
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

Visual Language Navigation in

Continuous Environments

Supervisor Master Candidate
Prof. Lamberto Ballan Giacomo Barzon
University of Padova

Co-supervisor Student ID
Dott. Tommaso Campari 1236597
University of Padova

Academic Year
2021-2022

ii

“I suppose thereforethatall things I see are illusions; I believe that
nothinghaseverexistedofeverythingmylyingmemorytellsme. I think
Ihaveno senses. I believe thatbody, shape, extension,motion, location
are functions. What is there then that can be taken as true? Perhaps
only this one thing, that nothing at all is certain.”
—Rene Descartes

iv

Acknowledgments

First of all I want to deeply thankmy family for supporting me for the entirety of my academic studies that
took many years.

I want to thank then all friends that surrounded me during these years and gave me the possibility to ex-
perience brief moments of relief from the stress and the responsibilities of my studies.

I want also to give a thanks to all my fellow students that accompanied during the whole academic jour-
ney and with whom i shared every single exam, project and so on.

Finally a special thanks goes to the Professor Lamberto Ballan andmy Co-Supervisor andDoctor Lamberto
Ballan for guidingme through the entire thesis project andalways beeing availablewhenever i had problems.

Padova, Settembre 2022 Barzon Giacomo

v

vi

Abstract

From Philip K. Dick to Isaac Asimov novel writers from all ages have constantly dreamt about robots
capable of assisting humans in their daily chores or even accomplishing tasks that would be completely
unfeasible by a mere man. Nowadays the recent advancements in artificial intelligence are bringing day
by day the dreams of those mans closer to reality.
In the recent years research on artificial intelligence has quickly shifted from Internet AI tasks, which
completely revolve around datasets of images text or videos extracted from the internet, to tasks which
fall under the Embodied AI field.
With the term Embodied AI we refer to all those tasks that involve a physical agent capable of interacting
with the real world through concrete and tangible hardware.
More specifically Visual Language Navigation (VLN) is a sub-field of Embodied AI that tasks an agent
to navigate through an environment, which potentially he could have no knowledge about, by following
instructions given through natural language. Tasks belonging to the VLN field were originally modeled
through navigation graphs which highly abstracted the environment by using nodes to represent loca-
tions and edges to indicate navigability between such locations.
This approach has the problem of abstracting too much the task by making it much more similar to tele-
portation than actual navigation.
The next step over VLN tasks was placing the agent inside continuous environment where he can freely
navigate by executing low level actions like moving forward of x centimeters or turning left of y degrees.
This kindof tasks take thenameofVisualLanguageNavigation inContinuousEnvironments (VLN-CE)
and are very challenging due to the high amount of input modalities that the agent needs to understand
to achieve their goals. The aim of this thesis project is improving performances of the baseline VLN-CE
model over RxR-Habitat dataset by proposing new solutions that exploit a better instruction encoding
or the implementation of auxiliary tasks.

vii

viii

Contents

List of figures xi

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Text Organization . 3

2 Background 5
2.1 Neural Networks . 5

2.1.1 Training . 6
2.1.2 Autoencoders . 8

2.2 Convolutional Neural Networks . 8
2.3 Recurrent Neural Networks . 11

2.3.1 Bidirectional RNN . 12
2.4 Long term dependencies . 13

2.4.1 Long Short-TermMemory . 13
2.4.2 Gated Recurrent Units . 14

2.5 Reinforcement Learning . 14

3 RelatedWorks 17
3.1 Visual Exploration . 18

3.1.1 Simultaneous Localization AndMapping 18
3.1.2 Active Neural SLAM . 20

3.2 Visual Navigation . 21
3.2.1 Goal Types . 22

3.3 Visual Language Navigation . 22
3.4 Embodied Question and Answering . 24

4 Dataset 27
4.1 Matterport3D . 27
4.2 Habitat . 28
4.3 Room To Room (R2R) . 29
4.4 RoomAcross Room (RxR) . 31
4.5 RxR Challenge . 33

5 Methods 35
5.1 AttentionMechanisms . 35

ix

5.2 Visual Language Navigation in Continuos Environments 38
5.2.1 Trajectory Conversion . 38
5.2.2 Data Representation . 40
5.2.3 Sequence-to-Sequence Model . 40
5.2.4 Cross-Modal AttentionModel . 41

5.3 Improving instruction’s encoding . 42
5.3.1 BERT . 43
5.3.2 RoBERTa . 44

5.4 Auxiliary Tasks . 46
5.4.1 Contrastive Predicting Coding . 47
5.4.2 CPC|Action . 48
5.4.3 PBL . 48
5.4.4 GID and ADP . 51

6 Results 53
6.1 StandardMetrics . 53
6.2 Hardware Limitations . 55
6.3 Experiments . 56

7 FutureWorks and Conclusions 59
7.1 Future Works . 59
7.2 Conclusions . 60

References 61

Appendix A Code 65

Appendix B Hyperparameters 67
B.1 Common Task Parameters . 67
B.2 CPCAAuxiliary Task Parameters . 68
B.3 PBL Auxiliary Task Parameters . 68
B.4 GID Auxiliary Task Parameters . 68
B.5 ADP Auxiliary Task Parameters . 69

x

Listing of figures

2.1 Neural Network . 6
2.2 Gradient Descent . 7
2.3 Encoder-Decoder Neural Network . 8
2.4 Convolution of a Kernel on an Image . 9
2.5 Max Pooling . 9
2.6 Convolutional Neural Network . 10
2.7 Recurrent Neural Network . 11
2.8 Bidirectional Recurrent Neural Network . 12
2.9 Gradient Clipping . 13
2.10 LSTM and GRU node architecture . 14
2.11 Reinforcement Learning . 15

3.1 Hierarchical structure of Embodied AI tasks . 18
3.2 Graphical representation of the SLAM Problem . 19

4.1 Data samples taken fromMatterport3D dataset . 28
4.2 Habitat Stack . 30
4.3 RxR instruction example along with the path taken by the agent 32

5.1 Scaled Dot-Product Attention andMulti-Head Attention 36
5.2 Transformer Model . 37
5.3 Comparison between classical VLN and VLN-CE 39
5.4 VLN-CE dataset conversion problems . 39
5.5 Graphical Representation of the Resnet . 40
5.6 Sequence to Sequence model . 41
5.7 Sequence to Sequence model . 43
5.8 BERT input representation . 44
5.9 Bert architecture . 45
5.10 Auxiliary Task Architecture . 47
5.11 CPC architecture . 47
5.12 CPC|A architecture . 49
5.13 PBLHistory Encoder . 51
5.14 PBL architecture . 52

6.1 Examples of optimal DTWwarping . 55
6.2 Plots of the losses of the four different Auxiliary Tasks 58

xi

xii

Listing of tables

6.1 Experiments results . 58

B.1 Common task parameters . 67
B.2 CPC|A auxiliary task parameters . 68
B.3 PBL auxiliary task parameters . 68
B.4 GID auxiliary task parameters . 68
B.5 ADP auxiliary task parameters . 69

xiii

xiv

Listing of acronyms

AI Artificial Intelligence
ADP Action Distribution Prediction
ANS Active Neural SLAM
BERT Bidirectional Encoder Representations from Transformers
Bi-RNN Bidirectional Recurrent Neural Network
BPE Byte Pair Encoding
CMA Cross Modal Attention
CNN Convolutional Neural Network
CPC Contrastive Predictive Coding
CPC|A Contrastive Predictive Coding Action|Action
CSE Cross Entropy
DTW Dynamic TimeWarping
GID Generalized Inverse Dynamics
GloVe Global Vector
GRU Gated Recurrent Unit
LM Language Modeling
LSTM Long Short TermMemory
MLP Multy Layer Perceptron
MSE Mean Squared Error
nDTW Normalized Dynamic TimeWarping
NLP Natural Language Processing
NN Neural Network
NSP Next Sequence Prediction
POMDP Partially Observable Markov Decision Process
PBL Prediction of Bootstrap Latents
PL Path Length
R2R Room to Room
ResNet Residual Neural Network
RNN Recurrent Neural Network
RoBERTa Robust Bidirectional Encoder Representations from Transformers Approach
RxR Room Across Room

xv

Seq2Seq Sequence to Sequence
SLAM Simultaneous Localization AndMapping
SPL Success Weighted by Path Length
SR Success Rate
ViLBERT Visiolinguistic BERT
VLN Visual Language Navigation
VLN-CE Visual Language in Continuous Environments

xvi

1
Introduction

Robots capable of understandinghuman language and reacting accordingly have been fantasizedbymany
sci-fi novel writers in the past. Nowadays, thanks to the efforts of many researchers and the many tech-
nology advancements that have beenmade in the previous decades, these fantasies are becoming closer to
reality day by day.

Embodied AI is a field of artificial intelligence in which agents are no longer limited to virtual worlds
and internet datasets (like collections of labeled images or videos) but are physically present in realistic en-
vironments and learn by exploring and interacting with such environments, similarly to human beings.
One of the key advancements in this field has been the development of simulators that allow agents to
train inside realistic virtual environments reconstructed through photogrammetry that make up for the
limitations of the physical world.
Embodied AI tasks can vary from tasks in which the agent is simply asked to explore the environment
while constructing a virtual map of such, to more complex tasks in which the agent has to simultane-
ously explore the environment while having to reach a goal location in the minimum amount of steps
possible, or even tasks in which he has to explore the environment and acquire enough information to
be able to answer questions asked about the environment.

More specifically the thesis work falls under the Visual Language Navigation (VLN) task. VLN tasks
ask the agent to navigate inside the environment to a goal location by following natural language instruc-
tions.
VLN tasks where usually defined over navigation graphs, in which each node represents a reachable area
in the environment and the edges between nodes indicate navigability. This representation method ab-

1

stracted too much the problem by making it more similar to a visually guided graph search than actual
navigation. The authors of [18] introduce Visual Language Navigation in Continuos Environments
(VLN-CE). VLN-CE tasks lift all the assumptions made by previous VLNmodels by putting the agent
inside a continuous environment navigable by executing low level actions like: move forward, turn left,
turn right and stop.

RxR-Habitat [15] is a competition that occurs yearly, inwhich the participants are tasked to train aVLN-
CE agent with the best possible performances. A public leaderboard is provided to offer participants the
possibility to track their progress. The RxR-Habitat provides also a starting code [16] that was used as a
baseline for this project.
The objective of this thesis project consists in making modifications to the baseline model that improve
performances as much as possible. More specifically we propose two main modifications to the baseline
model:

Instructions Encoding InVisual LanguageNavigation tasksNatural Language Instructions act
as a bridge between Visual and Textual perceptions. It becomes of key importance then to provide in
input to the agent’s model a representation of the instructions which encapsulates as much information
as possible inside it. Our first contribution consists in integrating into the models encodings produced
by RoBERTa, a state of the art model which has been proven to reach performances exceeding the ones
of the BERTmodel in many situations.

Auxiliary Tasks The continuous environments in which our agent operates are complex and rich.
Good Performances can be obtained by maximizing cumulative reward. However integrating into the
model auxiliary losses which force the model to maximize other secondary pseudo-rewards can bringe
notable improvements in many situations. Our second contribution consists in integrating some of the
auxiliary losses proposed by [27] into the baseline VLN-CEmodel.

2

1.1 Text Organization

Chapter 1 - Introduction presents a brief introduction of the thesis project

Chapter 2 - Background Introduces all the background knowledge that acts as a foundation for
all the concepts presented in the following chapters of the thesis.

Chapter 3 - Related Works presents a bird-eye view of the Embodied AI field by introducing
themains tasks and concepts, including Visual LanguageNavigation (VLN), the area of work where falls
the thesis work.

