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Abstract

The possibility of sharing multimedia contents on the Web, such as images, audio

tracks and videos, results in the existence of multiple similar but not identical

copies of the same document. Multimedia phylogeny deals with the analysis of

dependencies among these objects, in order to lead back to the original document

and make sense of the evolution of its content over time. In this thesis we propose

an innovative approach to the phylogenetic analysis of digital audio tracks, where

time-frequency representations of audio tracks are used to convert audio contents

into images. In this way, computer vision techniques may be employed as in the

framework of image phylogeny. The proposed method was validated and compared

to the state-of-the-art solution, providing better results in terms of both accuracy

and computational complexity. Preliminary considerations on future work suggest

the application of this approach to the analysis of different kinds of signals, ranging

from biomedical devices or distributed wireless sensors.
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Sommario

La possibilità di condividere in rete contenuti multimediali, quali immagini, audio

e video, comporta l’esistenza di più copie simili ma non identiche dello stesso docu-

mento. La filogenesi multimediale si occupa dell’analisi delle dipendenze tra questi

oggetti, con lo scopo di risalire al documento originale e ricostruire la sua evoluzio-

ne nel tempo. In questa tesi viene proposto un approccio innovativo per l’analisi

filogenetica di tracce audio digitali, nel quale viene sfruttata la rappresentazione

tempo-frequenza delle tracce convertendole dal dominio dell’audio a quello delle

immagini. In tal modo è possibile applicare le tecniche di computer vision utiliz-

zate nell’ambito della filogenesi delle immagini. Il metodo proposto è stato conva-

lidato e confrontato con l’attuale soluzione di riferimento, dimostrando maggiore

accuratezza e minore complessità computazionale. Considerazioni preliminari sugli

sviluppi futuri suggeriscono l’applicazione di questo approccio all’analisi di diversi

tipi di segnali, come quelli da dispositivi biomedici o sensori wireless distribuiti.
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Chapter 1
Introduction

Within the past two decades, the technological progress has significantly affected

our life on two parallel fronts: on one hand, increasingly powerful and portable

hardware (smartphone, tablet, etc.) have been made available for personal use; on

the other hand, the Internet and social networks have massively and ubiquitously

developed supporting a wide variety of applications. The convergence of these two

factors allows users to easily upload and share a large amount of digital multimedia

content everywhere, at anytime, through whatever device. To give an idea of the

size of this phenomenon, statistics carried out in 2011 have revealed that the Flickr

photo hosting service receives 5.2 thousand high-resolution images per minute and

the YouTube video hosting service receives a staggering 24 minutes of video content

per second [1]. In this scenario, it is not uncommon to assist to the emergence of

viral contents that are disseminated all across the Web within a short time from

the first upload.

In addition, the increased amateur usage of editing software implies the pres-

ence of a further phenomenon: digital documents mutate as they spread through

the network. Considering images, for instance, every user has the possibility of

downloading a picture from the Internet and republishing it after having altered

its content. Such modifications may vary from quality enhancements for artistic

purposes (brightness and contrast corrections, filtering, etc.) to the necessity of

conforming to a given publication format (resizing, cropping, compression, logos

insertion, etc.). The iteration of this process, together with the dissemination of

documents, gives origin to a large number of similar but not identical copies of the

same document, which are commonly known in literature as near-duplicates [2].

There are several situations where it is necessary to identify all the copies and/or

alternate versions of a given content. A simple image search, if left unchecked, may

return thousands of similar copies of the same picture. In legal environments, in-

1



2 CHAPTER 1. INTRODUCTION

stead, it is crucial to identify an illegal content that has been shared on the Internet,

regardless of possible modifications it could have undergone. However, while the

identification of an exact copy is a trivial task, the same cannot be said of a near-

duplicate. In particular, we identify two categories of problems: i) the detection

problem, which consists in verifying whether two documents are near-duplicates of

each other; ii) the recognition problem, which aims at finding all the near-duplicates

of a given query in a large collection [3]. These two issues are commonly merged

in a single field, known as near-duplicate detection and recognition (NDDR).

A more ambitious objective, compared to NDDR problems, is to determine the

causal relationships interlying among a population of near-duplicate objects and

to identify the original one. The idea is to determine the history of the progres-

sive transformations which, starting from the original document, have generated

its different versions. This approach draws inspiration from biology, where it is

observed how living organisms inherit characteristics from their ancestors and may

undergo genetic mutations resulting in the generation of new species. This pro-

gressive branching process is called phylogeny [4] and can be represented with a

relational tree. In the same way of living organisms, a document obtained by a

series of transformations inherits the characteristics of its predecessors and, in case

it is further modified, can give rise itself to a new tree of descendants. The original

document represents the root of the phylogenetic tree.

In the case of ancient written documents, this phenomenon is mainly due to

accidental transcription errors [5]. A famous case concerns the Book of Soyga, a

16th century Latin manuscript which is available in two slightly different versions,

both kept by the British Library. Recent studies [6] have shown that the two

manuscripts present a set of errors common to both, besides those that differentiate

them, suggesting that they share a common ancestor. On the other hand, in the

context of digital documents, transformations are in most cases voluntary. As a

consequence, the need to develop techniques that go beyond the simple recognition

of a copy is undeniable, independently from the fact that modifications were done

for entertainment purposes or to forge digital evidences in criminal investigations

[7]. The knowledge of the history of transformations may provides clues about the

original creator of the document and a better understanding of the evolution of its

content over time [8]. These demands have given rise to the research field called

multimedia phylogeny, whose name is based on the aforementioned analogy with

biology since the time evolution of documents indeed forms a phylogenetic tree.

From its very first formulation [1,3], the main interest of multimedia phylogeny

has so far been mainly related to images. Several studies were performed in the field

of image phylogeny, which have provided a large number of solutions that tackle
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the problem with different kinds of approach while maintaining a common pipeline.

In addition to the classic cases, some of the studies published in the literature have

also considered datasets where multiple roots can be found (phylogenetic forest

reconstruction) [9], as well as the one in which descendants inherit characteristics

from multiple ancestors [10]. Similarly, a few studies were performed in the context

of video phylogeny [11,12]. Considering the whole range of multimedia documents,

audio phylogeny is still rather unexplored.

In this work we propose a solution for the phylogenetic analysis of digital audio

tracks, relying on a computer vision approach in a similar way to what is commonly

done for images. Our idea is based on the possibility of transforming audio files

into images exploiting time-frequency diagrams, also known as spectrograms. From

the resulting images it is possible to extract visual features by which we are able

to perform quantitative comparisons between pairs of audio tracks [13,14].

Chapter 2 defines the problem of multimedia phylogeny and presents related

work in the literature, ranging from image and video to audio phylogeny. Chapter 3

presents an overview on time-frequency audio analysis and motivates the choice to

address audio phylogeny by using spectrograms. Chapter 4 formalizes our solution

to the audio phylogeny problem. Chapter 5 presents the performed experiments

and comments on the results. Finally, Chapter 6 concludes the thesis and discuss

possible further improvements and future work.
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Chapter 2
Multimedia phylogeny

The phylogenetic analysis of multimedia documents, namely the study of transfor-

mations and causal relationships in a population of duplicates, has been developed

over the last decade, motivated by the occurrence of a number of problems due to

the continuous growth and evolution of the digital world.

Information forensics and digital security are indeed areas where phylogeny

represents a major investigative tool. Every time a forensic examination has to

be performed on a digital document, results may be strongly altered if we are

unknowingly considering a duplicate instead of the original [15]. This motivates

the importance of being able to correctly identify the source.

Copyright enforcement also benefits from multimedia phylogeny. In this con-

text, the most commonly used strategy is traitor tracing [16], which involves the

embedding of a signature within the original document before its dissemination. In

the event the document leaks into the Internet, potentially with multiple variations

of itself, we are able to detect the originally-marked one and to recover its history by

checking the presence of the signature and its modification patterns. Signatures are

usually implemented with watermarking and fingerprinting techniques [17]. How-

ever, there is a number of issues for which traitor tracing strategies are not always

feasible: i) some transformations on the document may destroy the marking; ii)

the awareness of markings leads to the adoption of attempts to circumvent them;

iii) watermarks only work for documents reproduced after their embedding, leaving

earlier copies unidentifiable; iv) it is not always possible to have knowledge about

the ownership of the source [3]. Multimedia phylogeny overcome these problems as

it relies on a content-based approach: documents are analysed in order to extract

some significant features, which can then be exploited to compare duplicates and

infer the relationships among them.

Nowadays, a widely adopted archetype of phylogenetic analysis consists of a

5



6 CHAPTER 2. MULTIMEDIA PHYLOGENY

two-steps pipeline: the computation of a dissimilarity metric, which quantifies how

two objects are related, between all pairs of documents; a phylogenetic tree esti-

mation algorithm, which reconstructs a tree structure relying on the dissimilarity

values [1, 3]. Before we go into details, though, we need to start from the formal

definition of a near-duplicate.

2.1 Near-duplicates

A near-duplicate is a transformed version of a document that keeps the original

information. This is a simple and yet widely adopted definition, which makes

it clear that we are not addressing documents with similar content, but altered

versions of the same original source. However, establishing objectively to what

extent a modified document remains recognizable is not a trivial task. For this

reason, Joly et al. [2] formally defined near-duplicates by introducing the notion

of tolerated transformations.

Definition 1. A document D1 is a near-duplicate of a document D, if D1 = T (D),

T ∈ T , where T is a set of tolerated transformations. D is called the original

document or the root, D1 is a descendant.

A generic transformation T may be a composition of several transformations in

T , for instance D3 = T3◦T2◦T1(D) is a near-duplicate of D as are the intermediate

documents D2 = T2◦T1(D) and D1 = T1(D). In these cases, sometimes is preferred

to use the notation T~β, where ~β is a vector of indices.

T~β = T[β1,β2,...,βt] = Tβt ◦ . . . ◦ Tβ2 ◦ Tβ1 , Tβi ∈ T , ∀i = 1 . . . t (2.1)

This property of the transformation composition also implies that the relationship

between near-duplicates is transitive. If a document D has a direct duplicate

D1 and D1 has a direct duplicate D2, then D2 is, in turn, a duplicate of D. Each

document Dn can, however, generate multiple different duplicates of itself, resulting

in multiple ramifications, which is what we call a phylogenetic tree. All documents

forming the tree are copies of the root, but they are not necessarily copies of each

other. An example of near-duplicate tree and its related transformations is shown

in Figure 2.1. As explained above, we can see that if we are in possession of a

reference marked document, DDB, then we are able to trace its transformations

easily. On the other hand, when no markings are available, as in the case of

documents D1,...,6, we can only rely on content-based methods.
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Figure 2.1: Near-duplicate tree of a document D and its transformations [3].

Definition 2. A phylogenetic tree is a directed acyclic graph, where every node

represents a document and every edge a transformation or a combination of trans-

formations. Edges point in the direction of the transformation from the parent to

its child [8].

