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Abstract

Center-based clustering is an important yet computationally difficult primitive in the

realm of unsupervised learning and data analysis. We specifically focus on the k-median

clustering problem in general metric spaces, in which one seeks to find a set of k centers,

so to minimise the sum of distances from each point in the dataset to its closest center.

In this thesis, we present and analyze efficient techniques to deal with the k-median

clustering problem in the streaming setting – where the dataset is presented one point at

a time and not accessible in its entirety – by leveraging the dimensionality of the

dataset’s underlying metric space.





Contents

1 Introduction 1

1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminary notions 4

3 Streaming algorithms for k-median clustering 6

3.1 Online Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.2 Pseudocode and description . . . . . . . . . . . . . . . . . . . . . . 7

3.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Streaming k-median coreset construction . . . . . . . . . . . . . . . . . . . 12

3.2.1 Pseudocode and description . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Streaming k-median coreset refinement . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Pseudocode and description . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Two-pass dimensionality-oblivious coreset construction . . . . . . . . . . . 24

3.5 One-pass semi-oblivious coreset construction . . . . . . . . . . . . . . . . . 25

3.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental evaluation 29

4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Hardware/Software platform . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 General performance of PLS+ and StreamingCWB . . . . . . . . . . 31

4.4.2 Impact of ε on StreamingCWB output cardinality . . . . . . . . . . . 32

4.4.3 PLS+: Varying values of gamma . . . . . . . . . . . . . . . . . . . 32

4.4.4 Running the two pass coreset construction for the best values of γ . 36

4.4.5 Applying weighted k-median++ on output coresets . . . . . . . . . . 36

5 Conclusions 39





Chapter 1

Introduction

Clustering is a key primitive in unsupervised learning and data analysis, with many

applications throughout different fields, such as bioinformatics, medicine, digital image

processing, pattern recognition, network analysis, and so on.

An important class of clustering techniques is center-based clustering, in which we seek

to partition an input dataset into clusters, in such a way that similarity between items

in the same cluster is defined by closeness to that cluster’s center, according to some

distance measure.

The related optimization problem fixes a parameter k, and looks for k such centers so to

minimize the distance of each point from its center (or the squared distance, depending

on the specific type of clustering). This is known to be NP-hard; as such, it is generally

only feasible to look for approximate solutions.

In the realm of big data, finding efficient ways to process large datasets becomes of

foremost importance, as the amount of information to be analyzed blows up.

The streaming model has often been adopted in settings where being able to store all of

the dataset in local memory is not a reasonable assumption, and the only feasible way to

process it is by make a few sequential passes (ideally, only a single pass) through the

data, using a limited amount of space.

1.1 Previous work

Center based clustering is a well-researched problem. As mentioned, we focus on general

metric k-median specifically, which has known constant approximation algorithms.

Byrka, Pensyl, Rybicki et al.’s [5] offline 2.61-approximation algorithm is the current

best performer, using dependent randomized rounding [9] and improving on Li and

Svensson’s [10]’s novel (1 +
√

3 + ε)-approximation.

Cohen-Addad, Gupta, Hu et al. [7] recently (2022) presented a local search algorithm

that yields a (2.863 + ε)-approximation, the first of its kind to improve on Arya et al.’s

(2001) [2] local search (3 + ε)-approximation and offering potentially promising future

1



2 CHAPTER 1. INTRODUCTION

improvements.

In the realm of streaming approximation algorithms for k-median, Braverman, Lang,

Levin and Rudoy [3] proposed a streaming algorithm for metric k-median clustering that

returns a coreset of size O(ε−3k log n). This coreset can be clustered with Byrka et

al.’s [5] offline 2.61-approximation algorithm, yielding a solution that is a

(17.66 + ε)-approximation with regards to the optimum. This ratio is shown to be

essentially optimal, if sticking to space that is polylogarithmic in n.

Their contribution seeks to strike a balance between facility location based algorithms

such as Charikar, O’Callaghan and Panigrahy’s trend-setting PLS algorithm [6], which

typically have better space complexity, and coreset based algorithms such as Feldman

and Langberg’s [8], which can be arbitrarily precise at the cost of significant space

penalties.

1.2 Summary of contributions

This thesis explores various ways of building a coreset for an input instance of the

k-median clustering problem in the streaming setting - a coreset being a weighted set

representing a ”summary” of the input dataset X that is much smaller than X itself,

but is sufficiently informative to lead to a good approximate result for the whole

instance.

We will adopt the PLS+ algorithm for streaming coreset construction due to

Braverman, Meyerson, Ostrovsky et al. [4]. This algorithm builds on the parallels

between k-median clustering and the facility location problem in its online variety.

PLS+ works in phases, maintaining increasingly more accurate lower bounds to the

optimum clustering cost; it clusters points from the stream in facilities, until we pay too

much in service cost or we open too many facilities, at which point we improve our

bounds and start over, re-clustering all former facilities as weighted points before

moving on to reading more unread points.

We shall define a two pass algorithm that makes use of the StreamingCWB primitive due

to Mazzetto, Pietracaprina and Pucci [11] to refine PLS+’s output coreset, obtaining a

new coreset of higher quality, paying a price through higher cardinality.

Crucially, though, this penalty is limited if the doubling dimension D of the dataset is

not too big; we will formally outline the concept of doubling dimension later, but it can

intuitively be described as a generalization of Euclidean dimensionality to a general

metric space.

This two pass algorithm is oblivious to D, is tunable via a parameter 0 < ε < 1 to set a

space-accuracy tradeoff, and yields an ε-bounded coreset.

Lastly, we shall leverage again the notion of doubling dimension to define another

algorithm which is semi-oblivious to the dataset’s dimensionality, and only requires one
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pass over X using PLS+. This one phase algorithm requires a suitably large parameter

M representing how much space we wish the algorithm to use; from this, we extract a

higher center set cardinality k′ > k and run PLS+ on k-median instance (X, k′).

By leveraging the fact that, in metric spaces with bounded doubling dimension, we can

state that ν⋆
(X,k′) ≤ η · ν⋆

(X,k) for some parameter 0 < η < 1 that depends on the choice of

k′, this results in PLS+’s output F being an (α · η)-bounded coreset, improving our

result by a factor η with respect to running PLS+ on the original instance.

1.3 Structure of this thesis

This thesis is organized as follows. Chapter 2 lays down some preliminary definitions

and properties that we will use in the rest of the thesis.

Sections 3.1, 3.2 and 3.3 present and analyze the building blocks to our coreset

construction algorithms, which are formally outlined in Sections 3.4 and 3.5.

Chapter 4 presents the implementation of our strategies, and the following experimental

evaluation. Lastly, Chapter 5 closes this thesis with a summary and some final remarks.



Chapter 2

Preliminary notions

A metric spaceM is a set X together with a distance function δ(·, ·) which satisfies the

following properties for any pair x, y ∈ X:

• δ(x, y) > 0, unless x = y, in which case δ(x, y) = 0;

• it is symmetric: δ(x, y) = δ(y, x)

• it satisfies the triangle inequality: δ(x, y) + δ(y, z) ≥ δ(x, z)

In general metric k-median clustering, we are given a finite set X of points in some

metric space M, and the cost function δ(x, y) representing the distance between two

points x, y ∈M.

The goal is to select a set of points K ⊂ M, with |K| = k, so to minimize the cost

function

νX(K) =
∑︂
x∈X

min
y∈K

δ(x, y)

Throughout this thesis, we will indicate with ν⋆
X,k the cost of clustering X with its optimum

set of centers for the k-median clustering problem - that is, the set of centers K for which

the cost function takes the smallest value:

ν⋆
X,k = min

K⊂M:|K|=k

∑︂
x∈X

δ(x,K)

(Where unambiguously clear from the context, we will drop the subscript from our

notation)

The k-median clustering problem can be seen as a specific case of the uncapacitated

facility location problem. In facility location problems, we are given a metric space, a

facility cost f and a set of points X, which in general may be weighted (if so, we may

equivalently consider that a point of weight w(x) is represented by w(x) consecutive

points of unit weight).

Every point pays a service cost to be connected to the nearest open facility, which is

equal to its distance δ from that facility. Alternatively, opening each new facility

requires us to pay the facility cost f (which we suppose to be uniform).

