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Introduction

The first person to introduce and study representation theory of finite groups was F. G. Frobenius
in 1896. In his work [4], he introduced the notion of character for a finite non-abelian group,
generalizing the notion of group character of finite abelian group developed by R. Dedekind
in 1879. Afterwards, I. Schur, who was a student of Frobenius, continued his work in several
directions, including presenting in his doctoral thesis [10] the duality between the general linear
group GLnC and the symmetric group Sn. This duality was then developed by H. Weyl in his
work [11]. For further historical information see [7].

The object of this thesis is to study the Schur-Weyl duality in the case of symplectic groups
over the field C. This arises from the will to give a detailed explanation of the main results in
section 2 of paper [9]. We will refer mostly to the approach that R. Brauer illustrated in 1936 in
his work [1]. Here Brauer introduced the algebra Bd(δ) to describe the invariants of symplectic
and orthogonal groups acting on V ⊗d for a finite-dimensional complex vector space V . In fact,
in order to accomplish our goal, we will need to state the First Fundamental Theorem for the
symplectic group (of which we will not give a proof).

The thesis is divided in five chapters. As the titles suggest, the second and the third chapters
are devoted to the study of the general linear group GLnC, namely the Schur-Weyl duality and
the polynomial representations for GLnC, while the last two chapters concern the symplectic
group Sp2nC.

In the first chapter, we will present, as prerequisites, all the results from classical representation
theory of finite groups that we will use in all the following parts. Namely, we will introduce the
notion of group algebra and Lie algebra that will be fundamental to work with the representations
of the classical groups since, as we will show, studying representations of these algebraic structures
will be equivalent to studying representations of the corresponding groups.

In the second chapter, we will present the Schur-Weyl duality for GLnC. We will first provide
a complete portrait of the irreducible representations of Sn and give a formula for their characters,
the so-called Frobenius character formula. The proof of the duality will be based on an important
result on semisimple algebras over an algebraically closed field known as Double Centralizer
Theorem. We will finish this chapter computing the Weyl character formula for Sn.

The main goal of the third chapter is to finish the description of all the algebraic representations
of GLnC. For, we will first provide a general structure to analyse a semisimple Lie algebra,
applying it to the special linear algebra slnC to obtain a description of its representations. As a
consequence, we will have all the ingredients to list the irreducible representations of GLnC.

In the fourth chapter, we will start to work with the symplectic group Sp2nC. After recalling
the structures of the symplectic group Sp2nC and the corresponding Lie algebra sp2nC, we will
apply the previous algorithm to delineate the representations of sp2nC. Afterwards, we will give a
complete description of Weyl’s construction for symplectic groups using what we have developed
in chapter 2.

In the fifth chapter, we will present without proof some important facts on invariant theory
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iv Introduction

for symplectic groups. Next, we will apply the Double Centralizer Theorem to the symplectic
case and we will characterize the centralizer of the natural factorwise action of Sp(V ) on the
tensor product V ⊗d for a finite-dimensional complex vector space V endowed with a suitable
form f : V × V → C . It will turn out that this centralizer is closely connected to the Brauer
algebra Bd(−2n) and we will be able to prove the symplectic Schur-Weyl duality.

Each chapter contains a little summary and some references at the beginning.
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Chapter 1

Preliminaries

In this chapter, we will develop some of the general theory of representations of finite groups. In
particular we will introduce the notions of character and group algebra that will be important in
the following chapters.

All results appearing in the first four sections are proved from chapter 2 to the first sections
of chapter 5 of [3]. Also, the same topics are treated in lectures 1 to 3 of [5] with some interesting
examples. The results in the last section on Lie algebras can be found in [8].

1.1 Representations of finite groups

A representation of a finite group G (also called a G-module) on a finite-dimensional complex
vector space V is a homomorphism ρ : G→ GL(V ). We will often abuse notation by referring to
V as the representation of G and write gv for ρ(g)(v) whenever the map ρ is understood from
context.

A G-map ϕ between two representations V and W of G is a vector space map ϕ : V →W such
that ϕ(gv) = gϕ(v) for every g ∈ G and v ∈ V . We say a G-map ϕ : V →W is an isomorphism
of representations if it is an isomorphism of vector spaces. In this case, we say that V and W
are isomorphic and denote this by V 'W . Let HomG(V,W ) denote the set of all G-maps from
V to W and define EndG(V ) = HomG(V, V ). Notice that HomG(V,W ) inherits the structure of
vector space from Hom(V,W ).