Phylogenetic analyses can also be extended to the scenario in which a multitude

of roots is present. Let us consider, for example, a collection of images in which

there is a number of pictures of the same scene, but taken with different cameras,

using different settings, or from slightly different points of view. Such images are

actually different and cannot be considered as duplicates. In fact, while sharing

the same semantic content, they do not have any relationship with each other, be-

cause they do not share any common ancestor. Such documents are referred to as

semantically-similar. A set of semantically-similar documents has m-independent

subsets of near duplicates, each one forming a separate tree, resulting in a struc-

ture called a phylogenetic forest [9, 18]. An example of this scenario is shown in

Figure 2.2a.

Furthermore, a situation that cannot be ruled out is the one where an object

inherits content from multiple sources. For instance, image montages (the content

of each source image is placed in a larger frame, with minimum or no overlapping

among them), splicing (a small region of one image is pasted onto another image),

blending of images (the contents of two or more images are blended through their
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(a) Set of semantically-similar images. Three subsets of near-duplicates are present: i) D, E, F
and H, with root F; ii) B and I, with root B; iii) A, C and G, with root A.

(b) Image composition and their near-duplicates. K consists of J with a splicing of the rooster
from A. L and M are near-duplicates of K and J, respectively.

Figure 2.2: Set of related pictures [8].

alpha channels) or combinations of different videos, commonly found in the Internet

[8]. An example is shown in Figure 2.2b. These scenarios represent an extension

of phylogenetic forests and are referred to as multiple parenting phylogeny [10,19].

2.2 Dissimilarity

The first step in the typical multimedia phylogeny pipeline consists of using a

suitable dissimilarity function to determine how two objects are related.

Definition 3. Given a set X of digital objects, a dissimilarity function is a function

d : X ×X → R
(i, j) 7→ d(i, j) = di,j

(2.2)

where (i, j) is a couple of objects, i, j ∈ X, such that the more two objects are

distinct, the larger the values yielded by di,j.

In multimedia phylogeny, we usually take two similar objects as being likely in

parent-child relationship. Conversely, two dissimilar objects are those that under-
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went a higher number of significant transformations, therefore occupying positions

further apart in the phylogenetic tree.

In order to reconstruct the tree, first, we need to compute the pairwise dissim-

ilarities between all objects, creating a matrix.

Definition 4. Given a set X of n digital objects and a dissimilarity function d(·, ·),

a dissimilarity matrix M is an n× n real-valued matrix, such that

Mi,j = di,j, ∀i, j ∈ X, i 6= j (2.3)

A dissimilarity matrix M can then be taken as the adjacency matrix of a complete

weighted directed graph, where every node represents an object, and the phylo-

genetic tree can be reconstructed by running a minimum spanning tree algorithm

(see Section 2.3).

An interesting point is whether dissimilarity meets the criteria of being a dis-

tance in a metric space. Given a set S and a function f : S × S → R, a metric

space is an ordered pair (S, f) such that ∀x, y, z ∈ S, the following holds [20]:

1. f(x, y) = 0 ⇐⇒ x = y (identity);

2. f(x, y) = f(y, x) (symmetry);

3. f(x, y) ≤ f(x, z) + f(z, y) (triangle inequality).

For what concerns multimedia phylogeny, however, we can see that dissimilarity

function is not a distance. In fact, while we can reasonably expect the identity

property to hold, the same cannot be said of the symmetry and triangle inequality

properties. This is largely due to the fact that many digital signal processing

transformations are fundamentally asymmetrical. Consider for instance the family

of rescaling operations, namely upsampling and downsampling. When two images

IA and IB have different dimensions, dIA,IB would calculate the metric of the

residual on IB’s dimensions, while dIB ,IA would calculate the metric of the residual

on IA’s dimensions [1]. However, this asymmetry is essential for phylogenetic

analyses, as it allows the reconstruction algorithms to determine the direction of

the modifications (parent–child relationship) [8].

Most of the work in multimedia phylogeny involves implementing the dissim-

ilarity function properly. In the following paragraphs we will give an overview of

some of the proposed solutions, addressing the cases of image, video and audio

phylogeny separately.
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2.2.1 Image phylogeny

The most common approach to the image phylogeny problem is the one proposed

by Dias et al. [1,3], where the dissimilarity function maps the domain of one image

into that of another (image registration) and considers the cost of such operation.

Given a family of image transformations T , the dissimilarity between two images

IA and IB is defined as

dIA,IB = min
T~β∈T

∣∣∣IB − T~β (IA)
∣∣∣
L

(2.4)

where L is any point-wise comparison metric (e.g. mean squared error). Therefore,

equation (2.4) measures the amount of residual between the best transformation of

IA to IB, according to the family of operations T , and IB itself. There are countless

possible transformations an image can undergo to create a near-duplicate of itself.

The family T of transformations considered by Dias et al. is composed by the

following operations.

� Resampling: the image is resized through upsampling or downsampling.

� Cropping: the lateral regions of an image are removed.

� Affine warping: the image is rotated, translated or even slightly distorted

(sheared).

� Brightness and contrast: the colors of image pixels are adjusted through

brightness and contrast operations.

� Lossy compression: the image is compressed using the standard lossy

JPEG algorithm.

In order to estimate the transformation that best approximates image IA into IB
we proceed in four steps.

1. Calculate the corresponding points between images IA and IB using the

speeded-up robust features (SURF) algorithm [21]. This first step gives can-

didate points to estimate the resampling and cropping operations for IA with

respect to IB.

2. Robustly estimate the affine warping transformation parameters which in-

cludes translation, rotation, off-diagonal correction, and resampling oper-

ations for image IA with respect to IB, taking the corresponding points

into consideration and filtering them using Random Sampling Consensus

(RANSAC) algorithm [22].
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3. Calculate the mean and variance of each color channel of IB and normalize

color channels of IA using such measures.

4. Compress the result of steps 2 and 3 according to the quantization table of

IB, then uncompress both of them and calculate their point-wise dissimilarity

using the standard mean squared error (MSE) as metric L.

The final product of the transformation estimations for every pair of images is the

dissimilarity matrix M , upon which we can run the tree reconstruction algorithm.

Combined dissimilarity

A different approach, proposed by Melloni et al. [23], adopts an additional dissim-

ilarity matrix using the content-independent part of the image. Any image I, in

fact, can be described as the composition of two separable parts: one conveying

the semantic information of the real scene, Ic, and a mostly random content-

independent part, Ir [24].

I ↔ [Ic, Ir] (2.5)

The content-independent part can be obtained by denoising the input image with

a wavelet-based approach [25] and then subtracting the resulting image from the

input one. Using both dissimilarity matrices obtained by analysing the two compo-

nents separately, it is possible to reduce the ambiguity during the tree reconstruc-

tion phase in those cases where the matrix M presents multiple low dissimilarity

values along the same row, which means that an image is very similar to more than

one of the other duplicates.

2.2.2 Video phylogeny

Dealing with video phylogeny reconstruction brings additional challenges compared

to images. In fact, we need to deal with both spatial and temporal alignment of

videos.

Dias et al. [11] initially proposed a simplified approach considering only tem-

porally aligned videos of the same length and encoded with the same compression

scheme. Similarly to image phylogeny, considering a family T of video transfor-

mations, equation (2.6) defines the dissimilarity between two videos VA and VB by

measuring the residual between the best transformation of VA to VB and VB itself.

dVA,VB = min
T~β∈T

∣∣∣VB − T~β (VA)
∣∣∣
L

(2.6)
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The transformation estimation is performed by first selecting a subset of temporally

coherent frames from both videos. Then, for each pair of frames, fkA ∈ VA and

fkB ∈ VB, the same four steps described for image phylogeny are followed, and the

frame point-wise MSE is calculated.

A more recent approach, proposed by Costa et al. [26], extends the aforemen-

tioned one taking into account the case of time clipped, misaligned and compressed

videos, although some constraints are imposed: a video VA cannot be an ancestor

of VB if |frames (VA)| < |frames (VB)|; all duplicates were generated using the

same frame rate; no multiple-parenting compositions are present.

2.2.3 Audio phylogeny

A possible approach to the analysis of near-duplicate audio tracks was proposed

by Nucci et al. [27], relying on a similarity metric. Unlike the commonly used

dissimilarity function, they define the similarity between two audio tracks AA and

AB, for a given family of audio transformation T , as

sAA,AB = max
T~β∈T

L
(
AB, T~β (AA)

)
(2.7)

In this case, the comparison metric L is the SNR (signal-to-noise ratio) of the

transformation of AA with respect to its difference with AB.

L
(
AB, T~β (AA)

)
= 20 log10

(
‖T~β(AA)‖2

‖AB − T~β(AA)‖2

)
(2.8)

The considered family of transformations T is as follows.

� Trim: removal of the leading/trailing parts of the track.

� Fade: amplitude modulation of audio samples, characterised by a gradual

increase/decrease in the level of the track, commonly applied to the leading

(fade-in) and trailing (fade-out) ends.

� Perceptual coding: lossy compression of the audio track performed by tak-

ing advantage of perceptual limitations of human hearing (e.g. mp3 coding

format).

The algorithm enumerates all possible transformations parametrized by a set of

control values. To speed up processing the iteration is stopped whenever the cal-

culated SNR is above a given threshold (tuned manually to 65 dB).
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2.3 Tree reconstruction

Once the dissimilarity is calculated for all pairs of objects, the dissimilarity matrix

M can be seen as the adjacency matrix of a complete weighted directed graph. The

problem of determining the phylogenetic tree is therefore reducible to the one of

finding a directed spanning tree of minimum total weight. This problem is called

minimum spanning arborescence.

2.3.1 Minimum spanning arborescence

In graph theory, an r-arborescence (or simply arborescence) is a directed graph in

which, for a given vertex r called the root, there is exactly one directed path from

r to v, ∀v 6= r [28]. Equivalently, given a directed graph D = (V,E) and a special

root vertex r, an arborescence is a spanning tree (when viewed as an undirected

graph) directed away from r [29].

The minimum spanning r-arborescence is the problem of, given a directed graph

D = (V,E), a root vertex r ∈ V and a cost ce for every directed edge e ∈ E, finding

an r-arborescence in D of minimum total cost.

As an integer program, the problem can be formulated as follows [29]. Letting

xe be 1 for the edges of an r-arborescence, we have the formulation:

min
∑
e∈E

cexe∑
e∈δ−(S)

xe ≥ 1 ∀S ⊆ V \ {r}∑
e∈δ−(v)

xe = 1 ∀v ∈ V \ {r}

xe ∈ {0, 1} e ∈ E

(2.9)

In this formulation δ−(S) represents the set of arcs {(u, v) ∈ E : u /∈ S, v ∈ S}.
Although it is possible to show that we can relax the integrality restrictions to

xe ≥ 0 and also remove the equality constraints, this optimization problem still

has a number of constraints that depends exponentially on the number of vertices.

However, many efficient algorithms have been proposed to solve the arbores-

cence problem. In particular, within the framework of multimedia phylogeny, the

following approaches have been tested.

� Oriented Kruskal (OK) [1, 3]: an adaptation for directed graphs of the

classic Kruskal’s minimum spanning tree algorithm [30]. The OK algorithm

does not require the knowledge of the root beforehand: it finds the root and

determines the minimum arborescence in the same run. As its undirected
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version, the OK follows a greedy approach, choosing the lowest cost edge at

each stage. An extension for phylogenetic forest reconstruction has also been

proposed, called “automatic OK” (AOK) [9].

