notation

P(~k , λ‖ , λ⊥) =
∫

d3q
(

eg2
qpk2(a‖λ‖+a⊥λ⊥) − 1

)
ei~k·~q , (5.9)

we obtain the following final expression for the correlator (not including (5.3) and
(5.4))

ZC,0[L, 0] =V−3(2π)3δD

(
~k1 +~k2 +~k3

)
exp

(
−σ2

1
3

g2
qp(τ, 0)(k2

1 + k2
2 +~k1 ·~k2)

)
×P

(
k1 ,−

~k2 ·~k1

k2
1
− 1, 0

)
P
(

k2 ,−
~k2 ·~k1

k2
2
− 1 , 0

)
+ P

(
k1 ,

~k2 ·~k1

k2
1

, 0

)

×P
(
|~k1 +~k2| ,−

~k2 ·~k1 + k2
2

k2
1 + k2

2 + 2~k1 ·~k2
, 0

)
+ P

(
k2 ,

~k2 ·~k1

k2
2

, 0

)
(5.10)

×P
(
|~k1 +~k2| ,−

~k2 ·~k1 + k2
1

k2
1 + k2

2 + 2~k1 ·~k2
, 0

)
+ PPP term

}
=V−3(2π)3δD

(
~k1 +~k2 +~k3

)
Bδ(k1, k2, k̂1 · k̂2) ,

where on the last line Bδ is the bispectrum and as PPP term we mean the integral in
(5.6). The last equality holds since we are excluding from the generating functional
expression the non-connected contributions (5.3) and (5.4).

We see then that, from a computational point of view, we reduce to compute factors
of the type (5.9), something we have already done for the power spectrum. No-
tice that everything depends only on the three scalar quantities k1 , k2 and k̂1 · k̂2, as
expected for a bispectrum in an homogeneous and isotropic background.

Unfortunately, we do not have a reliable and efficient way to compute integrals in-
volving multiple P ; as long as they are not evolved to much later times, such terms,
since the initial amplitude of P is low, are expected to be subdominant with respect
to the other ones, so we will simply neglect them in the following.

5.1.1 Early time bispectrum

We can recast the expression for the free bispectrum, ignoring the PPP term, as

Bδ(k1, k2, µ) = exp
(
−σ2

1
3

g2
qp(τ, 0)(k2

1 + k2
2 + k1k2µ)

)
×
(
P
(

k1 ,−
~k2 ·~k1

k2
1
− 1, 0

)
P
(

k2 ,−
~k2 ·~k1

k2
2
− 1 , 0

)
+ cyc.

)
,

with µ = k̂1 · k̂2 and cyc means cycling over the indices {1, 2, 3} (recall that then~k3
can be expressed in terms of the other two wavevectors).
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In the limit of early times or large scales, we can recast the previous, using (2.82) and
neglecting the exponential damping factor, as

Bδ ' g4
qp

((
~k2 ·~k1

k2
1

+ 1

)(
~k2 ·~k1

k2
2

+ 1

)
Pδ(k1)Pδ(k2) + cyc.

)
=: g4

qp

(
F(~k1,~k2)Pδ(k1)Pδ(k2) + cyc.

)
,

with F(~k1,~k2) resembling very closely the 2F2 kernel one finds in Eulerian perturba-
tion theory [2] once one recasts it in the following form:

F(~k1,~k2) = 1 +
~k1 ·~k2

k1k2

(
k1

k2
+

k2

k1

)
+

(~k1 ·~k2)2

k2
1k2

2
.

We remark that this is the same result one finds in [8], obtained within KFT with a
different method.

5.2 Bispectrum analysis

Due to the structure of connected l-th order correlators, it is useful to define the
hierarchical amplitude in Fourier space

Ql :=
ξ̃
(l)
δ

∑labelings ∏l−1
lines ξ̃

(2)
δ (~kij)

, (5.11)

where the sum is over all possible ways of drawing l − 1 lines that connect l points.
Such a quantity is useful because one expects that a generic l-th order correlator

ξ̃
(l)
δ ∼

(
ξ̃
(2)
δ

)l−1
= P l−1

d , (5.12)

(see also sections 5.3 and 5.3.1), so with this definition we expect Ql to not depend
on the P amplitude. In particular for the bispectrum we have

Q3 =
Bδ(~k1,~k2, τ)

Pd(k1, τ)Pd(k2, τ) + Pd(k2, τ)Pd(k3, τ) + Pd(k1, τ)Pd(k3, τ)
.

In figure 5.1 we show the plot of Q3 as a function of the angle θ between the two
wavevector~k1 and~k2, keeping fixed k1 and the ratio r := k1/k2; the results for early-
time Q3 are coherent with 1-loop Eulerian perturbation theory [2], since also here
we see an enhancing of power with collinear wavevectors (that is, with the angle
θ = 0, π) that is more pronounced for steeper initial power spectra.

In figure 5.2 we show the analogous results for initial power spectra with Gaussian
shape; as we have seen in section 4.3, also here the time scales seems to be dictated
by the values of k0 and σ (high values of those quantities yields shorter timescales).
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FIGURE 5.1: Non linearly evolved free Q3 plots for initial dark matter
power spectrum. r is the ratio k1/k2.
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FIGURE 5.2: Non linearly evolved free Q3 plots for initial Gaussian
power spectrum with mean k0 and variance σ2. Notice how an higher
k0 yields shorter timescales (for example, on the left column one can
notice that the power for collinear vectors decreases in time, some-
thing that for k0 = 0.1 h Mpc−1 happens earlier). This fact is general.
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5.3 Other higher order correlators

The cases of the other higher order correlators are quite similar to what we did for
the bispectrum, only more involved as one could easily expect.