For any G-maps ϕ : V →W and ψ : W → Z, the composition ψ ◦ϕ : V → Z is again a G-map.
Indeed we have

(ψ ◦ ϕ)(gv) = ψ(ϕ(gv)) = ψ(gϕ(v)) = gψ(ϕ(v)) = g(ψ ◦ ϕ)(v).

This defines the composition of G-maps, which is clearly associative and has identity element idV .
So we may consider the category of representations of G, denoted Rep(G).

A subrepresentation of a representation V is a vector subspace W of V which is invariant
under G, that is, gw ∈W for all g ∈ G and w ∈W . We say V is irreducible if it contains exactly
two subrepresentations, namely, 0 and V itself.

Example 1.1.1. Let G be a finite group. We have:

i) The trivial representation C where gv = v for all g ∈ G and v ∈ C. It is clearly always
irreducible.

1



2 Preliminaries

ii) The regular representation of G is the C-vector space with basis G where G acts on itself
by left multiplication.

If V and W are representations, the direct sum V ⊕W and the tensor product V ⊗W are
also representations, respectively via

g(v ⊕ w) = gv ⊕ gw and g(v ⊗ w) = gv ⊗ gw,

for v ∈ V and w ∈W . For a representation V , the nth tensor power V ⊗n is thus a representation of
G, the nth exterior power ∧n(V ) and the nth symmetric power Symn(V ) are subrepresentations
of it. Let ρ : G → GL(V ) be a representation. The dual V ∗ = Hom(V,C) of V is also a
representation, defining ρ∗(g) : V ∗ → V ∗ as ρ∗(g)(f) = ((ρ∗(g)(f))(v) 7→ f(ρ(g−1)(v))) for all
f ∈ V ∗ and v ∈ V . This forces ρ to respect the natural pairing 〈·, ·〉 of V ∗ and V in the following
sense: 〈ρ∗(g)(λ), ρ(g)(v)〉 = 〈λ, v〉 for all g ∈ G, λ ∈ V ∗, and v ∈ V . Having this, the action on
Hom(V,W ) is given by the identification Hom(V,W ) = V ∗⊗W given by f ⊗w 7→ (v 7→ f(v) ·w).

A representation is indecomposable if it cannot be expressed as a direct sum of proper subrep-
resentations. Clearly, if a representation is irreducible, then it is indecomposable. Remarkably,
also the converse holds.

Theorem 1.1.2 (Maschke). If W is a subrepresentation of a representation V of a finite group G,
then there is a complementary invariant subspace W ′ of V , so that V = W ⊕W ′. Consequently,
every representation is a direct sum of irreducible representations.

This property is called complete reducibility.

Lemma 1.1.3 (Schur). Let ϕ : V →W be a nonzero G-map.

i) If V is irreducible, then ϕ is injective.

ii) If W is irreducible, then ϕ is surjective.

iii) If V = W is irreducible, then ϕ = λ · I for some nonzero λ ∈ C, I the identity.

It follows proposition 1.8 in [5]:

Proposition 1.1.4. For any representation V of a finite group G, there is a decomposition

V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk ,

where the Vi are distinct irreducible representations. The decomposition of V into a direct sum of
the k factors is unique, as are the Vi that occur and their multiplicities ai.

1.2 Character Theory
If V is a representation of G, its character χV : G→ C is defined by

χV (g) = Tr(g|V ).

In particular, by the properties of trace, we have χV (hgh−1) = χV (g), so that χV is constant on
the conjugacy classes of G; such a function is called a class function. Note that χV (1) = dimV .
Since the trace of a linear transformation is the sum of the eigenvalues, the identities

χV⊕W = χV + χW , χV⊗W = χV · χW , χV ∗ = χ̄V
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easily follow.
For any representation V of a group G, we set V G = {v ∈ V | gv = v for all g ∈ G}. The map

ϕ =
1

|G|
∑
g∈G

g ∈ End(V )

is a projection of V onto V G. Let Cclass(G) = {class functions on G} and define a Hermitian
inner product on Cclass(G) by

(α, β) =
1

|G|
∑
g∈G

α(g)β(g).

We have the following fundamental theorem of character theory.