� Best Prim (BP) [31]: a heuristic based on the Prim’s minimum spanning

tree algorithm [32]. It builds n different directed trees, using an auxiliary

method called “oriented Prim”, considering each node as a possible root

once. Then, the algorithm chooses the one with the lowest total cost.

� Optimum branching (OB) [31]: based on the namesake algorithm pro-

posed in different versions by Chu and Liu [33], Edmonds [34] and Bock [35].

Differently from the OK, the OB considers the whole dissimilarity matrix,

always finding one optimum global solution. The OB algorithm has been as

well extended to the case of forest reconstruction with the “automatic OB”

(AOB) and the “extended AOB” (E-AOB) [18].

A detailed description of the OB algorithm is given below, as it has repeatedly

proven to be the most effective, in addition to being the one we adopted in our

work.

2.3.2 Optimum branching algorithm

The implementation of the algorithm in the version proposed by Edmonds [34]

relies on a recursive description. Let Gi = (Vi, Ei) be an input graph in a certain

recursive step of the algorithm and let r be the root of the tree.

First, for each node v in the graph other than r, we select the edge arriving at

v with the lowest cost (Figure 2.3a). If no loops are present in the obtained graph,

the algorithm stops and the tree is returned. If there is a loop, we deal with it

by creating a dummy node, vLi , representing it. Let Li ⊂ Vi be the set of nodes

forming the loop and wmin the lowest edge weight in the loop. We create a new

graph Gi+1 = (Vi+1, Ei+1), such that Vi+1 = Vi \Li ∪ {vLi}, i.e. Gi+1 has the same

nodes of Gi except for those forming the loop which are merged in the node vLi ,

and Ei+1 is defined as follows.

1. For each edge (vx, vy) connecting a node vx outside the loop to a node vy in

the loop, we add in its place the edge (vx, vLi) with a weight equal to

w(vx, vLi) = w(vx, vy) + wmin − w(·, vy) (2.10)

where w(·, vy) is the weight of the edge arriving at vy in the loop.
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2. For each edge (vy, vx) connecting a node vy in the loop to a node vx outside

the loop, we add in its place the edge (vLi , vx) with the weight of (vy, vx).

w(vLi , vx) = w(vy, vx) (2.11)

3. Edges connecting nodes outside the loop are kept unchanged.

After processing all nodes within and outside the loop, the algorithm recursively

finds the optimum branching for the new graph Gi+1 (Figure 2.3b). Next, to cope

with the loop itself, the algorithm replaces the edge connecting a node vx to the

dummy node vLi in the current optimum solution with the correct one in the

original graph, (vx, vy). In addition, all edges within the loop that do not arrive

at vy are restored, while (·, vy) is removed. Finally, the algorithm updates possible

edges from nodes within the loop to outside that are part of the optimum branching

(Figure 2.3c).

However, within the multimedia phylogeny framework, the root of the tree is

unknown. In order to deal with this we have at least two possibilities. The first one

is used for the BP algorithm and consists in running the algorithm |V | times, each

time with a different node as a possible root, and choosing the solution with the

minimum cost. The second one consists in inserting a dummy node v0 to be used

as root and changing the edge structure so that v0 can be removed later without

affecting the reconstruction (i.e., ensuring the edges between v0 and any other will

never be selected as part of the optimum branching). In our case it is sufficient to

set

V0 = V ∪ {v0} ,

E0 = E ∪ {(v0, v)} , ∀v ∈ V,

with w(v0, v) = K, where K is a large enough number (e.g., K =
∑

e∈E we), and

run the algorithm using G0 = (V0, E0) as input and v0 as root. Then, when we

obtain the optimum branching B0, we just need to remove the only edge (v0, v)

involving v0. The branching B = B0 \ {(v0, v)} is the final optimum branching for

graph G.

Complexity

Let Gi = (Vi, Ei) be an input graph at the i-th recursive call, ni = |Vi| and

mi = |Ei|. Finding the optimum branching Bi takes time O(ni + mi). If we are

given an optimum branching Bi+1, we can obtain B′i in time O(ni). Therefore, the
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(a) Find the minimum-cost edge entering each node other
than 1 (solid lines). If no loops are found, return.

(b) Contract all nodes in the loop in a new node, vL, and
update edge costs. Recursively apply steps (a) and (b)
until an arborescence is found.

(c) Uncontract vL and take all the edges of the loop but
one. Repeat until there are no more edges to uncontract.

Figure 2.3: Optimum branching algorithm.
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complexity of the OB algorithm is given by the recurrence

t(Gi) = t(Gi+1) +O(ni +mi) (2.12)

Since the number of nodes is reduced by at least one unit at each recursive call

(|Vi+1| < |Vi|) we have that

t(G) = O (n(n+m)) (2.13)

Within the multimedia phylogeny framework, the input graph G is complete, i.e.

m = n(n− 1) = O(n2), therefore

t(G) = O(n3) (2.14)

There exists a faster implementation for dense graphs, running in O(n2) [36].
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Chapter 3
Time-frequency audio analysis

In signal processing, time-frequency analysis is a generalization and refinement

of Fourier analysis that provides a set of techniques used for characterizing and

manipulating signals whose statistics vary in time [37], such as speech, music, im-

ages and medical signals. These techniques study the signal in time and frequency

domains simultaneously. Instead of representing the signal as a one-dimensional

function (where the domain is the set of real or integer numbers and the co-domain

is the set of real or complex numbers), time-frequency analysis represents the signal

as a two-dimensional function (where the domain is either the Cartesian plane R2

or a lattice) obtained via a time-frequency transform [38].

Time-frequency analysis is at the heart of our work on audio phylogeny. The

possibility of mapping one-dimensional audio signals into two-dimensional visual

signals allows us to study audio files and their transformations from an image

processing point of view. Within this framework, many powerful tools become

available, as computer vision techniques. The advantages resulting from the em-

ployment of this kind of approach are several. The detection of some specific audio

features which are problematic in the audio domain (e.g. pitch modifications)

becomes much more affordable in the image domain after a time-frequency trans-

formation. In addition, feature extraction techniques adopted in computer vision

allow to detect and describe some relevant keypoints in an image, thereby making

it possible to analyse data by focusing only on a limited subset of features, instead

of having to process the entire document. This results in lowering the required

computation time dramatically.

In this chapter, we review some basic Fourier analysis definitions and notations,

which are used to generate the time-frequency representations employed in the

phylogenetic analysis. Then, we discuss how audio transformations are mapped

into geometric transformations in the image domain, and how we can detect them.

19
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3.1 Short-time Fourier transform

The short-time Fourier transform (STFT), or alternatively short-term Fourier

transform, is a Fourier-related transform used to determine the sinusoidal mag-

nitude and phase content of local sections of a signal as it changes over time. In

the discrete time case, as for audio files, the procedure for computing STFTs con-

sists of dividing a signal into segments of equal length and then computing the

Fourier transform separately on each one. The fundamental building block of the

discrete STFT is therefore the discrete Fourier transform.

Let xn be a discrete-time signal with sampling rate Ts. First, we define its

discrete-time Fourier transform (DTFT) as

F{x}(ω) = X(ω) =
∞∑

n=−∞

xne
−jωn (3.1)

where ω = 2πfTs. The DTFT is a continuous function of frequency f . By sam-

pling X(ω) at the points f = k/NTs, k = 0, . . . , N − 1, we obtain the discrete

Fourier transform (DFT), which is defined by the coefficients Xk = X(k/NTs)

and represent the most important method of modern Fourier analysis [39].

For a discrete-time signal xn of finite length N , its DFT is defined as [40]

Xk =
N−1∑
n=0

xnW
kn
N , k = 0, . . . , N − 1 (3.2)

where WN = e−j
2π
N is the N -th root of unity. The inverse transform (IDFT) is

given by Equation (3.3).

xn =
1

N

N−1∑
k=0

XkW
−kn
N , n = 0, . . . , N − 1 (3.3)

The DFT converts a finite sequence of samples of a signal into an equivalent-length

sequence of samples of the signal DTFT, and it is therefore said to be a frequency

domain representation of the input sequence.

Since the DFT deals with a finite amount of data, it can be easily implemented

by numerical algorithms. Simply applying the definition in (3.2) the complexity

of the implementation of the DFT is O(N2). However, modern implementations

usually employ an efficient fast Fourier transform (FFT) algorithm [41], which

manages to reduce the complexity down to O(N logN). The most common FFT

algorithm is the Cooley-Tukey algorithm, which employs the divide and conquer

paradigm recursively breaking down a N -long DFT into two N/2-long DFTs, as
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shown in (3.4).

Xk =

N
2
−1∑

n=0

x2n W
2kn
N +

N
2
−1∑

n=0

x2n+1 W
(2n+1)k
N

=

N
2
−1∑

n=0

x2n W
2kn
N +W k

N

N
2
−1∑

n=0

x2n+1 W
2nk
N

=

N
2
−1∑

n=0

x2n W
kn
N/2 +W k

N

N
2
−1∑

n=0

x2n+1 W
nk
N/2

(3.4)

The application of this algorithm is therefore limited to power-of-two sizes.

The short-time Fourier Transform (STFT) is usually employed whenever we

need to compute the DTFT on consecutive and usually overlapping segments of

the input signal xn. This is performed applying a sliding window on xn. The usual

mathematical definition of the STFT is [42]

Xm(ω) =
∞∑

n=−∞

xn wn−mR e
−jωn (3.5)

where

xn = input signal at time n;

wn = window function (e.g. Hamming) with length M ;

Xm(ω) = DTFT of windowed signal centred at time mR;

R = hop size, in samples, between successive DTFTs.

However, in practical applications the STFT is performed on a computer using

the FFT, so both variables are discrete and quantized, yielding a complex-valued

matrix, Xm,k, that stores magnitude and phase for each point in time and frequency.

3.2 Spectrograms

A spectrogram is a visual representation of the spectrum of frequencies of a signal

as it varies over time. Let Xm,k be the complex-valued matrix storing the discrete

STFT coefficients of our input signal, xn. The spectrogram S {x} can be obtained

by computing the squared magnitude of the STFT.

S {x} (m, k) = |Xm,k|2 (3.6)

A spectrogram is therefore a non-negative real-valued function that can be visu-

alized as a three-dimensional surface, as shown in Figure 3.1a, where time and
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(a) Three-dimensional waterfall spectrogram.

(b) Two-dimensional image spectrogram.

Figure 3.1: 3D and 2D visualization of Suzanne Vega’s “Tom’s Diner” spectrogram.
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frequency are on the horizontal plane and magnitude on the vertical axis. This

representation actually corresponds to the magnitude plots of the Fourier transform

of each window laid side by side.

However, a more widely-used representation of spectrograms, which is the one

we adopted for our work, is a two-dimensional image, where the horizontal axis

represents time or the number of samples and the vertical axis reports frequency (in

some applications the two axes are switched). The magnitude for a certain time

and frequency is associated to the intensity or color of the corresponding pixel.

