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Abstract

Over the last decades, strong evidence for dark matter (DM) has been accumulated.
However, its nature is still unknown in fundamental physics. A cold relic produced via
thermal freeze-out has been the leading paradigm for a long period, both for its simplicity
and versatility to include candidates offered by extensions of the Standard Model of particle
physics. Despite a large experimental effort to detect these candidates, no conclusive
evidence has been found yet. The outcome of these negative searches has been motivating
the community to explore alternative paradigms to the freeze-out. One of these is the
freeze-in scenario, first introduced by Hall et al. (2009), which shares the advantages of
the freeze-out paradigm but in which DM is produced out of thermal equilibrium. In this
work, after a review of the evidence of DM and the Boltzmann equation formalism, we
present the main features of the freeze-in paradigm proving its efficiency in reproducing
the relic density. Despite the usually smaller couplings between DM and visible matter
in the freeze-in scenario, frozen-in DM candidates, called Feebly Interacting Particles
(FIMPs), can have interesting observational features through which freeze-in models can
be constrained. Among them, stringent bounds can come from structure formation data.
In particular, too light FIMP DM is in tension with small-scales structures such as the
Lyman-α forest. We develop a model independent procedure to constrain the parameter
space of a FIMP model and to extract the value of the minimum DM mass allowed, which
is of crucial importance in model building. The methodology is based on the comparison of
the linear matter power spectrum, computed with the CLASS code, from the non-thermal
FIMP phase-space distribution, with the limit power spectrum obtained from a Warm
Dark Matter (WDM) model, found by M. Viel et al. (2017). To test our procedure and
compare with the literature, we consider three simple scalar FIMP DM toy models involving
renormalizable interactions with hypothetical scalars belonging to the thermal bath. These
are benchmarks models in which DM production is dominated by decays and scatterings
and can be used to draw general conclusions on FIMP DM produced via these mechanisms.
The developed procedure can also be applied to concrete freeze-in models and frameworks
in which the DM production occurs in modified cosmologies and can be generalized to
include also additional external bounds on the linear matter power spectrum.
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Introduction

A prominent challenge for modern fundamental physics is to answer the fundamental
question: ”What is our Universe made of?”, or better ”What is the mass-energy content of
our Universe?”. Up to now, we were able to split the energy budget of today’s Universe in
two: the known ordinary baryonic matter and radiation, described by the Standard Model
of Particle Physics (SM) and accounting for about 5% of the total energy density, and the
unknown, made of dark matter (DM) accounting for about 27% and dark energy (DE) for
about 68%. The nature of the dark constituents remains a mystery.

The accumulation of evidence in the last three decades has suggested that dark matter
is made of particles very weakly coupled with the SM states, whose velocity dispersion in
the early Universe was too small to erase observed structures on galactic or sub-galactic
scales. This DM paradigm is called Cold Dark Matter (CDM). The outlined energy budget
– SM particles described as baryons and radiation fluids plus CDM pressureless fluid
and a cosmological constant to account for dark energy – together with the hypothesis
of a geometrically flat Universe, verified to permille accuracy, has been implemented in
the standard cosmological model. This paradigm, called ΛCDM, has been remarkably
successful in describing cosmological observables during the last decades.

Many extensions of the SM have been proposed, trying to give us a fundamental picture
for the constituents of our Universe and their interactions, but none of them has been
experimentally successful so far. The most natural mechanisms for the production of DM
particles, the thermal freeze-out of Weakly Interacting Massive Particles (WIMPS), has
received great attention by the particle physics and cosmology community and has been
implemented in beyond-SM (BSM) theories. However, the proposed particle candidates in
such models have avoided any direct or indirect detection, so far. Nowadays, increasingly
accurate experiments are constraining the parameter space for BSM theories involving a
thermal DM candidate, limiting model building within the freeze-out paradigm.

Motivated by the crisis of this paradigm, there is a growing interest in the community
for non-thermal models. In this work, we focus on the so-called freeze-in mechanism, first
proposed in [1]. In the basic scenario, the DM consists of Feebly Interacting Massive
Particles (FIMPs), which interact so weakly with the baryon-photon fluid in the early
Universe, that they never attained thermal equilibrium. In particular, we will study
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the phase-space properties of such DM candidates in the Boltzmann equation formalism,
improving the present constraints on parameters of freeze-in models.

The work is organized as follows: in Chapter 1, we outline the present evidence for
DM at our disposal and we summarize the main known features of a generic DM particle
candidate. Then in Chapter 2, we review the Boltzmann equation formalism and the
standard thermal-freeze-out paradigm to compute the relic abundance. In Chapter 3 we
present the freeze-in mechanism highlighting analogies and differences with the freeze-
out and see for some scalar toy models how the paradigm can reproduce the observed
abundance; we conclude the chapter with a review of the observational signatures of FIMP
DM particles and the way observations are exploited to constrain the models. Subsequently,
in Chapter 4 we outline the general methodology to constrain a given freeze-in model with
data from structure formation and apply the developed scheme to some toy models. In
particular, we consider a scalar DM candidate interacting with simple four-dimensional
operators with scalar particle belonging to the primordial thermal bath. To prove the
efficiency of our methodology we find the lower mass bounds on these DM candidates.
We conclude in Chapter 5 presenting the obtained results for the considered models and
comment on the obtained bounds.

Throughout the work we refer to Appendices A-D where we report specific computations
and insights on topics mentioned in the text. In particular, in Appendix A we review
the basic formalism of the Friedmann-Robertson-Walker (FRW) cosmology, to describe
the behaviour of particle species in the expanding Universe. In Appendix B we review
the small-scales shortcomings of the leading ΛCDM model, as well as possible solutions
involving baryonic physics or, more interestingly for us, new physics and particular features
of the dark matter. In Appendix C we present the calculation of the collision operator
starting from first principles in the Boltzmann equation formalism, whose computation is
the starting point to characterize the evolution of particle species in the early Universe.
Finally, in Appendix D we show in detail the calculation of explicit collision terms for the
most common DM production processes – two- and three-body decays, scattering and pair
production – in a model-independent way.



Chapter 1

Evidence for Dark Matter

In this chapter, we review, following [2–4], the most important evidence for DM that
the scientific community has accumulated over the last decades. We shall briefly see how,
historically, the very first clues of missing mass in some systems merged into a single
anomaly at all scales, ranging from (sub-)galactic scales (pc - 100 kpc) and clusters of
galaxies (1 - 100 Mpc) to cosmological scales of the size of the observable Universe (100 -
104 Mpc). All these observations support the evidence for DM, consistently agreeing on
its abundance. Remarkably, the DM abundance is inferred only from the gravitational
effect it has on the visible matter (baryons1 and radiation), as we will call particle states
described by the Standard Model (apart from neutrinos). At present, we have no clue
of other interactions between the dark and visible matter and between the DM particles
themselves, but only bounds we shall discuss in the last section of the chapter. As we shall
emphasize more than once, the DM particle candidate must be non-baryonic or, even more
restrictively, beyond Standard Model (BSM), that is we need new physics (matter content
and interactions) to explain the observations.

For more than two centuries Newton’s laws of motion and theory of universal gravitation
were the basic tools by which scientists could be able to deduce the mass of celestial bodies
from their dynamics. Through the universal nature of the gravitational interaction, one
can model the motion of visible bodies to infer the presence and the mass of invisible, or
dark bodies i.e. objects we do not observe with light. This idea was applied first by F.
Bessel in 1844, who predicted the presence of faint companion stars for Sirius and Procyon
to explain the motion of the latter, and by U. Le Verrier and J.C. Adams in 1846, who
proposed the existence of a new planet, Neptune, to explain anomalies in the orbit of
Uranus. The same principle in a more advanced form is the basis of all the DM evidence we
have at our disposal. The difference is that the dark objects the 19th-century astronomers
were hypothesising were only bodies which were not resolved by the instruments at the
time: what they predicted were just faint celestial bodies. Today instead we do not know

1According to the literature, we call baryons and leptons together baryons, since the formers are more
relevant for the energy budget.
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4 CHAPTER 1. EVIDENCE FOR DARK MATTER

the origin and composition of DM, we just know it cannot be ordinary matter. Physicists
and astronomers in the early years of 20th century proceeded along this way, trying to
estimate the amount of invisible and faint matter in the Milky Way.

The first evidence of DM in the literature, in the modern sense of the term, was found
by the Swiss-American astronomer F. Zwicky in 1933 [5]. He was studying the dynamics of
the ∼ 800 galaxies within the Coma cluster. From the redshifts of the galaxies, measured
by E. Hubble and M. Humanson, he deduced that their velocity dispersion was too high to
keep the system stable. He applied the virial theorem to infer the average mass density
of the cluster from the velocity dispersion and found that the obtained value was much
higher than the one predicted from visible matter. However, Zwicky was still thinking that
the dark matter was made of invisible ordinary matter: faint stars, cool bodies and gas
nebulae. As carefully reviewed in [6], the following decades were indeed characterized by a
“confusing situation” in the field, with an increasing number of observations of systems
with very high mass-to-light ratios on galactic and super-galactic scales: many ideas to
explain the discrepancies were proposed and the fact that a large amount of mass was
invisible, hence not observable, was just one possibility to solve the issue, among many
others.

New evidence for the existence of dark matter came out in the 1970s, when the study of
galactic rotation curves became prominent, after the discovery of the 21-cm radio emission
line and the explosion of radioastronomy. Rotation curves are plots of the measured
orbital velocity of gas and stars in a galaxy as a function of the radial distance from the
galactic centre. They can be used to infer the radial density profile of a galaxy. While the
Newtonian prediction for the density profile inferred from visible matter was a decreasing
velocity of the gas at large radii, the measured rotation curves were flat even at large
distances from the galactic centre. This fact suggests the presence of a large amount of
invisible matter embedding the galaxy, which, in a modern language, we call a dark matter
halo. These were the implicit experimental outcomes of the studies of K. Freeman [8] and
separately of V. Rubin and K. Ford [9] in 1970, which however did not elaborate much on
the implications for the existence of undetected matter, but just stated the discrepancies
clearly.

Still, the problems of high galactic velocity dispersions and flat rotation curves were
studied separately and in the community, there was not the feeling of a global anomaly,
rather of different uncomplete pictures about the measurement of mass and mass-to-light
ratios in galaxy and clusters. As argued in the historical review [7], only with a rising
interest in cosmology in the 1970s, together with a change in the expertise of physicists and
astronomers, the attention was finally driven to the missing mass problem. The General
Relativity (GR) Friedmann-Robertson-Walker (FRW) model, based on the metric

ds2 = −dt2 + a(t)2
[ 1

1− kr2dr
2 + r2dΩ2

]
, (1.1)

for the expansion of a homogeneous and isotropic Universe, was already the leading
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paradigm: to understand the history of the Universe, its mass-energy density ρ was a
crucial parameter to be determined, as it is clear from the Friedmann equation, the
00-Einstein equation for the above metric:

H2 =
(
ȧ

a

)2
= 8πG

3 ρ− k

a2 ⇐⇒ 1 = Ω− k2

a2H2 . (1.2)

It was a common (a priori) belief that the Universe was just closed, i.e. characterized by a
energy density parameter Ω = ρ/ρc & 1. By the approximate knowledge of the Hubble
constant H0, the critical density necessary to close the Universe was determined to be
ρc ∼ 10−29 g cm−3. This value was found to be two orders of magnitude higher than the
one estimated from the average mass of galaxies and their spatial distribution. It was only
at this point that the community acquired a particular focus on unobserved matter and
the high galactic velocity dispersions and flat rotation curves discrepancies came together
as evidence for the dark, invisible matter.

Afterwards, the problem of dark matter evolved dramatically, with a growing interest
in the particle physics community: by the late 1980s, the hypothesis that the missing
mass was made of one or more unknown particle species had become the leading paradigm
among other explanations, such as theories of modified gravity (from the standard general
relativity paradigm), e.g. M. Milgrom and Bekenstein theories.

1.1 Galactic scales

1.1.1 Galactic rotation curves

Still today, the most prominent evidence for DM on galactic scales comes from mea-
surements of the circular velocity of stars and gas in the galactic disks as a function of
their distance from the centre, i.e. galactic rotation curves (GRCs). The measurements
of the velocity of visible matter are obtained combining observations of redshifts of the
21cm line with optical surface photometry. If ρ0(r) is the visible matter density profile,
and M(r) = 4π

∫
dr′ r′2ρ0(r′) the enclosed mass, from the equation of motion of a visible

object, its expected circular velocity v(r) is

v(r) =

√
GM(r)

r
∝

r r � rc M(r) ∝ ρ0r
3

r−1/2 r � rc M(r) ' const
(1.3)

where rc is some kpc-scale characteristic radius of the galaxy. The enclosed visible mass is
increasing with volume in the disk and is saturated outside the disk. Instead, as shown
in the left panel of Fig. 1.1 velocity data points flatten at large distances. This implies
the existence of a superimposed dark density profile, a dark matter halo with M(r) ∝ r at
large radii, hence a density profile ρ(r) ∝ r−2 for r � rc.
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Figure 1.1: Left: Rotation curve of NGC 6503 from [10]. The dotted, dashed and dash-
dotted lines are respectively the contributions of gas, disk and DM. The solid line is the
sum of all contributions. Right: the Milky Way rotation curve from [13]. The different
lines represent the contributions from the bulge (dotted), the stellar disk (filled circles),
the HI gas layer (crosses), the H2 gas layer (circles), and a smooth dark halo (dashed).
The solid line represents the sum of the contributions.

Today, we have a large set of galactic rotation curves, extending to ∼ 100 kpc, where
there are no stars. So far all the galaxies show flat velocity profiles at the largest radii
probed. In particular, we also measured the rotation curve for our galaxy, the Milky Way,
that is crucial to know the local DM density, which is relevant for DM laboratory searches.
The measurement is complicated, since we are inside the galaxy, about 8 kpc from the
galactic centre. The result of one of the first measurements is shown in the right panel of
Fig. 1.1. A more recent study about DM in the Milky Way has been carried on in [11]:
the authors claim that current data strongly disfavour baryons as the only ingredient in
the galactic mass budget and point out the existence of DM, independently on its assumed
distribution.

Of peculiar interest among GRCs are Low Surface Brightness (LSB) galaxies, which
are probably DM dominated, because of the low presence of visible matter. Their study
can be used to characterize with precision DM density profiles avoiding the difficulties due
to modelling of baryonic matter.

An alternative hypothesis to DM to explain GRCs data is that Newton’s universal
gravitation (i.e. the small field limit of General Relativity) has to be modified on galactic
scales. This fact leads to theories of modified gravity (MOND) among all Tensor-Vector-
Scalar gravity (TeVeS), which drew attention in the past decades, for its ability to reproduce
observations of hundreds of GRCs [6]. However, this is an ad hoc theory, with a large
number of free parameters, which was not able to be consistent with GR in reproducing all
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the observation on larger scales (e.g. cluster scales). In particular, TeVeS was definitively
ruled out by the LIGO-Virgo observation of the gravitational wave (GW) signal GW170817
and of the electromagnetic counterpart [14], which proved the GW propagation velocity to
be equal to the speed of light up to a part over 1015.

1.1.2 Gravitational lensing

The limitation of GRCs is that one can only look out as far as there is light or neutral
hydrogen, namely to distances of ∼ 100 kpc. Thus, one can see the presence of DM halos,
but cannot trace where most of the DM is. We can overcome this limitation exploiting
gravitational lensing, i.e. the effect predicted by GR that mass bends light passing nearby.
In practice, the light of distant objects, like quasars, gets lensed by halos of galaxies far
(> 100 kpc) from galactic centres. Lensing measurements confirm the existence of enormous
quantities of DM both in galaxies and in clusters of galaxies, which we treat in the next
section.

Interestingly, the gravitational lensing signal behind them, in agreement with dynamical
analysis, shows that both the DM and baryonic components contribute to producing an
overall so-called isothermal ρ ∝ r−2 density profile out to very large radii [12]. As shown
in Fig. 1.2, to explain the observed lensing signal in this extended range of scales, many
ingredients have to come together: baryons at small scales, the galaxy’s DM halo, and the
haloes of neighbouring galaxies at farther distances. Moreover, the agreement between the
location of the transition from the host halo to large-scale structure and the typical size of
DM structures expected from N -body simulations provides strong support for the CDM
paradigm.

Other evidence for DM, both on sub-galactic and inter-galactic scales, also comes from
a great variety of data (see [2] and references therein) like weak modulation of lensing and
velocity dispersion measurements of dwarf spheroidal galaxies and spiral galaxy satellites.

1.2 Galaxy cluster scales

The evidence for DM is also prominent when we observe clusters, i.e. gravitationally
bound systems of galaxies of size 1-10 Mpc. As we said in the historical review, this
was also the first kind of system where evidence for DM was found: Zwicky observed the
velocity dispersion of galaxies in the Coma cluster finding it was too high for the system
to be stable if the mass was consistent with the one estimated from the counting of the
galaxies. In other words, he measured a mass-to-light ratio of around 400 M� comparing
the mass density obtained from the velocity dispersion – exploiting the virial theorem –
and the value estimated from visible matter – as average mass of a galaxy × number of
galaxies in the cluster ∼ 109M� × 103.
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Figure 1.2: The observed radial mass density around elliptical galaxies in the Hubble
Space Telescope COSMOS survey, decomposed into its various components (cfr. [12] and
reference therein). The solid blue curve shows the total “galaxy-galaxy” weak gravitational
lensing signal. On small scales around 10 kpc, the signal is dominated by the baryonic
content of galaxies (red dashed curve). At intermediate scales, around 100 kpc, DM haloes
become dominant: we distinguish the main ρ ∝ r−2 halo term (dotted green), from the
additional contribution (triple-dot-dash magenta) when the analysis focuses on satellite
galaxies in the subhaloes rather than main galaxies. On larger scales, above 3 Mpc, the
lensing signal is just the cosmic shear signal from large-scale structure hosting the galaxy
(dot-dash grey).

An alternative method to estimate the mass of a cluster is to compare the weak
gravitational lensing to the observed profile of X-ray emission tracing the distribution of
hot gas in clusters: the existence of this gas in the cluster can only be explained by a large
DM component providing the potential well to keep the gas in hydrostatic equilibrium. If we
impose hydrostatic equilibrium of the gas, modelled as an ideal gas in good approximation,
P = (ρ/(µmp))kBT with µ ' 0.6 the average molecular weight and mp the proton mass,
we have

−g(r) = −GM(r)
r2 = 1

ρ

dP

dr
=1
ρ

d

dr

(
ρ

µmp
kBT

)
= kB

µmp
× T

r

(
d log ρ
d log r + d log T

d log r

), (1.4)

where g(r) is the gravitational acceleration of the gas and M(r) = 4π
∫
dr′ r′2ρ(r′). Then

we fairly assume T ' const and ρ ∝ r−α with α ∈ [1.5, 2] at large radii. We find that the
temperature of the gas at hydrostatic equilibrium shoud go as

kBT '
GµmpM(r)

r
' 1.5 keV

(
M(r)

1014M�

)(1 Mpc
r

)
, (1.5)

having normalized to typical cluster values and used the baryonic enclosed mass. This
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Figure 1.3: The bullet cluster. The coloured map represents the image of the X-ray
emission of this system of merging clusters, from a 500-seconds exposure with Chandra
telescope. The white bar shows a distance of 200 kpc at the location of the cluster. The
green contours denote the reconstructed gravitational lensing map which shows that the
gravitational potential: the map does not trace the gas distribution, the dominant baryonic
mass component, but rather approximately traces the distribution of galaxies. Figure
from [15].

temperature is an order of magnitude lower than the observed temperature of T ' 10 keV,
suggesting the presence of a large amount of DM in the cluster, about 6 times the visible
matter.

Another way to detect the presence of gas in clusters is via the Sunyaev-Zel’dovich (SZ)
effect, which is just inverse Compton of CMB photons, hence scales proportionally to the
gas density. The SZ effect produces spectral distortions of the CMB spectrum from the
perfect black body one, hence it is not difficult to detect.

These results can be compared to the gravitational map obtained from the lensing of
background objects by the cluster gravitational potential. In [15] this technique has been
applied to the Bullet cluster, a pair of merging clusters shown in Fig. 1.3. As a result of
the clusters collision, the distribution of stars and galaxies is spatially separated from the
hot X-ray emitting gas (i.e. the baryonic mass of the system). The authors compared the
X-ray image to the lensing map, obtaining that the 8-sigma significance spatial offset of the
centre of the total mass from the centre of the baryonic mass peaks cannot be explained
with an alteration of the gravitational force law (i.e. MONDs), and thus proves that the
majority of the matter in the system is dark.
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1.3 Cosmological scales

Despite the strength of the DM evidence on galactic and cluster scales, the observations
discussed so far do not allow us to determine precisely the total amount of DM in the
Universe, but only to give rough estimates based on the mass-to-light ratio. Observations on
cosmological scales, i.e. at redshift z > 0.03 or distances > 100 Mpc, such as Lyman-α forest,
galaxy surveys, or the Cosmic Microwave Background (CMB), can give us information on
the energy budget of the Universe. In particular, it is only on such large scales that the
DM rather than only invisible appears to unveil its intrinsic non-baryonic nature.

1.3.1 Structure formation

A prominent way to characterize the nature of DM and its behaviour at different length
scales is to compare observations of the distribution of matter to the theory of structure
formation. In the standard paradigm, all the structures we observe in our Universe, e.g.
galaxies, clusters and super-clusters, arose from small primordial inhomogeneities generated
during the inflationary era. These originally small and linear fluctuations evolved in time
under the opposite effects of gravity and the Hubble expansion. The relevant random field
whose statistical properties we want to study is the dimensionless density fluctuation

δ(~x, t) = ρ(~x, t)− ρ(t)
ρ(t) =

∫
d3k

(2π)3 δ(~k, t)e
−i~k·~x, (1.6)

with ρ(t) the background FRW mean matter density. If we study the evolution of small
non-relativistic matter density fluctuations on scales λ smaller than the horizon λH = H−1,
we can use a Newtonian description of gravity. In fact, under these hypotheses, the
gravitational perturbation to the flat metric is small and the Poisson equation gives, for ϕ

∇2ϕ = 4πGρδ = 3
2H

2δ =⇒ ϕ ∼
(
λ

λH

)2
δ � 1, (1.7)

consistently. If we combine the Poisson equation with the Friedmann equation, the
continuity and Euler equation for the perturbed fluid in Fourier space, we obtain the Jeans
equation for the perturbation

δ̈ + 2Hδ̇ +
[
c2

sk
2

a2 − 4πGρ
]
δ = 0, (1.8)

with dots denoting derivatives with respect to cosmic time. This is the basic equation used
to compute the evolution of perturbations in a FRW Universe. In the square brackets,
we see the competition between gravity, which induces a compression (increasing δ), and
pressure, which favours rarefaction (decreasing δ). The scale at which gravity is balanced
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by pressure is the Jeans scale:

λJ = 2π
kJ

= 2π
√

c2
s

4πGa2ρ
= 2πrH

√
2
3cs (1.9)

with rH = (aH)−1 the comoving Hubble radius. Perturbations smaller than λJ get washed
out by pressure while those greater than the Jeans scale grow under gravity. Let us sketch
the solution of the Jeans equation in various regimes.

• λ� λJ , λH (perturbations on sub-Jeans scales and sub-horizon scales). If we neglect
the gravity term, the Jeans equation gets the form of a damped harmonic oscillator
with damped frequency ω(k, a) = csk/a and amplitude:

δ̈ + 2Hδ̇ + c2
sk

2

a2 δ = 0 =⇒ δ(k, t) ∝ A(k, t)e−iωt +B(k, t)eiωt. (1.10)

Therefore perturbations with sub-Jeans length scale undergo damped acoustic oscil-
lations.

• λJ � λ < λH (perturbations on super-Jeans and sub-horizon scales). In this case, we
can neglect the effect of pressure and solve the equation. Let us do it in two separate
sub-cases.

– Radiation domination: a ∝ t1/2, H = 1/(2t) and the matter-energy density ρ is
a negligible component in the Universe so it can be set to zero. Therefore

δ̈ + 1
t
δ̇ = 0 =⇒ δ(k, t) = A(k) +B(k) log t (1.11)

So, in the radiation-dominated era, perturbations stay constant or weakly grow
logarithmically with time.

– Matter domination: a ∝ t2/3, H = 2/(3t) and H2 = 8πGρ/3. So we get

δ̈ + 4
3t δ̇ −

2
3t2 δ = 0 =⇒ δ(k, t) = A(k)t−1 +B(k)t2/3 ∝ B(k)a(t) (1.12)

During the matter-dominated era, perturbations grow with time as the scale
factor.

• λ > λH , λJ (perturbations on super-horizon and super-Jeans scales). In this case,
the Newtonian treatment is no longer valid, so we have to rely on a full GR analysis.
Let us sketch here reasoning which will lead us to the correct result, following the
simple argument of Kolb and Turner [20]. Perturbations in GR suffer the gauge
ambiguity problem, that is they depend on the definition of the map between the
physical (perturbed) model and the reference (unperturbed) one. What is relevant
is the difference between physical and reference model having set a specific map:
of course, physical observables are gauge independent. Therefore, in principle, the
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perturbation δ will be gauge dependent. To fix the gauge, one has to exploit a fixing
condition. Let us consider two models, a reference unperturbed flat FRW model

H2 = 8πG
3 ρ0 (1.13)

and a model with the same Hubble parameter H (gauge fixing condition) but with
higher density ρ1 > ρ0 and therefore closed (positively curved) k > 0

H2 = 8πG
3 ρ1 −

k

a2 (1.14)

The choice of gauge is called the uniform Hubble flow condition. The density contrast
is given by

δ ≡ ρ1 − ρ0
ρ0

= k/a2

8πGρ0/3
(1.15)

As long as δ is small, the scale factors of the two models differ only by a factor
∼ (1 + δ). Therefore we can use the above equation to see the behaviour of a
super-horizon density perturbation during radiation ρ0 ∝ a−4 and matter ρ0 ∝ a−3

domination epochs

δ ∝ a−2

ρ0
∝

a2 ∝ t radiation domination
a ∝ t2/3 matter domination

(1.16)

We can visualize the growth of perturbations on sub-horizon scales in Fig. 1.4. We can

tΛtdecteqtH t

∝ t−2 ∝ t−2/3

∝ t2/3

ϕ

δbδχ

δγ

∝ ln t∝ ln t

Figure 1.4: A sketch of the time dependence, in the linear regime, of density contrasts of
DM, baryons and photons, δχ, δb and δγ , respectively, as well as the Newtonian potential ϕ.
All perturbations cross the horizon at time tH before matter-radiation equality; teq and tΛ
correspond to the transitions from radiation domination to matter domination, and from
decelerated expansion to accelerated expansion, tdec refers to the recombination epoch.
Notice the huge difference between δb and δχ because baryons are coupled to photons to
recombination. Acoustic oscillations of baryons and photons until decoupling are neglected.
Figure elaborated from the lectures [21]
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summarize the evolution of perturbations as

δ(a, k) ∝



exp[±icsk/a] k > kJ , kH

log a kH < k � kJ , radiation domination
a kH < k � kJ , matter domination
a2 k < kH , radiation domination
a k < kH , matter domination

(1.17)

In particular, we can use the formula for sub-horizon sub-Jeans perturbations in a matter-
dominated era to compute the density perturbation today. Knowing that during decoupling
δCMB ∼ 10−5 and neglecting the late cosmological constant domination, we have

δ0 = a0
adec

δCMB '
Tdec
T0

δCMB ∼ 103 × 10−5 ∼ 10−2. (1.18)

This value is too small to account for present structures, where we have δ ∼ 1− 105. The
smallness of CMB density fluctuations in the baryon-photon plasma is a striking proof that
we are missing a crucial ingredient to form structures: cold dark matter, which provides
the potential wells allowing the perturbations to go non-linear. So DM is the reason why
we do exist: if DM was not present, our Universe would be homogeneous, with just per
cent fluctuations in density.

To compare the theory of structure formation with observations and probe the crucial
impact of DM, we model the fluctuations as Gaussian random fields, whose statistical
properties are all described by the linear matter power spectrum today P (k), defined as〈

δ(~k, t)?δ(~k′, t)
〉

= (2π)3δD(~k − ~k′)P (k). (1.19)

This form is due to isotropy and homogeneity of the background Universe. Since we
are using linear theory, this quantity is found from the product of the primordial power
spectrum (given by inflation) and a transfer function T 2(k) we have to determine: it takes
into account the scale dependence of the evolution of perturbations. Following [16], we
write the power spectrum in the form

P (k) = 2π2δ2
H

H3
0

(
k

H0

)n

T 2(k), (1.20)

such that, defining the dimensionless power spectrum

∆2(k) ≡ k3P (k)
2π2 , (1.21)

for an horizon-sized scale k = H0, we have ∆2 = δ2
H . The parameters of the primordial

power spectrum are measured: δH is fixed by the amplitude of CMB anisotropies on largest
scales and n is the spectral index of scalar perturbations from inflation, measured with
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good accuracy by the Planck satellite [17]

n = 0.965± 0.004. (1.22)

This value shows a slight red tilt with respect to the scale-invariant Harrison-Zel’dovich
value of n = 1. We can understand the behaviour of the transfer function considering two
trial modes equal at some time: one entering the horizon before equality δ(k > keq) and
another entering during matter domination δ(k < keq). The former mode is practically
frozen until matter domination. This is the so-called Meszaros effect, which leads to a
suppression of small scales modes. The suppression is given by the missing growth factor:
given that on super-horizon scales, during radiation dominations, modes grow as δ ∝ a2,
this is just the square of the change in a2 during this period. In radiation domination
dη = da2/a ∼ da and horizon crossing is obtained at k ∼ 1/η, so we have that the
suppression factor is

δ(k > keq)
δ(k < keq) =

(
aeq
a

)2
'
(
ηeq
η

)2
'
(
k

keq

)2
, (1.23)

since the numerator is frozen and the denominator grows as a2 until aeq. Therefore the
transfer function will have the form (see [16], chapter 7 for a full derivation)

T 2(k) '
{

1 k � keq

(k/keq)−4 k � keq
(1.24)

This suggests the following scaling of the linear matter power spectrum

P (k) ∝ 2π2δ2
H

H3
0
×

k k � keq

(k/keq)−3 k � keq
(1.25)

We realize that there is a turnover in the power spectrum, i.e. a smooth peak around
the scale keq, that is the wavenumber of a mode entering the horizon at matter-radiation
equality. We can find it as keq = 1/ηeq. The comoving distance in a Universe with only
matter and radiation with equality at aeq = Ωr/Ωm is given by

η(a) =
∫ a

0

da

a2H(a) =
∫ a

0

da

a2H0

1√
Ωma−3[1 + aeqa−1]1/2

= 2
H0

√
aeq
Ωm

[√
1 + a

aeq
− 1

]
,

(1.26)

Therefore

keq = η−1
eq = 2(

√
2− 1)

√
H2

0 Ωm

aeq
' 0.009 hMpc−1. (1.27)

In the top panel of Fig. 1.5 we compare the linear power spectrum today predicted from
the ΛCDM model to observations. The scalings and the peak of the spectrum are in
agreement with data. Another important scale to point out is the scale kNL below which
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non-linearities in the matter perturbation evolution cannot be neglected anymore. This
value is set by the condition ∆(kNL) ' 1, that bears kNL ' 0.2 hMpc−1, as we see from
the bottom panel of Fig. 1.5. At such small scales k > kNL, the extraction of the linear
power spectrum from observations is more complicated.

We conclude this section remarking the crucial role of DM in the description of the
matter power spectrum. As it is clear from the bottom panel of Fig. 1.5, baryons alone
cannot reproduce observations. This fact stresses the non-baryonic nature of DM.

1.3.2 Cosmic Microwave Background

Today, the analysis of Cosmic Microwave Background (CMB) temperature anisotropies
and polarization provides us with the most accurate testing of cosmological models and
the tightest constraints on cosmological parameters. Let us briefly review the CMB
physics following the excellent book of Dodelson [16] and the review [4] to understand the
importance of the CMB in modern cosmology.

The existence of background radiation originating from the propagation of photons
in the early Universe decoupled from baryons at a temperature about Tdec ' 0.1 eV was
predicted by G. Gamow and collaborators in 1948 and accidentally discovered by A. Penzias
and R. Wilson in 1965, worth them the Nobel Prize. The CMB was measured carefully by
many experiments during the last decades and ultimately by the most accurate so far, the
Planck satellite. The CMB was found to be with extraordinary precision the spectrum of a
black body, corresponding to a temperature of

T0 = 2.726 K. (1.28)

The main observables offered by the CMB are the photon intensity (hence temperature) and
polarization, which however is less important concerning the DM. Of physical interest are
temperature fluctuations in different directions in the sky, i.e. anisotropies. Any deviation
of the early Universe from an isotropic and homogeneous Universe made out of a thermal
bath of photons, baryons, neutrinos and DM particles is evident as a modification of a
constant photon temperature over the so-called last scattering surface, which is the way we
can think of the CMB.

The major temperature fluctuation is due to the relative motion of the observers (the
Earth, solar system, Milky Way etc.) with respect to the CMB. Subtracting this dipole
correlation, one obtains an isotropic background with temperature fluctuations of order
δT/T0 ∼ 10−5. Homogeneity at such large scales (the quadrupole scale) is a hint of an
early inflationary phase which has two main outcomes: it offers a scenario where all scales
were initially in causal contact and provides, from the density fluctuations of the field
responsible of inflation, the primordial seeds for large scales perturbations, hence the CMB
anisotropies too.
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The symmetry of the problem suggests a convenient basis to expand the temperature
fluctuations: spherical harmonics.

δT (θ, φ) =
∞∑

`=0

∑̀
m=−`

a`mY`m(θ, φ). (1.29)

Experimentally, the sum over multipoles ` starts from ` = 2 (having discarded the monopole
` = 0, which is an overall unphysical constant and the dipole ` = 1 for the aforementioned
reason) and ends at a small scale `max ∼ π/θmin, set by the resolution of the experiment.
The Planck satellite is sensitive to very small scales: `max ∼ 2500.

If the fluctuations are assumed to be Gaussian (which is a very good approximation),
all the information is included in the angular power spectrum

〈a`ma`′m′〉 = C`δ``′δmm′ , (1.30)

which is diagonal in multipoles, with entries C`, thanks to isotropy. Therefore the angular
power spectrum is given by

〈δT (θi, φi)δT (θj , φj)〉 =
∑

`

(2`+ 1)C`P`(cos θij), (1.31)

with P` the Legendre polynomials and θij the angle between directions i and j. The power
spectrum coefficients C` depend on the cosmological parameters, so, measuring the formers,
we can get the latter ones. In Fig. 1.6, we show the angular power spectrum coefficients
normalized in a peculiar way DTT

` = `(`+ 1)C`/2π as measured by the Planck satellite [17]
together with the best fit model. We see that the measured power spectrum essentially
consists of a set of peaks called acoustic peaks, each of them giving us an angular scale with
a particularly large contribution to the temperature fluctuations. The leading physical
effects generating such shape are:

• acoustic oscillations of the coupled baryon-photon fluid around the time of decoupling.
Photons are initially tightly coupled to electrons through Thomson scattering, hence
also to baryons since protons interact strongly with electrons via Coulomb scattering.
This fluid interacts gravitationally with DM particles, so it is pulled into gravitational
wells. The baryon-photon plasma is characterized by pressure and sound speed cs,
which goes to c/

√
3 in the limit of vanishing baryon density. While falling in the

potential well, the fluid undergoes a kind of adiabatic expansion that causes an
increase in pressure, due to a reduction of volume. This pressure counters gravity
making the fluid oscillate: the photons moving to and fro in the gravitational potential
induce fluctuations in intensity, hence in temperature, located around the regions
which are dense of DM. This oscillation can be decomposed in reciprocal space in
a tower of fluctuation modes (each one with an associated power) characterized by
multipoles `. The associated power to each mode is an imprint of the gravitational
potential around decoupling.
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• Sachs-Wolfe effect. It is the impact of gravity, described by GR, on the propagation
of CMB photons to us, during and after decoupling. The effect is due mainly to
(dark) matter (dominating the Universe during decoupling) accumulations, which
generate a gravitational potential evolving in time during the travel of CMB photons
through it. Naively, the photons escaping the wells are much colder than they were
inside; actually, the redshift effect on photons climbing up potential wells dominates
over the temperature gain associated to the overdensity so that the cold spots we
observe in the CMB today are associated to overdense regions at recombination,
while hot spots are associated to underdense regions. The free-streaming Sachs-Wolfe
effect leads to a dependence C` ∝ [`(`+ 1)]−1: this is the reason for the normalization
used to plot the CMB anisotropy power spectrum. The later the photons see such
gravitational potential, the more likely they are to probe the geometry of the Universe
and the cosmological constant (late-time Integrated Sachs-Wolfe effect). The latter
parameters are, in fact, degenerate as we shall see.

From both effects, we see the crucial role played by DM in creating the potential wells
affecting the oscillations of the photon-baryon fluid and the streaming of decoupled photons.

Now we further analyse the dependence of the spectrum on the cosmological parameters.
In particular, we are interested in the today energy budget of the Universe. We can neglect
the contribution of relativistic degrees of freedom (photons plus relativistic neutrinos2),
which is easily obtained from the CMB temperature T0:

Ωr(t0)h2 = Ωγ(t0)h2 + Ων(t0)h2 = π2

15h
2 geff(T0)T 4

0
ρc(t0)

' 0.66× (1 + 0.22Nν)(2.36× 10−4 eV)4

8.4× 10−11 eV4 ' 2.44× (1 + 0.22Nν)× 10−5,

(1.32)

with h = H0/(100 km s−1Mpc−1) the unknown normalized value of the Hubble constant
(it is indeed a fit parameter). We focus on the following crucial parameters, which can be
determined from the CMB temperature anisotropies spectrum:

Ω(t0), Ωm(t0)h2, Ωb(t0)h2, ΩΛ(t0). (1.33)

These parameters make the energy budget of a flat FRW Universe (see Appendix A for
details): the total density parameter, the density parameter of matter (total non-relativistic
matter, dark plus baryons), of baryons and the cosmological constant. h2 is found from
the combination of the parameters above

h2 ' Ωm(t0)h2

Ω(t0)− ΩΛ(t0) . (1.34)

Despite this choice, the shape of the power spectrum is affected by many other parameters
2We will account for the uncertainty on whether all the neutrinos are non-relativistic today or not

leaving the number of relativistic neutrinos as a free parameter Nν .
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we will not consider here, such as the spectral index of primordial perturbations n, tensor-
to-scalar ratio r, reionization τ , since they are less interesting for DM.

An important observable is the angular scale associated to the first and most pronounced
peak θ0 ∼ π/`0: it corresponds to the size of patches of the sky that were not in causal
contact during and since decoupling. It is intuitively given by the ratio of a characteristic
length scale on the last scattering surface, called the sound horizon rs(ηdec), i.e. the
comoving distance travelled by a sound wave by time corresponding to ηdec, indicating the
conformal time with η (dη = dt/a)

rs(ηdec) =
∫ ηdec

0
dη′cs(η′) (1.35)

and the comoving distance (travelled by light) between us and the last scattering surface

dC(ηdec) =
∫ η0

ηdec
dη′ (1.36)

Notice that both comoving distances depend on the cosmological parameters introduced
above (neglecting radiation density parameter). In particular,

dC = η = 1
H0

∫
da√

a(1− a)Ω(t0)− a(1− a3)ΩΛ(t0) + a2 . (1.37)

Therefore
sin θ0 = rs(ηdec)

dC(ηdec)
. (1.38)

sets the position of the first peak. Since comoving distances are strongly affected by
the geometry of the Universe, the position of the first peak is considered a measure of
the flatness of the Universe. Physically, the first peak corresponds to a sound wave
with wavelength twice the size of the horizon at decoupling, hence that underwent one
compression, while the other peaks are higher-order modes. Odd-numbered peaks are
associated with the level of compression the baryon-photon fluid experiences due to the
gravitational potential while even-numbered peaks show the expansion counter effect of the
fluid pressure. Acoustic oscillations, and so the peaks, are washed out at small scales. This
is because the last scattering surface has a non-negligible thickness: acoustic oscillations
get exponentially erased C` ∝ exp(−`2/`2?) by the incoherent superposition of modes when
the scale is comparable to the spatial resolution at time of last scattering ` & `?.