Theorem 1.2.1. In terms of this inner product, the characters of the irreducible representations
of G are orthonormal.

Remark 1.2.2. Here are some important consequences of this theorem which follow almost
immediately.

i) Any representation is determined by its character, i.e., V 'W if and only if χV = χW .

ii) A representation V is irreducible if and only if (χV , χV ) = 1.

iii) The multiplicity ai of Vi in V is the inner product of χV with χVi , i.e., ai = (χV , χVi).

iv) Any irreducible representation V of G appears in the regular representation dimV times.
In particular, |G| =

∑
(dimVi)

2.

Clearly, the image of g in End(V ) is a G-map if and only if g is in the centre Z(G). Let
α : G→ C be a function on the group G, for any representation V of G the map

ϕα,V =
∑

α(g) · g ∈ End(V )

is a G-map for all V if and only if α is a class function. As an immediate consequence, we have

Proposition 1.2.3. The number of irreducible representations of G is equal to the number
of conjugacy classes of G. Equivalently, their characters {χV } form an orthonormal basis for
Cclass(G).

The orthogonality in theorem 1.2.1 is called row orthogonality. Similarly, there is a corre-
sponding column orthogonality.

Corollary 1.2.4. For g, h ∈ G, we have

1

|G|
∑
i

χVi(g)χVi(h) =

{
1/c(g); if g and h are conjugate,
0; otherwise

where the sum is over all distinct irreducible representations Vi of G and c(g) is the size of the
conjugacy class of g.

This proposition completes the description of the characters of a finite group in general. Now
we introduce a notion that will be useful in the next chapter. A virtual representation of a finite
group G is an integer linear combination of irreducible representations of G, V =

∑
niVi, ni ∈ Z.

The character of V is χV =
∑
niχVi .

Lemma 1.2.5. Let V be a virtual representation with character χV . Suppose (χV , χV ) = 1 and
χV (1) > 0, then χV is a character of an irreducible representation of G.
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1.3 Induced representations

If H ⊂ G is a subgroup, any representation V of G restricts to a representation of H, denoted
ResGHV . Conversely, suppose W is a representation of H. The induced representation IndGHW is
the representation of G with

IndGHW = {f : G→W | f(hx) = ρW (h)f(x) for all x ∈ G and h ∈ H}

and the action g(f)(x) = f(xg) for any g ∈ G. To compute the character χIndGHW
of IndGHW one

has the following

Theorem 1.3.1 (Mackey formula). Let T be a right transversal for H in G. We have

χIndGHW
(g) =

∑
t∈T :tgt−1∈H

χW (tgt−1) =
1

|H|
∑

x∈G:xgx−1∈H

χW (xgx−1).

Another important result about induced representations is the Frobenius Reciprocity Theorem.

Theorem 1.3.2 (Frobenius Reciprocity). Let W be a representation of H, and V be a representa-
tion of G. Then, as vector spaces, HomG(V, IndGHW ) is naturally isomorphic to HomH(ResGHV,W ).

Corollary 1.3.3. If W is a representation of H, and V a representation of G, then we have
(χIndGHW

, χV )G = (χW , χResGHV
)H .

1.4 Group Algebra

The group algebra C[G] of a finite group G is the associative C-algebra with basis G and where
multiplication is inherited from group multiplication, i.e.,∑

p∈G
app

∑
q∈G

bqq

 =
∑
p,q∈G

apbqpq =
∑
g∈G

cgg

where cg is the sum of all apbq where g = pq.
We can generalize the notion of a representation to associative algebras with unit. A rep-

resentation of an associative C-algebra A on a finite-dimensional complex vector space V (also
called a left A-module) is an algebra homomorphism ρ : A→ End(V ). An A-map ϕ between two
representations V and W of A is a vector space map φ : V → W such that ϕ(av) = aϕ(v) for
every a ∈ A and v ∈ V .

We want to show now that we have an equivalence of categories between Rep(G) and the
category of left C[G]-modules.

Notice that given a representation of a finite group G, we can extend it linearly to get
a representation of the group algebra C[G], namely ρC[G](

∑
g∈G agg) =

∑
g∈G agρG(g). And

conversely, given a representation of C[G], we can restrict it to G to get back a representation of
G.

