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Introduction

The first person to introduce and study representation theory of finite groups was F. G. Frobenius
in 1896. In his work [4], he introduced the notion of character for a finite non-abelian group,
generalizing the notion of group character of finite abelian group developed by R. Dedekind
in 1879. Afterwards, I. Schur, who was a student of Frobenius, continued his work in several
directions, including presenting in his doctoral thesis [10] the duality between the general linear
group GL, C and the symmetric group S,. This duality was then developed by H. Weyl in his
work [11]. For further historical information see [7].

The object of this thesis is to study the Schur-Weyl duality in the case of symplectic groups
over the field C. This arises from the will to give a detailed explanation of the main results in
section 2 of paper [9]. We will refer mostly to the approach that R. Brauer illustrated in 1936 in
his work [1]. Here Brauer introduced the algebra B,;(J) to describe the invariants of symplectic
and orthogonal groups acting on V®? for a finite-dimensional complex vector space V. In fact,
in order to accomplish our goal, we will need to state the First Fundamental Theorem for the
symplectic group (of which we will not give a proof).

The thesis is divided in five chapters. As the titles suggest, the second and the third chapters
are devoted to the study of the general linear group GL,,C, namely the Schur-Weyl duality and
the polynomial representations for GL,,C, while the last two chapters concern the symplectic
group Sp,,,C.

In the first chapter, we will present, as prerequisites, all the results from classical representation
theory of finite groups that we will use in all the following parts. Namely, we will introduce the
notion of group algebra and Lie algebra that will be fundamental to work with the representations
of the classical groups since, as we will show, studying representations of these algebraic structures
will be equivalent to studying representations of the corresponding groups.

In the second chapter, we will present the Schur-Weyl duality for GL,C. We will first provide
a complete portrait of the irreducible representations of S;, and give a formula for their characters,
the so-called Frobenius character formula. The proof of the duality will be based on an important
result on semisimple algebras over an algebraically closed field known as Double Centralizer
Theorem. We will finish this chapter computing the Weyl character formula for S,,.

The main goal of the third chapter is to finish the description of all the algebraic representations
of GL,,C. For, we will first provide a general structure to analyse a semisimple Lie algebra,
applying it to the special linear algebra sl,,C to obtain a description of its representations. As a
consequence, we will have all the ingredients to list the irreducible representations of GL,,C.

In the fourth chapter, we will start to work with the symplectic group Sp,,,C. After recalling
the structures of the symplectic group Sp,,,C and the corresponding Lie algebra sp,, C, we will
apply the previous algorithm to delineate the representations of sp,,C. Afterwards, we will give a
complete description of Weyl’s construction for symplectic groups using what we have developed
in chapter 2.

In the fifth chapter, we will present without proof some important facts on invariant theory
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iv Introduction

for symplectic groups. Next, we will apply the Double Centralizer Theorem to the symplectic
case and we will characterize the centralizer of the natural factorwise action of Sp(V') on the
tensor product V®? for a finite-dimensional complex vector space V endowed with a suitable
form f: V xV — C . It will turn out that this centralizer is closely connected to the Brauer
algebra B;(—2n) and we will be able to prove the symplectic Schur-Weyl duality.

Each chapter contains a little summary and some references at the beginning.
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Chapter 1

Preliminaries

In this chapter, we will develop some of the general theory of representations of finite groups. In
particular we will introduce the notions of character and group algebra that will be important in
the following chapters.

All results appearing in the first four sections are proved from chapter 2 to the first sections
of chapter 5 of [3]. Also, the same topics are treated in lectures 1 to 3 of [5] with some interesting
examples. The results in the last section on Lie algebras can be found in [8].

1.1 Representations of finite groups

A representation of a finite group G (also called a G-module) on a finite-dimensional complex
vector space V' is a homomorphism p: G — GL(V'). We will often abuse notation by referring to
V as the representation of G and write gv for p(g)(v) whenever the map p is understood from
context.

A G-map ¢ between two representations V' and W of G is a vector space map ¢: V — W such
that p(gv) = gp(v) for every g € G and v € V. We say a G-map ¢: V — W is an isomorphism
of representations if it is an isomorphism of vector spaces. In this case, we say that V and W
are isomorphic and denote this by V ~ W. Let Homg(V, W) denote the set of all G-maps from
V to W and define Endg (V) = Homg(V, V). Notice that Home(V, W) inherits the structure of
vector space from Hom(V, W).

For any G-maps ¢: V — W and ¢¥: W — Z, the composition ¢pop: V — Z is again a G-map.
Indeed we have

(Yo p)(gv) = P(p(gv)) = Y(gp(v)) = g (p(v)) = g(¥ o p)(v).

This defines the composition of G-maps, which is clearly associative and has identity element idy .
So we may counsider the category of representations of G, denoted Rep(G).

A subrepresentation of a representation V' is a vector subspace W of V which is invariant
under G, that is, gw € W for all g € G and w € W. We say V is irreducible if it contains exactly
two subrepresentations, namely, 0 and V' itself.

Example 1.1.1. Let G be a finite group. We have:

i) The trivial representation C where gv = v for all ¢ € G and v € C. It is clearly always
irreducible.
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ii) The regular representation of G is the C-vector space with basis G where G acts on itself
by left multiplication.

If V and W are representations, the direct sum V & W and the tensor product V @ W are
also representations, respectively via

gvow)=gvdgw and g(vew)=gv® gu,

for v € V and w € W. For a representation V', the nth tensor power V" is thus a representation of
G, the nth exterior power A"(V) and the nth symmetric power Sym™ (V') are subrepresentations
of it. Let p: G — GL(V) be a representation. The dual V* = Hom(V,C) of V is also a

representation, defining p*(g): V* — V* as p*(g9)(f) = ((p*(9)(f))(v) = f(p(g~")(v))) for all
f € V*and v € V. This forces p to respect the natural pairing (-,-) of V* and V in the following

sense: (p*(g)(A), p(g)(v)y = (\,v) for all g € G, A € V*, and v € V. Having this, the action on
Hom(V, W) is given by the identification Hom(V, W) = V*® W given by f @ w — (v — f(v)-w).

A representation is indecomposable if it cannot be expressed as a direct sum of proper subrep-
resentations. Clearly, if a representation is irreducible, then it is indecomposable. Remarkably,
also the converse holds.

Theorem 1.1.2 (Maschke). If W is a subrepresentation of a representation V' of a finite group G,
then there is a complementary invariant subspace W' of V, so that V. =W & W'. Consequently,
every representation is a direct sum of irreducible representations.

This property is called complete reducibility.
Lemma 1.1.3 (Schur). Let ¢: V — W be a nonzero G-map.
i) If V is irreducible, then ¢ is injective.
it) If W is irreducible, then o is surjective.
iit) If V.=W is irreducible, then p = X\ - I for some nonzero A € C, I the identity.
It follows proposition 1.8 in [5]:
Proposition 1.1.4. For any representation V of a finite group G, there is a decomposition
V=Vi"g. . e Vi,

where the V; are distinct irreducible representations. The decomposition of V' into a direct sum of
the k factors is unique, as are the V; that occur and their multiplicities a;.

1.2 Character Theory

If V is a representation of G, its character xy : G — C is defined by

xv(g) = Tr(glv).

In particular, by the properties of trace, we have x-(hgh~!) = xv(g), so that xy is constant on
the conjugacy classes of G; such a function is called a class function. Note that xy (1) = dim V.
Since the trace of a linear transformation is the sum of the eigenvalues, the identities

Xvew = Xv + Xw, XVew = XV * XW, Xv+ =XV
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easily follow.
For any representation V of a group G, we set V& = {v € V | gv = vfor all g € G}. The map

1
cp:@ZgEEnd(V)

geqG

is a projection of V onto V&. Let C.ass(G) = {class functions on G} and define a Hermitian
inner product on Cass(G) by

1 I
(o, B) = @ Z a(9)B(g)-
geG
We have the following fundamental theorem of character theory.

Theorem 1.2.1. In terms of this inner product, the characters of the irreducible representations
of G are orthonormal.

Remark 1.2.2. Here are some important consequences of this theorem which follow almost
immediately.

i) Any representation is determined by its character, i.e., V ~ W if and only if xy = xw.

ii) A representation V is irreducible if and only if (xv,xv) = 1.

)
iii) The multiplicity a; of V; in V' is the inner product of xv with xv,, i.e., a; = (xv, xv;)-
)

iv) Any irreducible representation V' of G appears in the regular representation dim V' times.
In particular, |G| = 3 (dim V;)2.

Clearly, the image of g in End(V) is a G-map if and only if g is in the centre Z(G). Let
a: G — C be a function on the group G, for any representation V of G the map

pav =Y _alg)-g € End(V)

is a G-map for all V' if and only if « is a class function. As an immediate consequence, we have

Proposition 1.2.3. The number of irreducible representations of G is equal to the number
of conjugacy classes of G. Equivalently, their characters {xv} form an orthonormal basis for

Cclass(G) .

The orthogonality in theorem 1.2.1 is called row orthogonality. Similarly, there is a corre-
sponding column orthogonality.

Corollary 1.2.4. For g,h € G, we have

1 — _[1/c(g); if g and h are conjugate,
Gl ZXVi (9)xv. (h) = {O; otherwise
K3

where the sum is over all distinct irreducible representations V; of G and c(g) is the size of the
conjugacy class of g.

This proposition completes the description of the characters of a finite group in general. Now
we introduce a notion that will be useful in the next chapter. A virtual representation of a finite
group G is an integer linear combination of irreducible representations of G, V =Y n;V;, n; € Z.
The character of V' is xy = > nixv;-

Lemma 1.2.5. Let V be a virtual representation with character xv . Suppose (xv,xv) =1 and
xv (1) >0, then xv is a character of an irreducible representation of G.



4 Preliminaries

1.3 Induced representations

If H C G is a subgroup, any representation V of G restricts to a representation of H, denoted
RestV. Conversely, suppose W is a representation of H. The induced representation Indi is
the representation of G with

mdSW = {f: G = W | f(hz) = pw(h)f(z)for all z € G and h € H}

and the action g(f)(z) = f(zg) for any g € G. To compute the character xy,qy of Ind% W one
has the following

Theorem 1.3.1 (Mackey formula). Let T be a right transversal for H in G. We have

Xmagw(9) = Y xwlgt™") = ! > xwlzgr™).

teT:tgt—1 |4 wgz—1
itg €H rz€G:zgr—1eH
Another important result about induced representations is the Frobenius Reciprocity Theorem.

Theorem 1.3.2 (Frobenius Reciprocity). Let W be a representation of H, and V' be a representa-
tion of G. Then, as vector spaces, Homa(V, Ind$,W) is naturally isomorphic to Homg (Res&V, W).

Corollary 1.3.3. If W is a representation of H, and V a representation of G, then we have
(XInd%W; XV)G = (XWa XResgV)H'

1.4 Group Algebra

The group algebra C[G] of a finite group G is the associative C-algebra with basis G and where
multiplication is inherited from group multiplication, i.e.,

Z app Z beq | = Z apbepq = Z Cq9

peG qeG p,qeG geG

where ¢4 is the sum of all a,b, where g = pq.

We can generalize the notion of a representation to associative algebras with unit. A rep-
resentation of an associative C-algebra A on a finite-dimensional complex vector space V (also
called a left A-module) is an algebra homomorphism p: A — End(V). An A-map ¢ between two
representations V and W of A is a vector space map ¢: V — W such that p(av) = ap(v) for
every a € Aand v e V.

We want to show now that we have an equivalence of categories between Rep(G) and the
category of left C[G]-modules.

Notice that given a representation of a finite group G, we can extend it linearly to get
a representation of the group algebra C[G], namely pC[G](dea agg) = dea agpc(g). And
conversely, given a representation of C[G], we can restrict it to G to get back a representation of
G.

Thus we define a covariant functor F': Rep(G) — C[G]-Mod as follows: F assigns to every
representation (V, pg) the representation (V, pciq)) defined as above and to every G-map ¢: V —
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W the C[G]-map ¢*: V — W such that v — ¢(v). This is indeed a C[G]-map since

e D agg | o] =0 | D aglgr) | =D age(gv)

geG geG geq

=Y aylgelo) = [ Y asg | &)

geG geG

Easily, F respects the identity and compositions, so F: Rep(G) — C[G]-Mod is in fact a
covariant functor. Roughly speaking, we can say that a G-map ¢: V — W is mapped to itself
as linear map with the G-representations V, W mapped to C[G]-modules as objects. Hence the
functor F' is clearly fully faithful. From what we have seen above, taking restriction and linear
extension, F' is also essentially surjective. Hence the covariant functor F': Rep(G) — C[G]-Mod
is an equivalence, that is representations of G and representations of C[G] are categorically
equivalent notions.

In fact, we can notice that this is an isomorphism of categories. Indeed, we can consider the
covariant functor F': C[G]-Mod — Rep(G) defined as follows: F assigns to every representation
(V, pcicy) the representation (V, pg) by restriction as above and to every C[G]-map ¢: V — W
the G-map ¢: V — W such that v — ¢(v) that is clearly a G-map. It is immediate to prove that
F oF = idRep(G) and F' o F = idC[G]—Mod'

Finally, we state the following proposition on the structure of C[G].

Proposition 1.4.1. As algebras,
C[G] = @D End(V;)

where the sum is over all distinct irreducible representations V; of G.

1.5 Lie algebras

A complex vector space g endowed with a bilinear map [,-]: g x g — g, called Lie bracket, is
called a Lie algebra over C if it satisfies the following axioms: [z,z] =0 for all z € g and

[, [y, 2]] + [y, [z, 2]] + [2, [z, 9] = O

for all z,y, z € g. The last axiom is called Jacobi identity. It is easy to see that every associative
C-algebra A becomes a Lie algebra over C with the operation [z, y] = zy — yz, called commutator
of  and y, for any x,y € A. We will write £(A) for A viewed as a Lie algebra. In particular, for
a finite-dimensional complex vector space W, End(W) becomes a Lie algebra over C, denoted
gl(W), and we will call it the general linear algebra.

A linear map p: g — b that respects the Lie bracket, i.e., p([z,ylq) = [p(z), p(y)]s for all
z,y € g, is called a Lie algebra homomorphism. A representation of a Lie algebra g on a
finite-dimensional complex vector space W is a Lie algebra homomorphism p: g — gl(W).