We can summarize the effect of parameters on CMB spectrum shape:

1. Ω(t0) affects the comoving distance, hence the position of the first peak, in such a
way that increasing Ω(t0), dC is reduced. However, it also enters H0 lowering it,
hence increasing dC . The net effect is that dC decreases and the first peak `0 moves
to smaller values.

2. ΩΛ(t0) also affects the comoving distance directly but with an opposite sign with
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respect to Ω(t0) and the same regarding H0. The net effect is again that increasing
ΩΛ(t0) the acoustic peaks move to smaller multipoles. We see the effect of ΩΛ and Ω
is the same, hence in our basis, we have a strong geometry degeneracy.

3. Ωb(t0)h2 measures the baryon density. If the relative baryon content in the plasma is
higher, the pressure decreases and odd (compression) peaks get higher (also because
baryons contribute to the gravitational potential) while even (expansion) peaks get
lower. This behaviour is a unique signature and it is easy to disentangle from the
effect of other parameters. Hence Ωbh

2 affects the relative height between odd and
even peaks and we can measure its value from this effect.

4. Ωm(t0)h2 is dominated by DM, which, effectively, is not coupled other than gravita-
tionally to the baryon-photon fluid: it provides the gravitational wells for acoustic
oscillations. Increasing the contribution of DM, the gravitational potential is stabi-
lized and acoustic oscillations are suppressed. This reduces the height of all peaks,
most sensibly the first two. So a high third peak is a signature of a large DM
component, as it is the case in Fig. 1.6. Moreover, an increased DM density reduces
the characteristic length of the gravitational potential, bringing peaks at higher
multipoles closer together.

Separating these four effects from each other and from other astrophysical and cosmological
parameters becomes easier when we can analyse higher-order peaks. This is why CMB
experiments try to be sensitive at the smallest scales possible. The Planck satellite clearly
identified seven peaks and measured at their best of accuracy our parameter of interest:

Ωb(t0)h2 = 0.0224± 0.0001,
Ωm(t0)h2 = 0.142± 0.001,

ΩΛ(t0) = 0.684± 0.009,
H0 = 67.4± 0.5 km s−1Mpc−1,

|1−Ω(t0)| < 10−3,

(1.39)

and, most importantly for us, the DM relic density

ΩDM(t0)h2 = 0.120± 0.001. (1.40)

During the whole discussion, we had the need to treat DM as a completely independent
component of the Universe with respect to baryons, since it interacts with CMB photons
only gravitationally, unlike baryons. This confirms the non-baryonic nature of DM and the
fact that it cannot be made of ultrafaint objects of ordinary matter. There are at least two
other independent observables on cosmological scales that can probe Ωbh

2 and Ωm: the
former can be measured from Big Bang Nucleosynthesis (BBN) in the very early Universe,
the latter with analysis of Supernovae Ia and is a late Universe measurement. The fact
that the whole picture is consistent is strong evidence for the existence of DM and its
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non-baryonic nature as a crucial ingredient in the cosmic inventory.

1.3.3 Type Ia supernovae

The fundamental assumption underlying the past and proposed use of Type Ia super-
novae (SNIa) to measure the expansion history is that they are “standardizable candles”.
SNIa occur when material accreting onto a white dwarf from a companion drives the mass
of the white dwarf above the maximum that can be supported by electron degeneracy
pressure, the Chandrasekhar limit of about 1.4 solar masses. This triggers the collapse of
the star and the explosive onset of carbon fusion, in turn powering the supernova explosion.
Because the collapse happens at a particular critical mass, all SNIa are similar, hence they
can be used as (nearly) standard candles.

Standard candles are very useful in trying to estimate distances of astrophysical objects.
The principle is simple: a standard candle is an object with a fixed intrinsic luminosity L,
even unknown, and we can use this information to get the distance of this object to us
knowing the light flux f received

d2
L = L

4πf . (1.41)

If we have many of these objects, we can relate their distances (if L is unknown) to the
measured fluxes. SNIa are fortunately bright enough to be seen at cosmological distances
and they can be considered standard candles, with their intrinsic luminosity pretty much
constant. At the same time, we can be able to measure the redshift of the host galaxy
of these SNIa and correlate the information about z and dL in a dataset to reconstruct
the time dependence of the scale factor (Hubble diagram). One can fit the Hubble curves
to specific cosmological models, finding the value for the dark energy density parameter
ΩΛ(t0) responsible for the late-time acceleration and the matter density parameter Ωm(t0).
Experimentally, we measure the fluxes in terms of magnitudes: we have the apparent
magnitude m, which is related to luminosity distances dL by the relation

m = M + 5 log10

(
dL

10 pc

)
. (1.42)

M is the (unknown) absolute magnitude of SNIa. As shown in the right panel of Fig.
1.7 the best fit model (Ωm(t0),ΩΛ(t0) gives, in a flat cosmology for the matter density
parameter

Ωm(t0) = 0.28+0.05
−0.04, (1.43)

in agreement with CMB data.

1.3.4 Big Bang Nucleosynthesis

At temperatures around T ∼ 0.1 MeV, Big Bang Nucleosynthesis (BBN) took place:
protons and neutrons fused together to form light nuclei (D, 3He, 4He, Li). This phenomenon
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is strongly dependent on the number of baryons that were around at those times. In the
left panel of Fig. 1.8 we show a recent fit [18] on light elements abundances. BBN can
accurately constrain the amount of baryonic matter in the Universe and, for this reason,
when compared instead to the total matter density, one obtains the evidence for missing
matter. Rather being only the first important observational evidence for the Big Bang
scenario, BBN is also an excellent probe of beyond Standard Model physics as it is very
sensitive to the particle content of the Universe through the number of relativistic degrees
of freedom present and to the strength of gravitational and weak interactions. Let us be a
bit more quantitative, sketching the main dependences of the relic abundance of 4He. This
element is produced from deuterium D through the following two processes

p+ n −→D + · · ·
D + D −→4He + · · ·

(1.44)

The formation of deuterium is the bottleneck of the 4He formation and it sets the amount
of final stable 4He nuclei. If we define the mass fraction of a nucleus Yi = Aini/nb, with Ai

its mass number and nb the baryon number density, we want to reproduce today abundance
of Y4He ' 0.25. The key ingredient in this process is the behaviour of the neutron number
density nn. Neutrons are unstable particles with lifetime τn ∼ 881 s, however, at high
temperatures T � 1 MeV, the Universe is younger than a second. Above the MeV neutrons
are in equilibrium with the thermal plasma and, just like protons, they formed during QCD
phase transition already as non-relativistic particles. Neutrons interact with the thermal
plasma only through weak interactions, with processes such as:

p+ e− ←→ n+ νe (1.45)

Of crucial importance in the formation of deuterium is the ratio of the abundances of
neutrons and protons, which is the ratio of their equilibrium abundances in the non-
relativistic limit; neglecting chemical potentials (see Appendix A.2)

R(T ) ≡ nn

np

∣∣∣∣
T

'
(
mn

mp

)3/2
e−∆m/T , (1.46)

with ∆m = mn − mp ' 1.3 MeV.3 So, at T � ∆m the ratio is practically one, while
at lower temperatures it quickly decreases. This happens as far as the neutrons remain
in thermal equilibrium with the plasma. However, weak interactions become ineffective
around4 T dec

weak ' 0.8 MeV5. Below this temperature, the process (1.45) decouples and the
ratio becomes

R(T dec
weak) '

(
mn

mp

)3/2
e−∆m/T dec

weak ' 0.197. (1.47)

3If this value was different, or perhaps negative, our Universe would have been very different from how
it is.

4The precise value is crucial since the decay is exponential, but it is not easy to compute: we will stick
to the naive estimate we will do in Section 1.4.

5It is just by luck that this temperature is very similar to ∆m: again, if their ratio were different things
would have ended up differently for us.
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From this time on, the only variation in this ratio is due to neutron decay which is starting
to be effective

R(t) ' 0.197e−(t−tdec
weak)/τn (1.48)

where tdec
weak ' 1 s is the time at neutron decoupling. Now we can assume that deuterium

production is still at equilibrium to get an estimate of the temperature at which a suitable
deuterium fraction has formed, allowing helium production. Let us compute

nD
npnn

= 3
4

( 2πmD
mpmnT

)3/2
eBD/T , (1.49)

with BD = mn +mp−mD ' 2.2 MeV. Now we use the fact that nn = nb/(1 + 1/R) ' nb =
ηnγ , with η the so-called baryon-to photon ratio. This is the main parameter we want to
find from BBN, since it is directly related to Ωbh

2. We impose nD/np ' 1 and solve for T ,

1 ' η2ζ(3)T 3

π2
3
4

( 2πmD
mpmnT

)3/2
eBD/T , (1.50)

giving, approximately

TBBN ' −BD

[
1 + log η + 3

2 log
(
− BDmD
mpmn log η

)]−1
. (1.51)

This value is sensitive to the unknown value of η. Now we show that if η ' 10−10, we
reproduce the observed 4He mass fraction. For this choice of η, TBBN ' 0.06 MeV and
tBBN ' 360 s. Now the final abundance of 4He is set by the ratio R at tBBN, that is, from
Eq. (1.48), R(tBBN) ' 0.13. Finally we obtain

Y4He = 4n4He
nb

= 2nn

nn + np
= 2R(tBBN)

1 +R(tBBN) = 0.23 . (1.52)

If we go back on our steps, we see that in our calculation we needed two ingredients: the
value of T dec

weak and the value of η. This two quantities set the final helium abundance.

• T dec
weak: naively it is given by imposing that the rate of weak interactions is equal to

the Hubble rate:

T dec
weak = G

−2/3
F M

−1/3
Pl g

1/6
?ρ ' 1 MeV

(
g?ρ

10.75

)1/6
. (1.53)

From this formula, we see that, if we increase the strength of the weak interactions,
we lower T dec

weak, thus decreasing R and the final helium abundance. On the contrary, if
we increase the strength of gravity (decreasing MPl) we increase also T dec

weak, enhancing
helium production. Moreover, we have a very important dependence on the number
of relativistic degrees of freedom. This implies BBN is sensitive to all the active
relativistic degrees of freedom around 1 MeV: increasing g?ρ, e.g. adding another
neutrino species, increases T dec

weak, enhancing the 4He production.
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• η: this quantity is directly related to Ωb(t0) = mpηnγ(t0)/ρc(0). In BBN it enters
the temperature at which deuterium forms. Increasing η, we increase the number
of baryons, favouring deuterium production, which happens earlier, at higher TBBN.
Hence the final helium mass fraction increases because neutrons have less time to
decay. In the left panel of Fig. 1.8 we show the results of the fit over primordial
abundances.

1.4 Beyond the Standard Model of Particle Physics

Rather than only non-baryonic, DM particles must be made of states which are not
included in the Standard Model. In this section, we shall see why DM cannot be described
by SM physics.

1.4.1 The Standard Model is incomplete

Despite being a very successful theory in describing physics at colliders at energy scales
as high as 10 TeV, we know from many hints that the Standard Model is only a low
energy effective theory of some more fundamental theory. Let us cite the most compelling
motivations.

From the theoretical point of view, the more concerning one is the hierarchy problem.
It is because the Higgs boson is a fundamental scalar and in the Standard Model it is
not protected by any symmetry from receiving very large corrections to its mass from
the virtual loop contributions of heavier particles, which are expected to appear at the
Planck energy scale MPl = (8πG)−1/2. Then, the observed Higgs mass at Large Hadron
Collider appears to be the unnatural result of a fine-tuned cancellation between the intrinsic
contribution and the virtual correction terms. Theories try to introduce additional particles
and symmetries to cancel these large corrections: one example is supersymmetry (SUSY).
Another compelling problem is the unification of gravity with other forces.

On the experimental side, the most striking evidence for beyond Standard Model physics
concerns known particles: neutrinos. Indeed there is strong evidence for neutrino flavour
oscillations, both for neutrinos originating from cosmic rays decays and interactions in
the atmosphere and for neutrinos produced in the nuclear reactions happening in the Sun.
Neutrinos are produced and detected in given flavour states since they interact with given
flavour charged leptons only. However, when they propagate, both in the vacuum and in
the matter, they can change their flavour. This oscillation mechanism can be explained if
the neutrinos have mass and their flavour eigenstates are not mass eigenstates. The tightest
bounds on neutrino mass come from cosmology, in particular from the CMB analysis [17]
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(95%,PlanckTT,TE,EE + lowE + lensing + BAO),∑
i

mi
ν < 0.12 eV, (1.54)

with mi
ν the mass of i flavour neutrino, as given by the combination of mj masses of the

neutrino mass eigenstates with the mixing matrix U , the Pontecorvo-Maki-Nakagawa-
Sakata matrix:

mi
ν =

√∑
j

|Uij |2m2
j . (1.55)

We shall see briefly in the next subsection where this bound comes from. Neutrinos are
the lightest known massive particles. However, there is no way to account for neutrino
masses in a gauge-invariant way within the Standard Model. The lepton Lagrangian reads

LSM ⊃
∑

flavours

[
Ei

LiD/E
i
L + eRiiD/ ei

R

]
−
[
yij

e E
i
Le

j
RH + h.c.

]
. (1.56)

We can generate only gauge-invariant masses for charged leptons as we do not have right
neutrinos in the Standard Model. One possibility is that left-handed neutrinos are Majorana
particles, but Majorana mass terms, involving left fields only, are not consistent with U(1)
symmetries and violate the U(1)Y gauge symmetry. We need to extend the SM and add
new degrees of freedom, for example, some right-handed neutrinos being singlets under
the SM gauge group. Indeed, models trying to account for neutrino masses involve an
additional heavy right-handed field sterile neutrino NR and exploit the so-called see-saw
mechanism. This model tries also to account for the mass hierarchy of the Standard Model:
in this way one can explain the masses of νL neutrinos being suppressed by 12 orders of
magnitude with respect to the top quark, justifying an infinitesimal unnatural Yukawa
coupling yν .

1.4.2 SM neutrinos as Dark Matter?

Provided we have hints of beyond Standard Model physics in the neutrino sector we
can explore the possibility of neutrinos as DM particle candidates.

Being massive, weakly coupled to baryonic matter, invisible and very abundant in the
Universe, Standard Model, or active, (meaning charged under SU(2)L) neutrinos were
among the first candidates to be proposed. They are a classical example of a thermal
relic, that is a particle which was in thermal equilibrium with the primordial plasma in
the early Universe at high temperature. The departure from thermal equilibrium is the
process that set the relic density of neutrinos: if they were coupled to the plasma when they
became non-relativistic – as they should sooner or later, being massive – their abundance
would have been exponentially suppressed. We will compute this relic density under some
assumptions: the proper way to compute the abundance of thermal candidates in the early
Universe involves the Boltzmann Equation formalism we will introduce in the following
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chapter.

At temperatures T ∼ 10 MeV neutrinos are coupled to the plasma of electrons and
positrons through weak interactions, thus indirectly also to photons and nucleons. The
processes which maintain thermal equilibrium are the following ones:

νν ↔ e−e+, νe± → νe±, νe∓ → νe∓. (1.57)

However, weak interactions are mediated by massive gauge bosons W± and Z with masses
about 80 - 90 GeV. Thanks to naive dimensional analysis, we know that the weak interactions
cross-section for the processes above scales as

σ ∼ G2
FT

2, (1.58)

where GF = 1.16 × 10−5 GeV−2 is the Fermi constant. The interaction rate Γ between
leptons, i.e. the number of interactions per unit time given the species number density n,
can be estimated as

Γ ∼ nσ, (1.59)

considering relativistic collisions. Weak interactions start to be unable to keep neutrinos
coupled to the plasma when the interaction rate drops below the Hubble rate, that means
we have less than one interaction in a Hubble time:

Γ < H ⇐⇒ nσ <
T 2

MPl
g

1/2
?ρ (T ). (1.60)

Assuming n ∝ a−3 ∼ T 3 we can get a simple estimate of the decoupling temperature of
weak interactions T dec

weak, i.e. the temperature at which weak interactions cannot keep the
neutrinos coupled to the plasma:

T dec
weak = G

−2/3
F M

−1/3
Pl g

1/6
?ρ ' 1 MeV

(
g?ρ

10.75

)1/6
. (1.61)

Weak interactions also mediate the annihilation process of neutrinos into charged lep-
tons. When these processes are no more efficient, we say that neutrinos freeze-out, since
their comoving abundance gets frozen to a nearly constant value. Therefore in a first
approximation, we can assume that neutrinos froze-out at 1 MeV. This temperature is
well above the mass of neutrinos, as we get from experiments (careful studies of β-decays)
or the bound obtained by the Plank Collaboration Eq. (1.54). For this reason, neutrinos
are called hot relics and are a perfect candidate for Hot Dark Matter (HDM). In this
case, the freeze-out happens when the particles are still relativistic and are very far from
experiencing Maxwell-Boltzmann suppression by the factor e−m/T . Hence the precise value
of the freeze-out temperature TFO is not crucial to determine the relic yield. So we can
take TFO ' T dec

weak since the number density of neutrinos is not changing fast. We define
the yield

Y = nν

s
, (1.62)
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with s the entropy density. This quantity is a comoving number density and stays constant
during the history of the Universe if no processes are changing the number of neutrinos.
We can assume

Y (T0) ' Yeq(T dec
weak) = neq

ν

s
= ζ(3)

π2 ×
3
4gν ×

[2π2

45 g?s(T dec
weak)

]−1
= 0.039

( 10.75
g?s(T dec

weak)

)
.

(1.63)
Then considering only photons as contributing to the entropy density today s0, we obtain

Ων(t0)h2 =
∑

im
i
νs0

ρc(t0) Y (T0) =
∑

i

mi
ν × 0.039

( 10.75
g?s(T dec

weak)

) 1519 cm−3

1.1× 104 eV cm−3 , (1.64)

yielding

Ων(t0)h2 < 6.5× 10−4
( 10.75
g?s(T dec

weak)

) ∑
im

i
ν

0.12 eV . (1.65)

This result is very far from the value the DM relic density measured fitting CMB anisotropies
or the matter power spectrum.

However, this is not the only reason why neutrinos cannot account for all the DM.
The tightest constraints come from structure formation. As we have mentioned in the
introduction, DM needs to be cold, i.e. if produced thermally, it has to decouple when it is
non-relativistic with a mass above the keV scale. If this condition is not fulfilled, structure
formation is compromised because of the large dispersion velocity of the DM, which induces
collisionless free streaming on small scales. This impacts heavily on the power spectrum at
small scales, since matter perturbation entering the horizon before the DM particles are
non-relativistic are damped. Perturbations are erased up to a lengthscale of kfs we now
estimate. Let us call afs < aeq the scale factor when the hot relic becomes non-relativistic
Tfs ' m. Assuming radiation domination and that the number of relativistic degrees of
freedom between Tfs and Teq stays constant,

afs = aeq
Teq
m
. (1.66)

Then, in the limit afs � aeq,

kfs '
1
ηfs

= H0

√
Ωm

aeq

m

Teq
' 0.01meV h Mpc−1, (1.67)

with a minor variation for SM neutrinos, which have a temperature smaller than the
photons of a factor (4/11)1/3. Scales k > kfs are suppressed with respect to CDM. In the
top panel of Fig. 1.9 we show the transfer function for HDM as well as for mixed CDM plus
HDM models (MDM). We see for m ∼ 1 eV candidates that the power spectrum of HDM
will be suppressed at scales near kfs. HDM accounts for a relevant fraction of DM only if
the candidate is m ∼ 20 eV, but such candidates are too light to avoid erasing small-scale
perturbations. Then if we use the value of the mass for which structure formation is left
untouched, m > 1 keV, HDM is overproduced. This is why Standard Model neutrinos and
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in general thermal HDM is ruled out as a DM candidate. We have finally arrived to the
conclusion that DM must be described by beyond Standard Model physics.

Before leaving the topic, let us comment the bound on neutrino masses from Planck, Eq.
(1.54). It comes from the above reasoning. Since neutrinos are HDM, if we increase their
mass we increase the relevance of HDM concerning the total DM and suppress small-scale
perturbations. This has an evident impact on the CMB power spectrum [17]. An observable
which is particularly sensitive to this effect is the lensing of CMB photons. In the bottom
panel of Fig. 1.9 we show the effect of lensing on the CMB power spectrum: more lensing
erases acoustic peaks on small scales. If neutrino masses are higher, small scales structures
are suppressed and we have less lensing.

1.5 What we do know about Dark Matter

In the last section of this chapter, we want to summarize the key properties of DM, the
ones to keep in mind when building models. In this discussion we assume that all the DM
is made of a single particle candidate χ with mass mχ. A recent review of DM features
can be found in [25].

1. Relic density From Planck measurements [17]

ΩDM(t0)h2 = 0.120± 0.001 . (1.68)

2. Coldness From structure formation constraints, we know that DM has to be cold, i.e.
non-relativistic when the Universe had a temperature around T ' 1− 10 keV so that
its velocity dispersion is not large enough to compromise structure formation. Below
this temperature DM behaves like a pressureless fluid. This fact rules out thermal
candidates with mass mχ < 1− 10 keV such as Standard Model neutrinos [56]. In
our work, these constraints will be of crucial importance in studying DM models.

3. Neutrality DM cannot interact electromagnetically, otherwise it would be visible
and more importantly, it would have been coupled to the photon fluid with a huge
impact on the CMB power spectrum. Nevertheless, observations do not exclude
completely the possibility DM has a very small electric charge [26].

4. Self-interactions The self interaction cross-section of DM σself cannot be arbitrary
large. The tightest limit comes from the careful study of the dynamics in the Bullet
cluster, we described in the Section 1.2. The evinced bound is [27]

σself
mχ

. 1 cm2g−1 ' 1 barn GeV−1 = 2.57× 103 GeV−3. (1.69)

We see that the bound is not so strict: this value corresponds to a self-interaction
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cross-section comparable to one of strong-interacting particles of mass 1 GeV. Actually,
there is some tension between observations of small-scale structures (see Appendix
B for more details) and predictions of the cold DM paradigm: self-interactions may
alleviate this tension [28].

5. Mass We still do not know a precise range where the mass of the DM candidate
should lie. The upper bound is the Planck mass since we should not expect elementary
particles heavier than this value. In fact, in such a case, the Compton wavelength of
the particle would be smaller than the Schwarzschild radius of the particle, forming
a black hole. To avoid this,

λC > rS ⇐⇒
~
mχc

>
mχG

c2 ⇐⇒ mχ <

(~c
G

)1/2
. (1.70)

Therefore
mχ < 1019 GeV. (1.71)

We can estimate lower bounds on the DM particle candidate mass, on the base
of their statistics, using the knowledge of the size of the smallest DM-dominated
structures observed: dwarf spheroidals galaxies with size RdSph ' 1 kpc ' 1.6× 1026

eV−1.

• Bosons. The smallest DM structures would be erased if particles could not be
confined in a system of size Rdwarf . This happens if the de Broglie wavelength of
the particles exceeds this size. We exploit the estimated velocity of DM particles
v ∼ 10−3c:

λdB = 1
mχvχ

> RdSph =⇒ mχ >
1

vχRdSph
' 10−23 eV. (1.72)

• Fermions. In the case of fermionic DM, we can exploit the Pauli exclusion
principle, which imposes limits on the density of fermions in the phase-space.
We assume a singular isothermal sphere DM density profile in the central region
of the dwarf spheroidal, with σdSph the velocity dispersion of stars in the dwarf
galaxy

ρ(r) '
σ2

dSphM
2
Pl

4r2 , (1.73)

Then, the velocity of DM particles is Maxwellian-distributed and the phase-space
density will be bound by the degenerate value

f = ρ(r)
(2πσ2

dSph)3/2m4
χ

<
gχ

(2π)3 , (1.74)

where gχ is the number of internal degrees of freedom of the DM particle. We
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obtain

mχ >

[(2π)3/2

4gχ

M2
Pl

σdSphr2

]1/4
' 38 eV

(100 km s−1

σdSph

)1/4(1 kpc
r

)1/2
g−1/4

χ .

(1.75)
This is the so-called Tremaine-Gunn bound [29]. By the way, again it excludes
Standard Model neutrinos, just from the observation of dwarf spheroidals.

6. Lifetime The particle accounting for the present DM relic density, whatever that is,
has to be at least stable over the time scale of the age of the Universe

τH ∼ H−1 ' 14 Gyr ' 4× 1017 s. (1.76)

If the DM particle is not stable, then the actual limit depends on the decay products.
Limits are very severe if the decays are visible, being them photons or baryons,
because they affect the CMB spectrum: τχ & 1025 ÷ 1029 s [30]. Model-independent
bounds come from structures formation, since decays affect the evolution of structures:
τχ & 1019 [31]
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Figure 1.13. The variance A^ = k^P{k)/27r'^ of the Fourier transform of the galaxy dis-
tribution as a function of scale. On large scales, the variance is smaller than unity, so the 
distribution is smooth. The solid line is the theoretical prediction from a model in which the 
universe contains dark matter, a cosmological constant, with perturbations generated by infla-
tion. The dashed line is a theory with only baryons and no dark matter. Data come from the 
PSCz survey (Saunders et ai, 2000) as analyzed by Hamilton and Tegmark (2001). 

spherical harmonics, a basis more appropriate for a 2D field on the surface of a 
sphere. Therefore the two-point function of the CMB is a function of multipole 
moment /, not wave number k. Figure 1.14 shows the measurements of dozens 
of groups since 1992, when COBE first discovered large-angle (low / in the plot) 
anisotropics. 

Figures 1.13 and 1.14 both have theoretical curves in them which appear to 
agree well with the data. The main goal of much of this book is to develop a first-
principles understanding of these theoretical predictions. Indeed, understanding 
the development of structure in the universe has become a major goal of most 
cosmologists today. Note that this second aspect of cosmology beyond the Standard 
Model reinforces the first: i.e., observations of structure in the universe lead to 
the conclusion that there must be dark matter. In particular, the dashed curve in 
Figure 1.13 is the prediction of a model with baryons only, with no dark matter. The 
inhomogeneities expected in this model (when normalized to the CMB observations) 
are far too small. In Chapter 7, we will come to understand the reason why a 
baryon-only universe would be so smooth. For now, though, the message is clear: 
Dark matter is needed not only to explain rotation curves ot galaxies but to explain 

Figure 1.5: Top: the theoretically predicted linear matter power spectrum from the ΛCDM
model compared to experimental data from various sources. Note that SDSS and CMB
measures mostly arrive at the scales of non-linearities. Figure from [22]. Bottom: the
dimensionless power spectrum. Experimental points come from the PSCz galaxy survey
while the solid line and dashed lines are the prediction of ΛCDM and baryons only,
respectively. Notice that the baryons show the so-called collisional Silk damping which
is due to the coupling to the photons: the plasma density perturbations shows damped
oscillations once they become sub-horizon scales. This feature is incompatible with data.
Figure from [16] and references therein.
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Figure 1.6: The Planck 2018 temperature anisotropies power spectrum from [17].
The upper panel shows the base-ΛCDM theoretical spectrum best fit to the Planck
TT,TE,EE+lowE+lensing likelihoods while the lower panel shows residuals with respect to
this model. The error bars show the 1σ diagonal uncertainties, including cosmic variance.
Note that the vertical scale changes at ` = 30 , where the horizontal axis switches from
logarithmic to linear. This scale separates large scales from small ones, which are analysed
in different ways.
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Figure 1.7: Hubble diagram for 42 high-redshift Type Ia supernovae from the Supernova
Cosmology Project, and 18 low-redshift Type Ia supernovae from the Calán/Tololo Super-
nova Survey, plotted on a linear redshift scale to display details at high redshift. In the
middle panel, is shown the magnitude residuals from the best-fit flat cosmology supernova
subset, (Ωm(t0),ΩΛ(t0)) = (0.28, 0.72) with dashed curves for a range of flat cosmological
models. In the lower panel, we have the uncertainty-normalized residuals from the best-fit
flat cosmology. Figure from [19].
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Figure 1: Transfer functions for WDM (top) and MDM (bottom) models. k is in units of h Mpc

�1

.

8

Figure 1.9: Top: transfer functions for WDM (top) and MDM (bottom) models compared.
k is in units of hMpc−1 as usual. Figure from [23]. Bottom: CMB temperature anisotropy
power spectrum. The red (green) line is the lensed (unlensed) power spectrum. The blue
data points are the mean of the binned power spectrum reconstructed on 500 simulated
lensed temperature maps. Figure from [24].



Chapter 2

Boltzmann Equation Formalism

If our Universe had always been in thermal equilibrium, it would be very simple to
describe: we would need only one parameter, the temperature of the thermal plasma. In
such a Universe, we would not be there asking ourselves fundamental questions: departure
from equilibrium is what makes physics interesting and our Universe so non-trivial to
describe.

In this work, we are interested in studying the properties and the production mechanisms
of DM. The landscape of DM models can be divided in a broad way considering thermal
candidates and non-thermal candidates. For thermal models, the DM particle was in
thermal equilibrium in the early Universe at very high temperature and the departure from
thermal equilibrium is the process which sets the relic density. Non-thermal models include
all other possibilities. The proper tool to carefully study the general evolution of interacting
and decoupled particle species in the early Universe is the Boltzmann equation formalism.
In this chapter, we will develop the useful formalism, following [16] and [20], to study DM
production. We will conclude with a standard example we have already anticipated in
treating neutrino relic density: the freeze-out production of thermal candidates.

2.1 Evolution of phase-space distribution

If we want to study the DM production accurately, we have to track the particle
properties throughout their history, i.e. while the species is in thermal equilibrium with the
primordial plasma or while it is not. The properties of a given particle species are described
by their phase-space distribution f(~x, ~p, t). This function counts, in a probabilistic sense,
the number of particles dN at time t within a phase-space cell of volume d3x d3p centred
about the point corresponding to position ~x and momentum ~p.

g

(2π)3d
3x d3p f(~x, ~p, t) = dN. (2.1)

35
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Here g is the number of internal degrees of freedom of the particle considered and the
(2π)3 = h3 (in our units) accounts for the size of the unit phase-space cell as a normalization.
The phase-space distribution is normalized such that, in the continuum limit, integrating
over the whole phase-space one gets the total number of particles N in the system.

The proper framework to study the evolution of phase-space distributions in the
expanding Universe is that of General Relativity. In this case, we rewrite our phase-space
distribution as

f = f(xµ, Pµ), (2.2)

with xµ = (t, ~x) = xµ(λ) the particle trajectory (worldline) in spacetime, parametrized by
an affine parameter λ; Pµ is the particle’s comoving four-momentum, defined as

Pµ = Pµ(λ) = dxµ

dλ
= (E,P i). (2.3)

Notice the number of independent parameters is still seven as it was before: the Pµ vector
is constrained by the on-shellness condition PµPµ = −m2. The definition of f is such that

dN = −2a3dSµP
µd4P f(x, P )δ(P 2 +m2) (2.4)

is the number of worldlines crossing the spacelike surface orthogonal to dSµ.

The Boltzmann equation describes the evolution of the phase-space distribution under
two effects: the geometry of spacetime, which is affected by both gravity and the expansion
of the Universe, and interactions with other particle species. These two contributions are
accounted for by the two sides of the Boltzmann equation:

L[f ] = C[f ]. (2.5)

Let us study the two sides separately.

2.1.1 The Liouville operator

On the left-hand side of Eq. (2.5) we have the Liouville operator L modelling the
evolution of the phase-space distribution because of the spacetime geometry, determined
by the metric. We are interested in the evolution of the phase-space distribution along a
particle’s worldline, parametrized by the affine parameter λ. L[f ] is defined as the total
derivative of f with respect to λ

L[f ] ≡ d

dλ
f(xµ, Pµ) =

[
dxµ

dλ

∂

∂xµ
+ dPµ

dλ

∂

∂Pµ

]
f. (2.6)

Now we use the definition of four-momentum and the geodesic equation in a spacetime
with affine connection Γ

dPµ

dλ
+ Γµ

ρσP
ρP σ = 0, (2.7)



2.1. EVOLUTION OF PHASE-SPACE DISTRIBUTION 37

to write the Liouville operator in its general covariant form

L[f ] =
[
Pµ ∂

∂xµ
− Γµ

ρσP
ρP σ ∂

∂Pµ

]
f. (2.8)

To write the Liouville operator in a more specific form, we have to explicit the spacetime
metric gµν . If we neglect spatial anisotropies and inhomogeneities, the phase-space distri-
bution will not depend on chosen space points or directions. Firstly, assuming homogeneity
and isotropy together with a zero spatial curvature, we are constraining the metric to be
of the form of the flat Friedmann Robertson Walker (FRW) one, derived in Appendix
A. Secondly, the phase-space distribution is uniform in space, due to homogeneity, and
depend only on the physical spatial modulus of momentum p2 = gijp

ipj = a2δijP
iP j , due

to isotropy. We can write it simply as

f = f(t, p(t)), (2.9)

with time dependence in the physical momentum, since it redshifts with time as p ∝ 1/a.
Therefore, under our hypothesis, our goal is to characterize the phase-space distribution
as a function of time and momentum magnitude. In Appendix A, we compute the affine
connection coefficients for the flat FRW metric. Substituting these expressions and using
the definition of the Hubble parameter H(t) ≡ a−1da/dt, the Liouville operator becomes

L[f ] = E

[
∂

∂t
− pH ∂

∂p

]
f = E

df

dt
. (2.10)

The total derivative with respect to cosmic times takes into account the redshift of physical
momentum. We shall use this form when we are interested in computing directly f(t, p).
Instead, when dealing with moments of the phase-space distributions, such as densities,
usually p is traded for the energy E =

√
p2 +m2, so that

f = f(t, E(t)) (2.11)

and we have an equivalent form of the Liouville operator:

L[f ] = E
∂f

∂t
−H(t)[E2 −m2] ∂f

∂E
. (2.12)

If the particle species we are considering experiences no collisions at all, the Boltzmann
equation reads simply L[f ] = 0 and then we have a partial differential equation the
distribution function has to satisfy.

2.1.2 The collision operator

The right-hand side of the Boltzmann equation Eq. (2.5) is the collision operator which
is the term accounting for all the interactions the considered particle species experience
among themselves or with other species. In general, this includes all the processes in which
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the particle species is involved: decays, inverse decays, (in)elastic scatterings, annihilations,
and so on. To obtain the general form of the collision operator, let us consider a generic
process involving the particle of interest, we label as χ:

χ+ a+ b+ · · · ←→ i+ j + k + · · · . (2.13)

Schematically, the collision term is the difference of two terms, one increasing the probability
distribution fχ for the species χ, the other decreasing it. For example, if we have a process
in which χ is destroyed passing from initial to final state as above, we will have two
contributions of opposite sign related to the two directions the process can happen. The
crucial ingredient to characterize the collisions are: (i) energy and momentum conservation,
(ii) the scattering amplitude of the process and the phase-space distributions, which tell
how likely is the process to happen (iii) the distributions of all the species involved which
tell how many particles are available with given momentum to let the reaction happen. If
we are interested in the spatially uniform and isotropic distribution fχ = f(t, E) (quantities
related to χ are written with no labels), we need to integrate out all the energy/momentum
dependence appearing in the other phase-space distributions fα = f(t, Eα). To do that, it
is useful to consider the Lorentz-invariant measure for the generic species α

dΠα = gα

(2π)3
d3pα

2Eα
. (2.14)

The (2π)3 at the denominator is just the proper normalization, the phase-space cell size h3

in units ~ = 1, while the factor gα accounts for the internal degrees of freedom of species
α. Basing on the above reasoning, one can show that the collision term for the particle χ
interacting with the above process only is

C[fχ] =1
2

∫
dΠadΠb · · · dΠidΠjdΠk · · · (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )

×
[
− |Mχ+a+b+···→i+j+k+···|2fχfafb · · · (1∓ fi)(1∓ fj)(1∓ fk) · · ·

+ |Mi+j+k+···→χ+a+b+···|2fifjfk · · · (1∓ fχ)(1∓ fa)(1∓ fb) · · ·
]
.

(2.15)
In Appendix C, we find from first principles the expression for the collision operator for
a generic process in a flat Minkowski spacetime, neglecting quantum degeneracies; this
form for the collision operator is independent on the spacetime geometry. If χ is involved
in more than one process (with different initial or final states) the total collision term
is the sum of each process’ collision term. Let us comment the formula Eq. (2.15). As
needed, we have the sum, with opposite signs, of the process and its inverse, with a plus
sign for the process producing χ in the final state. The δ(4)(· · · ) enforces energy and
momentum conservation. The matrix elements |M|2 are determined from fundamental
physics and are averaged over initial and final spins1 including the appropriate symmetry
factor 1/N ! for N identical particles in the initial or final states. We see that the variation

1In Appendix C this fact is derived explicitly.
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of fχ induced by the collision operator is proportional to the initial state phase-space
distributions fχfafb · · · (or fifjfk · · · for the inverse process). The (1∓ fα) factors, with a
plus sign for bosons and a minus sign for fermions, are for the final states of the processes
and represent, respectively, the phenomena of Bose enhancement and Pauli blocking. For
fermions, for example, if final state occupation number fα is non-negligible, i.e. there are
already a fair number of α particles in the final state, the production of more α particles
is disfavoured by the Pauli exclusion principle since some of the cells in the phase-space
are already occupied. The opposite holds for bosons, for which the production of more
particles in the final state is enhanced.

The very general Eq. (2.15) can be simplified under two important assumptions we
often make in dealing with DM production:

1. T or CP invariance. If the considered process preserves time-reversal discrete
symmetry T (i.e. CP , thanks to the CPT theorem), we can write

|Mχ+a+b+···→i+j+k+···|2 = |Mi+j+k+···→χ+a+b+···|2 ≡ |M|2. (2.16)

and collect the amplitudes in Eq. (2.15). This is often the case in processes we study
to model DM production. An important exception is when we deal with mechanisms
requiring explicitly CP violation, such as asymmetric DM production or baryogenesis.

2. No Bose-Einstein condensation or Fermi degeneracy. If in the final states occupation
numbers are low fα � 1, we can neglect the Bose enhancement and Pauli blocking
factors and assume in a good approximation

(1∓ fα) ' 1 (2.17)

If we exploit this approximation, we have to neglect the quantum statistics in the
corresponding equilibrium distributions f eq

α for consistency with the detailed balance
using equilibrium distributions

f eq
χ f eq

a f eq
b · · · (1∓f

eq
i )(1∓f eq

j )(1∓f eq
k ) · · · = f eq

i f eq
j f eq

k · · · (1∓f
eq
χ )(1∓f eq

a )(1∓f eq
b ) · · · .
(2.18)

This fact will be important in specific cases.

Therefore, under these assumptions Eq. (2.15) becomes

C[fχ] =1
2

∫
dΠadΠb · · · dΠidΠjdΠk · · · (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )

× |M|2
[
fifjfk · · · − fχfafb · · ·

]
CP conservation + no degeneracies

(2.19)

Finally, we can rewrite explicitly the Boltzmann equation Eq. (2.5) for particle species χ
in a standard flat FRW Universe experiencing only CP conserving processes and neglecting
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quantum degeneracies, in the form

E
∂fχ

∂t
−H(t)[E2 −m2

χ]∂fχ

∂E
= 1

2

∫
ΠadΠb · · · dΠidΠjdΠk · · ·

× (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )|M|2
[
fifjfk · · · − fχfafb · · ·

]
.

(2.20)
This is the equation we will be concerned in most of our work. In the most general case, to
solve the Boltzmann equation for our particle of interest χ, we have to consider an equation
for each particle species in the Universe interacting with χ. So altogether the Boltzmann
equations make a coupled set of integral-partial differential equations for the phase-space
distributions of all species present. The solution of this system is very tough, unless we
exploit some clever approximations, depending on the specific problem we are dealing with.

2.2 Equilibrium phase-space distributions

We have said that the Boltzmann equation formalism is our tool to study properties of
particle species in the Universe and to track their evolution carefully also in the delicate
phase of departure from equilibrium. Let us understand what we mean with equilibrium
and under which hypothesis we assume a species is in equilibrium.

There are two different types of equilibrium, depending on the processes our considered
particle species is involved in:

• Kinetic equilibrium. If elastic processes, i.e. ones with the same particles in the initial
and final states such as

χ+ a←→ χ+ a, (2.21)

are efficient, and they can keep the same temperature T between the involved species,
we say there is kinetic equilibrium. The efficiency of these processes is measured by
a timescale that has to be suitably small. If kinetic equilibrium is assured, particle
species are described by Bose-Einstein (BE: −) and Fermi-Dirac (FD: +) phase-space
distributions, which respect the symmetries of our spacetime

f(t, E) =
{

exp E − µ(t)
T (t) ∓ 1

}−1
. (2.22)

If we neglect the ∓1 factor, assuming no quantum degeneracies we obtain

f(t, E) ' exp
{
µ(t)− E
T (t)

}
= fMB(t, µ(t), E) (2.23)

In this limit the particle species follow the Maxwell-Boltzmann phase-space distribu-
tion with non-negligible chemical potential µ(t). In statistical mechanics, µ is the
Lagrange multiplier of the number of particles, so it regulates the abundances of
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particles according to number-changing reactions.