For a generic l correlator, we have (exploiting the overall delta to set~kl = −∑l−1
i

~ki)

Q0 = 0 , QD = −2
3

σ2
1 g2

qp(τ, 0)

(
l−1

∑
i<j

(~ki ·~k j) +
l−1

∑
i=1

k2
i

)
;

from the previous one can read that a generic l-th order correlator will only depend
on l − 1 modules and (l − 1)(l − 2)/2 angles, or l(l − 1)/2 independent parameters
among the possible combinations of moduli and angles (this is not surprising, it
simply comes from homogeneity and isotropy assumptions). Then one can use (5.2)
and (5.1) for the case of interest, but you would end up with many uninteresting
non-connected contributions.

In general, to obtain directly the connected contributions out of a correlator, one
can use cumulants obtained from the logarithm of the generating functional3, as
detailed in appendix D. The generic expression for a cumulant is in (D.7), but here
we are interested to an l-th order density cumulant; neglecting all the shot noise
terms (that is we consider only the term with l = n f on the sum in (D.7)), equation
(D.8) becomes

G(c,0,l)
ρ(1)···ρ(l) = ρ̄l(2π)3δD

(
l

∑
i=1

~ki

)
e−Q(I1,...,Il)Σ̃(l)

C (I1, . . . , Il) ,

where here the sum over the field labels {I1, . . . , Il} reduces to only one term, since
there is only one way to assign l labels to l non-empty sets. We also recall that a
ρ-cumulant can be obtained by a f -cumulant by setting all~li = 0. In this setting, we
have

e−Q(I1,...,Il) = eQD/2 = exp

(
−1

3
σ2

1 g2
qp(τ, 0)

(
l−1

∑
i<j

(~ki ·~k j) +
l−1

∑
i=1

k2
i

))
,

so that everything is analogous to the results obtained with the correlators. The key
difference lies in the evaluation of Σ̃(l)

C ; by neglecting all the initial density-density
and density-momentum correlations, the only type of diagrams we need for its eval-
uation are the ones involving only Ppi pj = Pij, on the third line in (D.11). Then the
Feynman rules detailed in appendix D reduce to the following:

1. draw l numbered vertices and write all possible connected diagrams;

2. any pair of particles can be connected by at most one line, and subdiagrams of

the form are forbidden;

3. to a line connecting points i and j (considering always i > j) it is associated the
generalized vector~kij; for every closed loop, choose a generalized momentum
~kij corresponding to one of the lines forming the loop, and integrate over it;

3The fact that the logarithm of the generating functional generates only connected contributions is
a well-known result of statistical mechanics and QFT, see any standard textbook on QFT.
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1
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4 1
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4 1
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4

FIGURE 5.3: Examples of possible diagrams for the evaluation of 4-th
order correlator. The first diagram on the left is one of the 4 non-
connected diagrams with 3 lines; the other 3 non-connected diagrams

are obtained simply cycling over its indices.

4. to assign a generalized momenta to all the remaining lines, use (2.68), assigning
~kij = 0 to the lines that do not appear in the diagram;

5. every line assigned in this way will correspond to a Pij(~kij) term.

For the bispectrum, our Feynman rules generate the following diagrams:

Σ̃(3)
C (1, 2, 3) =

 1

2

3

+ cyc.


+

1

2

3

,

corresponding indeed to the terms we have considered in (5.10).

5.3.1 The trispectrum case

As an example, and as a possible comparison to what we have seen previously in
this chapter using directly correlators, let’s see the trispectrum case (l = 4).

We can split all the connected diagrams contributing to Σ̃(4)
C using as a criterium

the number of lines a diagram has. In general, for an l-vertices diagram we need at
least l− 1 lines to have a connected contribution, the maximum number of lines will
be l(l − 1)/2 and any diagram with at least l(l − 1)/2− l + 2 will be a connected
one for sure (since there is no way to leave a point without any connection with the
remaining diagram with that many lines). There are n! ways, with n = l(l − 1)/2,
to draw generic l-vertices diagrams with arbitrary number of lines m ∈ {0, . . . , n},
and the number of diagrams with m lines will be (n

m). All these n! diagrams are
in one-to-one correspondence with the factors in (5.1), with the number of lines m
corresponding to the number of factors P , and the number of lines n − m that are
not in the diagram corresponding to ∆ factors. We immediately see then that all the
terms in (5.1) with m < l − 1 are not connected whereas terms with m ≥ n− l + 2
are connected for sure.

For l = 4, we have terms with 3, 4, 5, 6 lines; the ones with m ≥ 4 lines are connected
for sure, whereas for m = 3, we have 4 contributions which are non connected, see
figure 5.3. So we have a total of 38 connected diagrams to evaluate. As an example,
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take the following diagram:

F :=

1

2 3

4

;

in this diagram there is a closed loop, so we can keep for example~k32 as wavevector
over which we integrate.~k43 and~k41 correspond to lines which are not in the diagram
we are considering, so we set them to zero. Then the other generalized momenta are
determined by

~k21 = −~k2 +~k32 +~k42

~k31 = −~k3 −~k32 +~k43

~k41 = −~k4 −~k42 −~k43 = 0

=⇒


~k21 = −~k2 +~k32 −~k4

~k31 = −~k3 −~k32

~k42 = −~k4

,

so this diagram will correspond to the term

F =
∫ d3k32

(2π)3P31(−~k3 −~k32)P21(−~k2 +~k32 −~k4)P32(~k32)P42(−~k4) .