Example 1.5.1. If z € g, then y — [z, y] is an endomorphism of g, which we denote adz. In
fact, we can rewrite the Jacobi identity in the form: [z, [y, z]] = [[z,y], 2] + [y, [z, z]]. The map
g — gl(g) sending z to ad z is called the adjoint representation of g.
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Let g be a Lie algebra. We define the tensor algebra T(g) as the complex vector space €, - gon
where g®° := C with multiplication given by the canonical isomorphism g®" @ g®” — g®(n+m),
Now define the universal enveloping algebra U(g) = T(g)/I where I is the ideal generated by
elements t @y —y @z — [z,y] for all x,y € g C T(g). We claim now that

Homalg(U(g), End(V)) ~ Homyealg(g, gi(V)).

Let p: g — gl(V') be a Lie algebra representation. We can extend it to an algebra representation
P+ U(g) = End(V) by setting p'(z1 ® - ® ;) = p(21) . .. p(xy) on the basis tensors and then
extending by linearity. Similarly, given an algebra representation p’: U(g) — End(V'), we can
restrict it to g C U(g) to get a Lie algebra representation p: g — gl(V') since

p([z,ylg) = p'([z,9]g) = p'(z @y -y @)
=p'(x)p' (y) — p' ()P (x) = p(x)p(y) — p(y)p(x) = [p(x), p(Y)]g1(v)

for all z,y € g. We may conclude then that studying representations of g is equivalent to studying
representations of U(g).



Chapter 2

Schur-Weyl duality for GL(V)

In this chapter, we will study the classical Schur-Weyl duality relating irreducible finite-dimensional
representations of the general linear and symmetric groups. In section 2.1, we will study a
construction of the irreducible representations of the symmetric group and a formula for their
characters. Next, in section 2.2, we will prove the classical case of Schur-Weyl duality using
the Double Centralizer Theorem. We will finally obtain the Frobenius character formula for the
irreducible representations of S,,.

The presentation in this chapter is based mainly on chapter 5 of [3] and on some parts of
lecture 6 of [5].

2.1 Representations of the symmetric group S,

2.1.1 Irreducible representations for S,

Recall that a partition A of n is an integer sequence A = (A1, ..., Ag) so that Ay > -+ > A\, > 1
and n = A\; + - -+ + A\,. We already know that the conjugacy classes of S,, are in bijection with
the partitions of n. Let p(n) denote the number of partitions of n. Since the number of conjugacy
classes of S, is p(n), by Proposition 1.2.3 there are also p(n) distinct irreducible representations
of S,.

To a partition A = (A1,...,A;) of n, we attach the Young diagram of A, which is a collection
of n left-justified cells with A; cells on the ith row. The conjugate partition A’ = (A},..., ) to
the partition A is defined by interchanging rows and columns in the Young diagram. Given the
Young diagram of A, we define a tableau on it to be a numbering of the boxes by the integers
1,...,n. Numbering the boxes consecutively as shown in the following tableau for (4,2,1)

2[3]4]
6 )

‘\IO‘!H

we get the so-called canonical labeling. S,, acts naturally on tableaux by permuting the labels.
Given the canonical tableau for a partition A of n, we define the following subgroups of the
symmetric group

P, ={g € S, | g preserves each row of A},

and
Qx ={g € S, | g preserves each column of \}.

7
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Moreover, we define the following elements in C[S,,]:

ay = Z g and by = Z sgn(g)g.
geP geEQN
Finally, we call their product ¢y = axby € C[S,] the Young symmetrizer of A.

Remark 2.1.1. i) For the canonical tableau, Sy := Pj is the subgroup of elements in S,
stabilizing the sets {1,..., A\, {41, ..., A+, oo {0+ o1 +L, o A+ AR )

11) PANQ,= {1}

iii) Let T be a Young tableau corresponding to A and g € S,,. If 7" = ¢T', then P} = gPyg~*
and Q) = gQxg™".

iv) Because Py N @y = {1}, we have no cancellations in the sum

Z sgn(k)hk,
heP\,kEQA
so ¢y # 0.

The irreducible representations of S,, are described by the following theorem.
Theorem 2.1.2. The subspace V\ = C[Sy]ex of C[S,] is an irreducible representation of S,
under left multiplication. Moreover, every irreducible representation of Sy is isomorphic to Vy for
some unique partition A of n.

The module V), is called the Specht module corresponding to A.

Remark 2.1.3. Different Young symmetrizers, given by different labelings of the same partition,
give rise to isomorphic Specht modules. For let T and T” be tableaux of the same partition. Then
T’ = gT for some g € S,,. By iii) of the previous remark, we have

C[Snler = C[Splegrg-1 = C[Snlerg-1-

1

Thus the map C[S,|er — C[Sp]er sending x — xg~ ' is an isomorphism of S,-modules.

In this section, we will always work with tableaux with the canonical labeling. Note that, as a
corollary, each irreducible representation of S, can be defined over the rational numbers since c
is in the rational group algebra Q[S,,].

Before proving the theorem, let us compute all the distinct irreducible representations of Ss.

Example 2.1.4. We have the canonical tableaux

112
i B
3

Clearly, we have P(3) = 53 and Q3) = {1} for A = (3), P21y = {1,(12)} and Q2,1 = {1, (13)}
for X = (2,1), and Py 1,1) = {1} and Q1,1,1) = 53 for A = (1,1,1). Hence we get

c3) = a@be) = Y 9,
gES3

c2,1) = a@nben = (1+(12))(1 - (13)) =1 + (12) — (13) — (132),

C(1,1,1) = 0(1,171)17(171,1) = Z sgn(g)g-
gEeS3
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It is immediate to see that, for any h € S3, we have he(sy = c(3) and hegy 11y = sgn(h)c(l’lwl).
Hence we conclude that V{3) = C[S3]c(s) is the trivial representation and V{; 1,1y = C[Ss]c(1,1,1 is
the alternating representation. Finally, by easy computations, V(s 1) = C[S3]c(2,1) is the span of
C(2,1) and (13)6(2,1).

Remark 2.1.5. Consider the natural permutation representation, in which S,, acts on C" by
permuting the coordinates. This representation is not irreducible: the line spanned by the sum
(1,...,1) of the basis vectors is invariant, with complementary subspace V' = {(z1,...,2,) € C™ |
z1 + -+ 2z, = 0}. This (n — 1)-dimensional representation V' is easily seen to be irreducible, we
call it the standard representation of .S,,.

In general, V() is the trivial representation, V(,,_11) is the standard representation, and
V(1,...,1) is the sign representation.
We are now going to prove theorem 2.1.2. In the following, let A be a partition of n.

Lemma 2.1.6. There exists a unique ty € C[S,]* = Hom(CI[S,],C) such that axgbx = ta(g)ca
for all g € C[S,]. In particular for all g € S,, we have

t()z 0 ifg¢P)\Q/\
g sgn(q) if g =pq, withp € Py and g € Q) °

Proof. Since S,, forms a basis of C[S,], it suffices to show the statement for g € S,,. We start
with the following easy observation: if p € Py and g € @), then

axp = Z (gp) = ax

gEPA

and
gbx = Y sen(g)(qg) =sgn(q) Y sen(qg)(qg) = sen(q)ba.
geEQN gEQN

Notice if g € P,Q@», then it has a unique representation as g = pq with p € P and ¢ € Q. Thus,

axgbx = (axp)(gbr) = ax(sgn(g)br) = sgn(g)ca.

Now if g ¢ P\Q@), notice that the coefficient for the identity 1 in aygby is 0 because if pgg = 1 for
some p € Py and ¢ € Qy, then g = p~'¢~! € P\Q,. Since the coefficient for the identity in cy is
1, we must have that ¢)(g) = 0. Thus, we must show that aygby = 0. So it suffices to show that
there exists a transposition ¢ € Qy so that p = ggg—' € Py because then

axgby = (axp)g(sgn(q)gby) = —ax(gqg™")ggbr = —axgbx

and, hence, a)gby = 0. Consider the tableau T = gT where T is the given tableau. Notice that
p is a row-preserving transposition in T because p € Py, and p = gqg~! is a column-preserving
transposition in T’ because ¢ € Q. So it suffices to show that there exists two distinct integers
which lie in the same row in T and in the same column in 7”.

Suppose there were not two such integers. We can find a row-preserving permutation p; € Py
of T and a column-preserving permutation ¢ € gQxg~* of 7" so that p;T and ¢}T’ have the
same first row. Continuing like this, we could find p € Py and ¢ = gqg~"' € gQxg~ ' so that
pT = ¢'T' = ¢'gT = gqT. But then p = gq and, hence, g = pg~' € P\Q,, a contradiction. O

We order partitions lexicographically: A > pu if the first non-vanishing A\; — u; is positive.

Lemma 2.1.7. If A > pu, then axgb, = 0 for all g € C[S,]. In particular, if X > p, then
cxe, = 0.
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Proof. Similarly to the previous lemma, it suffices to find a transposition ¢ € @, so that
p=gqg~ ' € Py for all g € S,,. The computation is completely similar to the previous proof
considering T" and ¢gT” where T is the tableau used to construct ay and 7" is the tableau used to
construct by,. O

Lemma 2.1.8. We have that cxcy = nycy where ny = n!/dim V.

Proof. Lemma 2.1.6 implies that cyeyx = nycy for some ny € C. Consider the map F': C[S,] — Vi
where x — xcy. F multiplies by ny on V), while F' multiplies by 0 on Ker F'. Hence tr F =
(5N dim V>\.

On the other hand, the coefficient of g in F'(g) = gcy is 1 because, as we have already noticed,
the coefficient for the identity in ¢y is 1. Hence we also have that tr ' = dim C[S,,] = n!. O

Lemma 2.1.9. For each partition A of n, Vy is an irreducible representation of Sy,.

Proof. Using lemma 2.1.6 we get that ¢ V) C Ccy. Let W C V) be a subrepresentation. There
are two cases: either cyW = 0 or cyW = Ccy. If cxW =0, then W -W C V), - W = 0. We
claim that this implies W = 0. Indeed, by Maschke’s theorem there exists a complementary
subrepresentation W’ of C[S,,] such that C[S,,] = W & W’. Define a projection p from CI[S,]
onto W by p(w 4+ w') = w. Since W, W’ are invariant subspaces of V' we have p(gz) = gp(x) for
all g € S, and x € C[S,]. But this means that p is given by right multiplication by an element
© € W. Indeed, for any g € S,, we have p(g) = p(g-1) = gp(1) with p(1) € W and so, by
C-linearity, p(z) = zp(1) for all z € C[S,]. Thus , take ¢ = p(1) € W. Now since p*> = p we get
p=¢?>c W -W =0, so that ¢ = 0. Since p is surjective, we must have W = 0.
If ¢y W = Cec,, then

V)\ = C[Sn}cA = C[Sn](CAW) = ((C[SH]C)\)W Q w
because W is a representation of .S,,. Therefore, V) is irreducible. O

Lemma 2.1.10. If XA # p, then V) 2 V,,.

Proof. Without loss of generality, assume A > p. Then by the previous proof along with
lemma 2.1.7, we have that ¢yVy = Ccy but c\V,, = ¢xC[S,]c, = 0. O

Now using lemmas 2.1.9 and 2.1.10 and the fact that partitions of n list all conjugacy classes
of S, which by Proposition 1.2.3, list all irreducible representations of S,,, we get theorem 2.1.2.

2.1.2 Induced representations for 5,
Let Uy be the representation of S,, induced by the trivial representation of Py, so that
Ux = Ind}y C = C[S,] ®¢(p,) C = C[S, /P,
where S,, acts on the last C-vector space through its action by left multiplication on S,,/Py.
Proposition 2.1.11. We have Uy ~ C[S,]ay as C[S,]-modules.

Proof. If g,g' € S,,, we have ga) = ¢'ay if and only if gP\ = ¢'P\. Let (g;)ier be a system of
representatives of S,/Py. Recall that the support of an element z =3 ¢ ag9 € C[S,] is the
set of g € S, such that a; # 0. Then the g;a) have support in pairwise disjoint subsets of Sy, so
they are linearly independent over C. So the (g;ay)icr form a C-basis of C[S,]ay. In particular,
we can define a C[S,]-linear map u: Uy = C[S,,/P»] — C[S,]ax by sending gP) to gay, for every
g € Sp. This sends the basis (g;Py)icr of C[S,/Py] to the basis (g;ay)icr of C[S,]ax that we
have just defined, and so it is an isomorphism. O
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Lemma 2.1.12. Let A be a k-algebra over any field k and e be an idempotent in A. Then for any
left A-module M, we have Homa(Ae, M) =2 eM (namely, x € eM corresponds to f,: Ae — M
given by fy(a) = ax, a € Ae).

Proof. Let us prove that this map is injective. Let z,y € eM such that f, = f,. Then
0= fu(e) — fyle) = e(x —y). Asx —y € eM and e*> = e, we have e(x —y) = x — y, and so
x —y = 0. Now we prove that the map x — f, is surjective. Let f € Hom(Ae, M), let x = f(e).
Then z = f(e?) = ef(e) € eM. Also, for every a € Ae, f(a) = f(ae) = af(e) = ax. Hence
f = fl O

Proposition 2.1.13. We have Hom(Ux,V,,) =0 for p < A, and moreover dim Hom(Uy, Vy) = 1.
Thus,

Ux = @uza Ky
where K\ are non-negative integers and Ky = 1.

The integers K, are called the Kostka numbers.

Proof. By proposition 2.1.11 and lemmas 2.1.8 and 2.1.12 (notice that ay - ay = |Py| - ax, so ay is
idempotent up to a factor |Py|),

Hom(Uy, V,) = Hom(C[S,]ax, C[S,]a,b,) = axC[Sy,]aub,,
and the result follows from lemmas 2.1.6 and 2.1.7. O

Now let us compute the character ¥y = xy, of Ux. For i = (i1,...,i4) a d-tuple of non-
negative integers with > ai, = n, denote by C; C S,, the conjugacy class consisting of elements
made up of i; 1-cycles, iy 2-cycles,. .., ig d-cycles. For N > k (where k is the number of parts
of \),set A\, =0for k+1<p <N and let z1,...,zx be independent variables. Consider the
power sum polynomials

Pi@) =a+ -+ oy
and the power sum symmetric polynomial

k
PO = HPj(x)ij = (w14 Hap) (@i )2 (e ad)
j=1

If f(x) = f(x1,...,2N) is a formal power series, and (I1,...,ly) is an N-tuple of non-negative
integers, let

[f(2)]@,,....1n) = coefficient of a2l i f

If g € Sy, we write Z; = {h € S,, | hg = gh} for the centralizer of g in S,,.