4
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The objective is to determine a set of facilities F to open so to minimize the total cost,

f |F |+
∑︂
x∈X

δ(x, F )

A crucial notion for our work is the doubling dimension of a dataset’s underlying

metric space. We can think of the doubling dimension as the generalization of Euclidean

dimensionality to general metric spaces.

Definition (Doubling dimension). The doubling dimension of a metric space M is the

smallest integer D, such that a ball of any radius r centered at any point x ∈ M can be

covered by at most 2D balls of radius r/2 centered at some points ofM.

We operate in the streaming setting, in which set X is large enough that it is

impractical to store it in its entirety and randomly access its items; the only feasible way

to process X is to make a single pass through the data, or a few passes at most, using

space typically polylogarithmic in |X|. The items arrive - and are processed -

sequentially, with no prior knowledge of what comes next.

A coreset is a weighted set representing a ”summary” of the input dataset X that is

much smaller than X itself, but is sufficiently informative to lead to a good approximate

result for the whole instance. We adopt the following, well-estabilished definition of

coreset:

Definition (ε-bounded coreset). A set of points C is an ε-bounded coreset of a k-median

instance (X, k) if there exists a map τ : X → C such that∑︂
x∈X

δ(x, τ(x)) ≤ ε · ν⋆

and, for any c ∈ C,

w(c) = |{x ∈ X : τ(c) = x}|

We say that C is weighted according to τ .



Chapter 3

Streaming algorithms for k-median

clustering

In this chapter, we will analyze and present the algorithms forming the building blocks

to our coreset building strategies. Section 3.1 describes the Online Facility Location

algorithm, which lays the foundations to tackling the k-median clustering problem in the

streaming setting by drawing on the similarities between k-median and facility location

as optimization problems. 3.2 3.2 presents PLS+, a streaming algorithm for coreset

construction that builds upon OFL by maintaining increasingly accurate estimates of

the optimum cost. Section 3.3 analyzes the CoverWithBalls primitive for coreset quality

refinement, adapted to a streaming setting; and lastly, Sections 3.4 and 3.5 respectively

present our two-pass dimensionality-oblivious coreset construction strategy and our one-

pass semi-oblivious coreset construction strategy.

3.1 Online Facility Location

Before approaching PLS+ itself, it will be convenient to review how PLS+ approaches

k-median in the streaming setting. Specifically, the problem is rephrased as a facility

location problem, in its online (streaming) variant, resulting in the Online Facility

Location (OFL) algorithm, which is used by PLS+ as a subroutine.

3.1.1 Problem definition

As defined previously, facility location problems require a metric space, a facility cost

f and a set of points X; each point x ∈ X can either be connected to the nearest open

facility, paying a service cost equal to its distance δ(x, F ) from that facility; or

alternatively, a facility can be opened at that point, paying the specified facility cost f .

The objective is to determine a set of facilities F to open so to minimize the total cost,

f |F |+
∑︂
x∈X

δ(x, F )

From now on we will denote by c =
∑︁

x∈X δ(x, F ) the service cost component of the

6
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overall cost. Indeed, observe that c is analogous to the k-median cost function ν: the

sum of all distances between every point x ∈ X and the closest facility (or center). On

the other hand, k-median’s constraint that |K| = k is replaced by the facility cost

component of the cost function, f |F |. Intuitively, then, c is the component of facility

location’s overall cost we are really interested in, in our goal to analyze a streaming

algorithm for k-median.

The online variant of facility location (OFL) requires that each new point is assigned to

a facility upon arrival, without knowledge of the number or value of future points, and

without modifying the assignment of prior points.

3.1.2 Pseudocode and description

Meyerson’s OFL algorithm works as follows: once a new point arrives, we calculate the

distance d = δ(x, F ) to the closest open facility. With probability min{d/f, 1}, a new

facility is opened at this point, paying facility cost f ; otherwise, the point is connected

to the closest open facility, paying service cost d. n other words, if f ≤ d, we will

certainly open a new facility; otherwise, the probability of opening a new facility is

proportional to the ratio d/f .

The overall cost of facility location is c + f |F |, including both the service cost

component and the facility cost component. As mentioned in the previous subsection,

though, we are only interested in c, and we will call c itself the cost of OFL’s returned

solution F .

Algorithm 1 Online Facility Location. f is the user-supplied facility cost.

1: c← 0 ▷ (Service) cost
2: F ← ∅ ▷ Set of facilities
3: while there are points still in the stream do
4: x← next point
5: p← RANDOM([0, 1])
6: if p ≤ min{1, w(x) · δ(x, F )/f} then
7: F ← F ∪ x ▷ Open new facility
8: else
9: c← c + w(x) · δ(x, F ) ▷ Pay service cost

10: y ← arg miny∈F δ(x, y)
11: w(y)← w(y) + w(x) ▷ Increment facility weight
12: end if
13: end while
14: return F

3.1.3 Analysis

We shall see that, by choosing the facility cost f appropriately, the cost c is a constant

approximation of the optimum k-clustering cost on X, ν⋆, and the number of facilities

opened (|F |) is ”not too much bigger” than k.
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Theorem 1 (Online Facility Location). Suppose the OFL algorithm is run with

f =
L

k(1 + log n)
, L < ν⋆

where L is a lower bound on the cost to cluster X with its optimum k-median clustering

solution, and n is the total weight of all points in the stream.

Then, with high probability, it holds that

c ≤
(︃

3 +
2e

e− 1

)︃
ν⋆, |F | ≤ 7k(1 + log n)

ν⋆

L

Proof. For 1 ≤ i ≤ k, define:

• k⋆
i , an optimum center;

• K⋆
i , an optimum cluster (assignment of points to k⋆

i );

• δ⋆p, the optimum service cost for point p (its distance from its optimum center);

• C⋆
i =

∑︁
p∈K⋆

i
δ⋆p, the total service cost for points in optimum cluster K⋆

i ;

Divide cluster K⋆
i into regions Sj

i , j ≥ 1, such that the cardinality of region Sj
i is

|Sj
i | = |K⋆

i |/2j

and so that each point in Sj
i is closer to k⋆

i than any point in Sj+1
i - that is,

∀p ∈ Sj
i , ∀q ∈ Sj+1

i , δ⋆p ≤ δ⋆q

Lastly, let Cj
i be the total service cost of region Sj

i . It holds that
∑︁

iC
j
i = C⋆

i .

We shall now bound the service cost c of the returned solution by separately considering

the service cost paid before (c′) and after (c′′) the first facility is opened in a region,

starting with the latter.

In each region Sj
i , we may eventually open a facility at some point q ∈ Sj

i . Once we do

so, subsequent points p must have service cost at most δ⋆p + δ⋆q , by the triangle inequality.

Additionally, since q ∈ Sj
i and all points in Sj

i have smaller optimum service cost than

any point in Sj+1
i ,

δ⋆q ≤ Cj+1
i /|Sj+1

i |

that is, q must be closer to its optimum center than the average point in the next

outermost region.
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By these two facts, summing over all points p ∈ Sj
i , it holds for a single region that

∑︂
p∈Sj

i

(︁
δ⋆p + δ⋆q

)︁
≤

∑︂
p∈Sj

i

δ⋆p +
∑︂
p∈Sj

i

Cj+1
i

|Sj+1
i |

≤ Cj
i + |Sj

i |
Cj+1

i

|Sj+1
i |

≤ Cj
i + 2Cj+1

i

Which, summed over all regions, gives a deterministic guarantee that, subsequent to the

first facility opened in all regions, the service cost is at most three times the optimum,

3C⋆
i , which holds for all clusters, and therefore c′′ ≤ 3ν⋆.

Let us now bound c′, the cost paid before the first facility is opened in each region. If

many points arrive in the same region, we will eventually open a facility there, but

before that happens for each point we will pay some service cost bounded by f .

First, observe that each of the k clusters has log n + 1 regions: region j = log n + 1 has

one point, and all further regions must be empty.

Braverman, Meyerson et al. showed that the probability that, given x regions without

an open facility, the service cost due to points arriving prior to the first facility being

opened is at least yf , is

P [x, y] ≤ exp

(︃
x− y

e− 1

e

)︃

Observe it is immediate for x = 0 and very small values of y (y ≤ x e
e−1

). The general

case can be proven by induction, as follows.