Comparing with the result one would have obtained using (5.1) and (5.2), we see
that the previous diagram correspond to a ∆int∆extP2

intP2
ext contribution (we recall

that lines correspond to P factors, whereas the absence of a line correspond to a ∆
factor). In particular

F =
∫ d3k32 d3k42 d3k43

(2π)3(2π)3(2π)3 ∆(~k43)∆(~k41)P42(~k42)P31(~k31)P21(~k21)P32(~k32) .

If we want to neglect terms with multiple P integrations, we should consider only
connected diagrams with l− 1 lines4 (since all the n− l + 1 integrations are removed
by the n− l + 1 ∆ factors, see (5.2)), so for the trispectrum we should consider

1

2 3

4

+

1

2 3

4

+

1

2 3

4

+

1

2 3

4

+ cyc.

where cyc. means cycling over the indices {1, 2, 3, 4} separately for all 4 diagrams.
Actually we can compute the first diagram and then map the indices accordingly to
obtain the second and the third (for example to obtain the second diagram from the
first, map 1 → 1, 2 → 2, 3 → 4 and 4 → 3). The fourth is topologically different so

4This implies that the l-th order connected correlator scales as we claimed in equation (5.12). This
is coherent with standard perturbation theory [2].
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we must compute it explicitly. This yields (calling µij := k̂i · k̂ j)

Tδ(k1, k2, k3, µ21, µ31, µ32) = exp
(
−σ2

1
3

g2
qp
(
k1k2µ21 + k2k3µ32 + k1k3µ31 + k2

1 + k2
2 + k2

3
))

{
P
(

k1,
k2µ21

k1
, 0
)
P
(
|~k1 +~k2|,

k3k2(µ31µ21 + µ32)

|~k1 +~k2|2
,

k3k2µ31µ21

|~k1 +~k2|2

)
P
(

k4,
k3µ43

k4
, 0
)

+ PPP [1→ 1, 2→ 2, 3→ 4, 4→ 3] + PPP [1→ 1, 2→ 3, 3→ 2, 4→ 4] (5.13)

+ P
(

k1,
k2µ21

k1
, 0
)
P
(

k3,
k2µ32

k3
, 0
)
P
(

k4,
k2µ42

k4
, 0
)
+ cyc.

}
,

where P [. . .] is a shorthand to indicate the same term in the second line of the
previous but with different mapped indices. We recall that, due to the constraint
~k4 = −~k1 −~k2 −~k3, both k4 and µ4j, j = 1, 2, 3 are not free parameters. Again, we
can perform the same steps we did for the bispectrum in section 5.1.1 to compute
the trispectrum at early times, and the structure one obtains is analogous to the one
found in Eulerian perturbation theory [33, 34].
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Chapter 6

Conclusions

In this thesis, we used the kinetic field theory approach for the study of large scale
structure formation, applied to the analysis of non-linear evolution of some simpli-
fied primordial power spectra.

Kinetic field theory is a statistical field theory, involving microscopic degrees of free-
dom, that can be accustomed to describe large scale structure formation. As for
most statistical field theories and quantum field theory, its central object is a gen-
erating functional, and correlators of macroscopic fields (like density-contrast field,
of primary importance in cosmology) are obtained through appropriate functional
derivatives. We summarized the basics of kinetic field theory, together with the cos-
mological framework we used, in the first three chapters of this thesis.

Analysing the evolution of the two classes of primordial power spectra (the “dark
matter” power spectrum-like and the “Gaussian” one) in chapter 4, we found that
the small scale fall-off of the corresponding evolved power spectra approaches k−3

for a lot of different cases. This is coherent with the findings in the recent work Kon-
rad and Bartelmann (yet to be published), that employs asymptotic series to the non-
linearly evolved free power spectrumP , showing indeed what we confirmed for our
case studies. Our results hint at the universal asymptotic behavior of initially steep
power spectra for a rather wide class of model spectra. This result, obtained within
kinetic field theory, is difficult to obtain within other frameworks or numerical sim-
ulations. This proves the power of kinetic field theory together with its adaptability;
in fact, the real free parameters of kinetic field theory are the initial power spectra,
the background cosmological model and a way to account for interactions, and at
least the first two can be changed without too much effort.

With additional functional derivatives, kinetic field theory can treat also the evolu-
tion of higher-order correlators. In chapter 5, we investigated the bispectrum be-
havior and gave the outline of how to compute other higher order cumulants, for
example the trispectrum.

In section 5.2, we found that our plots of the hierarchical amplitude Q3 for early
times are consistent to what is found in 1-loop Eulerian perturbation theory (we
remark that our analysis, however, didn’t fully take into account gravitational in-
teractions). We recall that the programs we used to obtain our results can be found
here.

Kinetic field theory is in its early stages of development, and a lot has still to be
done. In this work, regarding the higher order analysis, we investigated only the
free case. Including interactions is not an easy task; perturbative approaches have
been developed, but their implementation is numerically challenging. A possible

https://github.com/lucateo/kinetic field theory_thesis_program
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future work could consist in finding a non-perturbative way to include them, maybe
in the spirit of the Born approximation we used for the simple power spectrum.
Also, we found some problems in our implementations of the numerics for the free
non-linear power spectrum when dealing with less steep initial power spectra. An
improvement of our method to compute it is thus another possible future work,
together with a reliable and not too time-consuming way to numerically compute
integrals involving multiple P factors (their interest comes from the fact that they
appear in higher order correlator computations).
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Appendix A

Mathematical tools

A.1 Kronecker products

A Kronecker product between two generic matrices A, B, with A an m× n matrix
and B a p× q one, is defined as

A⊗ B :=

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 .