Since we are considering audio signals, the magnitude values, as is customary, are

reported in logarithmic scale.

In Figure 3.1 we can see the spectrogram of the first seconds of Suzanne

Vega’s “Tom’s Diner”, visualized in both three-dimensional (Figure 3.1a) and two-

dimensional (Figure 3.1b) frames. The image representation is particularly useful

for sound and music analysts, as it allows to visually inspect an audio track and

highlight some specific features that would be otherwise invisible with the wave-

form view. For example, in Figure 3.1b we can see a high-energy spike at around

0.6 seconds, rather uniform at all frequencies. This is due to the presence of an

“S” consonant in the singing, whose sound indeed resembles a white noise. In the

lower part of the spectrogram (below 5 kHz) instead, we can see the harmonics of

voiced sounds (vowels), visualized as parallel lines at regular frequency intervals.

3.2.1 Generation parameters

When a spectrogram is created, its appearance strongly depends on a set of pa-

rameters, which must be tuned according to the needs of the specific application.

Time windowing

The length of the sliding window employed for the STFT computation affects

the time and frequency resolution of the resulting spectrogram. A wide window

gives better frequency resolution but poor time resolution, and vice versa. This

uncertainty is known in signal processing as the Gabor limit and it represents a

property of signals themselves, in the same way as the Heisenberg’s uncertainty

principle for quantum systems. In fact, if the standard deviations of the time

and frequency estimates are σt and σf respectively, then we can write the Gabor’s

uncertainty principle as follows [43].

σtσf ≥
1

4π
(3.7)
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(a) 512 samples window (12 ms). (b) 4096 samples window (93 ms).

Figure 3.2: Effects of different time windows on spectrograms.

A representation of the differences between two spectrograms obtained with

windows of different width, while keeping all other parameters fixed, is given in

Figure 3.2. As we can see, harmonics are very clearly defined in Figure 3.2a (the

one obtained with a wide window), but at the same time we lose precision on

the localization of temporal features, such as note attacks and silences, which are

better separated in Figure 3.2b.

In addition to the window width, the employed window function may signifi-

cantly affect spectrogram appearances. Despite the best time and frequency resolu-

tion are reached with a Gaussian window function, different functions may provide

better results depending on the application.

In the end, windows usually overlap each other, in order to reduce the evidence

of visual artifacts due to the windowing operation. Common values for the overlap

rate are around 0.5, but they can as well be either very close to zero (no overlap

at all) or to one.

Magnitude thresholding

In many practical applications, it is useful to apply a threshold on the magnitude

values of a spectrogram. If an audio track is very noisy or spectrally rich, some

spectral features could not be highlighted enough. This may represent an issue

for visual analyses, especially if they need to compute some robust visual features

(as it will be described later). Therefore, we select a minimum value of magnitude

below which every pixel of the spectrogram is set to zero. We can see the effects

of the thresholding operation in Figure 3.3. Only the high-energy harmonics and

few other relevant features are kept in Figure 3.3a, while most of the uniform noisy

background is discarded. In this example, as well as in the rest of our work, we
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(a) -90 dB threshold. (b) -150 dB threshold.

Figure 3.3: Effects of different magnitude thresholds on spectrograms.

apply the threshold to the logarithmic magnitude value of each pixel, that is

S ′(m, k) =

0, if 10 log10 S(m, k) < δL

S(m, k), otherwise
(3.8)

where δL is the selected low threshold, in dB.

3.2.2 Visual effects of audio transformations

From a forensic point of view, one of the most distinctive characteristics of spectro-

grams is the property of mapping certain audio transformations into well-defined

geometric transformations in the image domain. This is crucial for this work as

it allows to shift our focus from the audio domain, where very few tools are avail-

able to identify transformations, to the framework of image geometric analysis,

which can be effectively tackled by using computer vision methods. We will go

into details of computer vision spectrogram analysis in Section 3.3. In this section

we overview some of the most common transformations performed in the audio

domain discussing the related visual effects that appears in their spectrograms.

Trim and fade

One of the most common audio transformations is trim, i.e. the removal of a

certain number of samples from the leading and/or trailing part of the waveform,

in order to extract a fragment of interest from the whole track (e.g. the chorus

of a song). If an audio track is trimmed, the corresponding spectrogram results

cropped, missing a set of columns in its left and/or right side. Cropping is one
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(a) Original. (b) Fade-in (3 s).

(c) Pitch shift (two semitones up). (d) Time stretch (10% speed up).

Figure 3.4: Geometric parallels of audio transformations.

of the typical geometric transformations considered in the framework of image

phylogeny.

A somewhat similar transformation is fade, where the leading (trailing) samples

are not completely removed but rather modulated by a given increasing (decreas-

ing) function, creating a smooth opening (closing) effect. The spectrogram of a

track where a fade effect is present has the same dimensions of the original one (no

cropping) but the leftmost (rightmost) side of the image appears darker, because

of the lower energy content of the faded samples (see Figure 3.4b). Most of the

visual features are lost in the faded area (see Section 3.3.1).

Time and frequency scaling

The family of time and frequency scaling transformations consists of pitch shifting

and time stretching operations. These processes are commonly used to match the

pitches and tempos of two tracks for mixing, or to create effects such as increasing
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the range of a musical instrument.

Pitch shifting is the process of changing the pitch of an audio signal without

affecting the speed. The geometric transformation on the spectrogram is a scaling

along the frequency axis. The scale factor can be any positive value in general,

however in the field of music the smallest significant step is the semitone [44]. An

example is shown in Figure 3.4c. The visual feature highlighted by the white box

is located around 3.5 kHz, while in the original spectrogram (Figure 3.4a) it is

found around 3 kHz. The feature itself is slightly stretched along the vertical axis,

occupying a wider range of frequencies.

The dual operation is time stretching, which consists in changing the speed

or duration of a signal without affecting its pitch. The geometric transformation

on the spectrogram is itself symmetric with respect to pitch shifting, which is a

scaling along the time axis. An example is shown in Figure 3.4d. The spectrogram

is 10% shorter along the horizontal axis because the audio track has been speeded

up, resulting in a shorter duration. The highlighted feature occupies the same

frequency location as it does in the original spectrogram, but it starts earlier in

time and has itself a shorter duration.

3.3 Computer vision spectral analysis

As we have seen, a wide range of audio transformations can be mapped into well-

determined geometric transformations in the image domain. In order to exploit

this property in the phylogenetic analysis, we need tools to automatically extract

relevant features and estimate the geometric transformation that registers a spec-

trogram into another. This is where computer vision libraries come in handy.

Given a pair of spectrograms, the idea is first to apply a robust feature extrac-

tion technique that computes a set of keypoints and their associated descriptors for

each of the two images. Then, we match the two point sets by comparing feature

descriptors and, finally, we estimate the best geometric transformation that maps

one set into the other.

3.3.1 Feature extraction and matching

A feature is usually defined as an distinctive part of an image, as there is no

universal definition of what exactly constitutes one and it often depends on the type

of problem or application we are considering. Feature extraction and matching are

low-level image processing operations that are employed in many computer vision

algorithms and deeply affects their performance in terms of both accuracy and
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Figure 3.5: Left to right: the (sampled and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and SURF approximations thereof using
box filters. The grey regions are equal to zero [21].

computational complexity. It follows that the overall algorithm will often only be

as good as its feature extractor. In our work, we used speeded up robust features

(SURF) [21] as feature detector and descriptor.

Detection is the first step of feature extraction. As a pre-requisite, the input

image is usually smoothed by a certain kernel in a scale-space representation [45].

In fact, interest points can be found at different scales, partly because the search

for correspondences often requires to compare images where they are seen at dif-

ferent scales. Scale-space representations are generated by repeated convolutions

of an image with a smoothing kernel filter followed by sub-samplings, resulting in

a structure called image pyramid. Gaussian filters are optimal for scale-space anal-

ysis, as shown in [46]. In practice, however, they need to be sampled and cropped.

As a consequence, comparable performance can be obtained by using approxima-

tions of Gaussian kernels, allowing to reduce the computational complexity. SURF

employs square-shaped (box) filters as an approximation of Gaussian filters. In

fact, filtering an image with a square is a very fast operation if the integral image

is used:

IΣ(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (3.9)

Features are then typically detected in terms of local image derivative opera-

tions in the scale-space representation. SURF uses a detector based on the Hessian

matrix, because of its good performance in complexity and accuracy. Given a point

p = (x, y) in an image I, the Hessian matrix H(p, σ) in point p, at scale σ is

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)

Lxy(p, σ) Lyy(p, σ)

]
(3.10)

where Lxx(p, σ) is the convolution of the second-order derivative of Gaussian with

the image I in point p, at scale σ, and similarly for Lxy(p, σ) and Lyy(p, σ). Interest

points are localised in the image and over scales by applying a non-maximum

suppression to the determinant of the Hessian in a 3× 3× 3 neighbourhood. The

maxima are then interpolated in scale and image space with the method proposed
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Figure 3.6: Interest points detected by SURF on a spectrogram image.

by Brown and Lowe [47].

Once features have been detected, we need to assign a descriptor for each one

of them. The goal is to provide a unique and robust description of a feature,

which allows us to track it over multiple images. Most descriptors are computed

locally, e.g. by describing the intensity distribution of the pixels within the feature

neighbourhood. SURF feature descriptor is based on the sum of the Haar wavelet

response [48] around the keypoint.

Finally, by comparing descriptors obtained from two different images, match-

ing pairs can be found. A visual representation is shown in Figure 3.7a. Two

spectrograms have been superimposed: the original one and a modified version,

which is pitch shifted (note the misalignment of harmonics) and faded on its lead-

ing samples. The two feature sets are represented with circle and cross marks, for

the original and modified spectrogram, respectively. Note how distances between

feature pairs are higher at high frequencies. This is due to the fact that pitch

shifting causes a vertical rescaling on spectrogram pixels, and its effect is therefore

less pronounced at low frequency. In addition, it is interesting to note how features

are almost completely absent in the leftmost part of the spectrogram, where fade

was applied.

However, some wrong matches may be present, as we can see in Figure 3.7a

where some feature pairs are linked by non-vertical lines. Keypoints generating

wrong matches are called outliers, and we will see how it is possible to get rid of

them in Section 3.3.2, by using RANSAC algorithm.
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(a) Before RANSAC. (b) After RANSAC.

Figure 3.7: Feature matching in two misaligned spectrograms. Note the absence
of wrong matches after the application of RANSAC algorithm.

3.3.2 Geometric transformation estimation

A geometric transformation is a bijective function between sets of points, and it can

be classified according to the geometric properties it preserves (see Appendix A.3).

Listed in descending order of generality, we have [49]:

1. Projectivity, preserving collinearity;

2. Affinity, preserving parallelism;

3. Similarity, preserving angles and ratios between distances;

4. Isometry, preserving angles and distances.

In the case of spectrograms, one can easily conclude that the geometric transfor-

mations resulting from the mapping of audio transformations in the image domain

are affinities. In fact, we have already seen how time and pitch scaling operations

can rescale the spectrogram by different scaling factors along the two axis, which

rules out similarities. On the other hand, the generality of projectivities is not

required. Formally, an affine transformation [49] is a linear map

f : m 7→ Hm (3.11)
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where H is a 3× 3 non-singular matrix with the form

H =

[
A2×2 b

0 1

]
(3.12)

and m is a point in homogeneous coordinates, which means a two-dimensional point

(x, y) represented as a three-dimensional vector (x, y, 1) (see Appendix A.2).