Proposition 2.1.14. Let g € C; C S,,. Then

2,1 = TLi"

j>1
and
n!

Gl = =—+-
' HjZI ijlyt
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Proof. Let h € Z;. Then h sends the support of each cycle of g to the support of any other cycle
of the same length, and it must also respect the cyclical order given by g on the support of these
cycles. This gives an isomorphism

Zy~ |8, x (2/iz)"
Jj=1
where S;; acts on (Z/jZ )% by permuting the entries of the i;-tuples. Hence
|Z,| = [T 434"
j>1
Now note that C; = S,,/Z,. So we get

n!

ICil = =
RIS

Denote X* = z7" - .. 2’“
Theorem 2.1.15. We have
Ua(C) = [PD]\ = coefficient of X* in PD.

Proof. By theorem 1.3.1, we get

WG =757 >, 1= ||Z||PmC\

1Pl - | Py
€S lhgh—1€Py

for a representative g € C;.
First, we have Py = Sy ~ Sy, x --+ X S),, so |Py\| = ngl Apl = H;Ll Ap!. Second, by
Proposition 2.1.14,
1Z,| = [T i:%"%

j=1
Finally, we have to calculate | Py N C;|. The conjugacy class C; is the set of permutations in S,
that have i; cycles of length j for every j > 1. So its intersection with Py is a finite disjoint
union of the following conjugacy classes in Py >~ Sy, X --- x Sy, : the product for p=1,...,k
of the conjugacy classes in Sy, of permutations with r,; cycles of length j for every j > 1, for
every family (r,;)1<p<k,j>1 such that, for every j > 1, i; = 215:1 rp; and for every p € {1,...,k},
Ap=>. j>1J7pj- The cardinality of this product of conjugacy classes is

HH

by proposition 2.1.14. We can actually take p in {1,..., N} without changing the result, because
Ap =0 for p > k.
Put all this together, we get

i) = e Tl S I et

)
r. 147
Hp 1 A j>1 (rp;) =1 + 1321 PJ]

' b
i>1 rm e
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where the sum is over families (rp;) as above. This is equal to

St

. T .
(rpj) P=1 Iljz1 7w

On the other hand, for every j > 1, we have

N i . N
. . 15 ir. 1
Pj(x)" = (Z xi) = > ==
p=1 i;="1++TNj Hp:l rpj' p=1
So the coeflicient of Hfgvzl x;}p in P! = [T Pj(z)% is indeed equal to
Z(Tm) i 4L where the sum is over families (rpj) as above. O

p=1 Hj21 Tpj!”

For example, if n = 4, A = (3,1), and C; is the conjugacy class of (123)(4), i.e., i1 =1, i = 0,
ig = 1, i4 = O, then
¥3.1)(Cs) = (21 + x2) (2] + 23)] 31y = L.

2.1.3 The Frobenius character formula

In this section we turn to Frobenius’ formula for the character x» of V.
Let A(x) = [[,<;j<n(®i —z;). This is equal to the Vandermonde determinant:

1 zny ... 9:%_1
o(1)—1 a(N)—1
= D (sen(0))af VT
1 x ... xiv_l oESN

Given a partition A = (A1, ..., \;) of n, set
h=M+k-1, lao=X+k—=2,..., 0k =X,
a strictly decreasing sequence of k non-negative integers, and denote [ = (I1,...,l;). The character
of V) computed in g € Cj is given by
Theorem 2.1.16 (Frobenius Formula). We have

X (G) = |A@) - ] Pi(a)*
J (1 lk)

We need some lemmas.

Lemma 2.1.17. Let A= (\1,...,An) € ZN be such that \y > --- > Ay. Let 0 € Sy, and let p
be the N-tuple of integers (A1 +0(1) —1,...,An +0(N) — N), rearranged to be in non-increasing
order. Then > X\, and we have p = X if and only if o0 = 1.

Proof. Let ig € {0,..., N} be an integer such that \; = u; for every 1 <i <iy. We claim that
o(i) =i for every 1 <i < iy and that, if io < N — 1, then p;,4+1 > Aiy+1. Applying this claim to
the biggest iy with the above property, the lemma follows.

We proceed by induction on ig. If ig = 0, the claim is trivial. Now let ig > 1 and suppose that
the result holds for iy — 1. We have p;, > A\; + (i) — i for ig < i < N, 80 piy > Niy + 0(i0) — 0.
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As p;y = Ny, this gives o(ig) < ip. But o(ig) € {i0,...,N}, so o(ig) = ig. Now, if 49 < N —1,
we have

Pigt1 = sup  (Ni+0(i) —1) > Njgp1 +0o(io + 1) — (i + 1) > Nig 41,
lo+1<i<N

because o(ip +1) € {iog +1,..., N} as oj(1,... o1 = id. O
We state next a combinatorial lemma.

Lemma 2.1.18 (Cauchy). Let Ay = ( We have

)
zi—Y; /1<i,j<N”°

det(An) = [Ticicjen(@i—2)(y; — wi)
N B .
[li<ijen(@i—y))

Proof. See corollary 5.15.4 of [3]. O

Proof of Theorem 2.1.16. Let 0, be the class function defined on the right-hand side of the
equality in the theorem. We claim that this function has the property ) =5 > Luaxp, where

N  Ap+N—p .
xp” p

L, are integers and Ly, = 1. By definition, ,(C;) is the coefficient of [[,_, zp in

A2) [1;54 Pj(z)%. As A(x) is equal to the Vandermonde determinant, we have

N
Az) = Z sgn(o) H xév_"(p).
p=1

oESN
So
[~
0x(Ci) = Y sgn(o) [ [[ =)@ [] Pix)"
oESN [P=1 i1 (M +N—1204+N=2,... An)
= Z sgn(o) HPj(l“)”
oESN 721 (A —140(1).. An = N+o(N))

Let 0 € Sy, and denote iy = (fio,15 - - - , o, n) the N-tuple of integers (A1 +0(1) —1,..., Ay +
o(N) — N), rearranged to be in non-increasing order. Observe that the polynomial [, Pj(x)%

is symmetric in the variables z;, because all the P;(x) are. So the coefficient of Hll)vzl x;p_p +o(®)

in[[;5, P (z)% is equal to the coefficient of H;Ll xp”?. Also, if one of the i, is nggative, then
this coefficient is zero, because there are no negative powers of the z; in [],-, P;j(x)"’. Note that
saying that none of the p, , is negative is equivalent to say that p, is a partition of n (because of

N N N
course Zp:l Hop = Zp=1()‘p +o(p) —p) = Zp:l Ap)-
So we get that

05(C) = Y seulo) [T B(@)" = 3 sgu(0)u(Ch).

g€eS i>1 oesS
N = (Bo,15esHo,N) N

Note also that, by lemma 2.1.17, for every o € Sy, we have p, > A, and that y, = A if and
only if o = 1. Hence 0y = 1, +Zu>>\ Jurtby, for some integers J,,» € Z. Using the decomposition
U, =V,®v>u K.V, of Proposition 2.1.13, we get that

0\ = X+ Z L/A)\X/Lﬂ

w>A
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for some integers L, € Z.
Therefore, to show that 6y = x», by lemma 1.2.5, it suffices to show that (6,60,) = 1. We
have

(0x,05) = Z\c |0,(C

Recall that, by Proposition 2.1.14,

n!
C' —_ =
| l| H]Zl Zj!]'lj

Note that, if we take an arbitrary family (i;);>1 of non-negative integers that are almost all zero,

then 05(C;) = 0 unless >, ji; = Zﬁ;l Ap for degree reasons. So we can take the sum over all
families (i;);>1 of non-negative integers that are almost all zero, and conclude that (6y,6,) is the
coefficient of z!y! in R(z,y) = A(x)A(y)S(z,y), where

= ST I e e
ZHZ,(Z ) Hexp(Z thot )

m,n

= €xXp ( Zlog(l - zmyn)> = H(l - zmyn)il

m,n

Thus,
Hm,n(l - irmy’ﬂ)

So by lemma 2.1.18, R(x,y) is the determinant of the N x N matrix (

Ray)= 3 sen(o) [[——

€SN 1- ImYo(m)

R($7 y) =

L and we have
1—xmyn )’

Recall that (6, 6)) is the coefficient of 2'y! in this formal power series. If ¢ # 1, then there exists
je{l,...,N} such that ¢ = o(j) > j. In the formal power series expansion of || L

M 1=TmYo(m)’
z; and y, must have the same exponent in each term. In particular, 'y’ does not appear in this
expansion, because the exponent A\; + N — j of xj in this product is greater than the exponent
Ag+ N —qof yg. So (6x,0,) is the coefﬁment of 'y in [T, W i.e. 1, and we are done. [

For example, if n =4, A = (3,1), and C;j is the conjugacy class of (123)(4), i.e., i1 = 1,42 =0,
i3 = ]., i4 = 07 then

X3.1)(Ci) = (w1 — m2) (w1 + 32) (2} + 23)](3,1) = 0.

Let us use the Frobenius formula to compute the dimension of V). The conjugacy class of the
identity corresponds to i = (n), so

dim Vi = xa(Cny) = [A(@) - (21 4+ + 21)" 1y, 10) -
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Recall that A(z) =3 g Sgn(a)x(,;(l)fl N .xflf(k)q and
n!
(w1t bm) = Y e
ri4-Fry=n o
The coefficient of xlll . xéj in the product is then

n!

> _sen(o) (h—o(k)+ D). (Ix —o(1) + 1)

the sum is taken over o € Si such that ly_;11 — o (i) + 1 > 0 for all 1 < ¢ < k. Equivalently,

k
n! .
o 2 m@ e -1 ok =i+ 1) +2)
A U

1 e (s —1)
n! . )

Lo :
ST 0 -

By column reduction this determinant reduces to the Vandermonde determinant, so

. n!

i<j

We can also express the dimensions of the Vy in terms of hook lengths. The hook length h(i, j)
of a box (i,7) (i.e., the cell in the ith row and jth column) in a Young diagram is the number of
cells that are directly to the right or directly below the box, including the box once. For instance,
labeling each box by its hook length we have:

7[6[4]2]1]
413
2[1

—_

Theorem 2.1.19 (Hook length formula). We have

n!

ng)w h(i, j)

Proof. By (2.1) we have to show that

k As
H (l; = 1p) H h(i,j) =1;! for each i
p=it1 j=1

Notice that the product on the left-hand side is a product of A\; + k — i = [; terms. Thus it is
enough to show that these factors are precisely 1,2, ...,[;. We have

li—lk>li—lk,1>"'>l7;—lj+1

and
h(i,1) > h(i,2) > -+ > h(i, A;).
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Since A has k parts and A} is the length of the first column, A} = k, and h(¢,1) = \;. So each
factor is < I;. Notice that h(i,j) = A\; +r —i — j + 1 for any 4,j. Thus it suffices to show that
h(i,j) # li — I, for any j,p. If 7 = X} then A, > j and A.11 < j, so we get

h(’i,j)—li-i-lrz(>\j+T—i—j+1)—()\i+k—7:)+(/\r+k‘—7“)Z)\T+1—j>0,
and

h(i,j)—li+lr+1:()\j""’f‘—i—j—l—l)—()\i-i-k‘—i)-i-()\,qu—f—k’—’l“—l):)\T+1—j<0.

Sol; — 1 < h(i,7) <li — lry1. O
For the above partition 5 4 3 + 2 of 10, the dimension of the corresponding representation of
Sio is therefore dim V(5 3.2) = =5og75 = 450.

2.2  Schur-Weyl duality

Given a finite-dimensional complex vector space V, consider the nth tensor power space V®m.
We have two natural actions on this space. There is a natural right action of S,, by permuting
the factors, that is, for all o € S,,, we have

(V1 @V ® - @ V)T = V(1) ® Ug(2) @+ ® Vg(n)-
Moreover, we have the natural left factorwise action of GL(V') given by
U1 U ® - Qup) =g(v1) ®g(ve) @+ ® g(vy)

for all g € GL(V). Notice that these two actions commute with each other.

Recall that a module is said to be simple if it contains exactly two submodules, namely 0
and itself, and it is said to be semisimple if it can be decomposed as a direct sum of simple
submodules. We say that an algebra is semisimple if all of its finite-dimensional modules are
semisimple. The following is an important theorem on the structure of semisimple algebras.

Theorem 2.2.1. Let A be a finite-dimensional k-algebra over an algebraically closed field k.
Then A has finitely many simple modules U; up to isomorphism. These simple modules are
finite-dimensional. Moreover, A is semisimple if and only if as an algebra

A~ P EndUy),

where U; Tuns over all simple A-modules.
Proof. See theorem 3.5.4 of [3]. O

Example 2.2.2. It is perhaps worth noting that theorem 2.2.1 does not hold if the field is not
algebraically closed. First, note that, as in the proof of proposition 3.5.8 in [3], if theorem 2.2.1
holds, A semisimple implies A = @, Matg, (k) for some d;. Thus, as an example, we take

H=Ra&Ri®Rj &Rk

where i2 = j2 = —1, ij = —ji = k, the quaternions. For all z € H \ {0} there exists y € H such
that zy = yx = 1, i.e., H is a division R-algebra. It follows then that H is a simple H-module
and hence H is a semisimple algebra (recall that A is a semisimple algebra if and only if A is a
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semisimple A-module). However, H cannot be isomorphic to Matg, (R) x --- x Matg, (R) for any
dy,...,ds since there must be a d; > 2 (as H is not commutative) and then

0o 1\> [0 0
0 0) \0 O
which contradicts H being a division algebra.

The following is theorem 5.18.1 in [3].

Theorem 2.2.3 (Double Centralizer Theorem). Let V' be a finite-dimensional k-vector space
over an algebraically closed field k, A be a semisimple subalgebra of End(V'), and B = Enda (V)
(i.e., the algebra of all A-module endomorphisms of V). Then:

i) B is semisimple.
it) A= Endg(V) (i.e., the centralizer of the centralizer of A is A).

iit) As a module of A® B, we have the decomposition

V:@Ui@)Wi

where U; are all the simple modules of A and W; := Homa(U;, V') are all the simple modules
of B.