Thus we define a covariant functor F : Rep(G) → C[G]-Mod as follows: F assigns to every
representation (V, ρG) the representation (V, ρC[G]) defined as above and to every G-map ϕ : V →
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W the C[G]-map ϕ∗ : V →W such that v 7→ ϕ(v). This is indeed a C[G]-map since

ϕ∗

∑
g∈G

agg

 v

 = ϕ

∑
g∈G

ag(gv)

 =
∑
g∈G

agϕ(gv)

=
∑
g∈G

ag(gϕ(v)) =

∑
g∈G

agg

ϕ∗(v).

Easily, F respects the identity and compositions, so F : Rep(G) → C[G]-Mod is in fact a
covariant functor. Roughly speaking, we can say that a G-map ϕ : V →W is mapped to itself
as linear map with the G-representations V,W mapped to C[G]-modules as objects. Hence the
functor F is clearly fully faithful. From what we have seen above, taking restriction and linear
extension, F is also essentially surjective. Hence the covariant functor F : Rep(G)→ C[G]-Mod
is an equivalence, that is representations of G and representations of C[G] are categorically
equivalent notions.

In fact, we can notice that this is an isomorphism of categories. Indeed, we can consider the
covariant functor F̃ : C[G]-Mod→ Rep(G) defined as follows: F̃ assigns to every representation
(V, ρC[G]) the representation (V, ρG) by restriction as above and to every C[G]-map ϕ : V →W
the G-map ϕ̃ : V →W such that v 7→ ϕ(v) that is clearly a G-map. It is immediate to prove that
F̃ ◦ F = idRep(G) and F ◦ F̃ = idC[G]-Mod.

Finally, we state the following proposition on the structure of C[G].

Proposition 1.4.1. As algebras,

C[G] =
⊕
i

End(Vi)

where the sum is over all distinct irreducible representations Vi of G.

1.5 Lie algebras

A complex vector space g endowed with a bilinear map [·, ·] : g × g → g, called Lie bracket, is
called a Lie algebra over C if it satisfies the following axioms: [x, x] = 0 for all x ∈ g and

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g. The last axiom is called Jacobi identity. It is easy to see that every associative
C-algebra A becomes a Lie algebra over C with the operation [x, y] = xy− yx, called commutator
of x and y, for any x, y ∈ A. We will write L(A) for A viewed as a Lie algebra. In particular, for
a finite-dimensional complex vector space W , End(W ) becomes a Lie algebra over C, denoted
gl(W ), and we will call it the general linear algebra.

A linear map ρ : g → h that respects the Lie bracket, i.e., ρ([x, y]g) = [ρ(x), ρ(y)]h for all
x, y ∈ g, is called a Lie algebra homomorphism. A representation of a Lie algebra g on a
finite-dimensional complex vector space W is a Lie algebra homomorphism ρ : g→ gl(W ).

Example 1.5.1. If x ∈ g, then y 7→ [x, y] is an endomorphism of g, which we denote adx. In
fact, we can rewrite the Jacobi identity in the form: [x, [y, z]] = [[x, y], z] + [y, [x, z]]. The map
g→ gl(g) sending x to adx is called the adjoint representation of g.
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Let g be a Lie algebra. We define the tensor algebra T(g) as the complex vector space
⊕

n≥0 g
⊗n

where g⊗0 := C with multiplication given by the canonical isomorphism g⊗n ⊗ g⊗m → g⊗(n+m).
Now define the universal enveloping algebra U(g) = T(g)/I where I is the ideal generated by
elements x⊗ y − y ⊗ x− [x, y] for all x, y ∈ g ⊆ T(g). We claim now that

HomAlg(U(g),End(V )) ' HomLieAlg(g, gl(V )).

Let ρ : g→ gl(V ) be a Lie algebra representation. We can extend it to an algebra representation
ρ′ : U(g)→ End(V ) by setting ρ′(x1 ⊗ · · · ⊗ xn) = ρ(x1) . . . ρ(xn) on the basis tensors and then
extending by linearity. Similarly, given an algebra representation ρ′ : U(g) → End(V ), we can
restrict it to g ⊆ U(g) to get a Lie algebra representation ρ : g→ gl(V ) since

ρ([x, y]g) = ρ′([x, y]g) = ρ′(x⊗ y − y ⊗ x)

= ρ′(x)ρ′(y)− ρ′(y)ρ′(x) = ρ(x)ρ(y)− ρ(y)ρ(x) = [ρ(x), ρ(y)]gl(V )

for all x, y ∈ g. We may conclude then that studying representations of g is equivalent to studying
representations of U(g).