Suppose that x is the smallest value where the inequality can be violated, and y the

smallest value where it can be violated for this x. Thus, P [x, y] > exp
(︁
x− y e−1

e

)︁
Let the first request in one of these x regions without a facility yields a service cost of

d > 0. Then, the probability is

P [x, y] =
d

f
P [x− 1, y] +

(︃
1− d

f

)︃
P

[︃
x, y − d

f

]︃

where the first term corresponds to opening a facility (thus the number of regions without

a facility decreases), and the second term corresponds to connecting to a facility in some

other region, paying the service cost.
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Substituting in our hypothesis the fact t-hat P [x, y] > exp
(︁
x− y e−1

e

)︁
, we obtain

ex−y e−1
e < P [x, y]

<
d

f
e(x−1−y e−1

e ) +

(︃
1− d

f

)︃
e(x−(y− d

f ) e−1
e )

where normalising by the left hand side expression leaves us with a contradiction,

1 < d
ef

+
(︂

1− d
f

)︂
e

d
f

e−1
e . The statement follows.

With this estabilished, setting the number of regions to be x = k(1 + log n) (as just

discussed) and

y =
2e

e− 1
k(1 + log n)

so that the math works out, yields

P [c′ ≥ yf ] ≤ exp

(︃
k(1 + log n)− 2e

e− 1
k(1 + log n)

e− 1

e

)︃
= exp (−k(1 + log n)) ≤ 1

2n

We therefore get the desired high probability bound on service cost before the first facility

opens by substituting in f and y:

c′ = yf =
2e

e− 1
k(1 + log n)f =

2e

e− 1
L ≤ 2e

e− 1
ν⋆

Which, paired with the previous deterministic bound on service cost after the first facility

has opened, c′′, yields the final result:

c ≤ c′ + c′′ =

(︃
3 +

2e

e− 1

)︃
ν⋆

Let us now prove the bound on the facility count |F |. As discussed before, there’s a

deterministic guarantee that the first facility in each region gives us a total of

k(1 + log n) facilities; we must get a bound for all subsequent facilities using Chernoff

bounds.

Each new point p has probability δp/f to open a new facility, where δp is the service cost

on p’s arrival. This event is a Bernoulli trial that we will call Fp.

We can use the deterministic guarantee on service cost after a facility has already

opened, which we found before to be
∑︁

p δp ≤ 3ν⋆, to get the sum of effectively

independent Bernoulli trials F we need: the expectation will be at most 3ν⋆/f , or

substituting for f ,

E[F ] = µ ≤ µ′ = 3k(1 + log n)
ν⋆

L
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Applying Chernoff bounds,

Pr (F ≥ (1 + δ)µ) ≤ exp(−δ2µ/3) ≤ exp(−δ2µ′/3) ≤ 1

n
→ δ =

√︄
3 log n

3k(1 + log n)

L

ν⋆

results in the probability of having more than 6k(1 + log n)ν⋆/L facilities after the first

one has opened being vanishingly small:

Pr

(︃
F ≥ (1 + δ)3k(1 + log n)

ν⋆

L
≥ 6k(1 + log n)

ν⋆

L

)︃
≤ 1

n

We get our final result by summing this bound with the aforementioned deterministic

guarantee on the first facility in each region:

|F | ≤ F + k(1 + log n) ≤ 7k(1 + log n)
ν⋆

L

Observe that the value of f that we need to supply to the OFL algorithm depends on a

”guess from below” L of the optimum cost. In what comes later, we will show how PLS+

embeds OFL into a more powerful algorithm, that makes increasingly more accurate

guesses of L to converge towards an output.
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3.2 Streaming k-median coreset construction

PLS+ is a streaming algorithm based on OFL that builds an O(1)-bounded coreset of X

in one single pass over the dataset. It returns a set of facilities F of cardinality

O(k log n), which is in effect a weighted set of points, each weighted point ”representing”

a number of points from the stream X.

PLS+ uses OFL as a subroutine, making successive guesses at the value of L, our lower

bound to the optimum, in order to get a better approximation. A nice and rather

significant additional benefit is that PLS+ is oblivious to the value of the optimum

solution, which OFL is not.

If OFL’s current solution gets too costly or includes too many facilities, we consider our

guess to be no longer acceptable, improve it by a constant factor, and start over with an

improved guess.

3.2.1 Pseudocode and description

Definition. A phase is a single execution of the OFL algorithm on a new value of L

and thus a new value of the facility cost for OFL f , corresponding to single iteration of

the outer while loop of PLS+.

A phase terminates once either we paid ”too much” in service cost, or we opened too

many facilities. Once that happens, we push all the facilities we opened back on the

stream, and start over with a new, higher value of L that is closer to the optimum.

The concept of ”pushing a facility on the stream” can be implemented as a stack that

works in parallel to the stream. We push all facilities on the stack as points with weight

corresponding to their weight as facilities, and until the stack is not empty, we stop

reading from the stream, popping points from the stack as if they came from the stream.

Regardless, note that this paper will make no further use of the concept of the stack -

this is merely an implementation note. When facilities are pushed back on the stream,

the stream will look like all previous facilities as weighted points, followed by the unread

points.

β and γ are constants supplied by the user; we will see later (Lemma 4) how they are

defined. These constant govern the phase change: β is the multiplicative factor applied

to the next guess for L, and γ controls the loop invariants, deciding when the set of

facilities becomes ”too large” and when we pay too much in service cost.
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Algorithm 2 PLS+. β, γ are user-supplied constants.

1: L1 ← 1 ▷ Initial guess at L
2: i← 1 ▷ Phase counter
3: while solution not found do
4: c← 0 ▷ Current phase’s (service) cost
5: f ← Li/(k(1 + log n)) ▷ Facility cost
6: F ← ∅ ▷ Set of facilities
7: while there are points still in the stream do ▷ OFL: begin
8: x← next point
9: p← RANDOM([0, 1])
10: if p ≤ min{1, w(x) · δ(x, F )/f} then
11: F ← F ∪ x
12: else
13: c← c + w(x) · δ(x, F )
14: y ← arg miny∈F δ(x, y)
15: w(y)← w(y) + w(x)
16: end if ▷ OFL: end
17: if c > γLi or |F | > (γ − 1)k(1 + log n) then ▷ Check constraints
18: Break and raise flag ▷ Trigger new phase
19: end if
20: end while
21: if flag raised then ▷ Inner while ended because constraints broken
22: Push facilities in F on to stream
23: Li+1 ← βLi

24: i← i + 1
25: else ▷ Inner while ended because no points left
26: solution found
27: end if
28: end while
29: return F

3.2.2 Analysis

Let us first make sure that the beginning of a new phase causes previous facilities to be

successfully clustered in their entirety without breaking the loop invariants (line 17),

before moving on to new points from the stream. This is to make sure that PLS+ does

not indefinitely create new phases without making any progress in processing new

points.

To make some progress along the stream, we will need both the invariant on facility

count and the invariant on cost to hold after all former facilities have been processed.

Observe that, if the facility count invariant caused the new phase to begin, then it is

possible that all weighted points in front of the stream will be turned back into facilities,

in case the new facility cost is still too low compared to the distances between the

weighted points.

Call the first former facility f1 and some other former facility f2. Since the facility cost

is increased by a factor β between one phase and the next, at some point it will hold

that δ(f1, f2) < f , causing f2 to be connected to f1 and the facility count to decrease,
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which will cause the facility count invariant to be satisfied once all former facilities have

been processed.

Concerning the cost invariant:

Lemma 2. At the start of a new phase, PLS+ successfully clusters all former facilities

from the previous phase, without breaking the invariant, before moving on to the unread

points from the stream. That is, once all former facilities have been processed, it holds

that

c < γLi

Proof. First, observe that a similar observation to OFL applies, in that we pay at most

f for a point: either we open a new facility, paying that exact price, or we pay a service

cost w(x) · δ(x, F ) that is bounded by f .

Because of the second invariant on line 17, there are at most (γ − 1)k(1 + log n) ”former

facilities” from the previous phase, which are seen as weighted points in front of the

stream. By the previous observation, these weighted points collectively have service cost

at most

c ≤ f(γ − 1)k(1 + log n) =
Li

k(1 + log n)
(γ − 1)k(1 + log n) = (γ − 1)Li

The lemma follows by simply observing that c ≤ (γ − 1)Li < γLi.