• Chemical equilibrium. If number-changing interactions such as decays, inverse decays
and annihilations, e.g.

χ←→ a+ b χ+ χ←→ B +B ←→ γγ (2.24)

are efficient, we say chemical equilibrium is assured. In the above processes, B are
thermal bath particles and γ are photons. If chemical equilibrium is achieved, we can
write linear relations between the chemical potentials of the particle species involved

µχ = µa + µb µχ + µχ = µB + µB = µγ = 0. (2.25)

The last equality holds since photons can be absorbed or emitted freely.

When we have both chemical and kinetic equilibrium between species we say we have
thermal equilibrium and particles belong to a thermal bath. If that happens, particles are
described only by the thermal bath temperature T and chemical potentials become all
negligible: µi ≈ 02. The phase-space distribution of a species α in thermal equilibrium will
be

f eq
α = f eq

α (t, Eα) = exp
{
− Eα

T (t)

}
. (2.26)

In most cases, kinetic equilibrium is assured, while number-changing processes, such as
annihilations, become inefficient earlier on in the thermal history, leading to a departure
from chemical equilibrium for species α. In this case, a convenient form of the phase-space
distribution throughout the equilibrium and out-of-equilibrium phases is

fα = f(t, Eα) = exp
{
µα(t)
T (t)

}
f eq

α , (2.27)

with µ(t) an unknown function of time.

2.3 Evolution of number density

Sometimes, we are not interested in the full phase-space distribution, but only in its
moments, i.e. quantities obtained integrating the phase-space distribution over momenta
of the considered particle species. For example, the number density of the particle species
α is the zeroth moment of the phase-space distribution

nα(t) = gα

(2π)3

∫
d3p fα, (2.28)

2For asymmetric species in the Universe, such as baryons, it can be verified that µb/T ' ηb = nb/nγ '
10−10.
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while
vi

α(t) = 1
nα(t)

g

(2π)3

∫
d3p

p p̂i

E
fα (2.29)

is the velocity (the dipole) of the species. It is the average of the particle velocity over the
distribution, normalized to the density; p̂i is the direction of momentum. Along this line,
one can go for higher moments. Usually, the moment decomposition of the phase-space
distribution is exploited for two reasons: to extract physical observables from the quite
abstract phase-space distributions and to simplify the solution of the BEs. Indeed the
moments are usually hierarchical, that means their importance decreases as one goes to
higher moments.

For DM studies, we are interested in reproducing the relic density hence nχ(t) is
of primary importance. Let us write the BE, from Eq. (2.20) for the zero moment.
We integrate over momenta d3p and multiply both sides by gχ/E(2π)3: in this way, we
reconstruct a dΠχ at the right-hand side:

dnχ

dt
−H(t) gχ

(2π)3

∫
d3pχ

E2 −m2
χ

E

∂fχ

∂E
=
∫
dΠχdΠadΠb · · · dΠidΠjdΠk · · ·

× (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )|M|2
[
fifjfk · · · − fχfafb · · ·

]
.

(2.30)
Let us compute the integral on the left-hand side, using p2 = E2 −m2 and pdp = EdE∫

d3p
E2 −m2

E

∂f

∂E
=
∫
dΩ
∫
dp p2 p

2

E

E

p

∂f

∂p
=
∫
dΩ
[
p2f

∣∣∣∣∞
0
−
∫
dp 3p2f

]
= −3

∫
d3pf

(2.31)
The first term in the square brackets vanishes, since we reasonably assume that f(t, p)
decays exponentially at infinity. Therefore the Boltzmann equation for the number density
gets the form

dnχ

dt
+ 3H(t)nχ(t) =

∫
dΠχdΠadΠb · · · dΠidΠjdΠk · · ·

× (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )|M|2
[
fifjfk · · · − fχfafb · · ·

]
.

(2.32)

2.4 Standard application: freeze-out production of DM

In this section, we specialize Eq. (2.32) to the famous case of freeze-out production
of DM, which we have anticipated in treating the neutrino relic density. We address the
problem with a simple model trying to include the two important cases of hot dark matter
(HDM) and cold dark matter (CDM) freeze-out production. A very appealing feature of
freeze-out is that the DM relic density depends only on masses and couplings assumed in
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the model and does not depend on the initial conditions of the Universe or its previous
history. This feature is expressed saying that DM freeze-out is “IR-dominated”. Moreover,
the aforementioned masses and couplings, giving cross-sections for specific processes, can
be in principle measured in a laboratory with a direct detection experiment.

Let us consider a thermal DM candidate, which at very high temperatures is in thermal
equilibrium with the primordial plasma. We discuss the simplest case of a single DM
particle with no relevant self-interactions. Suppose that the DM candidate χ is stable (or
with lifetime τχ � τH). If so, the only number-changing interactions are annihilation and
inverse annihilation processes, e.g.

χχ←→ BB. (2.33)

We denote with B, B bath particles in which χ can annihilate; the thermal bath is
characterized by a temperature T . Let us assume that mχ is the relevant energy scale in
the process, i.e. that mB � mχ otherwise the freeze-out would be determined by the mass
scale of bath particles. When in equilibrium, at mχ � T the reaction proceeds in both
directions; however, when mχ & T the bath particles are not energetic enough to produce
χ pairs, hence the DM particles disappear quickly. Bath particles are always more strongly
coupled to the thermal bath than χ particles, hence we will safely assume the B species to
be in thermal equilibrium, so that

fB = f eq
B = exp(−EB/T ), fB = f eq

B
= exp(−EB/T ). (2.34)

As we show in Appendix A.2, the number density of a particle in thermal equilibrium with
the bath is given by

neq
χ = gχT

3

2π2

(
mχ

T

)2
K2

(
mχ

T

)
'


gχ

π2T
3 mχ � T

gχ

(
mχT

2π

)3/2
e−mχ/T mχ � T

(2.35)

K2 is the modified Bessel function of the second kind. Consistently with the above
assumptions, we are neglecting the quantum statistics which, as it can be checked, have
very little impact on the solution only at T � mχ.

It is useful to scale out from the left-hand side of the Boltzmann equation for the
number density Eq. (2.32) the effect of the expansion of the Universe by considering the
evolution of the number of particles in a comoving volume. This is usually done introducing
the yield or the comoving number density

Yχ = nχ

s
. (2.36)

Since the entropy of the radiation bath in a comoving volume s is conserved in a FRW
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Universe, sa3 = const, we have that

dnχ

dt
+ 3Hnχ = d(sYχ)

dt
+ 3HsYχ = s

dYχ

dt
. (2.37)

The study of Eq. (2.32) is much clearer if we use the temperature as a time variable
rather than cosmic time and we make dimensionless its inverse using the other energy scale
involved, the mass of the interesting particle species, the DM in our case.

x = mχ

T
. (2.38)

To rewrite dYχ/dt in terms of dYχ/dT we exploit Eq. (A.80) derived from the conservation
of entropy

dYχ

dt
= −

(
1 + 1

3
d log g?s

d log T

)−1
H

dYχ

d log T . (2.39)

Then we change variable from T to x simply using the fact that the logarithmic derivative
satisfies dYχ/d log T = −dYχ/d log x:

dYχ

dt
=
(

1− 1
3
d log g?s

d log x

)−1
H

dYχ

d log x. (2.40)

The dependence of g?ρ on T , hence on x is given explicitly in Appendix A.2, where we use
the formula found by [32]. In these new variables, we can write the BE Eq. (2.32) as

dYχ

dx
= 1
xs(x)H(x)

(
1− 1

3
d log g?s

d log x

) ∫
dΠχdΠadΠb · · · dΠidΠjdΠk · · ·

× (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )|M|2
[
fifjfk · · · − fχfafb · · ·

]
.

(2.41)
We can focus on the radiation domination era because it is the epoch in which DM should
be already decoupled from the bath, to allow structure formation at lower temperatures.
Apart from hot relics, like active neutrinos, we focus on the evolution of the comoving
density of DM candidates of mass mχ > 1 keV and in the interval x ∈ [10−1, 103], hence
always safely in radiation domination T > 1 eV: in particular, we consider the temperature
range 1 eV < T < 103 GeV. Let us explicit the temperature dependence inside H(t) during
radiation domination

H(x) =
√

ρ

3M2
Pl

= 0.33m2
χg

1/2
?ρ (x) x

−2

MPl
' H1g

1/2
?ρ (x)x−2, (2.42)

with H1 = 0.33m2
χM

−1
Pl . We explicit also the dependence in the entropy

s(x) = 2π2

45 g?s(T )T 3 = s1g?s(x)x−3, (2.43)
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with s1 = 0.439m3
χ. So

dYχ

dx
= x4

s1H1

(
1− 1

3
d log g?s

d log x

)
g−1

?s (x)g−1/2
?ρ (x)

∫
dΠχdΠadΠb · · · dΠidΠjdΠk · · ·

× (2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − pk − · · · )|M|2
[
fifjfk · · · − fχfafb · · ·

]
.

(2.44)
We can write the yield at equilibrium:

Y eq
χ (x) = 45

4π4
gχ

g?s
x2K2(x) '


0.23 gχ

g?s
x� 1

0.145 gχ

g?s
x3/2e−x x� 1

(2.45)

DM is massive: we know from the above equation that if a massive particle species remained
in thermal equilibrium Yχ ' Y eq

χ until now its present abundance will be completely
negligible since it was exponentially suppressed. The only way for a candidate to leave a
sizeable relic density is to part from equilibrium when the exponential suppression has not
washed out the density yet. Now let us write the Boltzmann equation for the species χ in
our specific case. From Eq. (2.44) we have, for the considered processes

dYχ

dx
=− x4

s1H1

(
1− 1

3
d log g?s

d log x

)
g−1

?s (x)g−1/2
?ρ (x)

∫
dΠχdΠχΠBΠB (2π)4

× δ(Eχ + Eχ − EB − EB)δ(3)(~pχ + ~pχ − ~pB − ~pB)|Mχχ→BB|
2[f eq

B f eq
B
− fχfχ].

(2.46)
Let us focus on the factor [f eq

B f eq
B
− fχfχ]. Due to energy conservation,

f eq
B f eq

B
= exp[−(EB + EB)/T ] = exp[−(Eχ + Eχ)/T ] = f eq

χ f eq
χ (2.47)

Then we use the fact that the ratio

fχ

f eq
χ

= nχ

neq
χ

= exp(µχ/T ) (2.48)

is independent on momenta, to take this term out of the integral

dYχ

dx
= x4

s1H1

(
1− 1

3
d log g?s

d log x

)
g−1

?s (x)g−1/2
?ρ (x)

∫
dΠχdΠχΠBΠB (2π)4

× δ(Eχ + Eχ − EB − EB)δ(3)(~pχ + ~pχ − ~pB − ~pB)|Mχχ→BB|
2f eq

χ f eq
χ

[
1− nχ

neq
χ

nχ

neq
χ

]

= − x4

s1H1

(
1− 1

3
d log g?s

d log x

)
g−1

?s (x)g−1/2
?ρ (x) [nχnχ − neq

χ n
eq
χ ] 1
neq

χ n
eq
χ

×
∫
dΠχdΠχΠBΠB (2π)4δ(4)(pχ + pχ − pB − pB)|Mχχ→BB|

2f eq
χ f eq

χ

(2.49)
We assume no DM asymmetry from the beginning nχ(0) = nχ(0) = neq

χ (0) = neq
χ (0), and

also, consistently with the thermal candidate hypothesis, that abundances tracked the
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equilibrium ones at high temperatures. We introduce the thermally averaged annihilation
cross-section〈
σχχ↔BB|v|

〉
= 1

(neq
χ )2

∫
dΠχdΠχΠBΠB (2π)4δ(4)(pχ + pχ − pB − pB)|Mχχ→BB|

2f eq
χ f eq

χ ,

(2.50)
where

|v| =
√

1−
m4

χ

(pχ · pχ)2 (2.51)

is the modulus of the Moeller velocity between the initial state particles. Introducing
yields n = Y s and summing over the possible annihilation products B to get the total
annihilation cross-section,

〈σχ
A|v|〉 =

∑
B

〈
σχχ↔BB|v|

〉
, (2.52)

we can write the Boltzmann equation for particle χ in its final form

dYχ

dx
= − s1

H1

(
1− 1

3
d log g?s

d log x

)
g?s(x)g−1/2

?ρ (x) 〈σ
χ
A|v|〉
x2

[
Y 2

χ − (Y eq
χ )2

]
. (2.53)

We are interested in the total DM abundance: since we are assuming symmetry between χ
and χ particles, eventually we shall multiply the solution Yχ by a factor of 2. We will do this
just when we will compute the final relic density. This equation can be solved numerically
or semi-analytically under some approximations. First, in general, we should compute the
total annihilation cross-section from our model of DM, i.e. a Lagrangian describing all the
interactions between the dark sector and the bath particles. In general [20] the annihilation
cross-section has velocity dependence σA|v| ∝ v2n with n = 0 corresponding to s-wave
annihilation, n = 1 corresponding to p-wave etc. However, since 〈v〉 ∼ T 1/2, we have
〈σA|v|〉 ∝ Tn. Therefore we parametrize the thermally average annihilation cross-section
as

〈σA|v|〉 = σ0x
−n. (2.54)

To write the equation in a more compact form, we define

λ(x) ≡ s1
H1

(
1− 1

3
d log g?s

d log x

)
g?s

g
1/2
?ρ

σ0 = 1.33mχMPl

(
1− 1

3
d log g?s

d log x

)
g?s

g
1/2
?ρ

σ0 (2.55)

If we assume that the number of effective degrees of freedom is constant to g?ρ = g?s = 10.75,
which is a good approximation for temperatures 100 MeV< T < 1 MeV, then the λ quantity
has no x dependence yielding

λ = 2.7× 1012
(

mχ

100 GeV

)(
σ0

1 pb

)
, (2.56)

remembering 1 pb= 2.57× 10−9 GeV−2. From now on we say that λ = const we referring
to Eq. (2.56). Indeed we can solve the equation semi-analytically in this approximation.
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The Boltzmann equation is then

dYχ

dx
= − λ(x)

xn+2

[
Y 2

χ − (Y eq
χ )2

]
. (2.57)

Before numerically and semi-analytically solving this equation, let us understand the
qualitative behaviour of the solution. As long as annihilations are efficient, that is ΓA =
sY eq

χ 〈σA|v|〉 > H, the yield tracks the equilibrium one Yχ = nχ/s ' Y eq
χ . When the DM

particles become non-relativistic x < 1, the annihilation rate drops exponentially with
the yielding and, since there are no more relevant number-changing processes, eventually
annihilations become inefficient, leading to the freeze-out of the yield at a given x = xFO.
The general behaviour of the solution will be

Yχ(x) '

Y eq
χ (x) x < xFO

Yχ(xFO) x > xFO
(2.58)

We can use this fact to define xFO more precisely: we choose it to be the moment when
the yield is substantially far from the equilibrium one, i.e.

Yχ − Y eq
χ

Y eq
χ

∣∣∣∣
xFO

≡ ∆χ

Y eq
χ

∣∣∣∣
xFO

= β ∼ O(1) freeze out condition (2.59)

with β an order unity numerical constant. The relic density obtained from the solution
will be given by

Ωχh
2 =

2mχs0Y
∞

χ

ρc(t0)h−2 . (2.60)

with s0 = 2923 cm−3, ρc(t0) = 1.1×10−5h2 GeV−1. The factor of two takes into account an
identical evolution of Yχ. The quantity to determine is Y ∞

χ . The details of the solution and,
most importantly, the dependences of the relic density on the DM mass and annihilation
cross-section depend on the value of xFO. Taking a reference of x ∼ 1 as the effective
moment of transition from relativistic to non-relativistic particles, we distinguish two cases:
hot relics if xFO < 1 and cold relics if xFO > 1.

2.4.1 Hot Relics: xFO . 1

We have already studied hot relics dealing with Standard Model neutrinos: indeed they
are a good example of these thermal candidates. They are extremely hot: with a mass
< 0.12 eV and an approximate decoupling temperature of ∼ 1 MeV, we obtain roughly
xFO ∼ 10−7. In general, for a hot relic, the freeze-out occurs when the yield is constant
with very good approximation, so the relic yield is the one at equilibrium.

Ωhdm
χ h2 =

2mχs0Y
eq

χ (zf )
ρc(t0)h−2 = 2.4× 10−2

(
mχ

1 eV

)(
gχ

2

)( 10.75
g?s(TFO)

)
. (2.61)
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We have used s0 = 2891 cm−3. We see that the relic density depends linearly on the
candidate mass. If we increase the mass to ∼10 eV, HDM can reproduce the observed
abundance. Moreover, notice the dependence on the freeze-out temperature hidden inside
g?s: if TFO > 300 GeV, g?s ∼ 106.75 and the relic density will be reduced by an order of
magnitude. Nevertheless, we have already discussed in Section 1.4 why the DM cannot be
hot: if it accounts for a large part of the observed abundance it spoils structure formation.

2.4.2 Cold Relics: xFO > 1

The case of cold relics is more involved. We have to carefully take into account the
evolution of the yield during the freeze-out since it is dropping exponentially. The final
relic density will be strongly dependent on the exact moment of freeze-out. We show the
numerical solution of the equation in Fig. 2.2 for different values of the candidate mass,
resulting in different values for the freeze-out xFO. We see that all these cold relics do
reproduce the order of magnitude of the observed abundance. Notice the relic density is
very weakly dependent on the mass, while, as we shall see, it is strongly dependent on the
annihilation cross-section.

To understand this dependence, let us solve the equation semi-analytically, in the
approximation λ = const i.e. λ given by Eq. (2.56). It is easier to consider an equation
for the function ∆χ = Yχ − Y eq

χ rather than for the comoving density Yχ. The Boltzmann
equation in this variable is, denoting ′ ≡ d/dx,

∆′
χ = −(Y eq

χ )′ − λ

zn+2 ∆χ(∆χ + Y eq
χ ). (2.62)

The idea is to solve this equation in two regimes and extrapolate the solution in the first
regime up to xFO to determine the moment of freeze-out.

• early times solution 1 < x . xFO: in this period the DM particles are non-relativistic
but still coupled to the bath particles so the yield still tracks the equilibrium one
Yχ ' Y eq

χ . In practice ∆χ is really small and slowly varying with x: ∆′
χ ' 0. We can

approximate the equation exploiting ∆2
χ,∆′

χ � 1. We have a direct solution

∆χ '
−(Y eq

χ (z))′

∆ + 2Y eq
χ (x)

xn+2

λ
'
−(Y eq

χ (x))′

Y eq
χ (x)

xn+2

2λ ' xn+2

2λ . (2.63)

The last equality holds since (Y eq
χ )′ ' −Y eq

χ in the x� 1 limit (where we can exploit
the asymptotic behaviour of Eq. (2.45)) is given by

−(Y eq
χ (x� 1))′

Y eq
χ (x� 1) = 1− 3

2x ' 1. (2.64)

• late times solution x > kxFO with k ∼ 1: now the species is finally decoupled, so Yχ

does not track Y eq
χ (which is decaying exponentially) anymore. So ∆χ = Yχ − Y eq

χ ∼



2.4. STANDARD APPLICATION: FREEZE-OUT PRODUCTION OF DM 49

10−2 10−1 100 101 102

x = mχ/T

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Y
χ
(x

)
Freeze out DM, s−wave annihilation, σ0 = 1 pb

mχ = 1 MeV, Ωχh
2 = 0.37

mχ = 1 MeV, Ωχh
2 = 0.23, λ = const

mχ = 1 GeV, Ωχh
2 = 0.34

mχ = 1 GeV, Ωχh
2 = 0.36, λ = const

mχ = 100 GeV, Ωχh
2 = 0.17

mχ = 100 GeV, Ωχh
2 = 0.45, λ = const

Y eq
χ (x), λ = const

Figure 2.1: The evolution of the yield of cold relics according to the numerical solution
of the full Boltzmann equation Eq. (2.57), considering s-wave annihilations n = 0 with
cross-section σ0 = 0.1 pb and different values for the DM candidate mass. For comparison,
we show as dashed lines the solutions obtained with the λ = const approximation Eq.
(2.56). Notice that in the general case the equilibrium comoving density Y eq

χ (x) depends
on the DM candidate mass: this has an impact on the relic density since the moment of
freeze-out is different.

Yχ � Y eq
χ and ∆′

χ � −(Y eq
χ )′. Therefore we have

∆′
χ '

λ

xn+2 ∆2
χ. (2.65)

We can integrate the equation from kxFO to infinity. We have

1
∆∞

χ

− 1
∆χ(kxFO) = λ

∫ ∞

kxFO
x−n−2dx = λ

n+ 1(kxFO)−n−1. (2.66)

The decoupling is not istantaneous so Yχ still decreases after the freeze-out. We have
Y eq

χ (kxFO) = Y eq
χ (zf )k3/2e−xFO(k−1) � 1. Therefore both Y eq

χ (kzf ) and Y eq
χ (∞) can

be set to zero 3. So, since Yχ(kxFO) > Y ∞
χ we are allowed to neglect the ∆χ(kxFO)

3Notice that, if we were considering xFO instead of kxFO, we could not neglect Y eq
χ (xFO) = 0 since that

would imply, from the definition of freeze-out, that ∆χ(xFO) = 0. This is in contradiction with ∆∞
χ being

negligible with respect to it.



50 CHAPTER 2. BOLTZMANN EQUATION FORMALISM

10−1 100 101 102

x = mχ/T

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Y
χ
(x

)

Freeze out DM, s−wave annihilation, σ0 = 1 pb, λ = const

mχ = 100 eV, Ωχh
2 = 0.07

mχ = 1 keV, Ωχh
2 = 0.11

mχ = 1 MeV, Ωχh
2 = 0.23

mχ = 1 GeV, Ωχh
2 = 0.36

mχ = 100 GeV, Ωχh
2 = 0.45

Y eq
χ (x)

Figure 2.2: The evolution of the yield of cold relics according to the numerical solution of
BE Eq. (2.57), using the λ = const approximation, i.e. λ given by Eq. (2.56), considering
s-wave annihilations n = 0 with cross-section σ0 = 1 pb and different values of the DM
candidate mass. Notice the relic density which stays of the order of the observed one even
with the mass mχ ranging over nine orders of magnitude. The equilibrium yield Y eq

χ (x) is
computed using Eq. (2.45) and approximated at large x to speed up the code. The found
freeze-out values are, from the hottest to the coldest, xFO = 3.6, 5.7, 12.3, 18.9, 23.5. The
dependence on σ0 is simply Ωχh

2 ∝ 1/σ0.

in the above equation, giving the final yield of

Y ∞
χ ' (n+ 1)(kxFO)n+1

λ
. (2.67)

The approximation works very well, as one can see comparing this estimate with the
results obtained numerically.

We still have to find an approximate expression for xFO, in terms of the model parameters,
mχ and σ0. We can do that using our defining condition Eq. (2.59) and extrapolating
∆χ(x) at early times up to xFO, where we impose the definition:

∆χ(xFO) ' xn+2
FO
λ

(−Y eq
χ (xFO))′

2Y eq
χ (xFO) + ∆χ(xFO) '

xn+2
FO

λ(2 + β) = 0.145β gχ

g?s
x

3/2
FOe

−xFO . (2.68)
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We choose β(β + 2) ≡ n+ 1 to simplify computations. As stated by [20], this also gives
the best fit to the numerical result for the final abundance. We get the equation

exFO = 0.145λ(n+ 1) gχ

g?s
x

−n−1/2
FO . (2.69)

This equation can be solved iteratively:

xFO = x
(1)
FO + x

(2)
FO + · · · (2.70)

The first-order solution is

x
(1)
FO = log

[
0.145 gχ

g?s
λ(n+ 1)

]
= 25.4 + log

[(
mχ

100 GeV

)(
σ0

1 pb

)]
, (2.71)

and the second-order solution x
(2)
FO is obtained plugging x(1)

FO in the right-hand side of Eq.
(2.69). We find eventually

xFO = x
(1)
FO −

(
n+ 1

2

)
log x(1)

FO + . . . (2.72)

With this formula in mind we can write the relic density substituting the estimate for Y ∞
χ .

Ωcdm
χ h2 =

2mχs0Y
∞

χ

ρc(t0)h−2 = 0.4
(
kxFO

20

)n+1(g?ρ(mχ)
10.75

)1/2( 10.75
g?s(mχ)

)(1 pb
σ0

)
. (2.73)

Notice the strong dependence on the annihilation cross-section parameters (n and σ0)
and the weak logarithmic dependence on the mass, which barely affects the relic density
through the value of xFO. The cross-section dependence is reasonable: the stronger the
interaction between the DM particles and the thermal bath, the longer DM particles remain
in equilibrium and, thus, the more the abundance gets diluted by Maxwell-Boltzmann
suppression.

2.4.3 The fall of the WIMP paradigm

We see that the thermal freeze-out model can reproduce fairly well and easily the
observed abundance for the reference values of the parameters, with a weak dependence on
the DM mass. Historically, this fact is referred to as the WIMP miracle. WIMPs stay for
Weakly Interacting Massive Particles [2]: they include a large number of candidates with
similar properties, in particular

1 GeV . mWIMP . 10 TeV, (σA|v|)WIMP ' 10−26 cm3s−1 (2.74)

corresponding to σWIMP ' 1 pb, a number very similar to the cross-section that arises
from the weak interactions. An example of a WIMP could be a stable neutrino with a mass
around the GeV, annihilating through the exchange of a Z boson: it would freeze-out with
a relic abundance that is roughly equal to the measured density of DM. Such result applies
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Figure 2.3: Spin-independent (SI) scattering bounds of DM particles with nuclei from direct
detection experiments. 90% confidence level upper limits on the SI scattering cross-section
from the XENON1T experiment [34] (thick black line) are shown with the 1σ (green)
and 2σ (yellow) sensitivity bands. Previous results from LUX [35] and PandaX-II [36]
experiments are shown for comparison. The prospect for experiment XENONnt (20 tons)
in preparation together with the limit for the neutrino background [37], are also shown.
Figure from [34].

also to a broad range of electroweak-scale DM candidates, including any number of stable
particles with MeV-TeV masses and interactions that are mediated by the exchange of
electroweak-scale particles. This very natural freeze-out model, combined with theoretical
arguments in favour of the existence of physics beyond the Standard Model at or around the
electroweak scale (mainly to solve the already cited hierarchy problem for the Higgs mass),
have led to consider WIMPs the lead DM particle candidates. The prototypical BSM
natural theory is the minimal supersymmetric standard model (MSSM), which introduces
an additional partner for each SM particle. Also, the superpartners of the electroweak
gauge bosons are predicted to be WIMPs, and their superposition, the neutralino, is a
natural DM candidate. Indeed a large number of experiments are searching for WIMPs: in
particular, they try to detect signals from the elastic scattering of WIMPs off nucleons
(direct detection), signals of WIMP pair-annihilation or decay (indirect detection) and the
pair-production of WIMPs at colliders, e.g. LHC, in conjunction with detectable Standard
Model particles. Some experiments have also claimed detection of a signal that could be
related so some particle candidate, however in disagreement with other results in the same
parameter space, as reviewed in [2, 3]. In Fig. 2.3 we show the latest bounds obtained
by the XENON1T collaboration [34] in the mass and spin-independent elastic scattering
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cross-section parameter space: regions above the curves are excluded. Their strongest
constraints on DM-nucleon spin-independent (SI) cross-section, following a 1 tonne × year
exposure, have reached σSI . 10−44 cm−2 for a DM particle mass between 10 and 104 GeV,
with enhanced sensitivity around 30 GeV. The behaviour of the constraint is reasonable.
For light DM the experiment loses sensitivity since the recoil energy of the nucleus lowers
below the detection threshold. At large WIMP masses, the constraint goes as ∝ mχ since,
for a given relic density, increasing the mass we are lowering the DM number density and
the likelihood of scatterings. We see that the parameter space available for model building
around the thermal freeze-out paradigm is shrinking considerably.

As discussed in [33], the absence of evidence for WIMP DM is causing a growing sense
of “crisis” in the DM community and a subsequent “fall” of natural WIMPs models. This is
leading to a global theoretical effort in proposing new ideas for DM production mechanisms.
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Chapter 3

Freeze-in production of Dark
Matter

In this chapter, we present the freeze-in paradigm as a simple, but rather rich in model
building, DM production mechanism. Then we apply the Boltzmann equation formalism
developed in Chapter 2 to study the evolution of DM abundance.

In the general case, the freeze-in scenario involves Feebly Interacting Massive Particles
(FIMPs) [1] which are so weakly coupled with the SM visible states, that they never achieve
thermal equilibrium. Therefore, in contrast to the usual freeze-out scenario, the DM is
produced non-thermally. In literature, many variations of the freeze-in paradigm have
been proposed [1, 38], including dynamics and interplay between different DM particles
constituting the so-called dark sector. In this chapter, we focus on the simplest model, in
which the relic density is made of the frozen-in particles, which are FIMPs themselves.
Therefore we will consider only one DM particle candidate χ, feebly coupled to bath
particles Bi. In all the cases under consideration, we assume the initial FIMP abundance
is negligible.

3.1 General features of freeze-in

Let us describe in general the freeze-in mechanism highlighting analogies and differences
with the freeze-out paradigm. Let us assume the FIMP candidate χ is very weakly coupled
to the thermal bath particles through interactions described by operators of mass dimension
less than four. Let M be the mass of the heaviest particle at the interaction vertex. The
coupling of the vertex can be written as

coupling ∼

y quartic scalar or Yukawa
yM trilinear scalar

(3.1)

55



56 CHAPTER 3. FREEZE-IN PRODUCTION OF DARK MATTER

in the simple cases considered, with y � 1 dimensionless. Let us assume the abundance
of χ particles is negligible at high temperatures. If so, χ particles are produced only
from decays and collisions of thermal bath particles, with rate Γ, given, at T �M , from
dimensional analysis, by

Γ(T ) ∼


y2T quartic scalar or Yukawa

y2M
2

T
trilinear scalar

(3.2)

The comoving abundance can be estimated in the radiation domination era from the
product of this rate and the time t ∼MPl/T

2 available to processes to populate the FIMP
sector.

Y (T ) ∼ t× Γ ∼


y2MPl

T
quartic scalar or Yukawa

y2M
2MPl
T 3 trilinear scalar

(3.3)

This means the freeze-in production in this basic scenario is IR dominated, favouring low
temperatures, with dominant production at T ∼M : after this threshold, the most massive
particle’s abundance will be exponentially suppressed. Therefore, in this case, the final
abundance will be approximately given by

Y FI
∞ ∼ y2MPl

M
. (3.4)

As we have seen in Section 2.4, in the case of the freeze-out DM production, the relic
abundance is given by

Y FO
∞ ∼ 1

〈σχ
A|v|〉MPlM ′ . (3.5)

In the simplest case where M ′ is the only relevant mass scale for the annihilation, we
have 〈σχ

A|v|〉 ∼ y′2/M ′2 with y′ the coupling between bath particles and the DM in the
freeze-out scenario. We get

Y FO
∞ ∼ 1

y′2
M ′

MPl
(3.6)

Comparing Eqs (3.6) and (3.4), we can say that the freeze-in is indeed the “opposite”
mechanism to the freeze-out: the final abundances show opposite dependences concerning
both the coupling between visible and dark matter and the relevant energy scale involved.
In particular, stronger couplings increase the relic density obtained from freeze-in, while
they decrease the final abundance obtained from the freeze-out. We can try to see which
are the typical values of the coupling involved to reproduce the observed relic density
ΩDMh

2 ∼ 0.12:

y ∼ 10−14 ×
(
M

mχ

)1/2(Ωχh
2

0.12

)1/2
freeze in

y′ ∼ 10−3 × (mχM
′)1/2

100 GeV

( 0.12
Ωχh2

)1/2
freeze out

(3.7)
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We are neglecting important factors such as the effective number of degrees of freedom, but
this estimate should already give the flavour of the difference in the order of magnitude
of the parameters involved in the two scenarios. Despite these differences, freeze-out
and freeze-in have a crucial common feature: the final out-of-equilibrium abundance,
given the relevant mass scales and couplings, can be computed solely knowing the initial
state of particles in thermal equilibrium. The resulting abundance is dominated by IR,
low-temperature physics.

3.2 Evolution of FIMP abundance

As well as freeze-out, the freeze-in mechanism can reproduce the observed DM abundance
in a simple and predictive way. The scenario can also be complicated at will, adding an
interplay between dark particles, e.g. letting the frozen-in particle decay at a later stage
into the actual DM particles, or between the dark and visible sectors.

In this Section we will stick to the simplest model with only one stable FIMP DM
candidate χ to reproduce the relic DM density, making general assumptions on the type
of processes involved in the DM production. We can start considering the Boltzmann
equation for the number density Eq. (2.32) and exploit dimensionless variables, to recast
it in the following compact form

dYχ

dx
= 1
x

(
1− 1

3
d log g?s

d log x

) C(x)
s(x)H(x) . (3.8)

In this case, x = M/T with M a relevant mass scale, which is not, in general, the mass
of the FIMP candidate. The definition of x clearly can change case by case when writing
in its explicit form the collision term C(x) ≡ 2

∫
dΠχC[fχ](x), which includes all relevant

interactions for χ. Again, as we did in the case of the freeze-out in Section 2.4, we assume
that the thermal bath is described by its number of effective degrees of freedom, evolving
with temperature as described in Appendix A.2. Trying to be as much general as possible,
we consider the following freeze-in processes to produce dark particles χ through reactions
involving bath particles in the initial state Bi:

1. Decays B1 → χB2 · · ·Bn−2. In the general n-body decay framework, the heavy bath
particle B1 decays to a final state involving the DM particle χ and other bath particles
B2 . . . Bn−2. For simplicity we will consider only two-body decays B1 → B2χ but,
as far as we interested in the final abundance only, our results are valid in general.
When dealing with the full phase-space distribution or higher moments, however, the
kinematics of e.g. three-body decays is sensibly different from the one of two-body
decays and can have an impact on the quantities we want to track: remember, e.g.
that a particle in the final state of a three-body decay is produced with an energy
spectrum rather than definite energy. The case of decay channels involving more
than one DM particle in the final state, e.g. B1 → χχ is analogous.
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2. Collisions B1B2 → B3χ or B1B2 → χχ. Scatterings between two bath particles
produce one (or two) DM particle(s) χ in the final state. The first case is called single
production and happens if one of the two initial state bath particles has the same
discrete quantum number as χ. The second case is called pair production: now, being
the DM particle pair-produced, there is no symmetry constrain on these processes.

Let us write and solve the BE Eq. (3.8) in these different cases.

3.2.1 Freeze-in from decays

Let us consider the toy model interaction Lagrangian

Ld
FI = λdmB1B1B2χ, (3.9)

with a trilinear scalar coupling. In the case of mB1 ≥ mB2 +mχ, the Lagrangian allows
two-body decays of B1 to take place

B1 → χB2 (3.10)

The relevant mass scale for these decays is mB1 hence we anticipate it will be the suitable
mass scale for the definition of x in Eq. (3.8). All the particles involved are real scalars
fields hence gB1 = gB2 = gχ at the end. Let us write the collision term CB1→χB2 . In
this simplest model, we assume a completely negligible FIMP abundance at very high
temperatures. Since the thermal equilibrium between DM and the bath is never attained,
inverse decays do not play any role. Instead, the decaying bath particles B1 are in thermal
equilibrium. As usual, we are neglecting the quantum statistics. Under these assumptions,
the collision term reads

CB1→χB2 =
∫
dΠB1dΠB2dΠχ(2π)4δ(4)(pB1 − pB2 − pχ)|MB1→χB2 |2f

eq
B1
. (3.11)

We introduce the partial decay width for the considered channel computed in the B1 rest
frame:

ΓB1→χB2 = 1
2mB1

∫
dΠB2dΠχ(2π)4δ(4)(pB1 − pB2 − pχ)|MB1→χB2 |2, (3.12)

and rewrite the collision term in the form

CB1→χB2 = gB1ΓB1→χB2

∫
d3pB1

(2π)3
mB1

EB1
f eq

B1
(EB1 , T ). (3.13)
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We perform the integral similarly to we did in Section 2.4, defining x = mB1/T and
q = E/T∫

d3pB1

(2π)3
mB1

EB1
f eq

B1
(EB1 , T ) = 1

2π2

∫ ∞

mB1

EdE
√
E2 −m2

B1

mB1

E
e−E/T

= 1
2π2T

2mB1

∫ ∞

x
dq
√
q2 − x2e−q = 1

2π2m
3
B1x

−1K1(x),
(3.14)

with K1(x) the modified Bessel function of the second kind. Remembering that the
equilibrium density for a particle species is given by

neq
B1

= gB1

2π2m
3
B1x

−1K2(x), (3.15)

we can finally write the collision term in the compact form

CB1→χB2 = neq
B1

ΓB1→χB2
K1(x)
K2(x) . (3.16)

Inserting this expression in Eq. (3.8), we get

dYχ

dx
= 1
x

(
1− 1

3
d log g?s

d log x

)
Y eq

B1

H(x)ΓB1→χB2
K1(x)
K2(x) . (3.17)

Remembering
Y eq

B1
(x) = 45

4π4
gB1

g?s(x)x
2K2(x), (3.18)

and substituting into Eq. (3.17), we can solve for the comoving abundance of DM

Yχ(x) = 45
4π4 gB1ΓB1→χB2

∫ x

0
dx′
(

1− 1
3
d log g?s

d log x′

)
x′K1(x′)

g?s(x′)H(x′) . (3.19)

Here we can take x′ = 0 as lower integration extremum, since, as we have shown, the FIMP
DM is IR-produced. The final abundance is given by taking x→∞ in the above equation.
We can compute the above integral in the radiation domination epoch, in which

H(x) =

√
π2

90g
1/2
?ρ (x)

m2
B1

MPl
x−2. (3.20)

The partial decay width in the B1 rest frame is given by

ΓB1→B2χ = p?

32π2m2
B1

∫
|MB1→B2χ|2dΩ, (3.21)

with p? the momentum of decay products in the B1 rest frame, which from energy
conservation is given by:

mB1 =
√
m2

B2
+ p2

? +
√
m2

χ + p2
? =⇒ p? =

√√√√(m2
B1

+m2
B2
−m2

χ)2 − 4m2
B1
m2

B2

4m2
B1

(3.22)
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Since |MB1→B2χ|2 = λ2
dm

2
B1

, the partial decay width reads

ΓB1→B2χ = λ2
d

8π

√√√√(m2
B1

+m2
B2
−m2

χ)2 − 4m2
B1
m2

B2

4m2
B1

. (3.23)

We can assume a simple parametrization for the partial decay width to have a dependence
only on the relevant mass scale mB1 :

ΓB1→χB2 = λ̃2
d

8πmB1 . (3.24)

We have properly defined a new coupling λ̃2
d. Notice that for mB1 � mB2 ,mχ, one has

λ̃2
d → λ2

d/2. We can finally write the solution for the comoving abundance of χ particles:

Yχ(x) = 45
4π4

√
90
π2
λ̃2

d

8π
MPl
mB1

gB1

∫ x

0
dx′
(

1− 1
3
d log g?s

d log x′

)
x′3K1(x′)

g?s(x′)g1/2
?ρ (x′)

. (3.25)

We define1

Jd
∞(mB1) ≡

∫ ∞

0
dx′
(

1− 1
3
d log g?s(mB1/x

′)
d log x′

)
x′3K1(x′)

g?s(mB1/x
′)g1/2

?ρ (mB1/x
′)
. (3.26)

If we choose mB1 = 1 TeV, we obtain Jd
∞(1 TeV) ' 4.4× 10−3. For reference, we show in

Fig. 3.1 the dependence of Jd
∞ on mB1 . We can finally obtain the relic density:

Ωχh
2 = 0.014× gB1 λ̃

2
d

s(t0)MPl
ρc(t0)

(
mχ

mB1

)
Jd

∞(mB1), (3.27)

from which one can get the value of λ̃d needed to reproduce the observed relic density

λ̃d = 1.22× 10−11
(
mB1/mχ

100

)1/2( 4.4× 10−3

Jd
∞(1 TeV)

)1/2( 1
gB1

)1/2(Ωχh
2

0.12

)1/2
. (3.28)

We have chosen, as a reference, mB1 = 1 TeV and mχ = 10 GeV. In Fig. 3.2, we show
the results of Eq. (3.25) for four reference choices of the masses involved, changing λ̃d to
reproduce the relic abundance. The dependence on the mass mB2 is hidden inside the
value of λ̃d because of the chosen parametrization of the partial decay width. Notice the
freeze-in happens at xFI ∼ 1÷ 10 and that the process is clearly IR-dominated, since most
of the final abundance freezes-in around xFI.