Proof. Since A is semisimple, by theorem 2.2.1 we have A ~ @, End(U;). By Schur’s lemma we
get the A-module decomposition

V~Puiew, (2.2)

given (from right to left) by u® f = f(u), where W; := Hom 4 (U;, V') and U; ® W; is an A-module
by the action a(u ® f) = au® f for any a € A. Moreover, we get a module isomorphism

B =Ends(V) ~ Hom( @U @ W;, V) ~ @HomA(Ui®W,-,V)

< @Hom Wi, Homa (U;, V)) @End

where ¢ (from right to left) is given by f — (u® w — f(w)u). We claim that W; are simple
B-modules. Let U be a simple A-module and fix a nonzero u € U. Since U is simple and Au is
a nonzero submodule of U, any map f € Hom4 (U, V) is uniquely determined by its evaluation
in u. Let f,f € Homa(U,V) with f(u) = v and f'(u) = v’ with v,v" € V. Since Av is an
invariant subspace of V, we can write V = (Av) @ W for a subspace W of V. Define 6: V — V
by 8(av) = av’ for av € Av and (w) = w for w € W. Notice that §(v) =0(1-v) =1-v =,
Hence 6 € B and it is such that 8 o f = f’. It follows that B acts transitively on the nonzero
maps in Hom4 (U, V), so that our claim follows.

By theorem 2.2.1, we get that B is semisimple, and so we have i). Now we can repeat the same
argument with (2.2) as a decomposition of V' into simple B-modules W; and U; = Homp(W;, V).
Hence ii) and iii) follow. O

Remark 2.2.4. To complete the previous proof of the Double Centralizer Theorem, one should
prove that the module isomorphism B ~ @@, End(W;) is in fact an isomorphism of rings and that
W; are all the simple modules of B.
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We will now apply the Double Centralizer Theorem to the following situation: V is the nth
tensor product of the complex vector space considered above and A is the image of C[S,,] in
End(V®™). Let us now characterize the algebra B. Recall that we may identify gl(V) with
End(V') endowed with the Lie bracket given by [a,b] = ab — ba for all a,b € End(V'). The action
ofbegl(V)on v @ua ® -+ ® v, € VO is defined by

b(vl®v2®"'®vn):ZUI®"'®b7}i®"'®0n
i=1

for any v, vo,...,v, € V.
Lemma 2.2.5. The image of U(gl(V)) in End(V®") is B = Endg, (V®").
Proof. We have that the image of b in End(V®") is
Ap(b) =bRid®--®id+id@b®-- @id+--+id®---®id@b.

Clearly, the image of gl(V') and, thus the image of U(gl(V)), is contained in B.
By the fundamental theorem on symmetric functions, there exists a polynomial p with rational

coefficients in the power sum symmetric polynomials P;(T) = tji + t5 + - + tJ, such that
p(Pl(t),PQ(t), e ,Pn(t)) = tltg “ee tn Then

b X b R ® b = p(An(b)v An(b2)v cet An(bn)>

Thus, elements of the form v®" for b € End(V) are generated by the images of elements in
U(gl(V)). And since these elements span

Sym"End(V) ~ (End(V)®")%" ~ (End(V®"))%" = Endg, (V"),

where the first and the last isomorphism follow by definition, while the second one is given by the
map End(V)®" — End(V®") defined as f1 @ @ fo = (11 @ - @ vp = f1(v1) @+ @ fn(vp))-
Then the image of U(gl(V)) in End(V®") is B. O

Proposition 2.2.6. The images of C[S,] and U(gl(V)) in End(V®™) are centralizers of each
other.

Proof. Since C[S,,] is semisimple and the fact that homomorphic images of semisimple rings are
semisimple, A is semisimple. By the Double Centralizer Theorem 2.2.3, we are done. O

Lemma 2.2.7. The span of the image of GL(V) in End(V®™) is B.
Proof. Since GL(V) commutes with S,,, the image of GL(V), and thus its span, is contained in
B = End(V®").

Conversely, let b € End(V') and B’ be the span of the image of the elements g®" for g € GL(V).
For all but finitely many ¢ € C, tI + b is invertible. Thus the polynomial (I 4 b)®™ is in B’ for
all but finitely many ¢. But this implies that this holds for all ¢. In particular, for ¢t = 0, we have
that b%™ € B’. As in the previous lemma, these elements span B = End 4 (V®™). O

Therefore, by the Double Centralizer Theorem 2.2.3, we have the following theorem.
Theorem 2.2.8 (Schur-Weyl duality for GL(V')). We have a decomposition

ver~ B Vi @S,V
[Al=n

as a representation of S, @ GL(V') where Vy runs through all the irreducible representations of
S, and each S\V := Homg, (Vy,V®") is an irreducible representation of GL(V) or is zero.
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Let us calculate the characters of the representations SyV. For a partition A = (Ay,..., \x) of
n, and N > k, set

Dy(z) = Z sgn(o Ha;)‘ it N— Z: ;‘i+N*i|.
ogESN

for independent variables z1,...,zy and = (x1,...,2x). These are alternating polynomials
by properties of the determinant and therefore they must be divisible by the Vandermonde
determinant A(z) = |z} N=i| = [;<;(z; — x;). The Schur polynomials are defined as the ratio

Iy

Ax) e

These are symmetric functions because the numerator and denominator are both alternating, and
a polynomial since all alternating polynomials are divisible by the Vandermonde determinant.

Proposition 2.2.9. We have
[T@+-+23)5 = Y xa(G)Sa(a).

J A:k<N

Proof. Write A(z) Hj(xﬂl o))l = D etk S0 Choyokn @it 2hN . Since A(x) ]_[J(ch1 +
et :c?v)ij is alternating, the coefficients Cy, ..k, are alternating in {ki,...,kn}. In particular,

Chi,....ky = 0 when k,, = k,, for some m # n. If that is not the case, we can write (k;); =
o(Aj + N —j); for a unique partition A of n and a unique o € Sy. This gives

N
A(az)H( )l _ZC)\1+N LooAn Z sgn( )Hfii,f)Nﬁi
j=

J ogESN
Now the identity follows from the Frobenius character formula. O

Let us compute certain special values of Schur polynomials. Namely, using the Vandermonde
determinant, it follows that

N_1 t)\,‘,—‘rM—i _ t)\j—‘rN—j
Sx(1t,.. .tV = ] e

As t — 1, this gives
Ni—Aj+j—i
S\i1ny= [ A
i J—1
1<i<j<N
Let dimV = N, g € GL(V), and z1,...,2x be the eigenvalues of g on V. To find the character

xs,v (), we must compute tryen(go), where o € S,. Suppose o € C;. Choosing a basis (ex)d_;
in V, we write gex =, gjre;. Then,

N

(go)(er, @+ ®ex,) = Z Girky 101y ++ Jink,—1, G © - @€,
J1yeesJn=1

It follows that
N

tryen (ga) = E Gjoyir = io(n)in-
j17---ajn:1
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Since
E g]l]ng2J3 s g1k Dk

seees]

tryen(go) Htrv ':Hpj(f)J
J

On the other hand, by the Schur-Weyl duahty

this can be written as

tryen(g0) ZX,\ trs,v(9).

Comparing this to proposition 2.2.9 and using linear independence of columns of the character
table of \S,,, we obtain

Theorem 2.2.10 (Weyl character formula for S,). Let dimV = N, let A = (A1,..., ;) be a
partition of n and g € GL(V') have eigenvalues 1, ..., xy. Then the representation S\V = 0 if
and only if N < k. Moreover, if N > k, the character of S\V is the Schur polynomial Sy (z), i.e.,

trs,v(g) = Sx(z1,...,2N),

where on the right-hand side we complete A to an N-dimensional vector by defining (\1,...,An) =
(M, oy Ak, 0,...,0). In particular, the dimension of S\V is given by the formula

NN
dims,v = [ 2Ll
o J—1
1<i<j<N
This shows that irreducible representations of GL(V') which occur in V®" for some n are
labeled by Young diagrams with any number of squares but at most N = dim V' rows.
We can now define a covariant functor Sy: FinVect — FinVect in the following way: if

f:V — W is a linear map, we define Syf: S\V — S\W by (Saf)(®) = f® o). It can be
verified that

S)\(f o g) = (S)\f) o (S)\g) and S)\idv = idSA.

We call the covariant functor Sy the Schur functor of A. Notice that all representations W of S,
are self-dual since

xw+(9) = xw(g) =xw(g™") = xwlg)

for all g € S,, because g and g—! have the same cycle type and, thus, are in the same conjugacy
class, so that W ~ W*. Thus we get the following more constructive description of the Schur
functor.

SAV = Homg,, (V,\, V®n) ~ (V,\)* AC[S,] Von ~ Vi AC[S,] yen
= C[Sn}cA ®C[Sn] yen — (C[Sn] ®c[sn] V®n6)\ ~ V®nc>\

So Schur-Weyl duality tells us that

ver ~ B (S\V)*H

[A|=n

as a representation of GL(V') where f) = dim V.






Chapter 3

Algebraic Representations of GL,,C

This chapter describes all irreducible algebraic representations of GL,,C. The aim of section 3.1
is to find a procedure to study the structure of a general finite-dimensional representation of a
semisimple Lie algebra and to obtain more information about the structure of the Lie algebra
itself. In section 3.2 we will apply this general paradigm to the Lie algebras sl,C. Finally, in
section 3.3 we will describe all the polynomial representations of GL,,C.

In the first section, we will follow a “third” way mixing the root systems construction developed
in [8] and the algorithm illustrated in [5]. The last two sections reproduce the main concepts in
lecture 15 of [5].

3.1 Analyzing Semisimple Lie Algebras in General

A subspace h of a Lie algebra g is called an ideal if [z,y] € b for all z € h,y € g. Clearly 0 and g
itself are ideals of g. Another example is the center Z(g) = {z € g | [z,y] = Ofor all y € g}. We
say that g is abelian if and only if Z(g) = g. Notice that g is abelian if all brackets are zero. A Lie
algebra g is said to be simple if dimg > 1 and it contains no ideals except itself and 0. Further,
we say that g is solvable if there exists a sequence of Lie subalgebras g=go D g1 D -+ D gr =0,
such that g;11 is an ideal in g; and g;/g;+1 is abelian.

Next we assemble a few simple observations about solvability.

Remark 3.1.1. Let g be a Lie algebra.
i) If g is solvable, then so are all subalgebras and homomorphic images of g.
ii) If b is a solvable ideal of g such that g/h is solvable, then g itself is solvable.
iii) If b, [ are solvable ideals of g, then so is h + L.

It follows that the sum of all solvable ideals in g is a maximal solvable ideal, called the radical
of g and denoted Rad(g). g is called semisimple if Rad(g) = 0. Notice that the quotient g/Rad(g)
is semisimple. Now we state without proof Lie’s theorem.

Theorem 3.1.2 (Lie’s Theorem). Let V' be a nonzero finite-dimensional complex vector space
and g C gl(V) be a complex solvable Lie algebra. Then there exists a nonzero vector v € V that is
an eigenvector of x for all x € g.

Proof. See theorem 9.11 in [5]. O

23
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We define the Killing form as the bilinear map : g x g — C such that x(z,y) = tr (adzoady)
for x,y € g. Notice that « is also associative, in the sense that x([z,y], 2) = k(z, [y, z]). One can
prove that a Lie algebra g is semisimple if and only if its Killing form is non-degenerate.

Throughout the remaining part of this section g denotes a nonzero complex semisimple Lie
algebra. Recall that x € g is said to be semisimple if ad x is diagonalizable (see example 1.5.1). Fix
a maximal toral subalgebra f of g, i.e., a maximal subalgebra consisting of semisimple elements.
In general, there is no reason for such a subalgebra to exist. However, in the case of g being a
complex semisimple Lie algebra it always exists. One can prove that b is abelian, so that adgh is
a commuting family of semisimple endomorphisms of g. It follows that g is the direct sum of the
subspaces g, = {z € g | [h, 2] = a(h)xfor all h € b}, with o € h*. One can see that go is simply
h. The set of all nonzero a € h* for which g, # 0 is denoted by R; the elements of R are called
the roots of g relative to h and are in finite number. Thus we have a root space decomposition

(or Cartan decomposition):
g= h S3) (@ ga)'

a€ER

Since the restriction of k to h is non-degenerate, we can identify b with h* in the following way:
to ¢ € h* corresponds the unique element t, € b satisfying ¢(h) = k(tg,h) for all h € h. In
particular, R corresponds to the subset {t, | @ € R} of h. This allows us to extend the Killing
form to h*: if a, B € b*, set k(w, B) = K(ta,ts).

We can now state propositions 8.3 and 8.4 in [8].

Proposition 3.1.3 (Orthogonality properties). We have:
i) R generates a lattice Ar C b* of rank equal to the dimension of b.
it) If « € R, the only scalar multiples of a which are roots are a and —c.
iii) Let « € R, T € §o, Y € §—a- Then [x,y] = k(z, y)tq.
w) If « € R, then [gqa, 0—a] is one dimensional, with basis ty .
v) aty) = K(ta,ta) # 0, for a € R.

vi) If @« € R and x, is any nonzero element of go, then there exists yo, € g_o such that
Ty Yo, ha = [Tas Y] span a three dimensional simple subalgebra s, of g isomorphic to
slo(C) via x4 — (85), T ((1)8), ho — ((1) _01).

vit) ha = gty and ha = —h_q.

Proposition 3.1.4 (Integrality properties). We have:

i) a € R implies dimg, = 1. In particular, 5, = go ® §—a D ha (where by = [Ga, §—a]), and
for any given nonzero x, € ga, there exists a unique Yo € g—o satisfying [Tao, Ya] = ha-

i) If a, B € R, then B(hy) € Z, and B — B(ha)a € R. (The numbers 5(hy) are called Cartan
integers.)

ZZZ) Ifavﬁva"_ﬁ € R; then [gavgﬁ] = ga+3-

i) Let a, 8 € R, 8 # . Let r,q be (respectively) the largest integers for which 8 —ra, 8+ qa
are roots. Then all B +ia € R (—r <i<gq), and B(ha) =1 — q.

v) g is generated (as Lie algebra) by the root spaces gq .
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In particular, we can pick a basis x4 € ga,¥Ya € §—a and h, € b, satisfying the standard
commutation relations for sl5C; x, and y, are not determined by this, but h, is, being uniquely
characterized by the requirements that h, € b, and a(h,) = 2.