Bounding the cost at the start of a phase

Second, we can show that we can bound the cost to optimally cluster any subset of

points P present on the stream at the start of a phase - both unread and weighted - in

terms of the cost to optimally cluster the entire stream X. This implies that P is a good

approximation of the whole stream, as if we clustered P with the optimum centers for

the whole stream, the resulting cost would be a constant approximation of the optimum

cost over the whole stream.

Before proceeding, it will be convenient to define the following.

Definition. Let x ∈ X be any point of the input dataset.

We say that a facility y ∈ F represents x in phase ℓ if y is the assigned facility for x,

or for x’s representative in phase ℓ− 1.

We may additionally refer to x as an original point.

Observe that once x becomes represented in any phase, it stays represented in all

subsequent phases. Also, if x is created as a facility, x may represent itself.
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We now proceed to the lemma.

Lemma 3. Let P be any subset of weighted or unread points in the stream at the start of

phase i. Then, the cost of the optimum k-median clustering of P is at most

ν⋆
P ≤ ν⋆

X +
γ

β − 1
Li

Proof. Suppose we’re at the start of phase i. At this point, the stream is composed of

weighted points corresponding to the former facilities from phase i − 1, followed by

unread points.

Let us bound the service cost of any input point x ∈ X - whether unread or read, and

therefore presently represented by some other point - if we clustered it with the

optimum k-median centers K⋆ for the whole input dataset X.

Suppose, without loss of generality, that x is not an unread point, which means it is

currently represented on the stream by some former facility. Let j be the phase where x

was first clustered: this means that, in the phases up to now, j, j + 1, . . . , i − 1, x had

been represented by some facilities that we will call yj, yj+1, . . . , yi−1, where therefore

yi−1 is the weighted point that currently represents x at this point in time, the start of

phase i.

The service cost cx due to x in phase i will then be the service cost of its current

representative yi−1, so δ(yi−1, y
⋆), where y⋆ ∈ K⋆ is the optimum center that is closest

(cheapest) to yi−1.

By the triangle inequality, cx can be bound by the cost of optimally clustering the

original point x, plus the distance between x and its representative yi−1 - the latter can

in turn be bound by the sum of the distances between successive representatives, as

follows:

cx = δ(yi−1, y
⋆) ≤ δ(x, y⋆) + δ(x, yi−1)

≤ δ(x, y⋆) +

i−j∑︂
ℓ=2

δ(yi−ℓ, yi−ℓ+1) + δ(x, yj)

Note that if x was an unread point instead, then it would represent itself in the current

phase (yi−1 would be x itself), which means δ(x, yi) = 0, and the inequality still holds

since cx = δ(x, y⋆).

Consider now any subset of weighted or unread points P on the stream at the beginning

of phase i, calling px ∈ X the original point represented by p ∈ P should it be a
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weighted point (otherwise px = p itself).

Let us use the result on individual points to consider the cost to optimally cluster this

whole subset:

ν⋆
X′ =

∑︂
p∈P

cp ≤
∑︂
px∈X

δ(px, y
⋆) +

∑︂
px∈X

δ(px, yi−1)

The first term on the right hand side of this bound is the optimum clustering cost for all

original points px corresponding to points in P , and can simply be upperbounded by the

optimum clustering cost for the whole stream, ν⋆
X .

The second term represents the distance between each original point px ∈ X and its

current representative in phase i; we have discussed that δ(px, yi−1 is upperbounded by

the sum of the distances between px’s successive representatives between one phase and

the next, from the phase where px was first clustered up to the previous phase i − 1,

which yielded px’s current representative.

This means that the terms of this summation are all the service costs that were ever

paid by all points px ∈ X ′ through their representatives in all previous phases. Similarly

to our argument for the first term, then, we can upperbound all the quantities

corresponding to an individual phase with the cumulative service costs paid by all points

that were clustered during that phase.

The cumulative service cost cℓ in a generic previous phase ℓ < i is bounded by the

invariant on service costs to be:

cℓ ≤ γLℓ = γLi
1

βi−ℓ

Summing this quantity over all previous phases (ℓ = 1, 2, · · · , i − 1) will therefore yield

the upperbound to the whole second term that we were seeking:

∑︂
px∈X

δ(px, yi−1) ≤
i−1∑︂
ℓ=1

γLi
1

βi−ℓ
= γ

(︃
1

β − 1

)︃
Li

We obtain then our claim,

ν⋆
P ≤ ν⋆

X +
γ

β − 1
Li

This lemma shows that, at any phase i, past points are well represented by their currently

assigned facility, and we can obtain a good approximation of X’s optimum clustering,

provided that Li < ν⋆. This latter condition holds with high probability for all phases

until a solution is found, as we will show next.
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Termination and critical phase

If the lower approximation to the optimum that we provide grows by a factor of β every

phase, it may be natural to assume it might eventually grow too big, such that it is no

longer smaller than ν⋆, at which point the assumptions we have made would fall apart.

Luckily, we can prove that the probability of this happening is vanishingly small (in

fact, the same probability as the probability that OFL fails).

Definition. Call the last phase i where Li < ν⋆ the critical phase.

Observe that the critical phase might not even come into existence: a solution may well

be found before then, as the lemma will make clear.

Lemma 4. Let

cOFL =

(︃
3 +

2e

e− 1

)︃
≃ 6.164, kOFL = 7

be the constant factors on the high probability bounds, respectively, on service cost c and

on facility count |F | resulting from the analysis of OFL. Then, by setting

β = 2cOFL + 2 ≃ 14.328

γ = max{4c2OFL + 2cOFL, βkOFL + 1} ≃ max{164.3, 101.3} = 164.3

the algorithm terminates at, or before, the critical phase with high probability.

Proof. Let i be the critical phase and Xi be the set of all the points, weighted and

unread, that are present on the stream at the start of phase i.

Observe that, since this is the critical phase, it holds that ν⋆
X ≤ βLi.

We can apply Lemma 3 to Xi:

ν⋆
Xi
≤ ν⋆

X + γ

(︃
1

β − 1

)︃
Li ≤

(︃
β + γ

1

β − 1

)︃
Li

The OFL algorithm that is running in this phase yields a solution so that, with high

probability,

c ≤ cOFLν
⋆
Xi
, |F | ≤ βkOFLk(1 + log n)

(where for |F | we have observed that β ≥ ν⋆
i /Li).
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At this point, then, we would like the invariants to be satisfied so that a new phase is not

triggered: respectively,

cOFLν
⋆
Xi
≤ γLi, βkOFLk(1 + log n) ≤ (γ − 1)k(1 + log n)

must hold. Rewriting the first invariant to apply the result we found above, we obtain

γ ≥ cOFL

(︃
β + γ

1

β − 1

)︃
, γ ≥ βkOFL + 1

and therefore, by setting β, γ to be

β = 2cOFL + 2, γ = max{4c2OFL + 2cOFL, βkOFL + 1} = 4c2OFL + 2cOFL

if the OFL algorithm that is running in the critical phase succeeds with high probability,

PLS+ also succeeds with the same probability.

Approximation factor determination

We can now state the main result of this section.

Theorem 5. With high probability, PLS+ completes the final phase with a solution F of

cost at most ∑︂
x∈X

δ(x, F ) ≤ α · ν⋆
X , α =

βγ

β − 1

and therefore F is an α-bounded coreset of cardinality O(k log n) for the k-median

clustering problem over X.

Proof. Suppose we’re in phase i, and suppose it is the final phase. Consider any point

x ∈ X of the stream, and let j be the phase where x was first clustered.

Analogously to Lemma 3, let yj, yj+1, . . . , yi−1, yi be the representatives of x in the

phases, j, j + 1, . . . , i − 1, i - note that unlike Lemma 3, we’re not at the beginning of

phase i and x already has a new representative for the current phase.

If we therefore cluster X with F , the cost cx due to x is the distance to its current

representative, δ(x, yi). By the triangle inequality, cx can be bound by the cost of

connecting x to its original representative yj, plus the sum of the distances between

successive representatives, as follows:

cx = δ(x, yi) ≤ δ(x, yj) +

i−j∑︂
ℓ=1

δ(yi−ℓ, yi−ℓ+1)
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In other words, the cost to cluster x w.r.t. F is upperbounded by all the service costs

that were ever paid by its representatives through all phases.