The Kronecker product has the following properties:

A⊗ (B + C) = A⊗ B + A⊗ B , (A + B)⊗ C = A⊗ C + B⊗ C ,
(kA)⊗ B = k(A⊗ B) = A⊗ (kB) ,
A⊗ (B⊗ C) = (A⊗ B)⊗ C ,

(A⊗ B)> = A> ⊗ B> ,
Tr(A⊗ B) = Tr A Tr B ;

Also if A, C and B, D can be separately multiplied, we have

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) .

The idea behind our usage of the Kronecker product is to encode the many particle
structure of the quantities we use on the second factor of the product. As an example,
we see the explicit expression behind (2.4):

∂tx = ∂t


qx

j~ej

qy
j~ej
...

pz
j~ej

 = ∂t



qx
1

qx
2
...

qx
N

qy
1
...

pz
N


=


(J ∂j)

(1)~ej
(J ∂j)

(2)~ej
...

(J ∂j)
(6)~ej

H =



(J ∂1)
(1)

(J ∂2)(1)

...
(J ∂N)

(1)

(J ∂2)(1)

...
(J ∂N)

(6)


H ,

where (J ∂j)
(i) is the i-th component of J (∂~qj ∂~pj)

>. These are indeed the 6N Hamil-
ton equations of the system.
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Our compact notation thus allows us to treat these 6N dimensional quantities with
little effort.

A.2 Gaussian integrals

We show here how to solve what is almost the only functional integral we can ex-
actly solve, the Gaussian integral. Let’s start with an example in a finite number of
dimensions, define

Z[~b] = N
∫ ( n

∏
i=1

dxi

)
exp

(
−1

2 ∑
ij

kijxixj + i ∑
j

bjxj

)
,

where i ∑j bjxj is the source term and N is a normalization factor; then we make the
change of variables

~y = ik−1~b, ~x = ~y +~z ;

with this the exponent becomes

−1
2

xikijxj + ibixi = −
1
2

zikijzj −
1
2

bik−1
ij bj ,

so

Z[~b] = N exp
(
−1

2
bik−1

ij bj

) ∫ ( n

∏
i=1

dzi

)
exp

(
−1

2
zikijzj

)
,

now diagonalize k as ∑ kijzizj = ∑ λiξ
2
i , where λi are the eigenvalues of k. We thus

end up with a standard Gaussian integral, the final result is

Z[~b] = N (2π)n/2(det k)−1/2 exp
(
−1

2
bik−1

ij bj

)
;

imposing Z[0] = 1, we have

Z[~b] = exp
(
−1

2
bik−1

ij bj

)
.

All this procedure can be extended to the functional case

Z[J] = N
∫
Dq exp

(
−1

2

∫
dx dy q(x)k(x, y)q(y) + i

∫
dx q(x)J(x)

)
,

yielding (with the proper normalization)

Z[J] = exp
(
−1

2

∫
dx dy J(x)k−1(x, y)J(y)

)
. (A.1)

A.3 Solving linear inhomogeneous equations

Consider a non homogeneous equation of the type

(∂t + a(t)) f (t) = b(t) ; (A.2)
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an homogeneous solution is simply given by

f0(t) = f (0) exp
(
−
∫ t

0
dt′ a(t′)

)
.

To find a particular solution, let’s apply the variation of constants method: use the
trial solution

f (t) = C(t) exp
(
−
∫ t

0
dt′ a(t′)

)
,

insert it in (A.2) to obtain

exp
(
−
∫ t

0
dt′ a(t′)

)
∂tC(t) = b(t) =⇒ C(t) =

∫ t
dt′ b(t′) exp

(∫ t′

0
dt′′ a(t′′)

)
,

so that we can write the particular solution as

f (t) = exp
(
−
∫ t

0
dt′ a(t′)

) ∫ t
dt′ b(t′) exp

(
−
∫ 0

t′
dt′′ a(t′′)

)
=
∫ t

dt′ b(t′) exp
(
−
∫ t

t′
dt′′ a(t′′)

)
.

The full solution can be written as

f (t) = G(t, 0) f (0) +
∫ t

0
dt′ G(t, t′)b(t′) , (A.3)

with the Green function corresponding to (A.2)

G(t, t′) = exp
(
−
∫ t

t′
dt′′ a(t′′)

)
Θ(t− t′) .
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Appendix B

Some derivation details

B.1 Classical path integral

Here we will see some details about the derivations of (2.11), (2.16),

We can use the following property of the delta function: given the function E(x), if
E has a zero in xcl, then we can formally write

δD(x− xcl) = δD(E(x))
∣∣E′(xcl)

∣∣ ; (B.1)

collecting |E′(xcl)| in an unimportant overall constant factor, and using the integral
representation of the delta (2.9) we have, from (2.8), indeed the (2.11).

Now regarding (2.16), we can reverse the previous reasoning: the piece affected by
the integration over χ in the free part of (2.15) becomes∫

Dχ eiχ·(E0(x)+K) = δD(E0(x) + K) ,

so that the part affected by
∫
D′x becomes∫

D′x δD(E0(x) + K) exp
(

i
∫

dt J · x
)
= exp

(
i
∫

dt J · x̄
)

,

where x̄, that comes from the Dirac delta integration, is the solution of the classical
equation of motion with source K as written in (2.17).

B.2 Including interaction terms

Here we will see the logic behind the inclusion of interaction terms, common in QFT,
as seen for example in (2.37).