1The effective degrees of freedom depend on temperature so their dependence on x implies a dependence
on mB1
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Figure 3.1: The behaviour of the factor Jd
∞ defined in Eq. (3.26) as a function of the mass

of the decaying particle mB1 in the range of interest.

3.2.2 Freeze-in from collisions

For simplicity, let us consider the following toy models described by the interaction
Lagrangians

Lsp
FI = λspB1B2B3χ (3.29)

Lpp
FI = 1

2λppB1B2χ
2 (3.30)

These Lagrangians model the interaction between the FIMP DM and the bath particles, all
considered as scalars gBi = gχ = 1. The first case models the single production, while the
second models the pair production. In this way, the scattering amplitudes of the considered
processes will be a dimensionless constant. We will take advantage of this fact when
explicitly computing the frozen-in abundance from scatterings. However, we will write a
general expression for the collision term in both cases. Notice that the above Lagrangians
also allow three-body decays to take place, for a suitable choice of the mass spectrum of the
theory. Nevertheless, at this stage, we focus on scatterings: the three-body decays will be
interesting when studying the full phase-space distribution with the Boltzmann equation.
Let us consider the two processes of single and pair production separately, following the
approach of [39].
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(mB1
,mχ) = (102, 1) GeV, λ̃d = 1.1× 10−11

(mB1
,mχ) = (102, 1) MeV, λ̃d = 2.6× 10−12

Figure 3.2: The evolution of the yield Yχ of the FIMP DM candidate for the case of
freeze-in from decays. We plot the solution for four reference models leaving constant the
ratio mB1/mχ = 100 and changing the coupling responsible for the decay λ̃d to reproduce
the observed relic density ΩDMh

2 = 0.12. In the case of the lightest particle, notice the
effect on the shape of the Yχ curve, due to the change in the number of degrees of freedom
during the radiation domination period.

Single production

With single production we mean the general process

BiBj −→ Bkχ, (3.31)

for i, j, k = 1, 2, 3 and i 6= j 6= k. We have three possible processes: B1B2 → B3χ,B1B3 →
B2χ and B2B3 → B1χ, all contributing to the production of χ. For the general process,
the collision term reads

Clight
BiBj→χBk

=
∫
dΠBidΠBj ΠBk

dΠχ(2π)4δ(4)(pBi + pBj − pBk
− pχ)|MBiBj→χBk

|2f eq
Bi
f eq

Bj
.

(3.32)
Again, the inverse process is strongly suppressed by the negligible initial abundance of
FIMP particles. Exploting the conservation of energy f eq

Bi
f eq

Bj
= f eq

Bk
f eq

χ , and assuming
CP invariance |MBiBj→χBk

|2 = |MχBk→BiBj |2, we can rewrite the collision term in the
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following equivalent way:

Cheavy
BiBj→χBk

=
∫
dΠBidΠBj ΠBk

dΠχ(2π)4δ(4)(pBi + pBj − pBk
− pχ)||MχBk→BiBj |2f

eq
Bk
f eq

χ .

(3.33)
Despite being equivalent, it is computationally advantageous to use the expression for
the reaction allowed at zero kinetic energy: in other words, if mBk

+ mχ < mBi + mBj

(lighter final state), we use Eq. 3.32), otherwise (heavier final state) Eq. (3.33). As pointed
out in Appendix A of [39], this strategy isolates thermal suppressions in the equilibrium
distribution functions rather than phase-space integrals when reaching mass thresholds. To
write the collision term in a more compact form, we would like to isolate the cross-section
for the above process. First, we define the Lorentz-invariant relative velocity between the
initial state particles Bi, Bj [40]

vBi,Bj = − 1
(pBi · pBj )

√
(pBi · pBj )2 −m2

Bi
m2

Bj
, (3.34)

with pB`
the physical four-momentum of B`, ` = i, j and Lorentz-invariant products defined

with the FRW metric (with scale factor absorbed in the spatial components |~p|2 ≡ a2δijp
ipj).

If we introduce the centre-of-mass energy (Mandelstam variable) s = −(pBi + pBj )2 =
−(pχ + pBk

)2 and put the particles on-shell p2
B`

= −m2
B`

2, we can rewrite the relative
velocity as

vBi,Bj = −
k1/2(

√
s,mBi ,mBj )

2(pBi · pBj ) , (3.35)

having defined the function

k(b, c, d) = [b2 − (c+ d)2][b2 − (c− d)2]. (3.36)

Now we can try to isolate the Lorentz-invariant cross-section [40] in the collision term

σBiBj→χBk
(s) = − 1

4(pBi · pBj )vBi,Bj

∫
dΠBk

dΠχ(2π)4δ(4)(pBi+pBj−pBk
−pχ)|MBiBj→χBk

|2,

(3.37)
so that our “light final state” collision term reads

Clight
B1B2→χB3

= 2
∫
dΠB1dΠB2 k

1/2(
√
s,mB1 ,mB2)σB1B2→χB3(s) f eq

B1
f eq

B2
. (3.38)

Now we have to perform the phase-space integration. The integrand depends only on the
energies EBi and EBj and on s. Thus, the only non-trivial angular integration is the one
over the angle between the initial momenta because s depends on it. Here we report the
final result of the integration (see [39] for details)

Clight
BiBj→χBk

= T

16π4

∫ ∞√
smin

ij

d
√
s k(
√
s,mBi ,mBk

)σBiBj→χBk
(
√
s)K1(

√
s/T ), (3.39)

2The signs are due to our coherent mostly-plus choice for the FRW metric.
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having defined smin
ij = (mBi +mBj )2. If we introduce the variables xij = (mBi +mBj )/T

and w =
√
s/T , we can rewrite the integral in a dimensionless form, for computational

convenience,

Clight
BiBj→χBk

= T 4

16π4

∫ ∞

xij

dw k

(
w,
mBi

T
,
mBj

T

)
σ̃BiBj→χBk

(w)K1(w), (3.40)

where now σ̃ = σT 2 has no mass dimension. In the “heavy final state” case, instead, it is
more convenient to use the other form for the collision term, which reads

Cheavy
BiBj→χBk

= T 4

16π4

∫ ∞

xkχ

dw k

(
w,
mBk

T
,
mχ

T

)
σ̃χBk→BiBj (w)K1(w), (3.41)

with xkχ = (mBk
+mχ)/T . Depending on the case we will choose the proper collision term

to compute. So far, we did not rely upon any approximation. However, if we consider the
toy model in Eq. (3.29), we can write explicitly the expression for the cross-sections above.
The matrix elements for the collisions are independent on the kinematics and read

|MBiBj→χBk
|2 = |MχBk→BiBj |2 = λ2

sp. (3.42)

Being the particles scalars, there is no need to average over initial or final degrees of
freedom. Therefore our dimensionless cross-sections are simply

σ̃BiBj→χBk
(
√
s/T ) = T 2

16πs |MBiBj→χBk
|2 k

1/2(
√
s,mBk

,mχ)
k1/2(

√
s,mBi ,mBj )

(3.43)

σ̃χBk→BiBj (
√
s/T ) = T 2

16πs |MχBk→BiBj |2
k1/2(

√
s,mBi ,mBj )

k1/2(
√
s,mBk

,mχ)
(3.44)

Substituting in the collision terms we get

Clight
B1B2→χB3

=
λ2

spT
4

256π5

∫ ∞

xij

dw

w2 k
1/2
(
w,
mBi

T
,
mBj

T

)
k1/2

(
w,
mBk

T
,
mχ

T

)
K1(w) (3.45)

and

Cheavy
BiBj→χBk

=
λ2

spT
4

256π5

∫ ∞

xkχ

dw

w2 k
1/2
(
w,
mBi

T
,
mBj

T

)
k1/2

(
z,
mBk

T
,
mχ

T

)
K1(w) (3.46)

As we can see, only the extremum of integration (the useful time variable for the Boltzmann
equation) changes in the two cases. Let us write the collision term in a very general and
compact way, exploiting some definitions. We define the relevant mass scale

M = max(mB1 ,mB2 ,mB3 ,mχ), (3.47)
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useful to define the time variable x = M/T in the Boltzmann equation. Then, we introduce

Isp(x,mBi ,mBj ,mBk
,mχ) ≡

∫ ∞

rijkx

dw

w2 k
1/2
(
w,
mBi

M
x,
mBj

M
x

)
k1/2

(
w,
mBk

M
x,
mχ

M
x

)
K1(w),

(3.48)
where rijk = mijk/M with mijk defined as

mijk =
{
mBi +mBj if mBi +mBj > mBk

+mχ light final state
mBk

+mχ if mBi +mBj < mBk
+mχ heavy final state

(3.49)

With these definitions we can write the single-process collision term as

CBiBj→χBk
(x) =

λ2
spT

4

256π5 Isp(x,mBi ,mBj ,mBk
,mχ). (3.50)

The total collision term is given by the sum over the three processes,

Csp(x) =
∑

i 6=j 6=k

CBiBj→χBk
(x) =

λ2
spT

4

256π5

∑
i 6=j 6=k

Isp(x,mBi ,mBj ,mBk
,mχ). (3.51)

So we can write the Boltzmann equation as

dYχ

dx
=
λ2

spM
4

256π5
1

x5s(x)H(x)

(
1− 1

3
d log g?s

d log x

) ∑
i 6=j 6=k

Isp(x,mBi ,mBj ,mBk
,mχ). (3.52)

During radiation domination, we have expressions for both s(x) and H(x): substituting
them we can write the general solution

Yχ(x) = 45
√

90
512π8

λ2
spMPl

M

∫ x

0
dx′
(

1−1
3
d log g?s(M/x′)

d log x

)∑
i 6=j 6=k Isp(x′,mBi ,mBj ,mBk

,mχ)

g
1/2
?ρ (M/x′)g?s(M/x′)

,

(3.53)
Now we can obtain numerically the solution and the final abundance assuming a specific
mass spectrum for our toy model. The final abundance is given by the above expression
for x →∞.3 As we did in the case of decays, we define the integral

Jsp
∞(mB1 ,mB2 ,mB3 ,mχ) ≡

∑
i,j,k

∫ ∞

0
dx′
(

1− 1
3
d log g?s(m/x′)

d log x

)
Isp(x′,mBi ,mBj ,mBk

,mχ)
g

1/2
?ρ (m/x′)g?s(m/x′)

(3.54)
which takes into account all the history of our FIMP candidate interacting with the bath
particle, for a given mass spectrum. We will consider the spectra reported in the following
table, where we also show the correspondent value of the integral Jsp

∞ . We obtain a scaling
for the coupling λsp to reproduce the observed relic density

λsp = 1.5× 10−10
(
M/mχ

100

)1/2(10−2

Jsp
∞

)1/2(Ωχh
2

0.12

)1/2
(3.55)

3In practice, when computing the integral numerically, we set x → 103, implying T0 = 10−3M . This is
sufficient to obtain the relic density today, as Yχ is constant after the freeze-in, happening at T ∼ M .
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Model mB1 mB2 mB3 mχ M mijk Jsp
∞

Spectrum (a) 0 0 1 TeV 10 GeV 1 TeV 1 TeV 0.00887
Spectrum (b) 0 0 100 GeV 1 MeV 100 GeV 100 GeV 0.00977
Spectrum (c) 1 TeV 1 TeV 100 GeV 100 GeV 1 TeV 2 TeV 0.00638
Spectrum (d) 100 GeV 100 GeV 100 GeV 10 keV 100 GeV 200 GeV 0.00504
Spectrum (e) 1 TeV 0 0 10 keV 1 TeV 1 TeV 0.00887

In Fig. 3.3 we show the solution Eq. (3.53) for the considered spectra, tuning λsp to
reproduce the observed relic density. Notice that the freeze-in happens at x = M/T ' 1÷10
as usual.

Pair production

The case of pair production, i.e. processes of type

B1B2 −→ χχ, (3.56)

is very similar to the single production case considered above, apart from a factor of two,
since each event produces two χ particles. As before, depending on the considered mass
hierarchy, it is more convenient to use different expressions for the collision term. The
matrix elements for our simple model are

|MB1B2→χχ|2 = |Mχχ→B1B2 |2 = λ2
pp. (3.57)

The cross-sections for pair production are given by

σ̃B1B2→χχ(
√
s/T ) = T 2

16πs |MB1B2→χχ|2
k1/2(

√
s,mχ,mχ)

k1/2(
√
s,mB1 ,mB2)

,

σ̃χχ→B1B2(
√
s/T ) = T 2

16πs |Mχχ→B1B2 |2
k1/2(

√
s,mB1 ,mB2)

k1/2(
√
s,mχ,mχ)

,

(3.58)

with s = −(pB1 + pB2)2 = −(pχ + p′
χ)2. Defining the following integral, as in the previous

case

Ipp(x,mB1 ,mB2 ,mχ) ≡
∫ ∞

x

dw

w2 k
1/2
(
w,
mB1

T
,
mB2

T

)
k1/2

(
w,
mχ

T
,
mχ

T

)
K1(w), (3.59)

we can write
CB1B2→χχ(x) =

λ2
ppT

4

128π5 Ipp(x,mB1 ,mB2 ,mχ), (3.60)

with x = m/T and

m =
{
mB1 +mB2 if mB1 +mB2 > 2mχ light final state
2mχ if mB1 +mB2 < 2mχ heavy final state

(3.61)
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Figure 3.3: The evolution of the comoving density of FIMP DM Yχ for the case of freeze-in
from the sum of the three single production processes B1B2 → B3χ, B1B3 → B2χ and
B3B2 → B1χ. We plot the solution for the simple scalar model in Eq. (3.29) and five
choices of spectra. The coupling λsp was tuned to reproduce the observed relic density
ΩDMh

2 = 0.12. The time variable is the inverse temperature normalized to the relevant
mass scale M = max(mB1 ,mB2 ,mB3 ,mχ).

We can directly write the solution of the Boltzmann equation in radiation domination,
which is analogous to the one for single FIMP production

Yχ(x) = 45
√

90
256π8

λ2
ppMPl

m

∫ x

0
dx′
(

1− 1
3
d log g?s(m/x′)

d log x

)
Ipp(x′,mB1 ,mB2 ,mχ)
g

1/2
?ρ (m/x′)g?s(m/x′)

. (3.62)

The final abundance is given by the above expression for x → ∞. Again we define the
integral

Jpp
∞ (mB1 ,mB2 ,mχ) ≡

∫ ∞

0
dx′
(

1− 1
3
d log g?s(m/x′)

d log x

)
Ipp(x′,mB1 ,mB2mχ)
g

1/2
?ρ (m/x′)g?s(m/x′)

. (3.63)

For reference, we show in Fig. 3.4 the dependece of Jpp
∞ on mχ having set B1 and B2 to be

massless.

Let us consider the spectra reported in the following table together with the correspon-
dent value of the integral Jsp

∞ . We obtain the following scaling for the coupling λpp to
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Figure 3.4: The behaviour of the factor Jpp
∞ defined in Eq. (3.63) as a function of the mass

of the FIMP candidate in the range of interest. We have considered the bath particles B1
and B2 to be massless.

Model mB1 mB2 mχ m Jpp
∞

Spectrum (a) 0 0 10 GeV 20 GeV 0.00473
Spectrum (b) 0 0 1 MeV 2 MeV 0.10579
Spectrum (c) 1 TeV 1 TeV 100 GeV 2 TeV 0.00348
Spectrum (d) 100 GeV 100 GeV 10 keV 200 GeV 0.00363

reproduce the observed relic density

λpp = 2.7× 10−11
(
m/mχ

2

)1/2(3× 10−3

Jpp
∞

)1/2(Ωχh
2

0.12

)1/2
. (3.64)

We have normalized the ratio m/mχ to 2, which is the case for the heavy final state pair
production. In Fig. 3.5 we show the solution Eq. (3.62) for the considered spectra, as
usual tuning λpp to reproduce the observed relic density. We note that if χ is light, λpp

gets enhanced. The freeze-in still happens at x = m/T ' 1÷ 10 with m the relevant mass
scale in the process defined in Eq. (3.61).
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Figure 3.5: The evolution of the comoving density of FIMP DM Yχ for the case of freeze-in
from pair production processes. We plot the solution for the simple scalar model in Eq.
(3.30) and four choices of spectra. The coupling λpp was tuned to reproduce the observed
relic density ΩDMh

2 = 0.12. The time variable is the inverse temperature normalized to the
relevant mass scale, defined in Eq. (3.61). The unusual behaviour of the solution relative
to spectrum (b) is due to the particular relevant mass scale of the process and the change
in the number of relativistic degrees of freedom, as evident from the anomalous value of
Jpp

∞ .

3.3 Observational features of frozen-in Dark Matter

As we have seen in the previous Sections 3.1 and 3.2, the main feature of frozen-in
DM candidates is the smallness of their coupling with the visible Standard Model (SM)
particles, which constitute the thermal bath in the early Universe. The extreme weakness
of this coupling is such that FIMPs never attain thermal equilibrium with the SM particles,
and this is crucial for DM production. If we compare the freeze-in scenario with the
standard freeze-out mechanism we reviewed in Section 2.4, we could be led to think that
the smallness of the couplings between dark and visible sectors in the former case forbids
any experimental observation of the non-gravitational interactions between dark and visible
particles. On one side, this can make FIMPs more appealing, since the unconstrained
parameter space is way larger than in the case of WIMPs, while, on the other side, the
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Figure 3.6: Schematic representation of the ways to observe DM particles. We show
scattering-like and decay-like diagrams implying some interactions between DM particles χ
and Standard Model states B. Depending on the considered direction of the arrow of time,
the diagrams represent different processes, which are studied in detection experiments: DM
annihilation and decay (indirect detection), scattering of DM and nuclei (direct detection),
DM production (collider production).

inability to experimentally test the model can rightly concern the physicist. However, as
we shall see in this section, the freeze-in scenario can be tested in many ways and the
features of the frozen-in dark sector can be unveiled by laboratory experiments and by
observations on astrophysical and cosmological scales. In the next chapter, we will focus
on a specific method to constrain freeze-in models: the observation of structure formation.

In general, searches of DM look for signatures of their interactions with SM particles
through different kind of processes. We show in Fig. 3.6 a schematic representation of
the possible processes involving DM particles χ and SM states B, through Feynman-like
diagrams. We briefly review, with some specific examples, the possible signatures of
frozen-in DM in three different types of searches: direct detection experiments, indirect
detection observations, colliders searches.

3.3.1 Direct detection signatures

Direct detection experiments search for processes of the type

χB −→ χB, (3.65)

where B is usually a large nucleon, to enhance the interaction cross-section. We have
shown in Fig. 2.3 the tightest constraints obtained by the XENON1T collaboration on
WIMP DM-nucleon spin-independent cross-section. Given the fact that FIMPs are much
more weakly coupled with the visible sector, freeze-in models are very challenging to test in
fixed-target experiments. However, due to its non-thermal nature, FIMP DM can be lighter
than WIMP DM, allowing for a larger number density nχ that can drastically enhance
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detection rates. Recently, a large number of ideas for new experimental setups to detect
DM in the keV - MeV mass range has been developed and next-generation experiments
will explore this path.

Instead, for super-GeV DM, direct detection experiments, e.g. XENON1T, have recently
already achieved the needed sensitivity to test freeze-in mechanisms. In particular, this
applies to a class of FIMP models in which the dark χ and SM N states are connected
through a light mediator, with mass . 10 MeV. In this case, elastic scatterings with nuclei
can proceed through a t-channel, in which the cross-section can be boosted compensating
the smallness of the FIMP coupling required for the freeze-in mechanism. Following [38,41],
we review this interesting possibility focusing on a particular scenario, the millicharged
freeze-in DM coupled with SM through a kinetic mixing portal. In the minimal model,
the fermionic DM particle χ and its antiparticle χ are charged under a dark U(1)d gauge
symmetry with fine structure constant αd = ed

2/(4π). Decays of DM are forbidden by
gauge symmetry, as for the electron in QED. The coupling to the SM is obtained through
a mixing of the gauge field strength tensors of U(1)d and of the hypercharge U(1)Y gauge
field i.e. through the gauge-invariant term

L ⊃ −ε2V
µνBµν . (3.66)

This term can be originated by loop interactions between heavy fermions charged under both
gauge fields, resulting in effective interaction between the gauge fields at low energies [42].
If U(1)d is broken, the two sectors feebly interact with the exchange of massive gauge
bosons: the ordinary Z field and the so-called dark photon V , here we consider light
mV . 10 MeV. To understand the interaction between the dark and the visible sectors, for
simplicity, let us neglect the Z-boson component in the Bµ field and focus on the unbroken
gauge group of SU(2)L×U(1)Y , the U(1)em. The relevant Lagrangian is, before symmetry
breaking,

L ⊃ −1
4FµνF

µν − 1
4VµνV

µν − ε

2V
µνFµν + ifD/ f + iχD/χ, (3.67)

with the covariant derivative,

Dµ = ∂µ − ieQAµ − iedQdVµ. (3.68)

Here Fµν is the photon field strength tensor Vµν is the dark photon strength tensor, χ
is the DM particle and f an electrically charged SM state, e.g. the electron. We have
(Qf , Q

d
f ) = (1, 0) and (Qχ, Q

d
χ) = (0, 1). We can apply a field redefinition to diagonalize

the kinetic sector. In the Xµν = (Fµν , F
d
µν) vector space, we can write the kinetic sector as

Lkin = −1
4XµνKX

µν , (3.69)

with

K =
(

1 ε

ε 1

)
. (3.70)
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This matrix can be diagonalized K = ODOT with the orthogonal transformation

O = 1√
2

(
1 1
−1 1

)
, (3.71)

giving D = diag(1 − ε, 1 + ε). Therefore to obtain the canonical normalization in the
diagonal kinetic term, we have to perform the field redefinition X ′

µ = D1/2OTXµ, i.e.


A′

µ =
√

1− ε
2 (Aµ − Vµ)

V ′
µ =

√
1 + ε

2 (Aµ + Vµ)
(3.72)

Hence these gauge fields are two non-orthogonal combinations of the primed fields. This
implies that the gauge field radiated by f has a component of the gauge field which is
radiated by χ, and vice versa. We can still consider a more suitable basis, which is the
most physically intuitive one. Any orthonormal combination of the primed fields will
conserve the form of the kinetic sector. Let us indeed introduce the fields A′′

µ and V ′′
µ as the

orthonormal combinations of primed fields, which are not and are coupled to the DM field
χ, respectively. We work at the lowest order in the mixing parameter ε. Let us rewrite the
interesting pieces in the covariant derivative in terms of A′′

µ and V ′′
µ , inverting Eq. (3.72)

edVµ = ed√
2

(
V ′

µ√
1 + ε

−
A′

µ√
1− ε

)
= ed√

2
(V ′

µ −A′
µ) +O(ε) ≡ edV

′′
µ (3.73)

and

eAµ = e√
2

(
V ′

µ√
1 + ε

+
A′

µ√
1− ε

)
= e√

2

[
(V ′

µ +A′
µ) + ε

2(V ′
µ −A′

µ) +O(ε2)
]

≡ e(A′′
µ + ε

2V
′′

µ )
(3.74)

Therefore, suppressing primes, at lowest order in ε, the covariant derivative is

Dµ = ∂µ − ieQ
(
Aµ + ε

2Vµ

)
− iedQdVµ (3.75)

The electromagnetic current Jµ
em = Qfγµf couples also to the dark photon Vµ with

strength e′ = eε/2: the dark photon can mediate interactions between dark and visible
states. In the general case, after electroweak symmetry breaking and diagonalising the
terms containing the field strength tensors with suitable field redefinitions, the relevant
terms in the Lagrangian are

L ⊃ −1
4VµνV

µν + 1
2m

2
V VµV

µ + e′VµJ
µ
em + edVµJ

µ
χ , (3.76)

where Jµ
χ = Qdχγ

µχ is the dark current. We have also introduced a mass term for the
dark photon, originated from the breaking of U(1)d with a Higgs mechanism. We define
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κ = e′ed/e
2: it is the small coupling between dark and visible sectors and determines the

freeze-in mechanism. In [41] the authors show how to recast the XENON1T limits on
WIMPs, derived assuming a very short-range interaction due to a heavy mediator, in limits
on FIMPs in which the interaction is long-ranged, due to the small mV , with a t-channel
propagator

V

χ χ

N N

' e′e

t−m2
V

' − κe2

2mBER +m2
γ′

(3.77)

where mN is the nucleus mass, ER the nucleus recoil energy. If m2
V < 2mNER the dif-

ferential cross-section for the process will scale us ∝ κ2α2/E2
R. Under this light mediator

assumption, the XENON1T constraints in the (σSI,mWIMP) plane can be mapped onto
(κ,mχ), with some error, less than 30 %. The results obtained by [41] are shown in Fig.
3.7: we see that XENON1T is already testing FIMPs coupled through the kinetic mixing
portal with masses 50− 100 GeV and couplings with values in agreement with the ones
we found in Section 3.2 to reproduce the relic density. Future longer-lasting experiments
such as XENON1T4y and LZ will be able to explore in detail the relevant parameter space
of this model, shown with a green solid line, for masses mχ & 50 GeV. As pointed out in
the same work, XENON1T bounds can also be exploited to constrain DM self-interactions
that are relevant in the considered model of millicharged DM.

3.3.2 Indirect detection signatures

With indirect detection, we refer to the observation of signatures of decay or DM
annihilation

χ −→ BB, χχ −→ BB (3.78)

Decaying DM can be embedded easily in the freeze-in scenario, for suitable choices of the
mass spectrum of the theory; the smallness of the coupling between SM and dark states
allows very long lifetimes, which do not spoil BBN or CMB constraints, we reported in
Section 1.5: τχ & 1028 s. Since the freeze-in mechanism requires completely negligible decay
rates of FIMPs into visible states, a simple estimate based on a trilinear scalar operator
describing the decay

L ⊃ λχmχχBB, (3.79)

with mB � mχ, leads to the estimate

τχ '
16π
λ2

χmχ
∼ 1028 s

(10−26

λχ

)2(1 GeV
mχ

)
. (3.80)
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Figure 3.7: Constraints from XENON1T (black), forecast for XENON1T for 4 years
(black, dashed), PANDAXII (red, dashed) and forecast for LZ for 1000 days (blue, dashed).
Regions above the lines are excluded. The solid green line corresponds to the κ needed to
reproduce the observed relic density through the freeze-in mechanism. Figure from [41].

Indeed λχ � λd ∼ 10−11: this process is much more suppressed with respect to the FIMP
production via decays of SM states. In the case in which the FIMP is a sterile neutrino, its
decay products can be active SM neutrinos, that can be observed in IceCube, as explored by
the authors of [43], who consider models with 6-dimensional operators to avoid unnaturally
small couplings such as λχ. In general, one may expect also decays into photons, in the
gamma-ray or X-ray band. There are plenty of satellites and observatories probing the
interesting frequency band for decays of light DM, with couplings and masses suitable for
the freeze-in mechanism [44]. In particular, recently, much attention was raised by the
observation of a 3.55 keV line from DM-dominated systems [45] and this has motivated
many theoretical studies to explain it in a freeze-in DM framework.

DM annihilation in standard freeze-in context with only a dark candidate χ is usually
not observable, being the coupling between visible and dark particles suppressed by more
than 6 orders of magnitudes with respect to the WIMP case. However, one can consider
variations of the standard freeze-in paradigm, introducing a mediator φ, which is the one
interacting with the SM [38]. So one can consider an unsuppressed dark annihilation

χχ −→ φφ −→ BB,BB, (3.81)
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followed by decays into visible particles. Schematically,

χ

χ

φ

φ

B

B

B

B (3.82)

Since φ decays into SM states, these processes can be observed in the same way we
have discussed above, resulting in an effective annihilation of DM into visible particles.
Remarkably, this idea was implemented in a natural freeze-in scenario to fit the gamma-ray
GeV excess in the centre of the Milky Way [46].

3.3.3 Collider signatures

Colliders can have luminosity and centre-of-mass energy high enough to produce DM
with the following processes

BB −→ B′B′ −→ χχ, BB −→ B′B′ −→ B′′χ. (3.83)

Typically searches at colliders focus on signals of mono-jets with missing energy, due to
production of invisible WIMP DM. At the moment these experiments are not sensitive
to standard FIMP DM, due to the small production cross-section, be it pair production,
single production or decay of visible particles, since this processes are, by construction,
suppressed by the small couplings λ ∼ 10−11, we have seen in Section 3.2 are needed to
reproduce the relic abundance of DM. As an example, we can exploit Eq. (3.28) with
the relic density given by decays of SM in FIMP DM, remembering the parametrization
ΓB1→B2χ = λ̃d

2
mB1/(8π), to write the so-called decay length τB1 ' 1/ΓB1 , in agreement

with [1, 39]4

τB1 '
1

ΓB1→B2χ
' 3.3× 106 cm

(
mχ

10 GeV

)(1 TeV
mB1

)2( 0.12
Ωχh2

)(
Jd

∞(1 TeV)
4.4× 10−3

)
. (3.84)

We have approximated the total decay width of B1 with its partial decay rate. This
corresponds to τB1 ∼ 10−4 s. Therefore the detection of visible particles with macroscopic
lifetimes is a unique signature of FIMPs. These events produce so-called displaced signals
in the detector, i.e. disappearing tracks, tracks displaced from the collision axis, particles
decaying in the calorimeter. However, the value of τB1 ∼ 106 cm is far beyond the size

4We are accounting for changes in the effective number of degrees of freedom during the expansion of the
Universe, while in the estimate in [1,39] the authors do not, so we get a order of magnitude of difference.
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of any detector L, which has to be compatible with βγτB1 , where βγ = |~pB1 |/mB1 is the
time dilation factor times the velocity of the decaying particle. In practice, in the standard
freeze-in scenario, DM is produced by decays of a stable, for collider purposes, particle
B1. Nevertheless, as explored in [39,47], if the freeze-in happens during an early matter-
dominated era after inflation, or in general during an era of a fast expansion of the Universe,
the resulting τB1 ∝ λ−2

d can be reduced to values in the band 10−2 cm < τχ < 104 cm,
which is accessible to future and present colliders. Briefly, for an early matter-dominated
era, entropy production at the beginning of the standard cosmological history dilutes the
frozen-in FIMP abundance, and this has to be compensated by a stronger coupling λd

to give the correct final relic density. Finally, we have to mention that in many freeze-in
scenarios, the DM is coupled to SM via a mediator particle, as we have discussed above for
indirect detection. However, in this case, one can request that the coupling between the
mediator and SM is not that feeble so that the mediator can be observed at colliders from
its decay products.

3.3.4 Large-scales signatures

As we have said regarding indirect detection, the standard freeze-in paradigm allows
the presence of long-lived dark particles that can decay feebly into the SM states, due to
the small coupling between visible and dark sector. If these decays happen during the
thermal history between BBN (T ∼ 0.1 MeV) and photon decoupling (T ∼ 0.1 eV) the
energy released from the dark sector into the photon bath can leave a significant imprint
into cosmological observables like primordial abundances and the CMB power spectrum.
In [61] the authors constrain decaying millicharged freeze-in DM, while in [30] the authors
obtain model-independent cosmological bounds on DM lifetimes. Another window on
the physics of the early Universe can come from the observation of gravitational waves
produced in phase transitions in the visible but also a possible dark sector. In particular,
these observations could be possible with the upcoming LISA mission. Gravitational waves
can allow us to explore the features and structure of the dark sector, without relying on its
non-gravitational interactions with the SM.

Another compelling feature of freeze-in models is that they can be dependent on the
initial conditions after inflation or also on the details of inflation themselves, unlike thermal
DM. While the standard scenario is IR dominated, since one assumes a negligible FIMP
abundance, in the more general case the FIMP particle can couple to the inflaton or be a
spectator scalar field during inflation. Therefore freeze-in DM can be sensitive to very high
energy physics. In the first case, the decay of the inflaton during reheating can lead to a
DM overproduction, so the inflaton-FIMP coupling is tightly constrained. In the second
case instead, quantum fluctuations of the FIMP field would be amplified and conserved
throughout the FRW history leaving imprints in the CMB: this scenario can be constrained
by the CMB power spectrum and possibly by a future observation of gravitational waves
from inflation.
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3.3.5 Small-scales signatures

As we have discussed talking about active neutrinos, and in general about the “coldness”
of DM, the mechanism through which DM is produced and the non-gravitational interactions
it is involved in can have a significant impact on the formation of structures we observe
in the Universe, in particular small-scale structures. While on very large scales DM can
be modelled as a perfect pressureless and cold fluid, on small scales the particle nature of
DM is relevant to characterize the properties of halos and small clusters. We have seen in
Section 1.5 that fermionic DM cannot be lighter than ∼ 0.1 keV (Tremaine-Gunn bound)
just because of the existence of dwarf spheroidal galaxies of size < 10 kpc. Other more
accurate bounds can be obtained with realistic models of the DM density profile in these
systems.

As we discuss in detail in Appendix B, the collisionless cold DM (CDM) paradigm is
not always consistent with the observation of the small scale structures of the Universe.
The main problem is an overabundance of power on small scales, producing massive and
numerous small structures in N -body simulations, but that are not observed. A proposed
solution we discuss in Appendix B is warm DM (WDM), where thermal DM is light
mWDM ∼ 1− 10 keV, hence possessing a relatively large free-streaming scale, below which
structure formation is suppressed. The free-streaming scale produces a cut-off in the power
spectrum, alleviating the small-scale shortcomings. However, thermal WDM is strongly
constrained by the Lyman-α forest data, which give a lower bound on its mass mWDM > 5.3
keV [56], or in general, depending on the assumptions, in the range 1− 10 keV, exactly
where the mass should lie to alleviate the excess of power on small scales. Nonetheless,
these tight constraints apply only if the DM phase-space distribution is thermal, so the
tension with Lyman-α data might be alleviated within scenarios in which DM is produced
non-thermally, such as in the freeze-in. Many studies explored this possibility and tried
to map Lyman-α constraints on mWDM onto constraints on the mass of FIMP DM. The
starting point of the procedure is always the DM phase-space distribution, which can
deviate from the Fermi-Dirac or Bose-Einstein equilibrium one. It is computed exploiting
the Boltzmann equation formalism, when possible in its complete form, otherwise, moment
by moment. From the phase-space distribution, one can extract physical quantities that
can be compared to observables. The comparison is usually done exploiting three different
techniques. Let us review them from the less to the most involved one.

1. The free-streaming scale or horizon. The simplest quantity one can rely on
to compare theoretical predictions with structure formation is the so-called free-
streaming horizon λfs, which we have already encountered treating HDM in Section
1.4. Defining the average velocity of DM particles

〈v(t)〉 = 1
mχ

√
〈p2〉 =

√
gχ

nχ

∫
d3p

(2π)3
p2

m2
χ

fχ(t, p), (3.85)
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the free-streaming horizon is

λfs =
∫ t0

tprod
dt
〈v(t)〉
a(t) . (3.86)

This quantity gives an estimate of the average length scale (now) that the DM
particle has travelled from production until today if it was not gravitationally
trapped. The greater the free-streaming horizon, the tighter the constraints from
structure formation. As we have seen, for DM, the scale of 0.1 Mpc, which is typical
of dwarf galaxies, marks the border between HDM, which suppresses too much power
on small-scales (compared to CDM) and models which are in only tension with
data on structure formation like WDM. Therefore one can compute the phase-space
distribution from the chosen model and test the warmness of its DM candidate. The
authors of [62] applied this methodology to the case the freeze-in production of a
DM candidate in the U(1)B−L gauge symmetry framework, involving substantially
non-thermal distributions. They find indeed λfs � 0.01 Mpc, giving safely a cold
candidate. However, in [63] the authors showed explicitly that the free-streaming
horizon may be an inadequate quantity to carefully characterize cases in which the
distribution function is non-thermal, as it is in the freeze-in mechanism: in fact, λfs
takes into account only the momentum dispersion of the DM particles, rather than
the full form of the distribution. This can lead us to discard non-thermal models
which, under a more careful study are instead in agreement with data. Therefore λfs
can only provide an order of magnitude estimate of the coldness of DM.

2. A warmness quantity. A simple way, but slightly more precise than the previous
one, to constrain freeze-in dark model exploiting bounds on WDM parameters is to
introduce a warmness quantity, defined from the phase-space distribution. The idea
is to compare the warmness quantity in the FIMP and WDM models. In [58, 64] the
authors apply this method to see if a 7 keV mass DM candidate in some benchmark
model is compatible with constraints on mWDM from Lyman-α [56]. The warmness
quantity is defined as

σ = 1
mDM

√
〈p2〉 = σ̃

TDM
mDM

, (3.87)

where the DM temperature is defined as

TDM =
(
g?s(T )
g?s(Tdec)

)1/3
T, (3.88)

with T the temperature of the radiation bath and Tdec is the decoupling temperature
from the bath. The quantity σ̃ is defined as

σ̃2T 2
DM =

∫
d3p p2f∫
d3p f

. (3.89)
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The map between FIMP parameters and mWDM is obtained from the equation

σχ = σWDM =⇒ σ̃
Tχ

mχ
= σ̃WDM

TWDM
mWDM

, (3.90)

where TWDM is fixed to reproduce the relic density with mass mWDM and, for a
thermal fermion candidate, σ̃WDM ' 3.6. Then, the problem is to compute σ̃χ from
the model-dependent phase-space distribution. Finally, the bound on mχ reads

mχ > 7 keV
(
mWDM
2.5 keV

)4/3( σ̃χ

3.6

)( 106.75
g?s(Tdec)

)1/3
, (3.91)

for a Lyman-α constraint of mWDM > 2.5 keV. This method can be exploited
efficiently in simple scenarios in which, under some approximations, one can compute
analytically the phase-space distribution [58]. So it is a method to obtain rather
quickly some bounds on the FIMP mass, within a 10 % accuracy, with respect to the
following, more reliable, method.

3. Linear matter power spectrum. The linear matter power spectrum P (k) encodes
almost all the relevant information about the process of structure formation. The
peculiar behaviour of the power spectrum at small scales, with respect to the standard
PCDM(k) one, characterizes the warmness of the DM candidate. One can define the
squared transfer function

T 2(k) = P (k)
PCDM(k) , (3.92)

giving information about the small-scale power suppression for our non-thermal relic
with respect to the perfectly cold thermal DM. Indeed Lyman-α bounds are usually
expressed in terms of the limiting transfer function for thermal WDM T 2

lim(k). In
principle, as stated by [58,63] the most suitable approach would be to analyse Lyman-α
data using the computed model-dependent phase-space distribution; however, this is
highly time-consuming, hence is not a viable approach. What is usually done is to
compute the transfer function for every point in parameter space using a Boltzmann-
solver code optimized for non-cold DM and compare the result to the result of WDM.
In general, if T 2(k) ≥ T 2

lim(k) for all modes k the model for the chosen point in
parameter space is in agreement with the Lyman-α bound. However one has to
take into account the shape of the transfer function itself since, in particular for
non-thermal distribution, the behaviour of the transfer function around the cutoff can
be highly modified. To use the criterion also for freeze-in models, another procedure
is applied. As a fair compromise for a reference mode, one computes the half-mode
k1/2 at which T 2(k1/2) = 1/2 for both the model and the limiting transfer function.
In [63] it is shown that the choice of k1/2 as a reference mode is robust and does not
change the results much. Then two criteria can be exploited:

• In [58,64] the authors assume a model is in agreement with Lyman-α if k1/2 >

klim
1/2.
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Figure 3.8: Representation of the criterion of [63] to establish which models are in agreement
(left) with some bound and which are not (right). Figure from [63].

• Instead in [63], the authors check if the condition T 2(k) ≥ T 2
lim(k) is fulfilled for

all k ≤ k1/2: if so the model is consistent with the Lyman-α bound.