Recall that the subalgebra h acts diagonally on any representation of g. So, if we consider the
eigenspaces of the action of h on V', we get the following decomposition:

V=P
ach*

where h(v) = a(h)-v for all h € h and v € V,,. Each index a € h* is called weight and the
dimension of V,, is said the multiplicity of the relative weight. Let us analyse the action of every
gg: for any root 8, heh, v €ggandv eV,

hx(v)) = z(h(v)) + [h, 2](v) = z(a(h)(v)) + B(h)z(v) = (a(h) + B(h))z(v),

so that gg: Vo = Vogs.

Finally, define the weight lattice Ay = {8 € h* | B(ho) € Z for all « € R}. By ii) of
proposition 3.1.4, we have R C Ay, and thus Ar C Aw.

Fix a root a € h*. Consider the hyperplane

Qo ={B€b” | B(ha) =0}
and the subspace C - « generated by « in h*. Define W, : b* — b* as

2B(ha)
a(hq)

Wa(B) =8 — a=f—p(ha)a.

Let 20 be the group generated by these operators, called the Weyl group of the Lie algebra g.

Now we want to define a notion of direction in h*. We say that a subset B of R is called a base
if B is a basis of h* and each root (3 can be written as 3 =) 5 koo with integral coefficients
ko all non-negative or all non-positive. The roots in B are called simple. We define the height
of a root (relative to B) as ht 3 =3 _pkq. If all ky > 0 (resp. all k, < 0), we call § positive
(resp. negative). Denote RT (resp. R™) the set of positive (resp. negative) roots relative to B.
Clearly, we have R=RT UR™ and R~ = —R™.

In fact, one can prove that a base of R always exists (for details see theorem 10.1 of [8]). Now
we are in the position to state theorem 10.3 of [8].

Proposition 3.1.5. Let B be a base of R.

i) If B’ is another base of R, then W (B') = B for some W € 20 (so 2 acts transitively on
bases).

it) If o is a root, there exists W € 20 such that W («a) € B.
iii) 20 is generated by the W, (o € B).
i) IfW(B) =B, W €20, then W =1 (so 20 acts simply transitively on bases).

Now let V' be any finite-dimensional representation of g. A nonzero vector v € V,, killed by
all gg for all B € R is called highest weight vector of weight a in V. We have

Proposition 3.1.6. For any semisimple complex Lie algebra g,

i) every finite-dimensional representation V' of g possesses a highest weight vector;
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it) the subspace W C V' generated by the images of a highest weight vector v under successive
applications of root spaces gg for f € R~ is an irreducible subrepresentation;

iit) a finite-dimensional irreducible representation V' possesses a unique highest weight vector
up to scalars.

Proof. See proposition 14.13 in [5].
O

The weight « of the highest weight vector of an irreducible representation is called the highest
weight of that representation. Define the Weyl chamber W associated to B as the set of roots
such that a(hy) > 0 for every v € R*. Now we may state the following fundamental existence
and uniqueness theorem.

Theorem 3.1.7. For any « in the intersection of the Weyl chamber W associated to B with the
weight lattice Ay, there exists a unique irreducible, finite-dimensional representation Iy, of g with
highest weight o; this gives a bijection between W N Ay and the set of irreducible representations
of g. The weights of I',, will consist of those elements of the weight lattice congruent to a modulo
the root lattice Ar and lying in the convex hull of the set of points in b* conjugate to o under the
Weyl group.

Uniqueness-proof. See theorem 14.18 in [5] for the proof of uniqueness. We will see the explicit

construction of the existence part for the cases we will be interested in. O
Finally, we define the fundamental weights as the elements w1, ...,w, € h* such that w;(ha,) =
di ;, where a,. .., a, are the simple roots (in some base). Every highest weight vector can be

expressed uniquely as a non-negative integral linear combination of fundamental weights. We will
write I'g, .4, for the irreducible representation with highest weight ajw; + -+ + apwy,.

3.2 Representations of sl,C

In this section, we will deduce the existence part of theorem 3.1.7 for s[,,C. Define the special linear
algebra s[,,C as the set of linear transformations of End(V') with trace zero. Since tr (zy) = tr (yz)
and tr (z +y) = tr () + tr (y), s[,C is a Lie subalgebra of gl(V).

First, we have to find a maximal toral subalgebra h of sl,,C. Writing h; = E;; where Ej; is
the endomorphism of C" sending e; to e; and sending all the other e, to zero, we consider the
subalgebra of diagonal matrices

h:{a1h1+a2h2+~~+anhn|a1+a2+~-+an:O}.

Clearly, b is toral. Let us prove that b is also maximal. Let §’ D b be another toral subalgebra.
Then for all &' € ' we get ad(h)(h’) = 0. We have

0= ad(a1h1 + agho + - + anhn)(h’) = — Z(al — aj)h;7j(Eij)

(2]

if and only if A’ € h. Hence b is a maximal toral subalgebra.
The dual space can be written as

h* =C{ly,la, ..., n} /(L + 1o+ -+ 1, =0),
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where ;(h;) = 6; ;. Let us see how the diagonal matrices act on sl,,C: we have

ad(airhi + azha + - - + anhn)(Eij) = ailhi, Eij] + ajlhy, Eij]
= a;(hi(Eij)) + a;(Eij(—hy))
= (ai — a;)(Eij).

Thus E;; is an eigenvector with eigenvalue I/; —[;, and the roots of sl,,C are precisely these pairwise
differences of the [;. Thus the root lattice of s[,,C can be described as

AR:{Zaili|ai€Z,Zai:0}/(Zli:O).

Our next goal is to find the subalgebras s,. The root space gi,;; is generated by Ej;, so s;,,
is generated by E;;, E;; and [Eij, Eji] = h; — hj. The action of h; — h; on Ej;; has eigenvalué
(i = 1j)(hs — hj) = 2, by the same computation above, so that h;,_;;, = h; — h;.

A linear functional 5 = )" a;l; € b* has integral values on all b, if and only if all the a; are
congruent to one another modulo Z. Since > I; =0 in h*, we have

AW:Z{ll,...,ln}/<Zli:O>.

The Weyl group is generated by the reflections in the hyperplane perpendicular to the root I; — ;.
In particular, Wi, _;; will exchange I; and /; in b* and leave the other Ij alone. The Weyl group
2 is then the group S, acting on the generators [; of h*.

Finally, we choose a base of R and describe the corresponding Weyl chambers. We have
R={l,—1; | i # j} The vectors l; — l;41 (1 < i < n —1) are independent, and |; — [; =
(ll 7li+1) -+ (li+1 711‘4_2) +- 4 (lj—l 7l]) if7 < j, which shows that B = {ll — li+1 ‘ 1 S ) S n— 1}
form a base of R. The corresponding ordering of the roots will then be Rt = {l; —; | i < j} and
R~ ={l; —l; | j < i}. Thus the simple negative roots for this ordering are the roots l;;1 — ;.
The Weyl chamber associated to this ordering is then W = {>"a;l; | a1 > a2 > -+ > a,}.

Clearly, the fundamental weights (relative to B) are w; =1y +lo+---+1; fori=1,...,.n— 1.
Notice that the intersection of the Weyl chamber W with the weight lattice Ay is in fact a
free semigroup N"~! generated by the fundamental weights w; = I; + --- 4+ ;. Thus, for an
arbitrary (n —1)-tuple of natural numbers (a1, ...,a,_1) € N"~! we will denote by I'y, 4, , the
irreducible representation of sl,,C with highest weight a1l +az(l1+12)+- -+ an—1(li+- - +lph_1) =
(a1 4+ F+ap_1)lh+(ag+ -+ an_1)lo+ -+ an_1lh_1.

Let 1 <k <n and let V be the standard representation of s[,C. We want to prove that the
exterior power /\k V' contains a highest weight vector of weight I; + --- 4+ ;. Recall that the
standard basis vectors e; of C™ are eigenvectors for the action of h, with eigenvalues [;. Consider
the vector e; Aea A--- Aeg, and let o be a positive root. Hence a = I; — [; for i < 7, so it takes
e; to e; for j <i. Thus, the action of g, must either take some e; in e; Aea A--- Aeg to 0, or to
some e; already in the term, and so must be zero. Thus, e; Aea A--- A ey is a highest weight
vector of weight wy =11 + -+ [} in /\k V.

Now, since every vector in WN Ay is a non-negative integral linear combination of the vectors
wg =114+ -+ 1; and /\k V' has highest weight vectors with weights wy =11 + - -+ + I, it follows
that the tensor product

2 n—1
Sym™V @ Sym* (A V)@ @ Sym™ 1 (\ V)

contains a highest weight vector with weight a1ly + a2(ly +1l2) + -+ an—1(l1 + -+ + {,—1), and
hence a copy of the irreducible representation I, . with this highest weight.

cy@n—1
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3.3 Representations of GL,C

Let us introduce some notations. A finite-dimensional representation W of GL(V) is algebraic if,
given the corresponding map p: GL(V) — GL(W), the coordinates of p(A) are rational functions
of the coordinates of A € GL(V'). Any such rational function is, in fact, in Cla;;][1/ det A]. It
will turn out that the Schur functors Sy, seen in chapter 2, only give us representations which are
polynomial, that is, the coordinates of p(A) are polynomials of the coordinates of A € GL(V).
Thus, we could never hope to get the algebraic representation det ™" : GL(V) — GL(C) where
det™'(A) = 1/det A. But this is essentially it.

Let V' = C™ be the standard representation for GL,,C and let det” denote the one-dimensional
representation of GL,,C given by the k-th power of the determinant for £ € Z. Notice that

det' = A"V, det® = (det!)®Fif k >0, det® = (det™*)"if k < 0.

Thus, if & > 0, det® = (A" V)®* and det™ is the dual (det®)*. Let V be the standard
representation of GL,C. For any partition A = (Aq,...,\,) of n, consider the representation
Py =S,V of GL,C. We saw in chapter 2 that S,V is an irreducible representation of GL,,C.
We claim the following

Proposition 3.3.1.
Uaithroan ik = Uap,n, @ det”.

Note that in lecture 15 of [5] the proof of the previous proposition is omitted. Let us develop
it in details.

First we need a slightly technical result. Let V' be an m-dimensional complex vector space and
let n be a positive integer. Take a partition A of n such that its Young diagram is partitioned into
two non-empty parts, say of sizes i and j = n — i, by a vertical wall. For example, if A = (5,3,2,1)
is a partition of 11 we could have

[ ]

with ¢ = 7 and j = 4. Let ¢ be a tableau whose entries in the left-hand part are {1,2,...,i}. Let
p be the corresponding partition of 4, so that ¢, = t),. Let v be the partition of j corresponding
to the right-hand part, with tableau ¢,. This is a map

t,: {Young diagram of v} — {1',...,5'} where ¥ =k +ifor 1 <k <j.
Lemma 3.3.2. There exists a surjective C[GL(V)]-map
(V&) @ (V®e,) — VO, (3.1)

Proof. Let S; = Aut{1,...,i} and S; = Aut{l’,...,j’}. Since S; and S; are embedded in S,
and disjoint, we regard C[S;] and C[S;] as subsets of C[S,,] which commute. Also

Q)\:QMXQV and H:PHXPV§P)\

and H permutes each side of the wall. Take a transversal Py = |J, g;[{. Then

C\ = a)\b)\ = Zgiauaububy = Zgicucy-
7 7
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So,

2 2
CACLCA = E 9ic,c, = crk
i

where k = ;—"—— by lemma 2.1.8. We thus have a C[GL(V)]-map V& ®@ V& — V&"c,

given by right multiplication by c¢y. The restriction of this map to the left-hand side of (3.1) is
surjective, since

(x@y)ex = — (e, ®yey) - e

| =

Lemma 3.3.3. If \,,11 =0 and A\, > 0 then
V®nc>\ ~ V®"’_mc)\171,...,/\m*1 X /\mV

Proof. Put a wall in in the Young diagram of A between the first column and the rest. Let ¢y
be a tableau whose first column consists of {1,...,m}. By lemma 3.3.2 there exists a surjection
yen-me @ NV — VOney, where v = (A — 1,..., A, — 1). Both V&"~™¢, and V®"¢, are
nonzero, hence they are irreducible C[GL(V)]-modules. Since A\™ V is one-dimensional, both
sides are irreducible and, by Schur’s lemma, the map is an isomorphism. O

Now iterating lemma 3.3.3 we obtain, for the standard representation V' of GL,,C,

on on n Rk
Ve bk dth = VA, © (/\ V) :

Thus we have proved proposition 3.3.1. This allows us to define ¥, for any index A with
AL > Ay > -2 > )\, even if some of the \; are negative: we simply take

—k
Uar,dn = Vai+k,. Atk @ det

for any sufficiently large k. By the non-triviality of det® for k # 0, 1y is isomorphic to
if and only if A = ). Thus, to complete our description of the irreducible finite-dimensional
representations of GL,,C, we just have to check that these are all the irreducible representations
of GL,,C, that is we want to prove the following theorem.

Theorem 3.3.4. FEvery irreducible algebraic complex representation of GL,C is isomorphic to
P for a unique A = (Aq,..., \p) with Ay > XAy > -+ > Ay,

Notice that gl,,C = s[,,C x C, where C is identified with the one-dimensional ideal of gl,,C
formed by the scalar matrices al with a € C. In particular, C is the radical of gl,C and sl,,C is
the semisimple part.

Remark 3.3.5. In the following we will use that SL, C is simply connected. For a proof of this
fact see section 23.1 of [5]. From results on Lie group theory, it follows that there is a one-to-one
correspondence between irreducible representations of SL,,C and irreducible representations of
s, C (for details see lecture 8 in [5]).

We need the following lemma.

