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Abstract

HIV mutates rapidly and may develop resistance to specific drug therapies. There
is no general agreement on how to optimally schedule the treatments for mitigating
the effects of mutations. We examine different control strategies applied to two
positive switched systems models of HIV under therapy. The smallest model of
the two takes into account only four viral populations, whereas the greatest one
also accounts for other immune cells involved in HIV infection. Simulation results
show that model-based control approaches may outperform the common clinical
treatment recommendations.
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Chapter 1

Introduction

In this thesis we consider positive switched systems, which can be effectively used to
model the dynamics of Human Immunodeficiency Virus (HIV) under therapy. We
present two models of HIV under treatment. Highly Active Antiretroviral Therapies
(HAARTs) are generally used to contrast HIV. They are constituted by treatments
obtained by using different classes of medications. These treatments are more suc-
cessful than the ARTs which only use one class of medication. However, they can
still prove unsuccessful. We say that a HAART is not successful if it is unable to
maintain HIV RNA load below a certain viral load level. Viral rebound is associated
with the problem of resistance-conferring mutations within the viral genome and
its result is that the mutated viruses are less susceptible to one or more therapies
than the unaltered ones. This is caused by the reverse-transcription process of viral
RNA into DNA, which can present errors.
Our purpose is to investigate the stabilizability problem of the two presented mod-
els of HIV under therapy and to find the best switching rule in order to maintain
the viral load at low levels as long as possible. Thus, we especially investigate the
Optimal control problem and the Suboptimal one for linear p.s.s..
In Chapter 2 we briefly explain the Immune System, and in particular we focus our
attention on the cells involved in HIV disease. Successively, we describe the HIV
life cycle and the HAARTs.
In Chapter 3 we illustrate a model of HIV without therapy, and the two models of
HIV under therapy used throughout this thesis. The first one takes into account
only four viral strains, while the second one takes into consideration sixteen geno-
types and two types of immune cells that are infected by HIV (T-helper cells and
macrophages). These infected cells can be infective, too. We then simulate the two
models, applying commonly used treatments.
In Chapter 4 we give some information about stability of continuous-time p.s.s..
Moreover, we shortly investigate the stability of the two models of HIV under treat-
ments introduced in Chapter 2. We then briefly investigate the stability of the two
linear models of HIV under treatment.
In Chapter 5 we give some information about the stabilizability of continuous-time
p.s.s., especially focusing on using the Linear Copositive Control Lyapunov functions
and on the Lyapunov Metzler Inequalities (LMIs). Furthermore, we investigate the
stabilizability of the two linear models of HIV under therapy introduced in Chapter
2.
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2 CHAPTER 1. INTRODUCTION

In Chapter 6 we expose the Optimal and Suboptimal problem for p.s.s.. In the
case of the small model, both controls are directly applied to it. In the case of the
great model, we suppose that we can’t have the full state vector at each decision
time. Thus, we construct a Luenberger observer that takes as inputs signals which
are outputs of the great nonlinear model. Having this information, we obtain the
estimation of the state of linearised model. Having the estimate of the state, we
compute a Suboptimal Control and apply it to the nonlinear model.
Moreover, we introduce the Model Predictive Control approach, a model-based
approach which outperform the common clinical treatment recommendations. In
Chapter 7 we give the conclusions of the thesis.



Chapter 2

The Immune System and the
HIV Model

In this chapter we provide some key concepts about the immune system, the HIV
(Human Immunodeficiency Virus), the ARTs (AntiRetroviral Therapies) and a pos-
sible model of HIV.
In particular we provide some basic information about the cells that constitute the
immune system (their origin and function) and about the HIV (its structure and
its life cycle). Together with HIV life cycle, we give information about the ARTs,
because ARTs are strictly connected with the different stages of HIV’s life.
In the end we introduce a model of HIV without therapy, which constitutes the base
for the greater model (16 variant, 2 drug combination model in Section 3.2.2) that
takes into consideration the treatments.

2.1 A brief overview of the immune system

The immune system is made by the so called innate immune system cells (which
also invertebrates have), and the recently adaptive immune system ones (which only
vertebrates present).
The principal functions of the immune system are:

� the recognition with subsequent elimination of foreign antigens,

� the formation of immunologic memory,

� the development of tolerance to self-antigens.

The immune system (in Figure 2.1 the parts are represented of the body which are
involved in the immune system) can distinguish between healthy cells and unhealthy
cells, by recognizing a number of signals, called Danger Associated Molecular Pat-
terns (DAMPs). Cells may be unhealthy, because of infection or because of cellular
damage, caused by non-infectious agents (e.g. cancer). Pathogen Associated Molec-
ular Patterns (PAMPs) are cues which are recognised by the immune system and are
released by infectious microbes (e.g. viruses and bacteria) [3]. The population that
constitutes the immune system is made by white cells, also called leukocytes. Like

3



4 CHAPTER 2. THE IMMUNE SYSTEM AND THE HIV MODEL

other components of the blood, they come from precursors (pluripotent hematopoi-
etic stem cells) in the bone-marrow, and develop into mature cells in different parts
of the body: in the bone-marrow itself, in the skin, in the blood stream, in the
thymus and in the lymphatic system.
The skin is usually the first line of defence against microbes. Skin cells produce and
secrete important antimicrobial proteins, and white cells can be found in specific
layers of the skin. The common myeloid progenitor stem cell is a precursor to innate
immune cells (e.g. neutrophilis, basilophilis, mast cells, monocytes, dendritic cells1

and macrophages).
It is worth noticing that the innate immune system is the first line of defence against
microbes. The common lymphoid progenitor stem cell is a precursor to adaptive im-
mune cells: B-lymphocytes and T-lymphocytes.
B-lymphocytes derive from the bone-marrow itself, instead the T-lymphocytes de-
velop in the thymus. Another group of lymphocytes consists in the natural-killer
cells (NK cells) which are part of the innate immune system. Also these cells de-
rive from the bone marrow, but the are unique in the sense that new ones are not
generated throughout a human being’s lifespan.
T-lymphocytes mediating the cellular immunity, along with B-lymphocytes arbi-
trating humoral immunity, provide adaptive immunity, which works in close collab-
oration with the innate immune system.
The majority of T-lymphocytes is made up by CD4+T cells (which are also called
CD4+T cells, T helper lymphocytes and T4 cells) and CD8+T cells.
The CD4+T cells, after being activated and differentiated into distinct effector sub-
types, play a major role in mediating immune response through the secretion of
specific cytokines. These cells carry out multiple functions, e.g. the activation of
the innate immune system’s cells and a critical, opposite role in the suppression of
immune reaction [38].

1Dendritic cells are antigen-presenting cells of the mammalian immune system.
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Figure 2.1: Representation of the parts of the body which are involved in the immune
system.

In the next three subsection we provide some information about the immune
cells which are included in the greatest HIV under treatments model used in this
work. Most of the information is taken from [25].

2.1.1 Macrophages

These cells derive from bone-marrow promonocytes which, after differentation to
blood monocytes, finally settle in the tissues as mature macrophages where they
constitute the mononuclear phagocyte system.
They are present throughout the connective tissue and around the basement mem-
brane of small blood vessels and are particularly concentrated in the lung (alveolar
macrophages), liver, and lining of spleen sinusoids and lymph node medullary si-
nuses where they are strategically placed to filter off foreign material.
Macrophages are long-lived cells with significant rough-surfaced endoplastic retic-
ulum and mitochondria, moreover they are the best in contrasting those bacteria,
viruses and protozoa which are capable of living within the cells of the host.

2.1.2 Langerhans cells

Langerhans cells are dendritic cells (antigen-presenting cells) of the skin and mucosa,
and contain organelles called Birbeck granules2 They are present in all layers of the
epidermis, except the stratum corneum3, which protects against infections, and are
almost prominent in the stratum spinosum4. These cells also occur in the papillary

2The Birbeck granules are cytoplasmic bodies which are rod and are solely found in Langerhans
cells.

3The stratum corneum is the most external epidermic layer.
4The stratum spinosum is the epidermic layer before the basal one, which is the most internal

one of the skin.
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dermis (e.g. around blood vessels and in the mucosa of the mouth) and they can be
found in the lymph nodes. Thus, the tissue which is in contact with the external
environment has this type of cells. Langerhans cells are an important line of defence
against viruses.

2.1.3 Natural killer (NK) cells

Viruses lack the apparatus for self-renewal so it is essential for them to penetrate
the cells of the infected host in order to take over its replicative machinery. It is
clearly in interest of the host to find a way to kill such infected cells before the virus
has had a chance to reproduce. NK cells appear to do just that when studied in
vitro.
They are large granular lymphocytes. They can recognize structures on high molec-
ular weight glucoproteins which appear on the surface of virally infected cells and
which allow them to be differentiated from normal cells. This recognition occurs
through receptors on the NK cell surface. Activation of the NK cell ensures and
leads to extracellular release of granule contents into the space between the two
cells. Perhaps the most important of them is a perforin, or cytolysin, because it has
the capacity to insert itself into the membrane of the target and associate to form
a transmembrane pore with an annular structure, which induces the cell’s death.

2.1.4 T-helper cells

T-helper cells are a subpopulation of T-lymphocytes, as previously said, which, if
primed to that antigen, will recognize and bind to the combination of antigen with
some particular molecules (called class II MHC molecules) and produce a variety
of soluble factors called lymphokines, which constitute a subset of citokines. These
include macrophage activating factors and bring about the death of intercellular
micro-organisms.

2.2 The HIV life cycle

When a person is infected with HIV (a representation of the structure of an HIV
is shown in Figure 2.2), the virus begins to attack and kill the CD4+T cells of the
immune system [2]. Moreover HIV infects macrophages, even if it is a process which
is slower than the infection of the CD4+T cells. As seen previously (in Section 2.1),
CD4+T cells and macrophages are two types of white blood cells.
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Figure 2.2: Representation of the structure of an HIV.

HIV uses the equipement of the cells to replicate and spread throughout the
body, in particular HIV is able to infect CD4+T cells and macrophages. Supposing,
for example, that the attacked cell is a CD4+T one, the HIV infection process
(Figure 2.3) (called HIV life cycle too) is:

1) binding (or attachment):
HIV attacks itself to receptors on the surface of CD4+T cell;

2) fusion:
the HIV envelope and the CD4+T cell membrane fuse, which allows HIV to
enter the CD4+T cell;

3) reverse transcription:
inside the CD4+T cell, HIV releases and uses the reverse transcriptase (an
HIV enzyme) to convert its RNA (HIV genetic maerial) into HIV DNA (this
conversion allows HIV to combine with the cell’s genetic material);

4) integration:
inside the CD4+T cell nucleus, HIV releases integrase (an HIV enzyme) and
uses it to insert its viral DNA into CD4+T’s DNA;

5) replication:
HIV begins to use the CD4+T’s machinery to make long chains of HIV pro-
teins, which are the building blocks for more HIV;

6) assembly :
new HIV RNA moves to the cell’s surface and noninfectious immature HIV is
assembled;

7) budding :
the immature HIV goes out of the host cell and it releases protease (an HIV
enzyme), which breacks up the long protein chains, so mature infectious HIV
is formed.

Now, we introduce what we see in Section(2.3).
The drugs used to fight HIV are different, and they can be grouped in seven classes:
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every medicine in each class is able to block one of the different steps of the HIV
life cycle. An ART (AntiRetroviral therapy) is a therapy made by one class of
medicines. Instead an HAART (Highly Active AntiRetroviral Therapy) is formed
by a combinations of medicines of at least two different drug classes.
By taking into consideration the last observation, we decide to use an HIV mutation
model ((3.3) in Section 3.2) which includes two drugs of two different classes:

� one therapy blocks the phase 3) of HIV life cycle, with NrRTIs (Nucleotide
Reverse Transcriptase Inhibitors),

� the other therapy bocks the phase 7) of HIV life cycle, with PIs (Protease
Inhibitors).

The genotype 1, g1, in Figure ?? is the most prolific variant w.r.t. all the other
genotypes, in absence of any drugs. Thus, it is called WTG (Wild Type Genotype).
On the contrary, the genotype 16, g16, is the least prolific variant w.r.t. all the other
genotypes, in absence of any drugs. For this reason it is called Highly Resistant
Genotype HRG.

2.3 The HIV and the HAARTs

In Section 2.2 we introduced the HAARTs which are therapies made by medicines
of at least two drug classes.
As said in the end of the previous section, the genotype 1, g1, in Figure ?? is the
most prolific variant w.r.t. all the other genotypes, in absence of any drugs and it
is called WTG (Wild Type Genotype). It is the most susceptible genotype w.r.t.
all the other ones. For this reason it is the variant for which all the therapy combi-
nations have been created in order to contrast it. Instead, the genotype 16, g16, is
the least prolific variant in absence of drugs w.r.t. all other genotypes and, as said,
it is called HRG (Highly Resistant Genotype). Since it is the strain with the lowest
prolification rate, it was not necessary for the drug therapies to be truly effective in
fighting it. The therapies were designed consequently. Moreover, it represents the
genotype that we obtain after several mutations.
AIDS info [2] suggests at least two nucleotide or nucleoside analogues5: either pro-
tease inhibitors (PIs) or nucleotide reverse transcriptase inhibitors.
The first type of inhibitors is used to combat the HIV, because without protease
(Figure 2.4a and Figure 2.4b) the HIV is unable to become its infective form (or
mature form). These type of inhibitors block the phase 7) of HIV life cycle (Sec-
tion 2.2). In fact, when HIV infects a CD4+T cell, it copies its own genetic code into
the cell’s DNA, so when the CD4+T reproduces, it makes new HIV genetic material
and HIV proteins (Figure 2.4a). The proteins must be cut up by the HIV protease
to make functional new HIV copies and PIs block this process (Figure 2.4b)[2].
The second type of inhibitors includes Nucleotide Reverse Transcriptase InHibitors
(NrRTIs) and Nucleoside Reverse Transcriptase Inhibitors (NRTIs) that interfere

5The nucleotide and the nucleoside analogs can be used in therapy drugs. They include a range
of antiviral products used to prevent viral replication in infected cells, by stopping one phase of
HIV life cycle [32] (see Figure 2.3).
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Figure 2.3: Representation of HIV life cycle.

with the HIV life cycle in the same way. Both block Reverse Transcription (Fig-
ure 2.5b), which is the third stage of HIV life cycle (Section 2.2). HIV uses Reverse
Transcriptase (RT6) to convert its RNA into viral DNA: a process called reverse
transcription, whose representation is in Figure 2.5a.

6Reverse Transcriptase (RT) is an enzyme found in HIV (and other retroviruses).



10 CHAPTER 2. THE IMMUNE SYSTEM AND THE HIV MODEL

(a) Creation of a mature HIV copy. (b) PIs block the conversion of HIV
RNA to HIV DNA.

Figure 2.4: Representation of the action of PIs.

(a) Reverse transcription. (b) NRTIs and NrRTIs block the cut-
ting up of proteins.

Figure 2.5: Representation of the action of NrRTIs.

Therefore, we consider therapies that are composed of both Protease Inhibitors
(PIs), which alter the viral production constants pT and pM , and Reverse Tran-
scriptase Inhibitors (RTIs) which change the infection constants kT and kM [22]
(coefficients in Figure 3.2).



Chapter 3

Modeling the Three Stages in
HIV Infection

In this chapter we provide some basic information about the three stages in HIV in-
fection and the explanation of both models of HIV with treatments considered. The
greatest is a 16 variant, 2 drug combination model, explained in Subsection 3.2.2),
whereas the smallest one is a 4 variant, 2 drug combination model and it is intro-
duced for its simplicity in Subsection 3.2.2.
It is preferable to explain the course of HIV in this chapter, because the structure
of the biggest model is strictly connected with it.

3.1 The three stages in HIV infection

In HIV infection are involved two types of cells of the Immune System (see Chap-
ter 2 for more information): CD4+T cells and macrophages [19]. These cells have
an important role in the Immune System, so HIV infection may be destructive for
the patient’s health. CD4+T cell count and plasma viral levels are really important
for monitoring the patient’s health, because they are the clinical markers of the
progression of HIV infection.

In the absence of antiretroviral treatment, the typical patient response to HIV
infection includes three main phases [2] (Figure 3.1):

(i) A short period, during which there is an initial acute infection (phase of Acute
HIV Infection);

(ii) A long asymptomatic period, which is called period of Clinical Latency, or
phase of Chronic (or Asymptomatic) HIV Infection;

(iii) A final increase in viral load with a simultaneous collapse in healty CD4+T
cells count, during which the Acquired ImmunoDeficiency Syndrome (AIDS )
appears [8] (phase of AIDS ).

11



12 CHAPTER 3. MODELING THE THREE STAGES IN HIV INFECTION

Figure 3.1: Representation of HIV progression, without any therapy.