Therefore, if we consider now the entirety of the stream X, summing cx over all points

x ∈ X yields all of the service costs that were ever paid by every point in every phase

from the first to the last one, i. We can then use again, as in Lemma 3, the invariant’s

bound on the collective service cost cℓ paid in a generic phase ℓ < i,

cℓ ≤ γLℓ = γLi
1

βi−ℓ

Considering this quantity over all phases ℓ = 1 . . . ℓ, and given that by Lemma 4 we

terminate at a phase where Li ≤ ν⋆ with high probablity, we obtain the following bound

on the service cost of the solution returned by PLS+:

c ≤
i∑︂

ℓ=1

cℓ

≤ γLi + γLi−1 + γLi−2 + . . . + γL1

≤ γLi

i−1∑︂
ℓ=0

1

βℓ

≤ βγ

β − 1
ν⋆
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3.3 Streaming k-median coreset refinement

CoverWithBalls is a primitive that refines a coreset, obtaining a vastly improved bound

on the optimum solution at the price of obtaining a coreset of higher cardinality.

It was defined by Mazzetto, Pietracaprina and Pucci [11].

CoverWithBalls aims to build an ε-bounded coreset C of a k-median instance (X, k),

starting from an intermediate α-approximate solution T . The way it does that is by

greedily selecting an arbitrary point x ∈ X, adding it to C, and discarding from X any

points y for which

δ(x, y) ≤ ε

2α
δ(x, T )

until all points of X are discarded.

3.3.1 Pseudocode and description

We will implement a straightforward streaming version of CoverWithBalls with the aim

of applying it to the output of the PLS+ algorithm seen earlier. Since CoverWithBalls

greedily selects an arbitrary point, we can make the greedy choice correspond to the

next point in the stream.

Like the original version, StreamingCWB also allows for the constraint to be somewhat

relaxed: if a point is already ”close enough” to the coreset F within a threshold R, we

are satisfied with a relaxed bound of ε/(2α) · R instead of the smaller bound yielded by

their actual, smaller, distance.

The importance of allowing for a relaxation will help in our analysis when we need to

bound the size of the new coreset as a function of X’s dimensionality, as we shall see.

Algorithm 3 StreamingCWB(X,F,R, ϵ, α)

1: F ′ ← F ▷ Set of new facilities
2: w(f)← 0, ∀f ∈ F ′ ▷ Clear all weights
3: while there are points still in the stream do
4: x← next point
5: if δ(x, F ′) > ε/(2α) max{R, δ(x, F )} then ▷ Does F ′ satisfy the new bound?
6: F ′ ← F ′ ∪ x ▷ No: add x to F ′

7: w(x)← 1
8: else
9: z ← arg minz∈F ′ δ(x, z) ▷ Yes: make x’s representative the closest z ∈ F ′

10: w(z)← w(z) + w(x)
11: end if
12: end while
13: return F ′
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Additionally, note that the map τ that connects a point to its coreset representative is

not necessarily optimum, that is, each point is not necessarily linked to its nearest coreset

representative. The likelihood of this happening is higher the earlier in the stream, since

there subsequently might be new coreset points that are closer to a past point than

its currently assigned representative. Nevertheless, the map does satisfy the bounds we

impose on the quality of the coreset as we will see next.

3.3.2 Analysis

By construction, it is trivial to see that StreamingCWB correctly returns a weighted set

that, as is our intention, reduces all distances to representatives by a factor ε/(2α).

We shall formalize this statement via the following lemma.

Lemma 6. Let F ′ be the output of StreamingCWB. F ′ is weighted according to a map

τ : X → F ′ such that, for any x ∈ X,

δ(x, τ(x)) ≤ ε

2α
max{R, δ(x, F )}

Proof. For any x ∈ X, we define τ(x) as either:

• point x itself, if the check on line 5 succeeded;

• point z, if the check on line 5 failed.

The statement immediately follows.

Crucially, the result we seek from the analysis of StreamingCWB is - how big is the new

facility set? That is, how much do we pay in terms of space in order to obtain a better

approximation on the solution?

We will need a few preliminary definitions and a technical lemma.

Definition (Doubling dimension). The doubling dimension of a metric space M is the

smallest integer D, such that a ball of any radius r centered at any point x ∈ M can be

covered by at most 2D balls of radius r/2 centered at some points ofM.

We can think of the doubling dimension as the generalization of Euclidean

dimensionality to general metric spaces. The proof that F ′ is not too large for spaces

with low doubling dimension hinges on the fact that there cannot be ”too many” points

which are far from one another.

Definition (r-clique). A set of points P is said to be an r-clique if, for any pair of distinct

points x, y ∈ P , it holds that δ(x, y) > r.
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Lemma 7. Let 0 < ε < 1 and M be a metric space with doubling dimension D. Let

P ⊆M be an ε · r-clique and assume that P can be covered by a ball of radius r centered

at a point ofM. Then,

|P | ≤
(︃

4

ε

)︃D

Proof. We can apply the definition of doubling dimension recursively to observe that the

ball of radius r which by hypothesis covers P can be covered by 2jD balls of radius

r/(2j), with j any nonnegative integer.

Let i be the smallest integer for which 2−i · r ≤ ε/2 · r holds.

Since P is a ε · r-clique, any of the 2iD balls with radius 2−i · r can contain at most one

point of P , and therefore |P | ≤ 2iD.

As i = 1 + ⌈log2(1/ε)⌉, it follows that |P | ≤ (4/ε)D.

We then come to the crucial result of this section.

Theorem 8. Let F ′ be the output of StreamingCWB. Suppose that the points in stream

X and facility set F belong to a metric space with doubling dimension D.

Let c be a real value such that, for any x ∈ X, c ·R ≥ δ(x, F ).

Then,

|F ′| ≤ |F | · (16α/ε)D · (log2 c + 2)

Proof. Let F = {f1, . . . , f|F |} be the set of facilities in input to StreamingCWB.

For any i, 1 ≤ i ≤ |F |, let

Xi = {x ∈ X : i = arg min
i

δ(x, fi)}

the sets of all input points that are closest to facility fi, and

Bi = {x ∈ Xi : δ(x, fi) ≤ R}

the sets of all points in Xi whose distance from their facility is under threshold R.

We also define, for any integer value j ≤ 0, the sets

Di,j = {x ∈ Xi : 2j ·R < δ(x, fi) ≤ 2j+1 ·R}
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partitioning all points not in Bi in subsets that are ”exponentially far” from their

facility.

Observe that, for any j ≥ ⌈log2 c⌉, sets Di,j are empty since δ(x, F ) ≤ c ·R.

Together, sets Bi and Di,j are a partition of X.

For any i, let Ci = F ′ ∩ Bi: we want to show that Ci is a ε/(2α) · R-clique, and use this

fact to bound its cardinality.

Let c1, c2 be any two different points in Ci and suppose, without loss of generality, that

c1 was added first to F ′ either by existing in F or by being added in F ′. Since c2 was

added later, it must be farther than ε/(2α) ·max{δ(c2, K), R} from c1, and in fact

δ(c1, c2) > ε/(2α) ·max{δ(c2, K), R} ≥ ε/(2α) ·R

where the last inequality stems from c2 ∈ Bi and thus δ(c2, fi) ≤ R.

So Ci is indeed a ε/(2α) · R-clique: we can now apply Lemma 7 to it, observing that

Ci ⊆ Bi is contained in a ball of radius R centered in fi, obtaining that

|Ci| ≤
(︃

8α

ε

)︃D

Let us now define Ci,j = F ′ ∩Di,j, for any i, j, and use a similar reasoning to bound their

size.

Let c1, c2 be any two different points in Ci,j and suppose again that c1 was added first to

F ′. It therefore still holds that ε/(2α) ·max{δ(c2, K), R} from c1, and in fact

δ(c1, c2) > ε/(2α) ·max{δ(c2, K), R} ≥ ε/(4α) · 2j+1R

where the last inequality stems from c2 ∈ Di,j and thus δ(c2, fi) > 2j ·R.