Imagine we have a function of a quantity φ we call f (φ), and that we have the ex-
pression

A(J) :=
∫

dφ f (φ)eiJφ ,

if for example f (φ) = exp(φ), then we can think of it in terms of its Taylor expansion

exp(φ) = 1 + φ +
1
2

φ2 + . . . ;
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now a function of an operator is defined in terms of the function’s Taylor expansion
as well, like for example

exp
(
−i

d
dJ

)
:= 1− i

d
dJ
− 1

2
d

dJ2 + . . . ,

so

exp
(
−i

d
dJ

)
eiJφ =

(
1 + φ +

1
2

φ2 + . . .
)

eiJφ = eφeiJφ ;

in general this trick works for every sufficiently regular function, so that

f
(
−i

d
dJ

) ∫
dφ eiJφ =

∫
dφ f (φ)eiJφ .

With this technique, we can pull out of an integral for example the interaction terms
by exploiting the source terms (like J, K of the main body of this thesis) and this
trick.

B.3 Deriving (2.28)

At first, we should explicitly show the validity of (2.24); from (2.23), by expressing
everything in terms of Fourier transform,

S1 = −
∫

dt
∫

d3q
∫

d3y
∫ d3k

(2π)3 ei~k·~qB(t,~k)
∫ d3n

(2π)3 ei~n·(~q−~y)v(~n)
∫ d3m

(2π)3 ei~m·~yρ(t, ~m)

= −
∫

dt
∫

d3n d3m
d3k
(2π)3

∫ d3q
(2π)3 ei~q·(~k+~n)︸ ︷︷ ︸

δD(~k+~n)

∫ d3y
(2π)3 ei~y·(~m−~n)︸ ︷︷ ︸

δD(~m−~n)

B(t,~k)v(~n)ρ(t, ~m)

= −(2π)3
∫

dt
d3n
(2π)3 B(t,−~n)v(~n)ρ(t,~n)

∫ d3l
(2π)3 δD(~l) ,

that indeed it is the (2.24) once one uses our notation; now we write explicitly (2.28)

S1 = −1
2
(2π)9

∫ d3kr

(2π)3
d3lr
(2π)3

d3lr′
(2π)3

d3kr′

(2π)3 dtr dtr′ δD(~kr − ~kr′)δD(~lr)δD(~lr′)v(r)

× (Φ f (r)ΦB(−r) + Φ f (−r)ΦB(+r))

then, since Φ f (r) = ρ(r), ΦB(r) = B(r) when evaluated at~lr = 0, we have indeed
the equivalence of (2.24) and (2.28).
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Appendix C

Numerical techniques

In order to numerically solve the integrals we met in this work, we used some C++
libraries implementing GSL integration routines1 [29]. In particular, we dealt with
fast-oscillating integrals, and an efficient implementation of their integrations is the
Levin collocation scheme [27, 28], which we will briefly review here.

C.1 Levin collocation scheme

Consider integrals of the form

I :=
∫ b

a
dx f (x)S(rx) , (C.1)

where S is an oscillatory function dependent on a parameter r. If r is large, we
are dealing with a very fast oscillatory function, so its integration with standard
techniques can become quite heavy computationally (that is we need a lot of function
evaluations).

To tackle this problem, consider integrals of the form

J :=
∫ b

a
dx ~S(x) · ~f (x) ,

where ~S and ~f are now n dimensional vectors, the first of independent rapidly os-
cillating functions and the second of independent non rapidly oscillating functions
(you then can return to the (C.1) case by considering n = 1 and S(x) → S(rx)).
Assume that ~S satisfy the set of ordinary differential equations

~S′(x) = A(x)~S(x) , (C.2)

where the apex means derivation over x (spherical Bessel functions satisfy this con-
dition, see (2.81)).

The idea is to find a vector ~R such that

(~S · ~R)′ = ~S · ~f , (C.3)

1The code used for this thesis can be found here.

https://github.com/lucateo/KFT_thesis_program
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so that the solution of the integral is simply

J = ~S(b) · ~R(b)− ~S(a) · ~R(a) .

Exploiting (C.2) and (C.3), we have that ~R should satisfy

~R′ + A~R = ~f ; (C.4)

we reconduced thus the problem of finding a solution for J to find an approximate
solution for the differential equation (C.4).

Now we want to use a collocation scheme to solve this problem. An l-th order col-
location approximation to (C.4) is defined as the function ~Rl that satisfies

(~Rl)i(x) =
l

∑
k=1

cikuik(x) , i = 1, . . . , n ,

where uik are some basis functions and the coefficients cik are determined by the
collocation condition

~R′l(xj) + A~Rl(xj) = ~f (xj) ,

where xj, j = 1, . . . , l are chosen points in the interval [a, b].

We now illustrate the Levin collocation approach. Divide the interval [a, b] in m
equal subintervals [tj−1, tj], with 1 ≤ j ≤ m, tj = a + hj with h = (b− a)/m as the
length of the interval. Then apply a l-th order collocation method on each subin-
terval using the basis functions uik = xk−1, k = 1, . . . , l. The resulting integrals
will come from the sum of the approximated Rj,l one obtains with such a procedure,
where j labels the solution on the interval [tj−1, tj]. So we can write the approximated
result for the integral as

Jl,h =
m

∑
j=1

~S(tj) · ~Rj,l(tj)− ~S(tj−1) · ~Rj−1,l(tj−1) ,

where we made explicit that the approximation is done considering h as the length
of the subinterval and l as the order of the collocation method.

The proof that this method yields indeed good results on determining integrals with
fast oscillatory integrands can be found in [28]. The advantages of the Levin colloca-
tion scheme involve the efficiency in evaluating the integrals together with the small
error associated.
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Appendix D

Exact free cumulants

In this appendix we summarize how one could in principle take into account exactly
also the density-density and density-momentum correlations, i.e. how to take fully
into account the action of Ĉ in (2.50). However, including all these new contributions
yield very small corrections, that’s why we neglected them in the main text of the
thesis. Also, we focus on cumulants rather than correlators, so that we focus only on
connected contributions to the various correlators. Here we will only see the main
ideas, all the derivations of the results we show here can be found in [9].