During the first period, which lasts 2-10 weeks, there is an acute drop in the concen-
tration of circulating CD4+T cells, and an high increase in the level of circulating
free viruses. The bedridden person in this phase has an acute syndrome with symp-
toms such as fever, lymphadenopathy, pharyngitis, headache and rash.
In the second period, which lasts 7-10 years, the level of circulating CDT+4 cells re-
turns almost to normality (the number of CD4+T cells is greater than 300 [cells/mm3]),
and the viral load decreases greatly. In this asymptomatic or latent period, the pa-
tient does not exhibit any symptoms of disease, even if HIV is continuously infecting
new cells and actively replicating.
In the third period, phase of AIDS, the viral load rises rapidly with simultaneous
drop in CD4+T cell count. An HIV-positive person is said to have AIDS when the
CD4+T cells counts are below 200 [cells/mm3] or/and when his Immune System
becomes so weak it can’t fight off certain kinds of infections and cancers [1].
Several works only describe the first two stages of HIV infection, as the case of [34],
[13] and [10]. Other works regard only the AIDS stage of infection [36].
Since the real dynamic system is complex and we are interested in analysing its
stability and stabilization properties, we include in the model different types of
cells involved in the HIV infection, to have a more accurate system’s mathemati-
cal description. In fact, in the big model (Section 3.2.2) we consider both infected
CD4+T cells and infected macrophages.
Macrophages have been known since the 1980s to be susceptible to HIV infection,
but they have received little attention in the research literature w.r.t. the CD4+T
cell host [8]. The big nonlinear model we use is taken from [19]. [19] is one of the
first works which takes into consideration also the population of macrophages and
in this manner it can explain the full HIV course, without time varying parameters.
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3.2 Mathematical models

3.2.1 The HIV model, without therapy

The main problem of therapies against HIV is that there are latent cellular reser-
voirs1 which may contribute to HIV persistence [14].
There are two main viral reservoirs: resting infected CD4+T cells and macrophages.
The first type of cells is the major viral reservoir in case of HIV infection. Clinical
observations [31] show that the viruses which are present in a patient undergoing
interruption of a successful treatment2 are genetically different from the ones which
are present in the reservoirs CD4+T cells. Moreover, [19] infected macrophages
may experience an increase in population which can be exponential, and this is
consistent with studies in rhesus macaques [39]. However, it is worth underlining
that the SHIV3’s dynamics are an exaggeration of the HIV’s ones, but these help
doctors to have an idea of the HIV’s dynamics [39].
Moreover, [39] shows that the production of viruses is caused for 95% by infected
macrophages and only 1 to 2% by infected CD4+T cells. [19], [34] and [5] show
that the viral load explosion is not due to infected CD4+T cells. Furthermore, the
final explosion of the viral load is due to infected macrophages [19].
So, the very slow dynamics observed in HIV infection, which show results in the
AIDS stage, principally depend on the dynamics of macrophages’ population [19].
Macrophages, together with Langerhans cells, appear to be the first cells infected
with HIV, so their dynamics, despite being slow, begins at the starting moment
of the infection, [11]. HIV isn’t cytopathic4 for macrophages, in fact healthy and
infected macrophages could last for very long periods [29].
Thus, in order to explain all the three phases of HIV infection, it is necessary to
have a model which takes into consideration the macrophages’ dynamics.
Here we introduce a model with the following populations, [19]:

� T
.
= healthy CD4+T cells,

� M
.
= healthy macrophages,

� T ∗
.
= infected CD4+T cells,

� M∗
.
= infected macrophages,

� V
.
= the HIV population.

It is made by a connection of two feedback systems, see Figure 3.2.

1A reservior is a population of long-lived infected cells, that might permit viral replication even
after many years of drug treatment.

2A successful treatment maintains the total viral load under or equal to 1000 [copies/mL].
3Hybrid virus made by both HIV and SIV (Simian Immunodeficiency Virus). It permits both

the infection of a simian and the contemporary valuation of the immune response to HIV [26].
4The term refers to structural changes in host cells caused by viral invasion.
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Figure 3.2: HIV infection scheme. On the left a representation of a CD4+T cell and on the
right of a macrophage.

The first feedback models the fast dynamics for early stages of infection, as a
result of a fast infection of CD4+T cells. The second feedback is for modelling the
constant slow infection in macrophages.
In Figure 3.2, on the left there is a representation of a CD4+T cell, with kT which
is the CD4+T cells’ infection constant and pT which is the production constant of
viruses, made by infected CD4+T cells.
Equivalently, in Figure 3.2, on the right there is a representation of a macrophage,
with kM which is the macrophages’ infection constant, and pM which is the pro-
duction constant of viruses, made by infected macrophages.
The considered model of HIV without therapy, which presents all the populations
previously introduced, is:

Ṫ = sT +
ρTV

CT + V
T − kTTV − δTT,

Ṁ = sM +
ρMV

CM + V
M − kMMV − δMM,

Ṫ ∗ = kTTV − δT ∗T ∗,

Ṁ∗ = kMMV − δM∗M∗,

V̇ = pTT
∗ + pMM

∗ − δV V,

(3.1)

where:

� kT and kM are the CD4+T infection rate (i.e. the rate at which free virus V
infects CD4+T cells) and he macrophage infection rate (i.e. the rate at which
free virus V infects macrophages);

� pT and pM are the rates of production per day of virus by T ∗ and by M∗,
respectively;
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� sT and sM are the source rates of CD4+T cells and macrophages, respectively;

� ρT and ρM are the proliferation parameters of new CD4 + T cells and new
macrophages, respectively;

� CT and CM are the concentrations of CD4 + T cells and macrophages, re-
spectively;

� δT , δM , δT ∗ , δM∗ , δV are the decay or death rates of healthy CD4+T cells, of
healthy macrophages, of infected CD4+T cells, of infected macrophages and
of viruses.

All the ranges of values of parameters which are in Table are taken from [19].
Looking at Table 3.1, the decay rate of the infected CD4+T cells is greater than

Parameter Range or Value:

kT
[
10−8, 10−2

] [
mm3

day·copies

]
kM 4.33 × 10−8

[
mm3

day·copies

]
pT [0.24, 500]

[
copies
cell·day

]
pM [0.05, 300]

[
copies
cell·day

]
sT 10

[
cells

mm3·day

]
sM 0.15

[
cells

mm3·day

]
ρT 0.01

[
day−1

]
ρM 0.003

[
day−1

]
CT 300

[
copies
mm3

]
CM 220

[
copies
mm3

]
δT 0.01

[
day−1

]
δM 1 × 10−3

[
day−1

]
δT ∗ [0.26, 1]

[
day−1

]
δM∗ 1 × 10−3

[
day−1

]
δV [2.06, 3.81]

[
day−1

]
Table 3.1: Ranges of parameter values for (3.1).

the macrophages’ one of two orders of magnitude. It is coherent with the fact
that macrophages can last for very long periods [11]. Moreover, the decay rates of
healthy and infected macrophages are coincident, in fact we said that HIV is not
cytopathic in the macrophages’ case. Clearance of free viruses is the most rapid
process, occurring on a time scale of hours, [11], [5] and [40].
The dynamics of the state variables of the nonlinear model (3.1), with initial state

x(0)T = [T (0) M(0) T ∗(0) M∗(0) V (0)]T =

=
[
1000

[
copies
mm3

]
, 150

[
copies
mm3

]
, 0
[
copies
mm3

]
, 0
[
copies
mm3

]
, 10

[
copies
mL

]]T
5,

are displayed in Figure 3.3. For initial condition values we consider the same values
of [19], [11] and [33].

5To implement with MATLAB®, we use x(0)T = [1000, 150, 0, 0, 0.01]T
[
copies
mm3

]
.
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(a) Dynamics of T + T ∗.

(b) Dynamics of V .

(c) Dynamics of T ∗.

(d) Dynamics of M and M∗.

Figure 3.3: Dynamics of the nonlinear model of HIV, without therapy.



3.2. MATHEMATICAL MODELS 17

In Figure 3.3 it is visible that (3.1) matches reasonably well all the three stages
of HIV infection. Figure 3.3b shows an initial peak in viral load and in Figure 3.3c
it is visible the initial peak of infected CD4 + T cells. These features characterise
the phase of Acute Infection. Then, there are lower concentrations of both viruses
and infected CD4 +T cells, with a contemporary increase in macrophages’ concen-
tration. This is the phase of Chronic HIV Infection. Finally, Figure 3.3d shows the
final increase infected macrophages, which leads to AIDS.
For more detailed information of HIV infection see Section 3.1.
The model (3.1) is moderately robust to parameters’ variations.
For the wide diversity of resistant mutants, the HIV treatment problem may be not
stabilizable [18].
As said, the aim of this thesis is to investigate the stabilizability (see Chapter 5) of
the two models of HIV under treatment (which we introduce in this chapter), and
to find switching rules that maintain the viral load under a certain upper bound
(see Chapter 6).

3.2.2 Models of HIV with therapy

A 16 variant, 2 drug combination model

Figure 3.4: Sixteen genotypes and two drug combination. The direction of the arrows means
the effectiveness of the therapy.

As said in Chapter 2, some of the parameters which we previously introduced are
variable under therapies. These parameters are the infection constants kT , kM and
the viral production constants pT and pM . Moreover, we consider separately the

different n genotypes, which we name Vi and gi (i = 1,
. . . , n), equivalently.

The variation of some parameters during time leads to the construction of a switched
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positive6 nonlinear model which represents an oversimplified model of HIV under
treatments:

Ṫ = sT +
ρTVT

CT + VT
T −

n∑
i=1

kiT,σTVi − δTT,

Ṁ = sM +
ρMVT

CM + VT
M −

n∑
i=1

kiM,σMVi − δMM,

Ṫ ∗i = kiT,σTVi +

n∑
j=1

µmi,jVjT − δT ∗T ∗i ,

Ṁ∗i = kiM,σMVi +
n∑
j=1

µmi,jVjM − δM∗M∗i ,

V̇i = piT,σT
∗
i + piM,σM

∗
i − δV Vi,

(3.2)

for i = 1, . . . , n and k = 1, . . . ,M .
And where Vi is the i-th genotype, T ∗i represents the infected activated CD4+T cells
by Vi and M∗i represents the infected macrophages by Vi. mi,j are the elements of
the incidence matrix7 of the graph in Figure 3.4. The graph represents all the
possible mutations between genotypes.
Except to the parameters variable under therapy σ(·), all the parameters in (3.2)
are exactly the same of the HIV model, without therapy (3.1):

� kiT,σ and kiM,σ are the CD4+T infection rate caused by the i-th strain Vi, and
the macrophage infection rate caused by the i-th strain Vi;

� piT,σ and piM,σ are the rates of production per day of i-th virus Vi by T ∗ and
by M∗, respectively.

As known, studying a linear model is simpler than studying a nonlinear one, espe-
cially the design of switching strategies for the nonlinear model (3.2) can be very
demanding. As a matter of fact, under normal treatment conditions, typical clini-
cal data suggest that macrophages M and CD4+T cells count T are approximately
constant [5]. Thus, we assume constant

1. T (the uninfected CD4+T cells),

2. M (the uninfected macrophages).

These conditions allow us to use a linear model, otherwise we would have bilinear
terms in differential equations (3.3).
We use the linearised model given by the following switched positive linear system,

6A positive state space model is a system whose state variables stay in the positive orthant.
And it is a switching model when the parameters of the model changes at specific time instants.

7In graph theory an (unoriented) incidence matrix is a matrix which has dimension n×m, with
n
.
= number of nodes and m

.
= number of edges. ξi,j = 1 if the vertex vi and edge ej are incident

and 0 otherwise.
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[22]:

Ṫ ∗i = kiT,σTVi − δT ∗T ∗i +

n∑
j=1

µmi,jVjT,

Ṁ∗i = kiM,σMVi − δM∗M∗i +
n∑
j=1

µmi,jVjM, for i = 1, . . . , n,

V̇i = piT,σT
∗
i + piM,σM

∗
i − δV Vi,

(3.3)

for i = 1, . . . , n and k = 1, . . . ,M .
The previous equations (3.3) can be written in a matrix form:

ẋ =




Λ1,σ 03×3 . . . 03×3

03×3 Λ2,σ . . . 03×3

03×3 . . .
. . . 03×3

03×3 03×3 . . . Λn,σ

+ µMu

x; (3.4)

where x = [T ∗1 M∗1 V1 . . . T ∗n M
∗
n Vn]T , and

Λi,σ =

 −δT ∗ 0 kiT,σT

0 −δM∗ kiM,σM

piT,σ piM,σ −δV

 (3.5)

For the 16-variant model we assume n = 16, and σ ∈ {1, 2} (2 possible drugs).

The mutation matrix has the following form:

Mu = [mi,j ]⊗

 0 0 T
0 0 M
0 0 0

 , (3.6)

where ⊗ denotes the Kronecker product8.
The model above is an autonomous positive switched system (p.s.s.):

ẋ(t) = Aσ(t)x(t), (3.7)

with Aσ(t) a Metzler9 matrix for each σ(t) ∈ {1, 2}.

As a matter of fact, the number of healthy CD4+T cells and healthy macrophages
decreases in time until the beginning of the Acquired ImmunoDeficiency Syndrome
(AIDS). The mentioned condition holds before the so called Virologic Failure, with
Virologic Failure we mean a condition of detectable viremia (HIV RNA> 1000 [copies/mL] =
1
[
copies/mm3

]
) and of drug-resistant genotype identified [22].

Note that, the AIDS stage is characterized by both a decrease of healthy CD4+T
cells and an high increase of the total viral load VT . So, we use VT as parameter to

8The Kronecker product A⊗B, with A ∈ Rn×m and B ∈ Rp×q is the matrix

A⊗B =

 a11B a12B . . . a1mB
... . . .

. . .
...

an1B an2B . . . anmB

 ,
where aij , for i = 1, . . . , n and j = 1, . . . ,m are the entries of A

9A matrix is said to be Metzler if it is square and it has all off-diagonal entries non-negative.
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understand if a therapy is effective10.
Furthermore, we have that the constants in Λi,σ can be written as:

� kiT,σ = kT fiη
T
σ,i,

� kiM,σ = kMfiη
M
σ,i,

� piT,σ = pT fiθ
T
σ,i,

� piM,σ = pMfiθ
M
σ,i,

where ησ,i is the infection efficiency for genotype Vi under σ, θσ,i is the production
efficiency for genotype i Vi under σ. And fi is the fitness of i-th genotype11.
We consider the same initial values which we take for the model without therapy,
but we suppose that the initial amount of the total viral load is made by only the
WTG, thus, the initial state is

x(0)T = [T ∗1 (0) M∗1 (0) V1(0) . . . T ∗16(0) M∗16(0) V16(0)]T =

=
[
0
[
copies
mm3

]
, 0
[
copies
mm3

]
, 10/16

[
copies
mL

]
, . . . , 0

[
copies
mm3

]
, 0
[
copies
mm3

]
, 0
[
copies
mL

]]T
.

We take the constant values T = 1000[copies/mm3] and M = 150[copies/mm3].

The Wild Genotype Type (WTG, g1 in the grid of Figure 3.4) is the most pro-
lific variant in the absence of any medicines and it is also the variant that all drug
combinations have been designed to combat, thus making it susceptible to all thera-
pies. After several mutations the Highly Resistant Genotype (HRG, g16 in the grid
of Figure 3.4) is a genotype with low proliferation rate, but resistant to all drug
therapies.
[22] reports that mutation reduces the fitness of the genotype in absence of treat-
ment and we assume that the same holds in case of therapy. In Figure 3.4 the graph
which we use is asymmetric, and mutations occur in the direction of the arrows. So,
for simplicity, we use linear decreasing fitness factors fi, which decline in accordance
with the orientations of the arrows. As seen in Section 2.2, inhibitors are more ef-
fective in CD4+T cells than in macrophages, so that ηTσ,i > ηMσ,i and θTσ,i > θMσ,i.

For simulation purposes, we assume

� fi = [1, 0.95, 0.95, 0.95],

� ηTσ=1 = θTσ=1 = [0.2, 0.8, 0.9, 1],

� ηTσ=2 = θTσ=2 = [0.2, 0.4, 0.5, 1],

� ηMσ=1 = θMσ=1 = [0.25, 0.4, 0.5, 1],

10In fact, in Chapter 6 to study the Optimal control problem for the introduced model, we use
the cost function proposed by Hernandez-Vargas [22]:

J
.
= cTx(tf ),

with c = [0 0 1 0 0 1 . . . 0 0 1 ]T .
This cost functional is the total viral load VT at a final time tf .

11With fitness of i-th genotype, we mean the average contribution of i-th genotype to gene pool
of next generation of viruses.
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� ηMσ=2 = θMσ=2 = [0.1, 0.7, 0.8, 1].

Moreover, we assume (according to the parameter intervals shown in Table 3.1) the
values of constant parameters shown in Table 3.2.

Parameter Value Value taken from:

pT 38
[
copies
cell·day

]
Fitted

kM 4.33× 10−8
[
mm3

day · copies
]

[19]

pT 38
[
copies
cell·day

]
Fitted

pM 35
[
copies
cell·day

]
Fitted

δT ∗ 0.4
[
day−1

]
[33]

δM∗ 0.001
[
day−1

]
[33]

δV 2.4
[
day−1

]
[11]

Table 3.2: Parameter values used for (3.3).

A 4 variant, 2 drug combination model

For its simplicity, we use also the 4 variant, 2 drug combination model [20], obtained
from the nonlinear model (3.2), upon assuming the following hypotheses:

1. Counts of macrophages and CD4+T cells are constant. The nonlinearities in
the model (3.2) are bilinear and they involve, either the uninfected CD4+T
cells, or the uninfected macrophages. As we assume to be under the normal
treatment circumstances, i.e. that we are in the second or at the beginning
of the third stage of HIV infection. In these phases, clinical data suggest that
macrophage and CD4+T cell count are almost constant [22]. This hypotheses
allow to simplify the nonlinear model to a linear one;

2. The dynamics for each genotype is a scalar one. The strains, called Vi or gi
for the 16 variant, 2 drug combination model in Section 3.2.2, are named xi or
Gi for the 4 variant, 2 drug combination model in this section (Section 3.2.2);

3. The viral decay rate δV is constant for each strain xi and for each therapy
σ(t), t ∈ R+ (in reality the death rate depends on both the strain and the
therapy);

4. The mutation rate µ is independent of both treatment and variant (in reality
there are some relations between mutant, mutation rate and therapy);

5. The model used is deterministic.

Thus, we obtain the following model, [21]):

ẋi(t) = ρi,σ(t)xi(t)− δV xi(t) +

n∑
i 6=j

µζi,jxj(t), (3.8)
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with i ∈ {1, . . . , n}, σ(t) ∈ {1, . . . ,M}, ζi,j ∈ {0, 1} for i, j = 1, . . . , n.
Morover,

� n is the number of different viral genotypes, with a viral population xi, i =
1, . . . , n and in this case n = 4,

� M is the number of different therapies and in this case M = 2,

� σ(t) is the specific therapy at time t ∈ R+,

� ρi,σ(t) is the growth rate of the genotype i under treatment σ(t),

� δV ithe death rate of the genotypes, which is considered constant both w.r.t.
the therapy and w.r.t. the type of virus,

� µ is the mutation rate, which represents the capacity of a genotype to mutate
(in case the mutation is possible),

� ζi,j is an element of the incidence matrix of the graph (the graph here consid-
ered is in Figure 3.5).