Chapter 4 - Datasets Gives a brief introduction to the various datasets used during the thesis
work along with the Habitat environment used to simulate the various experiments.

Chapter 5 - Methods after giving an initial introduction of the work made by Krantz et al. [18],
which was used as a baseline work, the chapter will introduce in detail the proposed contributions.

Chapter 6 - Results Introduces the standard metrics used for the evaluation of the experiments
and exposes the obtained results.

Chapter 7 -Conclusions Draws conclusions over the project andproposes potential futurework
that can be done on it.

3

4

2
Background

Inside the background chapter I’m going to present all the basic knowledge needed to understand the
work done in the following chapters. These concepts are going going to be picked upmany times during
the entire document so, to avoid having to explain them later, they are all explained in this section.
All the information provided regarding neural networks was extracted from [1], on the other hand [2]
and [9] were used as sources regarding reinforcement learning.

2.1 Neural Networks
Neural Networks are one of the most used computational models in the field of machine learning due to
their incredible representational power.
Every neural network usually follows the structure that can be seen in Figure 2.1. The network is com-
posed by an input layer, an output layer and a number of hidden layers. Each layer is fully connectedwith
the following one by a set of weights.
The output of the nth layer of a neural network can be representedmathematically through the following
formula:

f(x;wn, bn) = f(x;wn−1, bn−1)
Twn + bn (2.1)

Where:

• x: Is the vector given in input to the network

• wk: Is the vector of weights of the kth layer of the network

• bk: Is a constant scalar value also called as bias

5

Figure 2.1: Graphical representation of the structure of a Neural Network

The problem of the model above is that it has a really low representational power, in fact it can represent
only linear functions. Most of the functions that we want to learn are really complex and can’t be closely
approximated by using linear functions.
To do that non-linearity has to be introduced into the model. This is usually done by applying a non-
linear function to the vector produced in output by the layer.
So the output of the nth layer then becomes:

f(x;wn, bn) = gi(f(x;wn−1, bn−1)
Twn + bn) (2.2)

Where gk is the chosen non-linear function.

2.1.1 Training

The training of a neural network has the objective of learning the weight matrixW = [wT
1 ...wT

N] that
approximates as closely as possible some function f∗.
So given a ground truth of values x ∈ X for which it’s target value f∗(x) is known, the objective of our
training is minimizing a function that estimates the difference between f∗ and the output of the neural
network f.
Such functions are usually called as loss functions. One of themost important loss functions is theMean

6

Squared Error(MSE)

MSE =
1
N

N∑
i=1

||f(xi)− f∗(xi)||2 (2.3)

Mean Squared Error is one of the most intuitive definitions of a loss that can be thought of since it tries
to minimize the actual difference between the target values of f∗ and the actual values produced by our
network. However this isn’t always the best choice, other losses can work better in specific contexts like
for example Cross Entropy when the output values of our network are probabilities.

CSE =
N∑
i=1

log p(f∗(xi)|xi,W) (2.4)

Calculating the best possible set of weightsW that minimizes the chosen loss function is usually a prob-
lem computationally to hard even for relatively small networks. So we have to find a solution that is good
enough.
The training of a neural network is usually composed by mainly two phases:

• The forward propagation phase were the examples of our ground truth are given in input to our
network. The input propagates trough the network, the values of each layer are calculated from
the input layer to the output one.

• In the back propagation phase the information propagates backward, from the last layer of the
network to the first one by calculating the gradient of our loss functionwith respect to theweights
of the current layer.

What is done during back propagation is called gradient descent, since computing the best set of weights
that minimizes our loss function isn’t possible due to it’s high computational complexity a valid solution
that approximates the best possible solution is found by iterativelymoving through our function bymak-
ing small steps towards the minimumwhich is pointed by the negation of the gradient of the function.

Figure 2.2: Graphical representation of the gradient descent procedure in a two dimensional space. The minimum
is found by iteratively making small steps towards by calculating the gradient of the function.

7

2.1.2 Autoencoders
Autoencoders are a special kind of neural network trained to reconstruct as closely as possible the same
input they received. Autoencoders are often called also asEncoder-Decodernetworks due to the structure
of their architecture consisting of two parts:

• An encoder h = f(x)which produces a feature representation of it’s input x
• And a decoder r = g(h) which attempts to reconstruct the input x given it’s feature representa-
tion h

Autoencoders are trained with the same techniques used in regular neural networks.

Figure 2.3: Graphical representation of an Encoder‐Decoder Neural Network. The image shows the inherently
symmetrical structure of such kind of networks

2.2 Convolutional Neural Networks
Convolutional neural networks(CNNs) are a specific category of neural networks that have been proven
very effective in tasks that involve images. Generally speaking a convolution is an operationwhich involves
two functions, an input function and a kernel function.

(x ∗ w)(t) =
∫

x(a)w(t− a)da (2.5)

However since images are discrete and not continuos we can use the discrete version of the convolution
operation:

(x ∗ w)(t) =
inf∑

a=− inf

x(a)w(t− a) (2.6)

8

Which if applied over more than one axis becomes:

(I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i−m, j− n) (2.7)

Where I is our two-dimensional image and K our two-dimensional kernel.

Figure 2.4: Convolution of a Kernel on an Image

In a convolutional layer of a neural network the Kernel is a set of weights that are learned through back-
propagation.
The output of the convolutional layer is usually put through a non-linear activation function, like in a
normal fully connected layer, and a pooling function. A pooling function replaces the output of the net
at a certain location with a summary statistic of the nearby outputs[1]. One of the most commonly used
pooling operations is max pooling which produces in output the maximum value within a rectangular
neighborhood. Other common pooling functions are the average or the L2 norm of a rectangular neigh-
borhood.
The real strength of the Pooling operations is that they make the feature representation learned by our
model invariant to small translations. Being invariant to small translations is a vital property in tasks that
involve images since the objects represented inside them can bee seen frommany different positions and
many different angles.

Figure 2.5: Max Pooling

9

A convolutional layer followed by an activation function and a pooling operation is often called as a con-
volutional block.
Figure 2.6 shows the typical structure of a convolutional neural network which is made of a sequence
of several convolutional blocks followed by a classical fully-connected network that takes in input the
flattened output of the last convolutional block and produces the output needed for the task.

Figure 2.6: Graphical representation of a Convolutional Neural Network. Each convolutional layer learns a differ‐
ent filter which becomes finer and finer the more deep it is in the architecture.

Convolutional Neural Networks have mainly three advantages over regular Neural Networks: sparse
interactions, parameter sharing and equivariant representations.

Sparse interactions the kernel function is usually much smaller than the input hence we can
store fewer parameters by not having to fully connect each layer with the following one.

Parameter sharing The same filter can be applied over every portion of the input. In classical
neural networks each weight is used exactly once when computing the output of a layer. In a CNN it’s
used at almost every position of the input.

Equivariance toTranslation Afunction f is equivariant to some other function g if f(g(x)) =
g(f(x)) which in the context of convolutional neural networks means that applying a convolution to a
translated image produces the same result of translating a convoluted image.

10

2.3 RecurrentNeural Networks

Recurrent Neural Networks (often abbreviated as RNNs) are a kind of neural networks developed to
handle sequences of vectors x(1)....x(t).
In a RNN the output of an hidden layer is now a function that not only depends from the output of the
previous layer but also by the output of the same hidden state at the previous time step in the sequence.

h(t) = f(h(t−1), x(t); ”θ) (2.8)

Figure 2.7 shows the structure of a basic Recurrent Neural Network with an input layer, an output layer
and a single hidden layer which can be expressed mathematically like this:

a(t) = Wh(t−1) + Ux(t) + b,

h(t) = g(a(t)),

h(t) = Vh(t) + c

(2.9)

Figure 2.7: (Left) A Recurrent Neural Network with a single recurrent connection. The black square indicates a
delay of a single time step. (Right) The same Recurrent Neural Network but unfolded trough time where each
node refers to a specific time instance

11

A Recurrent Neural Network not only has the weight matrices U and V that respectively connect the
input layer to the hidden layer and the hidden layer to the output layer but also a weight matrixWwhich
connects the hidden layer to the hidden layer in the previous time step
The rightmost part of Figure 2.7 shows how a neural network unfolds trough time. One of the key con-
cepts around which RNNs are based is parameter sharing. Storing and training a different weight matrix
for each time step is computationally unfeasible so the same parameters are re-used for each time step.

2.3.1 Bidirectional RNN

In a regular RNN each state at timestep t captures only information from the past items x(1)....x(t−1) in
the sequence up to timestep t − 1. A Bidirectional Recurrent Neural Network (Bi-RNN) combines an
RNN that moves forward through time beginning from the start of the sequence with another RNN
that moves backwards through time beginning from the end of the sequence. This allows the output
units to produce representations that depend on both past and future inputs.

Figure 2.8: Computation of a typical Bidirectional Recurrent Neural Network. The h recurrence propagates infor‐
mation forward in time while the g recurrence propagates information backwards in time.

12

2.4 Long term dependencies
One of the biggest problems of Recurrent Neural Networks is that gradients propagated over really long
sequences tend to either vanish or explode due to the repeated application of the same parameters. The
values of the gradient become so small (or big) that learning becomes unstable.
The easiestway to copewith this problem is gradient clipping, which consists in setting amaximumnorm
value that the gradient can assume. If the gradient has a normbigger than that valuewedivide the gradient
by it’s norm and multiply by the maximum norm value. The disadvantage is losing the alignment with
the true gradient despite still pointing to a descent direction.

Figure 2.9: Gradient Clipping

2.4.1 Long Short-TermMemory
Another very effective technique is substituting the classical neural network units that consist of only
affine transformations with special kinds of units designed to solve this exact problem.
LSTM units (Long Short TermMemory) are one of the most important ones. Each LSTM unit has the
same inputs and outputs of a classical neural network’s unit but introduces a system of internal gates that
allows to control the flow of information.
The most important component of an LSTM is the state unit which acts as a memory by keeping track
of all the information encountered during the sequence. The state unit is controlled by a forget gate that
decides how much of past information has to be forgotten in favour of new information. A forget gate
works similarly to a leaky unit which can be described with the following formula:

μ(t) ← αμ(t−1) + (1− α)ν(t) (2.10)

Where:

• μ(t) is the value of our state at timestep t

13

• ν(t) is the new input that the unit receives at timestep t
• the parameter α controls howmuch past information is forgotten in favour of new information

An LSTM also has an input and an output gate which works similarly to the forget unit described above
by respectively controlling howmuch information enters and exits the unit.

2.4.2 Gated Recurrent Units
One of the biggest drawbacks of LSTMs is their incredible complexity. Every gate in fact increases the
number of parameters that must be learned through backpropagation. Are all of the components of an
LSTM really neaded or can some of them be discarded to semplify the structure?
GRUs (Gated Recurrent Units) are another kind of special units that work on this concept by keeping
only the most essential components of an LSTM.
More specifically in a GRU a single gating unit simultaneously controls both the input gate and forget
gate.

Figure 2.10: (Left) Graphical representation of a Classical RNN’s node. (Center) Graphical representation of a
LSTM node. (Right) Graphical representation of a GRU node.

2.5 Reinforcement Learning
Reinforcement Learning is a class of machine learning algorithms that are especially useful in situations
where we lack of labeled examples. Reinforcement Learning is based around the key concept of giving
the agent positive feedback (or rewards) when he obtains a positive outcome and instead giving neutral
or even negative rewards when he doesn’t. For example in a navigation task a positive reward is given if
the agent manages to reach the it’s goal and a negative one otherwise.
Usually every reinforcement learning algorithm follows the following steps:

• Observing the environment the agent is in
• Deciding the best possible action we can take in the current state to make progress toward our
goal based on a policy (Like for example a Neural Network)

14

• Executing the chosen action
• Updating our policy based on the reward obtained.
• Iterate until we have found an optimal strategy

The objective of reinforcement learning tasks is finding an optimal policy (or nearly optimal), a policy
which maximizes the expected total reward.