Since the set Ci,j ⊆ Di,j is contained in a ball of radius 2j+1R centered in fi, we can

similarly apply Lemma 7 to obtain

|Ci,j| ≤
(︃

16α

ε

)︃D

Since sets Ci and Ci,j collectively form a partition of F ′, we can bound its cardinality as

the sum of the bounds we just found for Ci and Ci,j:

|F ′| ≤
|F |∑︂
i=1

|Ci|+
|F |∑︂
i=1

⌈log2 c−1⌉∑︂
j=0

|Ci,j| ≤ |F | ·
(︃

16α

ε

)︃D

· (log2 c + 2)

which concludes the proof.
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3.4 Two-pass dimensionality-oblivious coreset

construction

Combining the results from Sections 3.2 and 3.3 allows us to define a two pass streaming

algorithm for building an ε-bounded coreset, for 0 < ε < 1, as follows.

Theorem 9. Let α = βγ/(β − 1), with β, γ defined as in the analysis of PLS+ (Lemma

4); ε be such that 0 < ε < 1; and c be defined as in Theorem 8.

Running PLS+ on the stream X, with |X| = n, and then applying the StreamingCWB

algorithm to the weighted set F that is output by PLS+, yields a weighted set F ′ such that

|F ′| ≤ |F | ·
(︃

16α

ε

)︃D

· (log2 c + 2),
∑︂
x∈X

δ(x, τ(x)) ≤ ε · ν⋆

representing an ε-bounded coreset of cardinality O(k log n) for the k-median clustering

problem over X.

Proof. The cardinality claim results directly from Theorem 8 by noting that

StreamingCWB is ran over a coreset F , output by PLS+, which by Theorem 5 is such

that

c =
∑︂
x∈X

δ(x, τ(x)) ≤ βγ

β − 1
ν⋆

Therefore, setting α = (βγ/β − 1) suffices to obtain this result.

The approximation claim is due to the fact StreamingCWB outputs a ε-bounded coreset,

as discussed in Lemma 6. In particular, PLS+ outputs a weighted set such that

c = δ(x, F ) ≤ α · ν⋆

where α is defined as above, while by Lemma 6 StreamingCWB reduces the distances by

a factor ε/(2α), and therefore

∑︂
x∈X

δ(x, τ(x)) ≤ α
ε

2α
· ν⋆ = ε · ν⋆

where we rescale ε by a factor 2.

Observe that, as stated before, it holds that

∑︂
x∈X

δ(x, F ′) ≤
∑︂
x∈X

δ(x, τ(x)) ≤ ε · ν⋆

since τ is not necessarily the lowest cost map (linking each x ∈ X to its actual nearest

representative in F ′).
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3.5 One-pass semi-oblivious coreset construction

The advantage of the two pass algorithm outlined in the previous section is that it is

oblivious to the doubling dimension of the dataset. The disadvantage, clearly, is that it

requires two passes over the dataset, as the algorithms are ran sequentially,

StreamingCWB being applied to PLS+’s output and to the dataset.

In this section, we will explore a semi-oblivious way of constructing a coreset, by

introducing a parameter representing how much actual physical space we can work with,

and inferring from that the approximation ratio of our solution. This is well suited to

real world applications, since we typically have some amount of system memory

available to run our algorithm on, which we ideally would like to use in its entirety.

The semi-oblivious moniker stems from the fact that the doubling dimension is not a

parameter that we need to supply to the algorithm, but it does factor in in the analysis.

In this section, we will use ν⋆
(X,k) to denote the value of the optimum cost for k-median

on the dataset X, thus explicitly including the desired number of centers in the notation.

3.5.1 Description

Suppose we are given an instance (X, k) of the k-median clustering problem and a

parameter M , representing the number of points we are allowed to physically store in

local memory.

Suppose this M is adequately large: since PLS+ cannot store more than

(γ − 1)k(1 + log n) points without triggering a new phase, this logically means

M > (γ − 1)k(1 + log n).

We can then set a new parameter k′ > k to be

k′ =
M

(γ − 1)(1 + log n)

and run PLS+ on a new instance (X, k′) of the k-median clustering problem, using this

larger center set size. No modifications to the code or behaviour of PLS+ itself are

necessary: note that the stopping condition for a phase of the algorithm, based on the

count of the number of facilities, becomes

|F | > (γ − 1)k′(1 + log n) = M

which is in effect an ”out of memory” stopping condition.
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3.5.2 Analysis

The result hinges on further exploitation of the properties of the doubling dimension of a

metric space.

Lemma 10. LetM be a metric space of doubling dimension D and (X, k) be an instance

of the k-median clustering problem, with X ⊆M. By picking a k′ > k such that

k′ = k · log n ·
(︃

4

η

)︃D

, 0 < η < 1

it holds that

ν⋆
(X,k′) ≤ η · ν⋆

(X,k)

Proof. Let K⋆ = {c1, . . . , ck} be the set of optimum centers for (X, k), and X1, . . . , Xk

be the corresponding optimum clusters.

For ease of notation, fix an arbitrary i, 1 ≤ i ≤ k, and call C = Xi and c = ci.

Furthermore, let

R =

∑︁
x∈C δ(x, c)

|C|

We show that, for every optimum cluster, we can build a set S of appropriate

cardinality, such that νC(S) ≤ η · ν⋆
C,1; we can compose such sets across all clusters to

get a set of centers K ′ of the desired cardinality k′ that yields νX(K ′) ≤ η · ν⋆
C,k′ .

Analogously to Theorem 8, partition C by defining ”concentric” partitions Cj,

C0 = {x ∈ C : δ(x, c) ≤ R}
Cj = {x ∈ C : δ(x, c) ≤ 2j ·R} \ Cj−1 j > 0

Observe that, for any j > ⌈log2 |C|⌉, sets Cj are empty since, by definition of R,

δ(x, c) ≤ |C| ·R, for any x ∈ C.

Every concentric partition Cj, 0 ≤ j ≤ log2 |C|, belongs to a metric space of doubling

dimension D, and therefore can be covered by 2D balls of radius (2j · R)/2. In general,

by repeatedly applying the notion of doubling dimension, Cj can be covered by 2aD balls

of radius 2j · R/2a; by setting 2a = 4/η, we obtain therefore that Cj can be covered by

(4/η)D balls of radius 2j ·R · η/4.

Let Sj be the set of points constructed by arbitrarily picking one point from each of

these balls. Observe that, if we clustered Cj with the set of centres Sj, the distance of

any point of Cj to the nearest centre is at most 2j ·R · η/2, by the triangle inequality.
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Let S = ∪Sj. Then, the cost of clustering optimum cluster C with the set of centres S is

upperbounded by the following quantity:

νC(S) ≤
log |C|∑︂
j=0

νCj
(Sj)

≤
log |C|∑︂
j=0

|Cj| ·
η

2
· 2jR = η

log |C|∑︂
j=0

|Cj| · 2j−1R

≤ η

log |C|∑︂
j=0

νCj
({c})

≤ η · νC({c}) = η · ν⋆
C,1

By construction, |S| = log |C| ·
(︂

4
η

)︂D

, and since this holds for all optimum clusters, this

means there exists a set K ′ of cardinality k′ = k · log n ·
(︂

4
η

)︂D

, formed by the union of all

k sets S so described, such that

νX(K ′) ≤ η · ν⋆
C,k

and therefore it must additionally hold that

ν⋆
X,k′ ≤ η · ν⋆

C,k
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Having estabilished this, the result is straightforward:

Theorem 11. Let M > (γ − 1)k(1 + log n) and (X, k) be an instance of the k-median

clustering problem. When running PLS+ with β, γ as in Theorem 4, and with

k′ =
M

(γ − 1)(1 + log n)

we have that, with high probability, the facility set F output by PLS+ is an α · η-bounded
coreset for (X, k): ∑︂

x∈X

δ(x, F ) ≤ αη · ν⋆
(X,k)

where

α =
βγ

β − 1
, η = c · D

√︃
(γ − 1)

k(1 + log n)

M
(log n)

Proof. According to Lemma 10, by picking

k′ = k · log n ·
(︃

4

η

)︃D

where D is the doubling dimension of the dataset and 0 < η < 1, it holds that

ν⋆
(X,k′) ≤ η · ν⋆

(X,k)

Setting k log n(8/η)D = M/((γ − 1)(1 + log n)) and solving for η, we get

η = c · D

√︃
(γ − 1)

k(1 + log n)

M
(log n)

Therefore, by Theorem 5 we have that, with high probability, the coreset F obtained by

running PLS+ on (X, k′) is such that∑︂
x∈X

δ(x, F ) ≤ α · ν⋆
(X,k′)

where α = (βγ)(β − 1), which implies, by the choice of k′ and the above derivation for η,

that ∑︂
x∈X

δ(x, F ) ≤ α · η · ν⋆
(X,k)



Chapter 4

Experimental evaluation

This chapter describes the implementation and evaluation of the techniques presented in

this thesis. We will first set out our objectives in Section 4.1, describe the testing setup

in terms of the hardware and software used in Section 4.2, and present the datasets we

used in our evaluation in Section 4.3.