The last choice seems to be the more consistent with the idea that Lyman-α bounds
have to stay untouched on scales k < k1/2: the modified slope of the cutoff for a
non-thermal relic can lead to suppression at scales k < k1/2 and this has to be avoided.
This idea is illustrated in Fig. 3.8 from [63]. There we see that the two methods
of [58, 64] and [63] may lead to different conclusions since for the former authors the
dotted and dashed transfer functions in the right panel are allowed as the ones on
the left panel. In [66] the authors provide an analytical fit formula for the transfer
function of a given thermally distributed WDM species of mass mWDM, which has
been exploited to draw T 2

lim for mWDM = 3.3 keV.

Basing on the last and most reliable method, in this work we will develop a general
procedure to constrain the parameter space of freeze-in scenarios, once a model is given.
Then we will apply the methodology to the simple four-dimensional scalar operators already
considered in Section 3.2.

Study of small-scale structures can also give insights on DM self-interactions, i.e. self-
couplings between χ particles. As we discuss in Appendix B, self-interacting DM (SIDM)
can be a solution to the aforementioned shortcomings of the CDM paradigm since it has
an impact on structure formation and DM halo density profiles. As we have seen above
with the millicharged DM model [41], self-interacting DM can be produced via freeze-in,
and we can get bounds on the couplings responsible for self-interactions in specific models
as we have discussed above focusing more on the DM mass mχ.

Other important bounds on FIMPs models and, more generally, on the dark sector,
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come from the study of stellar energy losses for particles in the range 0.01 − 100 keV
and supernovae explosions in the mass range 1 − 100 MeV. These two possibilities are
respectively explored by [59] and [60] in the case of models involving dark photons similar
to the one outlined above.
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Chapter 4

Constraints on FIMP parameters:
methodology

In this chapter we will illustrate our new methodology to obtain constraints on pa-
rameters of FIMP models in the freeze-in standard scenario. We intend to develop a very
general procedure to constrain the parameters of any given Lagrangian describing the
freeze-in DM production. A given model can always be decomposed into single operators,
each one contributing to the freeze-in production with some processes. In general, a model
can be written in the form

LFI =
n∑

k=1
C

(4−∆k)
k O(k)

∆k
(φ, ψ,Aµ, χ, . . . ). (4.1)

Each term in the freeze-in Lagrangian is characterized by a coupling C(4−∆k)
k = λkΛ4−∆k

k

which can be dimensionful, depending on the dimension ∆k of the operator O(k)
∆k

. The
coupling strength is determined by a dimensionless small coupling λ ∼ 10−7 − 10−12

between the Nk involved particles: scalars φ, spin 1/2 fields ψ, vector spin 1 fields Aµ

and the DM candidate χ, each with its mass. Since the general operator can have mass
dimension ∆k, the coupling is multiplied by a relevant mass scale Λ4−∆k

k : Λk can be the
mass of the heaviest particle involved in the k-th term, or, in the case of higher-than-four
dimensional operators, it is set by the mass scale of some heavy particle state which has
been integrated out, in an effective theory framework. To sum up, we have only four
ingredients for the k-th term in the freeze-in model:

1. the value of the coupling C(4−∆k)
k ;

2. the particle content of the operator, thus the nature of the DM particle χ;

3. the functional form of Ok, determining the mass dimension ∆k of the operator;

4. the mass spectrum of the particles involved, determining the relevant mass scale if

83
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∆k 6= 4.

The free parameters of the theory will be the values of the n couplings and of the masses
involved, which are less than n×Nk. In the first part of the chapter, we present the general
procedure to be applied for any given model and we obtain a general result for the DM
phase-space distribution. In the second part of the chapter, we apply the methodology to
three simple scalar toy models. We rely on the calculations carried out in Appendix D,
where we find collision terms for various processes.

4.1 General procedure

In this section, we outline the general procedure to constrain the parameters of a
freeze-in model. We want to constrain mainly the coupling λ and the FIMP mass mχ. The
other values of the mass spectrum mi will be of secondary importance. We can proceed as
follows:

1. We choose a mass spectrum. We fix the global relevant mass scale M to be the mass
of the heaviest particle involved in the model. The other masses will be parameters to
be constrained, and, among them, mχ will be of primary importance for our studies.

2. We redefine all the dimensionless couplings

λk −→ λk

(Λk

M

)4−∆k

(4.2)

to get rid of the dependence on Λk and to write the model as

LFI =
n∑

k=1
λkM

4−∆kO(k)
∆k

(φ, ψ,Aµ, χ, . . . ). (4.3)

Then we choose the values of these new λk.

3. For a given mass spectrum we list all the possible processes allowed by each operator
and kinematics. Broadly, the processes can be classified as n-body decays (mainly
two and three-body ones) and n→ m scatterings (mainly 2→ 2 ones). We compute
the collision terms for each allowed process.

4. We write the Boltzmann equation for all the particles species involved in the model
which are out-of-equilibrium and therefore can have a non-thermal phase-space
distribution. Each Boltzmann equation takes into account all the processes in which
the particle species is involved. Of primary importance is the DM distribution
function fχ.

5. We solve the set of (possibly coupled) Boltzmann equations to find the unknown
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phase-space distributions. If necessary, one can rely on a perturbative expansion in
some suitable quantity.

6. We impose a first constraint on the parameters requiring that the relic DM abundance
reproduces a given fraction F ≡ Ωχ/ΩDM of the observed one. This constraint fixes
a combination of the values of the couplings λk.

7. We use the obtained DM phase-space distribution to compute the linear matter power
spectrum P (k) with a Boltzmann solver code, like CLASS [68,69].

8. We compare the (squared) transfer function T 2 ≡ P/PCDM obtained from our model
with the limit one T 2

lim obtained from observational constraints. With a suitable
criterion to do that, we see whether the model for the chosen mass spectrum agrees
with observations or not. One can exploit more than one criterion to double-check
the robustness of the results, e.g. the two illustrated in Section 3.3. Defining k1/2
such that T 2(k1/2) = 1/2, the criteria are:

• If k1/2 ≥ klim
1/2 the model is in agreement with the bound.

• If T 2
lim(k) ≤ T (k) for all k ≤ k1/2 the model respects the imposed bound.

The two criteria can give different outputs, so we record them separately.

9. We repeat the procedure from step 1, exploring the available parameter space.

In this scheme, the model is characterized by the following input parameters

(M,λk,mi, . . . ,mχ;F ?), (4.4)

with F ? fixed once for all. The output of the procedure is a region of parameter space that
is in agreement with the bounds. The procedure can be slightly modified changing point
5.: in particular, one can leave F as a free (output) parameter and discard the model if
F < F ? or F > 1, going back to point 1. In this case, the methodology amounts to check
whether a model is globally in agreement with both the information on structure formation
and the relic density.

In any case, with our methodology, the analysis will be possible both for every single
operator in the Lagrangian, assuming it is the only one contributing to the freeze-in relic
density, and for multiple operators organized in a more involved model. If we consider
models with one operator only, like

LFI = λM4−∆O∆(φ, ψ,Aµ, χ, . . . ), (4.5)

we can easily constrain the parameter space by fixing the coupling λ to reproduce the relic
density in point 5. As we have seen in Section 3.2, focusing on some particular cases, this
fixes the coupling λ once the mass spectrum is fixed. In general, if there are more terms
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in the Lagrangian, each with its coupling, the constraint is also possible but less efficient
since only a combination of the couplings is fixed. Then we may further constrain the
mass spectrum of the theory using structure formation. We focus on dimension ∆ = 3 or 4
operators on simple scalar models we have already introduced in Section 3.2 and on mass
spectra involving a light mχ ' 1− 10 keV FIMP candidate. Considering higher dimension
operators, e.g. dimension 5 or 6, one has to take into account dependences on the final
stages of inflation. This can be done within our formalism but this possibility is beyond
the scope of this work.

In the simplest scenario, which is the one we will consider in this work, the FIMP DM
candidate is the only particle species which is characterized by a non-thermal phase-space
distribution fχ. Therefore we need to solve only one Boltzmann equation to obtain its
expression. The solution can be written analytically as an integral which, as we shall see,
is usually computed numerically. However, some analytical expressions are possible under
some approximations. As we have seen in Section 2.1, the Boltzmann equation for the
particle species χ phase-space distribution fχ(t, p) can be written in the form

gχ
dfχ

dt
= gχ

C

E
. (4.6)

We assume, reasonably, that the collision term C is not a functional of the DM distribution:
this amounts to neglect all possible processes involving χ particles in the initial state and
any possible quantum Pauli-blocking or Bose-enhancement effects for the DM species. This
is a very good approximation throughout the freeze-in production. Hence C can only
depend on all the other particles’ distributions and allows the above equation to be directly
integrated. The number of internal degrees of freedom of χ is introduced in the Boltzmann
equation for later convenience. It is useful to change the time variable from cosmic time
t to temperature T using Eq. (A.80) and then, as usual, to the dimensionless variable
x ≡M/T . Hence, we recast the Boltzmann equation in the form

gχ
dfχ

dx
= 1
xH(x)

(
1− 1

3
d log g?s

d log x

)
gχ
C

E
. (4.7)

We can integrate this equation in the interval [xi, x] to obtain the distribution at time x.
However, we have to take into account the fact that the physical momentum is always
redshifted in time as p ∝ 1/a, so, even after a χ particle is produced, its momentum
is redshifted and the phase-space distribution changes. We can get rid of this residual
time dependence in the phase-space distribution introducing a dimensionless comoving
momentum q = (pa)/(aFITFI) where a is the scale factor. Exploiting the conservation
of entropy aTg

1/3
?s = aFITFIg

1/3
?s (TFI) we can rewrite the comoving momentum in the

form [58,63,64,67]
q = p

Tχ
, (4.8)
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where Tχ is given by

Tχ(x) =
(
g?s(T )
g?s(TFI)

)1/3
T =

(
g?s(M/x)
g?s(M)

)1/3M

x
. (4.9)

This formula can be seen as a definition of a temperature of relativistic decoupled χ

particles and provides a scale of momentum to convert comoving momenta into physical
ones. This definition is also exploited in the CLASS code [69], so it is convenient to
provide the phase-space distribution as a function of comoving momenta. The freeze-in
temperature is chosen as a reference and taken to be the relevant mass scale TFI = M .
With this definition, we can write the phase-space distribution after the removal of the
time dependence inside the momentum

gχfχ(x, q) =
∫ x

xi

dx′ 1
x′H(x′)

(
1− 1

3
d log g?s(x′)
d log x′

)
gχ
C(x′, q)
E(x′, q) . (4.10)

Notice that the energy is dependent both on time and on comoving momentum E(x, q) =√
q2T 2

χ(x) +m2
χ. To obtain the phase-space distribution relevant for structure formation,

we can take xi = 0 and x→∞, since the freeze-in is an IR-dominated mechanism, i.e. the
production is most efficient at x ∼ 1− 10 and not beyond.

gχfχ(q) =
∫ ∞

0
dx′ 1

x′H(x′)

(
1− 1

3
d log g?s(x′)
d log x′

)
gχ
C(x′, q)
E(x′, q) . (4.11)

This solution is completely general and holds for every freeze-in model with only one FIMP
DM candidate and any FRW-like cosmology. The dependence on the considered model
enters the explicit form of the collision term and the processes to be considered, while the
role of cosmology enters through H(x). Usually, the Boltzmann equation is solved during
a radiation dominated era, but one can also consider freeze-in during, e.g., an early matter
domination era or a fast-expanding Universe, by simply introducing the suitable explicit
form of H(x). Once one has obtained the DM phase-space distribution, he can write the
number density of DM and use it to require that the model reproduces the relic density
Ωχh

2 = mχnχ/ρc(t0):

nχ =
T 3

χ(T0)
2π2

∫ ∞

0
dq q2gχfχ(q), (4.12)

with x0 = M/T0 and T0 = 2.35× 10−4 eV, the CMB temperature today.

4.2 Phase-space distribution for our models

Once we have chosen a model, we can find the phase-space distribution using Eq. (2.20):
to do so, we have to explicit the processes that contribute to DM production and write
the corresponding collision terms. In Appendix D, we find the expressions of the collision
terms, first in general and then under some approximations that can be useful to simplify
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the problem, even at the level to solve it analytically. The approximated found formulae
are in agreement with the results of [63,64].

In this work we consider three very simple operators, making up three different models.
All models involve only scalar particles for simplicity: they are meant to be toy models to
illustrate and apply our procedure in practice. Our concern is on the methodology itself,
which can be applied to more involved and concrete examples.

4.2.1 Trilinear scalar interaction

Our first model is a trilinear scalar interaction between the DM particle χ and two
different particles B1 and B2 belonging to the thermal bath.

L(3)
FI = λ3mB1χB1B2. (4.13)

We assume B1 is the heaviest particle, hence the relevant mass scale is given by mB1 . All
the considered mass spectra will satisfy the inequality

mB1 ≤ mB2 +mχ. (4.14)

If so, the only DM number-changing process allowed by this model at order λ3 in amplitude
is the two-body decay of B1 into B2 and the DM candidate. The process has an amplitude

MB1→B2χ =
pB1

p

pB2

B1

χ

B2

= iλ3mB1 . (4.15)

We are interested in the squared amplitude, in particular in the combination summed over
initial and final spins, in our notation

gB1gB2gχ|MB1→B2χ|2 = λ2
3m

2
B1 . (4.16)

We can substitute this expression in Eq. (D.18) to obtain the collision term of this process

gχC(T, p)
E

=
λ2

3m
2
B1

16π
T

Ep
heq(T, p). (4.17)

Introducing the dimensionless variables

x = mB1

T
, q = px

mB1

(
g?s(mB1)
g?s(mB1/x)

)1/3
≡ p

Tχ(x) , (4.18)
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we rewrite the collision term in the form

gχC(x, q)
E

=
λ2

3m
3
B1

16π
heq(x, q)

xqTχ(x)E(x, q) , (4.19)

with E(x, q) ≡
√
q2T 2

χ(x) +m2
χ. Finally we write the phase-space distribution

gχfχ(q) =
λ2

3m
3
B1

16π
1
q

∫ ∞

0
dx

1
x2H(x)

(
1− 1

3
d log g?s(x)
d log x

)
heq(x, q)

Tχ(x)E(x, q) . (4.20)

In Appendix D we have derived the general form for the function heq in the approximation
where we neglect Pauli-blocking and Bose-enhancement factors. We quote the result applied
to our specific case, in which the particles are all scalars, hence bosons

heq(x, q) = − log

1− exp
(

−x(E+E−
2 )(x,q)

mB1

)
1− exp

(
−x(E+E+

2 )(x,q)
mB1

)
 . (4.21)

The functions E±
2 (x, q) are defined in Eq. (D.15) from Eq. (D.13), where we perform the

following substitutions:

p→ qTχ(x), T → mB1

x
, (m1,m2,mχ)→ (mB1 ,mB2 ,mχ). (4.22)

We find the phase-space distribution computing the integral in Eq. (4.20) numerically,
once both a suitable mass spectrum and a cosmological history H(x) are chosen. We focus
on the case in which the production occurs during the radiation dominated era, where

H(x) =

√
π2

90g?ρ(mB1/x)
m2

B1

x2MPl
. (4.23)

However, under some approximations, the phase-space distribution can be found analytically,
as done in [58] for another model.

• We neglect the dependence on temperature of the number of effective degrees of
freedom g?s and g?ρ, which can only be treated numerically.

• we assume Tχ = T , neglecting entropy production during the thermal history.

• We assume always mχ � mB1 ,mB2 . This implies E = qT . Moreover, we need to
exploit the limiting expessions for p±

2 provided in Appendix D that give, under our
assumptions

p+
2 =∞, p−

2 = qT
r2

1− r2 −
m2

B1
(1− r2)
4qT , (4.24)
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having defined r ≡ mB2/mB1 . We obtain

E+
2 =∞, E−

2 =
√
m2

B1
r2 + (p−

2 )2 =
m2

B1

4qT (1− r2) + qT
r2

1− r2 . (4.25)

• We neglect all quantum corrections and assume a classical Maxwell-Boltzmann
statistics for all the particles involved. As shown in Appendix D, this amounts to
consider

heq(x, q) = exp
{
− x(E + E−

2 )(x, q)
mB1

}
− exp

{
− x(E + E+

2 )(x, q)
mB1

}
(4.26)

that, under the above assumptions, is a Gaussian function in x:

heq(x, q) = exp
{
− x2

[1− r2

4q

]
− q

1− r2

}
. (4.27)

Exploiting all these approximations, the phase-space distribution becomes

gχfχ(q) ' λ2
3

√
90

16π2
MPl

g
1/2
?ρ (mB1)mB1

1
q2 exp

(
− q

1− r2

)∫ ∞

0
dx x2 exp

{
− x2

[1− r2

4q

]}
,

(4.28)
which reads

gχfχ(q) ' λ2
3

√
90

8π3/2
MPl

g
1/2
?ρ (mB1)mB1

(1− r2)− 3
2

√
q

exp
(
− q

1− r2

)
. (4.29)

We use this analytic result to compare the actual numerical outcome with the equilibrium
phase-space distribution. In this way, we can understand the impact of the various
approximations.

In Fig. 4.1 we show the results of our calculations for various values of the parameters.
We have chosen different mass spectra, all with mB1 = 1 TeV while varying the mass of the
FIMP and the other bath particle. We focus on light DM candidates. In the upper plot we
consider mχ = 10 MeV while in the lower one mχ = 10 keV. Then we plot the analytical
approximation Eq. (4.29) together with the simple thermal distribution and numerical
results for various masses mB2 = rmB1 with r = 10−4, 0.1, 0.5. In all cases the coupling λ3
is fixed so that the model reproduces the observed relic density F = 1 at T0 = 2.35× 10−4

eV. The thermal BE distribution for massless χ,

f eq
χ = 1

eq − 1 , (4.30)

has been normalized in order to obtain the observed relic density. Notice that the analytic
approximation reproduces almost exactly the full numerical result. The non-thermal
FIMP phase-space distributions are slightly colder than the equilibrium Bose-Einstein one,
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meaning that the peak is at higher comoving momentum and they have a larger width,
which is associated to the “dispersion” of comoving momentum. This parameter measures
the warmness of the particle species and is described effectively by the quantity

σ̃2 =
∫
dq q4fχ(q)∫
dq q2fχ(q) , (4.31)

which characterizes the sound speed and hence the Jeans scale of our DM model. We
compute this value for each distribution and show it in the plot legend: in the case of
equilibrium, for bosonic DM, σ̃eq ' 3.2. We can use the warmness constraint, described in
Section 3.3, to give raw bound on the FIMP mass, similarly to what was done in [58],

mχ > 7.4 keV
(
mWDM
3 keV

)4/3( σ̃
3

)( 106.75
g?s(mB1)

)1/3
, (4.32)

for a constraint on the structure formation of mWDM > 3 keV. A more complete analysis
will be done in the next chapter. Comparing the two plots of fχ(q), we notice that, in this
very simple model, varying the mass of the DM particle, if mχ � mB1 , change neither the
shape of the distribution nor σ̃, but only the value of the coupling required to reproduce
the relic density. The same happens for fixed values of mχ if we change mB2 below the
value of 0.1 × mB1 . Instead, if mB2 > 0.1 × mB1 the distribution of χ gets colder, as
one may expect since less centre-of-mass energy is available. From fχ(q) one can get the
velocity distribution of the particle species, which is of physical interest. The comoving
momentum is written in terms of velocity as

q = p

Tχ
= mχγβ

Tχ(T ) = mχ

Tχ(T )
β√

1− β2 , (4.33)

with β = v/c. From this definition we see that the velocity distribution fχ(β, T ) is
temperature or x-dependent. If we evaluate the distribution for T � mB1 , e.g. T <

10−3×mB1 , the production of χ particle is surely exhausted and we can safely take x→∞
to compute the integral in Eq. (4.11). Then we obtain simply gχfχ(q(β, T )) where the
temperature dependence has to be considered only considered in the q dependence of
the distribution. In Fig. 4.2 we show the velocity distributions for the two mass spectra
considered above at reference temperatures T = (102, 10, 0.1)×mχ. We see the transition
from relativistic to the non-relativistic regime in the shape of the velocity distribution. In
particular, in the lower plot, for mχ = 10 keV, the velocity distribution is computed at
T = 1 keV, a temperature that is always taken as a reference to constrain WDM models
with observational data from structure formation. The distributions are normalized to 1,
that is ∫ 1

0
dββ2gχfχ(β, T ) = 1. (4.34)

We also compute the velocity dispersion σ̃β as

σ̃β(T ) =
∫
dβ β4fχ(β, T )∫
dβ β2fχ(β, T ) . (4.35)
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To get an idea of how this quantity evolves with temperature, we plot it in Fig. 4.3 for
the model (mB1 ,mB2 ,mχ) = (103 GeV, 102 GeV, 10 keV) in the temperature range 1 MeV
- 0.1 keV, and compare it with the dispersion velocity obtained exploiting the thermal
BE distribution. We see that at high temperatures the dispersion velocity is significantly
higher than the equilibrium one, while they become very similar after the DM particles
have become non-relativistic.

4.2.2 Quadrilinear scalar interaction for single production

The second model we consider is a quadrilinear scalar interaction between a DM particle
χ and three different bath particles B1, B2 and B3 described by the Lagrangian term

L(4),sp
FI = λ4χB1B2B3. (4.36)

If the DM is not the heaviest particle involved, we can assume, without loss of generality,
B1 to be the heaviest particle providing the relevant mass scale mB1 . Unlike the trilinear
model, this example allows for multiple processes to contribute to FIMP DM production.
We have three different scatterings of the type

MBiBj→Bkχ =

pBi

pBj
p

pBk

Bi χ

Bj Bk

= iλ4 =⇒ gχgB1gB2gB3 |MBiBj→Bkχ|2 = λ2
4 (4.37)

with i 6= j 6= k varying from 1 to 3. The scatterings have a different phase-space so we
have a different collision term for each process. If the mass spectrum satisfies the relation

mB1 ≥ mB2 +mB3 +mχ, (4.38)

then the three-body decay channel is allowed:

MB1→B2B3χ = B1

B2

χ

B3

= iλ4 =⇒ gχgB1gB2gB3 |MB1→B2B3χ|2 = λ2
4.

(4.39)
This process is characterized by different kinematics to scatterings and again has to be
considered separately. Therefore the collision term is the sum of all the processes’ collision
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terms:

gχC(x, q)
E

= Θ(mB1 −mB2 −mB3 −mχ)gχC3d(x, q)
E

+
∑

i 6=j 6=k

gχC
ijk
s (x, q)
E

, (4.40)

with Θ the Heaviside function imposing the kinematical condition allowing the three-body
decay.

Let us start from scatterings:

BiBj −→ Bkχ. (4.41)

In Appendix D we find the general expression of the collision term neglecting Pauli-
blocking and Bose-enhancement factors for bosons. Using our notation, from Eq. (D.44)
and substituting the expression of the amplitude squared, we obtain

gχC
ijk
s (T, p)
E

= − λ2
4

512π3
T

pE

1
eE/T − 1

∫ smax

smin

ds

pkχ(s)
√
s

log

1− e−E−
Bk

(s)/T

1− e−E+
Bk

(s)/T

∫ tmax(s)

tmin(s)
dt.

(4.42)
The expressions for E±

Bk
are reported as E±

3 in Eq. (D.38) with momenta p±
3 from Eq.

(D.36). The momentum in the centre-of-mass in the initial and final state is given by

pij(s) =
k1/2(

√
s,mBi ,mBj )
2
√
s

, pkχ(s) = k1/2(
√
s,mBk

,mχ)
2
√
s

. (4.43)

The integration bounds over s and t are found in Appendix D.:

s ∈ [M2
ijk,+∞[≡

[
max

{
(mBi +mBj )2, (mBk

+mχ)2
}
,+∞

[
, (4.44)

tmax(s) ≡m2
Bi

+m2
χ − Ecm

Bi
(s)Ecm(s) + 2pij(s)pkχ(s),

tmin(s) ≡m2
Bi

+m2
χ − Ecm

Bi
(s)Ecm(s)− 2pij(s)pkχ(s).

(4.45)

Performing the integral over t, we get

gχC
ijk
s (T, p)
E

= λ2
4

128π3
T

pE

1
eE/T − 1

∫ ∞

M2
ijk

ds√
s
pij(s) log

1− e−E+
Bk

(s)/T

1− e−E−
Bk

(s)/T

 . (4.46)

The total scattering collision term in our dimensionless variables reads

gχCs(x, q)
E

= λ2
4

128π3
mB1

xqTχ(x)E(exE/mB1 − 1)
∑

i 6=j 6=k

∫ ∞

M2
ijk

ds√
s
pij(s) log

1− e−xE+
Bk

(s)/mB1

1− e−xE−
Bk

(s)/mB1

 .
(4.47)

Now let us treat three-body decays. The analysis is very similar to the one for scatterings,
but, as explained in Appendix D, the Mandelstam variables for three-body decays are
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defined differently.
s =− (pB2 + pB3)2 = −(pB1 − p)2,

t = − (pB3 + p)2 = −(pB1 − pB2)2.
(4.48)

The collision term is, similarly to the previous case,

gχC3d(T, p)
E

= − λ2
4

512π3
T

pE

∫ smax

smin

ds

p1χ(
√
s)
√
s

log

1− e−E−
B1

(s)/T

1− e−E+
B1

(s)/T

∫ tmax(s)

tmin(s)
dt. (4.49)

Here the expressions for E±
B1

are reported as E±
1 in Eq. (D.67) with momenta p±

1 from Eq.
(D.65). The momenta in the centre-of-mass of particles B1 and χ are given by

p23(s) = k1/2(
√
s,mB2 ,mB3)
2
√
s

, p1χ(s) = k1/2(
√
s,mB1 ,mχ)
2
√
s

. (4.50)

The integration limits are

s ∈ [(mB2 +mB3)2, (mB1 −mχ)2], (4.51)

tmax(s) ≡m2
B3 +m2

χ + Ecm
B3 (s)Ecm(s) + 2p23(s)p1χ(s).

tmin(s) ≡m2
B3 +m2

χ + Ecm
B3 (s)Ecm(s)− 2p23(s)p1χ(s).

(4.52)

Performing the integral over t, we obtain

gχC3d(T, p)
E

= − λ2
4

128π3
T

pE

∫
ds√
s
p23(s) log

1− e−E−
B1

(s)/T

1− e−E+
B1

(s)/T

 . (4.53)

In dimensionless variables,

gχC3d(x, q)
E

= λ2
4

128π3
mB1

xqTχE

∫ (mB1 −mχ)2

(mB2 +mB3 )2

ds√
s
p23(s) log

1− e−xE+
B1

(s)/mB1

1− e−xE−
B1

(s)/mB1

 . (4.54)

Finally, we can write the DM phase-space distribution summing the two contributions:

gχfχ(q) =Θ(mB1 −mB2 −mB3 −mχ)gχf
3d
χ (q) + gχf

s
χ(q)

=
∫ ∞

0
dx

1
xH(x)

(
1− 1

3
d log g?s(x)
d log x

)
×
[
Θ(mB1 −mB2 −mB3 −mχ)gχ

C3d
E

(x, q) + gχ
Cs
E

(x, q)
]
.

(4.55)

We perform the double integration numerically for two reference spectra, both also
allowing three-body decays: (mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 100 GeV, 0, 10 MeV) and
(mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 0, 0, 10 keV). In both cases we fix the coupling λ4, so that
the total phase-space distribution fχ(q) reproduces the observed relic density, i.e. F = 1.
In Fig. 4.4 we show the results of the computations. As we can see, the three-body decay



4.2. PHASE-SPACE DISTRIBUTION FOR OUR MODELS 95

is relevant in the case in which we have a heavy mother particle mB1 and products are very
light, but is always subdominant with respect to the contribution from scatterings, also
because three different scattering processes are always allowed and they sum. For the mass
of one of the decay products, say mB2 lower than 10% of the mother particle’s mass mB1 ,
the relevance of three-body decays is constant. Instead, reasonably, if we increase mB2 ,
the three-body decay channel gets more and more disfavoured, until it becomes forbidden.
In both choices of spectra, we see that the final phase-space distribution is colder than the
thermal one, having a smaller width and a peak at lower momenta. The raw warmness
constraint on the FIMP mass are milder than in the trilinear model:

mχ > 6.8 keV
(
mWDM
3 keV

)4/3( σ̃

2.74

)( 106.75
g?s(mB1)

)1/3
. (4.56)

As we did for the trilinear model, it is interesting to see the time evolution of the velocity
dispersion. As we see in Fig. 4.5, in this model its evolution with temperature is more
similar to the equilibrium one. The DM produced with this model has a lower velocity
dispersion with respect to the one obtained from the thermal distribution so that this
FIMP candidate is indeed colder.

4.2.3 Quadrilinear scalar interaction for pair production

The last model under study is a quadrilinear scalar interaction between two DM particles
χ and two different bath particles B1, B2 described by the Lagrangian term

L(4),pp
FI = 1

2λ2χχ
2B1B2. (4.57)

The analysis of this model is very similar to the previous one. However, in this case, we are
modelling pair production processes instead of single production ones. For the calculations,
this implies the presence of a factor of 2 in the expression of the collision operator and
a different phase-space integration. This model can be seen as a particular case of the
previous one with B3 = χ: we have less freedom in choosing the mass spectrum of the
model. As usual, we assume B1 to be the heaviest particle involved and that DM never
gives the relevant mass scale for its production, which is a good assumption to study light
DM. Since we are constrained to have DM particles only in the final state, unlike the single
production case, we have only one allowed scattering process

B1B2 −→ χχ, (4.58)
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with amplitude

MB1B2→χχ =

pB1

pB2
p

pχ

B1 χ

B2 χ

= iλ2χ =⇒ g2
χgB1gB2 |MB1B2→χχ|2 = λ2

2χ. (4.59)

If the mass spectrum satisfies the relation

mB1 ≥ mB2 + 2mχ, (4.60)

then the three-body decay channel is allowed:

MB1→B2χχ = B1

B2

χ

χ

= iλ2χ =⇒ g2
χgB1gB2 |MB1→B2χχ|2 = λ2

2χ. (4.61)

The final result for the phase-space distribution is written in the form

gχfχ(q) =Θ(mB1 −mB2 − 2mχ)gχf
3d
χ (q) + gχf

s
χ(q)

=
∫ ∞

0
dx

1
xH(x)

(
1− 1

3
d log g?s(x)
d log x

)
×
[
Θ(mB1 −mB2 − 2mχ)gχ

C3d
E

(x, q) + gχ
Cs
E

(x, q)
]
,

(4.62)

where the two collision terms for the allowed processes are the following: for scatterings,
(assuming mB1 > 2mχ as it will always be the case)

gχCs(x, q)
E

=
λ2

2χ

64π3
mB1e

−xE/mB1

xqTχ(x)E

∫ ∞

(mB1 +mB2 )2

ds√
s
p12(s)

(
e−xE−

χ (s)/mB1 − e−xE+
χ (s)/mB1

)
,

(4.63)
and three body decays,

gχC3d(x, q)
E

=
λ2

2χ

64π3
mB1

xqTχ(x)E

∫ (mB1 −mχ)2

(mB2 +mχ)2

ds√
s
p2χ(s) log

1− e−xE+
B1

(s)/mB1

1− e−xE−
B1

(s)/mB1

 . (4.64)

Using these expressions, we can compute numerically the phase space distribution and repeat
the analysis we have done in the case of the single production. We choose two reference
spectra, both allowing also three-body decays: (mB1 ,mB2 ,mχ) = (1 TeV, 100 GeV, 10 MeV)
and (mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 0, 10 keV). In both cases we fix the coupling λ2χ, so
that the total phase-space distribution fχ(q) reproduces the observed relic density, i.e.
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F = 1. In Fig. 4.6 we show the results of the computations. With respect to the case
of the single production, we see that three-body decays, when allowed, are much more
relevant in determining the coldness of the final distribution. We clearly see that the
contribution from decays moves the peak of the distribution from the equilibrium one
towards smaller momenta, much more than the contribution from scattering does. In
this case, since there is only one allowed scattering process, both scattering and decays
are relevant. The raw warmness constraint on the FIMP mass gives the same result we
found for the single production. Finally, we show in Fig. 4.7 the evolution of the velocity
dispersion with temperature. Again it is clear that our non-thermal distribution is colder
than the equilibrium one.

4.3 The linear matter power spectrum from CLASS

Once we have computed the phase-space distributions from our specific model, we can
link theory to observations by computing the linear matter power spectrum at redshift
z = 0 in a given cosmological framework. In our basic scenario, the standard ΛCDM model
is modified only by the replacement of a significant fraction F of CDM with our non-CDM,
FIMP dark matter produced via freeze-in.

4.3.1 The CLASS code

The accurate computation of the power spectrum, in this case, is highly non-trivial and
it is usually performed relying on pre-made and publicly available codes like CAMB or
CLASS [68]. In particular, the Cosmological Linear Anisotropy Solving System (CLASS)
was developed in 2011 on request of the Planck collaboration to have an independent
Boltzmann solver from CAMB, developed in 1999, which was the most accurate at the time.
The CLASS-CAMB comparison was useful both to check for possible code-induced biases
in the extraction of cosmological parameters from the CMB spectrum and to improve
the accuracy in both codes. At highest precision, both codes were able to reach a 0.01%
accuracy for CMB observables. Nevertheless CLASS is meant to be more modern, friendly
and equally if not more accurate and fast than its competitors. It is written in C, but
has a wrapper for python and C++, so that CLASS can be imported as a class in other
codes; moreover, its modular and flexible structure is easy to modify in order to introduce
additional models, e.g. our non-CDM FIMP DM model. The code is also very general and
versatile and can be used to compute a large number of quantities and observables.

The implementation of non-CDM relics, such as sterile neutrinos or WDM, in CLASS,
is particularly easy and fast. The developers have introduced an approximate viscous
fluid description inside the Hubble radius to integrate the perturbations throughout the
cosmological history [69], increasing substantially the performance of the code, by more
than a factor of 3. Therefore CLASS is suitable to derive bounds on FIMP models due to
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its flexibility, accuracy and speed. The code requires three main input quantities, which
are read through a specific function of the source module background.c:

• an array of cosmological parameters for the standard flat ΛCDM model. We stick to
the default values obtained through the analysis of CMB temperature anisotropies
by the Planck collaboration [17]. The only modification is the CDM relic density we
parametrize as ΩCDMh

2 ≡ (1− F )ΩDMh
2;

• an array of properties of the non-CDM sector: the number of non-CDM species, their
degeneracies, their masses, the value of ΩNCDMh

2 ≡ FΩDMh
2, temperature Tχ(T0)

used to define physical momenta p = qTχ, possible chemical potentials, to mention
the main ones;

• the phase-space distribution gχfχ(q) as a function of comoving momentum q = p/Tχ

for each species. We can provide this function in two ways: (i) we can write an analytic
expression dependent on some parameters to be read from the input, replacing the
default Fermi-Dirac thermal distribution appearing in the code; (ii) we can provide
a two-columns (q, gχfχ(q)) data file where the phase-space distribution is written
discretely. In the latter case, the CLASS module will proceed to interpolate the
distribution. In any case, the distribution can be even non-normalized: giving values
of masses and ΩNCDM to the code assures it will renormalise the gχfχ(q) in order to
fulfil both conditions.

After some trial runs with thermal Bose-Einstein distribution for DM candidates of mass
mχ with same cosmological and non-CDM parameters, we reached the conclusion that
introducing an analytic, parameter-dependent function in the CLASS module is better
than making CLASS read and interpolate data points, both for the accuracy and the
speed of the code. However, since in general, we do not have analytic expressions for our
non-thermal distribution, we have to rely on a fit function to interpolate the computed
discrete values of gχfχ(q). In particular we choose the general form dependent on six
parameters a, b, c, d, h, n:

gχfχ(q; a, b, c, d, h;n) = a

(
q2+b + d

q2

){
exp(cq + hq2) + n

}−1
a > 0, c > 0, h ≥ 0.

(4.65)
The n parameter is introduced to parametrize the thermal Bose-Einstein and Fermi-Dirac
thermal distributions, which are obtained by setting b, d, h = 0 and n = −1,+1, respectively.
For a general non-thermal distribution the best fit is obtained setting n = 0 and leaving
a, b, c, d, h free. With this method, for each model and species considered, we can compute
the phase-space distribution numerically (in a discrete way), as we have done in the previous
section, and then fit the result with this general function. This provides the values of
the parameters directly to CLASS, where we coded the form in Eq. (4.65). If CLASS
is provided both the mass of the non-CDM candidate mχ and the fraction of DM to
reproduce, it will normalize the distribution on its own, so the normalization parameter a
does not need to be passed. Therefore we do not need to compute the normalization of the
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phase-space distribution, which is time-consuming; the value of a is only relevant to know
the value of the coupling (λ3, λ4 or λ2χ) which, in our case involving a single operator
at the time, is fixed by the choice of F . The specific values of the fit parameters depend
also on the number of points Nq we exploit to discretize the phase-space distribution. One
can verify that the results are robust varying the number of fit points: a good choice is to
consider 50 - 100 points. To check the goodness of the fit we can introduce a sort of χ(2)

test, defining

χ(2) = 1
Nq − 5

Nq∑
i=1

((gχfχ(qi)− gχfχ(qi; a, b, c, d, h))
gχfχ(qi; a, b, c, d, h)

)2
. (4.66)

The fit is good if the χ(2) is not much larger than 1. As a reference, we show in the following
table the results of the fit for the non-thermal distribution obtained from the models we
considered in the previous Section, with F = 1. We choose Nq = 100. In these simple
cases, the error on the computed parameters is always below 10−2 %. We do not show the
parameter a, which is only a normalization that is set by CLASS, eventually.

Model (mB1 ,mB2 ,mB3 ,mχ) −b c d h χ(2)

Tril. (103, 102,−, 10−2) GeV 0.604 0.982 −7.58× 10−4 5.54× 10−9 0.01
Tril. (103, 0,−, 10−5) GeV 0.605 0.973 −7.85× 10−4 8.46× 10−10 0.01

Quad. s.p. (103, 102, 0, 10−2) GeV 0.887 0.881 1.16× 10−3 7.86× 10−3 0.13
Quad. s.p. (103, 0, 0, 10−5) GeV 0.886 0.880 1.16× 10−3 7.81× 10−3 0.12
Quad. p.p. (103, 102, 0, 10−2) GeV 1.014 0.801 1.26× 10−3 1.30× 10−3 0.45
Quad. p.p. (103, 0, 0, 10−5) GeV 1.002 0.806 1.31× 10−3 1.26× 10−2 0.41

We show the fits in Fig. 4.8. We have also visually checked that our fit function is
suitable for all the considered models and any possible choice of the mass spectrum, for
mB1 ∈ [10−3, 103] GeV, even in peculiar cases in which the spectrum is degenerate.

After reading all the input parameters and the phase-space distribution(s), CLASS
proceeds automatically to compute the mass-density relation and the optimal momentum
sampling to run the module which solves Boltzmann perturbation equations and computes
requested output quantities. In [69] it is shown that the approximations and sampling
algorithms exploited by CLASS work very well for realistic active neutrinos (with a total
mass smaller than the eV), and WDM candidates, becoming non-relativistic during radiation
domination m > few keV. In between these two limits, however, there is a range in which
the accuracy of the fluid approximation is not well tested, and in which one might turn off
this approximation at expense of the speed of the code.

4.3.2 WDM and Lyman-α bounds

We are interested in comparing linear matter power spectra obtained from our FIMP
phase-space distributions with spectra denoting observational limits on WDM from structure
formation. The strongest constraints come from the Lyman-α forest, which probes structure
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formation at medium and small scales. It is an absorption feature in the observed spectra
of light from distant background sources scattered on the neutral hydrogen atoms in the
intergalactic medium (IGM). Along the observer’s line of sight, the low-density IGM at
high redshift shows a filamentary structure on small-medium scales, which is traced by the
Lyman-α lines. The observable is the flux power spectrum, which can be computed from
models exploiting a suitable hydrodynamical simulation and then compared to data in a
Markov Chain Monte Carlo (MCMC). The results of this procedure are extremely useful
and can put tight constraints on small scale properties of dark matter.