D.1 Cumulant

In our formalism, a cumulant can be obtained from the generating functional by
functional derivatives, in particular a generic n-th order cumulant is defined as

G(c)
α1(1)···αn(n)

:= 〈Φα1(1) · · ·Φαn(n)〉c = Ĥα1(1) · · · Ĥαn(n) ln ZC[H]

∣∣∣∣
H=0

, (D.1)

where αj can stand for f or B (density or respond field), or other macroscopic field
labels as we will see in the following. The superscript c here means connected. No-
tice that cumulants are obtained using the logarithm of the partition function, that
is indeed the generator of connected correlators1. In particular the power spectrum
will be

G(c)
ρ(1)ρ(2) := G(c)

f (1) f (2)

∣∣∣∣
~l1=~l2=0

= (2π)3δD(~k1 +~k2)Pδ(k1, t1, t2) . (D.2)

One could legitimately ask why are we interested also in cumulants involving the
response fields, ad the answer is that we need them if we want to compute perturba-
tively quantities like the full power spectrum. In fact what we can do is to compute
cumulants with the interaction term set to zero (free cumulants), and then expand
the interaction term in (2.37) to find the perturbative corrections in terms of free
cumulants. As an example, we can try to derive the expression for the full power
spectrum at first order in the interaction term σ.

Let’s apply (D.1) to write

G(c)
f (1) f (2) ' Ĥ f (1)Ĥ f (2) ln

(
(1 + iŜ1)ZC,0[H]

)∣∣∣∣
H=0

,

1This is a standard result of QFT.
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where we expanded at first order exp
(
iŜ1
)
; then notice that we can write the loga-

rithm as

ln

(
ZC,0

(
1 + i

Ŝ1ZC,0

ZC,0

))
= ln ZC,0 + ln

(
1 + i

Ŝ1ZC,0

ZC,0

)
' ln ZC,0 + i

Ŝ1ZC,0

ZC,0
;

Ŝ1 contains both Ĥ f and ĤB, it is clear then that, applying it to the non-connected
generating functional ZC,0, we will obtain quantities related to connected cumulants
involving also response fields; writing schematically Ŝ1 = 2iĤ f • σf B • ĤB (notice
that σf B = σB f ), exploiting

Ĥ f ĤBZC,0

ZC,0
= Ĥ f ĤB ln ZC,0 +

1
Z2

C,0
Ĥ f ZC,0ĤBZC,0

= Ĥ f ĤB ln ZC,0 + Ĥ f ln ZC,0ĤB ln ZC,0 ,

we arrive at

G(c)
f (1) f (2) =G(c,0)

f (1) f (2) + 2i
(

G(c,0)
f f (2) • σB f • G(c,0)

B f (1) + G(c,0)
f f (1) • σB f • G(c,0)

B f (2)

)
+ 2i

(
G(c,0)

f B f (1) f (2) • σB f

)
+O

(
σ2) .

(D.3)

where G(c,0) are the free cumulants.

Since response fields will be always paired with an interaction term, it is useful to
introduce the dressed response field

ΦF (r) :=
∫

r′
σf B(r,−r′)ΦB(r′) , (D.4)

so that in the previous one can substitute all B cumulants with F ones.

D.2 Results

Here we summarize all the important formulas for the exact computation of free
cumulants. We recall that here we won’t do much of the derivations, which can be
found in [9].

A general free cumulant in KFT can be written as

G(c,0)
α1(1)···αn(n)

=
∞

∑
l=1

Φ̂(l)
α1 (1) · · · Φ̂

(l)
αn (n)

1
l!

Σ̂(l)
C (1, . . . , l)Tr(l)

∣∣∣∣
H,J,K=0

=:
∞

∑
l=1

G(c,0,l)
α1(1)···αn(n)

,
(D.5)
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where l index indicates quantities referring to canonical ensemble with l particles2,
Φ̂(l)

αj (j) are the quantities corresponding to the canonical (2.33) with N = l, and

Tr(l) = exp
(

i
∫

r
H(−r) · Φ̂(l)(r)

) ∫
dx(i) ρ̄l Pσ2

1
(p(i))ei

∫
dtJ·x̄ ,

with ρ̄ the mean density, and with Kronecker products built for l particles, x̄(t) is the
l particle version of (2.17) and

Pσ2
1
(p(i)) =

1
(6πσ2

1 )
3l/2

exp

(
−p(i) · p(i)

6σ2
1

)
,

as the uncorrelated gaussian distribution defined by σ2
1 whose expression in terms

of the power spectrum is (2.58). Finally, Σ̂(l)
C (1, . . . , l) is the operator acting on Tr(l)

representing the sum of all connected l particle diagrams (with representative set of
particles {1, . . . , l}) obtained with the following line types:

ji
= Cδiδj exp

(
−~̂χ>pi

(t(i))Cpi pj ~̂χpj(t
(i))
)
=: Ĉδiδj(~̂χpi(t

(i)), ~̂χpj(t
(i))) ;

ji
= (−i~Cδi pj · ~̂χpj(t

(i))) exp
(
−~̂χ>pi

(t(i))Cpi pj ~̂χpj(t
(i))
)