4.1 Objectives

The objective of our experiments is both to evaluate how the techniques we outlined

behave in practice, as well as testing specific aspects of their behaviour. Specifically, we

first seek to estabilish what kind of results PLS+ and StreamingCWB yield in practice,

when run as per the analysis. We will then delve deeper into their behaviour, noting

how the theoretical analysis, as it often happens, leads to very conservative bounds and

resulting poor performance in practice - especially where, as in our case, these

conservative approximation guarantees actively influence the runtime as parameters.

We will explore how the bounds resulting from the analysis of PLS+ are not at all tight,

and dramatically lower values of γ yield coresets with better approximation guarantees

and lower cardinality. To do so, we will make use of a strategy analogous to the

well-known non-streaming k-means++ algorithm [1], typically used to yield a starting set

of centers for Lloyd’s algorithm for the k-means clustering problem; we will modify it to

work with k-median, and use the cost of its solution when run on the entire stream as

an estimation of the optimum cost of a clustering, to be compared with the ”guesses

from below” (the values Li) maintained by PLS+.

We will elaborate on these results by running our full two-step strategy with the lowest

value of γ that yields a valid solution for each dataset, hence previewing what kind of

results might be obtained if only we had an idea of the cost of the optimum clustering.

Lastly, we will return to our original value of γ suggested by the analysis, and apply our

modified version of k-means++ to both the coreset resulting by running PLS+ alone and

the coreset output by our two pass strategy. This allows us to compare how the quality

and size of the input coresets affect the cost of the returned k-clustering.

29
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4.2 Hardware/Software platform

The code was implemented in C++, because of its inbuilt support of streams, which

neatly matches the streaming nature of our algorithms. Additionally, C++ supports

multithreading via OpenMP in a way that is both simple to implement on existing code,

compared with bespoke libraries such as MPI, and does not require the executable to be

run with any additional parameters or requirements, and that can be disabled by simply

compiling without the -fopenmp flag.

Although trivially parallelised distance computation was used as a way to speed up

operations, had this code been intended for extended usage on even bigger datasets,

other ways of achieving speedups would have been preferable, such as using spatial data

structures or approximate computations.

The code was implemented, debugged, compiled and tested on a variety of platforms.

The results presented in this section were obtained on a platform consisting of an

Intel(R) Core(TM) i5-4570S CPU running at 2.90GHz, with four cores without

hyperthreading and 12 GB of system memory, running Ubuntu Server 22.04.1 LTS.

The code was hosted on the Department of Information Engineering’s GitLab instance

and was compiled using the -O3 and -fopenmp flags.

4.3 Datasets

We tested our code and ran our experiments on synthetic datasets, generated in the

following way. Given n ∈ N+ points to be generated, k > 1 centers, D ∈ N+ integer

dimensions, r ∈ R+ radius and s ∈ N+ integer spread factor:

• k centers were generated uniformly and independently within a radius r from the

origin;

• for each of the n points to be generated, one of the centers was randomly and

uniformly chosen, and each of the point’s dimensions was generated by shifting the

center by a random, normally distributed amount with zero mean and unit variance,

multiplied by r/s - in effect, placing the point within a radius r/s of its center, with

Gaussian noise being applied to each dimension indipendently.

Datasets with the following parameters were generated and used in the experiments:

Name n k D r s

100K 100,000 4 2 100 4

200K 200,000 4 2 100 4

500K 500,000 4 2 100 4

1M 1,000,000 4 2 100 4

In all cases, the Euclidean distance was used as a distance metric. We did not implement

or test other metrics, though as stated before our analysis extends to general metric

spaces.



4.4. RESULTS 31

4.4 Results

We present time statistics on each run as a matter of completeness. We shall not comment

on them, as the actual time performance of our implementation is not a factor in our

experiments, and it is undoubtedly possible to get better results by changing the way

distance is computed, e.g. via approximation or spatial data structures, or even trivially

by examining metric spaces that use distance functions that are quicker to evaluate such

as the L1 norm.

4.4.1 General performance of PLS+ and StreamingCWB

First, we present the results of running the two pass, dimensionality oblivious algorithm

described in Section 3.4, on different sized datasets.

For this test, StreamingCWB was run with R = 250, ε = 1.

Dataset
PLS+ StreamingCWB

|F | Phases Time (mm:ss) |F ′| Time (mm:ss)

100K 4862 4 0:53 32183 3:48

200K 8077 4 2:01 41841 11:22

500K 2733 5 5:53 53713 33:24

1M 4382 5 9:16 62624 97:04

Note how the size of the coreset returned by PLS+ is heavily dependent on how close

to a phase change we were when the stream ends. Specifically, the size that is returned

will be limited by the invariant to be at most (γ − 1)k(1 + log n), so we may encounter

particularly unlucky instances that run out of points while working on a guess L that is

big enough not to trigger a new phase, but too small to lead to a small size coreset, as

many points will be turned into facilities rather than being connected to existing ones.
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4.4.2 Impact of ε on StreamingCWB output cardinality

In this test, we investigated the practical impact of running different values of the

space-accuracy tradeoff parameter ε on the cardinality of the coreset returned by

StreamingCWB.

For the purpose of this test, we re-used the coresets returned by PLS+ in the previous

section. In all instances, we again set parameter R = 250.

Dataset ε |F ′| Time (mm:ss)

200K

0.5 92729 23:30

0.75 59945 14:39

1 41841 11:22

500K

0.5 140181 106:00

0.75 81930 53:09

1 53713 33:24

Observe how the behaviour of ε is not at all linear, as the analysis already suggested, as

smaller values will precipitate a blowup in coreset size, while it might be possible to get

meaningful quality improvements for only a small penalty in space, if we limit ourselves

to ”reasonable” values of ε that are not too far from 1.

4.4.3 PLS+: Varying values of gamma

We investigated the tightness of PLS+’s analysis by running tests on the impact of

varying values of γ. It is well known that bounds on theoretical analysis of randomized

algorithms are often very conservative, and their performance is in practice much better;

in our case, though, parameters derived from the analysis directly factor in the runtime

of the algorithm. We are interested in keeping track of the cost and cardinality of the

solutions returned by PLS+ by using values of γ lower than that mandated by the

analysis, and checking how the corresponding final values of L compare to an estimate

of the optimum cost of a k-median clustering on the entire dataset. We seek then to

show that the lowest value of γ corresponding to a solution returned with L being lower

than the estimated optimum cost is much lower than the analysis’s suggested value.

We implemented a variant of the well-known k-means++ algorithm, which we dubbed

k-median++. The purpose of this was to obtain an estimate of the optimum cost of a

k-median clustering on the entire dataset, which we can use as a comparison with the

behaviour of PLS+. In the following, we will use the notation ˜︁ν⋆ to indicate such

estimates.

A brief sketch of k-median++’s strategy is as follows:

1. Select the first center randomly and uniformly among the input dataset;

2. Compute the distance between each input point and the center set;
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3. Select the next center according to a weighted distribution, proportional to the

distance of a point to the center set;

4. Repeat steps 2-3 until k centers have been selected.

To further improve on the cost estimate returned by k-median++, a final recentering

step has been added to the algorithm, in which we calculate the centroids of the

”provisional” clusters resulting from regular k-median++, and pick the closest input

point to each of the k centroids as a center.

For each dataset, we ran PLS+ using values of γ corresponding to all powers of 2 from 2

to 128, in addition to the value suggested by the analysis (γ ≃ 164.3); k-median++ was

run three times, taking the lowest cost estimate.

Dataset γ Phases Final L |F | Cost Time (mm:ss)

100K

2 7 8.6516e+06 20 2.07133e+06 0:01

4 6 603829 134 1.01518e+06 0:01

8 6 603829 130 825553 0:02

16 5 42143.5 810 435049 0:05

32 5 42143.5 833 393774 0:07

64 5 42143.5 833 296954 0:24

128 4 2941.36 4804 169733 0:41

164.3 4 2941.36 4905 162694 0:54

For dataset 100K, k-median++ returns ˜︁ν⋆ = 3.11 × 106, which makes γ = 4 the smallest

parameter value for which the final guess for L is smaller than the optimum.