Figure 2.11: Graphical representation of the reinforcement learning process

15

16

3
RelatedWorks

EmbodiedAI is a term used to encapsulate all tasks related to the field of artificial intelligence that involve
a physical agent which can interact with the real world through concrete and tangible hardware.
For many years researchers from all around the world have been focused on developing and studying ”In-
ternet AI”[4] tasks. Tasks that completely revolve around datasets of images, text or videos extracted from
the internet. Now thanks to the recent advances in computer graphics, robotics and artificial intelligence
in general the focus has shifted to Embodied AI.
It’s believed that true intelligence can’t arise by solely passive experiences in Internet AI tasks, but it must
emerge trough active perception,movement and interaction. One of the key advancements in the field of
Embodied AI tasks has been the development of simulators that allow agents to train and evaluate inside
a virtual environment before beeing deployed in the real world. Well talk about these simulators more in
depth in Chapter 2 where the simulator used for the work of this thesis is going to be presented along
with the dataset it’s based on.
We can group most of research work done in the Embodied AI field in three main tasks: Visual Explo-
ration, Visual Navigation and EmbodiedQuestion andAnswering. These tasks have increasing complex-
ity, and each category acts as a foundation for the next one.

The firstweeks of the projectwhere spent studying the EmbodiedAI field and it’s related tasks. Although
this thesis work falls into the category of Visual Navigation this chapter is going to give a brief introduc-
tion to all three class categories in order to provide a complete overview of the EmbodiedAI field. Special
importance is going to be given to the VLN tasks since it’s the field in which the project the operates.
Two surveys were used as main source for building this chapter one for Embodied AI [4] in general and
another for Visual Language Navigation [33] specifically.

17

Figure 3.1: Hierarchical structure of Embodied AI tasks. The higher in the pyramid the higher the complexity.

3.1 Visual Exploration
The objective of visual exploration tasks is gathering as much information as possible about the envi-
ronment by executing the least amount of movements. The information gathered is used to construct
a model (or map) of the environment that can be used by the agent for more complex tasks like Visual
Navigation.

Visual Exploration can be done either before or simultaneously while navigating the environment. In
the first case the agent is allowed to execute a limited amount of movements to build up a map of the
environment before executing the navigation task, in the second case the agent has to navigate an unseen
environment and construct the map while executing the navigation task.

3.1.1 Simultaneous Localization AndMapping
The SLAMproblem consists in placing an agent in a completely unknown environment at an unknown
position and simultaneously constructing a map of the environment while at same time determining the
current position of the agent in such environment.

To formulate the SLAM problem we define the following vectors:

• xk: The state vector. Describes the location and orientation of the agent inside the environment
at time step k.

• uk: The control vector. Describes the movement that the agent has to make at time step k− 1 to
drive him from state xk−1 to state xk.

18

• mi: A vector which describes the location in the environment of the ith landmark. Landmarks are
assumed to be invariant with respect to the current time step.

• zik: An observation of the ith landmark taken from the the agent’s current location at time step k.
Often written as zk by omitting the the landmark’s index if it is not necessary to specify it.

Also we define the following sets:

• X0:k = {x0, ..., xk} = {X0:k−1, xk}: The set of all vehicle locations up to time step k
• U0:k = {u0, ..., uk} = {U0:k−1,Uk}: The set of all vehicle movements up to time step k
• m = {m1, ...,mn}: The set of all landmarks
• Z0:k = {z0, ..., zk} = {Z0:k−1, zk}: The set of all landmark observations up to time step k

Figure 3.2: Graphical representation of the SLAM Problem

Classical probabilistic SLAM requires the following probability distribution to be computed for every
time step k.

P(xk,m|Z0:k,U0:k, x0) (3.1)

This probability distribution describes the joint probability of the current vehicle state and all landmark
locations given the set of all recorded observations, vehicle movements and the starting location of the
agent.
The above probability distribution is usually calculated iteratively by starting with an estimate of the
distribution at the previous time step P(xk−1,m|Z0:k−1,U0:k−1, x0). Then a control vector uk is applied
to the current state xk−1 of the agent and the new observations zk at the new state xk are calculated by

19

using the Bayes Theorem.
To estimate the state vector xk and the landmark observations zk we need to define an observationmodel
and a motion model.
An observation model calculates the probability of observing a landmark at timestep k given the current
agent state xk and the set of landmark locations. It can be mathematically defined as below:

P(zk|xk,m) (3.2)

On the other hand the motion model calculates the probability of ending in a new state xk given the
previous state xk−1 and the control vector uk. It can be mathematically defined as:

P(xk|xk−1, uk) (3.3)

3.1.2 Active Neural SLAM
SLAM is a purely geometrical approach proposed by classical robotics. It is really well studied and an
incredible amount of researchwork has been done on it, however it has plenty of room for improvements.
A purely geometrical approach is highly susceptible to sensor noise which can be handled much more
consistently by learningbased approaches. Like in classical SLAMthe agent’s location in the environment
is represented by a vector (x, y, o)where x and y are the coordinates of the agent in the map measured in
meters and o is the orientation of the agent measured in radians counter-clockwise from the x axis. At
each time-step t the model mantains in memory the agent’s location xt and a spatial mapmt. The map
is a 2 ×M ×M matrix where M is a constant defining the size of the map. Each cell in such matrix
identifies an area of 0.25 meters in the map. For each cell in the map we keep track of two variables:

• the probability that the cell contains an obstacle
• the probability that the cell was explored. A cell is considered as explored when it’s known if it
contains an obstacle or not.

The map is initialized with all values set to zero and with the agent starting in the center facing east x0 =
(M/2,M/2, 0). The Active Neural SLAMmodel is composed of three main components a Neural SLAM
module, a Global policy and a Local policy.

Neural SLAM Module The Neural SLAM Module predicts the map the environment and the
agent’s location from current observations and previous predictions. More precisely the Neural SLAM
module takes in input the following parameters:

• the current RGB observation st
• the agent pose x′

t−1 obtained through the sensor readings at the previous timestep

• the agent pose x′

t obtained through the sensor readings at the current timestep

20

• the estimate of the map at the previous timestepmt−1

• the estimate of the agent position at the previous timestep xt−1

Then the Neural SLAMModule can be defined as a function that takes in input the parameters defined
above and returns the estimatesmt, xt = f(st, x

′

t−1, x
′

t ,mt−1, xt−1|θ)where θ are the learnable parameters
of the Neural SLAMmodule.

Global Policy The global policy uses the estimatedmap and agent location to produce a long term
goal glt for the agent. Amatrix ht ∈ {0, 1}4×M×M is constructed starting from themapmt and the agent
location xt. The first two channels of ht are identical to the two channels of the map mt. The third
channel is set to 1 for the cell that contains the agent’s current position and to 0 for all the other cells.
The fourth channel is set to 1 if the cell has been visited by the agent and 0 otherwise. A matrix of size
4 × G × G is subsampled from ht around the agent’s location. Then a max pooling of such matrix is
performed. The subsampledmatrix is stacked along with the pooledmatrix forming a newmatrix of size
8 × G × G. The latter matrix is given in input to a Convolutional Neural Network to predict the long
term goal glt in the G × G space. We can define the Global Policy as a function πG(ht|θG) where θG are
the learnable parameters of the Global Policy

Local Policy The shortest path from the estimated agent current position to the long term goal glt
is calculated by using the fast marching method on the estimated mapmt. Then a short term goal gt is
computed by identifing the furthest point along the identified path within 0.25 meters from the agent.
The calculated short term goal gt is given in input to a Recurrent Neural Network along with current
RGB observation to produce a navigational action at We can then define the Local Policy as a function
πL(st, gt|θL)Where θL are the learnable parameters of the Local Policy

3.2 Visual Navigation

The objective of visual navigation tasks is to navigate the agent from a starting position to a goal as effi-
ciently as possible.
Classical navigation approaches the problem by using a mixture of many different hand-engineered sub-
components like localization, mapping, path-planning and locomotion. Visual Navigation on the other
hand aims to learn all of these paradigms from data. While classical navigation still outperforms visual
navigation the latter has been proven much more robust to sensor noise then classical navigation, more-
over the AI approach avoids having to hand engineer case specific problems.

21

3.2.1 Goal Types
Many different kinds of goals can be used for developing visual navigation taks, among those some of the
most important ones are: Point Navigation, Object Navigation, Image Navigation and Area Navigation.

3.2.1.1 Point Navigation

In point navigation an agent is asked to navigate from a starting position x0 = {0, 0, 0} as closely as
possible to a specific point in the environment x∗ = {x, y, z}.
The task is evaluated as successfully completed if the agent managed to reach a location in the environ-
ment which isn’t further away from the goal location then a specific fixed distance.
The agent usually is equipped with a GPS and a compass that allows him to access to his current location
and the location of the goal. The compass can be configured to be either static or dynamic. A static com-
pass gives to the agent the location of the goal only at the start of the episode, a dynamic one on the other
hand does it at every time step.
Recent developments ofPointNavigation tasks havemoved tomore complex taskswhere the agent posses
no GPS or compass.

3.2.1.2 Object Navigation

In object navigation tasks the agent is initialized at a random position in the environment and asked to
navigate to the first instance of a labeled object inside such environment.
Object Navigation is usually much more complex than Point Navigation since it demands to the agent a
much wider set of skills than the latter.
Among those we can mention: long-term episodic memory to keep track of explored and unexplored ar-
eas, object detection to correctly recognize and classify objects’s shapes, semantic understanding to allow
the agent to understand where specific categories of objects are more likely to be found in the environ-
ment.

3.3 Visual Language Navigation
In Visual Language Navigation (VLN) tasks, the agent is asked to navigate in the environment to a spe-
cific goal location by following natural language instructions.
”A natural language or ordinary language is any language that has evolved naturally in humans through
use and repetition without conscious planning or premeditation”[7].
Natural languages lack of any kind of structure and hence are inherently difficult to comprehend by com-
puters. Natural Language Processing (NLP) is a completely different field of Artificial Intelligence that
aims at enabling computers to understand natural language the same way humans do.

22

So a VLN agent not only needs to possess all the skills described for general Visual Navigation before but
also needs to posses skills related to the NLP field.

Current VLN tasks can be mainly categorized based on two axis: Comunication Complexity and Task
Objective.

Comunication Complexity Defines the level at which the agent comunicates with his oracle.
Can be classified on three levels:

• At the first level the agent is asked to only understand an initial instruction before the beginning
of the navigation.

• At the second level the agent is capable of asking guidance to the oracle by sending him a signal of
help whenever it’s necessary.

• At the third and last level the agent is capable of asking questions to the oracle in the form of
natural language while navigating the environment

Task Objective How the agent manages to reach it’s goal given it’s initial instructions.

• Fine Grained Navigation: The agent receives a detailed step by step description of the path he
needs to follow to reach the goal.

• Coarse-grained Navigation: The agent needs to reach a much more distant goal by following a
coarse path description. In this task the agent is asked to reasonmore about the environment and
possibly ask help to the oracle.

• Object Interaction: The agent is tasked to not only navigate through the environment but also
to interact with it, for example by opening doors to reach otherwise unreachable locations.

Visual Language Navigation tasks are very complex and possess many different challenging aspects that
need to be tackled. Such problems and the related methods used to solve them can be mainly catego-
rized into four different areas: Representation Learning, Action Strategy Learning, Data Scarcity, Seen
to Unseen environments generalization.