However, this procedure is complicated and time-consuming, because, in principle,
each DM model would require a hydrodynamical simulation and a MCMC fit to flux
data. To help the theoretical community in putting bounds on their models, the Lyman-α
constraints are reported in terms of the equivalent mass of thermal relic WDM particles,
in particular, a model in which all the DM is made of WDM (F = 1): in [56], depending
on the assumptions and exploited datasets, the tightest bound is mWDM > 5.3 keV and a
milder one is mWDM > 3.5 keV. This allows taking the power spectra PWDM(k) computed
in these models as references of the Lyman-α bounds. So one can directly compare them
with the power spectra obtained from any other model one may consider. This procedure
is much simpler and faster than reanalysing all the Lyman-α data with each model and it
is enough accurate to put constraints on those models. In these work, the models will be
characterized by a different Lagrangian, mass spectrum and FIMP DM fraction F . For
any choice of these quantities, the obtained power spectra from CLASS must never show
features different from the WDM limit spectra, as we have described in Section 3.1. For
each bound (the conservative for mWDM = 3.5 keV and the stronger mWDM = 5.3 keV),
to be completely allowed by structure formation, our models’ power spectra must have a
higher cutoff scale (the half mode k1/2) and a transfer function that never goes below the
limit one for any k < k1/2. If none of these criteria is satisfied the model is rejected, while
if only one of the two is satisfied, we have tension with Lyman-α. To sum up, we will apply
these two criteria to our two limit WDM models for complete and safe constraints for our
models.

We conclude defining the properties of a WDM model, which will incorporate the
Lyman-α constraints. Thermal WDM particles are, by definition, thermally distributed
fermions, i.e. characterized by the phase-space distribution

gWDMfWDM(q) = 2
eq + 1 . (4.67)

Being thermal relics, they can be fully characterized by their mass and the decoupling
temperature, in analogy with the case of active neutrino HDM. Therefore the relic density
is parametrized by mass and temperature normalized to the ones from neutrinos

ΩWDMh
2 = F

(
mWDM

93.14 eV

)(
TWDM(t0)/T0
Tν(t0)/T0

)3
. (4.68)
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For neutrinos the value implemented in CLASS is Tν(t0)/T0 = 0.71611 [68,69], which is
slightly larger than the instantaneous decoupling value (4/11)1/3 as predicted by precise
studies of active neutrino decoupling [70]. Once one requires WDM to reproduce a given
fraction F of the DM relic density, TWDM(t0)/T0 is fixed for every value of the mass mWDM,
which is indeed the only free parameter of the model. As a reference, the temperature for
F = 1 and mWDM = 5.3 keV is

TWDM(t0)
T0

=
(5.3 keV
mWDM

)1/3
F 1/3 = 0.09. (4.69)

Such a low temperature is associated with significant entropy production. If we apply the
conservation of entropy,

TWDM(t0)
T0

=
(

g?s(T0)
g?s(T dec

WDM)

)1/3
, (4.70)

we find out that g?s(T dec
WDM) ' 5000, which is much higher than the maximum number of

effective degrees of freedom obtained from the SM.

The Lyman-α bounds from [56] are implemented in CLASS computing the power
spectrum for a WDM candidate of mass between 3.5 and 5.3 keV, with temperature fixed
by the choice F = 1. We use Eq. (4.65) with (a, b, c, d, h, n) = (2, 0, 1, 0, 0, 1). Then we
compute the transfer function T 2

lim(k) = PWDM(k)/PCDM(k) and compare it to the one
obtained from our models, T 2(k). In Fig. 4.9 we show the outcome of CLASS for the two
WDM Lyman-α bounds and our FIMP candidate of mass 10 keV in the trilinear and two
quadrilinear models. We see that the models are in tension with the Lyman-α bounds:
they are barely in agreement with the conservative bound for mWDM = 3.5 keV but are
not with the stringent one of mWDM = 5.3 keV. This motivates a careful and systematic
study of the constraint we can derive from structure formation on our toy models. We will
carry on the analysis and show its results in the next chapter, exploiting different criteria
to test the robustness of the evinced bounds.
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Figure 4.1: Phase-space distributions for different mass spectra in the trilinear model,
where the only DM production mechanism is given by two-body decays. We focus on two
cases, mχ = 10 MeV (upper plot) and mχ = 10 keV (lower plot) and for each case we vary
r = mB2/mB1 . We also show the analytic approximation obtained under the assumptions
listed in the main text and the equilibrium thermal distribution. Furthermore, we compute
the coupling λ3 necessary to reproduce the observed relic density and the dispersion σ̃.
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Figure 4.2: Velocity distributions for different mass spectra in the trilinear model, where the
only DM production mechanism is given by two-body decays. We look at the distribution at
three reference temperatures, to observe the transition from relativistic to non-relativistic
DM.
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Figure 4.3: The evolution of the velocity dispersion (solid) for the trilinear model with
(mB1 ,mB2 ,mχ) = (1 TeV, 102 GeV, 10 keV) in the temperature range 1 MeV - 0.1 keV,
compared to the equilibrium one (dashed).
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Figure 4.4: Phase-space distributions for different mass spectra in the quadrilinear model
for single production, where both scatterings and three-body decays contribute to the DM
production. We focus on two cases, (mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 100 GeV, 0, 10 MeV)
(upper plot) and (mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 0, 0, 10 keV) (lower plot). We plot
separately the contribution from scatterings and the one from three-body decays together
with the sum of the two. We also show the equilibrium thermal distribution and compute the
coupling λ4 necessary to reproduce the observed relic density, together with the computed
dispersion σ̃ for the distribution.
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Figure 4.5: The evolution of the velocity dispersion (solid) for the quadrilinear model for
single production with (mB1 ,mB2 ,mB3 ,mχ) = (1 TeV, 0, 0, 10 keV) in the temperature
range 1 MeV - 0.1 keV, compared to the equilibrium one (dashed).
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Figure 4.6: Phase-space distributions for different mass spectra in the quadrilinear model
for pair production, where both scatterings and three-body decays contribute to the
DM production. We focus on two cases, (mB1 ,mB2 ,mχ) = (1 TeV, 100 GeV, 10 MeV)
(upper plot) and (mB1 ,mB2 ,mχ) = (1 TeV, 0, 10 keV) (lower plot). We plot separately the
contribution from scatterings and the one from three-body decays together with the sum of
the two. We also show the equilibrium thermal distribution and compute the coupling λ2χ

necessary to reproduce the observed relic density, together with the computed dispersion σ̃
for the distribution.
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Figure 4.7: The evolution of the velocity dispersion (solid) for the quadrilinear model for
pair production with (mB1 ,mB2 ,mχ) = (1 TeV, 0, 10 keV) in the temperature range 1 MeV
- 0.1 keV, compared to the equilibrium one (dashed).
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Figure 4.8: The fits of the phase space distributions q2gχfχ for the cases shown in the
above table.
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the value of the mode where T 2 = 1/2. We have used F = 1 and the above-mentioned fit
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Chapter 5

Constraints on FIMP parameters:
results

In this chapter, we apply the methodology developed so far to constrain the free
parameters of the scalar FIMP toy models we have considered throughout our work.
The procedure has been implemented in a python code which is used to extract all the
cosmological consequences of the considered FIMP model and to set constraints, based
on structure formation, on its parameters. In the first part of the chapter we present the
structure of the code and the implementation of the methodology explained in the previous
chapter. Then, we show the outcome of the analysis and comment on the results.

5.1 Our code

We perform our calculations exploiting a python3.5 code. This language is particularly
suitable for our needs, since it includes various libraries for fast and reliable evaluation
of integrals – such as the scipy.integrate module, containing the quad function which
uses a technique from the fortran library QUADPACK – as well as for parallelization of
the computation on multi-CPU machines and powerful visualization tools. In particular,
we can use CLASS inside our code simply importing the Class class from the classy
module. We have exploited the latest version of CLASS in its original form, apart from
the introduction of the analytic form of the phase-space distribution gχfχ(q) written in Eq.
(4.65). It is implemented in the CLASS background_ncdm_distribution function inside
the background.c module as
double A0=param[0]; #a
double A1=param[1]; #b
double A2=param[2]; #c
double A3=param[3]; #d
double A4=param[4]; #h
double A5=param[5]; #n

111
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*f0 = A0*(pow(q,2+A1)+A3)*pow(exp(A2*q+A4*q*q)+A5,-1)/q/q; #gXfX(q)

We have written the code in a way that it can be easily generalized for any other model.
While presenting its structure, we shall remark where the code can be improved to include
more general scenarios.

5.1.1 Structure

The code is structured in three sections.

1. Cosmology. The first includes the definition of thermodynamical quantities and
the cosmological history during DM production: according to the formulae given
in Appendix A.2.2, we introduce the number of effective degrees of freedom g?ρ(T ) and
g?s(T ) with the functions gstar(T) and the log derivative of g?s with dloggstslogx(T).
The cosmological history during FIMP production is parametrized by the Hubble
parameter function H(T): we have exploited the standard formula for a radiation-
dominated era, but it can be modified to include other scenarios. All these quantities
are used throughout the code, e.g. to define the reference temperature Tχ, i.e.
TX(T,TFI).

2. Kinematics. The second section includes the definition of all functions useful to
compute the phase-space distribution of the FIMP candidate through the Boltzmann
equation, following the procedure we have seen in the previous chapter. We define
the squared amplitudes |M|2 (averaged over both initial and final degrees of freedom)
of the process allowed in the range of operators considered in the model Lagrangian.
The general squared amplitude is a function of the Mandelstam variables s and t, of
the mass spectrum of the theory and the coupling of the operator. One can consider
other cases simply including them as an if statement in the amplitude_sq function
and add that condition in the subsequent functions. Next, we define the functions
relevant for the kinematics of the considered processes (two-body decays, two-two
scatterings and three-body decays), i.e. momenta in the centre-of-mass frame and
maximum and minimum energy available for certain particles as functions of the mass
spectrum, Mandelstam variables and the FIMP momentum p. Then we compute
collision terms gχC/Eχ in the function gXCXEX and integrate them in the function
q2gXfX. This function is called a number Nq of times by another one, phase_space_q,
to compute the phase-space distribution for a discrete array of values of q; finally, the
discrete distribution is fit with Eq. (4.65) with n = 0 and phase_space_q returns
the values of the parameters. The function also includes the possibility to plot the
phase-space distribution and check the goodness of the fit.

3. Routine. The third section is the core of the code containing the routine to obtain
bounds from structure formation. After the acquisition of input parameters, the
code calls CLASS to compute the power spectrum for the standard ΛCDM model
with cosmological parameters from the Planck satellite [17] and the power spectra
for the two WDM models considered, for mWDM = 3.5 keV and mWDM = 5.3 keV.
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All spectra are computed up to a mode maxk which is given by the input. The
WDM spectra are used to compute transfer functions T 2

lim = PWDM/PCDM, which
embody the Lyman-α constraints on our FIMP model, a conservative constraint and
a stringent one, respectively. Then the routine starts, for a n-dimensional grid of
free parameters (e.g. couplings, masses and the values of F ). In the basic case, we
can consider a two-dimensional grid of points (mχ, F ) (in code language mX,FF) with
these two parameters varying in a closed region of parameter space, having fixed all
the other masses and couplings (if only one operator is considered, for each choice of
the mass spectrum and F , the coupling is fixed). The routine proceeds in four steps:

i) For each choice of the mass spectrum and couplings the phase_space_q is
called, returning the parameters A0,A1,A2,A3,A4 characterizing the phase
space distribution for the model.

ii) CLASS is initialized with the following parameters:
LambdaFIMP.set({

'output':'tCl,pCl,lCl,mPk', #observables CLASS has to compute
'lensing':'yes',
'omega_cdm': 0.12038*(1.-FF[J]), #amount of CDM
'P_k_max_1/Mpc': maxk, #max mode up to compute mPk
'N_ncdm' : 1, #number of non-CDM (FIMP) species
'use_ncdm_psd_files' : 0, #read from file?
'ncdm_psd_parameters': str(A0)+", "+str(A1)+", "\

+str(A2)+", "+str(A2)+", "\
+str(A4)+", "+"0.0", #psd parameters

'm_ncdm' : mX_eV , #mass of non-CDM (FIMP) particle(s)
'T_ncdm' : TX(T0,mB1[L1])/T0, #reference momentum scale /TCMB
'omega_ncdm' : 0.12038*FF[J], #amount of FIMP DM

}) }

We extract the FIMP power spectrum from the obtained structure. We use it
to compute the transfer function for our model T 2 = P/PCDM.

iii) We compute the half-mode kh of this transfer function, i.e. the mode at which
it drops below 0.5 with a specific function. Then we use the two functions
#criterion of khalf to see if Ly is ok
def criterion_kh(kh,kh_Ly):

if(kh>=kh_Ly):
return 1

else:
return 0

#criterion of T2K>T2k_Ly for k<khalf to see if Ly is ok
def criterion_T2K(kk,kh,T2k_Ly,T2k,tol):

flag=1 #crit passed
for i in range(len(T2k)):

if((kk[i]<kh) and (T2k_Ly[i]/T2k[i]>(1.+tol)) ):
flag=0

return flag
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to see whether our model satisfies (return 1) or not (return 0) the two criteria
for the two Lyman-α constraints. We give to each criterion a score describing
the difficulty in satisfying it and how much it is robust: scores of of 1 and 2 are
given for the half-modes criteria, respectively for mWDM = 3.5 keV and 5.3 keV,
while scores of 4 and 8 are given to the T 2

lim criteria. As we shall see, this choice
allows us to take the sum of the scores as a level of confidence, on a scale from 0
to 15, that the Lyman-α bounds are satisfied. At the same time, from the value
of the sum, we can tell which criteria have been satisfied, since each number
between 1 and 15 can be written uniquely as a sum of two or more powers of
2. For example, if the sum is 12, we know that the point in the grid satisfies
only the two T 2

lim criteria and not the half mode ones, while a total score of
5 flags that only the mWDM = 3.5 keV criteria (both half-mode and transfer
function) are satisfied. The criteria exploited and their scores are summarized
in the following table:

Lyman-α bound mWDM [keV] k1/2 criterion score T 2
lim criterion score

conservative 3.5 keV 1 4
stringent 5.3 keV 2 8

iv) The code prints the output and the routine goes on.

5.1.2 Input

The code needs a fair number of input parameters to run; if a parameter is not given,
its default value will be considered. We can divide the parameters in three groups: physical,
discretization and execution parameters. The last group includes parameters which control
the output, visualization or execution of tests and we do not treat them here, since they
are explained in the code itself.

• Physical parameters. This set consists of parameters that characterize the model
we are treating, apart from the ones we are keeping free in order to constrain
them. For example, if we consider the FIMP particle mass mX and FIMP DM
fraction FF as free parameters, the set of physical input parameters includes the mass
spectrum m1,r2,(r3), i.e. mB1 , mB2/mB1 , (mB3/mB1) and the operator considered
(e.g. "trilinear", "quadrilinear-sp", "quadrilinear-pp"), together with the
statistics of the particles involved ("MB", "BE", "FD"). In a more general case,
instead, we can treat each of the entry of the mass spectrum as a free parameter,
varying over some interval we want to constrain.

• Discretization parameters. This set of parameters determines the resolution of
our computations and directly affects the execution time of the code. Let us see them
one by one.

1. N_q. The first important parameter is the number of values of the dimensionless
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comoving momentum we exploit to fit the phase-space distribution. The default
value is 50: for this choice, the code takes about 0.02 seconds of CPU time to
compute the points.

2. N_mB1,N_mB2,N_mB3,N_mX,N_F... These parameters set the number of points
along each axis of the grid over which the routine is performed and set the
resolution on the DM fraction, the FIMP mass etc. The total numer of iterations
will be given by the product of these numbers. In the simplest case the grid will
be made of N_F*N_mX. To give an idea, a 40*40 grid will take about 33 CPU
hours to be computed.

3. The boundaries of the free parameters. The to-be-discretized region of parameter
space must have finite and clear boundaries. In the simplest case in which the
routine is over the DM fraction and the FIMP particle mass, we vary FF between
0.1 and 1, and mX between 1 and 100 keV.

4. maxk. This value is the mode in units of hMpc−1 up to which the power spectra
are computed by CLASS. ΛWDM and ΛFIMP DM models are characterized by a
small-scale power suppression with respect to a ΛCDM model. For example, the
half modes for WDM models with mWDM = 3.5 keV and 5.3 keV are k1/2 ' 32
hMpc−1 and 52 hMpc−1, respectively. Therefore maxk should be much higher
than these values to allow for a precise evaluation of the transfer function at
those small scales. Increasing maxk slows down the code since the computation
of the observables by CLASS is more expensive. A good compromise for our
purposes is to take maxk=1e3. Therefore the values of k1/2 will be capped at
1000 hMpc−1

5.1.3 Output

The output of the code is a text file .dat containing all the relevant information to
produce plots illustrating the bounds on the free parameters. For reference, at the beginning
of the file one finds the values of the input parameters exploited in the computation. Then
a table of the following form is shown

#(fixed & free params) T2kmax kh_Ly1 kh_Ly2 khalf (criteria) (diagnostics)

The columns (fixed & free params) include all the physical parameters defining the
model at the specific iteration. The column T2kmax is for diagnostic purposes: this value
has to be as close to 1 as possible – usually less than 1.001 for the point to be considered
in the analysis. Otherwise, it is rejected, meaning that the criteria outputs are all read as
0. The columns kh_Ly1,kh_Ly2, khalf include the results for the half-mode in the two
WDM models considered and the FIMP one, respectively. The columns (criteria) show
the results of the four criteria outputs to determine if the model agrees with the Lyman-α
bounds. Finally, the last columns show diagnostics outputs. For example, in the simplest
case in which we only let the DM mass and the DM fraction vary, we have something like
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#(fixed params) mX[eV] F T2kmax kh_Ly1 kh_Ly2 khalf criteria (diagn.)
(...) 8.377e+03 0.663 1.0001 32.17 52.29 39.50 1 0 4 0 (...)

5.2 Constraints on mχ

We focus our analysis on the determination of the bounds on the allowed values of the
FIMP DM mass mχ for the three considered toy models, depending on the free parameters:
the values of the involved masses mB1 , mB2 (and mB3 for the quadrilinear for single
production model) and the fraction F of the observed relic density one wants to reproduce.
We know light FIMP models are constrained by Lyman-α bounds, similarly to thermal
WDM models. Therefore, in practice, we want to answer the following question: “given a
mass spectrum and the fraction of relic density to reproduce, what is the minimum value
of the mass mχ that puts the model in agreement with Lyman-α constraints?” As we shall
see, the answer is not straightforward and may depend also on the criteria exploited to
impose the bounds from structure formation. Let us consider each operator independently.

5.2.1 Trilinear model

We can split the analysis of the parameter space of the trilinear model in two parts. In
the first part, we fix all the masses involved in the model apart from mχ, i.e. we choose
mB1 and mB2 and we let F vary from a minimum value to 1. We want to find, for each
value of F , which is the minimum mχ allowed by the structure formation and show the
constraints in the (mχ, F ) plane. In the second part we can fix a required relic density
F and explore the mass parameter space (mB1 ,mB2) (or better (mB1 , rB2) , to always
take into account the kinematical constraint mB1 > mB2 +mχ) and eventually find the
minimum allowed DM mass for each point in this plane.

The (mχ, F ) plane

To perform the first analysis, we fix mB1 = 1 TeV and mB2 = 0 and we let mχ vary
in the interval [1, 100] keV, while F in the interval [Fmin, 1]. Naively, we expect that at
F = 1 the strongest constraints apply on mχ, while, below a certain fraction Ffree, all the
considered values mχ are allowed. So we are interested in the shape of the constraint in
the (mχ, F ) plane and in the value of Ffree. We exploited our code to compute a 42× 42
grid in the (mχ, F ) plane in the region [1, 100] keV ×[Fmin, 1], choosing Fmin = 0.1. As
presented in the previous section, the code’s crucial output is the result of the four criteria
exploited to see whether the model agrees with the stringent mWDM = 5.3 keV and the
conservative mWDM = 3.5 keV Lyman-α bounds. We have the so-called k1/2 criteria which,
if passed, output 1 and 2, and the so-called T 2

lim criteria which, if passed, output 4 and 8
for the conservative and stringent bounds, respectively. When a test is not passed, the
output in the respective column is 0. In Fig. 5.1 we show separately the output of the k1/2
criteria and T 2

lim criteria separately. In each plot, we have three different regions: a dark
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Figure 5.1: Plot of the results of the k1/2 criteria (left) and T 2
lim criteria (right) scores in

the (mχ, F ) plane with Fmin = 0.1 in the trilinear model, where FIMPs are produced via
two-body decays. The vertical lines show the value of the minimum mχ allowed by the
stringent (solid) and conservative (dashed) bounds at F = 1.

region where both the stringent and the conservative bounds are satisfied, a lighter region
in which only the conservative bound is satisfied and a blank region where no bounds are
satisfied. In practice the three regions can be labelled as allowed, in tension, excluded. We
notice that for F > 0.3 the k1/2 and T 2

lim criteria agree, while for F < 0.3 their behaviour
is different. In particular the T 2

lim criteria are more stringent: while the k1/2 are always
satisfied for F . 0.15, the T 2

lim criteria still give a minimum mass mχ up to F = 0.1 and
below. This is because at such low values of F the effect of FIMP DM in the matter power
spectrum is to introduce a different shape producing a slight suppression of power at scales
larger than the cutoff. From the analysis, we evince that all the criteria agree that, for
a FIMP candidate produced by decays of a 1 TeV particle in a massless one, and DM
reproducing all the observed relic density, the conservative and stringent bounds on the
minimum mass are 9.45 keV and 16.58 keV.

We can see the bounds in the (mχ, F ) plane in a comprehensive way considering, for
each point, the sum of all the criteria scores. The values 1, 2, 4 and 8 for the criteria
are chosen so that the sum of all criteria gives a total score which represents a degree of
confidence that the model respects the bounds, but also such that one can evince uniquely
which tests were passed. In Fig. 5.2 we show the resulting plot. The colour palette is
chosen to resemble a traffic light, to tell whether a point in parameter space is allowed or
not. We see six regions, coloured in different ways:

1. Dark red region, score 0: none of the criteria is satisfied so this region of parameter
space is excluded by Lyman-α data.

2. Light red region, score 1: only the conservative k1/2 criterion is satisfied, so this
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Figure 5.2: Plot of the sum of the resulting scores of the four criteria exploited to determine
the allowed region in the (mχ, F ) space in the trilinear model, where FIMPs are produced
via two-body decays. The use of colours is described in the text.

region is practically excluded.

3. Orange region, score 3: only the two k1/2 criteria are satisfied, hence this region is in
tension with structure formation.

4. Yellow region, score 5: only the two conservative criteria are satisfied, hence this
region is in tension with structure formation, but for a different reason than the
previous one.

5. Light green region, score 7: the criteria are all satisfied apart from the stringent T 2
lim

one, hence this region can be considered nearly allowed by Lyman-α bounds.

6. Dark green region, score 15: all the criteria are satisfied, so the region of parameter
space is fully allowed by structure formation.

We notice that, as mentioned above, the fact that T 2
lim are not satisfied for any value

of mχ for the lowest values of F , forbids the allowed dark green region to extend over
the full extent of the mχ axis, even when the contribution of FIMPs to DM is less than
20%. Therefore we are not able to tell the value of Ffree from this set of data. To find
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Figure 5.3: Plot of the sum of the resulting scores of the four criteria exploited to determine
the allowed region in the (mχ, F ) space in the trilinear model, where FIMPs are produced
via two-body decays. In this case we span the parameter space [1, 100] keV ×[0.001, 1] and
exploit a log scale on the F axis. The light green point in the bottom part of the plot is
just a numerical artefact.

it, we repeated the analysis for the same choices of masses but with Fmin = 0.001 and
logarithmically spaced values of F . In Fig. 5.3, we show the plot representing the sum of
the criteria scores in the (mχ, F ) plane in this case. We clearly evince that for this mass
spectrum Ffree ' 4× 10−3: below this value, the structure formation do not constrain mχ

effectively.

The (mB1 , rB2) plane

The analysis we performed above can be repeated for any choice of mB1 and rB2 ≡
mB2/mB1 to extract the minimum mχ allowed by structure formation, according to one
or more criteria among those considered. To span the (mB1 , rB2) plane effectively we
can consider only a fixed value of F , e.g. F = 1, since it gives the strongest constraint.
Therefore we can obtain, for each point in the (mB1 , rB2) plane, a value of mmin

χ . For
the analysis to be effective we have to discretize the parameter space (mB1 , rB2 ,mχ) in a
proper way, in particular we need the mχ grid to be dense enough to find the minimum
precisely. A good compromise is to consider a grid of 20× 10× 40 points in the [10−3, 103]
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GeV ×[0, 0.7]× [1, 50] keV region of the (mB1 , rB2 ,mχ) parameter space. We shrink the
range of mχ since we are looking for a minimum mass and we expect it around 10 keV and
always less than 50 keV. In this way we can obtain a denser grid in the region of interest
and more accurate estimates. The degeneracy parameter rB2 was chosen in the range
[0, 0.7] to avoid computational issues if the relation mB1 > mB2 +mχ is not clearly satisfied.
The worst case is when mχ is maximum (100 keV) and mB1 is minimum (1 MeV): this
implies rB2 ≤ 0.9. The choice of 0.9 as an upper limit protects us from issues in precision
calculations and is reasonable, since a highly degenerate mass spectrum is unlikely.

To compute the minimum mass mχ for each choice of the other masses we can exploit
different combinations of criteria. In Fig. 5.4 we show the contour plots of the minimum
DM mass mχ at F = 1, extracted with the method presented treating the (mχ, F ) plane,
for each point in the (mB1 , rB2) one. In the left plot we required the k1/2 criteria to be
both satisfied (the orange, yellow and green regions in the traffic light plot), while in the
right plots we required all the criteria to be satisfied (the dark green region only).

The contour levels obtained with the two criteria are very similar, a sign that both
criteria can give a robust estimate of mmin

χ : quantitatively the relative difference of the
matrices plotted is exactly zero, except for < 5% of the points where we have a discrepancy
less than 10%. However, while in the upper left plot we have a value of mmin

χ for each
point in the (mB1 , rB2) plane 1, in the upper right one we have some holes with rhomboidal
shape due to the discrete tessellation of parameter space. In these points the request that
all the four tests are passed is never satisfied for any considered value of mmin

χ : this is
probably due to numerical artefacts in the computation of the model power spectra that
make the T 2

lim criteria impossible to be satisfied, rather than to a physical reason. Since
all the surrounding points do satisfy those criteria with a reasonable value of the mass,
we decided to mask these points not to spoil the other nearby contours. Analysing the
diagnostics of these data we see that the maximum difference for k < k1/2, T 2

lim−T 2, which,
if positive, leaves the criterion unsatisfied, is quite small, usually below 10−3. Therefore we
have checked whether the holes could be removed simply introducing a tolerance in the
T 2

lim criterion, relaxing it a bit, in a way that the value of mmin
χ obtained in these points

agrees with the surrounding ones and hopefully similar to the one obtained with the k1/2
criterion. Indeed we get a reasonable result with a 1% tolerance, as it is shown in the
lower plots of Fig. 5.4. When the tolerance has applied the matrices obtained with the
two criteria have zero relative difference.

As a comprehensive and final result, we consider the array of mmin
χ obtained requiring

all criteria to be satisfied with the 1% tolerance on the T 2
lim criteria, i.e. the lower right

plot in Fig. 5.4. We show this plot alone (coloured contours) in Fig. 5.5 and compare it to
contours (dashed) obtained using the technique presented in [58]. The overall behaviour
of mmin

χ evinced from Fig. 5.5 is reasonable. We have a clear difference in mmin
χ if the

decaying particle has a mass smaller or greater than the GeV. In particular heavier decaying

1At least we have an interpolated value: remember that the parameter space is discretized with a grid
made of 200 points.
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particles imply lower minimum FIMP DM masses, thus less stringent bounds. This is
because mB1 is also roughly the value of the temperature at which the freeze-in occurs
and FIMP DM is produced. Therefore the dependence of mmin

χ on mB1 is roughly given by
the relation in Eq. (2.20) and is due to the changing in the effective number of relativistic
degrees of freedom. Instead, the dependence of mmin

χ on rB2 can be taken into account
through the value of the warmness quantity σ̃, which depends on the degeneracy of the
mass spectrum. To compare the obtained results with the expectations from the warmness
constraint, we show the contours of Eq. (4.32) in Fig. 5.5. The values of mmin

χ are found
according to the formula

mmin
χ (mB1 , rB2) = 19.1 keV

( 106.75
g?s(mB1)

)1/3 〈σ̃(mB1 , rB2 ,mχ)〉mχ

3.6 . (5.1)

We remember that σ̃ is found from

σ̃(mB1 , rB2 ,mχ) =
√∫

dq q4fχ(q)∫
dq q2fχ(q) . (5.2)

This value is a function of all the quantities characterizing the model, so in principle the
whole mass spectrum. To get rid of the (small) dependence on the mχ we average over all
the values considered of the DM mass. The contours computed with this formula agree in
shape with the ones obtained from our criteria but slightly differ in value, with the latter
giving systematically higher values of mmin

χ , thus more stringent constraints. Nevertheless,
if one considers F = 1, Eq. (5.1) is a good way to easily obtain the constraints in the
(mB1 , rB2) plane, since it only requires the computation of the phase-space distribution
which is fast. However, our procedure is more general and reliable, since we take into
account the power spectra computed from the FIMP model, which depends on the full
form of the non-thermal phase-space distribution, rather than on its second momentum σ̃

only. Although our method reproduces the expected bounds on mχ is a good consistency
check. The outcome is in agreement with [58], where the authors exploit the warmness
quantity criterion and check the results a posteriori with the k1/2 criterion from transfer
function (i.e. our required score of 3), obtaining an agreement at 10% level. To obtain the
reference value of 3.6 for ˜sigma we are using mWDM = 5.3 keV since we are requesting the
stringent bounds to be satisfied. Finally, we have verified that the obtained values of mmin

χ

are robust and do not depend on the choice of the discretization of the parameter space by
comparing the results obtained exploiting different grids to compute them.

5.2.2 Quadrilinear model for single production

In the quadrilinear model for single production, FIMP DM is produced via scatterings
and three-body decays involving three bath particles, which are in principle all different.
Therefore this model is characterized by an additional parameter, the mass mB3 , concerning
the basic trilinear model we considered above. To perform an analysis similar to the one
we did in the previous case, we kept B3 to be massless throughout the analysis.
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The (mχ, F ) plane

In order to study the (mχ, F ) section of parameter space, we fix mB1 = 1 TeV and
consider B2 and B3 to be massless. We computed a 42 × 42 grid in the [1, 100] keV
×[Fmin, 1] region in the (mχ, F ) plane, choosing Fmin = 0.1. In Fig. 5.6 we show the
obtained bounds in the (mχ, F ) plane, considering separately the k1/2 criteria (left) and
T 2

lim criteria (right), using the score convention explained above to distinguish the stringent
and conservative bounds. The plots are very similar in shape to the ones obtained in the
trilinear model: this is reasonable because DM production happens at the same energy
scale. We find that for F = 1 both criteria agree that mχ > 8.45 keV if Lyman-α bounds
are satisfied by WDM with mWDM > 3.5 keV (stringent bound) and mχ > 14.82 keV for
the conservative case mWDM > 5.3 keV. These values are slightly lower than the ones
obtained in the trilinear model. We can visualize these two plots together in the traffic
light-like plot in Fig. 5.7. While the k1/2 criterion is always satisfied for F . 0.2, the T 2

lim
is not, like in the trilinear model case. To get a value of F , called Ffree, for which all the
criteria are satisfied, we need to go to lower values of F . We find out, as shown in Fig. 5.8,
that Fmin ' 5× 10−3.

The (mB1 , rB2) plane

We explore the (mB1 , rB2) section of the parameter space as we did in the case of the
trilinear model. We focus on the same region of parameter space as before and use the
same grid to discretize it. The only difference is that now the degeneracy parameter rB2 is
allowed to go all the way up to 1, since 2→ 2 scatterings are always kinematically allowed.
We repeated the procedure outlined above and we obtained the plots shown in Fig. 5.9.
In the upper panels, we show the results obtained with no tolerance in the T 2

lim criterion.
We notice that also in this case there are some holes, points where the criteria are never
satisfied for any value of mχ considered. However, imposing again a tolerance of 1% we
can obtain a perfect agreement between the left and right plots, as shown in the lower
panel. We show the lower right plot of Fig. 5.9 more in detail in Fig. 5.10 and present
it as our lower mass bound for FIMP DM produced in the quadrilinear model for the
single production. Let us compare this plot with the one obtained in the trilinear model.
The mB1 dependence in mmin

χ is mostly due to the behaviour of g?s as a function of the
temperature at which FIMPs are mainly produced and because of that it is common in
the two models. The difference in the two models is in the process through which DM is
produced and this impacts the shape of the phase-space distribution function. So, while
in the trilinear case we had a significant dependence on the degeneracy parameter rB2 ,
which is very important in the kinematics of the two-body decay, in the single production
model this dependence is weaker and high degeneracies only allow lower mmin

χ at slightly
lighter values of mB1 . The degeneracy is relevant in the kinematics of decays, but they are
a subdominant production mechanism in the quadrilinear model for the single production.

In Fig. 5.10 we also compare our results with the contours obtained Eq. (5.1) using the
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warmness constraints developed in [58]. We see that contours agree in shape and the values
of mmin

χ at a 10 % accuracy with the result of our procedure, similarly to the trilinear
model case. Again this confirms the robustness of our results and the correctness of the
overall methodology.

5.2.3 Quadriliner model for pair production

In the quadrilinear model for pair production, FIMP DM is produced via scatterings
and three-body decays involving two bath particles. This model is characterized by three
mass scales, mB1 , mB2 and mχ, similarly to the trilinear model.

The (mχ, F ) plane

We study (mχ, F ) section of parameter space fixing mB1 = 1 TeV and considering
B2 to be massless. As in the previous cases, we computed a 42×42 grid in the [1, 100]
keV×[Fmin, 1] region of the (mχ, F ) plane, choosing Fmin = 0.1. In Fig. 5.11 we show the
obtained bounds considering separately the k1/2 criteria (left) and the more stringent T 2

lim
criteria (right), using the usual score convention to distinguish the different bounds. The
plots are qualitatively and quantitatively similar to the ones obtained in the trilinear and
quadrilinear model for single production. In particular we find the same bounds for F = 1
we obtained for the trilinear case.

To have a comprehensive picture of the allowed regions in the (mχ, F ) plane we exploit
the score convention and build a traffic light-like plot shown in Fig. 5.12. Again the
obtained picture is very similar to the ones we found in the other two considered models.
In particular, in this case, the value Ffree for which all the criteria are satisfied in the whole
mχ range is well below our initial choice of Fmin. Therefore we compute another 42×42
grid, like the previous one but with Fmin = 10−3. We show the result in Fig. 5.13 and find,
as in the other models, Ffree ' 5× 10−3.

The (mB1 , rB2) plane

As in the previous cases, we explore the mass spectrum parameter space considering
the (mB1 , rB2) plane. We focus on the usual region of this plane and exploit the same
discretization, again with rB2 free to go all the way up to 1. Repeating the procedure
outlined in the case of the trilinear model, we obtain the plots in Fig. 5.14, with lower plots
obtained applying a 1% tolerance on the T 2

lim criterion. As usual, the tolerance is enough to
get rid of numerical issues leading to the holes, points where the criteria are never satisfied
for the considered masses. Moreover, with the tolerance k1/2 criteria and T 2

lim produce the
same results for mmin

χ , assuring the robustness of the lower bound. We show the lower
right plot of Fig. 5.14 more in detail in Fig. 5.15 and present it as our final estimate of the
mass bounds on FIMP DM produced via the quadrilinear pair production operator. If we
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compare this plot with the one obtained in the other quadrilinear model (single production),
we notice a stronger dependence on the spectrum degeneration parameter rB2 . Indeed this
stronger dependence is expected, since rB2 strongly affects the kinematics of three-body
decays and in pair production, these processes are much more important in making the
final distribution function than in the single production case. In particular, a significant
change in shape is expected when three-body decays are not kinematically allowed because
rB2 is too large. Instead, the dependence on mB1 is the usual one, expected from the
temperature dependence in g?s. Like in the previous cases, we compared our results with
the estimate obtained from the warmness constraints developed from the work of [58]. We
obtain the usual agreement in the shape of contours and the value of mmin

χ at 10%, with
our constraints being more stringent.
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Figure 5.4: Contour plots of the values of mmin
χ for F = 1 as functions of the chosen

mass spectrum (mB1 , rB2) in the trilinear model, where FIMPs are produced via two-body
decays. To determine the minimum FIMP DM mass allowed by structure formation, we
requested the two k1/2 to be satisfied (right plots) or all the four tests to be passed by the
model (left plots). Upper plots are obtained with no tolerance in the T 2

lim criterion, while
lower ones are obtained using a 1% tolerance. The meaning of the holes in the upper right
plot is explained in the text.
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Figure 5.5: Contour plot of our estimate of mmin
χ for F = 1 as functions of the chosen

mass spectrum (mB1 , rB2) in the trilinear model, where FIMPs are produced via two-body
decays. The contour plot is the lower right of Fig. 5.4. For comparison, we also show the
prediction obtained exploiting the warmness constraint from Eq. (4.32) as dashed level
curves with numbers showing the mmin

χ in keV as computed with (5.1).
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Figure 5.6: Plot of the results of the k1/2 criteria (left) and T 2
lim criteria (right) scores in the

(mχ, F ) plane with Fmin = 0.1 in the quadrilinear single production model, where FIMPs
are produced via 2→2 scatterings and three-body decays (when kinematically allowed).
The vertical lines show the value of the minimum mχ allowed by the stringent (solid) and
conservative (dashed) bounds at F = 1.
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Figure 5.7: Plot of the sum of the resulting scores of the four criteria exploited in the
quadrilinear single production model, where FIMPs are produced via 2→2 scatterings and
three-body decays (when kinematically allowed). The use of colours is described in the
text and is the same in Fig. 5.2.
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Figure 5.8: Plot of the sum of the resulting scores of the four criteria exploited in the
quadrilinear single production model, where FIMPs are produced via 2→2 scatterings and
three-body decays (when kinematically allowed). The use of colours is described in the
text and is the same in Fig. 5.3.
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Figure 5.9: Contour plot of the values of mmin
χ for F = 1 as functions of the chosen

mass spectrum (mB1 , rB2) in the quadrilinear single production model, where FIMPs are
produced via 2→2 scatterings and three-body decays (when kinematically allowed). The
plots are organized and obtained in the same way as in Fig. 5.4.
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Figure 5.10: Contour plot of the values of mmin
χ for F = 1 as functions of the chosen mass

spectrum (mB1 , rB2) in the quadrilinear single production model. The plot is the one in
the lower right panel of Fig. 5.9 but, for comparison, we also show the prediction obtained
exploiting the warmness constraint from Eq. (4.32) as dashed level curves with numbers
showing the mmin

χ in keV as computed with Eq. (5.1).
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Figure 5.11: Plot of the results of the k1/2 criteria (left) and T 2
lim criteria (right) scores

in the (mχ, F ) plane with Fmin = 0.1 in the quadrilinear pair production model, where
FIMPs are produced via 2 → 2 scatterings and three-body decays (when kinematically
allowed). The vertical lines show the value of the minimum mχ allowed by the stringent
(solid) and conservative (dashed) bounds at F = 1.
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Figure 5.12: Plot of the sum of the resulting scores of the four criteria exploited in the
quadrilinear pair production model, where FIMPs are produced via 2→ 2 scatterings and
three-body decays (when kinematically allowed). The use of colours is described in the
text.
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Figure 5.13: Plot of the sum of the resulting scores of the four criteria exploited in the
quadrilinear pair production model, where FIMPs are produced via 2→ 2 scatterings and
three-body decays (when kinematically allowed). In this case we span the parameter space
[1, 100] keV ×[0.001, 1] and exploit a log scale on the F axis.
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Figure 5.14: Contour plot of the values of mmin
χ for F = 1 as functions of the chosen mass

spectrum (mB1 , rB2) in the quadrilinear pair production model, where FIMPs are produced
via 2→ 2 scatterings and three-body decays (when kinematically allowed). The plots are
organized and obtained in the same way as in Fig. 5.4.
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Figure 5.15: Contour plot of the values of mmin
χ for F = 1 as functions of the chosen mass

spectrum (mB1 , rB2) in the quadrilinear pair production model, where FIMPs are produced
via 2 → 2 scatterings and three-body decays (when kinematically allowed). The plot is
the lower right one in Fig. 5.14 but, for comparison, we also show the prediction obtained
exploiting the warmness constraint from Eq. (4.32) as dashed level curves with numbers
showing the mmin

χ in keV as computed with Eq. (5.1).