Lemma 3.3.6. Every irreducible representation of gl,,C is a tensor product of an irreducible
representation of s0,C and a one-dimensional representation.
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Proof. Let V be an irreducible representation of gl,C. Since Rad(gl,C) = C is solvable and
Rad(gl,,C) C gl(V), Lie’s theorem 3.1.2 implies that there exists a nonzero vector v € V
that is an eigenvector for all z € Rad(gl,,C). Hence there exists A € (Rad(gl,,C))* such that
W={veV:z(w)=Axz)-v forall zc Rad(gl,,C)} is non-empty. So, since every element of
gl,,C can be written in the form z + y with € Rad(gl,,C) and y € s1,C, we get -y - w =
y-z-w+[z,y] - w)A(x)(y - w) for all w € W. Tt follows that y - w € W, so that W is a nonzero
subrepresentation of V. Hence W = V. Extend A to a linear functional on gl,C and let L be the
one-dimensional representation of gl,C determined by A, that is, - z = A(x) - z for all z € gl,,C
and z € L. Then V ® L* is a representation that is trivial on Rad(gl,,C), and so it comes from
an irreducible representation of sl,C. O

For any partition A of n, denote Wy = Sx(C") the representation of sl,,C determined by the
partition A. We can extend it to s[,C x C by acting trivially on the second factor. For any
w € C*, denote L(w) the one-dimensional representation of sl,,C x C which is zero on the first
factor and acts by multiplication by w on the second. By the previous lemma, every irreducible
representation of gl,C = sl,,C x C is isomorphic to a tensor product Wy ® L(w). By remark 3.3.5,
going back to the corresponding groups this remains true for the simply connected group SL,,C x C.
Consider now the exact sequence

1 — Ker (p) — SL,C x C & GL,C — 1,

given by p(g x z) = €* - g. The kernel of p is generated by e° - I x (—s), where s = 27i/n since
eI € SL,C. Notice that every irreducible representation of GL,,C can be lifted to an irreducible
representation on SL,C x C by acting trivially on Ker (p) since SL,C x C = GL,,C x Ker (p).

Lemma 3.3.7. The representation Wy ® L(w) of SL,C x C acts trivially on Ker(p) if and only
ifw=> A\ +kn forkeZ.

Proof. Notice that e®- I acts on (C™)®? by multiplication by e*?, where d = >~ \;. We can restrict
this action to Sy(C™). Moreover, —s acts on L(w) by multiplication by e™**  so the action of
e® - I x {—s} on Wy ® L(w) by e*¢=5*_ which is trivial if and only if sd — sw € 2miZ. Since
s = 2mi/n, this happens precisely when w = > \; + kn for k € Z. O

To prove theorem 3.3.4, it remains only to show that every representation Wy ®@ L (3 A; + kn)
comes from the representation 9,1, x,+% of GL,C. But this holds since both the representa-
tions restrict to the same representation on SL, C and to multiplication by e®* = e(XAitnk)z on

C.



Chapter 4

Symplectic Lie algebras

This chapter presents the symplectic Lie algebras on which we will work also in the next chapter.
In section 4.1, we will first describe in general the structure of a symplectic Lie algebra and
we will then compute the representations of sp,,,C. In the final section we will describe Weyl’s
construction of the irreducible representations of the symplectic groups.

This chapter explains most of the general concepts illustrated in lectures 16 and 17 of [5] but
with more detailed explanations in some parts.

4.1 The structure of Sp,,C and sp,,C

Let V be a 2n-dimensional complex vector space, and let f: V x V — C be a non-degenerate,
skew-symmetric bilinear form on V. It can be shown that even dimensionality is a necessary
condition for existence of a non-degenerate bilinear form satisfying f(v,w) = — f(w,v). We define
the symplectic group as Sp,,,C = {4 € Aut(V) | f(Av, Aw) = f(v,w) for all v,w € V}, and the
symplectic Lie algebra as sp,,C = {A € End(V) | f(Av,w) + f(v, Aw) =0 for all v,w € V}.

Let eq,...,ea, be a basis for V. In the following, we will always consider f to be the bilinear
form given by

fleiseitn) =1, f(eitn,ei) =—1, and f(e;,e;)=0 ifj#itn.

In matrix form, f can be expressed as f(z,y) = 'z - s -y, where s is the 2n x 2n matrix given by

Thus we have Sp,,,C = {a € Mats,(C) | s =ta-s-a} and sp,,,C = {z € gl,,,C | tz-s+s-z = 0}.
Writing « in block form as
(o
xTr =
p q
with m,l,p, q € gl,,C, we have

t, t
to e (TP M o p q
T8 = (—tq tl) and s x—(_m —l>

Hence the condition for x to be symplectic is that the off-diagonal blocks [ and p are symmetric,
and the diagonal blocks m and ¢ of x are negative transposes of each other. Notice that the last
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condition forces tr () = 0. We can now compute a basis for sp,,,C. Let E;; be the matrix having
1 in the (4, j)-position and 0 elsewhere for 1 < 4,j < 2n. Notice that, since E;; Ey = 6;,E;, it
follows that

[Eij, Exi]) = 6juEy — 01, E;j. (4.1)

Take the diagonal matrices E;; — Epqints (1 < ¢ < n). Add to these all E;j — Epyjnys
(1 <i#j<mn). For [ we use the matrices F; ,1; (1 <i<n)and E; q; —Ejnyi (1 <i<j<n),
and similarly for the positions in p. Summing the number of these elements, we get dim sp,,,C =
n+n®—n+2(n+gn(n—1)) =2n+n.

The obvious candidate for maximal toral subalgebra b in sp,,,C is the subalgebra of matrices
diagonal in this representation; in fact, this works exactly as in the case of s[,,C. As a subalgebra
of sp,,,C, b is spanned by the n matrices h; = F; ; — E},1; n+; whose action on V is to fix e;, send
en+: to its negative, and kill all the remaining basis vectors. Moreover, recall the dual basis [;
with I;(h;) = d; ;. We already know how b acts on sp,,,C since the latter is a subalgebra of sl,,,C.
Since the following arguments are very similar to those for the group sl,,C explained in 3.2, we
will sketch most of the computations. The full discussion can be found in section 16.1 of [5].

Let us compute the action of b on the basis vectors of sp,,C. For instance, for 1 <1i,j <mn,
keeping in mind formula (4.1), we have

ad(a1h1 + agho +--- + anhn)(El — En+j,n+i)

— ad (Z akhk) (i) — ad (Z akhk) By jinii)
= (a; — a;j)(Eij) — (a; — a;)(Enyjn+i)
= (a’i - aj)<Eij - EnJrj,nJri)'

Hence E;; — Ey4jnti is an eigenvector for the action of b, with eigenvalue [; —I;. Similarly, for
i # J, Bintj — Ejnti and B,y 5 — B,y are eigenvectors with eigenvalues I; 4 1; and —1; — [},
respectively. Finally, E; ,,4; and E,_;; are eigenvectors with eigenvalues 2{; and —2I;, respectively.
Therefore, the roots of the Lie algebra sp,, C are the vectors £I; +1; € h*.

Now we can find the distinguished subalgebras s, isomorphic to sl;C, and the corresponding
elements h, € h. Considering the eigenvalues I; — I; and [; — I; corresponding to the elements

Eij — En+j,n+i and Eji — En+i,n+j; by (41) we have

[Ez - En+j,n+i7 Eji - En+i,n+j]
= [Eij, Eji] — [Eij, Enyintj] — [Entjntis Ejil + [Engjmntis Engins)
= [Eij, Eji] + [Entjntis Entinet]
=FEi — Ejj+ Enyjnyi — EBnyinti
— hi — ;.

Thus, the distinguished element hy,;; is a multiple of h; — h;. Since

(li = 1) (hi — hy)) - (Eij — Enjn+i)

ad(h; — hj)(Ez - En+j,n+i) =(
= Z(Eij - n+j,n+i)7

we conclude that
hli_lj = hz - h’]

Analogously, we may compute that hy, i, = hi+hj, h_y,_; = —hi—hj, ha;, = hy, and h_g;, = —h;.
Thus, the distinguished elements {hy} C b are {£h; & hj, £h;}. In particular, the weight lattice
is Ay = Z{l1,..., I}
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Finally we choose a base of the set of roots R and describe the corresponding Weyl chambers.
We have R = {+l;£l; | 1 <i,5 <n}. The vectors l; —l;+1 (1 <i < n—1) and 2I,, are independent.
Moreover, I; —|—lj = (l, — l,’+1) + (li—i-l — li+2) +- 4 (lj_l — l]) +2(lj — lj+1) +-- +2(ln_1 — ln) + 21,
if 4 S ] and lz — lj = (ll — li—i—l) + (li+1 — li+2) =+ 4 (lj—l — ZJ) ifi < j, which shows that
B={l; —liy1}i=1,..n—1 U{2l,} form a base of R. The corresponding ordering of the roots will
then be RY = {l; +1;}i<; U{li = l;}ic; and R~ = {—l; — l;}i<; U{l; — ;}j<i. Thus the simple
negative roots for this ordering are the roots l;11 —; and —2I,,. The corresponding Weyl chamber
is

W= {aily +axla +---+anly, | a1 > a2 >--- > a, >0}.

Again, the fundamental weights are the weights w; =1y +---+1; fori = 1,...,n, and, similarly to
the case of the special linear Lie algebras in chapter 3, these n fundamental weights generate as a
semigroup the intersection of the Weyl chamber 20 with the weight lattice Ayy. It follows that,
by the existence and uniqueness theorem, for any n-tuple of natural numbers (a1, ...,a,) € N
there will be a unique irreducible representation with highest weight

arwi + aswz + -+ apwn = (a1 + -+ ap)li + (a2 + -+ an)le + anln,

denoted by I'g,,.. 4., -

Now let V = C2" be the standard representation of sp,,C. Let us find the irreducible
representation V) = To.....0,10,..,0, With 1 at the kth place, with highest weight {; 4+ --- +{}. It
will be contained in the kth exterior power /\lc V. Moreover, consider the natural contraction map

E k-2
defined by
er(o1 A Avg) =Y F0i0) (1) T g Ao AD A Ay A A
i<j

Since the representation /\k*2 V' does not have the weight {; +- - -+, the irreducible representation
with this highest weight must be contained in the kernel of this map. To conclude the list of all
irreducible representations of sp,,,C, we state without proof theorem 17.5 of [5] which claims that
also the converse holds.

Theorem 4.1.1. For1 < k < n, the kernel of the map vy, is exactly the irreducible representation
V) =Tq _01.0,..0 with highest weight Iy + - - - + lj.

Proof. See theorem 17.5 of [5]. O

4.2 Weyl’s construction for Symplectic Groups

In this section we will give a detailed picture of Weyl’s construction following the description in
section 17.3 of [5] providing more details, solving some exercises and giving some other results.

Let V = C?" be the standard representation for GLo,C. Let d € N. For each pair J = (p, q)
of integers such that 1 < p < ¢ < d, the symplectic form f determines a linear map

Oy VO Y=,

Ul®...®vd;_>f(vp7vq)v1®...®vp®...®fuq®...®vd.
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The maps ®; are called contractions. Let V<% C V®? denote the intersection of the kernels of
all these contractions. Notice that the subspaces V <9> are Sy-invariant. Since Sp,,,C preserves
f, we get ®;(g-v) = g-®;(v) for all v € V&L Hence V< is Sp,, C-invariant. Let A\ be a
partition of d. We define the sp,,, C-module

SeasV = V<> NS, V.

Let B = {e1,...,e2,} be the canonical basis of V and denote the dual basis of B relative to f
by {ul, PN ,UQn}. So f(el', Uj) = 5ij for all Z,j Let

2n
b= e @u,
i=1
For each pair J = (p, q) of integers such that 1 < p < ¢ < d, we define

Uy VO yed,

2n
/U1®...®vd_2;_)Zfl]l@...@vp_l@ ei ®vp®...®vq_2® ui ®/Uq_1®...®fvd_27
i=1 pth qth

Notice that, since 22221 flei,u;) =2n, we get @70 Wy =2nl. Tt follows that ¥ is injective and
®; is surjective. Moreover we define

19J:\I/J0(I)J:V®d—)v®d.

Since ¥ is injective, Ker () = Ker ().
Let (+,-): V x V — C be the standard Hermitian product on V = C?". This extends to an
Hermitian product on V®¢ by

(1 ®  Qugyws ® -+ Qwg) = (v1,w1) ... (vg,wa)

for all v;,w; € V. Clearly, for all v,w € V®? and o € S; we have (v-o,w-0) = (v,w). Let us
solve now Exercise 17.13 of [5] to get a direct sum decomposition of V®4,

Lemma 4.2.1. Let J = (p,q) as above. Then:

i) (WQw,v) = f(v,w) for allv,w eV,

i) Ker(®y) = Im(¥ )" .
Proof. 1) Let v =73 aje; and w =}, bju; be arbitrary elements of V. Thus

(’U ® wvw) = Z(U7 ei)(wvui) = Zalbl = f(v,w).

ii) For the sake of simplicity we consider only the case J = (1,2). Let ® = ®(; 4 and

U = W 5. Since
dim(Im¥)* = dim V®¢ — dim(Im¥) = dim V®? — dim V®~2) = dim(Ker ®),

it suffices to prove just one inclusion to get the equality Ker (®;) = Im(¥ ;)*. Let us prove C.
Let
x=Zv}®~-~®v§leKer<I>, Yy=w3R - Qwy
J
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with ws,...,wg € V. We have
(Ll?, \Ij(y)) = Z(Ujl’7 el‘)(v?7ui>(vj3" w?)) e (v;l>wd)
]

= (@}, )] ©-@uf,y) = flv],0])(v] © - @f,y)
J

J

= (®(z),y) = 0.
Hence z € Im(¥ )+, O

Corollary 4.2.2. We have
VOl = V<> @ " ().

J
Proof. Tt is a general fact that, if Ay,..., A, are subspaces of a finite-dimensional Hilbert space,
then
1L
(Na) -~
i i
Consequently,

(ﬂ Ker (@)) = (Ker (®,))" = Im(¥,).
J

J J
O

Remark 4.2.3. Since ), Im(W¥ ;) is the orthogonal complement of an Sg-invariant space with
respect to an Sy-invariant Hermitian product, it is Sg-invariant.

Lemma 4.2.4. Let A be a partition of d. Then
S<)\>V = V<d>C)\.

Proof. We have

J

S)\V = V®dC)\ = <V<d> &) ZIIH(\IJJ)> C\ = (V<d>C>\) © (Z Im(\I/J)C)\>
J

Taking the intersection with V<% we are done. O

Remark 4.2.5. As in remark 2.1.3, it follows that S.),~V and Sc,,, >V are isomorphic as
$p,, C-modules for tableaux T and T” of the same partition .