Representation Learning Agents needs to understand and align informations coming from
many different sources and modalities. This is usually done through Representation Learning tech-
niques.
Pre-trained encodermodels like BERTcan help the agent to better understand information coming from
single modalities. This models can also be trained further more over the task data to improve the encod-
ing capabilities. Models like ViLBERT [34] construct joint representations that combine into a single
representation both the visual and text features.
Graph structures that explicitly model connections between the environment and the received instruc-
tions provide semantic knowledge that can aid the agent during navigation.
Navigating inside the environment accumulates a lot information which can be problematic to handle

23

especially over paths made of many steps. LSTM layers are frequently used to solve this problem and
allow the agent to better leverage features encountered at the beginning of the path.
Auxiliary Tasks can help the agent to better adapt to the environment through additional loss functions.

Action Strategy Learning Action Learning methods focus on providing the agent the ability
to pick at each step the best possible action. VLN tasks are a sequential decisionmaking problem and can
thus be modeled like a Markov Process. Reinforcement Learning methods are often proposed to learn
the action policy. The main problem with RL methods is that the agent receives it’s reward only at the
end of the episode, and since the paths are usually very long is hard to identify which actions to penalize.
More advanced models are capable to ask for help to the oracle whenever in need by sending him a signal
or even by asking questions through natural language.

Data Centric Learning Collecting data for VLN tasks is really expensive and time consuming.
All existing datasets are relatively small if compared to the complexity of the task.
Data Centric methods work around this problem by Augmenting the dataset with synthetic data pro-
duced starting from the existing data available. New trajectories can be created by generating random
paths inside the environment and then using a trained model capable of generating natural language
instructions given the path to generate the instructions. On the contrary new environments can be gen-
erated by randomly masking visual features or by subdividing the environments into house scenes and
randomly mixing them. The two tecniques can also be combined togheter to generate even more data.
Another way to tackle the problem is by training the model into similar tasks. The knowledge gained
from those tasks can then be transferred into VLN tasks and benefit agent’s performances.

Prior Exploration Models which can reach a good performance on seen environments not nec-
essarily are able to reach the same levels of performance on unseen environments. Prior explorationmeth-
ods focus on allowing the agent to generalize well the skills learned inside seen environments over unseen
environments.

3.4 Embodied Question and Answering
Embodied Question and Answering can be easily considered as the hardest task that can be currently en-
countered in embodied AI research.
In Embodied Question and Answering the agent not only has to be able to freely explore and navigate
the environment but also has to correctly answer questions about the environment he is in.
The problem is often tackled by subdividing the agent into two sub-components: a navigation compo-
nent and question and answering component. The first component is mandatory and can’t be omitted
for the correct success of the task. The agent must be able to explore the environment before answering

24

questions about it. These two sub-components are often evaluated and tested separately.
More complex research works in Embodied AI Q&A tasks have been proposed like for example multi
target embodiedQ&Awhere the agent is asked to answer to question that involvemultiple objects inside
the environment or Interactive Q&Awhere the agent needs to interact with the environment to answer
the questions like for example by opening or closing some doors.

25

26

4
Dataset

This chapter will cover all the datasets used and encountered during the work of the thesis. Starting
fromMatterport3D [8] essential to virtually reconstruct realistic environmentswhere our agent can easily
navigate in for training and evaluation, arriving to Room to Room containing [13] and it’s subsequent
improvement RoomAcross Room [14] which both contain a set of paths and relative instructions used
to train our agent.
I’ll also talk about theHabitat environment [12] a very important and popular tool needed for executing
simulations on a virtual environment.

4.1 Matterport3D
Matterport3D is a collection of 10,800 panoramic views constructed from194,400RGB-D images taken
inside 90 different indoor home environments. This dataset was born with the objective of overcoming
the limitations of previously existing datasets like for example: limited number of images contained in-
side the dataset, limited view points or motion-blurred pictures.
The dataset was captured using a tripod mounted camera rig with three color cameras and three depth
cameras all of which rotate around the vertical axis to capture images from six different directions.
The panoramic images are then used to reconstruct a textured three-dimensional mesh containing all the
visible surfaces of the environment.
The three-dimensional meshes are then manually labeled using specific tools developed by the authors
in order to include segmentation data for both the regions of the reconstructed building and the objects
contained in it.

27

Figure 4.1: (Left) The textured three‐dimensional mesh of the environment reconstructed starting from the RGB‐
D images. (Center) Example of an RGB image of the dataset along with it’s Depth Image and object semantic
segmentation*. (Right) The semantic annotation of the objects of a room.

TheMatterport3Ddataset possesses the followingproperties that differentiate it frompreviouspanorama
datasets:

• Matterport 3D provides full RGB-D panorama images. Previous datasets provided either no
depth images at all or approximations of depth images derived from the mesh data.

• All 90 environments come with precise global alignment of camera poses. Previous RGB-D
datasets provided limited data about the camera poses alignment often covering only few rooms
or even small part of the rooms.

• Images are taken with a stationary camera to avoid motion blur and other artifacts commonly
present in many other RGB-D datasets taken through hand-held cameras.

• Most RGB-D datasets provide data for single rooms or small sets of adjacent rooms. Matterport
on the contrary provides data for 90 entire buildings.

• Images taken inside private homes. Most other RGB-D datasets are often limited to academic
spaces.

• Probably the largest RGB-D dataset available.

The 90 scenes are split in three sets for experiment purposes, 61 scenes are reserved for training, 11 for
validation and the remaining 18 for testing.

4.2 Habitat
As mentioned in it’s website ”Habitat is a simulation platform for research in Embodied AI”[12].
Training and evaluating an agent inside the real world poses many problems that normally don’t need to
be confronted in a virtual environment like:

*It is the process of dividingan image intodifferent regions based on the characteristics of pixels to identify
objects or boundaries.[17]

28

• Slowness of training due to physical world limitations and lack of parallelization.
• Danger of hurting both the agent’s robotical system and the people in environment near him.
• High costs of physical hardware.
• Difficulty or even impossibility of replicating the same environment conditions.

Thanks to Habitat Embodied Agents can be trained with much lower costs. When training is finished
the skills learned inside the virtual environment can then be transfered to the real world.
Prior to Habitat many different simulators where developed and each one of them differed with respect
to the 3D data they used. The existence of multiple simulators can cause problems like fragmentation,
reproduction of effort and difficulty in reproduction of the experiments.

• Tight coupling of datasets simulators and tasks.
• Hard-Coded agent configuration.
• Poor rendering and agent performances.
• Restricted control over the simulation environment. Position of 3Dobjects cannot be easilymod-
ified.

Habitat AI is mainly made by three components:

Habitat Sim The real 3D simulator extensively described above which includes support for physics
simulations, rigid body mechanics and navigation inside 3D scans of indoor/outdoor spaces (like the
Matterport3D datasets) or CADmodels.

Habitat Lab A library built on top of Habitat Sim that allows to easily define Embodied AI tasks,
like interaction or navigation, and configure the simulated agent’s physical properties including agent
shape and dimensions, number and kind of sensors and general capabilities.

Habitat Challenge An annual challenge that aims to benchmark and accelerate progress in the
field of Embodied AI. The participants are asked to upload the agent’s code which is then evaluated over
unseen environments to test it’s generalization. Habitat was designed to be an unifying platform that
aims to overcome all of the previously cited shortcomings.

4.3 Room ToRoom (R2R)
RoomToRoom, often abbreviated as R2R, is a dataset containing over 21.567 natural language instruc-
tions with an average lenght of 29 words that describe agent trajectories over the 3D reconstructed envi-
ronments comprised in the Matterport3D dataset.

29

Figure 4.2: The standardized software stack proposed by Habitat AI. At the lower layer we find the datasets con‐
taining the 3D assets and it’s semantic annotations. Then simulators (like Habitat) use such assets to render real‐
istic environments in which the agent can navigate. Finally on top of the simulators tasks are defined to evaluate
scientific progress.

TheR2Rdataset is built around aVisual LanguageNavigation task inwhich the environment ismodeled
as a graphG = (V,E)where:

• V is the set of all 3D points associated with a panoramic viewpoint in the scene.

• E is the set of edges of the graph. The presence of an edge indicates robot navigability between
the two linked viewpoints.

The agent starts from an initial state s0 = {v0, ψ0, θ0}where:

• vt ∈ V represents the position of the agent at timestep t.
• ψt ∈ [0, 2π] represents the agent’s heading at timestep t.
• θt ∈ [− π

2 ,
π
2] represents the camera elevation at timestep t.

At each timestep t the agent receives in input:

• A natural language instruction x̄t = x1, ..., xL where xi is the feature representation of the ith
word in the instruction and L is the lengt of the instruction.

• An RGB image ot obtained from theMatterport3D environment given the current state st.

Based on the current state st, on the instruction x̄t and on the observation ot the agent chooses an action
at to execute that leads him to a new state st+1 = {vt+1, ψt+1, θt+1}. Each vt ∈ st must respect the
following condition:

vt ∈Wt (4.1)

30

WhereWt ⊂ V is defined as the set of all reachable viewpoints from the current viewpoint vt that are
framed by the camera, or more formally as:

Wt = {vt−1} ∪ {vi ∈ V|(vt−1, vi) ∈ E ∧ vi ∈ Pt−1} (4.2)

Where Pt is the region of space enclosed by the camera at timestep t.
The objective of the agent is finding a sequence of actions a0, ..., aT that brings him as close as possible
to the goal v∗, where aT is a special action stop.
The trajectories in the dataset were generated by procedurally sampling a start pose s0 and a goal location
v∗ and then computing the shortest path between them. The sampled trajectories were then showed to
human workers who had to provide a valid description via a specific tool developed by the authors of the
paper.

Below is an example of a dataset’s instruction:

Go past the ovens and the counter and wait just before you go outside.
Walk through the kitchen towards the living room. Walk around the island and step onto
the patio near the two chairs and stop in the patio doorway.
Exit the kitchen by walking past the ovens and then head right, stopping just at the doorway
leading to the patio outside.

The dataset follows the same splits defined in the Matterport3D dataset. A total of 4.173 instructions
over 18 different scenes are reserved for testing and 2.349 instruction are reserved for validation over 11
environments unseen during training. The remaining 61 scenes are all encountered during training, the
set of instructions over those 61 scenes are split in 14.025 scenes for training over seen environments and
1.020 for validation over environments seen during training.

4.4 RoomAcross Room (RxR)
RoomAcross Room (RxR) is a dataset that improves onR2R by trying to address some of his shortcom-
ings.

Multilinguality Besides English, RxR includes instructions for twomore typologically different
languages, Hindi and Telugu. All the instructions are manually translated by native speakers.

Scale Many Visual Language navigation Tasks suffer from scarsity of training data. RxR addresses
this shortage by extensively augmenting the data at disposal. For each language RxR contains 14.000
paths with 3 instructions per path, for a total of 126.000 instructions.

31

Fine-GrainedGrounding Like inR2Rhuman annotators are asked to describe predefined paths
with natural language instruction. InRxRhowever the annotation tool keeps track of the position of the
annotator in the environment while he is describing the path and later time-aligns with the words in the
instruction.

Follower Demonstrations Annotators are also asked to act as followers, meaning to listen to
another annotator’s instructions and follow the path indicated by him. This is a good way to measure
instructions performance and gives us an indication of how a real human interpreted the instructions.
These human interpreted trajectories are usefull for agent training.

Path desiderata RxR paths are usually much longer than R2R ones and are generated by follow-
ing rules that make themmuch more natural and easier to describe by human annotators. Path variance
is also increased to avoid agents to learn priors that are not generalizable in other environments.