Equations in (3.8) can be written in the vector form as:

ẋ(t) =
(
Rσ(t) − δV In

)
x(t) + µZx(t), (3.9)

where

Rσ(t) =


ρ1,σ(t) 0 0 0

0 ρ2,σ(t) 0 0

0 0 ρ3,σ(t) 0

0 0 0 ρ4,σ(t)

 (3.10)

is a matrix which contains the growth rates of the 4 different genotypes under a
certain therapy σ(t) and

Z =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 (3.11)

is the incidence matrix of the graph in Figure 3.5.
The model above is an autonomous positive switched system:

ẋ(t) = Aσ(t)x(t), (3.12)

with Aσ(t) a Metzler12 matrix for each σ(t) ∈ {1, 2}. In fact, by elementary compu-
tations, we find the two state matrices of the p.s.s. (3.12):

Ak =


ρ1,k − δV 0 0 0

0 ρ2,k − δV 0 0
0 0 ρ3,k − δV 0
0 0 0 ρ4,k − δV

+µ


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , k = 1, 2.

(3.13)
As in the 16 variant, 2 drug combination model of Section 3.2.2, in this simple
model we have the HRG and the WTG, which respectively are the most prolific
variant, and the most susceptible to the therapies. In Figure 3.5 we see G1 which
is the strain resistant to the therapy 1, but susceptible to therapy 2 and G2 which
is the strain resistant to the therapy 2, but susceptible to therapy 1.

12A matrix is said to be Metzler if it is square and it has all off-diagonal entries non-negative.
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Figure 3.5: Graph which represents the four variant, two drug combination model. The
rectangles represent the effectiveness of the therapies.

Muatation graph is symmetric and circular.
As a matter of fact, we allow only connections WTG↔ G1, G1 ↔ HRG, HRG↔
G2 and G2 ↔WTG. All other connections would require double mutations and we
hypothesize that they are of negligible probability.

We use δV = 0.24
[
day−1

]
, which corresponds assuming viruses’ half life of

almost three days and the mutation rate µ equal to 10−4
[

mm3

day·copies

]
. And we

suppose three scenarios, characterized by different values of growth rates ρi,σ(t),
with i = 1, 2, 3, 4 and σ(t) ∈ {1, 2} (see Table 3.3).
As initial condition we take x(0) = [x1(0), x2(0), x3(0), x4(0)]T =

[250 250 250 250]T [copies/mL].

Case Therapy σ(t) WTG (x1) G1 (x2) G2 (x3) HRG (x4)

I 1 ρ1,1 = 0.05 ρ2,1 = 0.245 ρ3,1 = 0.05 ρ4,1 = 0.245
Symmetric 2 ρ1,2 = 0.05 ρ2,2 = 0.05 ρ3,2 = 0.245 ρ4,2 = 0.245

II 1 ρ1,1 = 0.05 ρ2,1 = 0.255 ρ3,1 = 0.01 ρ4,1 = 0.245
Partially symmetric 2 ρ1,2 = 0.05 ρ2,2 = 0.175 ρ3,2 = 0.225 ρ4,2 = 0.245

III 1 ρ1,1 = 0.05 ρ2,1 = 0.235 ρ3,1 = 0.01 ρ4,1 = 0.265
Asymmetric 2 ρ1,2 = 0.01 ρ2,2 = 0.125 ρ3,2 = 0.225 ρ4,2 = 0.245

Table 3.3: Different scenarios for (3.9).

The first scenario is a symmetric case in the growth rates of the different genotypes,
even if in reality it is really unlikely a context like this one. In fact the growth rate
of WTG and the replication rate of the HRG are, respectively, the same under both
therapies. Moreover, the growth rate of G1 under therapy 1 is equal to the growth
rate of G2 under therapy 2, and viceversa. The second scenario has the same growth
rate under both therapies in the case of the WTG and of the HRG, and asymmetric
growth rates for what concerns G1 and G2 under therapies. The last case is the
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more realistic case, it is completely asymmetric, in the sense that all the genotypes
have a different dynamics under the same therapy.
The values in Table 3.3 are idealized, but they are chosen by taking into consider-
ation clinical data and the following general principles:

1. genetic distance from the Wild Type Genotype reduces fitness:
in the absence of any medicine, we expect that the Wild Type Genotype is
the most prolific genotype, which means that it is the most fit. We suppose
that the fitness decreases with the distance of the genotype from the Wild
Type Genotype;

2. therapy is at best 90% effective. Without therapy we expect that the viruses
increase very quickly, and from typical clinical data we suppose that without
treatments the viruses’ growth rates are ρi = 0.5

[
day−1

]
, for i = 1, . . . , 4.

3.3 Solver ode113 in MATLAB®

We use Solver ode113 in MATLAB® for computing the simulations of the two
previously introduced models of HIV under treatments, because it is the Solver
used for problems with stringent tolerance or that are computationally intensive.
In fact, Solver ode113 has an high accuracy. Moreover, the problem type for which
it is built are nonstiff ones.
It is worth noticing that, for a linear constant coefficient system, stiffness occurs if
all its eigenvalues have negative real parts and the stiffness ratio is large13 (see (??)).
The considered models’ dynamic matrices have eigenvalues with non-negative real
parts. Hence, from previous definition of a stiff linear system we can conclude that
we deal with nonstiff systems.

3.4 Clinical treatments using the 4 variant, 2 drug com-
bination model

AIDsinfo [2] suggests to alternate therapies to combat the HIV and propose two
ways of alternating:

1. Switch on Virologic Failure (SVF):
introduce a new regimen if there is a detectable viremia (HIV RNA> 1000 [copies/mL])
and a drug-resistant genotype identified,

2. SWitching Antiretroviral Therapy Combinations against HIV (SWATCH):
alternate between two regimens every three months.

13Given a linear homogeneous system ẋ = Ax, we suppose that all the real parts of eigenvalues
of the dynamic matrix are negative, i.e. ∀λ ∈ ∆A =⇒ R(λ) < 0. Let λ̄ and λ̂ ∈ ∆A, defined by∣∣∣R(λ̂)

∣∣∣ ≥ |R(λ)| ≥
∣∣R(λ̄)

∣∣, ∀λ ∈ ∆A.

Thus, stiffness ratio is defined as ∣∣∣∣∣R(λ̂)

R(λ̄)

∣∣∣∣∣ .
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[22] shows that proactive switching (SWATCH) seems to be a more effective switch-
ing therapy than SVF one.
We carry out simulations of one year, involving the application of these two types
of treatments (see Table ??) for the smaller model in Subsection 3.2.2).
We plot the dynamics of HIV under monotherapy for only six months, because the
whole trajectories aren’t so interesting. Differential equations given by (3.12) and
(3.13) are solved in MATLAB® using the solver ode113, as just said.

Switch on Virologic Failure (SVF):

if x(t+ τ) > 1000[copies/mL]
if σ(t) = 1
σ(t+ τ) = 2
elseif σ(t) = 2
σ(t+ τ) = 1

endif
endif

SWitch Antiretroviral
Therapy Combinations
against HIV (SWATCH):

switch every three months

Table 3.4: SVF and SWATCH rule.

We can see by Figure 3.6a that G2 is susceptible to therapy 1. Its trajectory
coincides with WTG’s one. Instead, HRG isn’t suppressed under therapy 1, indeed
it is continuously growing during months, as G1 which isn’t affected by therapy 1.
It is the symmetric case (see Table 3.3) of the model’s parameters and it is the
reason why the trajectories of WTG and G2 are equal and the same holds for the
case of HRG and G1.
The total viral concentration, for the symmetric scenario, at the end of the year is
3139 [copies/mL].
For what concerns the trajectories in Figure 3.6b, it is visible that G1 isn’t affected
by therapy 1, in fact it is the strain which is the most increasing during time. HRG
is the genotype which hasn’t an high growth rate, but it is continuously replicating
during time. Therapies are projected to combat WTG, in fact it decreases. Also
G2 decreases during therapy 1, as expected.
The total viral load, for the partially asymmetric scenario under therapy 1, after
one year is 5.8 · 104 [copies/mL].
In the end, we can see in Figure 3.6c that the principal problem during therapy 1
for the asymmetric case of model’s parameters is the HRG which is continuously
replicating during time and it is the greatest factor of the total viral load. It is
coherent with clinical data.
The total viral load, for the asymmetric scenario under therapy 1, after one year is
2.033 · 106 [copies/mL].
All the values of viral load in the three scenarios, after one year of therapy 1, are
in Table 3.5.
In Figures 3.7a, 3.7b and 3.7c are plotted the trajectories of the three cases of Table
3.3 of genotypes’ growth rates under therapy 2. It is visible that the therapy can
effectively combat WTG and G1, but can’t very well fight against HRG and G2.
But in the case of therapy 2, with parameters of the partially asymmetric scenario,
it is possible to see that the greatest contribute to the total viral load, after one
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(a) Scenario I

(b) Scenario II

(c) Scenario III

Figure 3.6: Dynamics of the small model, with k = 1.
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(a) Scenario I

(b) Scenario II

(c) Scenario III

Figure 3.7: Dynamics of the small model, with k = 2.
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year, is given by the HRG. It is coherent with the parameter chosen, indeed, looking
at Table 3.3, we can see that ρ3,2 (the growth rate of G2) is smaller than ρ4,2 (the
growth rate of HRG). Instead in the case of therapy 1, with parameters of the
partially asymmetric scenario, ρ2,1 (the growth rate of G1) is greater than ρ4,1 (the
growth rate of HRG), see Figure 3.6b. In the end, in the case of using the param-
eters of the asymmetric scenario, we can see that under both the two therapies the
greatest contribute to the total viral load is given by the HRG, see Figure 3.6c and
3.7c.
The total viral load after one year of therapy 2 in the symmetric case is 3139 [copies/mL],
in the partially asymmetric case is 1533 [copies/mL] and in the asymmetric case
is 1532 [copies/mL], see Table 3.5. Comparing the trajectories with the values of

Scenario Virus load after 12 months Virus load after 12 months
with th.1 [copies/mL] with th.2 [copies/mL]

Symmetric 3139 3139

Partially symmetric 5.8 · 104 1533

Asymmetric 2.033 · 106 1532

Table 3.5: Values referring to the model (3.9), with k = 1, 2.

model’s parameters in Table (3.3), we can see the curves are coherent with the
growth rates ρi,k, for i = 1, 2, 3 and 4 and k = 1, 2. There is this strict connection
because the graph of Figure 3.5 is cyrcular and symmetric, moreover the mutation
rate µ is equal for all the state variables, as the decay rate δV .

Scenario Virus load after 12 months Month of the 1rst Month of the 2nd

[copies/mL] virologic failure virologic failure

Symmetric 1547 5-th 10-th

Partially symmetric 1533 3-th 10-th

Asymmetric 7.633 · 104 2-th 3-th

Table 3.6: Values referring to the model (3.9), using the SVF rule.

Scenario Virus load after 12 months Month of the 1rst Month of the 2nd

[copies/mL] virologic failure virologic failure

Symmetric 1543 9-th 10-th

Partially symmetric 1550 2-th 9-th

Asymmetric 5.56 · 104 2-th 3-th

Table 3.7: Values reffering to the model (3.9), using the SWATCH rule.

It is worth noticing that using only, for example therapy 1, the values of the
viral load in the three aforementioned cases are always of 104 [day−1], as order
of magnitude (see Table 3.5). We use for the three cases also the two switching
rules which we introduced previously, which are the Switching on Virologic Failure
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rule (SVF), i.e. switch if VT ≥ 1000[copies/mL] and the SWitching Antriretroviral
Therapy Combinations against HIV (SWATCH), i.e. switch every three months. In
Figures 3.8 and 3.9 are depicted the trajectories, using the SWATCH rule and the
SVF one, respectively. Looking at Tables 3.5, 3.6 and 3.7 it is visible that using a
switching rule to treat a person affected with HIV, is better than using the same
therapy throughout time. This result is coherent with clinical data [1] and [2]. In
fact, by using the SWATCH rule we have decreasing in the total viral load in all the
cases from 50% to two orders of magnitude. There is only the case of monotherapy
with therapy 2 which has the total viral amount at the end of the year that is smaller
of one order of magnitude than the viral amount under SWATCH. Probably this
fact arises for the SWATCH control law isn’t the best control rule in the case of the
asymmetric scenario. In Figure 3.10 and Figure 3.11 the SVF rules for the three
cases and the SWATCH rule are depicted.
It is worth noticing that the introduced model (given by (3.12) and (3.13)) is not
robust to parameter variations: slight changes of the growth rates of the genotypes
lead to strong variations of the trajectories. Clearly, the trajectories have almost
the same shape, but can differ by orders of magnitude. It is reasonable to expect
that a so simple model has this kind of behaviour.
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(a) Zoom of the first six months.

(b) One year of treatment.

(c) Zoom of the first six months.

(d) One year of treatment.

Figure 3.8: Trajectories of the three scenarios, using the SWATCH rule.
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(a) Zoom of the first six months.

(b) One year of treatment.

(c) Zoom of the first six months.

(d) One year of treatment.

Figure 3.9: Trajectories of the three scenarios, using the SVF rule.
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Figure 3.11: SWATCH σ(t).

Figure 3.10: SVF σ(t) for the three scenarios.
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3.5 Clinical treatments using the 16 variant, 2 drug
combination model

For what concerns the great model of HIV under treatment, we hypothesise to
introduce treatment after four years of infection, as [2] recommends antiretroviral
therapy for patients with CD4+T counts in the range [350, 500] [cells/mm3] (see
Figure 3.3).
We compute the trajectories using SWATCH and SVF control law. In Figure 3.12
we plot the trajectory of CD4+T cells’ concentration, of total viral load and of some
genotypes’ concentration, using the nonlinear switched model (3.2).
Figure 3.12 shows that SVF provides a fast recovery in CD4 + T count and a fast
sharp drop in viral load, which is consistent with clinical observations. Moreover,
it is worth noticing that, before the first virological failure the CD4+T cell’s con-
centration is coherent with real data, in fact it is of 500 [cells/mm3]. It is visible
that the first virological failure is after 10 years of therapy, thus it is necessary to
switch the therapy (using SVF control law) and, due to the presence of long-term
reservoirs, there is another virological failure after three years.
Using the SWATCH control law, there is the first virological failure after approx-
imately 37 years. Furthermore, in Figure 3.12 we can see that there is a normal
range in CD4+T cell counts of 500− 1500

[
cells/mm3

]
. We can see by Figure 3.12

that, using the SWATCH control law, the final viral escape is not due to the HRG
g16, as we would expect. It seems that periodic oscillation promotes other genotypes
to escape.
In the end it is clear that switching between therapies is better than to use only a
therapy, also in the case of the great model.
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Figure 3.12: Trajectories for the great nonlinear switched model of HIV, using SWATCH
and SVF control law.



Chapter 4

Stability

In this chapter we introduce key concepts and theorems about the stability of p.s.s.
[24] and we investigate the stability of the models of HIV under therapies introduced
so far.
The stability problem of positive systems is different from the one of standard sys-
tems and the main difference is that in the first case the state variables are confined
to the positive orthant (i.e. x(t) ∈ Rn+, for t ∈ R+).
We discuss the stability under arbitrary switching (and the relation with the ex-
istence of certain Lyapunov functions), the stability under periodic switching and
stability based on dual positive switched systems. We also discuss the equivalence,
which is disproved for systems of dimension n ≥ 3, of the stability under arbitrary
switching and the Hurwitz robustness (i.e. all the matrices in the convex hull of the
family of system matrices are Hurwitz1). Consequently, Hurwitz robustness is only
a necessary condition to have stability under arbitrary switching.
In the end, we apply some theorems and notions presented in this chapter to inves-
tigate the stability of the introduced models of HIV under therapy.

4.1 Stability of continuous-time positive switched sys-
tems

A continuous-time positive switched system is a continuous system of type

ẋ(t) = Aσ(t)x(t), t ∈ R+, (4.1)

where σ(t) : R+ → I
.
= {1, 2, . . . ,M} is the piecewise constant switching signal and

0 = t0 < t1 < . . . the switching instants. Moreover, the dynamic matrices Ak, for
k ∈ I, are all Metzler2.
We define with D0 the set of switching signals D0

.
= {σ(·) : R+ → {1, . . . ,M} s.t.

σ(t) = const ∀t ∈ [tk, tk+1), and 0 = t0 < t1 < · · · < limk tk = +∞}.
Furthermore, a function x : R+ → Rn is a solution of (4.1) if it is continous,
piecewise continuously differentiable and there is a switching signal σ(t) such that
(4.1) holds at every t ∈ R+, except at the switching istants. So, ∀k ∈ I (4.1) is an
autonomous continous-time positive switched system.

1A square matrix is Hurwitz if and only if all its eigenvalues lie in the open left haf plane

2A Metzler matrix is a matrix which has non-negative diagonal elements.

35
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Given an initial state x(τ) = x0 ∈ Rn+, a switching signal σ : R+ → I and a pair of
instants t ≥ τ ≥ 0 the subsequent relation holds

x(t) = Φ(t, τ, σ)x0, (4.2)

where Φ(t, τ, σ) is the state transition matrix in [τ, t] of the p.s.s. (4.1).
The state transiton matrix in [τ, t] is given by

Φ(t, τ, σ) = eAil (t−tl) . . . eAi1 (t2−τ), (4.3)

where tl are the switching istants with l = 1, 2, . . . .
Morover, referring to the p.s.s. (4.1), the switching istants tl (for l = 0, 1, . . . )
can be all isolated, so the switching signal σ(t) is constant in [tl, tl+1) (for l =
0, 1, . . . ), otherwise the switching instants are not all isolated and we talk about
sliding switching signals. As a matter of fact, to study a system of type (4.1)
sliding switching signals is more difficult than studing one with all isolated switching
instants.
To study the stability of system (4.1), it is convenient to embed the system (4.1)
and use the bilinear system

ẋ(t) =

(
M∑
k=1

Ak[u(t)]k

)
x(t), (4.4)

where u(t) ∈ UMli is the class of locally integrable M-dimensional vector functions in
the simplex AM 3. The dual system (4.4) has solutions absolutely continuous almost
everywhere and are coincident with the solutions of (4.1).

4.2 Exponential stability of continuous-time positive switched
systems

In the whole chapter we focus on the uniform exponential stability of the origin as an
equilibrium point of (4.1), because we know that attractivity, uniform attractivity,
asymptotic stability, uniform asymptotic stability and, in the end, the exponential
stability and the uniform exponential stability are equivalent for systems of type
(4.1). We refer the interested reader to [41].