However, in the specific context of spectrogram analysis, we can assume H1,2 =

H2,1 = H2,3 = 0, since there are no common audio transformation that result in a

shear effect or a translation along the frequency axis, in the spectrogram domain.

Therefore, the transformation matrix is simplified as

H =

sT 0 t

0 sP 0

0 0 1

 (3.13)

where sT and sF are the time and pitch scaling factors, respectively, and t represents

the temporal misalignment between the two audio tracks, in number of spectrogram

pixels.

Given two sets of corresponding points, the geometric transformation between

them can be estimated by using a least squares optimization (see Appendix A.4).

This approach is optimal when data are reliable or affected by Gaussian noise. In

practice, however, the problem of outliers cannot be ignored, since the estimated

transformation may be corrupted to the point of being useless, even if just a single

wrong match is present. Therefore, we need a robust method that can compute the

underlying geometric transformation and, at the same time, identify and remove

outliers [49]. In computer vision, the most used algorithm for this purpose is called

Random Sample Consensus (RANSAC) [22].

RANSAC is a non-deterministic algorithm, in the sense that it produces a

reasonable result with an increasing probability as more iterations are allowed.

A classification strategy is employed in order to distinguish inliers from outliers:

given a transformation matrix H and a threshold ε, the pair of matched points

(mi,m
′
i) is an inlier if

‖m′i −Hm‖2 < ε (3.14)

where ‖·‖2 denotes the Euclidean norm.

Let us consider a set of K matches,M = {(mi,m
′
i) : i = 1, . . . , K}. RANSAC

algorithm performs the following steps.

1. Select a random subset M0 ⊂M of K0 < K matched points.
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2. Estimate a transformation H0 for this subset.

3. Determine the consensus set, which is the set of matched points in M that

satisfies (3.14), with respect to H0.

4. Repeat steps 1–3 until the consensus set is larger than a given threshold.

5. Estimate the final model using all members of the consensus set.

In Figure 3.7b we can see the effect of RANSAC algorithm. All wrong matches

have been correctly removed, together with a number of keypoints that, even

though they were correctly matched, have not been included in the consensus

set.

3.4 Non-reversible audio transformations

In conclusion to this chapter, we take in consideration some other effects of audio

transformations in the spectrogram domain, which cannot be modelled with geo-

metric transformations but are essential for our phylogeny work because of their

non-reversible nature.

3.4.1 Quality decay due to scaling operations

We have seen that in the spectrogram domain time and pitch scaling operations are

mapped into horizontal and vertical rescaling, respectively. If this were the only

effect, then these operations would be perfectly reversible. In other words, applying

a pitch shift of p semitones up followed by a shift of p semitones down would

result in the original track; similarly, the same would happen for time stretches. In

phylogenetic terms, this means that the dissimilarity is symmetric (see Section 2.2).

Actually, in practical situations this is not verified. These operations involve

in fact a progressive decay of the track quality, as they are implemented by using

intrinsically lossy operations, such as the STFT [50]. This is vital for a phylogenetic

analysis, as it brings a certain asymmetry in the dissimilarity measurements which

permits a correct estimation of a parent-child relationship. In Figure 3.8 we can

see a comparison between an original track (Figure 3.8a) and a modified version

of it, subject to two equal and opposite pitch shifts (Figure 3.8b). Note how the

second spectrogram appears overall darker, due to the irreversible loss of spectral

components. The effect is more evident in Figure 3.8c, where we report the absolute

difference of the two spectrograms. As we can see, the residual is rather uniformly

distributed all over the image, except for silences (dark vertical lines).



3.4. NON-REVERSIBLE AUDIO TRANSFORMATIONS 33

(a) Original.

(b) Two equal and opposite pitch shifts.

(c) Residual.

Figure 3.8: Spectral decay due to scaling operations (in this case, two equal and
opposite pitch shifts).
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3.4.2 Perceptual coding artifacts

Perceptual coding is used to compress digital audio signals by removing redundant

information that is not perceived in most cases by human hearing. The MPEG-

1/2 Audio Layer III, more commonly referred to as MP3, is nowadays one of

the most popular audio coder and therefore we must take it into consideration

in an audio phylogeny framework. Once again, time-frequency representation is

extremely useful since MP3 compression is designed to be perceptually almost

indistinguishable from the uncompressed track, but it introduces some obvious

artifacts in the spectrogram.

The most typical and visible effect of mp3 compression is a low-pass filtering,

with a steep transition band at around 15-16 kHz. At low frequency though,

the spectrogram appears rather unaltered. An example is shown in Figure 3.9.

Another frequent effect we noticed is the appearance of horizontal lines, mostly at

high frequency, which is probably due to the frequency quantization performed by

the mp3 encoder. Even though these artifacts are often difficult to detect by visual

inspection, it turned out that they can be easily identified by simple gradient-

based algorithm, as we are going to discuss in Chapter 4 where we present our

audio phylogeny solution.
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(a) Original.

(b) MP3 compression.

(c) Residual.

Figure 3.9: MP3 compression artifacts. LAME encoder has been used, with quality
factor q = 4.
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Chapter 4
Audio phylogeny algorithm

In this chapter we formalize our solution to the audio phylogeny problem, providing

a detailed description of the devised algorithm. From now on, let us assume we

are given a set of N near-duplicate audio tracks, which constitute the input of the

algorithm. Our goal is to output a N -nodes tree representation of the input set,

depicting the phylogenetic relationships among the audio tracks.

We divide the algorithm into three functional blocks (Figure 4.1): the spec-

trogram generation block, in which the input track set is analysed in order to

calibrate the algorithm parameters and the spectrograms are generated; the dis-

similarity computation block, in which each pair of spectrograms is analysed in

order to compute its dissimilarity value; the graph pruning and tree reconstruction

block, in which some edges are eliminated from the dissimilarity graph in order to

improve the robustness and the tree reconstruction algorithm is performed.

Figure 4.1: Audio phylogeny algorithm: main blocks.

4.1 Spectrogram generation and parameters

The first block in the algorithm pipeline performs a preprocessing of the input for

the dissimilarity computation block. This consists in converting each audio track

into a 2-D time-frequency representation. As we have seen in Section 3.2.1, how-

ever, the visual appearance of a spectrogram depends on its generation parameters,

which must therefore be accurately tuned and constant for all the tracks in the in-

put set. A wrong configuration would make spectrograms hardly comparable and

37



38 CHAPTER 4. AUDIO PHYLOGENY ALGORITHM

the related dissimilarities would be meaningless. Note also that these parameters

can be adapted to the input dataset, instead of being fixed.

4.1.1 Time windowing

For what concerns the window parameters, a fixed approach has been adopted. The

window length is set to 4096 samples, corresponding to about 93 ms for audio tracks

sampled at 44.1 kHz. We came to this decision by evaluating a trade-off between

the number of features detected and the overall computational complexity. In fact,

narrower windows result in a higher resolution along the horizontal dimension

of the image, usually allowing the feature detector to identify a greater number

of keypoints. On the other hand, the computational time required to process

large images and additional features is proportionally higher. Moreover, having

an excessively high number of keypoints available is not necessarily beneficial,

since the robustness of the estimated geometric transformation may be affected.

However, different window sizes may provide better results for certain kinds of

input audio tracks. For instance, there might be some specific spectral features

which are detectable only above a minimum resolution value. For this reason,

future developments could employ an adaptive choice of the window size or even

adopt a multi-resolution approach, performing a parallel analysis over multiple

spectrogram pairs realized with different window sizes.

In Table 4.1 we report all fixed parameters used for spectrograms realization.

Parameter Value
Window length 4096 samples
Window function Hamming [13]
Overlap 0.75 [13]
Number of DFT points 4096

Table 4.1: Spectrogram fixed parameters.

4.1.2 Magnitude thresholding

The approach we adopted about the spectrogram magnitude threshold is adaptive,

in the sense that we perform a preprocessing of the input tracks in order to find the

optimal parameter value. This choice is due to the fact that the threshold value

does not affect the computational complexity, since the spectrogram dimension

remains the same, but it determines the number of detected spectral features.

Preprocessing for threshold calibration consists in the following procedure. A

set of magnitude threshold values is taken into consideration, ranging from τLmin
to
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Figure 4.2: Magnitude threshold versus the number of detected features for each
second of audio track.

τLmax with step ∆δL. In our experiments, we used τLmin
= −130 dB, τLmin

= −70

dB and ∆δL = 3 dB. Then, for each δL, spectrograms of the N input tracks are

generated with the current threshold value and a feature detection is performed.

The number of feature detected is normalized to the track length, yielding the

feature-per-second measure. For each threshold value, we store the average and

minimum number of feature per second detected in the N spectrograms. An ex-

ample of results is shown in Figure 4.2, where N = 50 near-duplicate audio tracks

have been processed. Finally, the threshold calibration function selects δL max-

imizing the number of detected features. It is possible to choose to maximise

either the average or minimum value. In our experiments we chose to maximise

the minimum value, since we prefer to guarantee the highest possible number of

features detected in the worst case. However, as we can see in Figure 4.2, the two

approaches provide similar results for the threshold value.

4.1.3 Spectrogram generation

Once the minimum magnitude threshold is set, the algorithm is ready to generate

the time-frequency representations. Given a track x from the input set1, the related

1If an input track is stereo, then it is first converted to mono.
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spectrogram S is computed through the STFT as in Equation (3.6). The result is

then expressed in logarithmic scale.

SdB = 10 log10 (S) (4.1)

At this point, the minimum magnitude threshold δL is applied. Since we want

to format spectrograms as gray-scale images, though, we also need a maximum

threshold, δH . If its value is sufficiently high (0 dB in our experiments), however,

the number of saturated pixel is usually very low and feature detection is not

affected.

S ′ (u, v) =


δL, if S (u, v) < δL

δH , if S (u, v) > δH

S (u, v) , otherwise

(4.2)

Finally, the image I is generated as

I (u, v) =

⌊
S ′ (u, v)− δL
δH − δL

·
(
2b − 1

)⌋
(4.3)

where b is the number of bits per pixel (8 in our experiments). Once the N

spectrogram images have been generated, every image pair (Ii, Ij), i = 1, . . . , N ,

j = 1, . . . , N , i 6= j, is passed to the dissimilarity computation block.

4.2 Dissimilarity computation

Given a spectrogram pair, (Ii, Ij), the dissimilarity block has the task of computing

the related dissimilarity value, di,j, which is then memorized in an N ×N dissim-

ilarity matrix, M . This is done by estimating the best transformation that maps

Ii into Ij’s domain and evaluating the difference between Ij and the transformed

version of Ii, as discussed in Section 2.2.1.