Figure 4.3: Example of an RxR instruction along with the path taken by the agent in the environment. The image
also shows how both the position of the agent in the trajectiory and the words in the instruction are temporally
aligned. The position in time is indicated by the color gradient.

In total 16522 paths are sampledwhich are subdivided by following the same splits ofMatterport3D and
R2R. 11.089 trajectories for training, 1.232 for validation over environments seen during training, 1.517
over unseen environments and 2.684 for testing.

32

4.5 RxRChallenge
RxR also includes a separated test set used for holding annual challenges. This set is divided in two differ-
ent splits: test-standard and test-challenge. A public leadearboard is also provided to allow the commu-
nity to track progress and fairly evaluate the performance of their model. More specifically RxR hosts
two challenges:

• RxR Competition: Where the agent navigates trough a sparse graph of panoramas.
• RxR-Habitat Competition: Where the agent navigates in a continuos environment using the
Habitat Simulator.

All the thesis work was made upon the starting code of the RxR-Habitat Competition [16].

33

34

5
Methods

Now that all the necessary background information has been provided this chapter will dive deep into
the thesis work.
Firstly Section 5.1 will give a brief introduction to the attention mechanisms [19] used by many models
encountered during the thesis work. Then in Section 5.2 the original project [18] that acted as starting
bases for all the thesis work is going to be introduced.
Finally Section 5.3 and Section 5.4 will describe the proposed modifications made to the original model
in order to increase it’s performance.

5.1 AttentionMechanisms
”An attention function can be described as mapping a query and a set of key-value pairs to an output, where
the query, keys, values, and the output are all vectors.”[19].

LSTMs and GRUs have long established as state of the art approaches for modeling long sequences. De-
spite their proven effectiveness their intrinsic sequential nature makes parallelization during training and
evaluation really hard to implement. This becomes critical over long sequences due to the memory con-
straints. Attention mechanisms allow to model dependencies between sequences without any regard
about their distance.

The authors of [19] firstly propose a simple attention mechanism called Scaled Dot-Product Attention
which takes in input a set of queries and keys of size dk and a set of values of size dv. In practice all the

35

queries, keys and values are packed togheter forming the matricesQ,K andV. The attention function is
computed as follows:

Attention(Q,K,V) = softmax(
QKT
√
dk

)V (5.1)

Also a second attention mechanism called Multi-Head Attention is proposed. In this model queries,
keys and values are linearly projected h times, each time using a different learned linear projection and
then the previously defined Scaled Dot-Product Attention is applied. The h different outputs are finally
concatenated togheter.

MultiHead(Q,K,V) = Concat(head1, .., headh)WO (5.2)

Where

headi =Attention(QWQ
i ,KWK

i ,VWV
i) (5.3)

Figure 5.1: (Left) Scaled Dot‐Product Attention (Right) Multi‐Head Attention

Finally the authors of [19] propose the transformer architecture, a new model which doesn’t make use
of recurrence but instead completely relies on attention mechanisms. The transformer architecture is
composed by two components, the encoder and the decoder.

Encoder The encoder is composed by a stack ofN identical layers. Each one of them is made out of
two sub-layers, a multi-head attention mechanism followed by a fully connected feed forward network.

36

Decoder Similarly to the encoder the decoder is composed byN identical layers. Here however each
layer posses a third sub-layer which performs multi head attention over the output of the encoder stack.
Moreover the first attention layer is modified in order to mask at each position the subsequent positions.
This ensures that the output for the position i depends only by the positions lower than i.

Both in the encoder and in the decoder layer normalization and residual connections are applied at each
sub-layer. All sub-layers and layers as well produce outputs of the same dimension dmodel.

Figure 5.2: Graphical representation of the transfomer model

37

5.2 VisualLanguageNavigation inContinuosEn-
vironments

The authors of [18] introduce a newmodeling technique forVisual LanguageNavigation tasks. Previous
tasks were usually defined over navigation graphs. In a navigation graph each node corresponds to a
360° panoramic image taken at a fixed location and each edge that connects two nodes indicates that the
agent can navigate between the two locations in the environment. Navigation Graph make too many
assumptions and poorly abstract the problem.

Knowntopology Rather thanoperatingon a continuos environment the agent operates ongraphs
of fixed topology. Even in unseen environment the agents still possess prior information about the struc-
ture of the environment. Furthermore it is still unknown how an agent should acquire and update such
topology in new environments where no data is possessed

Oracle navigation The model implies the presence of an oracle capable of navigating the agent
between the nodes connected in the graphwhile avoiding possible obstacles present between the two loca-
tions. This abstracts too much the problem of visual navigation making it more similar to teleportation.

Perfect localization The agent knows at all times it’s precise location and orientation inside the
environment.

VLN-CE lifts this assumptions by placing the agent in continuous three dimensional environmentwhere
he can move freely trough a set of predefined actions. More specifically the agent can take the following
actions:

• move forward of 0.25 meters
• turn left of 15 degrees
• turn right of 15 degrees
• stop, when he thinks he has reached the goal

5.2.1 Trajectory Conversion
Insteadof creating anewdataset the authors of [18] transform theoriginalR2Rdataset fromanavigation-
graph setting to a continuous environment. Since the trajectories are defined over navigation graphs and
each node of the navigation-graph possesses a correspondent (x, y, z) coordinate it seems seemingly sim-
ple to convert the coordinates into continuous environments. However such locations not always corre-
spond to actual reachable locations in the environment. Figure 5.4 shows some of the problems that can

38

Figure 5.3: Comparison between classical Vision and Language Navigation and Vision and Language Navigation
in Continuos Environments. On the left the fixed topology where the agent operates on classical visual and lan‐
guage navigation. On the right the path taken by the agent in a continuous environment.

be encountered during the conversion.
For each node the nearest navigable pointwithin 0.5m is identified by casting a ray long twometers down-

Figure 5.4: (Left) Reachable Location. (Centre) Hole in the map where the mesh reconstruction Failed. (Right) The
coordinate refers to a place occupied by furniture, commonly tables where the camera was placed during data
collection.

ward from the coordinate. At small fixed intervals along the ray the position is projected to the nearest
mesh point. If multiple navigable points are found the one with less horizontal displacement from the
coordinate is chosen. If no navigable point with 0.5m from the coordinate is found the coordinate is
considerate as unreachable inside the reconstructed Matterport3D mesh and thus invalid. Some of the
invalid nodes where manually fixed by for example shifting them on the side of a furniture. After the
manual fix 98.3% of the coordinates are successfully transferred.
Given a trajectory of converted coordinates τ = [w1, ...,wT] to verify that an agent can actually navi-
gate through the trajectory anA∗-Based heuristic is employed to compute an approximated shortest path
between each pair of coordinateswi andwi+1. A trajectory is considered navigable if for each pair of con-
secutive coordinates it’s possible to reach a location within 0.5m from the next coordinate by following
the computed shortest path. In total 77% of the coordinates are navigable.

39

5.2.2 Data Representation
Natural language instructions are firstly tokenized and then transformed intoGloVe embeddings. GloVe
is an algorithm used to produce vector representation of words. Most word vector methods measure
word similarity by calculating the euclidean distance of the two vector representations. GloVe instead
measures the various dimensions of difference between the words. For example the difference between
two words like king and queen should be really similar to the difference between two other words like
man and woman.
We denote the GloVe embedded tokens as w1, ...,wT where T is the length of the instruction. Theese
embeddings are then going to be encoded by the models with a recurrent encoder network.

Similarly the RGB and Depth obsevations are encoded separately using different models. The RGB
observations are encoded with a ResNet50 pretrained on ImageNet, while the depth observations are en-
codedwith amodifiedResNet50 trained on point-goal navigation tasks. We define the set of the encoded
RGB observations as V = {vi} and the set of the encoded Depth observations asD = {di}.

Figure 5.5: Graphical representation of a Residual Network (ResNet). More Specifically the picture depicts a
ResNet34 network. The network is composed by 34 convolutional blocks connected at the end with a fully con‐
volutional layer.
The core idea behind residual networks is the introduction of shortcut connections. Connections that link a layer
with another further down in the architecture by skipping one or more layers.

5.2.3 Sequence-to-SequenceModel
The first model proposed by the authors of [18] is a simple sequence-to-sequence (Seq2Seq) baseline
model.
The model is made of a recurrent neural network that takes in input the encoding of the visual observa-
tions (Depth and RGB) and the instruction’s embeddings.

Firstly an LSTM encoder network is used to encode the instruction’s embeddings.

s = LSTM(w1, ...,wT) (5.4)

40

The visual features are then concatenated together and a mean pooling operation is applied to the RGB
features.

v̄t = mean-pool(Vt)
d̄t = [d1, ..., dwh]

(5.5)

Finally we give in input the previously defined vectors to a GRU network.

h(a)t = GRU([v̄t, d̄t, s], h
(a)
t−1)

at = argmax
a

softmax(Wah
(a)
t + ba)

(5.6)

Figure 5.6: Graphical representation of the Sequence to Sequence Model

5.2.4 Cross-Modal AttentionModel
The previous model is a great start but better performances can be achieved by implementing into the
architecture powerful state of the art modeling techniques like attention mechanisms and spatial visual
reasoning.
The secondmodel proposed by the architecture is composed of two recurrent networks, one in charge of
tracking visual observations and the other one in charge ofmaking decisions based upon the instructions
and the visual observations.

The first recurrent network is defined similarly to the one seen in the Seq2Seq model. This network

41

however takes in input only the visual features along with a learned linear embedding of the previous
action.

v̄t = mean-pool(Vt)
d̄t = [d1, ..., dwh]

h(attn)t = GRU([v̄t, d̄t, at−1], h
(attn)
t−1)

(5.7)

The instructions are encoded using a bi-directional LSTM.All of the intermediate states are kept inmem-
ory to use them in later computations.

S = {s1, ..., sT} = BiLSTM(w1, ...,wT) (5.8)

The following scaled dot product attention is defined.

Attn({xi}, q) =
∑
∀i

softmax((WKxi)Tq)√
dq

xi (5.9)

An attended instruction feature ŝt is computed which is in turn used to compute the attended visual
features v̂t and d̂t

ŝt = Attn(S, hattnt)

v̂t = Attn(Vt, ŝt)
d̂t = Attn(Dt, ŝt)

(5.10)

The second recurrent network takes in input a concatenation of all the features listed above along with
the current state of the first GRU and an encoding of the previous chosen action.

h(a)t = GRU([s̄t, v̂t, d̂t, at−1, h
(a)
t−1)

at = argmax
a

softmax(Wah
(a)
t + ba)

(5.11)

5.3 Improving instruction’s encoding
The natural language instructions given in input to the agent describe the path that the agent must take
from it’s starting location to reach the goal. It’s of key importance then to provide in input to the agent’s
model a representation of the instructions which encapsulates as much information as possible inside it.
The RxRHabitat Starter Code [16] uses BERT [22] to encode before training time the natural language
instructions.

42

Figure 5.7: Graphical representation of the Cross‐Modal Attention Model

RoBERTa is a state of the art model based upon the original BERT model which improves it’s perfor-
mances over many situations. Our first contribution consists in implementing the RoBERTa encoder
into our model architecture in place of the original BERTmodel.

5.3.1 BERT
BERT’s architecture consists of a multilayer bi-directional transformer encoder. More specifically [22]
proposes two models:

• BERTBASE(N = 12, dmodel = 768, h = 12)
• BERTLARGE(N = 24, dmodel = 1024, h = 16)

WhereN is the number of the encoder’s layers, dmodel the size of the embedding layers and h the number
of projections applied in the multi-head attention mechanisms.