=: Ĉδi pj(~̂χpi(t
(i)), ~̂χpj(t

(i))) ;

ji
= exp

(
−~̂χ>pi

(t(i))Cpi pj ~̂χpj(t
(i))
)
− 1 =: Ĉpi pj(~̂χpi(t

(i)), ~̂χpj(t
(i))) ;

ji
= (−i~Cδi pj · ~̂χpj(t

(i)))(−i~Cδj pi · ~̂χpi(t
(i)))

× exp
(
−~̂χ>pi

(t(i))Cpi pj ~̂χpj(t
(i))
)
=: Ĉ(δp)2

ij
(~̂χpi(t

(i)), ~̂χpj(t
(i))) ;

(D.6)

where ~Cδi pj , Cpi pj , Cδiδj can be read in (2.49); the possible diagrams are subjected to
the following three rules:

• No self-correlation rule: subdiagrams of the form for any line are forbid-
den;

• No two particle loop rule: any pair of particles can be connected directly by at
most one line;

• δ-line rule: no particle can have more than one solid δ line attached to it.

On the computation of cumulants, recall that, from (2.33), we can write

Φ̂(l)
αj =

l

∑
k=1

Φ̂(1)
αj,k

;

we say that, in an expression, a particle k carries a field label αj(r) if an operator

Φ̂(1)
αj(r),k

is present, and also that a field label grouping {I1, . . . , Il} is characterized by
l sets, where a generic Ik set contains all the labels r (that is the momenta and times)

2On the computation of free cumulants it is better to use the gran canonical ensemble and exploit
the Mayer cluster expansion, see [9] for details.
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and αj (that is the type of the field) corresponding to all the Φ̂(1)
αj,k

(r) for the given
particle labelled with k, acting on the expression we are considering.

We can apply the following restriction to truncate the sum in (D.5):

• Homogeneity restriction: if a particle k does not carry a field label in one of
the terms given by the sum in

Φ̂(l)
α1 (1) · · · Φ̂

(l)
αn (n) =

l

∑
k=1

Φ̂(1)
α1,k(1) · · ·

l

∑
k=1

Φ̂(1)
αn,k(n) ,

then the associated term in G(0,l)
α1(1)···αn(n)

vanishes;

• Causality restriction: non vanishing contributions are given by those field la-
bel groupings {I1, . . . , Il} that have the following property: for every Ik, there
exists at least one label r corresponding to a Φ f field such that tr ≥ t′r for all ΦB
labels r′ ∈ Ik;

these restrictions together imply the truncation scheme

G(c,0)
f (1)··· f (n f )B(1′)···B(n′B)

=
n f

∑
l=1

G(c,0,l)
f (1)··· f (n f )B(1′)···B(n′B)

. (D.7)

This last result is very important, since it tells us that we need to evaluate only a
finite number of terms to compute exactly any free cumulant.

In the case of density cumulants, we can rewrite (D.5) as

G(c,0,l)
f (1)··· f (n) = ρ̄l(2π)3δD

(
n

∑
r=1

~Lq,r(t(i))

)
∑

{I1,...,Il}
e−Q(I1,...,Il)Σ̃(l)

C (I1, . . . , Il) , (D.8)

where the sum is over all the possible label groupings, and

e−Q(I1,...,Il) := exp

(
−σ2

1
6

l

∑
j=1

~L2
p,Ij

(t(i))

)
, (D.9)

is the generalization of QD in (2.59), whereas the generalization of (2.56) is

~Lq,Ij(t) := ∑
r∈Ij

~Lq,r(t) := −∑
r∈Ij

(~krgqq(tr, t) +~lrgpq(tr, t)) ,

~Lp,Ij(t) := ∑
r∈Ij

~Lp,r(t) := −∑
r∈Ij

(~krgqp(tr, t) +~lrgpp(tr, t)) ;

instead

Σ̃(l)
C (I1, . . . , Il) :=

l−1

∏
j=1

∫
d3q(i)jl ei~Lq,Ij (t

(i))·~q(i)jl Σ(l)
C (I1, . . . , Il) , (D.10)

where
~q(i)il := ~q(i)i −~q(i)l ,

are the relative coordinates to the coordinate ~q(i)l , Σ(l)
C (I1, . . . , Il) is Σ̂(l)

C with the sub-
stitutions ~̂χpj → ~Lp,Ij (so it will be not an operator anymore); we can rewrite it as an
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integral over all possible relative coordinates3 ~qij := ~q(i)il −~q(i)jl , with i > j, using
what we call the generalized momenta (2.68) and the new redefinitions of the lines
in (D.6):

ji
= Pδiδj(

~k(i)ij ) :=
∫

d3q(i)ij ei~k(i)ij ·~q
(i)
ij Ĉδiδj(

~Lp,Ii ,~Lp,Ij) ;

ji
= Pδi pj(

~k(i)ij ) :=
∫

d3q(i)ij ei~k(i)ij ·~q
(i)
ij Ĉδi pj(

~Lp,Ii ,~Lp,Ij) ;

ji
= Ppi pj(

~k(i)ij ) :=
∫

d3q(i)ij ei~k(i)ij ·~q
(i)
ij Ĉpi pj(~Lp,Ii ,~Lp,Ij) ;

ji
= P(δp)2

ij
(~k(i)ij ) :=

∫
d3q(i)ij ei~k(i)ij ·~q

(i)
ij Ĉ(δp)2

ij
(~Lp,Ii ,~Lp,Ij) .

(D.11)

Notice that Ppi pj = Pij, which is defined in (2.67).