Definition 4.1. The system (4.1) is uniformly exponentially stable (u.e.s.) if exists
two real constants C > 0 and β > 0 such that

||x(t; x(0), σ)|| ≤ Ce−βt||x(0)||, (4.5)

for every x(0) ∈ Rn+, t ∈ R+ and every switching signal σ ∈ D0.
If (4.5) holds for every x(0) ∈ Rn, then, a fortiori, it holds true for every initial
conditions. Viceversa, if (4.5) holds ∀x(0) ∈ Rn+, we can always do the decomposi-
tion

x(0) = x+ − x−, (4.6)

with x+ and x− whose entries are respectively

[x+]i
.
=

{
[x(0)]i if [x(0)]i > 0

0, otherwise

3 Simplex An $
{
α = (α1, ..., αn) ∈ Rn+ :

∑n
i=1 αi = 1

}
.
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and

[x−]i
.
=

{
−[x(0)]i if [x(0)]i < 0

0, otherwise
.

Using the linearity and the norm property, we obtain

||x(t; x(0), σ)|| = ||x(t; x+, σ)− x(t; x−, σ)||
≤ ||x(t; x+, σ)||+ ||x(t; x−, σ)||
≤ Ce−βt||x+||+ Ce−βt||x−||
≤ 2Ce−βt||x(0)||
.

(4.7)

The condition (4.5) holds ∀x(0) ∈ Rn, if C is replaced by 2C, for (4.7).

This simple remark allows one to inherit all the results alredy derived for stan-
dard switched systems [12], [37] and [41]. First of all, an obvious necessary condition
for uniform exponential stability is that all matrices Ak, for k ∈ I are Hurwitz.

Proposition 4.1. The system (4.1) is uniformly exponentially stable (u.e.s.) only
if each ẋ(t) = Akx(t), k ∈ I is u.e.s. , i.e. ∀Ak, with k inI is a Metzler and
Hurwitz matrix.

The necessary condition given by Proposition 4.1 can be strengthened, since
a necessary condition for uniform exponential stability (u.e.s.) is that all convex
combinations of the state matrices Ak, with k = 1, . . . ,M are Metzler and Hurwitz.

Proposition 4.2. [12] The continuous time positive switched system (p.s.s.) (4.1)
is uniformly exponentially stable (u.e.s.) only if A(α) 4 is Metzler Hurwitz, ∀α ∈
AM .

The Proposition 4.2 is a necessary condition for the stability of a p.s.s., but it
is not a sufficient condition for uniform exponential stability for p.s.s.. In fact, [30]
provided the following three-dimensional counterxample.
Example
Consider the continous-time positive switched system (4.1), with M = 2 and n = 3,

A1 =

 −1 0 0
10 −1 0
0 0 −10

 and A2 =

 −10 0 10
0 −10 0
0 10 −1

 .
All convex combinations of A1 and A2 are Hurwitz, however [30] shows that the
positive switched system is not uniformly exponentially stable.

Remark. There are classes of systems for which the condition in the Proposition
4.2 is necessary and sufficient. For example, certain classes of positive switched
systems whose matrices Ak, with k ∈ I are rank one deficent5 [17].

4A(α)
.
= sumM

k=1αkAk.
5Two matrices of same dimensions A and B are said to be rank one deficent when rank(A−B) =

1.
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It is worth noticing that the particular class of matrices which have rank one
difference is interesting also for what concerns the stabilizability of the p.s.s. of
type (4.1). Matrices, in order to be of rank one difference, must have a particular
structure. We do not show any of the theorems on p.s.s. with state matrices of rank
one difference, because the state matrices of both the considered models have not
such particular structure. We refer the interested reader to [16]. The connection
between the exponential stability of original p.s.s. and its dual is given by the
following

Proposition 4.3. The p.s.s. (4.1) is exponentially stable if and only if the associ-
ated bilinear system (4.4) is exponentially stable, [7] and [35].

Proposition 4.4. [24] Uniform exponential stability of (4.4) is equivalent to uni-
form exponential stability of its transpose, which is

ẋ(t) =

(
M∑
k=1

ATk [u(t)]k

)
x(t). (4.8)

For the previous proposition, dual conditions can be derivered from those worked
out for system (4.1) by transposition, i.e. considering the matrices ATk , k ∈ I.

4.2.1 Lyapunov functions

In this context we are interested in global stability, and so we search for positive
definite functions, whose derivatives along the system trajectories are decreasing for
every choice of initial condition x(0) and for every choice of switching signal σ(t),
with t ∈ R+.

Definition 4.2. [24] A differentiable function V (x) : Rn → R is a Lyapunov func-
tion for the continous-time (positive) switched system (4.1) if it is positive definite
and

∇V (x)Akx < 0,

∀x ∈ Rn, x 6= 0, ∀k ∈ I,
(4.9)

where ∇V (x)
.
=
[
∂V (x)
∂x1

, . . . , ∂V (x)
∂xn

]
is the gradient of V (x).

Theorem 4.1. [24] The following facts are equivalent6:

i) the system (4.1) is u.e.s.,

ii) there exists a differentiable Lyapunov function V (x) for the switched system
(4.1), homogeneous of order 27,

iii) there exists an infinitely differentiable (smooth) and convex Lyapunov function
for the switched system (4.1).

6Note that these facts hold true for standard switched systems.
7V (αx) = α2V (x), for every α > 0 and every x ∈ Rn
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A polyhedral function is a function which can be written in the form

V (x) = max
i∈{1,...,s}

[Fx]i, (4.10)

for some s× n full column rank matrix F.
In particular, choosing F = W , a symmetric polyhedral function is V (x) = ||Wx||∞,
or in dual form as V (x) = min {||z||1 : z > 0 s.t. x = Xz}, where X is a matrix
whose columns represent the vertices of the unit ball of V (x).
These types of functions are continuous and positive definite [24].

Proposition 4.5. The following facts are equivalent:

i) the continous stable p.s.s. (4.1) is u.e.s.,

ii) there exists s ∈ Z+, a full row rank non-negative n × s matrix X and s × s
square Metzler matrices Pk, k ∈ I, s.t.

AkX = XPk, 1Ts Pk � 0, (4.11)

iii) there s ∈ Z+ full column rank non-negative s× n matrix W and s× s square
Metzler matrices Qk, k ∈ I, s.t.

WAk = QkW, Qk1s � 0. (4.12)

Proposition 4.5 suggests how to compute a Polyhedral Lyapunov function for
(4.1), however it can be computationally demanding, because s is a priori unknown.

It is worth noticing that the main advantage of p.s.s. is that we have to consider
the non-negative orthant and for this propriety it is possible to weak the constraints
on Lyapunov functions.
For p.s.s., a Lyapunov function is only:

1) differentiable,

2) copositive (V (x) > 0, ∀x > 0 and V (x) = 0, if x = 0).

The general search of copositive Lyapunov functions is computionally intractable,
so it is better to focus on particular classes of copositive Lyapunov functions:

1. linear Lyapunov functions,

2. quadratic Lyapunov functions.

Definition 4.3. A differentiable copositive function V (x) : Rn → R is

i) linear if V (x) = vTx, for some v ∈ Rn, v� 0,

ii) quadratic copositive if V (x) = xTPx, for some matrix P = P T ∈ Rn×n, such
that xTPx > 0, ∀x > 0,

iii) quadratic positive definite if V (x) = xTPx > 0, for some matrix P = P T �
0 ∈ Rn×n, ∀x 6= 0.

Definition 4.4. A copositive Lyapunov function is said to be
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1. a Linear Copositive Lyapunov Function (LCLF) for (4.1) if and only if

vTAkx < 0, ∀k ∈ I and ∀x > 0, which implies:

vTAk � 0, ∀k ∈ I.
(4.13)

2. a Quadratic Copositive Lyapunov Function (QCLF) for (4.1) if and only if

xT [ATk P + PAk]x < 0 ∀k ∈ I and ∀ x > 0. (4.14)

3. a Quadratic Positive Definite Lyapunov Function (QPDLF) for (4.1) if and
only if

xT [ATk P + PAk]x < 0, ∀k ∈ I and ∀x > 0. (4.15)

Theorem 4.2. [24] Given a system of type (4.1), the following facts are equivalent:

i) there exists v � 0 s.t. vTA(α) = vT
∑M

k=1 αkAk � 0,∀α = (α1, . . . , αM ) ∈
AM ,

ii) there exists v� 0 s.t. V (x) = vTx is an LCLF for (4.1),

iii) there exists P = P T of rank 1 s.t. V (x) = xTPx is a QCLF for (4.1),

iv) for each map π : {1, 2, . . . , n} → I the matrix
Aπ $

[
col1(Aπ(1)) col2(Aπ(2)) . . . coln(Aπ(n))

]
is Hurwitz,

v) the convex hull of the columns of A $ [A1 . . . AM ] ∈ Rn×nM does not intersect
the positive orthant of Rn,

vi) for every choice of M non-negative diagonal matrices Dk, k ∈ I, with
∑M

k=1Dk =

In, so
∑M

k=1AkDk is a Metzler Hurwitz.

Now we see what is the relationship between LCLF, QPDLF and QCLF.

Theorem 4.3. Given a system of type (4.1) we have:
if there exists a LCLF for (4.1), implies that there exists a QPDLF for (4.1) and,
in turn, this implies the existence a QCLF for (4.1).

Proof. 1) =⇒ 2) Let v � 0 be such that V (x) = vTx is an LCLF for (4.1).
Define P

.
= vvT + ξIn, where ξ is a positive parameter to be chosen. We want to

show that V (x) = xTPx is a QPDLF for (4.1). We have that P is symmetric and
positive definite P = P T � 0, since xTPx = (vTx)2 + ξ||x||2 ≥ 0 and

xTPx = (vTx)2 + ξ||x||2 = 0 ⇐⇒ x = 0.

Finally, for every x > 0 and every k ∈ {1, . . . ,M},
xT (ATk P + PAk)x = (xTATk v)(vTx) + (xTv)(vTAkx) + xT [Akξ + ξAk]x.

Set K
.
= {x ∈ Rn+ : ||x|| = 1}. K is a compact set and hence, by the Weiestrass

theorem, there exist

−α .
= maxx∈K,k∈{1,...,M}(v

Tx)(vTAkx) < 0

and

β
.
= maxx∈K,k∈{1,...,M}

∣∣xTAkx∣∣ ≥ 0.



4.2. EXPONENTIAL STABILITY OF CONTINUOUS-TIME POSITIVE SWITCHED SYSTEMS41

If ξ ∈ (0, α/β), then for every x ∈ K
xT (ATk P + PAk)x = 2(vTx)(vTAkx) + 2ξ

(
xTAkx

)
≤ −2α+ 2ξβ < 0.

On the other hand, for any x ∈ Rn+, x 6= 0, we have x = ||x|| · x̄, with x̄
.
= x/||x|| ∈

K. Therefore,

xT (ATk P + PAk)x = ||x||2
(
2(vT x̄)(vTAkx̄) + 2ξx̄TAkx̄

)
≤ ||x||2 (−2α+ 2ξβ) < 0,

and so it is concluded the proof.
2) =⇒ 3) is obvious.

�

Note that the existence of an LCLF is a more restrictive condition with respect
to the existence of a QPDLF, as shown in the following example.

Example
Consider the 2-dimensional positive switched system (4.1), withM = 2 and matrices[
−1 1
1 −3

]
and

[
−3 1
1 −1

]
.

It is not possible to find LCLF, since the matrix

Aπ = [col1 (A1) col2 (A2)] =

[
−1 1
1 −1

]
is not Hurwitz. However it is possible to verify that both A1+AT1 ≺ 0 and A2+AT2 ≺
0, which means that V (x) = ||x||2 = xTx is a QPDLF.

Remark. The existence of a QCLF for the p.s.s. (4.1) of size n is also induced by
the existence of a LCLF in an extended space of size n2.

Stability under arbitrary switching can be checked via linear programming tech-
niques by searching for LCLFs for systems of type (4.1).

4.2.2 Stability and periodic switching signals

Can we focus only on periodic switching signals in D0?
The question is if we can focus on periodic switching signals σ only, in the case of
positive switched system of type (4.1), to say that it is exponentially stable.
For a continuous-time system it is proved that for low-dimension systems, periodic
stability is sufficient for uniform exponential stability [35].
In the general case, periodic stability doesn’t ensure uniform exponential stability.
However, if the switched system is periodically exponentially stable with some finite
“robustness margin” ξ, then it is u.e.s., as stated by the following theorem:

Theorem 4.4. [24] A switched linear system is u.e.s. under arbitrary switching, if
and only if there exists ξ > 0 such that for every period T > 0 and every periodic
switching signal σ ∈ D0 of period T, the spectral-radius of Φ(T, 0, σ) is smaller than
1− ξ.

In the following part, with the notation σ = σ̄, we mean that we are taking a
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specific switching signal σ̄.

Proposition 4.6. Assuming σ = σ̄ and q a strictly positive vector, q � 0, the
time-varying system (4.1) corresponding to σ̄ is u.e.s. if and only if the differential
inequalities

ṙ(t)T + r(t)TAσ̄(t) � −qT (4.16)

have a solution r(t) ∈ Rn+, differentiable almost everywhere, and s. t.

r̄ < r(t) < r̂, t ≥ 0, (4.17)

for some r̄� 0 and r̂� 0.

Proof. Let r(t) be a solution of (4.16) with the mentioned proprieties, and let
γ > 0 be such that r̄ � γ1n. V (x, t) = rT (t)x(t) is a time-varying copositive
function and it is worth noticing that it is well defined since V (x, t) ≤ r̂Tx(t), ∀t ≥
0. Standard computations show that V̇ (x, t) < −ξγ−1V (x, t), ∀t ≥ 0,∀x > 0,
where ξ is any positive number such that q� ξ1n.
For, V (x, t)� r̄Tx(t), x(t) > 0, the uniform exponential stability follows.
On the contrary, assume that the system (4.1), for σ = σ̄, is uniformly exponentially
stable, and define

r(t)
.
=

∫ ∞
t

Φ(τ, t, σ̄)(q + ξ1n)dτ,

where Φ(τ, t, σ̄) is the state transition matrix associated with Aσ̄(t), and ξ > 0. The
exponential stability of the time-varying system ensures that there exist C > 0 and
β > 0 such that ||Φ(τ, t, σ̄)||∞ < Ce−β(τ−t), for every τ > t ≥ 0. Taking the infinity
norm of r(t), one gets ||r(t)||∞ ≤ C

β ||q + ξ1n||∞ and hence r(t) < r̂
.
= C

β (q + ξ1n),
t ≥ 0. So r(t) exists and is uniformly bounded. Also, as Aσ(t) is Metzler at every
time t ≥ 0, Φ(τ, t, σ̄) is positive at every τ > t ≥ 0 and there exists r̄� 0 such that
r(t) > r̄, t ≥ 0.
In the end, a long computation shows that r(t) satisfies

ṙ(t)T + r(t)TAσ̄(t) = −(qT + ξ1Tn )� −qT . (4.18)

�

4.2.3 Dual positive switched systems

In this subsection we give some information about the connections between the
uniform exponential stability of the positive switched system (4.1) and the uniform
exponential stability of the dual system of (4.1), namely the positive switched system

ż(t) = ATσ(t)z(t), (4.19)

whose k-th subsystem is described by the Metzler Hurwitz matrix ATk , which is the
transposed version of the one characterizing the k-th subsystem of (4.1).
Considering both the Proposition 4.3 and Proposition 4.4, we can conslude that
the u.e.s. of the dual system (4.19) of (4.1) is a necessary and sufficient condition
for the u.e.s. of (4.1). Thus the existence of an LCLF for the dual system (4.19)
ensures the uniform exponential stability of (4.1), but the viceversa doesn’t hold.
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Proposition 4.7. The existence of a LCLF for (4.1) doesn’t ensure the existence
of a LCLF for dual one (4.19), as shown in the following

Example
Consider the two matrices

A1 =

[
−1 1/2
1 −2

]
and A2 =

[
−3 1
1/3 −1

]
.

It is easly seen that no LCLF can be found, but the dual system has the LCLF
Ṽ (z) = [1 1]T z.

Proposition 4.8. [24] Given a continous-time positive switched system (4.1), if
there exist v, ξ ∈ Rn+ for which holds

vTAk � 0 and Akξ � 0, ∀k ∈ I; ,

then

D := diag

(
[v]1
[ξ]1

, . . . ,
[v]M
[ξ]M

)
is positive definite and holds ATkD +DAk ≺ 0, ∀k ∈ I.

Example
Consider the two matrices

A1 =

 −1 0 0
1/16 −1 1
1/100 1/10 −1

 and A2 =

 −1 0 0
1/100 −1 1
1/100 1/100 −1

 .
By considering v = [1 1 1]T and ξ = [1 1 2]T we get both vTAk � 0 and Akξ � 0,
for k = 1, 2. On the other hand, P = diag{1, 1, 1/2} is a QPDLF for the positive
switched system described by these two matrices.

4.2.4 Rate of convergence

In some cases, verifying the exponential stability of the system is not enough.
Nonetheless, it is meaningful to understand if the convergence to zero of the system
trajectories is sufficiently fast.

Proposition 4.9. Given an exponentially stable positive switched system (4.1),
we say that it is exponentially stable with rate of convergence β̄ if and only if the
perturbed positive switched system

ẋβ(t) = [βIn +Aσ] xβ(t)

is exponentially stable ∀β < β̄.
The solutions of the perturbed system and the unperturbed one, corresponding to the
same initial condition x0 and to the same switching signal σ, named xβ(t; x0, σ)
and x(t; x0, σ) respectively, are related as follows:

xβ(t; x0, σ) = eβtx(t; x0, σ), ∀t ≥ 0.
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4.3 Stability of the two models of HIV under therapy

In this subsection, we study the stability of the two models of HIV under therapy,
proposed in Section 3.2.2 and in Section 3.2.2.
By using the Proposition 4.1, we find that the necessary condition for the simpler
model, with state matrices given by (3.13), do not hold. In fact

1. both the state matrices are Metzler, but

2. both the state matrices are not Hurwitz.

For what concerns 1. it is sufficient to analyse the structure of the state matrices.

Ak =


ρ1,k − δV 0 0 0

0 ρ2,k − δV 0 0
0 0 ρ3,k − δV 0
0 0 0 ρ4,k − δV

+µ


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , k = 1, 2.

have the off-diagonals entries which are non-negative. In fact, all the non di-
agonal terms of matrices Ak, with k = 1, 2, are the mutation rate µ, equal to

10−4
[

mm3

day·copies

]
, therefore greater than zero.