Chapter 2

Schur-Weyl duality for GL(V )

In this chapter, we will study the classical Schur-Weyl duality relating irreducible finite-dimensional
representations of the general linear and symmetric groups. In section 2.1, we will study a
construction of the irreducible representations of the symmetric group and a formula for their
characters. Next, in section 2.2, we will prove the classical case of Schur-Weyl duality using
the Double Centralizer Theorem. We will finally obtain the Frobenius character formula for the
irreducible representations of Sn.

The presentation in this chapter is based mainly on chapter 5 of [3] and on some parts of
lecture 6 of [5].

2.1 Representations of the symmetric group Sn

2.1.1 Irreducible representations for Sn

Recall that a partition λ of n is an integer sequence λ = (λ1, . . . , λk) so that λ1 ≥ · · · ≥ λk ≥ 1
and n = λ1 + · · ·+ λk. We already know that the conjugacy classes of Sn are in bijection with
the partitions of n. Let p(n) denote the number of partitions of n. Since the number of conjugacy
classes of Sn is p(n), by Proposition 1.2.3 there are also p(n) distinct irreducible representations
of Sn.

To a partition λ = (λ1, . . . , λk) of n, we attach the Young diagram of λ, which is a collection
of n left-justified cells with λi cells on the ith row. The conjugate partition λ′ = (λ′1, . . . , λ

′
r) to

the partition λ is defined by interchanging rows and columns in the Young diagram. Given the
Young diagram of λ, we define a tableau on it to be a numbering of the boxes by the integers
1, . . . , n. Numbering the boxes consecutively as shown in the following tableau for (4,2,1)

1 2 3 4
5 6
7

,

we get the so-called canonical labeling. Sn acts naturally on tableaux by permuting the labels.
Given the canonical tableau for a partition λ of n, we define the following subgroups of the
symmetric group

Pλ = {g ∈ Sn | g preserves each row of λ},

and
Qλ = {g ∈ Sn | g preserves each column of λ}.

7



8 Schur-Weyl duality for GL(V )

Moreover, we define the following elements in C[Sn]:

aλ =
∑
g∈Pλ

g and bλ =
∑
g∈Qλ

sgn(g)g.

Finally, we call their product cλ = aλbλ ∈ C[Sn] the Young symmetrizer of λ.
Remark 2.1.1. i) For the canonical tableau, Sλ := Pλ is the subgroup of elements in Sn

stabilizing the sets {1, . . . , λ1}, {λ1+1, . . . , λ1+λ2}, . . . , {λ1+· · ·+λk−1+1, . . . , λ1+· · ·+λk}.

ii) Pλ ∩Qλ = {1}.

iii) Let T be a Young tableau corresponding to λ and g ∈ Sn. If T ′ = gT , then P ′λ = gPλg
−1

and Q′λ = gQλg
−1.

iv) Because Pλ ∩Qλ = {1}, we have no cancellations in the sum∑
h∈Pλ,k∈Qλ

sgn(k)hk,

so cλ 6= 0.
The irreducible representations of Sn are described by the following theorem.

Theorem 2.1.2. The subspace Vλ = C[Sn]cλ of C[Sn] is an irreducible representation of Sn
under left multiplication. Moreover, every irreducible representation of Sn is isomorphic to Vλ for
some unique partition λ of n.

The module Vλ is called the Specht module corresponding to λ.
Remark 2.1.3. Different Young symmetrizers, given by different labelings of the same partition,
give rise to isomorphic Specht modules. For let T and T ′ be tableaux of the same partition. Then
T ′ = gT for some g ∈ Sn. By iii) of the previous remark, we have

C[Sn]cT ′ = C[Sn]cgTg−1 = C[Sn]cTg−1 .

Thus the map C[Sn]cT → C[Sn]cT ′ sending x 7→ xg−1 is an isomorphism of Sn-modules.
In this section, we will always work with tableaux with the canonical labeling. Note that, as a

corollary, each irreducible representation of Sn can be defined over the rational numbers since cλ
is in the rational group algebra Q[Sn].

Before proving the theorem, let us compute all the distinct irreducible representations of S3.