Conclusions

As we reviewed in detail in Chapter 1, observations point out the existence of dark
matter (DM), which is invisible and non-baryonic and, as far as we know, interacts only
gravitationally with the known matter. The evidence at our disposal includes observations
on galactic scales (galactic rotation curves, gravitational lensing), on galaxy cluster scales
and on cosmological scales (CMB, BBN, supernovae type Ia and, remarkably, structure
formation). In particular, observations claim that the DM must be described by beyond-
Standard-Model physics. This fact opens up maybe the most prominent challenge that
the fundamental physics community has to face in this century: the understanding of the
nature of DM.

Under the assumption that the DM is made of some unknown particle, in Section 1.5
we summarized the main model-independent features of such particle candidate. In general,
to track the evolution of the properties of the DM particle species during its cosmological
history, we exploit the well-established Boltzmann equation formalism, described in Chapter
2. In this framework, the particle species is described by a phase-space distribution which
satisfies the Boltzmann equation, taking into account the expansion of the Universe and all
the processes the DM particles are involved in. Over the last decades, a large theoretical
effort has been put in the DM model building around a few leading paradigms. The
best-known one is undoubtedly the freeze-out paradigm, both for its simplicity and a
large number of motivated candidates (WIMPs) falling naturally in this framework: we
analysed, in a model-independent way, the freeze-out paradigm in Section 2.4. However,
recent experiments, among which XENON1T [34] stands out for its high sensitivity, are
constraining the parameter space of WIMP DM mass and WIMP DM-nuclei cross-section
in this framework, leading to the necessity to explore other mechanisms for DM production.

One of such interesting possibilities is given by the freeze-in scenario. This idea, first
introduced by L.J. Hall et al. [1], in its standard form, shares many appealing features of the
freeze-out framework, such as its simplicity and the independence on high-energy physics
and initial conditions. However, freeze-in DM candidates, called FIMPs, are characterized
by a much smaller interaction rate with visible matter, such that they never attain thermal
equilibrium with the primordial plasma of radiation and baryonic matter. In Chapter 3
we proved that the freeze-in paradigm is able to reproduce the observed DM relic density.
Moreover, we explicitly showed the abundance evolution for three scalar toy models, in
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which FIMPs are produced via two-body decays, three-body decays and scatterings and
pair production processes, respectively.

The fact that FIMPs are only very weakly coupled with visible matter is appealing
since more parameter space is unconstrained in model building. However, DM produced in
the freeze-in scenario can nevertheless leave observational signatures in direct, indirect and
collider searches of DM. We explored these possibilities in Section 3.3, briefly reviewing
the concrete example of the dark photon model with milli-charged freeze-in DM, which is
going to be probed by XENON1T. Moreover, a crucial way to observationally constrain
freeze-in models is to exploit the theory of structure formation, i.e. measurements of the
linear matter power spectrum (extrapolated from the non-linear one) at the smallest scales
we can probe. One of such observables is the Lyman-α forest, which is able to constrain
light DM models, such as thermal WDM. Similarly to WDM, FIMP DM with low mass
heavily impacts on structure formation, providing a small-scale cutoff in the matter power
spectrum. However, since FIMPs are produced non-thermally, non-trivial differences can
arise in the power spectra computed from WDM models and in the freeze-in scenario, and
they can produce different constraints on the DM model.

In this work, we addressed the problem of constraining FIMP parameters in the
standard freeze-in scenario using bounds from structure formation. Since a proper analysis
of Lyman-α data with FIMP DM is model-dependent and time-consuming, we developed
a general methodology that can be applied to any model. From the work of M. Viel et
al. [56], we know that depending on the assumptions in the data analysis, WDM models
with mWDM > 3.5 keV (conservative bound) and mWDM > 5.3 keV (stringent bound) are
in agreement with Lyman-α data. Therefore, we can take the transfer functions (the ratio
of the computed power spectra with the usual ΛCDM one) as limits, and impose that
our FIMP models never produce suppression of power at scales larger than the cutoff of
the WDM transfer functions. This procedure quickly produces more stringent constraints
than performing the full analysis directly from Lyman-α data. In the first part of Chapter
4 we presented the procedure to constrain the free parameters of a given model, made
of operators, couplings and a mass spectrum. For each point in parameter space, the
phase-space distribution of the FIMP DM candidate is computed numerically by solving
the Boltzmann equation. The distribution is passed to the CLASS code [68, 69] which
computes the linear matter power spectrum in this model and, subsequently, the transfer
function to be compared with the WDM ones. To test the robustness of the bound, we
exploited two different criteria to tell if our model is allowed by the WDM constraint. On
the basis of this methodology, it is possible to analyse the parameter space of the given
model. In the simplest case, it is made of the masses of the particles involved in the FIMP
DM production, the FIMP mass and the final relic abundance that the model is required
to reproduce.

To test our procedure, we applied it to three simple scalar FIMP DM toy models,
each one allowing different DM production processes: the trilinear model, involving two-
body decays, and two quadrilinear models, describing single and pair production through
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scatterings and three-body decays. In the second part of Chapter 4 we showed how to
compute the phase-space distribution for these toy models. Finally, in Chapter 5, we
presented the code exploited to perform calculations and we showed the obtained constraints
on the parameter space of the considered models. In particular, we focused on lower bounds
on the FIMP DM mass mχ studying two slices of the parameter space: (i) the mass of FIMP
DM and its fractional abundance F , which is used to fix the coupling in the considered
operator (the (mχ, F ) plane) and (ii) the mass spectrum of the involved bath particles (the
(mB1 ,mB2/mB1) plane). In the first analysis we showed which region of the (mχ, F ) plane
is allowed by the structure formation constraints and which region is in tension instead,
exploiting the above-mentioned criteria based on the power spectrum. In the second
analysis, instead, we computed the value of the minimum mχ allowed in the case F = 1 for
each point in the (mB1 ,mB2/mB1) plane. In this case, we showed that both criteria give
the same lower bound on mχ at 1% accuracy. This shows that our results are robust and
do not depend strongly on the criteria nor on the discretization of the parameter space.
Moreover, we compared the outcome of the analysis in the (mB1 ,mB2/mB1) plane with
the lower bounds obtained exploiting the warmness quantity, introduced by A. Kamada
and K. Yanagi in [58]. For all models, our bounds, obtained from the full transfer function,
agree with the ones obtained from the warmness constraint at a 10% accuracy and show
similar dependences on the free parameters. Interestingly, our procedure, which takes into
account the full shape of the distribution function rather than its second moment only,
provides always more stringent lower bounds on the FIMP DM mass.

The developed procedure is general: we can exploit it considering different FIMP
DM candidates and freeze-in models, changing the type of operator responsible for DM
production. Moreover, we can change the cosmological history during the FIMP DM
production epoch, which in the standard picture, is simply the FRW one during the
radiation-dominated era. All the changes can be fairly easily introduced in the code which
provides the same analysis we performed for the scalar toy models. Moreover, it is possible
to straightforwardly introduce other observational constraints as limit transfer functions
to include other bounds from structure formation or to update the Lyman-α ones. An
interesting and natural follow-up for this work could be to consider classes of models and
try to constrain the parameter space in freeze-in scenarios on the basis of the mechanisms
of FIMP DM production. In this way it would be possible to generally tell which couplings
and mass spectra are available to produce FIMP DM at a given energy scale with a specific
mechanism, easing model building within the freeze-in paradigm.
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Appendix A

Friedmann-Roberston-Walker
cosmology

With the word cosmology, we refer to the study of the Universe as a whole, i.e. seen on
scales comparable with its size. In this appendix, we review the set of tools we need to
study the Universe as a system and to understand the present and past role of DM in our
Universe.

A.1 The expanding Universe

Today, the standard cosmological model has its funding core in the so-called Big Bang
scenario, in which the Universe is a system evolving from an extremely dense state around
10 Gyr ago. From Hubble’s discovery that the Universe was expanding, this scenario has
survived all cosmological observations. The expansion of the Universe is described by the
Hubble constant H0: it sets the timescale of the evolution of the Universe, hence its age,
indeed H−1

0 ∼ 10 Gyr.

H0 = 100h km s−1Mpc−1 = 2.14h× 10−33 eV = 3.33h× 10−4 Mpc−1. (A.1)

The parametrization of the Hubble constant historically accounts for the uncertainty on
its precise value. In this work, if necessary, we rely on the value obtained by the Plack
experiment [17].

h = 0.674± 0.005. (A.2)

The Hubble constant sets also the size of the observable Universe, the distance travelled by
light in a Hubble time, that is the Hubble radius RH(t0) = cH−1

0 .

Around the Big Bang scenario, cosmologists have built a sophisticated model which
allows us to explain at a high level of accuracy the thermal history of the Universe and
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other observables as the abundance of elements, cosmic relic background radiation and large
scales structures. The model is based on Einstein’s theory of gravity, General Relativity
(GR), and consists of three main building blocks:

1. the metric, showing the symmetries of the Universe and its geometry;

2. the Einstein field equations relating the geometry of the Universe with its matter-
energy content;

3. the equations of state specifying the nature of the matter content of the Universe
and its physical properties. Our best knowledge of the fundamental constituent of
the Universe is encoded in the Standard Model of particle physics.

We study the three ingredients separately in the next subsections.

A.1.1 The Friedmann-Robertson-Walker metric

Usually, cosmologists assume the cosmological principle, i.e. that on cosmological scales
our Universe is characterized by statistical homogeneity and isotropy. These properties
imply a high level of symmetry and greatly simplify the study of the Universe. They
are confirmed by observations to a high level of accuracy. In particular, observations of
the Cosmic Microwave Background (CMB) have shown the Universe is isotropic up to
deviations of the order of 10−5. If the Universe is isotropic about any point in space, it is
also homogeneous: this is the case if we assume to live in a completely general region of
the Universe. Nevertheless, we probe homogeneity directly through galaxy surveys: data
suggest a homogeneous distribution on scales greater than 100 Mpc, about 1% of the size
of the observable Universe. The study of inhomogeneities and anisotropies, which make
the structures we observe, e.g. galaxies and clusters, can be done perturbatively on the
base of this background spacetime.

Spatial homogeneity and isotropy imply a specific form of the metric. We consider a
foliation of the spacetime in spacelike slices which are maximally symmetric

ds2 = −dt2 + a2(t)dγ2, (A.3)

where a(t) is called scale factor. dγ is the line element on the spacelike surface

dγ2 = γijdx
idxj , (A.4)

with i, j = 1, 2, 3. For a maximally symmetric space, the spatial Ricci tensor reads
Rij = 2kγij . The constant k describes the spatial (geometric) curvature and in general it
can take the values k = −1, 0,+1. If the spacelike surface is maximally symmetric it is
surely spherically symmetric. It can be shown that the metric takes the form, in spherical
coordinates

dγ2 = f2(r)dr2 + r2dΩ2
2, (A.5)
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with dΩ2
2 the infinitesimal solid angle. Computing the spatial Ricci tensor for this metric

and comparing it to Rij = 2kγij , one finds that f2(r) = (1− kr2)−1. Hence we obtain the
Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
[ 1

1− kr2dr
2 + r2dΩ2

2

]
. (A.6)

We assume a spatially flat FRW Universe, i.e. we put k = 0. This hypothesis is observa-
tionally verified to per mille accuracy by Planck satellite [17]; this fact implies that the
curvature plays no relevant role in the early FRW Universe. Therefore the spatial line
element is simply Euclidean:

ds2 = −dt2 + a2(t)δijdx
idxj . (A.7)

This will be our reference metric throughout our work. The coordinate t is the cosmic
time while xi are comoving coordinates, which are not affected by the expansion of the
Universe. Physical coordinates are obtained simply as ri(t) = a(t)xi.

A.1.2 Friedmann equations

The Friedmann equations are Einstein field equations for the FRW metric. Einstein
equations come from the minimization of the Einstein-Hilbert action plus the matter action

S = M2
Pl

2

∫
d4x
√
−g(R− 2Λ) + SM , (A.8)

δS

δgµν
= 0 ⇐⇒ Rµν −

1
2gµνR = 1

M2
Pl
Tµν − Λgµν . (A.9)

Here gµν is the metric tensor (g ≡ det g), Rµν and R = gµνRµν are, respectively, the Ricci
tensor and scalar for the full spacetime, MPl = (8πG)−1/2 is the reduced Planck mass,
parametrizing the strength of gravity;

Tµν = − 2√
−g

δSM

δgµν
(A.10)

is the energy-momentum tensor and Λ is the so-called cosmological constant. The Einstein
equations simply tell us that the geometry of the Universe (left-hand side) is determined
by the matter content (right-hand side) plus the cosmological constant term. The latter
represents vacuum energy associated with the space-time itself and acts as a source of gravity
even in absence of matter. Today we know from the analysis of the CMB [17] together
with type Ia supernovae [19] (see section 1.3.3 for more details), that the cosmological
constant can play a very important role in determining the expansion of the Universe. In
particular, we assume the existence of an exotic fluid, called dark energy, which behaves
like a cosmological constant in the Einstein equation, i.e. has an energy-momentum tensor
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of the form
TΛ

µν = −M2
PlΛgµν . (A.11)

Now we want to write the Einstein equations for the FRW metric. To do that, we have to
explicit the Ricci tensor for the FRW metric and also specify the matter source. First, we
introduce the Christoffel symbols or affine connection coefficients

Γµ
αβ = 1

2g
µν
[
∂αgβν + ∂βgαν − ∂νgαβ

]
(A.12)

and compute them. Using the fact that FRW metric is diagonal and g00 = −1,

Γ0
αβ = −1

2

[
∂αgβ0 + ∂βgα0 − ∂0gαβ

]
= 1

2∂0gαβ, (A.13)

hence
Γ0

00 = 0, Γ0
0i = Γ0

i0 = 0, Γ0
ij = a2Hδij , (A.14)

with dots denoting cosmic time derivatives ∂0 and H the Hubble parameter

H ≡ ȧ

a
. (A.15)

We go on with the computation:

Γi
αβ = 1

2g
ij
[
∂αgβj + ∂βgαj − ∂jgαβ

]
= 1
a2 δ

ij(δα0δβk + δβ0δαk)∂0gjk, (A.16)

hence
Γi

0k = Γi
k0 = δikH. (A.17)

The other Christoffel symbols vanish. The Ricci tensor is expressed in terms of the
Christoffel symbols

Rµν = ∂αΓα
µν − ∂νΓα

µα + Γα
βαΓβ

µν − Γα
βνΓβ

µα (A.18)

Let us compute R00 using the above found Christoffel symbols. It is evident that we are
left with only two terms of the four inside R00:

R00 = −∂0Γi
0i − Γi

j0Γj
0i = −δii∂0H −H2δijδij = −3 ä

a
+ 3H2 − 3H2. (A.19)

Therefore
R00 = −3 ä

a
. (A.20)

Then
R0i = Ri0 = −Γα

βiΓ
β

0α = −Γk
`iΓ`

0k = 0 (A.21)
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and

Rij = ∂0Γ0
ij + Γα

0αΓ0
ij − Γα

βjΓβ
iα

= ∂0(a2H)δij + 3Ha2Hδij −Ha2Hδij −Ha2Hδij = [2a2H2 + aä]δij .
(A.22)

The last ingredient of the left-hand side of Eq. (A.9) is the Ricci scalar, which reads

R = g00R00 + gijRij = 6
[
ä

a
+H2

]
. (A.23)

Now we focus on the right-hand side of Eq. (A.9). Being the source of the FRW metric,
the energy-momentum tensor has to respect the symmetries of our spacetime. Then the
only possible form of the energy-momentum tensor is

Tµ
ν = diag(−ρ,P,P,P), (A.24)

i.e. the one of a perfect isotropic fluid. Here ρ is the energy density of the fluid and P is
the isotropic pressure. We model the matter content of the Universe on cosmological scales
as a perfect isotropic fluid. This can also include the cosmological constant term since it
is sufficient to require that ρ = −P = M2

PlΛ. So we absorb the cosmological constant in
the energy-momentum tensor. In the next subsection, we will specialize it to the known
families of particle species: radiation and matter.

Let us finally write the Friedmann equations.

• 00 - Einstein equation
R00 + 1

2R = 1
M2

Pl
(−1)T 0

0 (A.25)

gives
H2 = 1

3M2
Pl
ρ. (A.26)

This equation is often called the energy constraint, since it is not a dynamical equation
for a(t), involving only first-order time derivatives for the scale factor. From this
equation, we can define the critical density as the energy density of a flat FRW
universe today

ρc ≡ 3H2
0M

2
Pl ' 1.1h2 × 10−5 GeV cm−3 = 8.4h2 × 10−47 GeV4, (A.27)

which we use to normalize the energy density, introducing the density parameter

Ω(t) ≡ ρ(t)
ρc

. (A.28)

With this definition, Eq. (A.26) reads simply

Ω(t) = 1, (A.29)
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meaning the sum of the density parameters of all the constituents of the Universe
gives one throughout the history of the flat FRW Universe. We can now better
understand the name energy constraint for Eq. (A.26).

• ij - Einstein equations

Rij −
1
2a

2δijR = 1
M2

Pl
a2δikT

k
j (A.30)

give
ä

a
+ 1

2H
2 = − 1

2M2
Pl
P. (A.31)

This equation is indeed dynamical. Combining it with the energy constraint we
obtain the so-called acceleration equation

ä

a
= − 1

6M2
Pl

(ρ+ 3P). (A.32)

We can write another equation, dependent on the previous two, which is the conservation
of the energy-momentum tensor:

DµT
µ
ν = 0. (A.33)

This equation comes straightly from Bianchi identities, which state that the left-hand side
of Eq. (A.9) is conserved. Let us consider the ν = 0 component of Eq. (A.33)

0 = ∂µT
µ
0 + Γµ

αµT
α
0 − Γα

0µT
µ
α

=− ∂0ρ− Γµ
0µρ− Γα

0µT
µ
α .

(A.34)

Since Γα
0µ = 0 unless α and µ are equal spatial indices, we finally obtain the so-called

fluid (continuity) equation
ρ̇+ 3H(ρ+ P) = 0. (A.35)

This conservation law is very useful because it can be directly applied, given an equation
of state, to model the evolution of the energy content of the Universe during its expansion
history.

A.1.3 The equation of state

The Friedmann equations Eq. (A.26) and Eq. (A.32) we have derived above contain
three unknown functions a(t), ρ(t),P(t). To solve the system and know the time evolution
of these quantities, we need another equation. Indeed we need an equation of state,
specifying the nature of the perfect isotropic fluid we are considering. In general, the
equation of state is written as P = P(ρ) and can be a very complicated function. In FRW
cosmology equations of state are usually parametrized considering barotropic fluids, i.e. an
equation of state

P = wρ. (A.36)
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Here we distinguish three ingredients of the Universe energy budget by the value of the
constant w:

w =


0 non-relativistic pressureless matter
1/3 radiation
−1 vacuum energy

(A.37)

We can use this equation of state to get the dependence of the energy density ρ on the
scale factor and then use the energy constraint to find the dependence on cosmic time.
From the continuity equation Eq. (A.35)

dρ

ρ+ P = −3da
a
⇐⇒ log ρ = −3(1 + w) log a, (A.38)

that is

ρ ∝ a−3(1+w) ∝


a−3 non-relativistic pressureless matter
a−4 radiation
const vacuum energy

(A.39)

These three scalings give us a picture of the history of the FRW Universe. If the initial
state was extremely dense a� 1, the initially dominant component in the energy budget
(hence with the greatest density parameter) was radiation. Since we know today matter
is relevant, after the so-called radiation domination epoch, radiation was diluted by the
expansion and matter came to dominate the Universe. According to recent observations,
only recently, about 4 Gyr ago, the cosmological constant became the dominant constituent
of the Universe. The exact history depends on the precise energy budget today. Now we
substitute this behaviour in the energy constraint obtaining

H = ȧ

a
= 1√

3MPl
ρ1/2, (A.40)

which, for w 6= −1 gives

da ∝ a− 3(1+w)
2 +1dt =⇒ a(t) ∝ t

2
3(1+w) , (A.41)

while for w = −1, ρ = −M2
PlΛ and

da

a
∝

√
Λ
3 dt =⇒ a(t) ∝ e

√
Λ
3 t. (A.42)

So we summarize the dependence of the scale factor on cosmic time as

a(t) ∝


t

2
3(1+w) =

t2/3 non-relativistic pressureless matter
t1/2 radiation

e
√

Λ
3 t vacuum energy

(A.43)
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From the scale factor, one finds the Hubble parameter

H(t) ∝



2
3(1 + w)

1
t

=


2
3t non-relativistic pressureless matter
1
2t radiation√

Λ
3 vacuum energy

(A.44)

A.2 Thermodynamics in the expanding Universe

As we have said, the early FRW Universe was dominated by radiation, i.e. a primordial
plasma of relativistic particles. These particles are of different species, we shall label with
index i, all characterized by different masses mi and internal degrees of freedom gi. As we
discuss in Chapter 2, each species is effectively described by its phase-space distribution
fi, which, in a homogeneous and isotropic FRW Universe, is a function of energy (or
momentum) of the particle species

Ei(p) =
√
p2 +m2

i , (A.45)

and of cosmic time. Here the momentum p is the physical one, which redshifts with the
expansion as a−1. In fact, in a relativistic framework, the comoving momentum is the
derivate of the comoving coordinates with respect to the affine parameter, describing the
motion of the particle along a worldline:

Pµ = dxµ

dλ
= (E,P i). (A.46)

Instead, the physical momentum is given by

p2 ≡ gijP
iP j = a2δijP

iP j . (A.47)

If P i does not feel the expansion of the Universe, being defined from comoving coordinates,
then p ∝ a−1. The on-shellness condition reads indeed

−m2 = PµPµ = gµνP
µP ν = −E2 + a2δijP

iP j = −E2 + p2 (A.48)

Usually, the time dependence in the distribution function fi is traded for temperature
dependence, as a more effective variable to track the evolution of the Universe. Nevertheless,
the two variables are related, as we shall see at the end of this appendix. In this section, we
focus on the definition of thermodynamical quantities and their computation in the thermal
equilibrium situation. In particular, we want to see how a thermal bath of relativistic
particles can be modelled. This thermal bath will be the environment with whom the DM
will interact, either strongly or feebly.
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So, the crucial function to extract thermodynamical quantities for each particle species
is the phase-space distribution

fi = fi(p, T ), (A.49)

which is the occupation number density in phase-space, counting the number of particles in
a unit phase-space. From that, we can define, for each particle species, the number density

ni = gi

∫
d3p

(2π)3 fi(p, T ) number density (A.50)

The expression comes straightly from the definition of the phase-space distribution. Then,
the full GR expression for the energy-momentum tensor in terms of the distribution function
is [16]

Tµ
ν (x)

∣∣∣∣
i

= gi

∫
d3P

(2π)3
√
−gP

µPν

P 0 fi(x, P ) (A.51)

In the case of FRW metric, it is easy to see that d3P = a−3d3p and to obtain from the
above expression the ones for energy density and isotropic pressure, taking ρ = T 0

0 and
P = T j

j /3:

ρi = gi

∫
d3p

(2π)3 fi(p, T )Ei(p) energy density

Pi = gi

∫
d3p

(2π)3 fi(p, T ) p2

3Ei(p)
isotropic pressure

(A.52)

These two expressions satisfy the fluid equation Eq. (A.35), since Tµ
ν is conserved. Another

crucial thermodynamical variable in the study of the expanding FRW Universe is the
entropy density, defined as

si = ρi + Pi

T
entropy density (A.53)

A.2.1 Equilibrium results

As we discuss in section 2.2, if scatterings and number-changing processes between
the particles of the plasma are efficient, we say that these particle species are in thermal
equilibrium. This implies a specific form for the phase-space distribution function, that is
Fermi-Dirac and Bose-Einstein distributions, depending on the particle species’ statistics.
The chemical potential is usually negligible in this situation for almost all particle species
µ� T , so the equilibrium distribution is

f eq
i (E, T ) =

[
eE/T ± 1

]−1
, (A.54)

with a minus sign for bosons and a plus for fermions. We can compute the thermodynamical
quantities we introduced above using this distribution. Firstly we take advantage of isotropy
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and rewrite the measure appearing in all integrals over momenta as

d3p

(2π)3 = 4πp2dp

(2π)3 = 1
2π2

√
E2 −m2

iEdE. (A.55)

The lower extremum of integration is the mass of the particle species, mi.

Equilibrium number density

For the equilibrium number density, we have

neq
i = gi

2π2

∫ ∞

mi

dE
E
√
E2 −m2

i

eE/t ± 1
. (A.56)

We can compute this expression in the relativistic regime, i.e. for T � mi. In this case, we
can put to zero the mass mi in the above integral and find

neq
i = gi

2π2

∫ ∞

0
dE

E2

eE/t ± 1
= gi

π2T
3 ×


ζ(3) bosons
3
4ζ(3) fermions

T � mi (A.57)

with ζ(3) ' 1.20206 the Riemann zeta. We also want a general expression valid for any
temperature. We can obtain it neglecting the quantum statistics and treating bosons and
fermions in the same way. This can be done as long as we do not have degeneracies in
the plasma, which is almost always the case. Nevertheless, in our cosmological framework,
we know degeneracies can appear only in the relativistic limit, where quantum statistics
provide a small correction, a factor of ζ(3) or 3ζ(3)/4 for bosons and fermions respectively.
So, if we use Maxwell-Boltzmann classical distribution, we get

neq
i = gi

2π2

∫ ∞

mi

dEE
√
E2 −m2

i e
−E/t = giT

3

2π2

(
mi

T

)2
K2

(
mi

T

)
. (A.58)

K2 is the modified Bessel function of the second kind. In our work, we will make frequent
use of this expression and its limits. Using the asymptotic behaviour of the expression

x2K2(x) =


2− x2

2 +O(x3) x� 1

e−x

√
π

2

[
x3/2 + 15

8 x
1/2 +O(x−1/2)

]
x� 1

(A.59)

we can write

neq
i '


gi

π2T
3 mi � T

gi

(
miT

2π

)3/2
e−mi/T mi � T

(A.60)

Notice we have lost the order one quantum correction factors in the relativistic regime.
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Equilibrium energy density

We can write the energy density as

ρeq
i = gi

2π2

∫ ∞

mi

dE
E2
√
E2 −m2

i

eE/t ± 1
. (A.61)

We can give the limiting expression for the integral. In the relativistic case, we can set
mi = 0 and

ρeq
i = gi

2π2

∫ ∞

0
dE

E3

e−E/t ± 1
= gi

π2

30T
4 ×


1 bosons
7
8 fermions

T � mi (A.62)

A general expression for ρeq
i can be found again neglecting the quantum statistics. We

obtain

ρeq
i = gi

2π2

∫ ∞

mi

dEE2
√
E2 −m2

i e
−E/t = giT

4

2π2

(
mi

T

)2[mi

T
K1

(
mi

T

)
+ 3K2

(
mi

T

)]
. (A.63)

Using the asymptotic behaviour of the expression

x2
[
xK1(x) + 3K2(x)

]
=


6− x2

2 +O(x3) x� 1

e−x

√
π

2

[
x5/2 + 27

8 x
3/2 +O(x1/2)

]
x� 1

(A.64)

we can write

ρeq
i '


gi

3
π2T

4 mi � T

gi

(
m

5/3
i T

2π

)3/2

e−mi/T = mneq
i mi � T

(A.65)

Indeed we find the canonical expression ρ = mn for the energy density of non-relativistic
particles, where the energy of a particle is dominated by its mass. In the relativistic case
the factor in front of giT

4 is very similar to the one found using the quantum statistics:
π2/30 ' 0.33, while 3/π2 ' 0.30. To find the expressions for the pressure we can simply
exploit the equation of state of a barotropic fluid Pi = wiρi.

Entropy density

We can consider the equilibrium FRW Universe as a system undergoing an adiabatic
expansion, i.e. in which entropy is conserved in time. The entropy is conserved for each
particle species in thermal equilibrium. Indeed it can be shown that S = a3s is constant
by thermodynamics, using the fact that at equilibrium dS is an exact differential form and
the continuity equation Eq. (A.35). Following [16], we will show the same result holds
assuming the distribution function fi depends only on the ratio E/T , as it is the case for
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thermal equilibrium, where the chemical potential is negligible. It holds that

df eq
i

dT
= −E

T

df eq
i

dE
, (A.66)

so, if we take the temperature derivative of the isotropic pressure, we get

dPi

dT
=− 1

T

gi

2π2

∫ ∞

mi

dE(E2 −m2
i )3/2E

3
df eq

i

dE

= − 1
T

gi

2π2

[
(E2 −m2

i )3/2E

3 f
eq
i

∣∣∣∣∞
mi

−
∫ ∞

mi

dE

(
E2(E2 −m2

i )1/2 + 1
3(E2 −m2

i )3/2
)
f eq

i

]
= ρi + Pi

T
= si.

(A.67)
To show that si ∝ a−3, we rewrite Eq. (A.35) in the form

a−3 ∂

∂t

[
(ρi + Pi)a3

]
− ∂Pi

∂t
= 0. (A.68)

Then we rewrite the time derivative of pressure as ∂Pi/∂t = dT/dt∂Pi/∂T and introduce
si

0 = a−3 ∂

∂t

[
(ρi + Pi)a3

]
− dT

dt
si = a−3T

∂

∂t

[
sia

3
]
. (A.69)

Hence Si = const and si ∝ a−3. Although we have done our calculation for a single species,
the scaling clearly holds for the total entropy density, obtained as the sum of all the species
in equilibrium. In particular, if two species are in equilibrium “with themselves”, as it is
for decoupled species, the sum of their entropy densities still scales as a−3. Let us write
limit expressions for si in the relativistic and non-relativistic regime

si =


4
3
ρi

T
= 2π2

45 giT
3 ×

1 bosons
7/8 fermion

T � mi

ρi

T
= gi

(
miT

2π

)3/2 mi

T
e−mi/T T � mi

(A.70)

Notice that, once the particle species become non-relativistic, its entropy density drops
exponentially.

A.2.2 Effective number of degrees of freedom

In the very early FRW Universe, Standard Model particle species constitute the
primordial plasma, a bath of particles interacting so effectively that they are in thermal
equilibrium. This thermal bath dominates the energy density and is characterized by the
radiation temperature T (by reference, the black body temperature of photons) and a
given number of effective degrees of freedom. As the Universe expands and consequently
cools down, various particle states become non-relativistic and their number density is
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exponentially suppressed. In other words, they disappear from the thermal bath and
the plasma loses degrees of freedom. The mass spectrum of the Standard Model and
the features of the interactions between its particles add peculiarities to the process of
depletion of degrees of freedom. Two particularly delicate moments are the electroweak
phase transition (EWPT) and the QCD phase transition (QCDPT), where the particle
content of the Universe changes drastically. Other peculiar cases are the decoupling of
relativistic degrees of freedom, such as neutrinos. Their number density is not exponentially
suppressed: neutrinos simply cease to interact with the thermal bath and free-stream,
making a thermal bath with conserved entropy on their own, with a possibly independent
temperature.

We describe the radiation thermal plasma in terms of its energy density

ρ =
∑

i

ρi ≡
π2

30g?ρ(T )T 4, (A.71)

and entropy density

s =
∑

i

si ≡
2π2

45 g?s(T )T 3. (A.72)

The sum is over all relativistic states. The functions g?ρ(T ) and g?s(T ) describe the
effective number of active relativistic degrees of freedom in energy density and entropy,
respectively. If we neglect the details of the complex physics involved in phase transitions
and we consider sharp mass thresholds, we can write approximate expressions for the two
functions. From their above definition, we can write, in the relativistic limit Ti � mi

g?ρ(T ) =
∑

i, bosons
gi

(
Ti

T

)4
+ 7

8
∑

i, fermions
gi

(
Ti

T

)4
Ti � mi

g?s(T ) =
∑

i, bosons
gi

(
Ti

T

)3
+ 7

8
∑

i, fermions
gi

(
Ti

T

)3
Ti � mi

(A.73)

We have allowed species to have their temperatures, to take into account decoupled species.
In this limit, the two functions are approximated as step functions, but the actual behaviour
is smooth.

Throughout our work, we use the fitting expressions found by [32] for the effective
degrees of freedom in density and entropy as functions of the photon temperature T . These
results are obtained from the Standard Model and other approximations used to model all
the details of phase transitions in the early Universe, at the best of our knowledge. We
define τ = log(T/GeV).

For 120 GeV< T < 1016 GeV we have

g?ρ(T ) '
∑11

i=0 aiτ
i∑11

i=0 biτ i
, g?s(T ) ' g?ρ(T )

(
1 +

∑11
i=0 ciτ

i∑11
i=0 diτ i

)−1
. (A.74)
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The coefficients ai, bi, ci, di given in the following table.

i ai bi ci di

0 1 1.43382e−02 1 7.07388e+01
1 1.11724e+00 1.37559e−02 6.07869e−01 9.18011e+01
2 3.12672e−01 2.92108e−03 −1.54485e−01 3.31892e+01
3 −4.69049e−02 −5.38533e−04 −2.24034e−01 −1.39779e+00
4 −2.65004e−02 −1.62496e−04 −2.82147e−02 −1.52558e+00
5 −1.19760e−03 −2.87906e−05 2.90620e−02 −1. 97857e−02
6 1.82812e−04 −3.84278e−06 6.86778e−03 −1.60146e−01
7 1.36436e−04 2.78776e−06 −1.00005e−03 8.22615e−05
8 8.55051e−05 7.40342e−07 −1.69104e−04 2.02651e−02
9 1.22840e−05 1.17210e−07 1.06301e−05 −1.82 134e−05
10 3.82259e−07 3.72499e−09 1.69528e−06 7.83943e−05
11 −6.087035e−09 −6.74107e−11 −9.33311e−08 7.13518e−05

Instead, for T < 120 MeV the fitting formulae are the following ones:

g?ρ(T ) ' 2.030 + 1.353S4/3(xe) + 3.495fρ(xe) + 3.466fρ(xµ) + 1.05bρ(xπ0) + 2.08bρ(xπ±)
+ 4.165bρ(x1) + 30.55bρ(x2) + 89.4bρ(x3) + 8209bρ(x4),

(A.75)
g?s(T ) ' 2.008 + 1.923S(xe) + 3.442fs(xe) + 3.468fs(xµ) + 1.034bs(xπ0) + 2.068bs(xπ±)

+ 4.16bs(x1) + 30.55bs(x2) + 90bs(x3) + 6209bs(x4),
(A.76)

having defined xi = mi/T where me = 511× 10−6 GeV mµ = 0.1056 GeV, mπ0 = 0.135
GeV, mπ± = 0.140 GeV, m1 = 0.5 GeV, m2 = 0.77 GeV, m3 = 1.2 GeV, and m4 = 2 GeV.
The functions used in the right-hand sides of Eq. (A.75), Eq. (A.76) are

h(x) = e−Ax(1 +Bx+ Cx2 +Dx3),

S(x) = 1 + 7
4e

−Ax(1 +Bx+ Cx2 +Dx3),
(A.77)

with h(x) = fρ(x), bρ(x), fs(x), bs(x) and coefficients A,B,C,D given in the following table.
We show in Fig. A.1 the behaviour of the relativistic degrees of freedom as functions of

A B C D

fρ(x) −1.04855 1.03757 0.508630 0.0893988
bρ(x) −1.03149 1.03317 0.398264 0.0648056
fs(x) −1.04190 1.03400 0.456426 0.059524
bs(x) −1.03365 1.03397 0.34258 0.0506182
S(x) −1.0419 1.034 0.456426 0.0595249

the temperature.
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Figure A.1: The evolution of the number of relativistic degrees of freedom throughout the
thermal history of the early Universe, according to Eqs. (A.74), (A.75), (A.76), from [32]. In
green (right y-axis) we show the log-derivative d log g?s(T )/d log x with d log x = −d log T .

A.2.3 Temperature as time variable

Usually, the temperature is used as a more appropriate time variable to describe the
evolution of quantities in the expanding Universe with respect to cosmic time. The most
suitable choice is to use the temperature of the photon bath T . Exploiting conservation of
entropy, we can write the derivative of time with respect to the radiation temperature

dS1/3

dT
= 0 =⇒ d

dT
(g1/3

?s (T )Ta) = 0, (A.78)

0 = d

dT
(g1/3

?s (T )Ta) = 1
3g

−2/3
?s

dg?s

dT
Ta+ g

1/3
?s a+ g

1/3
?s TaH

dt

dT

= 1
3
d log g?s

d log T + 1 +H
dt

d log T .
(A.79)

We can relate time derivatives of a generic function ξ to temperature derivatives through
the following relation:

dξ

dt
= −

(
1 + 1

3
d log g?s

d log T

)−1
H

dξ

d log T . (A.80)

This expression is completely general and it is valid throughout the FRW thermal history.



156 APPENDIX A. FRIEDMANN-ROBERSTON-WALKER COSMOLOGY



Appendix B

ΛCDM on small scales

The CDM hypothesis emerged in the early 1980s and quickly became a central element
of the theory of cosmic structure formation. By the end of the 1990s, the pure CDM
model with scale-invariant primordial fluctuations and a critical matter density had run
against many observational pieces of evidence: the shape of the galaxy power spectrum,
estimates of the mean matter density from galaxy clusters and galaxy motions, the age of
the Universe inferred from estimates of the Hubble constant, and the amplitude of matter
density contrast predicted from the fluctuations measured in the CMB. To address these
challenges, many variants of the pure CDM were proposed and, by the new century, the
combination of supernova evidence for cosmic acceleration and CMB witness for a flat
Universe led to the need to incorporate a cosmological constant Λ and inflationary initial
conditions to give the ΛCDM model.

B.1 Controversies

On scales larger than those of the stellar distribution in normal galaxies (> 10 kpc),
the predictions of ΛCDM have been amply tested, and, although nor semianalytic theory
or numerical simulations can yet match all experimental data, the correspondence between
calculation and observation is now good enough to guarantee that at large scales the ΛCDM
model is correct. This model is the best way we have to account for the most important
observed features of our Universe, such as its accelerated expansion, the abundances of
light elements and Big Bang Nucleosynthesis, the CMB and the formation of large scale
structures. Moreover, the initial spectral index of the perturbations normalized to the
observed fluctuations in the CMB is slightly less than unity, consistently with an early
inflationary stage. The power spectrum of these matter density fluctuations, determined
at redshift z ∼ 103 by observations of the CMB, correctly produces the present time power
spectrum, at redshift z = 0, with per cent precision, even though the amplitude changes
over 5 orders of magnitude.
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However, on small, galactic scales . 10 kpc, the ΛCDM predictions of the distribution
of DM are, in most cases, inconsistent with observations. Following the short review in [48]
and the analysis in [49] we summarize the three main problems.

The cusp-core problem N -body simulations with initial linear fluctuations in a
ΛCDM framework evince that the formed non-linear DM structures (called halos if isolated,
subhalos if embedded in a larger halo) show singular density cusps at their centres. In
fact, the density profile of a halo of mass M = (4πr3

v/3)200ρb, with rv the virial radius
(defined as the radius at which the density is 200 times the background one) and ρb the
background density of the Universe, follows the fitting form found by Navarro, Frank and
White (NFW) [50,51]

ρ(r,M) ' 200
3 f(C)ρb

(
r

Rc

)−α(
1 + r

Rc

)−2
. (B.1)

The factor f(C) is defined as f(C) = C3[log(1+C)−C(1+C)−1]−1 with C a concentration
parameter varying from halo to halo and weakly depending on its mass, and Rc is the
characteristic radius of the halo, defined as the radius at which d log ρ/d log r = −2; it
can also be expressed as Rc = rv/C. The profile implies a cuspy behaviour ρ ∼ r−α

inside the characteristic radius, with α ∈ [1, 1.5]. Instead, observations of DM-dominated
dwarf spherical galaxies (dSphs) and low surface brightness galaxies are in general better
described by a cored density profile. As shown in Fig. B.1, the inner mass profile of a DM
halo can be probed by rotation curve measurements: for circular motions in a spherical
matter distribution, the rotation speed is simply

v(r) =

√
GM(r)

r
, (B.2)

and it can be estimated from neutral-hydrogen redshift lines. It is evident that once
normalized to match the observed rotation at large radii, the NFW halo overpredicts the
rotation speed in the inner few kpc, by a factor of two or more. Indeed, many authors have
reported evidence that the Milky Way satellites Fornax and Sculptor have cored density
profiles.