For what concerns 2. we compute the eigenvalues of Ak, with k = 1, 2, with the
help of MATLAB® , and we find that the mentioned eigenvalues do not stay in the
left s-plane. In fact, we obtain that

1. in SCENARIO I,
∆A1 = {−0.1901, 0.0049001, 0.0049001, 0.0051001} and
∆A2 = {−0.1901, 0.0049001, 0.0049001, 0.0051001},

2. in SCENARIO II,
∆A1 = {−0.23, 0.004999, 0.004999, 0.015001} and
∆A2 = {−0.19, −0.015, −0.015, 0.0050006},

3. in SCENARIO III,
∆A1 = {−0.23, −0.0050003, −0.0050003, 0.025} and
∆A2 = {−0.23, −0.015, −0.015, 0.0050006}.

We can conclude that the necessary stability condition given by Proposition 4.1
does not hold, the system given by both the equations (4.1) and (3.13) is not stable,
when using the parameter values of the three cases in Table 3.3.
By making the same considerations for the great model in subsection 3.2.2, with the
help of MATLAB®, we obtain that both the state matrices are Metzler. However,
the necessary condition of the Proposition 4.1 does not hold, because both the state
matrices are not Hurwitz.
In fact, by defining

� ∆̃A1

.
= the set of elements in ∆A1 which have real part strictly greater than

zero and

� ∆̃A2

.
= the set of elements in ∆A2 which have real part strictly greater than

zero,
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we have

∆̃A1 = {0.0179, 0.1073, 0.2042, 0.0179, 0.1073, 0.2042, 0.0179, 0.1073, 0.2042, 0.0179, 0.1073, 0.2042}
and

∆̃A2 = {0.2042, 0.2042, 0.2042, 0.2042}.

Since ∆̃A1 and ∆̃A2 are nonempty sets, A1 and A2 are not Hurwitz.
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Chapter 5

Stabilization

In this chapter we provide some basic concepts about the stabilization problem of
p.s.s. and we investigate the stabilizability of the models of HIV under therapies
introduced in Chapter 3.
The stabilization problem is a fundamental problem which is of great interest in
control theory, because the capacity of stabilizing a system is one of the main goals
of control theory. However, it is worth highlighting that it is not a simple problem.

5.1 Stabilization of positive switched systems

The stabilization problem consists in finding a control input which drives the system
trajectory from an initial state x(0) to the null state at infinite time, namely the
state-trajectoriy has to converge to zero.
With the constraint of dealing with the important class of p.s.s. of the type of
(4.1), the standard stabilization problem becomes the so-called standard stabiliza-
tion problem for positive switched systems.
The main restraint of the stabilization problem for positive switched systems w.r.t.
the general case stabilization one (i.e. stabilization of a non-necessarily positive
system), is that the initial state x(0) and the system trajectory x(t), for t ∈ R+,
have to stay in the positive orthant, for t ∈ R+. Moreover the control input in the
case of p.s.s. of the type of (4.1) is the switching signal σ, and, as in the standard
systems, the control input has to be choosen in an appropriate manner. Thus in
many cases the switching signal σ is not a completely arbitrary switching signal.
It is worth noticing that in the case in which we want to choose σ such that the
trajectory x(t), for t ∈ R+, converges to zero with a guaranteed rate of convergence
β̄, we can reduce this problem to the standard stabilization problem, by using the
perturbed system ẋβ(t) =

[
Aσ(t) + βIn

]
xβ(t) and by demonstrating that it is sta-

bilizable ∀β < β̄.
In order to stabilize the continous-time p.s.s. of type (4.1) we can either resort to
the open loop stabilization or to the closed loop stabilization (which is also called
feedback stabilization). In the case of the open loop stabilization we have that the
switching signal σ(t) depends only on the time (σ(t) = Ψ(t)), indeed, in the case
of the feedback stabilization, the switching singnal σ(t) depends on both the time t
and the state value at the same time t, namely the switching signal σ(t) is a function
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of kind σ(t) = Ψ(x(t), t).
There is an interesting propriety of p.s.s. which makes them differ from the standard
switched systems. In a p.s.s. the open loop stabilization and feedback stabilization
are equivalent, as a consequence of the following theorems.

Theorem 5.1. [24] For p.s.s. the following statements are equivalent:

(i) there exists x̄0 � 0 and σ̄(t), t ∈ R+, such that the corresponding trajectory
x̄(t) converges to zero,

(ii) the p.s.s. is feedback stabilizable, which means that there exists σ(t) = Ψ(x(t), t)
such that ∀ x0 > 0 the corresponding trajectory x(t) converges to zero,

(iii) the p.s.s. is consistently stabilizable, which means that ∀ x0 > 0∃σ(t) such
that the corresponding trajectory x(t) converges to zero.

In the following we refer to p.s.s. that satisfy any of the equivalent conditions
in Theorem 5.1 with the term stabilizable.

Theorem 5.2. [24] If a standard switched system is consistently stabilizable, then
it is open-loop stabilizable. Moreover if a system is consistently stabilizable, then
it can be stabilized by resorting to periodic switching signal σ(t), t ≥ 0. And open
loop stabilization (when achievable) can be always obtained by resorting to periodic
switching signal σ(t), t ≥ 0.

From [15] we have the subsequent

Proposition 5.1. Given a family A = {A1, . . . , AM} of n×n matrices, the follow-
ing statements are equivalent:

i) there exists a LCLF for the family A, i.e. there exists a vector v � 0 such
that the function V (x) is LCLF for all the subsystem with state matrices Ak,
for k ∈ I = {1, . . . ,M},

ii) ker+ [In −A1 −A2 −A3 . . . −AM ] = {0}1,

iii) the convex hull of the vector family CA
.
= {colj(Ak): j ∈ {1, . . . , n}, k ∈ I}

does not intersect the positive orthant Rn+.

Proof. i)⇐⇒ ii) First of all, we notice that

{v� 0 : ATk v� 0, ∀k ∈ {1 . . . ,M} =

v ∈ Rn+ :


In
−AT1

...
−ATM

v� 0

 .

1The positive kernel of a matrix A is the intersection of its kernel and the positive orthant,
namely ker+A = kerA ∩ Rn+.
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On the other hand, the set of right-hand side in the previous identity is the interior
of the closed convex cone

K∗ .=

v ∈ Rn+ :


In
−AT1

...
−ATM

v ≥ 0

 ,

which, in turn is the dual cone of the polyhedral cone

K .
= Cone[In −A1 . . . −AM ].

Thus, the set {v � 0 : ATk v � 0, ∀k ∈ I} is nonempty if and only if the dual
cone K∗ is solid, and this happens if and only if the cone K is pointed. However,
as [In −A1 . . . −AM ] is devoid of zero columns, it easly seen that K is pointed if
and only if the only non-negative vector in the kernel of [In − A1 . . . − AM ]. So
i) and ii) are equivalent statements.
ii) ⇐⇒ iii) There exists a positive vector in ker[In − A1 . . . − AM ] if and only if
there exist non-negative vectors y, x1, . . . , xM not all of them equal to zero, such
that

y =
M∑
k=1

Akxk =

M∑
k=1

n∑
j=1

colj(Ak)[xk]j .

Possibly rescaling y and the several non-negative coefficients [xk]j , we can assume∑M
k=1

∑n
j=1[xk]j = 1, which amounts to saying that the convex hull of the family

vectors CA includes a non-negative vector. So we can deduce that ii) and iii) are
equivalent statements.

�

5.2 Feedback stabilization and Lyapunov functions

To choose a feedback stabilization strategy is better than to choose an open loop
stabilization one. In fact the first type is more robust to parameter variations than
the second one, because the feedback stabilization design takes into consideration
the actual state at time t, x(t), and in this way it has infomation about the real
parameter values of the system.

Definition 5.1. A function V (x) is a Copositive Control Lyapunov Function (CCLF)
for the continuous-time p.s.s. ẋ(t) = Aσ(t)x(t) of type (4.1) if exists a suitable
feedback switching law σ(t) = Ψ(x(t), t) such that V (x) is a copositive Lyapunov
function for ẋ(t) = Aσ(t)x(t) of type (4.1).

It is equivalent to require:

1) V (x) > 0,∀x > 0 and V (0) = 0,

2) DAσxV (x) < 0, with DAσxV (x)
.
= limh→0+

V (x+hAσx)−V (x)
h < 0, using a

suitable feedback switching law σ(t) = Ψ(x(t), t), for t ∈ Rn+.
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For a standard switched system the existence of convex control Lyapunov func-
tions is a sufficient condition for the stabilizability:
if exists a convex control Lyapunov function the standard switched system is stabi-
lizable, but if we can’t find functions of the mentioned type, the standard switched
system can be stabilizable. We ask ourselves if there exists a class of control Lya-
punov functions whose existence ensure the stabilizability of continuous-time p.s.s.,
namely we try to understand if exists a necessary and sufficient condition to have
stabilizability of a p.s.s. of type (4.1).
First of all, we give a theorem that provides a necessary condition to have stabiliz-
ability of a p.s.s. of type (4.1).

Theorem 5.3. If the p.s.s. (4.1) is stabilizable, then it admits a concave copositive
control Lyapunov function V (x), positively homogeneous of order one (i.e. V (αx) =
αV (x), with α > 0).

The existence of a concave copositive control Lyapunov function V (x), positively
homogeneous of order one, is a necessary condition for having a stabilizable p.s.s..
For standard switched system, we have that a necessary condition for stabilizability
is that the standard switched system admits a smooth2, convex copositive Lyapunov
function, so we ask orselves if to have a smooth copositive concave homogeneous
Lyapunov function (of order one) is a sufficient condition to have stabilizability of
a p.s.s.. It is proved to be true only for two-dimensional systems.

Theorem 5.4. [23] For a p.s.s. of type (4.1) the following statements are equivalent
and sufficient, but in general not necessary for exponential stabilizability:

i) The system admits a copositive, positively homogeneous of order one, smooth
control Lyapunv function s.t.

min
k∈{1,...,M}

∇V (x)Akx ≤ −β∗V (x), ∀x > 0, for some β∗ > 0; (5.1)

ii) there exists α ∈ AM s.t. A(α) =
∑M

k=1 αkAk is Hurwitz,

iii) the system admits a linear copositive control Lyapunv function VL(x) = vTx,
with v� 0.

Proof. For semplicity, we suppose that the state matrices are irreducible3. The
standard case may be deduced from the irreducible one, by considering the irre-
ducible matrices Ak + ξ1n1

T
n , with ξ > 0 and then considering ξ → 0+.

i)⇒ iii) Suppose that there exists an Hurwitz convex combination

A(α) =

M∑
k=1

αkAk, αk ≥ 0,

M∑
k=1

αk = 1,

and let v � 0 be the strictly positive left eigenvector of A(α) associated with
the Frobenius eigenvalue λF < 04. For the hypothesis that all the state matrices

2With ”smooth”, we mean continously differentiable.
3A Metzler matrix is irreducible when there not exist a permutation matrix Π s.t.

ΠTAΠ =

[
A11 A12

0 A22

]
,

A11 ed A22 are square nonvacous matrices.
4λF ∈ ∆A

.
= the Frobenius eigenvalue which is such that <(λF ) > <(λ), ∀λ ∈ ∆A and λ 6= λF .
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are irreducible, all the matrices A(α) are irreducible. By considering the linear
copositive Lyapunov function VL(x) = vTx, by linearity for every x > 0 we have

min
k=1,...,M

vTAkx ≤ vTA(α)x = λFvTx = λFVL(x),

with λF < 0.
So we can conclude that the switching strategy σ(t) = arg minkv

TAkx(t) is sta-
bilizing. This shows that VL(x) = vTx is a linear copositive control Lyapunov
function.
iii) ⇒ ii) It is obvious, since a linear copositive Lyapunov function is smooth and
positively homogeneous of order one, and satisfies (5.1).
i) ⇒ ii) Here we report only a draft of the proof and for the whole proof see [23].
Assume that there exists a copositive, positively homogeneous of order one, smooth
control Lyapunov function, for which

min
k
∇V (x)Akx ≤ −β∗V (x),

for some positive β∗ > 0. For any β < β∗, consider the following “relaxed condi-
tion”:

min
α∈AM

∇V (x)A(α)x ≤ −βV (x). (5.2)

For each x > 0 define the convex set-valued map,

Ω(x) = {α ∈ AM : ∇V (x)A(α)x ≤ βV (x)}.
The set Ω has a non-empty relative interior in AM for any x > 0, because we choose
β < β∗, and by the continuity of the gradient, it is a convex continuous set-valued
map. Therefore, there exists a continuous function ᾱ(x), such that ᾱ(x) ∈ Ω(x),
for all x� 0.
Now we take the following two functions respectively from An to AM and vice versa:

x→ ᾱ(x)

and
α→ vF (α),

where vF (α) is the strictly positive Frobenius eigenvector associated with A(α),
normalized such that 1TnvF (α) = 1. Note that vF (α) is a positive continuous
function of α. The composed map from An to AM

x→ ᾱ(x)→ vF (ᾱ(x))

is continuous and admits a fixed point x̃, because An is convex and compact. For
such point we have

∇V (x̃)A(α̃)x̃ = λ̃F∇V (x̃)x̃ ≤ −βV (x̃),

where α̃
.
= ᾱ(x̃) and λ̃F is the Frobenoius eigenvalue associated with A(α̃). On the

other hand, any positively homogeneous smooth function is such that

V (x) = ∇V (x)x.

This implies that the last inequality can be written as

λFV (x̃) ≤ −βV (x̃)

and so λF < 0. This ensures that A(α̃) is Hurwitz.
�

A stabilizing strategy is σ(t) ∈ {σ(t) s.t. arg min
k∈I

vTAkx(t)}.
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Proposition 5.2. A second order continuous-time p.s.s. is stabilizable if and only
if exists α ∈ AM such that A(α) is Hurwitz, [23].

For the following part, for semplicity we assume that Ak, with k ∈ {1, . . . ,M},
have to be irreducible.
The previous discussion suggests that have two cases:

1. Lucky case: If we find a Hurwitz convex combination of the systems’ matrices
Ak, k ∈ I, then a linear control Lyapunov functions can be inferred from its
left Frobenius eigenvector.

2. Unucky case: We can’t find a Hurwitz convex combination of the systems’
matrices Ak, k ∈ I, then we can’t find a smooth, positively homogeneous of
order one, control Lyapunov function, so we have to find more general classes
of control Lyapunov functions, as the minimum of linear copositive Lyapunov
functions.

It is because we negate one of the equivalent conditions that we have in the previous
theorem (Theorem 5.4) is equivalent: to negate (ii) is equivalent to negate (i).
The existence of linear copositive control Lyapunov function can be known by using
linear programming techniques.

Definition 5.2. VL(x) = vTx is a Linear Copositive Control Lyapunov Function
(LCCLF), with v � 0, a strictly positive vector, if and only if for any vector x in
the closed positive simplex An, there is at least one choice of the matrix Ak such
the derivative of VL along the k-th subsystem is negative:

min
k=1,...,M

vTAkx < 0, ∀x ∈ An.

The previous condition is not verified if and only if the sets Pk :=
{
x ∈ An : vTAkx ≥ 0

}
,

for k = 1, . . . ,M, have a non-empty intersection with the positive orthant.

It is worth exploring what is the relation between the existence of copositive control
linear, quadratic positive definite and quadratic Lyapunov functions.
All these functions are smooth and the condition that the functions are decreasing
along the systems’ trajectories can be checked by verifying that

min
k=1,...,M

∇V (x)Akx < 0, ∀x > 0.

Theorem 5.5. If exists a LCCLF, then exists a QCCPDLF and this, in turn,
implies the existence of a QCCLF.

We introduce the definition of the convex hull of vectors v1, . . . , vn in Rn,
because it will be useful subsequently.

Definition 5.3. The convex hull of vectors v1, . . . , vn in Rn is the set of vectors{
n∑
k=1

αkvk : (α1, . . . , αn) ∈ An

}
,

where An is the simplex set5.

5Simplex An $
{
α = (α1, ..., αn) ∈ Rn+ :

∑n
i=1 αi = 1

}
.
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5.3 Other feedback stabilization techniques

The purpose of this subsection is to provide additional stabilization techniques for
positive switched systems with respect to the ones investigated previously, in order
to drive the state to zero starting from any positive initial condition.
In particular, we consider two feedback stabilization techniques:

1. one based on Lyapunov Metzler inequalities, the feasibility of such inequalities
is a sufficient condition for stabilizability (of continuous-time p.s.s.), but their
existence is not necessary;

2. one based on piecewise LCCLF (Linear Copositive Control Lyapunov Func-
tion), the existence of such functions is a sufficient condition for stabilizability
(of continuous-time p.s.s.).

5.4 Lyapunov Metzler Inequalities (LMIs)

Previously we focused our attention on linear and quadratic copositive control Lya-
punov functions, but this strategy is too restrictive.
A different approach to the stabilization problem consists in searching for sufficient
conditions for the existence of copositive control Lyapunov functions of the type:

V (x) = min
k=1,...,M

Vk(x),

with Vk(x) suitable smooth functions and ∀ x > 0 ∃k ∈ I such that V̇k(x) < 0.
Lyapunov inequalities parametrized by the entries of a Metzler matrix (this idea
was first proposed by [27]) can be seen as quadratic matrix inequalities, which are
named Lyaunov Metzler inequalities.
We denote with PM :=

{
Λ ∈ RM×M : Λ1M = 0

}
, with Λ a Metzler matrix.

The following theorem is taken from [23].

Theorem 5.6. If exist strictly positive vectors vk � 0, k ∈ I and M(M − 1)
non-negative parameters λkj , with k, j = 1, . . . ,M with k 6= j s.t. the following
Lyapunov Metzler inequalities hold:

ATk vk +
M∑

j=1,j 6=k
λkj(vj − vk)� 0, k = 1, . . . ,M, (5.3)

then the continuous-time p.s.s. of type (4.1) is stabilizable. If it is the case, the
stabilizing state feedback laws are given by

σ(t) ∈ {σ(t) s.t. arg min
l=1,...,M

vTl x(t)}. (5.4)

Proof. Consider the proposed piecewise linear copositive control Lyapunov func-
tion V (x) = mink=1,...,MvTk x. Let I(x) be the sets of all indices l such that
vTl x ≤ vTr x (i.e. (vl − vr)

Tx ≤ 0) for every r 6= l. If k is the active mode at
time t, σ(t) = k, computing the Dini derivative of V (x) leads to

D+V (x) = min
r∈I(x)

vTr Akx ≤ vTkAkx,
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and

D+V (x) <
M∑

j=1,j 6=k
λkj(vk − vj)

Tx ≤ 0.