Let us take, for example, the spectrogram pair reported in Figure 4.3. In this

case, Ii (Figure 4.3a) is the spectrogram of the original track and Ij (Figure 4.3b)

is a near-duplicate, obtained by MP3 compression, pitch shifting, fade-in and trim

operations.

First, the algorithm extracts keypoints from both images, (Ki,Kj), and matches

them by using the related descriptors (Section 3.3.1). The result is shown in

Figure 4.4a, where the spectrogram aspect ratios have been changed in order to

better visualize matches. Then, the geometric transformation mapping keypoints

from Ii to Ij is robustly estimated by using the RANSAC algorithm (Section 3.3.2),
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(a) Ii, original. (b) Ij , near-duplicate.

Figure 4.3: Spectrogram pair in input to the dissimilarity block. Ii is the original
one, Ij is a near-duplicate (compression, pitch shift, fade-in, trim).

obtaining the transformation matrix H defined in (3.13).

At this point, the algorithm observes the estimated values of sT and sP . If

at least one of them is different from one (with a suitable threshold) then a time

or pitch scaling is detected. If that happens, the algorithm applies to the audio

track related to spectrogram Ii the scaling transformation specified by sT and sP ,

then it recomputes the spectrogram. We call this operation scale compensation

and indicate the new spectrogram as I(s)
i . The reasons for this compensation

are discussed in Section 3.4. In fact, if we simply register Ii to Ij according to

the estimated transformation matrix H, the dissimilarity contribution due to the

only time and pitch scaling operations will be symmetric (di,j = dj,i) because, for

instance, a pitch shift p semitones up from i to j would be undistinguishable from

a shift p semitones down from j to i. On the contrary, if we apply the scaling

transformation in the audio domain and then recompute the spectrogram, we are

able to reproduce the artifacts of the operation itself as well. This solves the

symmetry problem and makes it possible to infer the correct ancestry relationship.

Once we have the scale-compensated spectrogram I(s)
i , the algorithm goes back

to the first steps2, performing feature extraction and matching them for the second

time (Figure 4.4b). This leads to the estimation of a new geometric transformation,

H(s). Since I(s)
i is different from Ii, matched features may also change. In the

example of Figure 4.4, some new matches appear in the top left corner of the

image, while some others in the bottom left corner are lost.

Given the affine transformation matrix H(s), the algorithm warps I(s)
i into Ij,

providing the registered spectrogram I(r)
i . This registration allows to compensate

2If no scaling operation was detected, this phase is not performed.
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(a) First matching, (Ii, Ij). (b) Second matching, (I(s)i , Ij).

Figure 4.4: Matched features before and after scale compensation.

any kind of time misalignment, such as trim and/or delays between the two tracks.

The superposition of I(r)
i and Ij is shown in Figure 4.6, where we can see that

all features have been correctly aligned. In addition, gray areas indicate a perfect

superposition of the two images, while red and blue areas are due to a dominance

of I(r)
i or Ij, respectively.

Finally, the dissimilarity value di,j is computed as the point-wise mean squared

error (MSE) of the two images.

di,j = MSE
(
I(r)
i , Ij

)
(4.4)

Figure 4.5: Block diagram of spectrogram registration and dissimilarity computa-
tion processes.

Once dissimilarities have been calculated for each spectrogram pair (i, j), ma-

trix M is interpreted as a complete graph G = (V,E). This structure is passed

to the Edmonds’ optimum branching algorithm, which outputs the related mini-

mum spanning arborescence ϕ̂ = (V,E∗). Graph ϕ̂ represents our estimated audio

phylogenetic tree (Figure 4.7). However, matrix M needs some further processing
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Figure 4.6: Registered spectrogram pair, (I(r)
i , Ij). The two sets of features (circles

for Ii, crosses for Ij) are aligned. Gray areas depict a perfect superposition. Red

and blue areas indicate a dominance of I(r)
i over Ij or vice versa, respectively.
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Figure 4.7: Tree estimation from complete dissimilarity graph using optimum
branching algorithm.

before being passed to the optimum branching algorithm, and this will be the topic

of the next section.

4.3 Graph pruning

The last block at the core of our algorithm is needed in order to refine the dissimi-

larity matrix and consequently improve the performance of the tree reconstruction

algorithm. The problem here is that there still could be some pairs (i, j) such that

di,j = dj,i. As previously stated, symmetric dissimilarities tend to affect the pre-

cision of the reconstructed phylogenetic tree since some parent-child relationships

may be reversed. Such situation mainly occurs when a track undergoes only those

specific transformations that are not compensated by the dissimilarity block.

Let (Io, If ) be an image pair, where Io is the spectrogram related to the orig-

inal track and If differs from Io only by a fade effect. The estimated geometric

transformations that map Io into If and vice versa will both be identities, and

therefore

MSE
(
I(r)
o , If

)
= MSE

(
I(r)
f , Io

)
(4.5)

which implies do,f = df,o. However, assuming that no other transformations are

present (or equivalently that all other transformations have been correctly com-

pensated in the previous block) made exception for fade, the identification of the

original image between these two is a trivial task at least by human inspection. In
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fact, the intensity gradient due to the fade effect is clearly visible (Figure 3.4b), and

therefore the parent images is the one where such effect is not present. The same

arguments also apply to compression. Let us consider the example of Section 4.2,

where we have an image pair, (Ii, Ij), in which Ij differs from Ii by trim, pitch

shift, fade and compression. In Figure 4.6, the two spectrograms have been super-

imposed after the registration process and it is possible to notice the differences

due to the non-compensated operations, namely fade and compression. The red

band in the left side of the image is related to fade, while the blue artifacts in the

bottom part are related to compression. With this in mind, we can disambiguate

the symmetric dissimilarities by the following steps.

1. Detect artifacts caused by fade and compression operations.

2. Exploit detected artifacts in order to infer the correct parent-child relation-

ship direction.

3. If there is certainty (with respect to a suitable tolerance threshold) that i is

not an ancestor of j, set

di,j = +∞ (4.6)

otherwise, dissimilarity computed in the previous block is left unchanged.

Recalling that the dissimilarity matrix M , defined as M(i, j) = di,j, ∀(i, j), is

then taken as the adjacency matrix of a directed graph, setting an edge weight to

infinity implies the removal of that edge from the graph, which is usually referred

to as a pruning operation.

The following sections describe the implementation of such detection algorithms

for fade and compression, respectively.

4.3.1 Fade detection

In order to identify a fade effect, we follow a simple consideration about pixel en-

ergy distribution in the residual spectrogram. In particular, given a spectrogram

pair, we first compute the point-wise absolute difference between the two images,

obtaining the residual image, and then compare the energy content of its left and

right side. A high energy concentration on one side of the residual is a good indica-

tor of the presence of fade. If we consider the example of Section 4.3, where we have

the original spectrogram, Io, and the one affected by fade, If , and we compute the

absolute difference of the two images, we obtain the result shown in Figure 4.8.

Clearly, energy is highly concentrated on the left side of the image. Be careful

that, while the right side may seem perfectly black by visual inspection, this is



46 CHAPTER 4. AUDIO PHYLOGENY ALGORITHM

Figure 4.8: Residual spectrogram in presence of a fade effect.

not always true, because of possible registration errors and other non-compensated

transformation artifacts. In the current example, however, the right side is actually

black, because fade is the only transformation applied, and therefore the two audio

tracks are identical from fade expiration onwards.

Let (Ii, Ij) be a spectrogram pair and Ir = |Ii − Ij| the residual image. In

addition, let L and R be the sets of pixels of the image left and right halves,

respectively. The fade detection algorithm proceeds as follows.

1. Increase each pixel of Ir by ε = 2/Npx, where Npx is the total number of

pixels. In this way, if one of the two side was totally black, its energy content

is now equal to one.

2. Calculate the overall energy of the left and right halves.

EL =
∑

(u,v)∈L

Ir(u, v) (4.7)

ER =
∑

(u,v)∈R

Ir(u, v) (4.8)

3. If EL is sufficiently higher3 than ER (or vice versa) we conclude that a fade

3At least one order of magnitude.
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effect is present in the left (right) side.

4. Let F ∈ {L,R} be the image half in which fade has been detected. We define

an indicator η as follows.

η = sgn

 ∑
(u,v)∈F

Ii(u, v)− Ij(u, v)

 (4.9)

5. If η = +1, then Ii presents a higher overall energy in the spectrogram side

where fade was detected. We conclude that Ii is the parent (or more generally

an ancestor) of Ij.

If η = −1, then Ii presents a lower overall energy in the spectrogram side

where fade was detected. We conclude that Ii is a child (or more generally

a descendant) of Ij.

4.3.2 MP3 detection

The most evident features that allow us to detect compression are usually found in

high frequency. As we have seen in Section 3.4, MP3 artifacts can be characterized

as discontinuities in the average image intensity level along the frequency axis, such

as low-pass filtering steps or other line-shaped features. Therefore, it is possible

to detect them by using gradient-based algorithms. Let us consider a spectrogram

image, I(u, v), with u = 1, . . . , U , v = 1, . . . , V . We define a function pI(u) as

follows.

pI(u) =
1

V

∑
v=1,...,V

I(u, v), ∀u = 1, . . . , U (4.10)

Function pI(u) computes the average pixel intensity value for each spectrogram row

u, i.e. for each frequency band, and therefore it is possible to interpret it as a power

spectral density (PSD) estimator. In Figure 4.9a we plot pI(u) for spectrograms

obtained from an unaltered track and an MP3-encoded near-duplicate of it. As

previously stated, the two PSDs are very similar up to 12.5 kHz. For higher

frequencies, they start to slowly separate from each other, up to about 16 kHz,

where they rapidly diverge. This corresponds to the transition band of the low-

pass filtering performed by the MP3 encoder. In addition, we can see a spike at

around 19 kHz in the PSD of the compressed track, which indicates the presence

of one of those aforementioned line-shaped artifacts.

In our approach, we exploit such spectral artifacts in order to detect MP3

compression and, possibly, the correct parent-child relationship. The employed
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(a) PSD of original and compressed track.

(b) PSD gradient of residual spectrogram.

Figure 4.9: Gradient-based MP3 detection method.
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method consists of the following steps.

1. Compute the residual spectrogram, Ir = |Ii − Ij|, as for fade detection. An

example of the visual result is shown in Figure 3.9c.

2. Apply (4.10) to the residual spectrogram, obtaining function pIr , and com-

pute the gradient, ∇pIr . In Figure 4.9b we show the behaviour of ∇pIr for

the current example.

3. Compute the standard deviation, σ, of ∇pIr , and look for those frequencies

at which the function value is above a given threshold, expressed in terms

of multiples of σ. In our experiments, we required a minimum value of 5σ.

Keep in memory the frequency values (spectrogram rows) at which gradient

features have been found, ûk, k = 1, . . . , K, where K is the number of features

detected.

4. Apply (4.10) to Ii and Ij, then compute the gradients ∇pIi and ∇pIj , re-

spectively.

5. For each ûk, perform the 5σ check on ∇pIi(ûk) and ∇pIj(ûk), using the

related standard deviations. We define a score for each of the two images,

Ci and Cj, and we increment it every time we detect a gradient feature.