BERT is capable of representing both a single sentence and a pair of sentences (For example question
and answer) in one token sequence. To differentiate the first sentence from the second one the two sen-
tences are separeted by a special token [SEP]. Every sentence always starts with a special classification
token [CLS], the final representation for this token produced by the model is used as an aggregate se-
quence representation for classification tasks.
BERT training is composed of two steps: pre-training and fine-tuning.

pretraining Duringpre-training themodel is trained onunlabeled data collected over twodifferent
pre-training tasks. The first task is called masked LM and consists in randomly masking a percentage of
the input tokens and then asking the model to predict the masked tokens. When a token is chosen for
masking it can be replaced with:

43

Figure 5.8: BERT input representation is the sum of the token embeddings obtained via wordpiece embeddings
[24], the learned segment embeddings which differentiate between the first and second sentence, and the posi‐
tional embeddings.

• a special [MASK] token (80% of the times)
• a random token (10% of the times)
• with the same unchanged token (10% of the times)

This is done to avoid a mismatching between pre-training and fine-tuning where the [MASK] token
aren’t present.
To allow BERT to capture relationships between two sentences the model is trained over a next sentence
prediction task. Each example in the task is composed by two sentences and a binary label which indicates
if the second sentence naturally follows the first one or not. Such dataset can be easily created from a
monolingual unlabeled corpus. The feature representation C is used for the next sentence prediction
task.

Fine-Tuning On the other hand fine-tuning is very straight-forward. The model is trained over the
task’s specific inputs and outputs starting from the pre-trained model’s weights. The token representa-
tions are then fed to an output layer for token level tasks like question and answering. Similarly the [CLS]
representation is fed to an output layer for classification tasks.

5.3.2 RoBERTa
Robustly Optimized BERT Approach (RoBERTa) is an improved version of the original BERT model
that canmatch or exceed the performance of all the post-BERTmethods. RoBERTa proposes the follow-
ing modifications to the original BERTmodel.

DynamicMasking As stated in the previous section BERTpre-training is done by randomlymask-
ing a subset of the input tokens and subsequently asking the model to predict them.
In the original implementation of BERT the masking was performed once during data pre-processing

44

Figure 5.9: BERT architecture in both pre‐training and fine‐tuning. The input embeddings are denoted as E while
the final representation produced by the BERT model of the special token [CLS] as C ∈ Rdmodel and representa‐
tion of the ith input token as C ∈ Tdmodel

i .

causing a single static mask. Since the model was trained over 40 epochs and each sentence was repeated
10 times with 10 different masks each mask was encountered 4 times during training.
RoBERTa implements dynamic masking by generating the masking pattern at the start of each epoch.
This is very important for training over larger datasets or with more epochs.

Next Sentence Prediction Input Format Research works have questioned the utility of the
NSP loss in the original BERTmodel. Several alternative training formats are compared:

• Segment-Pair+NSP:The input formatused in the original implementationofBERT.Themodel
receives in input two sequences of words which can containmultiple natural sentences. TheNSP
loss is retained.

• Sentence-Pair+NSP: The input contains a pair of natural sentences that can be sampled from a
contiguous portion of the same document or fromdifferent documents. TheNSP loss is retained.

• Full-Sentences: The model receives in input a full sentence sampled contiguosly from one or
more documents. If the end of the document is reached a special token is added as separator to
indicate the beginning of a new document. The NSP loss is removed.

• Doc-Sentences: The same as Full-Sentences but the input can belong to only a single document.
The NSP loss is removed.

The authors of [23] found out that Doc-Sentences outperforms the original BERTBASE model and that
removing the NSP loss matches or slightly improves the performances of the downstream tasks.

Training with Longer Batches Past works in Neural Machine Translations have shown how
trainingwith larger batches can improve performances if the learning rate is increased appropriately. Also
larger batches are easier to parallelize.

45

TextEncoding Byte Pair Encoding (BPE) is an hybrid between character andword-level encodings.
BPE uses subword units calculated trough statistical analysis. The original BERT implementation uses
a character level BPE vocabulary of size 30K. RoBERTa instead uses a byte-level vocabulary of 50k sub-
word units.

5.4 Auxiliary Tasks
Auxiliary tasks are used to provide to the agent complementary objectives that can improve the efficiency
of the primary task. Auxiliary Tasks are often implemented via self-supervised tasks which derive the su-
pervision through the agent’s own experience and hence do not need labeled data. To improve the agent
performances we tried to implement the auxiliary tasks introduced by [26] and [27] into the VLN-CE
architecture described in Section 5.2.

The architecture proposed by [26] is separated into three different components, an encoder network
which encodes the input observations, a belief module which produces a summary representation given
multiple observations and a policy module which chooses the next action given a belief module output.

In practice each Auxiliary Task operates on observations, chosen actions and outputs of the belief mod-
ules. Moreover each Auxiliary Task possesses it’s own belief module. The outputs of the belief modules
of all the auxiliary tasks are then fused together creating the summary representation that is then given
input to the policy module.
During training the parameters are optimized to minimize the following loss function

L(θm; θ1a...θ
nAux
a) = LRL(θm) +

nAux∑
i=1

βAuxi LAux(θm; θia) (5.12)

Where:
• LRL(θm) is the primary objective loss
• θm are the parameters of the encoder and policy modules
• θia are the parameters of the ith auxiliary loss
• nAux is the number of auxiliary losses
• βAuxi is an hyper-parameter used for balancing the losses

Four different Auxiliary Tasks where implemented into the VLN-CEmodel architecture:
• Contrastive Predictive Coding Action (CPC|A) [28, 29]
• Prediction of Bootstrap Latents (PBL) [30]
• Generalized Inverse Dynamics (GID) [27]
• Action Distribution Prediction (ADP) [27]

46

Figure 5.10: Auxiliary Task Architecture

5.4.1 Contrastive Predicting Coding

Contrastive Predictive Coding(CPC) is an unsupervised representation learning method.
Firstly a non-linear encoder gencmaps the input sequence of observations x1, ..., xt to a sequence of latent
representations z1, ..., zt where zi = genc(xi). Finally an auto-regressive model gar produces a context
latent representation ci = gar(zi) for all i < t. Future observations xt+k are then predicted through a
simple bilinear-model:

fk(xt+k, ct) = exp(zTt+kWkct) (5.13)

The authors of [28] use a linear transformationWkct with a differentWk at each step k. Alternatively a
non linear feed-forward network or recurrent neural network can be used.

Figure 5.11: CPC architecture.

47

5.4.2 CPC|Action
CPC|A is representation learning method based on the CPC architecture described in Section 5.4.1.
A Partially Observable Markov Decision Process (POMDP) is used as a general framework to define the
partially observable sthocastic environment where the agent operates. Formally POMDP is defined as
M = (X ,A,O,P,O)where:

• X is the state space.

• A is the action space.

• O is the observation space.

• P maps each state-action pair (x, y) to a probability over the next state y P(y|x, a) .
• Omaps each state x to a probabilityO(·|x) over possible observations.

In a POMDP the agent, at any given timestep t, has access only to some observation ot ∈ O that gives
incomplete information about the real state xt ∈ X .
It becomes crucial then to compute a belief state bt that models a probability distribution Pb(·|ht) over
the possible states given the current history of past actions and observations ht = {o0, a0, ..., ot, at}.

Figure 5.12 shows the CPC|A architecture. In addition to the standard CPC architecture, composed
by the two Convolutional and GRU blocks (yellow and blue), CPC|A uses the belief bt to initialize a
GRU (red) which is then fed by the future actions {at+k}T−1

k=0 . Moreover at each time step a feed-forward
network (grey MLP block) receives in both both the output of this last GRU(red) and the embedded
observation zt+k

5.4.3 PBL
Similarly toCPC|A the environment ismodeled as aPOMDP (X ,A,O,P,O, r, γ)whereX ,A,O,P,O
are defined identically to Section 5.4.2, r ∈ RX×A represents the reward function and γ is the discount
factor.
The agent chooses the next action via a policy π : {O × (A × O)n : n ∈ N} → Δ(A) where Δ(A)
denotes the space of action distributions.
Given a fixed policy π, the starting state xπ0 , observation oπ0 , history hπ0 and action aπ0 are initialized as
follows:

xπ0 ∼ ρ

oπ0 ∼ O(xπ0)

hπ0 = oπ0
aπ0 ∼ π(hπ0)

(5.14)

48

Figure 5.12: CPC|A architecture

Where ρ is some initial distribution.

Then for all timesteps t > 0 we recursively define xπt , oπt , hπt , aπt as follows:

xπt ∼ P(xπt−1, aπt−1)

oπt ∼ O(xπt)

hπt = (hπt−1, aπt−1, oπt−1)

aπt ∼ π(hπt)

(5.15)

Moreover the partial history hπt,k is defined as the history hπt and the k subsequent actions:

hπt,k = (hπt , aπt , ..., aπt+k−1) (5.16)

The model is trained in the POMDP setting by finding the policy that maximizes the expected and dis-
counted sum of rewards:

max
π

E(
inf∑
t=0

γtr(xπt , aπt)) (5.17)

49

The problem can also be tackled by compressing the full history hπt as the agent state bπt through a neural
network. So the problem that needs to be solved is the following:

max
π

E(
inf∑
t=0

γtr(bπt)) (5.18)

Where:
r(bπt) = E(r(xπt , aπt)|bπt) (5.19)

From now on the π notation will be dropped from the variables to make formulas less confusing.
Figure 5.13 describes the architecture used to compress the histories. The horizontal direction outlines
the RNN hf compressing the full history ht into the agent state bt. So the agent state bt is defined as
follows:

b0 = 0

bt = hf(bt−1, ot, at−1)
(5.20)

On the other hand the vertical direction shows the RNN hp compressing the partial histories bt,k+1 as
follows:

bt,1 = hp(bt, at)

bt,k+1 = hp(bt,k, at+k)
(5.21)

The PBL architecture can be seen in Figure 5.14 and consists of two auxiliary prediction tasks:

Forward prediction task predicts latent embedded observations zt+k from compressed partial
histories bt,k by solving the following minimization problem:

min
h∈H,g∈G

∑
t,k

||g(bt,k)− zt,k||22 (5.22)

Where:

• H andG are two hypothesis spaces induced by neural networks.
• g is a feed-forward neural network
• h = (hf, hp) are the two RNNs that compute Bt and Bt,k

Reverse prediction task predicts the compressed histories bt,k from the latent embedded obser-
vations zt+k.

min
f∈F,g′∈G′

∑
t
||g′(f(ot))− bt||22 (5.23)

50

Figure 5.13: PBL History Encoder

Where:

• f(ot) = zt
• F andG′ are two hypothesis spaces induced by neural networks.
• f and g′ are two other feed-forward neural networks.

Together the forward and reverse cycle form a bootstrap effect that allows bootstrap useful information
from far into the future.

5.4.4 GID and ADP
GID and ADP where introduced by the authors of [27]. Both auxiliary tasks predict actions taken be-
tween two observations k frames apart. Besides the k actions a[t:t+k] the auxiliary tasks take in input the
belief of the first frame ht and the visual encoding φt+k .
ADP uses a 2-layer feed forward neural network to model an action distribution. It’s loss consists in
evaluating the KL-divergence between the network prediction and k actions.

LADP = KL(MLP(ht,φt+k), a[t:t+k]) (5.24)

GID generates the first prediction by using a linear layer f.

gGIDt = f(ht,φt+k) (5.25)

51

Figure 5.14: PBL architecture

Then the remaining actions are individually predicted by using a GRU that takes in input the previous
action and predicted action.

gGIDt+i = GRU(at+i−1, gGIDt+i−1) (5.26)

TheGID loss is calculated bymeasuring the Cross Entropy between all the actions and predicted actions.