Dataset γ Phases Final L |F | Cost Time (mm:ss)

200K

2 7 8.6516e+06 38 3.78833e+06 0:02

4 7 8.6516e+06 33 2.68224e+06 0:05

8 6 603829 220 1.5594e+06 0:06

16 6 603829 221 1.20486e+06 0:18

32 5 42143.5 1390 649342 0:32

64 5 42143.5 1362 565734 1:04

128 4 2941.36 7930 277396 3:01

164.3 4 2941.36 8091 268216 3:28

For dataset 200K, ˜︁ν⋆ = 6.17× 106, making γ = 8 the smallest valid choice.

Dataset γ Phases Final L |F | Cost Time (mm:ss)

500K

2 7 8.6516e+06 74 7.374e+06 0:06

4 7 8.6516e+06 76 5.44998e+06 0:09

8 6 603829 458 2.94355e+06 0:21

16 6 603829 457 2.58399e+06 0:40

32 6 603829 440 2.07615e+06 1:35

64 5 42143.5 2610 1.17138e+06 2:11

128 5 42143.5 2718 958128 4:53

164.3 5 42143.5 2697 858252 7:51
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For dataset 500K, k-median++ returns ˜︁ν⋆ = 1.57 × 107, meaning that already for γ = 2

the algorithm’s final guess for the optimum cost, L7, is valid.

Dataset γ Phases Final L |F | Cost Time (mm:ss)

1M

2 8 1.23959e+08 18 1.95264e+07 0:06

4 7 8.6516e+06 130 1.0009e+07 0:11

8 7 8.6516e+06 128 7.6619e+06 0:27

16 6 603829 723 4.44169e+06 0:46

32 6 603829 752 3.81085e+06 1:31

64 5 42143.5 4195 1.94863e+06 4:14

128 5 42143.5 4273 1.72807e+06 6:46

164.3 5 42143.5 4361 1.62708e+06 9:13

Finally, for 1M, ˜︁ν⋆ = 3.23× 107, and γ = 4 is the smallest valid choice.
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With this evidence at hand, it seems clear that the choice of γ suggested by the analysis

is very conservative, and leads to a blowup both in the size of the returned coreset and

in the time needed to return it. Additionally, γ strongly influences the approximation

factor α of the returned solution, since α = γβ/(β − 1).

This is not at all uncommon in theoretical analysis of approximation algorithms,

especially those that rely on randomization techniques. It seems clear that PLS+ would

behave much better in practice if only we could tune its parameters to a specific

dataset’s optimum cost estimation. Of course, the way we obtained our values of ˜︁ν⋆ are

not applicable to general usage of our techniques, as we used an offline algorithm. It

would be exceedingly difficult to get such an estimation via a streaming algorithm, not

to mention that we would need to obtain it before PLS+ even began running, adding at

least one more (potentially onerous) pass over the dataset to the overall coreset

construction strategy.
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4.4.4 Running the two pass coreset construction for the best

values of γ

A natural question that might now arise is how might StreamingCWB behave when used

on the much lower approximation results on the coreset that arise from using PLS+

with appropriately lower values of γ.

For each of the four datasets we used in the previous experiment, we ran our two pass

coreset construction by first applying PLS+ with the best value of γ, and then applying

StreamingCWB with a suitably resized α parameter.

We ran tests on different values of ε and R = 250.

Data- Approx PLS+ StreamingCWB

set γ α |F | Cost Ph. Time (s) ε |F ′| Cost Time (s)

100K 4 4.3 139 756676 6 1.098

0.5 278 613529 3.609

0.75 190 713121 2.972

1 165 736054 2.773

200K 8 8.6 232 1.19e+06 6 4.046

0.5 940 684483 17.591

0.75 491 949170 11.409

1 369 1.07e+06 10.304

500K 2 2.15 12 1.26e+07 8 3.219

0.5 81 6.7e+06 5.547

0.75 40 9.31e+06 4.001

1 26 1.08e+07 3.429

1M 4 4.3 120 8.30e+06 7 10.454

0.5 329 6.35e+06 37.658

0.75 197 7.72e+06 28.895

1 159 8.06e+06 26.044

Unsurprisingly, the returned solutions are all-around much better; fewer facilities are

created, leading to smaller coresets, since smaller values of γ lead to breaking the facility

count invariant much more often, triggering new phases that have higher and higher

facility costs. This in turn will make it much more expensive to open a new facility, with

most of the new points being connected to existing facilities.

Also, recall that the approximation guarantees for these smaller values of γ in turn lead

to a much more precise solution; lastly, working with smaller sets of facilities leads to

clear time improvements as distance computations get much less costly, even with our

straightforward parallel linear scan implementation. This incidentally allowed us to do

some more meaningful experimentation with the ε space-accuracy tradeoff parameter,

and may enable a hypothetical real user to select more aggressive values of ε.

4.4.5 Applying weighted k-median++ on output coresets

Finally, we investigate the result of applying a weighted variant of k-median++ to the

coresets obtained via PLS+ alone, and both PLS+ and StreamingCWB in our two pass

strategy. This can help us gauge the practical impact of StreamingCWB in refining

PLS+’s solution, and serves as an example of how to connect our two pass construction
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with a final k-clustering of the coreset.

The extension of k-median++ to handle weighted inputs is trivial and only requires

multiplying each point-nearest center distance by the point’s weight in the probability

computation. We continue applying a recentering step, which is also adapted to handle

weighted points by taking weights into account in the centroid computation.

We shall use as a starting point the results of Subsection 4.4.1. Thus, StreamingCWB is

ran with R = 250, ε = 1, and we return to using γ = 164.3 as suggested by the analysis.

Our results were assembled by averaging together three runs of k-median++ on each

input coreset.

Recall that we denote by ˜︁ν⋆ the estimate on the optimum k-median clustering cost that

we obtained by running k-median++ directly on the dataset.

Dataset ˜︁ν⋆

k-median++ on k-median++ on

PLS+ alone PLS+ and StreamingCWB

Input size Output cost Input size Output cost

100K 3.06e+06 4928 3.66214e+06 32092 3.38258e+06

200K 6.17e+06 8040 7.14514e+06 41777 7.04497e+06

500K 1.57e+07 2740 1.76646e+07 53702 1.59015e+07

1M 3.23e+07 4303 3.52897e+07 62682 3.13905e+07
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We do not see big improvements in the output cost due to the application of

StreamingCWB, likely because of our choice of ε, which is somewhat forced by the big

input sizes. It is encouraging to see that the costs over the coresets are not too far off

the estimations over the whole input dataset, though again this is somewhat dampened

by the large cardinalities of the coresets as a result of the theoretical analysis of PLS+.
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Chapter 5

Conclusions

We presented and analyzed streaming coreset-building techniques for the k-median

clustering problem in general metric spaces. Our techniques leverage intrinsic properties

of a dataset’s underlying metric space - its doubling dimension - in oblivious and

semi-oblivious ways, defining one and two pass construction strategies.

Our experimental evaluation of both the PLS+ algorithm on its own and of our two

pass coreset construction strategy proved that the theoretical analysis outlined is in

practice very conservative, and better results could be obtained if we had approximate

knowledge of the cost of an optimum k-clustering on the dataset. As mentioned before,

this is likely impractical to do with a streaming strategy, though the dramatic

improvements we saw by running lower values of γ might justify the effort - besides, a

very rough estimate could suffice.

Another open question is the possibility of somehow improving our two pass strategy so

that it only requires one pass over the input dataset. It is trivial to extend our one pass

semi-oblivious technique should the dataset have known dimensionality, but we did not

ultimately devise a one-pass streaming algorithm that is fully oblivious to it.

Ideas that were raised include fusing the two phases into one, and proceeding to cull the

resulting coreset in some way; or running two instances of PLS+ in parallel, with a

simplified instance of PLS+, running on a modified guess L′ = εL, alongside the main

instance, ultimately yielding a coreset of size augmented by a factor (c/ε)D. Neither

strategy should be of trivial analysis.
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