The rules to properly compute (D.10) are then the following:

1. Choose an arrangement of l dots representing particles carrying the labels Ij,
j = 1, . . . , l;

2. Draw all possible connected diagrams, subjected to the three rules stated above,
with the lines (D.11);

3. For any closed loop, assign to one of the lines forming the loop a momentum
~k(i)ij and integrate over it

4. We need to assign to every line a generalized momenta~k(i)ij , so pick a vertex j
that has only one line with undetermined momentum and use

~Lq,Ij −
j−1

∑
i=1

~k(i)ij +
l

∑
i=j+1

~k(i)ji = 0 , (D.12)

to fix its momentum. Incoming momenta from vertices with smaller labels
are counted positive while outgoing momenta to vertices with larger labels
are counted negative. Momenta associated to vertices not connected to j are
counted as zero.

5. Repeat the same steps for all vertices to fix all momenta of the lines.

Power spectrum case. Let’s apply these rules to the computation of G(c,0,2)
f (1)··· f (n). It

is a 2-particle quantity, so we must consider all possible diagrams with 2 vertices,
which are

21
+

21
+

21
+

21
+

21
.

We have to fix the generalized momenta; picking vertex j = 1 we have that, for every
diagram, by applying the (D.12),

~k(i)12 = ~Lq,I1 .

3All these steps are a generalization to what we did in 2.4.1, see [9].
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So

Σ̃(2)
C (I1, I2) = Pδ1δ2(~Lq,I1) + Pp1δ2(~Lq,I1) + Pδ1 p2(~Lq,I1) + Pp1 p2(~Lq,I1) + P(δp)2

12
(~Lq,I1) ,

and using (D.8) we have

G(c,0,2)
f (1)··· f (n) = ρ̄2(2π)3δD

(
n

∑
r=1

~Lq,r(t(i))

)

× ∑
{I1,I2}

exp
(
−σ2

1
6

(
~L2

p,I1
(t(i)) +~L2

p,I2
(t(i))

))
Σ̃(2)

C (I1, I2) ,
(D.13)

where the sum is over all the possible ways to put n particle labels into the two non-
empty sets I1, I2. The case of the power spectrum can be obtained from the previous
with n = 2 and replacing f -cumulant with ρ-cumulant (that is evaluate it at~l = 0);
by neglecting Cδp, Cδδ factors, Σ̃(2)

C reduces to Σ̃(2)
C (I1, I2) = Pp1 p2(~Lq,I1); since there is

only one way to assign 2 labels to the two non-empty sets {I1, I2}, we end up with

G(c,0,2)
ρ(1)ρ(2) = ρ̄2(2π)3δD

(
~k1 +~k2

)
exp

(
−σ2

1
3

g2
qp(t, t(i))k2

1

)
Pp1 p2(k1)

= ρ̄2(2π)3δD

(
~k1 +~k2

)
eQD/2P21 .

We thus obtain, as expected, the same result we obtained in section 2.4.3.

Including response fields. The generic cumulant including also response field is
not difficult to derive from (D.8), in fact applying n = n f + n′B field operators, with
obvious notation, looking at (2.34) one can notice that we can reconduce to the n
density operator case, since Φ̂(1)

f j
and b̂j operators commute so that we can push to

the right all density operators, including the ones arising from Φ̂(l)
B . We have then

to be careful to associate to all the terms of the resulting sums the corresponding b̂j
factors. To understand this, consider an explicit example with l = 2, n f = 2 (the
minimum amount we can consider due to restriction relations) and n′B = 3, so we
have to consider

2

∑
j=1

b̂j(1′)Φ̂
(1)
f j
(1′)

2

∑
j=1

b̂j(2′)Φ̂
(1)
f j
(2′)

2

∑
j=1

b̂j(3′)Φ̂
(1)
f j
(3′)

2

∑
j=1

Φ̂(1)
f j
(1)

2

∑
j=1

Φ̂(1)
f j
(2) ,

so every term will have a number n′B of b̂j(r′) operators and n density operators.
Each term of the sum can be characterized by a label set I1, I2, for example the
term corresponding to the choice I1 = {1′, 3′, 2} and I2 = {2′, 1} (recall that, due
to causality condition, for this term to be different from zero it should be t1 > t2′ and
t2 > t1′ , t3′), is

b̂1(1′)b̂1(3′)b̂2(2′)Φ̂
(1)
f1
(1′)Φ̂(1)

f1
(3′)Φ̂(1)

f1
(2)Φ̂(1)

f2
(2′)Φ̂(1)

f2
(1) ,

so we can still reconduce to a sum over the possible choices of {I1, . . . , Il} but we
have to keep track of the b̂j(r′) factors, and we will do this introducing the notation
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b̂I(r) := b̂j(r), that is, given a label grouping {I1, . . . , Il}, I(r) associates the parti-
cle index j corresponding to the label r in the choice of the label grouping. In the
previous example, I(1′) associates the index 1 since the 1′ label is in I1.

In the end, since the action of b̂j(r′) corresponds to insert the term

bj(r) = −i~Lp,Ij(tr) ·~kr ,

we can write

G(c,0,l)
f (1)··· f (n f )B(1′)···B(n′B)

= ρ̄l(2π)3δD

(
n

∑
r=1

~Lq,r(t(i))

)
× ∑
{I1,...,Il}

e−Q(I1,...,Il)bI(1′) · · · bI(n′B)
Σ̃C(I1, . . . , Il) ,

(D.14)

that is the general formula for computing exactly any free cumulant.

The generalization to ΦF cumulants is straightforward: looking at (D.4), the only
difference is

G(c,0,l)
f (1)··· f (n f )F (1′)···F (n′B)

=

(
nB

∏
r=1

∫
r′′

σf B(r′,−r′′)

)
G(0,l)

f (1)··· f (n f )B(1′)···B(n′B)
.
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