�

We do some observations about the previous theorem:

i) the compact form of the LMIs is vT Ã � 0, where v is an nM-dimensional
vector whose k-th block is vk, k ∈ {1, . . . ,M} and

Ã =


A1 λ21In . . . λM1In
λ12In A2 . . . λM2In

...
... . . .

...
λ1MIn λ2MIn . . . AM

 ,

ii) the LMIs are linear when we fix the Metzler matrix Λ,

iii) the search of Λ ∈ PM is equivalent to have that the associated augmented
matrix Ã is Hurwitz.

Proposition 5.3. The continuous-time p.s.s. is stabilizable if there exists Λ ∈ PM ,
vectors vk � 0, k ∈ {1, . . . ,M}, and a scalar T > 0, s.t.

vTkAk +
M∑

j=1,j 6=k
λkj(v

T
j e

AjT − vTk )� 0, k = 1, . . . ,M.

Let tl, l = 0, 1, . . . denote the switching istants with t0 = 0. Then it is proved that
the system is stabilizable, by choosing

σ(t) =

{
σ(t−), t− tl ≤ T or vTk x ≤ vje

AjT x, ∀j 6= k;
arg minkv

T
k e

AkT x, otherwise.

Note that the switching laws are a mixed of open-loop switching rules and closed-loop
ones.
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5.5 Picewise Linear Copositive Control Lyapunov func-
tions

Now we provide a necessary and sufficient condition for positive exponential stabi-
lizability.

Proposition 5.4. A continuous-time p.s.s. is exponentially stabilizable if and only
if exists N ∈ Z+ and exist vk � 0, k ∈ {1, . . . , N} s.t.

V (x) = mink∈{1,...,N}v
T
k x

is a control copositive Lyapunov function.

It is worth noticing that all the sufficient conditions for stabilizability of p.s.s.
which we have seen in the previous sections are based on the existence of Lyapunov
functions, or on the feasibility of the LMIs. And the existence conditions are very
difficult to verify or, vice versa, it is very hard to demonstrate that these type of
conditions don’t hold.

5.6 Stabilizability of the two HIV models under thera-
pies models

In this section, we apply some theorems which we presented in the previous sections
to try to find out if the HIV under therapies models are stabilizable, or not.
For clinical data, we expect that sufficient conditions for stabilizability of the intro-
duced HIV under therapies models don’t hold.
For Proposition 5.1, we know that if we find that ker+[In − A1 − A2] doesn’t con-
tain only the null-vector it is equivalent to the nonexistence of LCLFs for the family
A = {A1, A2}.
Thus, with MATLAB®, we compute the orthonormal basis of the kernel of the
matrix

[In −A1 −A2] .

We only report the results for the smaller model (the 4 variant, 2 drug combination
model in Section 3.2.2). We do not report the computations for the case of the
great model6 (the 16 variant, 2 drug combination model in Section 3.2.2), because
it entails formulas which are too big.
Using the parameters of the symmetric scenario of Table 3.3, we obtain:

= ker+ [In −A1 −A2] = [v1 v2 . . .v12] =

= ker+


1 0 0 0 0, 1900 −0, 0001 −0, 0001 0 0, 1900 −0, 0001 −0, 0001 0
0 1 0 0 −0, 0001 −0, 0050 0 −0, 0001 −0, 0001 0, 1900 0 −0, 0001
0 0 1 0 −0, 0001 0 0, 1900 −0, 0001 −0, 0001 0 −0, 0050 −0, 0001
0 0 0 1 0 −0, 0001 −0, 0001 −0, 0050 0 −0, 0001 −0, 0001 −0, 0050

 .

6It is possible to prove that there exists a non-null vector in ker+ [In −A1 −A2], using Aσ,
σ = 1, 2 of the great model.
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We compute an orthonormal basis of the ker[I4 − A1 − A2], whose vectors we
display in the following matrix:

−1.0000 0 −0.0022 0
0.0016 −0.7071 −0.7071 −0.0005
0.0016 0.7071 −0.7071 −0.0005

0 0 0.0007 −1.0000

 .
= [ṽ1ṽ2ṽ3ṽ4] .

Now, we try to find non-null vectors in ker+[I4 −A1 −A2].
The first elements of vectors ṽk, with k = 1, . . . , 4, are negative or null. Thus, to
obtain ker+[I4 −A1 −A2], we compute the linear combinations

α̂ṽ1 + β̂ṽ2 + γ̂ṽ3 + δ̂ṽ4,

with α̂ = γ̂ = 0 or with α̂ < 0 and γ̂ < 0.
Thus, considering the first case, we obtain

β̂ṽ2 + δ̂ṽ4.

By choosing β̂ = δ̂ = −1, we obtain a positive vector which is non-null: β̂ṽ2 + δ̂ṽ4 ∈
R4

+/{0}.
So, by applying the Proposition 5.1, if we find a non-null positive vector which be-
longs to ker+ [In −A1 −A2]. This is equivalent to the nonexistence of a LCLF7

for the family A = {A1, A2}. Thus, by using Theorem 5.4, we can infer that a
sufficient condition for stabilizability doesn’t hold.

7It is worth noticing that some articles’ authors, as E. Fornasini, use CLCLF to identify a
common linear Lyapunov function for the M subsystems which is a linear copositive Lyapunov
function for each of them. For Definition 4.13 is Section 4.2.1, it is easy to verify that the definition
of LCLF used in this work is equivalent to the Fornasini’s definition.



Chapter 6

Optimal and Suboptimal
Control for p.s.s.

In the following chapter, we address the problem of Highly Active Antiretroviral
Therapy (HAART) scheduling, using a control theoretic approach.
First of all, we deal with the optimal control problem and we also explain its great
criticality, which is the computation the optimal solution. The computation of
the optimal law is a hard task to be accomplished, even numerically. For this
reason, looking for suboptimal solutions may be convenient. In this regard, two
different approaches are considered. Firstly, switching strategies designed by means
of CLFs are tested using the 4 variant, 2 drug combination model. Secondly, a
Luenberger observer is designed in order to obtain an approximation of the state,
by exploiting information given by the output of the nonlinear model. Thus, we find
out a suboptimal control based on the state estimate (a Guaranteed Cost control)
and we apply it to the nonlinear model. Finally, we briefly explain another way
to compute an optimal control law, which is the Model Predictive Control (MPC).
We use the state estimate to compute the MPC, then we apply it to the nonlinear
model. Most of the information in this chapter is taken from [6] and [22].

6.1 Optimal control

We consider the switched positive system on a finite time interval,

ẋ(t) = Aσ(t)x(t), t ∈ R+,

x(0) = x0.
(6.1)

Where x(t) ∈ R+
n is the state variable vector, σ(t) the switching signal, x0 ∈ Rn+

the initial condition and Ak, for k = 1, . . . ,M are Metzler matrices.
We introduce the cost functional which is the tool to compute the optimal control.
The cost functional, in this kind of problems, has to be minimized over all admissible
switching sequences and is given by

J(x0,x, σ) =

∫ tf

0
qTσ(t)x(t)dt+ cTx(tf ), (6.2)

where x(t) is a solution of (6.1) and σ(t) is a switching signal. Vectors qk, k =
1, . . . ,M and c are assumed to be positive.

57
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The optimal switching signal, the corresponding trajectory and the optimal cost
functional are named as σo(t,x0), xo(t) e J(x0,x

o, σo), respectively.

Theorem 6.1. Let σo(t,x0) : [0, tf ] × Rn+ → I = {1, . . . ,M} be an admissible
switching signal relative to x0, and xo(t) be the corresponding trajectory. Let πo(t)
denote a positive vector solution of the system of differential equations (the Pon-
tryagin equations)

ẋo(t) = Aσo(t,xo)x
o(t) (6.3)

− π̇o(t) = ATσo(t,xo)π
o(t) + qσo(t,xo) (6.4)

σo(t,xo) = argmin
k∈I

{
πoT (t)Akx

o(t) + qTk xo(t)
}
, (6.5)

with the boundary conditions xo(0) = x0 and πo(tf ) = c. Then σo(t,x0) is an
optimal switching signal relative to x0 and the value of the optimal cost functional
is

J(x0,x
o, σo) = πoT (0)xo. (6.6)

Proof. The scalar function

v(x, t) = πoT (t)x (6.7)

is the generalized solution of the Hamilton-Jacobi-Bellman (HJB) equation

0 =
∂v

∂t
+H

(
x(t), σo(t,x0),

∂v

∂x
(x, t)T

)
, (6.8)

where

H(x, σ, π) = qTσx(t) + πT (t)Aσx(t). (6.9)

Notice that the triple (xo, σo, πo) satisfies the necessary condition of the Pontryagin
principle, since

H(xo, σo, πo) ≤ H(xo, σ, πo), for σ = 1, . . . ,M. (6.10)

Moreover,
∂v

∂x
(x, t) = πo(t)T (6.11)

∂v

∂t
(x, t) = π̇o(t)Tx (6.12)

so that, for almost all t ∈ [0, tf ]

π̇(t)Txo(t) + qTσo(t,x0)x
o(t) + πo(t)TAσo(t,x0)x

o(t) = 0. (6.13)

Moreover it satisfies the boundary condition

v(xo(tf ), tf ) = πo(tf )Txo(tf ) = cTxo(tf ) (6.14)

and so the proof is completed. �

Notice that the computation of the optimal control law, as seen in Theorem 6.1,
is quite demanding. This is due to the two points boundary value problem that
requires a forward integration of the system (6.3), with a given initial condition,
and a back integration of (6.4), with fixed final condition.
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Theorem 6.1 is a generalization of the optimal control problem for autonomous lin-
ear switched positive systems (6.1) on a finite time interval [0, tf ] which uses the
subsequent cost functional to be minimized overall admissible switching sequences
[6]

J(x0,x, σ) =

∫ tf

0
qTx(t)dt+ cTx(tf ), (6.15)

where x(t) is a solution of (6.1) and σ(t) is a switching signal. Vectors q and c are
assumed to be strictly positive. (6.15) is a particular case of (6.2), as the weight-
vector q is constant w.r.t. the system Ak, for k = 1, . . . ,M which is active at a
specific instant t ∈ R+.
The optimal switching signal, the corresponding trajectory and the optimal cost
functional are identified as previously.
The Hamiltonian function relative to system (6.1) and cost functional (6.15) is given
by

H(x, σ, p) = qTx(t) + pTAσ(t)x(t) (6.16)

Theorem 6.2. Let σo(t,x0) : [0, tf ] × Rn+ → I = {1, . . . ,M} be an admissible
switching signal relative to x0 and xo(t) be the corresponding trajectory. Let πo(t)
denote a positive vector solution of the system of differential equations

ẋo(t) = Aσo(t,xo)x
o(t) (6.17)

− π̇o(t) = ATσo(t,xo)π
o(t) + q (6.18)

σo(t,xo) = argmin
k∈I

{
πoTAkx

o(t)
}
, (6.19)

with the boundary conditions xo(0) = x0 and πo(tf ) = c. Then σo(t,x0) is an
optimal switching signal relative to x0 and the value of the optimal cost functional
is

J(x0,x
o, σo) = πoT (0)xo (6.20)

Proof. The scalar function

v(x, t) = πoT (t)x (6.21)

is the generalized solution of the Hamilton-Jacobi-Bellman (HJB) equation

0 =
∂v

∂t
+H

(
x(t), σo(t,x0),

∂v

∂x
(x, t)T

)
, (6.22)

where

H(x, σ, p) = qTx(t) + pT (t)Aσx(t). (6.23)

In fact
∂v

∂x
(x, t) = πo(t)T (6.24)

∂v

∂t
(x, t) = π̇o(t)Tx (6.25)

so that, for almost all t ∈ [0, tf ]

π̇o(t)Txo(t) + qTxo(t) + πo(t)TAσo(t,x0)x
o(t) = 0. (6.26)
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Moreover, it satisfies the boundary condition

v(xo(tf ), tf ) = πo(tf )Txo(tf ) = cTxo(tf ) (6.27)

and so the proof is completed.

�

It is worth underlining that the values of optimal cost functionals (formula (6.6)
and (6.20)) in Theorem 6.1 and Theorem 6.2, respectively, are coincident, and the
optimal control laws of (6.5) and (6.19) are coincident too, upon assuming in (6.5)
qk = q, ∀k.

6.2 Guaranteed cost control

Due to the complexity of the exact solution of the general optimal control problem
(see Theorem 6.1 and Theorem 6.2), in this section we introduce a suboptimal,
guaranteed cost algorithm associated with the optimal control problem. To this
end, we define the simplex

Λ
.
=

{
λ ∈ RM :

M∑
k=1

λk = 1, λk ≥ 0

}
, (6.28)

which allows us to introduce the following piecewise copositive Lyapunov function:

v(x)
.
= min

k=1,...,M
αTk x=. min

λ∈Λ

(
M∑
k=1

λkα
T
k x

)
, (6.29)

where αk ∈ Rn, for k = 1, . . . ,M . The Lyapunov function in (6.29) is not differ-
entiable everywhere. In fact, if we define I(x) =

{
k : v(x) = αTk x

}
, then v(x) fails

to be differentiable for those x ∈ Rn+ such that I(x) is composed of more than one
element. Now, we denote by M the subclass of Metzler matrices whose columns
sum up to zero, that is all matrices Π

.
= [πi,j ], with i, j = 1, . . . ,M , with elements

πij ∈ R s.t.

πji ≥ 0 ∀j 6= i,

M∑
j=1

πji = 0, ∀i. (6.30)

Thus, any Π ∈M has an eigenvalue at zero, since cTΠ = 0, where cT = [1 1 1 . . . 1].

Theorem 6.3. Consider the linear positive switched system (6.1). Take any Π ∈
M and {α1, . . . , αM}, with αk ∈ Rn+, satisfying the coupled co-positive Lyapunov
inequalities:

ATk αk +

M∑
j=1

πjkαj ≺ 0, k = 1, . . . ,M. (6.31)

Then, the switching control rule, given by

σ(t)
.
= arg min

k=1,...,M
αTk x(t) (6.32)

makes the equilibrium solution x = 0 of system (6.1) globally asymptotically stable.
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Proof. Since the Lyapunov function (6.29) is not differentiable for all t ∈ R+,
we need to deal with the Dini derivative:

D+v(x(t)) = lim sup
h→0+

v(x(t+ h))− v(x(t))

h
. (6.33)

Assume, in accordance with (6.32), that at an arbitrary t ∈ R+, the state switching
control is given by σ(t) = k for some k ∈ I(x(t)). Therefore, remembering also that
(6.30) is valid for all Π ∈M and that αTj x ≥ αTk x(t) for all j = 1, . . . ,M , we have

D+v(x(t)) = lim
h→0+

sup
v(x(t) + hAkx(t))− v(x(t))

h
=

min
l∈I(x(t))

αTl Akx(t), ∀k

≤ αTkAkx(t) < −
M∑
j=1

πjkα
T
j x(t)

= −πkkαTk x(t)−
∑
j 6=k

πjkα
T
j x(t)

≤ −πkkαTk x(t)−
∑
j 6=k

πjkα
T
k x(t)

= −
M∑
j=1

πjkα
T
k x(t) = −αTk x(t)

M∑
j=1

πjk = 0,

(6.34)

which proves the theorem, since the Lyapunov function v(x(t)) defined in (6.29) is
radially bounded.

�

Remark. A necessary condition for the Lyapunov Metzler inequalities to be feasible
w.r.t. {α1, . . . , αM} is that the matrices Ak + πkkI have to be asymptotically stable
for all k = 1, . . . ,M . Hence ρ(Akk) < −πkk, where ρ(Akk) is the spectral radius of
the matrix Akk.

The following theorem gives a guaranteed cost associated with the switching law
introduced in formula (6.32).

Theorem 6.4. Consider the p.s.s. (6.1) and let the non-negative vectors qk for
k = 1, . . . ,M be given. Moreover, take any Π ∈ M and let {α1, . . . , αM}, with
αk ∈ Rn+ that satisfy the coupled copositive Lyapunov inequalities:

ATk αk +

M∑
k=1

πjkαj + qk ≺ 0, for k = 1, . . .M. (6.35)

The state-switching law control (6.32) makes the equilibrium solution x = 0 of the
system (6.1) globally asymptotically stable and∫ ∞

0
qTσ(t)x(t)dt ≤ min

k=1,...,M
αTk x0. (6.36)

Proof. If (6.35) hods, then (6.31) holds too, so we can say that the equilibrium
point x = 0 for system (6.1) is globally asymptotically stable, under the control law
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(6.32).
Moreover, if we assume

v(x) = min
k=1,...,M

αTk x, (6.37)

then

D+(v(x)) = min
l∈I(x(t))

αTl Akx ≤ αTkAkx

≤ −πkkαTk x−
∑
j 6=k

πjkα
T
k x− qTk x = −qTk x.

(6.38)

Hence
D+(v(x)) ≤ −qTk x(t), (6.39)

which, after integration, gives

v(x(t))− v(0) =

∫ t

0
D+v(x(τ))dτ

≤ −
∫ t

0
qTσ(τ)x(τ)dτ.

(6.40)

Due to the asymptotic stability v(x(t)) goes to zero as t goes to infinity, therefore∫ t

0
qTσ(τ)x(τ)dτ ≤ v(0) = min

k=1,...,M
αTk x0. (6.41)

This concludes the proof.
�

It is worth noticing that (6.35) is not linear in the unknown variables πjk and
αk, for k, j = 1, . . . ,M . Indeed, we need an alternative reformulation in order to
have an efficient numerical search. In particular, the idea is to obtain a simpler,
even if more conservative, stability condition that can be expressed by means of
LMIs.
The next corollary shows that, working with a subclass of M-matrices, character-
ized by having the same diagonal elements, this goal is accomplished.