Eventually, we will have 0 ≤ Ci, Cj ≤ K.

6. If Ci+∆C < Cj, where ∆C is a constant opportunely tuned, then Ii presents

sufficiently less artifacts than Ij to state that track i is an ancestor of j.

In our experiments, we set ∆C = 1, so that a gap of at least two artifacts

is required to state a parent-child relationship. In our example, Ii presents

no artifacts, thus Ci = 0, and Ij has two, yielding Cj = 2. Therefore we

correctly state that i is an ancestor of j.

If Ci + ∆C > Cj, then Ii presents sufficiently more artifacts than Ij to state

that track i is a descendant of j.

In all other cases, we do not take any decision and dissimilarity computed in

the previous block is left unchanged.
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Chapter 5
Experiments and results

In this chapter we describe our experimental scenario, including all details about

the creation of the dataset we used for simulations and the employed evaluation

metrics. Then, we comment on the obtained results, also considering performance

comparison against the state-of-the-art [27].

5.1 Dataset generation

The proposed algorithm has been validated on a dataset built by generating mul-

tiple near-duplicate trees from tracks of different genres and length. Specifically,

we used five different uncompressed and original-quality audio excerpts as roots

for our generated phylogenetic trees.

1. Excerpt from “Ludwig Thuille: Piano Sextet in B-flat major, Op. 6 - III ”1

(26 s).

2. Electric guitar blues riff2 (34 s).

3. Hand-crank music box playing Amazing Grace3 (31 s).

4. Male voice reading verses from Edgar Allan Poe’s The Raven4 (41 s).

5. MIDI loop from Super Mario5 (15 s).

Starting from these tracks, near-duplicate trees have been generated by apply-

ing random transformations to the root, thus generating the first descendant, and

1https://www.jamendo.com/track/146588/
2https://www.freesound.org/s/30021/
3https://www.freesound.org/s/180384/
4https://www.freesound.org/s/189467/
5https://www.freesound.org/s/179684/
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then iterating the process randomly selecting the parent of the incoming child,

until the desired number of nodes is reached. The set of considered audio trans-

formations was implemented in MATLAB language and consists of the following

operations.

1. Trim, applied to the leading or trailing samples, with a maximum length of

3 seconds.

2. Fade, applied to the leading (fade-in) or trailing (fade-out) samples, with a

maximum length of 3 seconds.

3. Time stretching, speed-up or slow-down up to 10%.

4. Pitch shifting, one semitone up or down.

5. MP3 coding, using the LAME6 encoder, with quality factor q ∈ {2, 3, 4}.

Both time stretching and pitch shifting operations were implemented by using

a MATLAB implementation of a phase vocoder [50]. All transformations and

related parameters are selected randomly with uniform distribution during the

near-duplicate generation process.

From these premises, we constructed different phylogenetic trees according to

two strategies:

� single transformation dataset - for each track, we generated 10 trees of 50

nodes each, with a single audio transformation per edge.

� multiple transformations dataset - for each track we generated additional 10

trees of 50 nodes each with multiple transformations per edge (a random

number up to a maximum of four).

Our dataset thus consists of 100 phylogenetic trees for a total amount of 5,000

audio excerpts.

5.2 Evaluation metrics

During the validation phase of a phylogenetic analysis algorithm, a suitable eval-

uation system is needed in order to quantify how the reconstructed structure is

close to the actual one. For this purpose, Dias et al. [1, 3] developed four metrics,

namely Root, Edges, Leaves and Ancestry, for scenarios in which the ground-truth

is available. Each of these metrics evaluates a different set of properties of the

6http://lame.sourceforge.net/
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estimated tree, and together they provide a picture of the overall behaviour of the

reconstruction algorithm. This evaluation system has become a standard for most

of the studies on multimedia phylogeny, since it allows to produce a set of quanti-

tative results which are both meaningful for the evaluation phase and comparable

to those of the related work in the literature.

Given a reconstructed phylogenetic tree ϕ̂ = (V, Ê) an its correspondent ground

truth tree ϕ = (V,E), with |V | = n, the metrics are defined as follows.

Root

The Root metric simply compares the root of ϕ to that of ϕ̂, returning 1 if they

match and 0 otherwise.

Root(ϕ, ϕ̂) =

1, if root(ϕ) = root(ϕ̂)

0, if root(ϕ) 6= root(ϕ̂)
(5.1)

Edges

The Edges metric evaluates the accuracy of the estimate of edge connections. If

an edge connecting two nodes in ϕ̂ also appears in ϕ, then it is considered to be

correct. The percentage of correct edges is calculated by taking the cardinality of

the intersection E ∩ Ê and dividing it by the number of edges of the ground-truth

tree, |E| = n− 1.

Edges(ϕ, ϕ̂) =
|E ∩ Ê|
n− 1

(5.2)

Leaves

The Leaves metric evaluates the accuracy of the identification of those nodes with-

out descendants (leaves of the tree). Let L and L̂ be the leaves of ϕ and ϕ̂,

respectively. The metric is expressed as the ratio between the cardinalities of the

intersection L ∩ L̂, representing the leaf nodes of ϕ correctly detected in ϕ̂, and

their union.

Leaves(ϕ, ϕ̂) =
|L ∩ L̂|
|L ∪ L̂|

(5.3)

Ancestry

The Ancestry metric evaluates the accuracy of the estimate of ancestry relation-

ships. Specifically, for each node in the tree the metric counts how many of its an-

cestors (parent, grandparent, great grandparent, and so on up to the root) in ϕ are

correctly found in ϕ̂. Formally, given a tree G = (V,E) its ancestry A is defined as
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A = {(x, y) : ‘y is a descendant of x’,∀x, y ∈ V }. It follows from this that E ⊆ A.

For example, considering the simple graph G = ({v1, v2, v3} , {(v1, v2), (v2, v3)}),
i.e. a chain of tree nodes, its ancestry would be {(v1, v2), (v1, v3), (v2, v3)}. Let A

and Â be the ancestries of ϕ and ϕ̂, respectively. The expression of the Ancestry

metric is analogous to that of the Leaves metric.

Ancestry(ϕ, ϕ̂) =
|A ∩ Â|
|A ∪ Â|

(5.4)

Forest metrics

For the evaluation of phylogenetic forests the same metrics are considered, but

they are expressed by a more general formulation:

Metric(F, F̂ ) =
|S ∩ Ŝ|
|S ∪ Ŝ|

(5.5)

where Metric ∈ {Root, Edges, Leaves, Ancestry}, F is the ground-truth forest, F̂

is the estimated forest, and S ∈ {R,E,L,A} are the interest features.

5.3 Algorithm validation

The proposed algorithm was implemented in MATLAB language (release R2017a).

In particular, we employed the functions provided by the Computer Vision System

Toolbox to perform feature detection, description and matching (using SURF), to

estimate the geometric transformation with a robust outlier removal, and to warp

images according to the estimated transformation. A phase vocoder implemen-

tation was used to perform the time and frequency scaling compensation in the

dissimilarity block.

The first experiment we performed consisted in reconstructing trees from our

generated dataset and evaluating the accuracy of the estimate with respect to the

ground-truth. Multiple simulations were run for different sizes of the tree, with

the number of nodes K varying from 10 to 50. This was implemented by randomly

pruning a set of 50 − K nodes from the dataset trees, starting from the leaves

and moving upwards. The algorithm received in input K unordered tracks with

no additional information and returned the estimated phylogenetic tree, which was

then evaluated by means of the Root, Edges, Leaves and Ancestry metrics. This was

repeated for each tree in the dataset. In addition, we conducted the experiment

separately on the single and multiple transformations datasets, in order to find
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out whether the algorithm encountered difficulties on one case with respect to the

other. In Figure 5.1a and Figure 5.1b we show the results obtained for the single

and multiple transformations datasets, respectively. As we can see, except for the

smallest tree size (K = 10) in which the single-transformation dataset seems to

provide slightly better results, the two scenarios are comparable. In particular,

the Root metric is stable at 98% in the first case, and a bit more noisy in the

second one, while remaining at around 96% on average. These results show that

the algorithm is not particularly strained by the presence of a higher number of

processing operations. Also, such results are quantitatively compatible to those

obtained in the framework of image phylogeny [3].

In a practical case, however, it is reasonable to assume that only a subset of

the nodes/tracks is available to the analyst. Therefore, the underlying dissimilarity

graph will have some empty spaces due to the missing nodes. In order to validate

the proposed solution in this kind of context, we devised an additional experiment

consisting in testing our algorithm on trees where some nodes/tracks were randomly

removed. The ground-truth of these trees was then generated by connecting all

the nodes without a parent to their closest ancestor (Figure 5.2). This is the

most sensible result the algorithm may provide in cases where some nodes are

missing. For instance, if we consider a three-node chain (grandparent, parent and

child) and assume we are missing the parent node, the most sensible outcome is to

state that the child node is a direct descendant of the grandparent node. In our

experiments, however, we always preserved the root node. With reference to the

same experiment in image phylogeny [1], performance are expected to decrease as

we increase the number of removed nodes. We conducted this test with up to 25

removed nodes (half the size of the whole tree). Results are reported in Figure 5.3.

As expected, we observe an overall decrease of about 10% for the Edges, Leaves

and Ancestry metrics. Root metric, instead, does not present a decreasing trend,

remaining approximately constant at around 95%.

5.4 Comparison against state-of-the-art

In addition to assessing accuracy results of our method under different conditions,

we also performed a comparison against the baseline method presented in [27].

Specifically, we run both algorithms on 40 trees of 10 nodes each, obtained using

the single transformation strategy for dataset generation.

The algorithm in [27] performs a brute-force search on a candidate set of audio

transformations and parameters. We included in the candidate set all editing
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(a) Single transformation per edge.

(b) Multiple transformatione per edge (up to four).

Figure 5.1: R-E-L-A metrics for different tree sizes, from 10 to 50 nodes.
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Figure 5.2: Example of correct tree reconstruction in case some nodes are missing
in the available near-duplicate set.

Figure 5.3: R-E-L-A metrics for increasing numbers of removed nodes (root pre-
serving).
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Root Edges Leaves Ancestry Time
baseline [27] 97.5% 71.7% 78.3% 77.5% 436 s
proposed 97.5% 76.1% 81.4% 79.3% 203 s

Table 5.1: Comparison against baseline solution [27]. The proposed solution
achieves higher accuracy with average processing time for a 10 nodes tree that
is less than a half.

operations actually used to generate the dataset. As parameters for the brute-

force grid search, we selected three candidates for compression (i.e., the ones used

for dataset generation), 20 for fading (i.e., uniformly sampling 0 to 3 seconds at

either heading or tailing samples of the track), 20 for time stretching (uniformly

sampling the range used for dataset generation) and 8 for pitch shifting (from -4

to +4 semitones). We implemented the fastest version of [27], which only search

for a single transformation from node to node coherently with the used dataset.

Results are reported in Table 5.1. It is possible to notice that the proposed

approach always performs slightly better (or on par) with the baseline. Moreover,

we also considered the average processing time needed to process a tree with MAT-

LAB implementations of both algorithms run on a MacBook Pro equipped with a

2.2 Ghz Intel Core i7, 8 GB or RAM and SSD disk. This test confirms that our

solution is more efficient, being able to process each tree in less than half the time

needed by [27].