The missing satellite problem Fig. B.2 left panel illustrates the “missing satellite”
problem. N -body simulations show that DM halos retain a large number of substructures
formed by earlier collapses on smaller scales hierarchically, predicting hundreds or thousands
of subhalos, on which luminous galaxies could have formed [48]. Since there are about ten
dwarf satellite galaxies known within the ∼ 250 kpc virial radius of the Milky Way halo, a
comparison suggests that the predicted satellite population far exceeds the observed one 1.
Another way of stating the problem is that the number density of galaxies varies with their

1Actually establishing the “correspondence” between satellite stellar dynamics and subhalo properties is
a key technical point we won’t address here.
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Figure B.1: The cusp core problem. Left: the measured rotation curve of F568-3 (points)
compared to model fits assuming a cored DM halo (blue solid curve) or a cuspy DM halo
with an NFW profile (red dashed curve), concentration C = 9.2 , v = 110 kms1, published
by [52]. The dotted green curve shows the contribution of baryons (stars+gas) to the
rotation curve, which is included in both model fits. Right: DM halo density profiles
inferred from rotation curves of seven low surface brightness galaxies, from [53]. The
dotted black curve indicates the cuspy density profile that diverges toward small radii and
characterises CDM halos formed in N -body simulations. Profiles inferred from observations
of real galaxies (dashed red curves) tend to be cored, converging to approximately constant
central density.

total stellar mass roughly as dn(M?) ∝M−1.2
? dM? while the predicted number density of

halos increases with decreasing halo mass much more steeply, dn(Mh) ∝M−2
h dMh [55].

The too-big-to-fail problem As we can see from Fig. B.2, right, the mass in
the central regions of the subhalos in simulations exceeds the mass inferred from stellar
dynamics of observed dwarfs, by a factor ∼5. In principle it might be that these massive
subhalos are dark, i.e. they do not host any galaxy, and that the observed dwarfs reside in
less massive hosts but this explanation is quite unphysical. Therefore, in its present form,
this problem is related to the cusp-core problem: numerical simulations of CDM structure
formation predict too much mass in the central regions of halos and subhalos.

To summarize, we can say that none of the key features associated to the CDM model
on galactic scales has ever been detected.
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Figure B.2: Left: the missing satellites problem. Spatial distribution of DM (pixel brightness
scales with density) obtained in the ∼ 1 Mpc2 simulation box from a high-resolution ΛCDM
N -body simulation by [54]. The simulated DM distribution shows much richer substructure
than does the observed luminous distribution, e.g. considering Andromeda’s or Milky
Way’s satellites. Right: the too-big-to-fail problem. Black curves display profiles of enclosed
mass, M(r) (top), and its logarithmic slope (bottom), for the most massive CDM subhalos
formed in simulations of the Milky Way neighbourhood. Data points indicate estimates of
(i) dynamical masses enclosed within the projected half-light radii of the Milky Way’s most
luminous dwarf spheroidal satellites and, for two dwarfs (shown in red) with estimated
core sizes, (ii) the slopes defined by masses enclosed within the different half-light radii of
distinct stellar subpopulations. With respect to observations of real dwarf satellites, the
simulated subhalos have more mass enclosed at the measured half-light radii and their
enclosed-mass profiles have shallower slopes. Figure from [49].

B.2 Possible solutions

There are mainly two ways by which the small scale conflicts between N -body predictions
and observed galaxy properties can be solved: one is through complex ”baryonic physics”
(gas cooling, star formation, and associated feedback), the other is to require different
properties of the DM itself.

B.2.1 Baryonic physics

As stated in [55], the missing satellite and too-big-to-fail problems might be solved by
baryonic physics that causes the efficiency of transforming baryons into stars to be lower in
systems of lower mass. The idea is that molecular cooling physics may make star formation
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efficiency highly stochastic at a halo mass as high as 1010M�, such that even the Milky
Way’s most massive subhalos are not too-big-to-fail; then, ram pressure in the galactic
halo could remove the gas from the dark subhalos. Consequently, thousands of optically
invisible low-mass halos, Mh . 108.5 M� are predicted to exist in our Galaxy and others.

The cusp-core problem is addressed by considering supernovae explosions that blow out
baryonic material, leaving the halo less concentrated. Another point of view is to consider
the feedback of these explosions on the gravitational potential: the rapid fluctuations pump
energy into the DM orbits so they no longer penetrate the centre of the halo, leading to a
nearly constant density core. However, there is no agreement on the fact that the model
can work for dwarf galaxies with masses M? < 107 M� which, having few stars, i.e. a
small baryonic fraction, have not the necessary supernovae reservoir to create DM cores of
∼ 1 kpc. Therefore it is argued that isolated dwarf galaxies, being DM-dominated, cannot
receive a significant contribution from baryonic physics. The fact that the central density
problem persists even for these systems [48] somehow calls for a solution to the small-scale
shortcomings to be found in the DM sector, rather than in complex baryonic physics.

B.2.2 Warm dark matter

Instead of the relevance of complex baryonic effects, the small-scale problems could
indicate a failure of the CDM hypothesis itself. One potential solution is to consider Warm
Dark Matter (WDM), e.g. thermal relics with a mass around 1 keV so that its higher
free-streaming velocities in the early Universe are large enough to suppress primordial
fluctuations on sub-galactic scales. In this case, the linear power spectrum with WDM
would be suppressed below the free-streaming scale, and there will be no room for low-mass
halos or subhalos. Although the collisionless collapse of WDM would lead nevertheless to
a cuspy halo [48], the central concentration is lower when the mass scale is close to the
spectral cutoff: the mass function drops at low masses because there are no small scale
perturbations to produce collapsed objects. This can drive predictions into an agreement
with dwarf satellite observations. However, WDM is an ad hoc solution to the CDM
problems on small scales and remarkably it encounters further shortcomings. In particular,
WDM would be even too efficient in erasing small scale structures such that we would face
the opposite problem of not being able to take into account the few subhalos needed to
host the Milky Way’s known satellites. Moreover, constraints at high redshift, e.g. from
the Lyman-α forest [56], put lower bounds on the WDM particle mass forcing it to be
colder. Nevertheless, WDM can alleviate the CDM shortcomings on small scales.

B.2.3 Self Interacting dark matter

An interesting idea is to consider strong self-interactions among DM particles, i.e.
Self Interacting Dark Matter (SIDM). The idea is that the halo is thermalized by elastic
scatterings so that a core of constant density is created. In the work of [57] it is shown
that there is a region of parameter space for the cross-section and mass where SIDM can
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Figure B.3: Effect of self-interacting dark matter (SIDM) on halo structure, from simulations
by [57], with cross-section of σ ' 1 barn .The plot shows clearly the flattening in the core
due to elastic scattering comparing, CDM and SIDM halo density profiles.

be consistent with observations while giving cored halo profiles. In Fig. B.3, we see a
comparison between the density profiles of CDM and SIDM in case of a self-interaction
cross-section of σ ' 1 barn (i.e. a nuclear cross-section approximately): the collisions
flatten the cusp and favour spherical symmetry over triaxiality. Moreover, despite being
more easily subject to tidal disruption caused by the fact that SIDM is less bound, SIDM
subhalos are produced in a fair number to match the number of satellites of the Milky Way.
Also, triaxiality is preserved to a certain degree such that it fits data. So, unlike standard
WDM, SIDM is still a viable DM model and it is being tested and deepened both from the
particle physics sector and from the astrophysical and cosmological observation point of
view.



Appendix C

The collision operator from first
principles

In this appendix, we want to understand from first principles the form of the collision
operator, the right-hand side of the Boltzmann equation. This term only accounts for
processes (scatterings and decays) in which the particle, whose phase-space distribution
we are studying, is involved. Therefore the form of the collision operator is completely
independent of the geometry of the spacetime we are considering, i.e. of the metric. Hence,
we can find the general expression for the collision operator in the simplest case of a
Minkowski spacetime with metric

ds2 = −dt2 + δijdx
idxj . (C.1)

Moreover, we will consider a finite region of space, a box of volume V in which the particle
of interest χ is involved in the generic process

χ+ a+ · · ·+ b −→ i+ j + · · ·+ k, (C.2)

with n particles in the initial state and m particles in the final state. We define the collision
operator simply as the right-hand side of the Boltzmann equation; we put ourselves in a
relativistic framework and write the Boltzmann equation in the Lorentz-invariant (or in
general covariant) form

L[fχ] = C[fχ], (C.3)

for the phase-space distribution fχ(xµ, pµ). For our simple choice of the metric, Eq. 2.8
gives

L[fχ] = Eχ
dfχ

dt
(C.4)

since the affine connection coefficients are identically zero and homogeneity assures fχ =
fχ(t, |~p|) is independent on positions and directions of momenta. Notice that, if there were
no collisions, C[fχ] = 0, the result of the Boltzmann equation would be that the phase-
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space distribution is constant in time. Instead, if collisions are present, the phase-space
distribution is altered and evolves in time.

From its definition, if we integrate fχ over the whole phase-space, we get the number
of χ particles in the box Nχ

gχ

∫
V d3p

(2π)3 fχ = Nχ (C.5)

with gχ the number of internal degrees of freedom of the χ particle. Taking the time
derivative of both sides of Eq. (C.5), we can use the Boltzmann equation,

C[fχ] = Eχ
dfχ

dt
(C.6)

to get a physical understanding of the collision operator

gχ

∫
V d3p

(2π)3
C[fχ]
Eχ

= dNχ

dt
. (C.7)

Defining the Lorentz-invariant measure

dΠ = gd3p

(2π)32E , (C.8)

we have ∫
V dΠχC[fχ] = 1

2
dNχ

dt
. (C.9)

The collision operator accounts for the time variation of the phase-space distribution and
it is responsible for the possible change in the number of χ particles in the box due to the
processes considered. To find the explicit expression for the collision operator, we have
to derive from first principles the right-hand side of the above equation. Throughout the
discussion and also in our work, we neglect possible quantum degeneracies effects due to
the quantum nature of the particles involved. The change in the number of χ particles in
the box in the time interval dt is given, naively by

dNχ

dt
= rate of collisions× number of initial state particles

= dw

dt
×Ninitial

(C.10)

where
Ninitial = gχ · · · gb

∫
V d3pχ · · ·V d3pb

(2π)3 · · · (2π)3 fχ · · · fb, (C.11)

is, by definition, the total number of initial state particles. Instead, dw/dt is the probability
for the process to happen per time interval dt. We want to find the correct Lorentz-invariant
form for this factor. Following [40] we consider the S-matrix element between the initial |i〉
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and final state 〈f |, which is of the form

Sfi = 〈f |i〉 = δfi + i(2π)4δ(4)(Pi−Pf ) 1
(2EχV )1/2 · · · (2EbV )1/2(2EiV )1/2 · · · (2EkV )1/2M,

(C.12)
with Pi = pχ + pa + · · · + pb and Pf = pi + pj + · · · + pk for the ease of notation. Here
M is the matrix element of the process, such that its squared modulus |M|2 is summed
over final spin states and averaged over initial spin states. We have normalized the matrix
element with the Lorentz-invariant normalization of both initial and final states in the Fock
space. The probability for the process to happen is proportional to the squared S-matrix
element. Since initial and final states are different, we get [40]

|Sfi|2 = (2π)4δ(4)(Pi − Pf ) V dt

(2EχV ) · · · (2EbV )(2EiV ) · · · (2EkV ) |M|
2, (C.13)

having regularized time and space

(2π)4δ(4)(0) = V dt. (C.14)

The desired probability is obtained summing sum this expression over all final states 〈f |.
Since we are working in a finite volume V , this is the sum over the possible discrete values
of the momenta of the final particles. In the large-volume limit for each particle, we can
write the sum over momenta in the continuum limit as

∑
~pi···~pk

'
∫
V d3pi · · ·V d3pk

(2π)3 · · · (2π)3 , (C.15)

as we have done to integrate over the whole phase-space. Therefore our desired probability
rate reads

dw

dt
=
∫
V d3pi · · ·V d3pk

(2π)3 · · · (2π)3 (2π)4δ(4)(Pi − Pf ) V

(2EχV ) · · · (2EbV )(2EiV ) · · · (2EkV ) |M|
2.

(C.16)
We have V m+1 at the numerator and a V n+m at the denominator. Moreover, we can
introduce Lorentz-invariant measures dΠ for the final states particles, giving

dw

dt
=
∫
dΠi · · · dΠk(2π)4δ(4)(Pi − Pf ) V 1−n

(2Eχ) · · · (2Eb)
|M|2

gi · · · gk
.. (C.17)

We now introduce the squared matrix element averaged over both initial and final states

|M|2 = |M|2

gi · · · gk
, (C.18)

we use throughout this work. We can now compute the change in the number of χ particles
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in the time interval dt taking the product of Eq. (C.11) and Eq. (C.17):

dNχ

dt
=
∫
dΠi · · · dΠk(2π)4δ(4)(Pi−Pf ) V 1−n

(2Eχ) · · · (2Eb)
|M|2gχ · · · gb

V d3pχ · · ·V d3pb

(2π)3 · · · (2π)3 fχ · · · fb.

(C.19)
Now we have V 1−n×V n = V at the numerator. Moreover, we can collect Lorentz-invariant
measures for the initial state particles, obtaining finally

dNχ

dt
=
∫
dΠχ · · · dΠbdΠi · · · dΠk(2π)4δ(4)(Pi − Pf )V |M|2fχ · · · fb. (C.20)

Now we can compare Eqs. (C.9) and (C.20) to obtain the expression for the collision
operator for the above process:

C[fχ] = 1
2

∫
dΠa · · · dΠbdΠi · · · dΠk(2π)4δ(4)(pχ + · · ·+ pb − pi − · · · − pk)|M|2fχ · · · fb.

(C.21)
We remark that this form for the collision operator is valid in general, independently of
the chosen metric, since it is based only on a relativistic treatment of scatterings.



Appendix D

Collision terms for various
processes

In this appendix, we find the explicit form of the collision term C for various processes,
which is needed to write and solve the Boltzmann equation for the phase-space distribution
fχ. We will neglect the quantum statistics for particles χ so that the collision term is
independent on fχ. We consider the three most recurrent cases: two-body decays, 2→ 2
scatterings and also three-body decays.

D.1 Two-body decays

Neglecting the Pauli-blocking and Bose-enhancement effects for the particle χ, 1∓fχ ' 1,
the collision term for decays

1→ 2 + χ (D.1)

is

gχC(T, p)
E

= gχ

2E

∫
dΠ1dΠ2(2π)4δ(4)(p1−p2−p)|M1→2χ|2f1(T,E1)(1∓f2(T,E2)). (D.2)

We denote quantities relative to χ without any subscript and pi = (Ei, ~pi) are four-momenta
of i = 1, 2 particles. Here |M1→2χ|2 is the process amplitude squared averaged over both
initial and final degrees of freedom. This is independent of any momentum, since we
can find the momenta of the decay products in the particle 1 centre-of-mass frame p? as
functions of masses only solving the equation

m1 =
√
m2

2 + p2
? +

√
m2

χ + p2
?. (D.3)

Being the amplitude a Lorentz scalar, it is independent on the frame we are computing it.
We can use the three-dimensional Dirac delta δ(3)(~p1 − ~p2 − ~p) to get rid of the integration
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in d3p1. We obtain

gχC(T, p)
E

= gχg1
2E |M1→2χ|2

∫
dΠ2(2π)δ(E1 − E2 − E)f1(T,E1)[1∓ f2(T,E2)], (D.4)

with now E1 a fixed function

E1 = E1(p, p2, cos θ) =
√
m2

1 + (~p2 + ~p)2 =
√
m2

1 + p2 + p2
2 + 2pp2 cos θ, (D.5)

getting back to the notation pi ≡ |~pi| and calling θ the angle between vectors ~p and ~p2. Let
us write the integral in a more explicit form, performing the trivial integration over all the
angles but θ

gχC(T, p)
E

=gχg1g2
2E |M1→2χ|2

∫ (2π)p2E2dE2d cos θ
(2π)24E1(p, p2, cos θ)E2

δ(E1(p, p2, cos θ)− E2 − E)

× f1(T,E1(p, p2, cos θ))[1∓ f2(T,E2)]
(D.6)

We can exploit the remaining Dirac delta to perform the integration over cos θ. From the
conservation of energy we find

E1(p, p2, cos θ) = E2 + E =⇒ cos θ? = (E2 + E)2 −m2
1 − p2 − p2

2
2pp2

. (D.7)

Using the properties of the delta function,

δ(E1(p, p2, cos θ)− E2 − E) = E1(p, p2, cos θ)
pp2

δ(cos θ − cos θ?), (D.8)

we can perform the integration over cos θ.

gχC(T, p)
E

= gχg1g2
16πEp |M1→2χ|2

∫ ∞

0
dE2 f1(T,E1(p, p2, cos θ?))[1∓ f2(T,E2)]

×
∫ +1

−1
d cos θδ(cos θ − cos θ?)

(D.9)

The integral over cos θ gives 1 if cos θ? ∈ [−1, 1] and 0 otherwise. This puts a constraint
on the possible values of E2 we can integrate over, i.e. assuming the integral over cos θ is 1
leads to integration over energies which has to satisfy

(E2 + E)2 −m2
1 − p2 − p2

2
2pp2

= cos θ? ∈ [−1, 1]. (D.10)

This means we can find the limiting solutions from the equation√
m2

1 + (p± p2)2 =
√
m2

2 + p2
2 +

√
m2

χ + p2, (D.11)
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for cos θ? = ±1. We solve these equations for momentum p2 and find

p+
2 =

p(m2
1 −m2

2 −m2
χ)±

√
(p2 +m2

χ)k(m1,m2,mχ)
2m2

χ

if cos θ? = +1

p−
2 =

−p(m2
1 −m2

2 −m2
χ)±

√
(p2 +m2

χ)k(m1,m2,mχ)
2m2

χ

if cos θ? = −1

(D.12)

remembering k(b, c, d) ≡ [b2 − (c + d)2][b2 − (c − d)2]. However, since pi > 0 and m2
1 ≥

(m2 +mχ)2 ≥ m2
2 +m2

χ to allow the decay, the physical solutions are only two of them

p+
2 =

p(m2
1 −m2

2 −m2
χ) +

√
(p2 +m2

χ)k(m1,m2,mχ)
2m2

χ

if cos θ? = +1

p−
2 =

∣∣∣∣∣∣
p(m2

1 −m2
2 −m2

χ)−
√

(p2 +m2
χ)k(m1,m2,mχ)

2m2
χ

∣∣∣∣∣∣ if cos θ? = −1

(D.13)

Clearly Eq. (D.10) is satisfied for p2 ∈ [p−
2 , p

+
2 ]. These two expressions are not valid

explicitly if mχ = 0, so we provide limiting expressions for mχ � m2,m1, which will be
exploited in our work:

p+
2 = p

(
m2

1 −m2
2

m2
χ

− m2
1

m2
1 −m2

2

)
+ m2

1 −m2
2

4p +O(m2
χ),

p−
2 = p

(
m2

2
m2

1 −m2
2

)
− m2

1 −m2
2

4p +O(m2
χ).

(D.14)

We see that, for mχ → 0 we have p+
2 →∞, while p−

2 is finite. At the end, we are left with
only the integral over E2 ∈ [E−

2 , E
+
2 ] with

E±
2 =

√
m2

2 + (p±
2 )2, (D.15)

reading

gχC(T, p)
E

= gχg1g2
16π

|M1→2χ|2

Ep

∫ E+
2

E−
2

dE2 f1(T,E2 + E)[1∓ f2(T,E2)]. (D.16)

This is the general result for any distribution functions f1,2. The integral can be computed
numerically if one knows their expressions. However, if we assume thermal distributions1

f eq
i (T,Ei) =

{
1± eEi/T

}−1
, (D.17)

1The ± signs refer to fermions and bosons respectively, they are not associated with the solutions p±
2 .
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we can perform the integral analytically, obtaining

gχC(T, p)
E

= gχg1g2
16π |M1→2χ|2

T

Ep
heq(T, p), (D.18)

with heq(T, p) depending on the quantum statistics of 1 and 2:

heq =



2 log
[

1 + e−(E−
2 +E)/T

1 + e−(E++E)/T

]
+ 1

eE/T − 1
log
[(

1 + eE+
2 /T

1 + eE−
2 /T

)(
1 + e(E−

2 +E)/T

1 + e(E++E)/T

)]
1 FD, 2 FD

−2eE/T log
[

1 + e−(E−
2 +E)/T

1 + e−(E++E)/T

]
+ 1

eE/T + 1
log
[(

1 + eE−
2 /T

1 + eE+
2 /T

)(
1 − e(E−

2 +E)/T

1 − e(E++E)/T

)]
1 BE, 2 FD

1
1 − eE/T

log

 sinh
(

E+
2

2T

)
sinh

(
E+E−

2
2T

)
sinh

(
E−

2
2T

)
sinh

(
E+E+

2
2T

)
 1 BE, 2 BE

1
1 + eE/T

log

 sinh
(

E+
2

2T

)
cosh

(
E+E−

2
2T

)
sinh

(
E−

2
2T

)
cosh

(
E+E+

2
2T

)
 1 FD, 2 BE

(D.19)
A simpler form is obtained if we neglect the quantum behaviour of particle 2, assuming
(1∓ f2) ' 1

heq(T, p) = ± log
[1± e−(E−

2 +E)/T

1± e−(E++E)/T

]
, (D.20)

with + sign if 1 is a fermion, − if it is a boson. This formula agrees with the one found
in [64,67]. Furthermore, if we neglect the quantum nature of all particles and assume a
Maxwell-Boltzmann statistics for particle 1, i.e. f1 ' e−(E+E2)/T , we end up simply with

hMB
eq (T, p) = e−(E−

2 +E)/T − e−(E+
2 +E)/T . (D.21)

D.2 Scatterings

D.2.1 Single production

Now we focus on scatterings of the type

1 + 2 −→ 3 + χ. (D.22)

The general collision term is

gχC(T, p)
E

= gχ

2E

∫
dΠ1dΠ2dΠ3(2π)4δ(4)(p1 + p2 − p3 − p)|M12→3χ|2F123(T,E1, E2, E3),

(D.23)
where we have defined F123 = f1(T,E1)f2(T,E2)(1∓ f3(T,E3)). The integration is better
performed in terms of Lorentz-invariant quantities such as the Mandelstam variables s and
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t:
s =− (p1 + p2)2 = −(p3 + p)2,

t =− (p1 − p)2 = −(p3 − p2)2.
(D.24)

Indeed, unlike the case of decays, the averaged squared amplitude is not constant in general
but it is a function of s and t. Therefore we will not be able to take it out of the integrals.
Let us recast the integrals over p1 and p2 in a more convenient form. First, we remove the
integration over p2 exploiting the three-dimensional part of the Dirac delta

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p1 + p2 − p3 − p) = 2πd cos θ1χp
2
1dp1

(2π)24E1E?
2

δ(E1 + E?
2 − E3 − E),

(D.25)
where E?

2 =
√
m2

2 + (~p3 + ~p− ~p1)2 and θ1χ is the angle between ~p1 and ~p. Now we exploit
the Lorentz invariance of measures dΠ1 and dΠ2 to evaluate them in the centre-of-mass
frame. In this frame, momenta of 1 and 2 are equal and opposite in direction ~p12 = −~p21
and moreover, their modulus is fully determined as a function of s when we exploit the
delta function

s =
(√

m2
1 + p2

12 +
√
m2

2 + p2
12

)2
=⇒ p12(

√
s) = k1/2(

√
s,m1,m2)
2
√
s

. (D.26)

The same happens for particles 3 and χ:

s =
(√

m2
3 + p2

3χ +
√
m2

χ + p2
3χ

)2
=⇒ p3χ(

√
s) = k1/2(

√
s,m3,mχ)
2
√
s

. (D.27)

In the centre-of-mass the constrained energy of particle 2 is E?
2 =

√
m2

1 + p2
12. So evaluatng

everything in the centre-of-mass frame the right hand side of Eq. (D.25) reads

d cos θ1χp
2
12dp12

8πEcm
1 E?,cm

2
δ

(√
m2

1 + p2
12 +

√
m2

2 + p2
12 −

√
s

)
. (D.28)

We trade the integration over cos θ1χ for an integration over t,

t = m2
1 +m2

χ − 2(Ecm
1 Ecm − p12p3χ cos θ1χ) =⇒ d cos θ1χ = dt

2p12p3χ
. (D.29)

Using the properties of the Dirac delta, we make it a function of p12 to eliminate the
integration over this variable.

δ

(√
m2

1 + p2
12 +

√
m2

2 + p2
12 −

√
s

)
= Ecm

1 E?,cm
2

p12
√
s

δ[p12 − p12(
√
s)]. (D.30)

Exploiting these relations, we are now able to conclude that

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p1 + p2 − p3 − p) = dt

16πp3χ(
√
s)
√
s
. (D.31)
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Hence the collision term reads

gχC(T, p)
E

= gχg1g2g3
32πE

∫
d3p3

(2π)32E3

dt

p3χ(
√
s)
√
s
|M12→3χ|2(s, t)F123(T, s, t, E3). (D.32)

The integration over ~p3 can be rewritten as the integration over E3 and s using 2

s = m2
3 +m2

χ + 2(E3E + p3p cos θ3χ), (D.34)

to replace the dependence on the angle between ~p3 and ~p

d3p3
E3

= 2πd cos θ3χp3E3dE3
E3

= πdE3ds

p
. (D.35)

However, the integration over E3 is constrained by Eq. (D.34). From the form of this
equation, it is clear that, for fixed masses, and any suitable value of p (hence of s, which
will be constrained by masses and p), the maximum value available for p3 is obtained
when cos θ3χ = −1 since to satisfy the equality the negative piece allows p3 to be larger.
Likewise, the minimum value of p3 is obtained when cos θ3χ = +1, since now another
positive p3-dependent term is added, further constraining the size of p3. Solving the
equation in the two cases we obtain

p+
3 (s) =

p(s−m2
3 −m2

χ) +
√

(p2 +m2
χ)k(
√
s,m3,mχ)

2m2
χ

if cos θ3χ = −1

p−
3 (s) =

∣∣∣∣∣∣
p(s−m2

3 −m2
χ)−

√
(p2 +m2

χ)k(
√
s,m3,mχ)

2m2
χ

∣∣∣∣∣∣ if cos θ3χ = +1

(D.36)

These two expressions are not valid explicitly if mχ = 0, so as for decays, we provide
limiting expressions for mχ � m1,m2,m3, which will be exploited in our work:

p+
3 (s) = p

(
s−m2

3
m2

χ

− s

s−m2
3

)
+ s−m2

3
4p +O(m2

χ),

p−
3 (s) = p

(
m2

3
s−m2

3

)
− s−m2

3
4p +O(m2

χ).
(D.37)

We see that, for mχ → 0 we have p+
3 →∞, while p−

3 is finite. We can write the integral
over E3 ∈ [E−

3 (s), E+
3 (s)] with

E±
3 (s) =

√
m2

3 + (p±
3 (s))2, (D.38)

2We defined the angle θ3χ to let the cos θ3χ appear with plus sign in the expression of s: this helps to
change the integration variable from cos θ3χ to s without making mistakes:, with our choice, the usual order
of extrema of integration is preserved:∫ 1

−1
d cos θ3χ =

∫ smax=s(cos θ3χ=1)

smin=s(cos θ3χ=−1)
ds. (D.33)
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reading

gχC(T, p)
E

= gχg1g2g3
512π3pE

∫ smax

smin

ds

p3χ(
√
s)
√
s

∫ E+
3 (s)

E−
3 (s)

dE3

∫ tmax(s)

tmin(s)
dt|M12→3χ|2(s, t)F123(T, s, t, E3).

(D.39)
This is the general expression for any choice of the distribution functions f1, f2, f3. Let us
write the boundaries for Mandelstam variables s and t needed to perform the integrals.
Clearly, the minimum value of s is obtained if particles have zero momentum in the
centre-of-mass in the initial or final state, depending on which is the heavier one. Hence

s ∈ [smin,+∞[≡
[
max

{
(m1 +m2)2, (m3 +mχ)2

}
,+∞

[
. (D.40)

The variable t in the centre-of-mass frame is given by

t = m2
1 +m2

χ − Ecm
1 (s)Ecm(s) + 2 cos θBiχp12(s)p3χ(s); (D.41)

here all variables involved but cos θ1χ are known functions of s. Then the maximum and
minimum values of t are found setting cos θ1χ = +1 and cos θ1χ = −1, respectively:

tmax(s) ≡m2
1 +m2

χ − Ecm
1 (s)Ecm(s) + 2p12(s)p3χ(s),

tmin(s) ≡m2
1 +m2

χ − Ecm
1 Ecm(s)− 2p12(s)p3χ(s).

(D.42)

If we assume equilibrium distributions for all particles but χ, we can perform at least the
integral over E3 analytically. We can exploit the detailed balance equation to write, as
done in [64]

f eq
1 f eq

2 (1∓ f eq
3 ) = (1∓ f eq

1 )(1∓ f eq
2 )f eq

3 e−E/T (D.43)

The detailed balance forces us to take the Maxwell-Boltzmann distribution for χ since we
have neglected the enhancement and blocking factors from scratch. Instead, we can still
consider the statistics for the other particles. In the approximation in which we neglect
Pauli-blocking and Bose-enhancement factors for particles 1 and 2, this relation allows
getting rid of the problem of determining E1 and E2 as functions of the integration variables
and E. Then we can simply perform the integration over E3 as we did in the case of decays

gχC(T, p)
E

= gχg1g2g3
512π3

Te−E/T

pE

∫ smax

smin

ds

p3χ(
√
s)
√
s
heq(s, p, T )

∫ tmax(s)

tmin(s)
dt|M12→3χ|2(s, t),

(D.44)
where

heq(s, p, T ) = ± log
(

1± e−E−
3 (s)/T

1± e−E+
3 (s)/T

)
, (D.45)

with upper signs for fermions and lower for bosons. If we neglect all quantum statistics, we
obtain

heq(s, p, T ) =
(
e−E−

3 (s)/T − e−E+
3 (s)/T

)
. (D.46)
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D.2.2 Pair production

Here we treat scatterings of the type

1 + 2 −→ χ+ χ, (D.47)

modelling pair production of χ particles. The analysis is very similar to the previous case
with particle 3 now replaced by a χ particle. The collision term is the following The general
collision term is

gχC(T, p)
E

= gχ

E

∫
dΠ1dΠ2dΠχ(2π)4δ(4)(p1 + p2 − pχ − p)|M12→3χ|2F123(T,E1, E2),

(D.48)
where we have defined F12 = f1(T,E1)f2(T,E2) since in our hypothesis we can neglect the
blocking and enhancement factors for χ. We have included a factor of 2 at numerator to
take into account that each process produces two particles instead of one. We distinguish
the momentum pχ, which is integrated and p, which is instead free. We can write the final
result exploiting the outcome of the calculations in the single production case.

gχC(T, p)
E

=
g2

χg1g2

256π3pE

∫ smax

smin

ds

pχχ(
√
s)
√
s

∫ E+
χ (s)

E−
χ (s)

dEχ

∫ tmax(s)

tmin(s)
dt|M12→χχ|2(s, t)F12(T, s, t, Eχ).

(D.49)
This is the general expression for any choice of the distribution functions f1, f2. Integration
limits and pχχ are found simply by replacing particle 3 with χ is the single production
results. If we assume thermal equilibrium distributions, we can write, for the detailed
balance

f eq
1 f eq

2 = (1∓ f eq
1 )(1∓ f eq

2 )e−(Eχ+E)/T (D.50)

since we neglected blocking and enhancement factors for χ from scratch. Neglecting
quantum statistics for 1 and 2, we perform the integration over Eχ analytically:

gχC(T, p)
E

=
g2

χg1g2

256π3
T

pE

1
eE/T ± 1

∫ smax

smin

ds

p3χ(
√
s)
√
s
heq(s, p, T )

∫ tmax(s)

tmin(s)
dt|M12→χχ|2(s, t),

(D.51)
where

heq(s, p, T ) =
(
e−E−

χ (s)/T − e−E+
χ (s)/T

)
. (D.52)

All functions of s are obtained from the expression found in the case of single production
but replacing particle with χ. We study the two spectra



D.3. THREE-BODY DECAYS 175

D.3 Three-body decays

D.3.1 Single production

In the case of three-body decays

1→ 2 + 3 + χ, (D.53)

the collision term reads

gχC(T, p)
E

= gχ

2E

∫
dΠ1dΠ2dΠ3(2π)4δ(4)(p1 − p2 − p3 − p)|M1→23χ|2G123(T,E1, E2, E3),

(D.54)
with

G123 = f1(T,E1)[1∓ f2(T,E2)][1∓ f3(T,E3)]. (D.55)

As in the case of scatterings, we want to rewrite the integration in terms of Lorentz-invariant
quantities, which will be analogous to the Mandelstam variables s and t. In this case, it is
convenient to perform the integration over E1 as the last one, as we did in the previous
case with E3: if we neglect the Pauli-blocking and Bose-enhancement factors we have only
f1(T,E1) to integrate and this is easy in the case of equilibrium distributions. In the case
of scattering the particles 1 and 2 were treated in the same way, while now we will treat 2
and 3 in the same way. So we can define the following Lorentz-invariant quantities [40]

s =− (p2 + p3)2 = −(p1 − p)2,

t = − (p3 + p)2 = −(p1 − p2)2.
(D.56)

The first step is to exploit Lorentz invariance to rewrite the integrations over ~p2 and ~p3 in
a simpler way. First, we integrate over ~p2 using the three-dimensional delta

d3p2
(2π)32E2

d3p3
(2π)32E3

(2π)4δ(4)(p1 − p2 − p3 − p) = 2πd cos θ3χp
2
3dp3

(2π)24E3E?
2

δ(E1 − E?
2 − E3 − E),

(D.57)
where E?

2 =
√
m2

2 + (~p1 − ~p3 − ~p)2 and θ3χ is the angle between ~p3 and ~p. Since this
expression is Lorentz-invariant, we can compute all the quantities in the centre-of-mass
frame of 3 and 2, in which these particles has opposite momenta ~p32 = −~p32 with modulus

p23(
√
s) = k1/2(

√
s,m2,m3)
2
√
s

(D.58)

and particles 1 and χ have equal momenta ~p1χ = ~pχ1 with modulus

p1χ(
√
s) = k1/2(

√
s,m1,mχ)
2
√
s

. (D.59)
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In this reference frame E?
2 =

√
m2

2 + (~p23)2 and the right hand side of Eq. (D.57) reads

d cos θ3χp
2
23dp23

8πEcm
3 E?,cm

2
δ

(√
s−

√
m2

3 + p2
23 −

√
m2

2 + p2
23

)
. (D.60)

We can trade the integration over the angle with the one over t, which in the chosen frame
reads

t = m2
3 +m2

χ + 2(EcmEcm
3 − p1χp23 cos θ3χ). (D.61)

We obtain

d3p2
(2π)32E2

d3p3
(2π)32E3

(2π)4δ(4)(p1 − p2 − p3 − p) = − dt

16πp1χ(
√
s)
√
s
. (D.62)

We rewrite the integration over ~p1 replacing the angle dependence with s:

d3p1
E1

= 2πd cos θ1χp1E1dE1
E1

= −πdsdE3
p

. (D.63)

Therefore the collision term reads

gχC(T, p)
E

= gχg1g2g3
512π3pE

∫
dsdE1

p1χ(
√
s)
√
s

∫
dt|M1→23χ|2(s, t)G123(T, s, t, E1). (D.64)

The integration over E1 is constrained by s, like in the case of scatterings considered above.
The boundaries are found exactly in the same way as before, with a difference in sign in
the expression of s. Notice that s ≤ m2

1 +m2
χ. We quote the resulting expressions

p+
1 (s) =

p(m2
χ +m2

1 − s) +
√

(p2 +m2
χ)k(
√
s,m1,mχ)

2m2
χ

if cos θ1χ = +1

p−
1 (s) =

∣∣∣∣∣∣
p(m2

χ +m2
1 − s)−

√
(p2 +m2

χ)k(
√
s,m1,mχ)

2m2
χ

∣∣∣∣∣∣ if cos θ1χ = −1

(D.65)

These two expressions are not valid explicitly if mχ = 0, so as usual, we provide limiting
expressions for mχ � m1,m2,m3, which will be exploited in our work:

p+
1 (s) = p

(
m2

1 − s
m2

χ

− s

m2
1 − s

)
+ m2

1 − s
4p +O(m2

χ),

p−
1 (s) = p

(
m2

1
m2

1 − s

)
− m2

1 − s
4p +O(m2

χ).
(D.66)

We see that, for mχ → 0 we have p+
1 →∞, while p−

1 is finite. We can write the integral
over E1 ∈ [E−

1 (s), E+
1 (s)] with

E±
1 (s) =

√
m2

1 + (p±
1 (s))2, (D.67)
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reading

gχC(T, p)
E

= gχg1g2g3
512π3pE

∫ smax

smin

ds

p1χ(
√
s)
√
s

∫ E+
1 (s)

E−
1 (s)

dE1

∫ tmax(s)

tmin(s)
dt|M1→23χ|2(s, t)G123(T, s, t, E1).

(D.68)
This is the general expression for any choice of the distribution functions f1, f2, f3. We have
to explicit the limits of integration over s and t. The minimum value of s is (m2 +m3)2,
obtained when 2 and 3 are produced still in their centre-of-mass frame. The maximum
value is obtained when E = mχ, hence when the χ particle is produced still. Hence

s ∈
[
(m2 +m3)2, (m1 −mχ)2

]
. (D.69)

The variable t in the centre-of-mass frame is given by

t = m2
3 +m2

χ + 2Ecm
3 (s)Ecm(s)− 2 cos θ3χp1χ(s)p23(s) (D.70)

and it is fully determined as a function of s apart from cos θ3χ. Therefore the maximum
and minimum are obtained respectively for cos θ3χ = −1 and cos θ3χ = +1.:

tmax(s) =m2
3 +m2

χ + 2Ecm
3 (s)Ecm(s) + 2p1χ(s)p23(s),

tmin(s) =m2
3 +m2

χ + 2Ecm
3 (s)Ecm(s)− 2p1χ(s)p23(s).

(D.71)

If we assume equilibrium distributions for all particles but χ we can perform at least the
integral over E1 analytically. As before, if we neglect Pauli-blocking and Bose-enhancement
factors for particles 2 and 3, we get the usual result

gχC(T, p)
E

= gχg1g2g3
512π3

T

pE

∫ smax

smin

ds

p1χ(
√
s)
√
s
heq(s, p, T )

∫ tmax(s)

tmin(s)
dt|M1→23χ|2(s, t),

(D.72)
with

heq(s, p, T ) = ± log
(

1± e−E−
1 (s)/T

1± e−E+
1 (s)/T

)
(D.73)

and upper signs for fermions and lower for bosons. Finally, neglecting all corrections from
quantum statistics, we obtain

heq(s, p, T ) = e−E−
1 (s)/T − e−E+

1 (s)/T . (D.74)

D.3.2 Pair production

The analysis of three-body decays of the type

1→ 2 + χ+ χ, (D.75)
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is practically identical to the single production case. The collision term reads

gχC(T, p)
E

= gχ

E

∫
dΠ1dΠ2dΠχ(2π)4δ(4)(p1−p2−pχ−p)|M1→2χχ|2G12(T,E1, E2), (D.76)

with
G12 = f1(T,E1)[1∓ f2(T,E2)]. (D.77)

We have multiplied the collision term by a factor of 2 to take into account that each process
produces two particles χ, which both contribute to the final phase-space distribution. The
final general result is

gχC(T, p)
E

=
g2

χg1g2

256π3pE

∫ smax

smin

ds

p1χ(
√
s)
√
s

∫ E+
1 (s)

E−
1 (s)

dE1

∫ tmax(s)

tmin(s)
dt|M1→2χχ|2(s, t)G12(T, s, t, E1).

(D.78)
If we assume thermal distributions for particles 1 and 2 and neglect Bose-enhancement
and Pauli-blocking factors, we get

gχC(T, p)
E

=
g2

χg1g2

256π3
T

pE

∫ smax

smin

ds

p1χ(
√
s)
√
s
heq(s, p, T )

∫ tmax(s)

tmin(s)
dt|M1→2χχ|2(s, t), (D.79)

with

heq(s, p, T ) = ± log
(

1± e−E−
1 (s)/T

1± e−E+
1 (s)/T

)
(D.80)

and upper signs for fermions and lower for bosons. Finally, neglecting all corrections from
quantum statistics, we obtain

heq(s, p, T ) = e−E−
1 (s)/T − e−E+

1 (s)/T . (D.81)

All functions of s are obtained simply replacing particle 3 with χ in the expressions derived
for the single production in three-body decays.
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