Corollary 6.4.1. Let qk ∈ Rn+, k = 1, . . . ,M , be given. Assume that there exists
a set of positive vectors {α1, . . . , αM}, αk ∈ Rn+ and a scalar γ > 0 satisfying the
modified coupled copositive Lyapunov inequalities:

ATk αk + γ(αj − αk) + qk ≺ 0 k 6= j = 1, . . . ,M. (6.42)

The state switching control is (6.32) makes the equilibrium solution x = 0 of the
system (6.1) globally asymptotically stable and∫ ∞

0
qTσ(t)x(t)dt ≤ min

k=1,...,M
αTk x0. (6.43)

Proof. Take the matrix Π ∈M such that πkk = −γ, therefore

γ−1
∑
j 6=k

πjk, ∀k = 1, . . . ,M. (6.44)

Since πjk ≥ 0,∀j 6= k, j, k = 1, . . . ,M we can multiply (6.42) by πjk, summing up
∀j 6= k, j, k = 1, . . . ,M and finally multiplying the result by γ−1 > 0, so obtaining

ATk αk + qk ≺ −
M∑
j=1

πjkαj , ∀k = 1, . . . ,M. (6.45)
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Hence the upper bound (6.36) holds.
�

For this reason, we introduce a theorem which gives a switching law which ensures
an upper bound to a cost functional defined over a finite time period.

Theorem 6.5. Consider the linear positive switched system (6.1) and let the pos-
itive vectors qk, for k = 1, . . . ,M be given. Moreover, take any Π ∈ M and let
{α1(t), . . . , αM (t)}, with αk : [0, tf ] → Rn+ be any positive solution of the differen-
tial inequalities

α̇k +ATk αk +

M∑
k=1

πjkαj + qk 4 0, k = 1, . . . ,M (6.46)

with a final condition αk(tf ) = c, ∀k. Then, the cost function associated with the
switching rule

σ(x(t)) = arg min
k=1,...,M

αTk (t)x(t) (6.47)

satisfied the following upper bound∫ tf

0
qTσ(t)x(t)dt+ cTx(tf ) ≤ min

k=1,...,M
αTk (0)x0 (6.48)

Proof. Consider the Lyapunov function

v(x, t) = min
l=1,...,M

αTl (t)x(t) (6.49)

and let k(t) = arg minlα
T
l (t)x(t). Then

D+(v(x, t)) = min
i

(α̇i(t) + αTi (t)Akx) ≤ α̇k(t) + αTk (t)Akx ≤

≤ −πkkαT (t)x−
∑
j 6=k

πjkα
T
j (t)x− qTk x ≤

≤ −πkkαT (t)x−
∑
j 6=k

πjkα
T
k (t)x− qTk x = −qTk x.

Hence, for all σ(t),
D+(v(x, t)) ≤ −qTσ(t)x(t) (6.50)

which, after integration, gives

v(x(tf ))− v(x0) =

∫ tf

0
D+v(x(τ))dτ ≤ −

∫ tf

0
qTσ(τ)x(τ)dτ. (6.51)

Therefore, ∫ tf

0
D+v(x(τ))dτ + cTx(tf ) ≤ v(x0) = min

k=1,...,M
αTk (0)x0 (6.52)

and this concludes the proof.
�

Notice that the inequalities (6.46) require the preliminary choice of the parame-
ters πjk.
In particular, the search for πjk and αk, for k = 1, . . . ,M , that satisfy the Theo-
rem 6.5 involves the solution of a bilinear matrix inequality.
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We can, at the cost of some conservatism in upper bound, reduce the number of
parameters (πi,j , for i, j = 1, . . . ,M) to a single one, say γ, so allowing an easy
search the best γ as far as the upper bound is concerned.

Corollary 6.5.1. Let q ∈ Rn+ and c ∈ Rn+ be given, and let the vectors {α1(t), . . . , αM (t)},
αk : [0, tf ]→ Rn+ satisfy for some γ > 0 the modified coupled copositive differential
Lyapunov inequalities:

α̇k +ATk αk + γ(αj − αk) + qk 4 0, k 6= j = 1, . . . ,M, (6.53)

with final condition αk(tf ) = c, ∀k. Then, the switching control given by (6.47) is
such that ∫ tf

0
qTσ(t)x(t)dt+ cTx(tf ) ≤ min

k=1,...,M
αTk (0)x0. (6.54)

The result of Corollary 6.5.1 is very important for the problem of mitigating the
viral escape. In fact, it can provide a simpler way for computing the switching rule
(6.47).

6.3 Applications to the 4 variant, 2 drug combination
model

6.3.1 Using Optimal Control

We use a final time cost, since the typical course of HIV infection under therapies
has a long period of suppression of the strains, followed by an exponential growth
of the HRG. If the rate of the final exponential growth is almost independent of the
particular treatment, then the total viral load at the final time is a surrogate for
the duration of viral suppression to low levels. The duration of the time in which
we are able to maintain the total viral load at low levels is an important clinical
parameter. Moreover, [9] shows that in absence of ongoing viral replication, the
generation of new variants is also stopped.
In Section 6.1, Theorem 6.1 gives the general solution of the optimal control prob-
lem, which is quite demanding, because to find out the optimal switching signal σ(·)
it is necessary to solve a two boundary integration problem.
We hypothesise to use the small system given by formulas (3.9), (3.10) and (3.11).
Moreover, we suppose to have time intervals of thirty days, thus we name τ =
30 [days].
In the sequel, we present the simplest procedure to compute the switching signal
in Theorem 6.1. Furthermore, we suppose that all the state weight vectors qk, for
k = 1, . . . ,M are all zero. In this manner, we consider a cost functional which is
given only by one term:

Jtf = cTx(tf ), (6.55)

where c = [1 1 1 1]T .
Clearly, the cost functional (6.55) is the total viral load at the end of the therapy.

Termed t̃f =
tf
τ , with for simplicity τ an integer divisor of tf (tf ∈ N, given in

[days]). Thus, t̃f is given in [months], for we use τ = 30 [days].
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6.3.2 Brute Force Algorithm

The first approach we might think to obtain the optimal solution is through a “brute
force algorithm”, which analyses all possible values at each time instant of the state
trajectory, in order to choose at each decision time instant (which we term with tk,
for k = 1, . . . , t̃f ) the state which minimizes the cost functional (6.55).
Now, we hypothesize that the considered time instants tk are coincident with the
decision time instants. In this way, we are considering the possibility to switch the
therapy every months.
Assuming the initial state to be given, x0, and considering the decision time equal
to τ , during which the treatment is fixed, we can do the following steps:

1. We compute the sets of all states that can be reached by the system at each
decision time tk, for k = 1, . . . , t̃f ;

2. We evaluate all possible state trajectories, obtained with all possible switching
trajectories (of number M t̃f ), and we choose the one which minimises the cost
functional (6.55).

Clearly, this approach becomes really demanding with the increasing of tf .

6.3.3 Dynamic Programming Approach

An alternative approach to compute the optimal switching law σo(t), and thus the
optimal trajectory xo(t) is the so called dynamic programming approach1. This
approach is based on the Bellman’s principle of optimality, which is:

Proposition 6.1. Let σo(·) and xo(·) be respectively the optimal switching law and
the optimal state trajectory corresponding to the initial state x(0) = x0 and the time
interval [0, t̃f ]. Then, for an arbitrary instant tl ∈ [t̃0, . . . , t̃k, . . . , t̃f ] the switching
strategy σo(tl), σ

o(tl+1), σo(tl+2), . . . , σ(t̃f ) represents the optimal switching law
corresponding to the initial state x(tl) in [0, t̃f ], considering the decision instants in
the sequence [t̃0, . . . , t̃k, . . . , t̃f ].

Proof. Starting from the state xo(tl), we assume that the optimal strategy is
σ̃(tl), σ̃(tl+1), σ̃(tl+2), . . . , σ̃(t̃f ). Apply the switching law σo(t̃0), . . . , σo(tl−1), σ̃(tl),
σ̃(tl+1), σ̃(tl+2), . . . , σ̃(t̃f ), then the cost function Jt̃f would assume a smaller value

w.r.t. its minimum value Jo
t̃f

. It is opposite to the hypothesis of optimality on σo(·).
�

1Dynamic programming approach is a method for solving a complex problem by breaking it
down into a set of simpler sub-problems, solving each of those ones just once, and storing their
solutions. Thus, the next time the same problem occurs, instead of recomputing the solution, one
looks up to the previous result obtained.
This type of programming is often used in optimization problems: a dynamic programming algo-
rithm will examine the previously solved sub-problems and will combine their solutions to give the
best solution for the given problem.
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The dynamic programming approach has the main feature which is to solve the
problems backward. Intuitively, the idea of this kind of programming is:

1. Assume we have find the value xo(tf ), the remaining decision of the switching
law which minimizes the cost functional over the time interval [tf − τ, tf ] is
σo(tf − τ);

2. Now, we can go a step backward: supposing to have the state xo(tf −2τ), the
remaining decision of the switching law which minimizes the cost functional
over the time interval [tf − 2τ, tf ] is σo(tf − 2τ);

3. We can go on by computing the whole switching law until we find x(0) and the
corresponding σo(0), having taken t0 = 0. We have seen in Theorem 6.1 that
the optimal trajectory xo(·) and the optimal switching signal σo(·) satisfy the
HJB equation (6.8) and together with the state differential equations (6.3)
and the two boundary conditions we obtain the optimal solution xo(·), by
finding the optimal switching law σo(·). As said, the optimal control problem,
in Theorem 6.1, cannot be solved with the normal integration techniques. A
number of algorithms have been proposed to solve the introduced optimal
control problem, but we present only the simplest solution, considering the
cost functional made by only the term depending on the final state x(tf )
(6.55).

We define recursively the sequence of matrices:

Ω̃0 = c,

Ω̃1 =
[
eA

T
1 τ · Ω̃0, e

AT2 τ · Ω̃0, e
AT3 τ · Ω̃0, . . . e

ATM τ · Ω̃0

]
,

...

Ω̃k =
[
eA

T
1 τ · Ω̃k−1, e

AT2 τ · Ω̃k−1, e
AT3 τ · Ω̃k−1, . . . e

ATM τ · Ω̃k−1

]
,

...

Ω̃t̃f
=
[
eA

T
1 τ · Ω̃t̃f−1, e

AT2 τ · Ω̃t̃f−1, e
AT3 τ · Ω̃t̃f−1, . . . e

ATM τ · Ω̃t̃f−1

]
.

Then, we can compute the optimal switching law and the optimal switching trajec-
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tory, as follows:

σo(0) = argmin
j

(
Ω̃T
t̃f

)(j)
x(0)

x(1) = Aσo(0)x(0)

σo(τ) = argmin
j

(
Ω̃T
t̃f−1

)(j)
x(τ)

...

σo(kτ) = argmin
j

(
Ω̃T
t̃f−k

)(j)
x(kτ)

x((k + 1)τ) = Aσo(kτ)x(kτ)

...

σo(tf − τ) = argmin
j

(
Ω̃T

1

)(j)
x(tf − τ)

x(tf ) = Aσo(tf−τ)x(tf − τ).

The implementation of the previous strategy requires storing the columns of ma-
trices Ω̃T

tk
, for k = 1, . . . , t̃f , with t̃f = 12. Thus, this number of columns in-

creases with an exponential growth, in fact the total number of stored columns is
1 +M +M2 + · · ·+M t̃f .
Clearly, this kind of algorithm is for obtaining the solution of the Optimal Control
problem, by taking specific switching time instants from 0 days to 360 days with
time step τ , which is equal to 30 days.
It is worth highlighting that, even if we build up the optimal control law onwards,
we are resorting, in a certain manner, to the Bellman’s principle of optimality. In
fact, at each step tk ∈ [0, t̃f ], the optimal value σo(t̄) is obtained as the optimal
strategy corresponding to the initial state xo(tk) and time interval [tk, t̃f ].

We compute the optimal control law with the previous algorithm only for the sym-
metric case of the 4 variant, 2 drug combination model (see Subsection 3.2.2).
Looking at the simulation results we notice that:

1. In Figure 6.1b the optimal switching rule is plotted and it is visible that it is
periodic with period τ (i.e. the therapy changes every month);

2. The viral load at the end of the year is equal to 1525 [copies/mL], a viral
concentration smaller than the one obtained after one year of monotherapy,
which is equal to 3139 [copies/mL] (see Table 3.5). The trajectory of the total
viral load using the optimal switching law is shown in Figure 6.1a.
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(a) Scenario I: optimal trajectory of
∑4
i=1 Vi.

(b) Scenario I: optimal switching law σ(·).

Figure 6.1: Optimal control for the small model.

Figure 6.2: Trajectories for the small model of HIV, using different control laws.
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In Figure 6.2 are plotted the trajectories for the 4 variant, 2 drug combination model
in the case of using only one therapy, using the Optimal Control law, the SWATCH
rule and the SVF one.
It is worth noticing that, even if we are using a continuous time model, we are com-
puting the optimal switching law under the assumption that the decision instants
tk, for k = 1, . . . , t̃f are equally spaced of τ = 30 [days] from 0 to 360 [days].

6.3.4 Using Guaranteed Cost Control over infinite horizon

From the Remark in Subsection 6.2, we know that if we hypothesize that the matrix
Π iszero it is necessary for the feasibility of the LMIs that all the subsystems dynamic
matrices have to be Hurwitz. In this manner, we ensure subsystems’ stability, we
introduce a weighting factor γ > 0 as follows:

˙̂x(t) =
(
Aσ(t) − γI4

)
x̂(t), (6.56)

the solution of (6.56) is given by:

x̂(t) = e(Aσ(t)−γI4)(t−t0)x̂0, (6.57)

and, t0 = 0 tanking as initial time instant, we obtain:

x̂(t) = e(Aσ(t)−γI4)tx̂0. (6.58)

As it can be seen from equation (6.58), we have introduced in this way an exponential
weight. And we have ensured the necessary condition for the feasibility of the LMIs
(6.35).
We denote the modified state matrices Âk = Ak − γI4, k = 1, . . . ,M .
Consider the vectors αk given by:

αk = −
(
ÂTk

)−1
c. (6.59)

As Âk for k = 1, 2, . . . ,M are Metzler and Hurwitz, their transpose are Metzler and
Hurwitz too. Moreover, in (6.59) we compute the inverse of a Metzler and Hurwitz
matrix, that is a negative matrix [4]. So, the vectors αk, for k = 1, . . . ,M are all
positive and we have obtained the solution of the LMIs (6.35), upon choosing a zero
Metzler matrix Π ∈M.
In the end, we consider the switching signal (6.32), using the modified state equa-
tions (6.56):

σ (x̂(tk))
.
= arg min

k=1,...,M
αTk x̂(tk). (6.60)

We know that this switching rule ensures an upper bound to the infinite horizon
cost function.
Taking γ = 0.01 to ensure the necessary condition for feasibility of the LMIs, with
the help of MATLAB® we obtain a switching rule equal to the Optimal Control.
In fact, σ(·) is periodic with period τ and σ(0) = 1. This fact is quite surprising,
because the switching rule is derived from the application of Theorem 6.4, which
guarantees an upper bound to the cost functional over an infinite horizon and doesn’t
ensure the minimum value of the cost functional (which instead we ensure using the
Optimal Control). Furthermore, to assure the feasibility of the LMIs, we modify
the state matrices as shown in (6.56).
Clearly, when the switching law σ(·) is applied to the original system (i.e. with
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unmodified state matrices) we obtain at the end of one year of simulations the same
total viral load value of the Optimal Control case, which is 1525[copies/mL].

6.3.5 Using Guaranteed Cost Control over finite horizon

Differently from the infinite horizon case, it is not necessary to modify the state
matrices.
Considering Theorem 6.5, we can solve backward in time the differential equations
(6.46) with vectors qk = c, for k = 1, . . . ,M . As in the previous case, we choose
the Metzler matrix Π ∈ M equal to zero, and we start from the final condition2

αk(tf ) = c, ∀k. In the end we consider the switching law:

σ (x(tk)) = arg min
k=1,...,M

αTk (tk)x(tk). (6.61)

The switching signal comes out to be both periodic of period τ , and it starts from
σ(0) = 1. Then, the resultant trajectory which gives the sum of the total viral load
is exactly equal to the one obtained using either the Optimal Control strategy, or
the guaranteed cost control over infinite horizon.

Remark. When we have to solve a differential equation imposing an initial condi-
tion, instead of a final condition we have to do the following steps:

1. We define a new function v(t), s.t. v(0) = α(tf )3 and so v(t) = α(tf − t),

2. We compute its derivative v̇(t) = −α̇(tf − t).

Thus, supposing to solve (6.46) for the case of differential equations, and having
in mind the hypotheses previously done, we obtain that the differential equation

α̇k(t) = −ATk αk(t)− c, k = 1, 2. (6.62)

Doing the changes of functions s.t. we have to solve a Cauchy’s problem, we obtain

v̇k(t) = −α̇k(tf − t), k = 1, 2. (6.63)

Clearly, the time derivative of vk(t) is a positive vector. We have as initial condition
a positive vector, v(0) = c, then we have that the evolution of the vectorial functions
vk(t), for k = 1, 2 is at each time a positive vector, and so the same holds for αk(t),
for k = 1, 2.

6.3.6 Comparisons

A good parameter to evaluate the efficiency of a specific treatment is the total
viral load at the end of the treatment. In Table 6.1 there are all the values of the
total viral load at the end of one year of monotherapy, SVF therapy, SWATCH
one, treatment obtained by solving Optimal Control problem, the Guaranteed Cost
Control over finite horizon and over infinite horizon. In Table ??, we recall the
meanings of SVF and SWATCH.
Looking at the Table 6.1, it is visible that

2To solve with MATLAB® a differential equation with final condition, it is sufficient to reverse
the time span.

3We drop off the subscript k for simplicity.
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Figure 6.3: Switching law for the guaranteed cost approach over finite horizon.

1. Using Optimal Control and Suboptimal ones give lower values of the total
viral load at the end of the treatment than using SWATCH and SVF controls,

2. Using the Optimal Control, the Guaranteed Cost Control over infinite and
finite horizon is equivalent, indeed the total viral load at the end of the treat-
ment is the same.

In all cases, it is clear that switching between therapies is effective to fight against
the viral rebound.