Chapter 6
Conclusions and future work

In this thesis we presented an overview on the field of multimedia phylogeny, start-

ing from the basic definitions and then presenting some proposed solutions related

to the dissimilarity computation for different types of documents (images, videos

and audio tracks) and the reconstruction of the phylogenetic trees associated to

the processing history of a set of near-duplicate documents. Then, we discussed

the application of computer vision techniques to time-frequency representations

of audio tracks, with a special focus on how audio modifications are mapped into

geometric transformations in the image domain and how it is possible to detect

and classify them. From these considerations, we proposed a solution to the prob-

lem of the phylogenetic reconstruction of digital audio tracks based on a computer

vision analysis of spectrograms. Given a set of near-duplicate audio tracks, the

proposed algorithm is able to reconstruct causal relationships among all audio ex-

cerpts, enabling a precise estimation of the underlying structure. Differently from

state-of-the-art techniques [27], our approach do not involve a brute-force search

of possible audio editing operations applied to audio tracks. Moreover, the algo-

rithm do not require any prior information about the specific set of candidate audio

transformations.

The proposed solution was validated on a wide dataset of near-duplicate trees,

built starting from audio excerpts of different genres. Performed experiments pro-

vided results that are comparable to those obtained in the related work within the

framework of image phylogeny [1]. In comparison to the audio phylogeny state-

of-the-art solution [27], instead, our approach performs overall better and with a

shorter computation time.

Time-frequency analysis with computer vision techniques turned out to be an

effective approach for audio phylogeny. However, a number of improvements re-

main possible. First, better results may be achieved with an improved management
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of compression artifacts. The proposed approach, in fact, can effectively deal with

coding operations applied to an uncompressed track, but it has difficulty in in-

ferring parent-child relationships in presence of multiple compressions. Moreover,

future studies may be focused on spectrogram effects due to additional audio mod-

ifications, in order to expand the range of transformations taken into account,

namely equalization, restoration techniques, ambient effects like reverb and so on.

Furthermore, the applicability of computer vision analysis on spectrograms can

potentially extend from audio to any kind of one-dimensional signal. For instance,

signal synchronization in distributed wireless sensors or biomedical devices can be

as well performed by estimating the geometric transformation in the time-frequency

representation domain. Similar considerations apply to signal authentication and

restoration, where spectrograms combined with computer vision techniques may

provide a robust comparative and analytical tool. Future work, therefore, shall

explore those scenarios where image processing tools may provide better results

than methods operating in the one-dimensional domain, thus opening the way to

a new range of applications for the computer vision field.



Appendix A
Projective geometry

This appendix outlines a number of concepts of projective geometry useful for

understanding the geometric transformation estimation performed in the proposed

method.

A.1 Perspective projection

Definition 5. Perspective projection maps a point M in 3-D space on a plane I
by intersecting the line passing through M and C – center of projection – with I.

Figure A.1: Perspective projection of a point M on a plane R into a point m on
the image plane I.

Let R be a plane in 3-D space. All the points of R are mapped into points on

the image plane I, except for a line f that is mapped to the infinite. Symmetri-

cally, points of R lying at the infinite are mapped to the line h of I. From these

considerations it is possible to derive the definition of projective space.
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Definition 6. The projective space P2 is defined as the union of the real plane R2

with the line at the infinite l∞:

P2 = R2 ∪ l∞ (A.1)

Similarly, one can define the projective space Pn, where points at the infinite lie

on an n-dimensional hyperplane.

In projective spaces two parallel lines share a common point at the infinite. Con-

sequently, there is a point-line dualism:

� two points identify a line (passing through both);

� two lines identify a point (finite or at the infinite).

A.2 Homogeneous coordinates

Let us consider the Cartesian space R2 and two lines defined by the standard form

equations

a x + b y + c = 0

a′ x + b′ y + c′ = 0
(A.2)

where parameters a, b, c, a′, b′, c′ ∈ R. The common points between the two lines

can be found solving the linear system{
a x + b y = −c
a′ x + b′ y = −c′

(A.3)

which can be written in matrix notation as[
a b

a′ b′

] [
x

y

]
=

[
−c
−c′

]
(A.4)

A

[
x

y

]
=

[
−c
−c′

]
(A.5)

Equation (A.5) defines a linear system of two equations in two unknowns: in case

a solution exists, it is possible to write it as[
x

y

]
= A−1

[
−c
−c′

]
. (A.6)
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The inverse A−1 can be written as

A−1 =
1

det(A)
adj(A) =

1

det(A)

[
b′ −b
−a′ a

]

providing the solution[
x

y

]
=

1

det(A)

[
b′ −b
−a′ a

] [
−c
−c′

]
=

1

det(A)

[
b c′ − b′ c
a′ c− a c′

]

The resulting coordinates are

x =
b c′ − b′ c
det(A)

=

det

([
b c

b′ c′

])

det

([
a b

a′ b′

]) =
α

γ
(A.7)

and

y =
a′ c− a c′

det(A)
=

det

([
c a

c′ a′

])

det

([
a b

a′ b′

]) =
β

γ
(A.8)

where α, β, γ are real numbers. One can notice that all the possible outcomes of

the initial system can be grouped into three conditions identified by the values of

α, β and γ.

1. γ 6= 0 and α, β ∈ R ⇒ the system has a solution, i.e., the two lines has a

unique intersection point (x, y).

2. γ = α = β = 0 ⇒ the two lines are the same, and therefore, the number of

intersection points is infinite.

3. γ 6= 0 and α 6= 0 ∨ β 6= 0⇒ the two lines are parallel since the slopes r and r′

correspond. The intersection point lies at the infinite and the coordinates x, y

cannot be expressed by equations (A.7) and (A.8). Therefore, in Cartesian

space R2, the system has no solutions, but in projective space P2 it is possible

to state that the intersection point is identified by parameters α, β and γ = 0.

From these premises, it is possible to represent the point m ∈ P2 using the triplet

m = [ α β γ ]T (A.9)
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This representation is called homogeneous coordinates. From the definition, it is

possible to notice that:

γ 6= 0 ⇒ the point is finite and corresponds to (x, y) in R2;

γ = 0 ⇒ the point lies at the infinite and has no correspondence in R2;

The triplet (0, 0, 0) is considered not valid since it corresponds to infinite points

in R2. When γ 6= 0, conversion from homogeneous to Cartesian coordinates is

possible.

m =

 α

β

γ

 ⇒ m̃ =

[
α/γ

β/γ

]
=

[
x

y

]
(A.10)

Note that all the homogeneous coordinate vectors are defined with respect to a

scale factor, i.e., m and km are the same point. This make the inverse conversion

from Cartesian to homogeneous coordinates quite simple:

m̃ =

[
x

y

]
⇒ m =

 x

y

1

 (A.11)

A.3 Projective transformations

Homogeneous coordinates allow projective transformations (non-linear in Cartesian

space) to be easily represented by a matrix.

Definition 7. A projective transformation or projectivity f is a linear function

in homogeneous coordinates

f : Pn → Pn

defined by the non-singular (n+ 1)× (n+ 1) matrix H such that

f(m) : m 7→ Hm

Projectivities have the following properties:

� they preserve collinearity;

� they form a group, f ∈ GP ;

� similarly for points, H and λ H (with λ ∈ R, λ 6= 0) are the same.
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Definition 8. An affine transformation or affinity f is projectivity that maps real

points into real points and ideal points into ideal points, i.e.,

f(m) : m 7→ Hm with H =

 An×n b

0T 1


Definition 9. A similarity f is an affine transform that preserves the absolute

conic Ω∞ = {x ∈ Pn : x2
1 + x2

2 + . . .+ x2
n = 0 ∧ xn+1 = 0}, i.e.

∀x ∈ Ω∞, Hx ∈ Ω∞

Similarities can be defined by a matrix H such that

H =

 sRn×n t

0T 1


where R is an orthogonal matrix.

In Cartesian coordinates, similarity operates as the composition of rescaling, rota-

tion and translation, i.e.,

Hx =

 sRn×n t

0T 1

x ⇒ sR x̃ + t

In case s = 1,the transformation is called rigid transformation or Euclidean.

The different types of transformations in P2 and related properties are summarized

in Table A.1.

A.4 Homography estimation

A transformation mapping points in homogeneous coordinates from a plane to

another is called an homography. Formally, it corresponds to a projective transfor-

mation in P2, i.e., it maps m into m′ through a 3× 3 non-singular matrix H,

m′ =

 u′

v′

1

 '
 H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3


 u

v

1

 = Hm (A.12)
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Transformation d.o.f. Matrix Distortion Preserves

Projectivity 8

 H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3


collinearity

Affinity 6

 H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

0 0 1


parallelism

Similarity 4

 sRn×n t

0T 1


angles

Euclidean 3

 Rn×n t

0T 1

 distances
and lengths

Table A.1: Transforms on P2

where ' denotes here an equality with respect to a scale factor. For this reason

the degree of freedom of H is 8, despite having 9 components.

Let us consider the case of two sets of matched points, where we have mi

matched to m′i, ∀i. In absence of wrong matches, it is possible to write (A.12) for

every pair of points, m′i ' Hmi. Using the properties of the vector product, one

can write

m′i ×Hmi = [m′i]×Hmi = 02×1 (A.13)

where [m′i]× is a 3× 3 antisymmetric matrix defined as follows.

[m′i]× =

 0 −1 v′

1 0 −u′

−v′ u′ 0

 (A.14)

Applying the vec(·) operator and since vec(x) = x, where x ∈ Rn is a column

vector, it is possible to write

vec ([m′i]×Hmi) = 0. (A.15)

Let us consider now the following property of the Kronecker product, which is
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denoted here by ⊗.

vec (ABC) =
(
CT ⊗ A

)
vec(B) (A.16)

Applying (A.16) to (A.15) we have

vec ([m′i]×Hmi) =
(
mT

i ⊗ [m′i]×
)
vec(H) = 0 (A.17)

The matrix mT
i ⊗ [m′i]× (which is sized 3 × 9) has rank equal to 2. The system

in (A.17) therefore includes two equations in 8 unknowns. Since every couple of

points brings two equations and we have 8 d.o.f. in H, we need at least n = 4

matching points to create a system of 8 equations in 8 unknowns
mT

1 ⊗ [m′1]×

mT
1 ⊗ [m′2]×

...

mT
n ⊗ [m′n]×

 vec(H) = A vec(H) = 0 (A.18)

In practical cases, however, the system is usually overdetermined for robust-

ness issues, i.e., the number of equations to be satisfied is much higher than the

required minimum. An overdetermined system can be solved by looking for vec-

tors of the kernel of A. A possible solution consists in applying the singular value

decomposition (SVD), obtaining

A = UDV T (A.19)

and selecting the last rows of V T , which form a basis of ker(A). In the case of

homography estimation, the matrix in (A.18) is 2n×9 and has rank equal to 8. The

rank theorem implies that dim( ker(A) ) = 1. Therefore, the solution is provided

by the last row of V T .
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