We need now the following fact on invariant theory. We will prove it in chapter 5 assuming
the first fundamental theorem of invariant theory for the symplectic groups.

Theorem 4.2.6 (Invariant Theory Fact). Any endomorphism of VE? that commutes with all
permutations in Sy and all the operators ¥y is a finite C-linear combination of operators of the
formg®---®g, for g € Sp,,C.

Now let B be the algebra of all endomorphisms of the space ¥V <¢> that are C-linear combina-
tions of operators of the form ¢ ® --- ® g, for g € Sp,,,C.
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Proposition 4.2.7. The algebra B is precisely the algebra of all endomorphisms of V<4>
commuting with all permutations in Sg, i.e., B = Endg, (V<%).

Proof. Let B' = Endg,(V<9>). Clearly B C B’. Let € B'. From the decomposition
Ved = y<d>g 3 Im(¥,), we can extend 3 to a linear map 3: V¥ — V4 such that S(z) = 0
forall z € 3 ; Im(¥ ). Since both V<% and }_ ; Im(¥ ) are Sg-invariant, $ is an endomorphism
that commutes with all permutations in S;. We want to prove that B also commutes with all the
operators 9 to apply theorem 4.2.6.

Let J = (p,q) with 1 < p < ¢ <d. Let v = vy 4+ v2 with v; € V<¢ and vy € Y, Im(¥ ).
Recalling that V<4 C Ker (&) = Ker (¢;) and Im(d;) € 3, Im(¥ ;) C Ker (3), we have

(Bods)(v) = (Bods)(vr+w2) = B0+ 0s(v2)) = 0= 05(B(vr)) = (V5 0 B)(v).

By theorem 4.2.6, we deduce that f is a finite C-linear combination of operators of the form
g® -+ ®g with g € Sp,,,C. It follows that 8 € B, so that B’ C B. O

Let us now state the following lemma about general group algebras. We will sketch the proof.
The full proof can be found in section 6.2 of [5].

Lemma 4.2.8. Let G be any finite group and A = C[G]. Let U be a finite-dimensional right
A-module and B = Homg(U,U) be the centralizer algebra. Notice that B acts on U on the left,
commuting with the right action of A. Moreover, if W is any left A-module, the tensor product
U®a W is aleft B-module by acting on the first factor: b- (v®@w) = (b-v) ® w. We have:

i) For any c € A, the canonical map U ® 4 Ac — Uc is an isomorphism of left B-modules.

it) If W = Ac is an irreducible left A-module, then U @ 4 W = Uc is an irreducible left
B-module.

iit) If W; = Ac; are the distinct irreducible left A-modules, with m; the dimension of W;, then

= W o W)Em = @)

7

is the decomposition of U into irreducible left B-modules.

Sketch of the proof. i) For ¢ € A, the map U ® 4 Ac — Uc sending u ® a — - a has inverse given
by uc — u ® c. This is well-defined because u @ c=uc® 1 =v'c® 1 =u' ® ¢ for any u,v’ € U
are such that uc = vc.

ii) Let W = Ac be an irreducible left A-module. Consider first the case where U is an
irreducible A-module, so B = C. Since, by Maschke’s theorem, A is semisimple, we can identify
A with a direct sum @;_, M,,,(C) of r matrix algebras (see [3], proposition 3.5.8) and W with a
minimal left ideal of A. By general results on matrix rings, one get dim(U ® 4 W) < 1 and we
are done. Now let U = €, Ui@”i where all U; are irreducible right A-modules. Thus U ® 4 W
is either zero or U @4 W = @, (U; ®4 W)®™ = C®" for some k, which is irreducible over
B =@; My, (C). Indeed, only the factor M,,(C) acts on U ®4 W(= C"*), and the action is by
left multiplication. Let S be a non-zero M, (C)-submodule of C™*. Let 2 € S with z; # 0 for
some 1 <4 < ny. Then for 1 < j < nj we have ej;z = x;e; €5, so that e; € S. Hence C™* is an
irreducible M,,, (C)-module.

iii) Using i) and the isomorphism A = @, W™ we get

U2U®s A= Uas (PWE™) = @U 04 W)™

? (2
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Hence we can deduce the following theorem on the irreducible representations of Sp,,C.

Theorem 4.2.9. Let A\ be a partition of d. The representations Sc sV are either 0 or irreducible
representations of Sp,, C. For each partition X, let my denote the dimension of the corresponding
representation Vy = C[Sq]exn of Sq. We have

V<d> ~ @ (S<)\>V)mx
[Al=d
over Sp,,, C.

Proof. Since, by proposition 4.2.7, B is the centralizer algebra to A = C[Sy] acting on the space
V<d> and V) is an irreducible left C[S,]-module, lemma 4.2.8 implies that Sy~ V = V<9>¢, is
an irreducible left B-module. Again by proposition 4.2.7, a subspace of V<% is Sp,, C-invariant
if and only if it is B-invariant. Hence S<)sV is irreducible over Sp,,,C. Finally, by part iii) of

lemma 4.2.8, we get
Vo~ (V)™ = @ (Saxs V)™
[A|=d |A|=d

The following is theorem 17.11 in [5]

Theorem 4.2.10. The space Sc =V is nonzero if and only if the Young diagram of A has at
most n rows, i.e., Ap+1 = 0. In this case, Sc sV is the irreducible representation of sp,,, C with
highest weight Aly + - -+ + Aply.

Forr=1,...,|d/2], let

V= > (g 000ty ) (VI

Since the expansions operator ¥ ,, ..., are all injective, Vdfd; is isomorphic to the direct sum

of several copies of V' <9>. Hence the irreducible Sp(V)-module occurring in Vd<_d2i as a summand
is exactly the same as these occurring in V<9,

Proposition 4.2.11. The tensor power V4 decomposes into a direct sum
d d d d
V® - V< > @Vd<—2> @ cee @Vd<—2?€7
with k = |d/2].

Proof. It follows from corollary 4.2.2 and by induction on r that V®? is equal to the sum
y<d> +Vd<_d2> 4 ~+Vd<_dﬁ. It follows from theorem 4.2.9 and theorem 4.2.10 that Vf_‘g and Vd<_d2?

contain different irreducible Sp(V')-modules for i # j. Hence the intersection V=%~ N Vd<_d2? =0
when i # j. Therefore it is a direct sum.






Chapter 5

Schur-Weyl duality for Sp(V)

In this chapter we will illustrate the Schur-Weyl duality between the symplectic group and the
Brauer algebra over the complex field C. In section 5.1 we will present without proof (but
giving appropriate references to the proof) an important fact on invariant theory for symplectic
groups. In the last section, starting with the Double Centralizer Theorem and characterizing the
commutator of the action of Sp(V) on the tensor product V®¢, we will we able to prove and state
the aforementioned duality.

The first section is based on lecture notes [2]. Also, chapter 5 of [6] treats the same topic with
much more details. The last section follows closely chapter 10 of [6].

5.1 Preliminaries on Invariant Theory

In the following we will need a fact from invariant theory, namely the first fundamental theorem
of invariant theory for Sp(V'). We present it now.

Let V be a finite-dimensional representation of a finite group G and let m € Z>;. Taking
the usual pointwise product of functions, we can define the C-algebra C[V™] of functions
F: V™ — C generated by the elements of (V"™)* viewed as functions on V™. Its elements are

called polynomial functions on V™. Let d = (d1,...,d;,) € N™. We call a polynomial function
F € C[V™] homogeneous of degree d if F(ayvy,...,amvm) = ai*...a% F(vy,... v,,) for all

ai,...,am € C\ {0} and vq,...,v,,, € V. A polynomial function F € C[V™] is called G-invariant
if F(g-v) = F(v) for all g € G and v € V™. The action of G on V™ induces an action on the
polynomial functions on V™ by defining (g - F)(v) = F(g~! -v) for all g € G, F € C[V™] and
v € V™. Now assume that G = Sp(V) and let f be the defining non-degenerate, skew-symmetric
bilinear form on V. For each pair (4, j) of integers such that 1 <i < j < m, we define a function
f(ivj): vm—C by

f(i.,j)(vla s 7’Um) = f(’l)i,’l]j).

Now we can state the following fact from invariant theory (for details, see proposition F.13 in [5]).

Theorem 5.1.1 (First Fundamental Theorem for Sp(V)). The polynomial invariants of Sp(V)
acting on V'™ can be written as polynomials in functions f( jy for 1 <i<j < m.

Let C[V29]; be the space of homogeneous polynomials of degree 1 = (1,...,1). As a

consequence, applying the theorem to the case of homogeneous polynomials of degree 1 = (1,...,1),
one can see that the 1-homogeneous polynomial invariants of Sp(V') acting on V™ are all linear
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combinations of products

Je)o@)fe3) o) - - flo(m—1),0(m)) (5.1)

for permutations o € S, such that o(2i — 1) < 0(2i) for 1 <i <m/2.

5.2 Symplectic Schur-Weyl duality

Let V be a 2n-dimensional complex vector space endowed with a non-degenerate, skew-symmetric
bilinear form f: V x V — C and let Sp(V) be the corresponding symplectic group of V. By
restricting the action in section 2.2, we have the natural factorwise action p: C[Sp(V)] — End(V®%)
given by

g1 ®v2 @ @wa) = g(v1) ® g(v2) ® -+ @ g(va),
for g € Sp(V),v; € V. To determine the symplectic Schur-Weyl duality, we can use a similar
approach to the one followed in section 2.2. Consider the centralizer algebra

B = Ends, v (V%)
= {z € End(V®?) | zp(g9) = p(g)xfor all g € Sp(V)}.
We apply the Double Centralizer Theorem 2.2.3 to the following situation: V = V®9, and A is the

image of C[Sp(V)] in End(V®?). Since B is by definition Endgy(y(V®?), the Double Centralizer
Theorem gives a decomposition

vel~ U o W;

as a module of C[Sp(V)] ® B, where U; are all the irreducible representations of C[Sp(V')] and
W; = Homgyvy (Ui, V@d) are all the irreducible representations of B. Thus now we want to
determine the structure of the algebra B.

Consider the isomorphisms

End(V) = (V) @ (VE) = (V¥)# @ (V)

as modules for Sp(V') where the first isomorphism follows from chapter 1 and the last one is given
by the Sp(V)-isomorphism (V*)®? — (V®9)* mapping ¢ ® - - - ® g to the linear map V& — C
such that v1 ® - - ® vg — @1(v1)...pa(vq). Hence

B = Endgp(v)(V®Y) ~ (End(VE"))SPV) ~ [(V)®4 g (V&)8p(V) (5.2)

as vector spaces. Since B contains Endgr,v)(V®?), the image of C[S4] in End(V®?) is contained
in B, by the results seen in section 2.2.

Since, by definition, Sp(V') leaves invariant the non-degenerate bilinear form f on V', we have
an Sp(V')-module isomorphism V' ~ V* given by the map v — f(-,v), and hence an isomorphism

(V*)®d ® (V®d) ~ V®2d
of Sp(V')-modules. The linear map (V*)®2¢ — C[V24]; defined by

P1 Q- ® pag [(1117 s U2g) (1) - ¢2d(v2d)]

is an isomorphism of Sp(V')-modules.
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Combining all these Sp(V')-module isomorphisms, we obtain a chain of Sp(V')-isomorphisms
C[V#]y ~ V2 ~ End(V®Y).

In particular, denote T: V®2¢ — End(V®?) the last Sp(V)-module isomorphism above, which
we take in the following explicit form: if u = u3 ® - -+ ® ugq with u; € V, then T'(u) is the linear
transformation

T(u)(v1 @ ®va) = f(vr,u2) f(v2,u4) ... f(va, u2a)U1 @ U3 @+ @ U241
for v; € V. Extending f to a non-degenerate bilinear form on V®? for every d by

d

f(x1®®mduy1®®yd):Hf(xz7yl)v
i=1

we can write
T(ug @+ @ugq)(v) = f(v,u2 @ug ® -+ @ Uq)Uy @ U3 R -+ @ Ugg—1
for v € V&2, Thus we have a vector space isomorphism
T: (VESPV) s Endgyyy (VE?).

Given the canonical basis ey, ..., e, of V and its dual basis w1, ..., us, relative to f, recall the

element
2n
P = Z e; & u;.
i=1

Clearly, the identity operator Iy ga is Sp(V)-invariant. It follows that the preimage under T of
IV®d7

2n
Va=YR - QY = Z €, QU K- ey Uy,
M i1yeiq=1

is Sp(V)-invariant. In particular, 1 is Sp(V)-invariant. Since the action of Sp(V) on V®2d
commutes with the action of Sy, the tensors ¢4 - 0% are also Sp(V)-invariants, for any o € Saq.

Now consider the Sp(V)-module isomorphism S: V®2¢ — C[V24]; sending each v; @ - - - ® v24
to the polynomial function

(wl, . ,wgd) — f(wl,vl)f(wg,vg) . f(wgd,’UQd).

We claim that the preimage under S of the function (5.1) is ¢4 - 0~1. For, notice that for all
v,w € V we have f(v®@w,y) = f(v,w). Indeed, for v =73, aje; and w =}, bju; we have

2n
floew,y) = E:fveZ (w,u;) vaez (w,w) + Y f(v,e) fw,u)

1=n—+1

2n
= Z(—am bitn) Z imnbion = 3 aib; = f(v,w).
i=1 i=1

1=n—+1
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Hence we get

S( --®¢-071)(w1,...,w2d)
(w @ wa, -0 ). flwag 1 @ waa, - oY)
(w1 -oc@ws-0,v)...f(wag—1-0 @ waq - 0,7)

(w1 - o,wa - 0) ... flwag—y - 0, waq - ),

S(?ﬁd '0'71)(11)1,...,11)2(1)

f
f
f
and we are done. Since the functions (5.1) span C[V24]{, we obtain the following characterization.
Theorem 5.2.1. [V®2d]5p(v) is spanned by the elements Yy - o~ with o € Saq.

Now let Sy C Sy denote the subgroup that permutes the ordered pairs {(1,2), ..., (2d—1,2d)}:

&1 (20 —1,2i) — (20(i) — 1,20(i))

fori=1,...,d with 0 € S4. The map Sy — Saq given by o — & is clearly injective. Notice that
Pq -0 =Yg for all 6 € Sy.