LGID =
k−1∑
i=1

CrossEnt(f′(gGIDt+i), at+i) (5.27)

Where f′ is another linear layer.

52

6
Results

The following section will firstly give a brief introduction of the standardmetrics used for the evaluation
of the experiments, then all the experiments are going to be described in detail. Finally the obtained
results are given.

6.1 StandardMetrics
In total four standard metrics are used during evaluation: Success Rate (SR), Path Length (PL), Success
weighted by Path Lenght (SPL) [31] and Normalized Dynamic TimeWarping (nDTW) [32].

Success Rate Success Rate is the most obvious way of evaluating agents inside goal oriented tasks.
SR is obtained by calculating the percentage of episodes in which the agent manages to reach the goal.
This metric alone however isn’t enough to model the performances of the agent inside path oriented
tasks.

SR =
1
N

N∑
i=1

Si (6.1)

Where Si ∈ 0, 1 is a binary variable which is equal to 1 if the agent successfully reached the goal during
epoch i and 0 otherwise.

Path Length Path Lengthmeasures the total length of the predicted path, the optimal value should
be equal to the length of the reference path.

53

Success weighted by Path Length Distance from the goal alone isn’t a good indicator to mea-
sure for proximity since it doesn’t take into account the structure of the environment. For example the
agent could be close to the goal in terms of distance while beeing separated by a wall.
Success weighted by Path Length is a metric which tries to summarize into a single value the ability of the
agent to reach it’s goal while pursuing the shortest possible path. SPL is defined as:

SPL =
1
N

N∑
i=1

Si
li

max(pi, li)
(6.2)

Where:

• N is the number of test episodes
• li is the shortest path distance from the agent position to the goal at episode i.
• pi the length of the path actually taken by the agent at episode i
• Si ∈ 0, 1 is a binary variable which is equal to 1 if the agent successfully reached the goal during
epoch i and 0 otherwise.

SPL is a very stringent measure, most of the times an agent capable of reaching an SPL value of 0.5 is
considered as a good result. To give some context an SPL of 0.5 can be reached by either reaching the goal
in only 50% of the episodes while taking the optimal path in all of them, or by reaching the goal in all of
the episodes while taking a sub-optimal path which is exactly twice as long as the optimal path.

NormalizedDynamic TimeWarping Dynamic TimeWarping (DTW) is a similarity function
between time-series which has been used very frequently in many fields like speech processing, robotics
or data-mining.
Given two time seriesR (reference) andQ (query) who belong to some feature spaceF , Dynamic Time
Warping finds the optimal ordered alignment between the two series by minimizing the following func-
tion:

DTW(R,Q) = min
w∈W

∑
(ik,jk)∈W

δ(rik , qjk) (6.3)

Where:

• δ : F × F → R+ is a distance function mapping pairs of elements from the two series to a real
non-negative number.

• W = w1, ...,w|W| is a warping where wk = (ik, jk) ∈ [1 : |R|]× [1 : |Q|]

MoreoverW = w1, ...,w|W| to be considered valid must respect the following conditions:

• wk+1 − wk ∈ {(1, 1), (1, 0), (0, 1)}
• w1 = (1, 1)
• w|W| = (|R|, |Q|)

54

Figure 6.1: Two time seriesR andQ and the optimal warping between them computed trough DTW

In the context of navigation usuallyF consists in the set of navigable points and δ(r, q) returns the length
of the shortest path between the two points r, q. In some contexts the euclidian distance can be used as
δ.
The main problem of DTW in the context of navigation is that it isn’t invariant to the scale and density
of nodes. NormalizedDynamicTimeWarping (nDTW) is an adjusted version ofDTWwhich takes into
consideration the previously mentioned problem.

nDTW(R,Q) = exp(−DTW(R,Q)
|R|dth

) (6.4)

The calculated DTW is normalized by 1
|R|dth where dth is a sampling rate invariant threshold distance

defined for measuring success. Moreover to make the results in an interval between 0 and 1 the negative
exponential is taken. The closer the score is to 1 the better is the result.
Overall the nDTWmetric possess following positive properties:

• Softly penalizes deviations.
• It naturally models the importance of the goal by forcing the alignment of the two sequences at
their beginning and end.

• Insensitive in changes of scale and density of nodes.
• Sensitive to the order of nodes in the sequences.
• The exact score can be computed in a quadratic time and approximation can be computed in
linear time.

6.2 Hardware Limitations
The VLN-CE tasks in which this project falls is characterized by an high computational complexity and
especially requires a GPUwith many gigabytes of memory capable of containing the elevated amount of
3Dmeshes that compose the Matterport3D environments.

55

My personal computer equipped with an NVIDIA 980 with 4GB of memory couldn’t handle the train-
ing at all. Just starting the process made it instantly crash.
Even the PC gave at my disposal bymyCo-Supervisor, despite being equippedwith a powerful NVIDIA
2080 GPU with 8GB of memory, was barely enough to handle it and several days were required to com-
plete even few epochs of training.
The 8GBofmemory of theGPUcard are barely enough to train the agentwith a batch size of one. Higher
batches weren’t feasible but could have heavily influenced the training performances. For the same rea-
sons instantiating simultaneously multiple environments to speed up training wasn’t possible and the
long training times made it hard to train for high amounts of epochs.

Unfortunately hardware specifications are not mentioned explicitly anywhere in [18], so comparisons
between the two setups used to run the experiments cannot bemade. Krantz et al onlymention that they
trained their models until convergence for up to 30 epochs and with a batch size of 5 full trajectories. So
it’s a safe assumption that they had at disposal a muchmore powerful setup than the one at our disposal.

6.3 Experiments
Table 6.1 displays the results obtained through the different experiments. We evaluate the experiments
by using the standard metrics described in Section 6.1. We consider nDTW as the main metric followed
by SPL.

RxR-Habitat-Team The first row in Table 6.1 contains the results of the baseline model [16] pro-
vided by Jacob Krantz in the leaderboard of the RxR-Habitat Challenge [15].
We had to use those values as a baseline reference since no other valid baseline could be found in other
papers. The results found in [18] are obtained by using a different dataset for the trajectories, since [18]
uses a version of the R2R dataset converted into a continuos environment while the baseline model uses
a version of the RxR dataset that followed the same conversion process.
On the contrary the experiments carried out in [14] are done inside a nav-graph environment instead of
a continuos one.

Starter-CodeCheckpoint shows theperformances of thebasemodelwith it’s pre-trainedweights
and without any additional training or fine-tuning.

56

roBERTa no fine tuning The VLN-CE model is trained over the instructions encodings pro-
duced by a RoBERTa model which used the default pre-trained weights and received no additional fine-
tuning.

roBERTawith fine tuning On the contrary in this experimentwefirstly fine-tune theRoBERTa
model on the entire corpus of instructions of the RxR dataset for a couple of days. Then the fine-tuned
model is used to produce the instruction’s encodings. Finally our VLN-CE model is trained over the
produced encodings.

TrainingwithAuxiliaryTasks In this experiment thewe trained the augmentedwith the aux-
iliary tasks describe in [27]. In Table 6.1 we can see how this allowed us to achieve the highest nDTW
out of all the experiments, however both the SPL and the success rate suffered a great decrease. The in-
troduction of additional losses made the agent less optimized at reaching the goal location.

AuxTasks + RoBERTa In the last experiment we tried to combine both the auxiliary tasks and the
RoBERTa’s encodings into the same model to check how they perform toghether. With this model we
obtained the highest nDTW out of all the experiments carried out during the thesis work. Moreover we
can also see how theRoBERTa encoding compensated for the great decrease of the SPL and Success Rate
values by bringing them back to the values obtained through the other experiments.
We tracked the values of each single auxiliary loss during training. In Figure 6.2 we can see that at the
end of the training most losses managed to decrease significantly. The only loss who didn’t undergo any
significant decrease was ADP. Most likely this auxiliary loss is not beneficial toward our task. An addi-
tional experiment could be carried out by trying to remove or substitute this auxiliary loss and see if the
performances increase.

The results of experiments are heavily conditioned by the limited resources at disposal. Each model was
trained for only five epochs and with a batch size of 1 which heavily conditioned the training perfor-
mances.

57

(a) ADP (b) CPCA

(c) GID (d) PBL

Figure 6.2: Plots of the losses of the four different Auxiliary Tasks

nDTW SPL Path Length Success Rate
RxR-Habitat-Team 30.86 11.96 7.33 13.93
Starter-Code Checkpoint 25.46 6.84 0.64 6.84
roBERTa no fine tuning 35.39 6.15 7.34 7.67
roBERTa with fine tuning 35.56 7.83 7.16 9.00
Training with AuxTasks 36.84 4.95 5.36 5.72
AuxTasks + Roberta 37.48 7.24 6.64 8.61

Table 6.1: Experiments results

58

7
Future Works and Conclusions

7.1 FutureWorks

Due the high amount of time required to train and evaluate a model, the amount of experiments that
have been carried out is limited. Therefore there is still a lot of room for experimentation and the im-
provements that can be made over the original model.

Like we already sayd in Chapter 6 we found out, by examing the values of the auxiliary losses at the end
of the training, that the ADP was responding very poorly to our VLN-CE task. For starting another ad-
ditional experiment could consist in removing such loss and see if it results in improvements in the agent
performances.
Furthermore up to now we only limited ourselves in utilizing the auxiliary losses described by Joel Ye et
al. in [27]. Another possible experiment could consist in developing a custom auxiliary task that could
be implemented in substitution to the previously removed pbl task.
For example a simple auxiliary task which could be very effective for this problem could take in input
current coordinates of the agent inside the environment and the path taken up to the current step and
predict the length of the remaining path that has to be followed to reach the goal.

Moreover the instructions representation could be further down improved by usingViLBERT themodel
proposed by JiasenLu, et al in [34]which combines both the visual observations and the natural language
instructions into a single representation providing the agent with much more context.

59

7.2 Conclusions
VLN-CE is a very complex and challenging task that involvesmany concepts coming frommany different
fields of Artificial Intelligence like Embodied AI, Computer Vision or Natural Language Processing.
The elevated computational complexity that characterizes the VLN-CE tasks and the limited resources
available however made experiments really long and very complex to handle. The limited resources avail-
ablemade experiments time consuming to carry out. Training amodel for a reasonable amount of epochs
required at least a full week and another couple of days just to evaluate it.
The results obtained are heavily conditioned by these premises, nonetheless this project gave me the op-
portunity to broaden my knowledge about Computational Intelligence by exploring a field I have never
worked on and learn about the many state of the art methods, models and algorithms used inside it.
Moreover working along with professional researchers and learning about the process followed to study
and find new state of the art methods was very educational.

60

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[2] P. N. Stuart Russel, Artificial Intelligence aModern Approach, Third Edition. Pearson, 2016.

[3] R. Szeliski, Computer Vision, Algorithms and Applications. Springer, 2011.