Strategy: Σn
i=1Vi:

Monotherapy 3139 [copies/mL]

SVF 1547 [copies/mL]

SWATCH 1543 [copies/mL]

Optimal Control 1525 [copies/mL]

Guaranteed cost control
over infinite horizon 1525 [copies/mL]

Guaranteed cost control
over finite horizon 1525 [copies/mL]

Table 6.1: Total viral load at the end of one year of treatment.
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Switch on Virologic Failure (SVF):

if x(t+ τ) > 1000[copies/mL]
if σ(t) = 1
σ(t+ τ) = 2
elseif σ(t) = 2
σ(t+ τ) = 1

endif
endif

SWitch Antiretroviral
Therapy Combinations
against HIV (SWATCH):

switch every three months

Table 6.2: SVF and SWATCH rule.

6.4 Applications to the 16 variant, 2 drug combination
model

6.4.1 Using the Luenberger observer

Laboratory tests performed during patient visits can be used to assist in the selection
of drug regimens. These are genotypic resistance testing, CD4 +T counts and viral
load. It is worth noticing that genotypic resistance testing has helped to treat in
the best manner the patients infected with drug-resistant HIV. Thus, the output of
the nonlinear p.s.s. can be written in the following vector form:

y(t) =

[
y1(t)
y2(t)

]
=


T (t)

V1(t)
...

Vn(t)

 , (6.64)

where T (t) is the CD4 + T cell counts at time t and Vi(t), i = 1, . . . n are the viral
concentrations of n genotypes, at time t. We consider n = 16 different genotypes.
Drug treatments are introduced after four years of infection and are used for six
years. We assume frequent patient’s visits to the hospital, once a month, but we
assume that treatment regimens can be switched only every three months [28].
As macrophage counts are assumed constant (700 [cells/mm3]), only CD4+T cell
counts are necessary to update the switched linear model (3.3) in Subsection 3.2.2.
The control strategies which we saw previously can be un-practical, due to common
implementation issues in biomedical problems: such as irregularity of measurements
or incomplete state measurements. So, we cannot compute the control strategy, be-
cause we do not have the value of the state variables.
For these reasons, we use a Luenberger observer, based on the linear positive
switched system (3.3) to estimate the infected cells variables (T ∗i ,M

∗
i ) from the

nonlinear model (3.2).

It is worth noticing that many procedures for control design are based on the as-
sumption that full state vector is available for measurement. These procedures
specify the actual input value as a function of the actual value of the state vector.
Clearly, the system evolves according to its state vector equations, and so it is a
natural consequence to design the input control based on the state vector.
In many systems, however the state vector is not completely available at each time
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t, and thus in order to design a control based on the current state, it is necessary
to estimate it. When faced with this rather common difficulty, there are two ap-
proaches.
The first is to find out new procedures that require fewer measurements, either by
restricting the choice of static feedback functions, or by developing more complex
dynamic feedback processing procedures. The second, and simpler, approach is to
construct an approximation of the full state vector on the basis of the available
measurements. In this manner, we can use control procedures based on the ap-
proximated state, in place of the current state and we overcome the problem of
inaccessible state variables.
We hypothesise that the values that we can access are the concentrations of viral
populations V1(t), V2(t), . . . Vn(t), because we assume that during the patient’s
visits at the hospital are measured only the different viral concentrations and the
number of healthy CD4+T cells T(t).
It is worth noticing that the concentration T(t) is not part of the state vector of the
used Luenberger observer. The CD4+T cell count is used to update the observers’
dynamic matrices Aσ(t), for σ(·) = 1, 2.
The switched observer (made by two observers) we use has equations:

˙̂x(t) = Aσ(t)x̂(t) + Lσ(t) (y2(t)− ŷ2(t)) , (6.65)

ŷ2(t) = Cx̂(t), (6.66)

where x̂(·) is the state estimated vector, the matrices Lσ(·) (for σ(·) = 1, 2) are the
observer gains, and ŷ2(·) is the estimated output vector of the genotype distribution.
CD4+T cells counts are necessary for updating the linear positive switched system
(6.65). Aσ(·), for σ(·) = 1, 2 are the state matrices of the p.s.s., given by (3.4), (3.5)
and (3.6) (see Section 3.2.2).
In order to have ŷ2(t) equal to the vector containing all the different genotypes, we
choose

C =



0 0 1 0 . . . . . . . . . 0
0 0 0 0 0 1 0 . . . . . . 0
0 . . . . . . 0 0 1 0 . . . 0
... . . . . . . . . . 0 1 0 0
... . . . . . . 0 0 1 0 0 0
0 . . . . . . . . . 0 0 1


=



eT3
eT6
eT9
eT12

eT15

eT18

eT21

eT24

eT27

eT30

eT33

eT36

eT39

eT42

eT45

eT48



,

where the vectors eTi , for i = 1, . . . , 48 are vectors of the canonical base of the space
R48.
The first thing to evaluate is if we can observe the state through the hypothesised
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observer (6.66). We recall that a system is completely observable if by observation
of the system outputs the value of the initial state can be deduced within a finite
time period (see Appendix A for more information).
To find out if a system is observable, we compute the rank of the observation
matrices of the pairs (Aσ(t)=1, C) and (Aσ(t)=2, C), which effectively are of full rank.
Thus, it is possible to estimate the state with (6.66).
As well known, if the pair (Aσ, C) is observable, the eigenvalues of Aσ − LσC can
be placed arbitrary. As the dynamic matrix of the estimation error is Aσ−LσC, we
select its eigenvalues such that the estimation error goes to zero quickly. ’Quickly’
means that the eigenvalues of the dynamic matrix of the estimation error Aσ−LσC
have to be placed with real parts more negative than the Frobenius eigenvalue of
Aσ. For, we are considering continuous systems, it means that we have to choose
eigenvalues with real parts strictly negative, i.e. the error dynamic matrix Aσ−LσC
has to be Hurwitz.
In this manner, we implement a full-order observer to apply a Guaranteed Cost
Control over finite horizon. The simulation results are explained in Subsection 6.4.3.

Figure 6.4: Scheme of the project, using the Luenberger Observer.

6.4.2 Model Predictive Control

An approach for determining near optimal switching drug schedules is Model Predic-
tive Control (MPC). MPC appears to be suitable for applications to the biomedical
area, owning to its robustness to model uncertainties, disturbances and the possi-
bility of handling constraints.
In what follows, we will present the basic idea of MPC, and then, we will present
results derived by Hernandez-Vargas and coauthors [22], using the 16 variant, 2
drug combination model introduced in Section 3.2.2.
The main feature of MPC approach is that the optimization procedure resorts to
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predictions based on a model, hence the name of Model Predictive Control.

Figure 6.5: Model Predictive Control approach.

To be more precise, the basic steps of the procedure are (see Figure ??):

1. At time istant t the controller, using measurements just collected, predicts
the future dynamics behaviour of the system over a prediction horizon Tp and
computes the optimal control rule over a control horizon Tc;

2. Only the first step of the optimal control sequence is implemented (the re-
maining inputs are not taken in account any more);

3. At time t + τ new measurements are available and this procedure, namely
prediction and optimization, is reiterated at each sample time. We can think
of the prediction and control horizon as two sliding windows moving forward:
the former predicts how far into the future the controller predicts the state
evolution, while the latter defines how far into the future it plans the control
action.
Due to disturbances, measurement noise and model-plant mismatch the true
system behavior is different from the predicted one. Taking into account only
the first step of the optimal control sequence is a useful of feedback mechanism.

6.4.3 Comparisons

The two schemes introduced in Figure 6.4 and iin Figure 6.6 model two manners
of computing the switching law to change the therapy. In fact, we use the two
following control strategies:

� Guaranteed Cost Control : we compute the switching trajectory with for inter-
val [0, tf ]. Then, using the trajectory of α(t) and the estimations of observer
(6.65) and (6.66), we compute the switching law σ(·),
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Figure 6.6: Scheme of the project, using the MPC approach.

� MPC : compute the switching trajectory using the great linear system, and
update with the estimation of the observer (6.65) and (6.66). We take Tp =
1 [year].

Strategy: Σn
i=1Vi: CD4+T cells:

SWATCH 258 [copies/mL] 602 [copies/mm3]

SVF 231 [copies/mL] 682 [copies/mm3]

Guaranteed Cost 241 [copies/mL] 736 [copies/mm3]

MPC 7.5 [copies/mL] 857 [copies/mm3]

Table 6.3: Simulation results after six years of HAARTs.

Simulations results in Table 6.3 reveal that the MPC strategy outperforms the other
strategies.
MPC suggests that therapy 1 should be maintained for one year, then alternations
between treatments will promote undetectable levels in the viral load.
Observer estimation during MPC strategy are shown in Figure 6.7. It is visible that
it is a good estimation of infected cells, even if we hypothesise a constant number
of macrophages and measurements once a month. Moreover, Figure 6.7 shows that
MPC switching inhibits quickly those cells infected with WTG (g1), whereas the
other genotypes are kept under very low levels (≤ 0.1[cells/mm3]). During the first
year of monotherapy 1, we can see that g4, the genotype resistant to this therapy,
promotes infection of CD4 + T cells and macrophages. However, MPC controls g4

alternating between therapies.
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Figure 6.7: Treatment scheduling based on MPC, using a Luenberger observer. Solid lines:
the dynamics of the nonlinear model, under therapy. Dashed lines: the respective estima-
tions.

These results suggest that to use model-based strategies may provide good results
with undetectable levels of viral load and high CD4 + T cell counts.
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Chapter 7

Conclusions

Simulation studies presented throughout the thesis show the importance of alter-
nating HAART regimens: using different drugs at the right moment is of great
importance in patient’s treatment, as it allows to maintain HIV RNA at low levels
and prevent the future appearance of resistant mutants.
However, finding the optimal control rule is a computationally demanding problem,
as it is a two boundary integration problem. For this reason, it is only computed
for the small model.
An alternative, suboptimal solution is represented by the guaranteed cost controls,
which achieve good results, when compared to the optimal control.
However, when dealing with a real cases study, knowing the values of all genotypes
and the number of infected CD4 + T cells and macrophages is often not possible.
Thus, we built an observer in order to obtain an estimate of the full state. By
using this estimate, we compute a guaranteed cost control which we apply to the
nonlinear model of HIV under therapy.
The final strategy consists in using the Model Predictive Control. This strategy
includes the same observer of the previous case. This approach has the advantage
of being quite robust to model-mismatches. Additionally, its performance is similar
to the optimal control.
It is very likely that these simulation studies could help to optimally schedule HIV
treatment, a problem which has not been fully answered to present time.
Nevertheless, we are far from a full characterization of switching strategies able to
halt virological failures of treatments.
In order to provide a more extensive description of HIV dynamics, we should con-
sider more complicated mutation graphs and other immune cells involved in HIV
infection. Moreover, we should introduce random variations in the model.
All these considerations make the the problem of HIV treatment scheduling an open
and active field of research.
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Appendix A

Observability of linear
continuous systems

The concept of observability refers to the possibility to find the state of a system
from the measurable variables which are the inputs and the outputs. This concept
is really important in control problems in which it is necessary to know the value
of the state at each instant. In real problems, the state is not always available and
observability is strictly connected to the possibility of realize algorithms which are
able to estimate in real time the state value. When we have data that refer to time
instants following the current time, we talk about observability.
Consider a linear, continuous, system of dimension n

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).
(A.1)

A state x is not observable in [0, t], with t > 0, if for every input function u(·), the
output function y(·), which corresponds to the initial state x on [0, t], is coincident
with the output function which corresponds to the initial state 0.
In both cases the forced components of the output function y(·) are the same, thus
the state x is not observable on [0, t] if and only if

CeAτx, 0 ≤ τ ≤ t. (A.2)

If we define with ωt the linear map

ωt : X → C[0, t]p : x 7→ CeAτ , 0 ≤ τ ≤ t (A.3)

which links the initial state x to the free output function yl(·) which the initial state
x induces in the time interval [0, t]. Clearly, x is not observable in [0, t] if and only
if x ∈ kerωt. The set of non-observable states in [0, t] is a subspace

Xno
t

.
= kerωt (A.4)

of the state space X and which we name non-observable subspace in [0, t]. The
following proposition is necessary to express the non-observable subspace Xno

t of
a continuous system as a kernel of a matrix. For the matrix doesn’t depend on t,
clearly, Xno

t is independent of the length of the time interval [0, t] in which we know
the input and output data.

Proposition A.1. The non-observable space Xno
t of the system (A.1) is for each
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t > 0, the kernel of the observability matrix

O =


C
CA

...
CAn−1

 (A.5)

Proof. x is not observable in [0, t] if and only if yl(τ) = CeAτx = 0, ∀τ ∈ [0, t],
which means that

∞∑
k=0

CAkxτk

k!
= 0,∀τ ∈ [0, t]. (A.6)

�

For, the subspace Xno
t = kerO doesn’t depend on the time t, we name it as non-

observable subspace and its symbol is Xno.
If Xno = {0}, which means that O has full rank and so the system (A.1) is observ-
able.

A.1 Trivial Observer

The most obvious approach to estimate the state of a known system which we
hypothesise linear, continuous system of dimension n

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(A.7)

where the output vector is of dimension p, is to create a copy
˙̂x(t) = Ax̂(t) +Bu(t)

ŷ(t) = Cx̂(t),
(A.8)

whose state x̂(t) provides an estimate of the original system’s state x(t). We know
the input u(t), in fact it is the control function which we impose to the system. The
simplicity of this method has a downside. If the initial state of the copy matches
that of the original system, i.e. x̂(0) = x(0), the copy provides the exact value of
the state of the original system. However, if the initial state doesn’t match exactly,
the error of the estimate evolves according to

ė(t) = ˆ̇x(t)− ẋ(t) = A (x̂(t)− x(t)) = Ae(t). (A.9)

If the dynamic matrix A is Hurwitz, then the error of the estimate goes asymptoti-
cally to zero. On the other hand, if the dynamic matrix A is not Hurwitz, then the
error of the estimate doesn’t go to zero, but diverges during time.

A.2 Identity Observer

Clearly, it is necessary to find out an observer which is more sophisticate. We
consider the same state space model introduced in the previous section (A.7).
It is visible by the system equations that the output vector gives, even if somewhat
indirectly, information about the state of the system. W.r.t. the Trivial Observer
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in the previous section, we add a term that takes into consideration the error of
the estimate of the output vector, pre-multiplied by a arbitrary matrix L ∈ Rn×p.
Thus, the state estimate dynamic equation is

x̂(t) = Ax̂(t) + L (y(t)− Cx̂(t)) +Bu(t). (A.10)

The matrix L ∈ Rn×p is the observer gain. The choice of the observer gain matrix
affects the dynamic behaviour of the state estimate and thus the error of the state
estimate.
By substituting y(t) = Cx(t) in (A.10), we can find the estimate error dynamic:

ė(t) = ˙̂x(t)− ẋ(t) = [A− LC] (x̂(t)− x(t)) = [A− LC] e(t). (A.11)

A.3 Reduced-Order Observer

Suppose that the length n of our state vector is large, and n− p is small. The com-
putational load required to provide estimates of all n variables may be larger than
acceptable, in fact the dynamic matrix A is n× n, so the number of computations
increases with n2.
We again consider the system given by equations (A.7), but we use the measure-
ments to obtain a certain number of p′ ≤ p of elements of the state vector, and thus
construct an estimator of order n− p instead of n.
For simplicity, we assume that the matrix C is full (row) rank, and so the number
of state variables which we obtain from the output function y(t) are exactly p′ = p,
and, as previously, we assume that the system is fully observable.
We compute a base change of the space state applying a transformation matrix P
to the state x(t) to reorder and transform the state such that[

w(t)
y(t)

]
= x̃(t) = Px(t) =

[
T
C

]
x(t). (A.12)

A T such that the matrix P is non-singular surely exists, for we hypothesise that
C is full rank. We derive the dynamic equations of the state estimate and the error
of the estimate.
We start by considering the state equation of x̃(t), which is:

˙̃x(t) = Ãx̃(t) + B̃u(t), (A.13)

where Ã = P−1AP and B̃ = P−1B.
Now, by substituting the definition (A.12) of the state x̃(t) divide the matrices Ã
and B̃ as follows:[

ẇ(t)
ẏ(t)

]
=

[
A11 A12

A21 A22

] [
w(t)
y(t)

]
+

[
B1

B2

]
u(t). (A.14)

As in the construction of the Identity Observer given in the previous section, we
select the matrix L which multiplies t output vector y(t). So, considering separately
ẇ(t) and ẏ(t), we define

ẇ(t)− Lẏ(t) = (A11 − LA21) w(t) + (A12 − LA22) y(t) + (B1 − LB2) u(t), (A.15)

then rearranging to obtain

ẇ(t)− Lẏ(t) = (A11 − LA21) [w(t)− Ly(t)] + (A11L− LA21L+A12 − LA22) y(t)+

+ (B1 − LB2) u(t).

(A.16)
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Then, defining v(t)
.
= w − Ly(t), we obtaion

v̇(t) = (A11 − LA21) v(t) + (A11L− LA21L+A12 − LA22) y(t) + (B1 − LB2) u(t).
(A.17)

The vector v(t), of length n − p, represents the unknown part of the state, which
evolves according to the dynamics defined by A11 − LA21, and the inputs u(t) and
y(t).
To estimate v(t), we construpt an observer of order n− p:
ż(t) = (A11 − LA21) z(t) + (A11L− LA21L+A12 − LA22) y(t) + (B1 − LB2) u(t).

(A.18)
The reduced-order estimator error is

ė(t) = ż(t)− v̇(t) =

= (A11 − LA21) [z(t)− v(t)] =

= (A11 − LA21) e(t),

(A.19)

and it is visible that the error dynamic is also determined by the matrix A11−LA21.
Recalling the definition of v(t) = w(t)−Ly(t), it is reasonable to hypothesise that
its estimate is z(t) = ŵ(t)− Ly(t), thus

x̃(t) =

[
ŵ(t)
y(t)

]
=

[
z(t) + Ly(t)

y(t)

]
. (A.20)

In the end, we can obtain the estimate of the original state by pre-multiplying (A.20)
by P−1, which is a transformation matrix and so it is full rank for construction.
Then, we obtain

x̂(t) = P−1x̃(t). (A.21)
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