Let Ng C Sa4 be the subgroup generated by the transpositions (25 —1 2j) for j =1,...,d.
Clearly Ny ~ 7Z4. Since ¢ = — > Ui ® e, we get that ¢ - 0 = £1)q for all 0 € Ng. Moreover, Ng
is normalized by Sy, so that By = S3/Ny is a subgroup of Sog. In particular we have ¢4 -0 = 14
for all 0 € By. Hence theorem 5.2.1 has the following equivalent version:

Theorem 5.2.2. [V®2d]5p(v) is spanned by the elements 1¥q - 0~ with o € Tq, where Yq is any
collection of representatives for the cosets Saq/Bg.

Moreover, we define the homomorphism 7: S; — Saq by

7(0)(2i — 1) = 20() — 1, 7(0)(2i) = 24,

fori =14,...,d and o € Sy. It is clearly injective. Hence 7(o) permutes {1,3,...,2d — 1} and
fixes {2,4,...,2d} pointwise.

For any two subgroups H, K of a group G, denote H\G/K the quotient subset G/ ~ of G
given by the equivalence relation ~ in G defined by g ~ ¢’ if and only if ¢ = hgk for some
h € H and k € K. Its elements are called the (H, K)-double cosets in G. We say that a subset
X C G is a set of representatives for the (H, K)-double cosets in G if each of these double cosets
contains exactly one element of X. Finally, denote 7: Sy — GL(V®?) the natural action of Sy
on GL(V®4) with 7(c) = 7, for any o € S.

Proposition 5.2.3. Let T' C Sy be a set of representatives for the (1(Sq), Bq)-double cosets in
Soq. Then

Endsp(v)(V®d) = span{n,-1 0 T(Yg-y ') | o € Sq,v €T}
Proof. Applying theorem 5.2.1 we have
Endsp(v) (VE?) = span{T'(va-7~") | v € Ta}, (5.3)

where T4 is any set of representatives for the cosets Soq/Bg. It follows from the definition of T'
that
meoT(v) =T(v-7(0)) (5.4)

for all ¢ € Sy and v € V®24, Suppose now that 1,72 € Tq are such that v, = 7(0)72¢ for some
o €54 and ¢ € By. Then, since 14 - ( = £, by (5.4) we get

T(a- 7)) =T(Wa g 7(07h) = #7500 T(Ya 73 "):
The result now follows by (5.3). O
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Denote _
de(—QTL) = Endsp(v) (V®d).

Now we want to find a particular set T" of representatives for the (7(Sq), B4)-double cosets in Sy
to describe the multiplicative structure of B4(—2n).

Let X, denote the set of all 2-partitions of {1,2,...,2d}, that is partitions of {1,2,...,2d}
into d pointwise disjoint subsets containing two elements each. The Brauer diagram associated to
a 2-partition P € X4 consists of two rows of d dots labeled 1,3,...,2d — 1 on the top row and
2,4,...,2d on the bottom row where the dots i, j are joined by an edge if and only if {7, j} € P.
For example, if d =4 and P is

{{1,8},{2,6},{3,4},{5,7}}, (5.5)

the associated Brauer diagram is

There is a natural action of Sy on Xy given by

Hivands o {da,gaty = {{o(in), o)}, {o(ia), o (ja) }},

for o € Sy4. For example, if 0 = (172) € Sg and « is (5.5), then o - z is represented by

Let o be the 2-partition corresponding to the Brauer diagram

111

By the transitivity of the action of Soq on X4, we have X; = Soq - xg and the stabilizer of x is
precisely By. Thus we may identify X4 with the quotient space Saq/Bg via the map o - xo — 0 Bjy.
Notice that the subgroup 7(S4) permutes the top row of dots and fixes each dot in the bottom
row. This action can be seen, via the previous identification, as an action on Sa;/Bg by left
multiplication, with orbits coinciding with the (7(Sg), Bg)-double cosets in Saq.

We call z € X4 an r-bar diagram if there are r edges connecting two dots on the top row (or,
equivalently, on the bottom row). Such edges are called top bars (or, resp., bottom bars). All
diagrams in the 7(Sg)-orbit of = are also r-bar diagrams.

Each 7(S4)-orbit on X4 has a unique representative z such that if {2¢,25} € z then {2i —
1,2 — 1} € z, and if {2i — 1,25} € z then i = j. We call such a Brauer diagram normalized and
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we denote the set of all such diagrams by Z;. For instance, (5.6) is not normalized. Its normalized
representative is

via the action of 0 = (17) = 7((14)) € 7(S4). If both {2i,25} and {2i — 1,25 — 1} belong to
x € X4, we say that = contains the (7, j)-bar.

We now determine the element of End(V ®?) corresponding to each normalized Brauer diagram.
For each pair J = (p, ¢) of integers such that 1 < p < ¢ < d, recall the linear map 9;: V&4 — V/®d
given by

2n
vl®~~®vd»—)Zf(vp,vq)v1®~~®’up_1®ei®o~®vq_1®ui®~~®vd.
i=1

Here {e;} and {u;} are bases for V with f(e;,u;) = d;;. Let us begin with the 1-bar diagram z
containing the (i, j)-bar. Notice that z = (20 2j —1)-x¢ and (20 2j —1)"'=(2i 2j—1), so
that z corresponds to the tensor ¢4 - (2¢ 2j —1). Let Cp(w) denote the p-th coefficient of w
with respect to the basis eq, ..., e, of V. For all wy,...,wqy € V we have

T(p- (20 2j = 1)) (w1 ©- - @wq)

2n
=T Z €p, @Up, @+ @ 6p_7®"'® Up, ®: @ ep, @ Up,
P1ye-sPa=1 v
T 2i-th (2j—1)-th

(w1®®wd)

2n
S Fwnug) e f(wiep) . fwa up)ep @ By, @ Gy,

P1se-,Pa=1
2n
= Z f(wi, epi)cpl (w1) ... sz‘—1 (wifl)cpz‘+1 (Wit1) .. de (wa)-
pl,...,pdzl

.ep1®...®upj®...®epd

2n
:f(wi,wj)Zw1®"'®epj®"'®Upj®"‘®wd
pj=1

= 19(1’7]')(101 X ® wd).
Thus
T(’(ﬂ . (2i 25 — 1)) = ﬁ(i,j). (5.7)

Suppose now that z € Z, is an r-bar diagram containing the (41, j1), .. ., (i, jr)-bars. Let v, € Saq
be the product of the transpositions (2i, 2j, —1) for p=1,...,r. Then z =y, - ¢ corresponds
to the tensor 14 - v, 1. Since the transpositions do not intersect, we have

T(Wa-v") =T(a 7:) =Yy © 09,4

by the same calculation that gives (5.7). For such a z € Zg, denote ¥, = ¥;, j,)0--- 09, ).
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Proposition 5.2.4. Let 2n = dim V. The algebra By(—2n) = Endgy(vy(VE?) is spanned by the
set of operators my—1 -9, for o € Sg and z € Z.

Proof. Given z € Z, take 7y, € Saq as above. Since Z, is a set of representatives for the 7(5;)-
orbits on X4, I' = {7, | z € Z4} is a set of representatives for the (7(S4), Bq)-double cosets in
Soq. Now it suffices to apply proposition 5.2.3. O

As a consequence, applying the Double Centralizer Theorem 2.2.3 with A = {g® - ® g |
g € Sp(V)} C End(V®?) and B the subalgebra of End(V®%) spanned by the operators 9,4
(1<p<gq<d) and 7, (¢ € Sg), proposition 5.2.4 claims that B = End4(V®%) and thus
A = Endp(V®%), that is theorem 4.2.6.

We next study the relations in the algebra B4(—2n).

Lemma 5.2.5. The operators ¥ ; jy salisfy the following relations, where 2n = dim V' :

it) ﬁ(i,j)ﬁ(j,l) = W(il)ﬁ(j,l) for1<i<j<l<d.
ZZ’L) nglﬂ(i’j)/]rg = 19(0(1')70(3-)) for all o € Sy.

w) i 59,5 =~V

Proof. Recall that ®; ;y o ¥(; ;) = 2nl. This implies property i). To verify ii), note that

D901 ® - @ vg)
:f(vj’vl)zf(vi’ep)vl®"'® €q X & Uq X & Up X R vg.
—

p,q
’ ith jth Ith

But

Zf(viaep)vl(g)"'@ g @ Q Uy V- ® Up - vy
> ~— ~— ~—
ith jth Ith
:_U1®"'® eq ®...® uq ®...® V; ®.'.®Ud7
~—~

~—~ ~—~
ith jth lth

which gives ii). For iii), we have

(To19(3,5)Te ) (V1 @ - - - ® vq)

=Tt | D F(Vo(i)s Vo()Ve() @ ® € ®--@ Uy ©-- D Vy(a)
~— ~—
p ith jth
:Zf(va(i),va(j))vl®"'® € R ® u, Q- Qg
~— ~—
p o(i)-th o(j)-th

= V(o(i),0(j)) (V1 @ - @ Va).

Finally, iv) follows from the fact that >, e; @ u; = — >, u; @ e;. O



46 Schur-Weyl duality for Sp(V)

We can describe the generators of @d(—2n) in terms of Brauer diagrams. Let o, € Sg be the
transposition (r r + 1) corresponding to the Brauer diagram

ror+1

Recall that Sy is generated by o1,...,04_1. Let z. € Z; be the 1-bar Brauer diagram containing

the (r,r + 1)-bar
Bt

From what we have seen, it corresponds to the operator ¥, ,,1). From proposition 5.2.4 and

property iii) in lemma 5.2.5, it follows that the algebra @d(—2n) is generated by the operators
01,...,04—1 and z1,...,2q9_1. Thus we can define the multiplication in @d(—Qn) in terms of
concatenations of Brauer diagrams in the following way: for any x,y € @d(an) we place the
diagram for x above the diagram for y, we join the lower row of dots in x to the upper row of
dots in y and we perform the following operations:

e Multiply by a factor (2n) for each closed loop.

e Multiply by a factor —1 for every path beginning and ending on the same row after the
concatenation.

We see now the definition of Brauer algebra.

Definition 5.2.6. Let d € Z~o and § € C. The Brauer algebra B4(0) is the associative unital
C-algebra generated by the elements s;,e; for 1 <147 <d — 1, subject to the relations

2
sy =1, 8;8j = 5j8;, SKSk415k = Sk+15kSk+1,
2
e; =0e;, eje; = €€, €RepL1€g = €k, Crp1€kCril = €pil,

8i€; = €; = €;5i, Skek+1€k = Sk4+1€k, Skt1€kCk+1 = SkCkt1, (5.10)
for 1 <i,j<d—1,]i—j|>2and1<k<d—2.

We can define a right action of B4(—2n) on V¢ on generators in the following way. For any
integer 1 < i < 2n, we set i’ = 2n+1 —i. We fix an ordered basis {vy, va,...,v2,} of V such that

(vi,v;) = 0= (vyr,vj), (v5,v5) =65 = —(vyr,v;) foralll <i,j < 2n.
For any i,j € {1,2,...,2n}, let
1 ifj=iandi<j,

€j =4 —1 if j=14and i > j,
0 otherwise.

Then

(v ® - ® vid)sj =—(vy ® ® Vi;_y @Vij, QUi Q-+ @ Vig)s

2n
(i, ® - ® i, )ej = _ZeijijJrl'Uil Q- QUi;_, QU QU QUj; , &+ QUjy,.
k=1
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Lemma 5.2.7. The operators 74 for o € Saq and ¥y, ;) satisfy the relations (5.8), (5.9) and (5.10)
with s; = =741y and e; = =9 iq1)-

Proof. Relations (5.8) follow from general results on transpositions in Ss4. The first relation
in (5.9) is condition i) in lemma 5.2.5. We already know that 9(; ;11) commutes with J(; ;1) if
|i — 7| > 1. Let us prove

19(7",7‘+1)19(7‘+1,r+2)ﬁ(r,rJrl) = 19(7",1‘4»1) .

For vq,...,v4 € V we have

(O rr+1) 0 (r1,04+2) (rr41)) (V1 @ - - - @ Vg)

= (ﬁ(r,r+1)ﬂ(r+1,r+2)) <Z f(v'l"7 Ur—i—l)vl R RepQuUp Q-+ & ’Ud)
p

= f(r, vr41)0(rr41) (Z f(Up, Urg2)v1 @+ QepReg@ug® -+ ® ’Ud>

p,q

= —f(vr, Vry1) Z ftup, vry2) fep, ug)1 @+ ®es Qus Reg ® -+ Qg
P.q,s

= — (0, vr41) Y F(Up, Vrg2) 01 @ - Qs QU D ey @ -+ D g

p,s
:f(”ra”r—&-l)zvl®"'®€s®us®yr+2®...®vd

= ﬁ(r,r+1) (vl D Ud)-

The last relation in (5.9) is computed similarly. The first relation in (5.10) is condition iv) in
lemma 5.2.5. The remaining relations in (5.10) follow by similar calculations. O

Since, as we have seen, @d(an) is spanned by the operators m(;; 1), ¥ (;i+1) We have

Corollary 5.2.8. @d(—2n) is the image of the Brauer algebra Bg(—2n) via the assignment
S; —T(ii+1) and e; —’19(1'12'+1).

Notice that the action of By4(—2n) on V& is precisely
(11 ® - ®va)$r = —T(prg1)(V1 ® -+ @ va),
(1 ® - ®ug)er = =V(pry1)(V1 @+ @ vg).
Summarizing, we have proved that the representations
C[Sp(V)] & End(V®Y) & By(—2n),
where v is the C-algebra homomorphism induced by the above action, satisfy the following

Theorem 5.2.9 (Symplectic Schur-Weyl duality). Let V' be a complex vector space of dimension
2n endowed with a non-degenerate, skew-symmetric bilinear form f: V xV — C.

i) The natural left action of Sp(V) on V% commutes with the right action of the Brauer
algebra B4(—2n). Moreover,

v(Ba(—2n)) = Endg,v(V®9),
p(C[Sp(V)]) = Endp (20 (VEY).
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it) We have a decomposition

Vel~ P SauV®Ba
[A<d
[A|I=2  (mod d)

where Sc<xsV are all the irreducible representations of C[Sp(V)] corresponding to A and
Br.a = Homgyvy(S<xsV, V&) are all the irreducible representations of By(—2n).
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