[4] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A survey of embodied ai: From simulators
to research tasks,” in IEEE Transactions on Emerging Topics in Computational Intelligence, 2022.
[Online]. Available: https://arxiv.org/abs/2103.04918

[5] H. Durrant-Whyte, I. Fellow, and T. Bailey, “Simultaneous localisation and mapping (slam):
Part i the essential algorithms,” 2009. [Online]. Available: https://people.eecs.berkeley.edu/
~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf

[6] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning to explore using
active neural slam,” in ICLR-2020, 2020. [Online]. Available: https://arxiv.org/abs/2004.05155

[7] “Natural language definition.” [Online]. Available: https://en.wikipedia.org/wiki/Natural_
language

[8] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nießner, M. Savva, S. Song, A. Zeng, and
Y. Zhang, “Matterport3d: Learning from rgb-d data in indoor environments,” 2017. [Online].
Available: https://arxiv.org/abs/1709.06158

[9] C. Shyalika, “A beginners guide to q-learning,” 2019. [Online]. Available: https:
//towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c

[10] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat: A Platform for
Embodied AI Research,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019. [Online]. Available: https://arxiv.org/abs/1904.01201

[11] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam,
D. Chaplot, O.Maksymets, A. Gokaslan, V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang,
Z. Kira, V. Koltun, J. Malik, M. Savva, and D. Batra, “Habitat 2.0: Training home assistants to
rearrange their habitat,” in Advances in Neural Information Processing Systems (NeurIPS), 2021.
[Online]. Available: https://arxiv.org/abs/2106.14405

[12] “aihabitat.org.” [Online]. Available: https://aihabitat.org/

61

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2103.04918
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://arxiv.org/abs/2004.05155
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://arxiv.org/abs/1709.06158
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c
https://arxiv.org/abs/1904.01201
https://arxiv.org/abs/2106.14405
https://aihabitat.org/

[13] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and
A. van den Hengel, “Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments,” inProceedings of the IEEEConference on Computer Vision and
Pattern Recognition (CVPR), 2018. [Online]. Available: https://arxiv.org/abs/1711.07280

[14] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-Across-Room: Multilingual vision-
and-language navigation with dense spatiotemporal grounding,” in Conference on Empirical
Methods for Natural Language Processing (EMNLP), 2020. [Online]. Available: https://arxiv.
org/abs/2010.07954

[15] “Rxr challenge.” [Online]. Available: https://ai.google.com/research/rxr/

[16] “Rxr-habitat competition starter code.” [Online]. Available: https://github.com/jacobkrantz/
VLN-CE/tree/rxr-habitat-challenge

[17] “Semantic segmentation.” [Online]. Available: https://ai.stanford.edu/~syyeung/cvweb/
tutorial3.html

[18] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond the nav-graph: Vision-
and-language navigation in continuous environments,” 2020. [Online]. Available: https:
//arxiv.org/abs/2004.02857

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: https://arxiv.org/abs/1706.
03762

[20] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,”
2014. [Online]. Available: https://nlp.stanford.edu/pubs/glove.pdf

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Tech
report, 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[22] J. Devlin, M.-W. Chang, Kenton, and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” 2019. [Online]. Available: https:
//arxiv.org/abs/1810.04805

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” 2019. [Online].
Available: https://arxiv.org/abs/1907.11692

[24] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato,
T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine
translation system: Bridging the gap between human and machine translation,” 2016. [Online].
Available: https://arxiv.org/abs/1609.08144

62

https://arxiv.org/abs/1711.07280
https://arxiv.org/abs/2010.07954
https://arxiv.org/abs/2010.07954
https://ai.google.com/research/rxr/
https://github.com/jacobkrantz/VLN-CE/tree/rxr-habitat-challenge
https://github.com/jacobkrantz/VLN-CE/tree/rxr-habitat-challenge
https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html
https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html
https://arxiv.org/abs/2004.02857
https://arxiv.org/abs/2004.02857
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1609.08144

[25] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with subword
units,” in ACL 2016, 2016. [Online]. Available: https://arxiv.org/abs/1508.07909

[26] J. Ye, D. Batra, E. Wijmans, and A. Das, “Auxiliary tasks speed up learning pointgoal navigation,”
2020. [Online]. Available: https://arxiv.org/abs/2007.04561

[27] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and exploration enable objectnav,” 2021.
[Online]. Available: https://arxiv.org/abs/2104.04112

[28] O. V. Aaron van den Oord, Yazhe Li, “Representation learning with contrastive predictive
coding,” 2019. [Online]. Available: https://arxiv.org/abs/1807.03748

[29] Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, and R. Munos, “Neural predictive belief
representations,” 2019. [Online]. Available: https://arxiv.org/abs/1811.06407

[30] D. Guo, B. A. Pires, B. Piot, J. bastien Grill, F. Altché, R. Munos, and M. G. Azar, “Bootstrap
latent-predictive representations formultitask reinforcement learning,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.14646

[31] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik,
R. Mottaghi, M. Savva, and A. R. Zamir, “On evaluation of embodied navigation agents,”
in Report of a working group on empirical methodology in navigation research, 2018. [Online].
Available: https://arxiv.org/abs/1807.06757

[32] G. Ilharco, V. Jain, A. Ku, E. Ie, and J. Baldridge, “General evaluation for instruction conditioned
navigation using dynamic time warping,” in Thirty-third Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019. [Online]. Available: https://arxiv.org/abs/1907.05446

[33] J. Gu, E. Stefani, Q. Wu, J. Thomason, and X. E. Wang, “Vision-and-language navigation:
A survey of tasks, methods, and future directions,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.12667

[34] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks,” 2019. [Online]. Available: https://arxiv.org/abs/
1908.02265

63

https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2007.04561
https://arxiv.org/abs/2104.04112
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1811.06407
https://arxiv.org/abs/2004.14646
https://arxiv.org/abs/1807.06757
https://arxiv.org/abs/1907.05446
https://arxiv.org/abs/2203.12667
https://arxiv.org/abs/2203.12667
https://arxiv.org/abs/1908.02265
https://arxiv.org/abs/1908.02265

64

A
Code

Listing A.1: Insert code directly in your document

1 import j s o n
2 import o s
3 import t o r c h
4 import numpy a s np
5
6 r o b e r t a = t o r c h . hub . l o a d (’ p y t o r c h / f a i r s e q ’ , ’ r o b e r t a . l a r g e ’)
7 s p l i t s = o s . l i s t d i r (” j s o n ”)
8
9 f o r s p l i t in s p l i t s :
10 p r i n t (”LOADING SPLIT ”+ s p l i t)
11 f i l e _ n am e = ” . / j s o n /”+ s p l i t
12 w i th open (f i l e _ n am e) a s f :
13 d a t a = j s o n . l o a d (f)
14 i =0
15 f o r e p i s o d e in d a t a [” e p i s o d e s ”] :
16 p r i n t (” Load ing s p l i t ”+ s t r (i) +” o f ”+ s t r (l e n (d a t a [”

e p i s o d e s ”])))
17 i = i +1

65

18 i n s t r u c t i o n _ t e x t = e p i s o d e [” i n s t r u c t i o n ”] [”
i n s t r u c t i o n _ t e x t ”]

19 l a n g u a g e = e p i s o d e [” i n s t r u c t i o n ”] [” l a n g u a g e ”]
20 i n s t r u c t i o n _ i d = e p i s o d e [” i n s t r u c t i o n ”] [” i n s t r u c t i o n _ i d ”]
21
22 embedd i n g_ f i l e _n ame =” t e x t _ f e a t u r e s . npz ”
23 l anguage_name_component =””
24 i f ” en ” in l a n g u a g e :
25 l anguage_name_component =” en ”
26 i f ” h i ” in l a n g u a g e :
27 l anguage_name_component =” h i ”
28 i f ” t e ” in l a n g u a g e :
29 l anguage_name_component =” t e ”
30 embedd i n g_ f i l e _n ame= l anguage_name_component +”_”+

embedd i n g_ f i l e _n ame
31 id_name_component= i n s t r u c t i o n _ i d
32 whi l e l e n (id_name_component) <6:
33 id_name_component =”0”+ id_name_component
34 embedd i n g_ f i l e _n ame= id_name_component +”_”+

embedd i n g_ f i l e _n ame
35 embedd i n g_ f i l e _n ame =” t e x t _ f e a t u r e s / r x r _ ”+ s p l i t . r e p l a c e

(” _ gu i d e . j s o n ” , ” ”) +”/”+ embedd i n g_ f i l e _n ame
36 i f not o s . p a th . i s f i l e (emb edd i n g_ f i l e _n ame) :
37 t o k e n s = r o b e r t a . encode (i n s t r u c t i o n _ t e x t)
38 i f l e n (t o k e n s) >512:
39 t o k e n s = t o k e n s [: 5 1 2]
40 l a s t _ l a y e r _ f e a t u r e s = r o b e r t a . e x t r a c t _ f e a t u r e s (

t o k e n s)
41 i n s t r u c t i o n _ e n c o d i n g = l a s t _ l a y e r _ f e a t u r e s . d e t a c h () .

numpy () [0 , : , :]
42 t o k e n s _ s t r i n g = l i s t (map (s t r , t o k e n s . numpy ()))
43 np . s a v e z (embedd i n g_ f i l e _n ame , t o k e n s = t o k e n s _ s t r i n g ,

f e a t u r e s = i n s t r u c t i o n _ e n c o d i n g)

66

B
Hyperparameters

B.1 Common Task Parameters

Name Description Value
lr Learning Rate, scalar multiplied to gradient which regulates the gradient step 2.5−4

batch_size Number of examples over which the gradient is calculated 1
epochs Maximum number of epochs that can be reached during training 15

Table B.1: Common task parameters

67

B.2 CPCAAuxiliary Task Parameters

Name Description Value
loss_factor Determines the impact of aux loss over the original loss 0.5
num_steps Number of predicted steps 4
subsample_rate Percentage of examples picked by the aux loss at each step 0.2
dropout 0.0

Table B.2: CPC|A auxiliary task parameters

B.3 PBL Auxiliary Task Parameters

Name Description Value
loss_factor Determines the impact of aux loss over the original loss 0.2
num_steps Number of predicted steps 4
subsample_rate Percentage of examples picked by the aux loss 0.15

Table B.3: PBL auxiliary task parameters

B.4 GID Auxiliary Task Parameters

Name Description Value
loss_factor Determines the impact of aux loss over the original loss 0.2
num_steps Number of predicted steps 4
subsample_rate Percentage of examples picked by the aux loss 0.2

Table B.4: GID auxiliary task parameters

68

B.5 ADP Auxiliary Task Parameters

Name Description Value
loss_factor Determines the impact of aux loss over the original loss 0.2
num_steps Number of predicted steps 4
subsample_rate Percentage of examples picked by the aux loss 0.2

Table B.5: ADP auxiliary task parameters

69

	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Text Organization

	Background
	Neural Networks
	Training
	Autoencoders

	Convolutional Neural Networks
	Recurrent Neural Networks
	Bidirectional RNN

	Long term dependencies
	Long Short-Term Memory
	Gated Recurrent Units

	Reinforcement Learning

	Related Works
	Visual Exploration
	Simultaneous Localization And Mapping
	Active Neural SLAM

	Visual Navigation
	Goal Types

	Visual Language Navigation
	Embodied Question and Answering

	Dataset
	Matterport3D
	Habitat
	Room To Room (R2R)
	Room Across Room (RxR)
	RxR Challenge

	Methods
	Attention Mechanisms
	Visual Language Navigation in Continuos Environments
	Trajectory Conversion
	Data Representation
	Sequence-to-Sequence Model
	Cross-Modal Attention Model

	Improving instruction's encoding
	BERT
	RoBERTa

	Auxiliary Tasks
	Contrastive Predicting Coding
	CPC|Action
	PBL
	GID and ADP

	Results
	Standard Metrics
	Hardware Limitations
	Experiments

	Future Works and Conclusions
	Future Works
	Conclusions

	References
	Appendix Code
	Appendix Hyperparameters
	Common Task Parameters
	CPCA Auxiliary Task Parameters
	PBL Auxiliary Task Parameters
	GID Auxiliary Task Parameters
	ADP Auxiliary Task Parameters