Example 2.1.4. We have the canonical tableaux

1 2 3
1 2
3

1
2
3

Clearly, we have P(3) = S3 and Q(3) = {1} for λ = (3), P(2,1) = {1, (12)} and Q(2,1) = {1, (13)}
for λ = (2, 1), and P(1,1,1) = {1} and Q(1,1,1) = S3 for λ = (1, 1, 1). Hence we get

c(3) = a(3)b(3) =
∑
g∈S3

g,

c(2,1) = a(2,1)b(2,1) = (1 + (12))(1− (13)) = 1 + (12)− (13)− (132),

c(1,1,1) = a(1,1,1)b(1,1,1) =
∑
g∈S3

sgn(g)g.



2.1. Representations of the symmetric group Sn 9

It is immediate to see that, for any h ∈ S3, we have hc(3) = c(3) and hc(1,1,1) = sgn(h)c(1,1,1).
Hence we conclude that V(3) = C[S3]c(3) is the trivial representation and V(1,1,1) = C[S3]c(1,1,1) is
the alternating representation. Finally, by easy computations, V(2,1) = C[S3]c(2,1) is the span of
c(2,1) and (13)c(2,1).

Remark 2.1.5. Consider the natural permutation representation, in which Sn acts on Cn by
permuting the coordinates. This representation is not irreducible: the line spanned by the sum
(1, . . . , 1) of the basis vectors is invariant, with complementary subspace V = {(z1, . . . , zn) ∈ Cn |
z1 + · · ·+ zn = 0}. This (n− 1)-dimensional representation V is easily seen to be irreducible, we
call it the standard representation of Sn.

In general, V(n) is the trivial representation, V(n−1,1) is the standard representation, and
V(1,...,1) is the sign representation.

We are now going to prove theorem 2.1.2. In the following, let λ be a partition of n.

Lemma 2.1.6. There exists a unique tλ ∈ C[Sn]∗ = Hom(C[Sn],C) such that aλgbλ = tλ(g)cλ
for all g ∈ C[Sn]. In particular for all g ∈ Sn we have

tλ(g) =

{
0 if g /∈ PλQλ
sgn(q) if g = pq, with p ∈ Pλ and q ∈ Qλ

.

Proof. Since Sn forms a basis of C[Sn], it suffices to show the statement for g ∈ Sn. We start
with the following easy observation: if p ∈ Pλ and q ∈ Qλ, then

aλp =
∑
g∈Pλ

(gp) = aλ

and
qbλ =

∑
g∈Qλ

sgn(g)(qg) = sgn(q)
∑
g∈Qλ

sgn(qg)(qg) = sgn(q)bλ.

Notice if g ∈ PλQλ, then it has a unique representation as g = pq with p ∈ Pλ and q ∈ Qλ. Thus,

aλgbλ = (aλp)(qbλ) = aλ(sgn(q)bλ) = sgn(q)cλ.

Now if g /∈ PλQλ, notice that the coefficient for the identity 1 in aλgbλ is 0 because if pgq = 1 for
some p ∈ Pλ and q ∈ Qλ, then g = p−1q−1 ∈ PλQλ. Since the coefficient for the identity in cλ is
1, we must have that tλ(g) = 0. Thus, we must show that aλgbλ = 0. So it suffices to show that
there exists a transposition q ∈ Qλ so that p = gqg−1 ∈ Pλ because then

aλgbλ = (aλp)g(sgn(q)qbλ) = −aλ(gqg−1)gqbλ = −aλgbλ

and, hence, aλgbλ = 0. Consider the tableau T ′ = gT where T is the given tableau. Notice that
p is a row-preserving transposition in T because p ∈ Pλ, and p = gqg−1 is a column-preserving
transposition in T ′ because q ∈ Qλ. So it suffices to show that there exists two distinct integers
which lie in the same row in T and in the same column in T ′.

Suppose there were not two such integers. We can find a row-preserving permutation p1 ∈ Pλ
of T and a column-preserving permutation q′1 ∈ gQλg−1 of T ′ so that p1T and q′1T ′ have the
same first row. Continuing like this, we could find p ∈ Pλ and q′ = gqg−1 ∈ gQλg−1 so that
pT = q′T ′ = q′gT = gqT . But then p = gq and, hence, g = pq−1 ∈ PλQλ, a contradiction.

We order partitions lexicographically: λ > µ if the first non-vanishing λi − µi is positive.

Lemma 2.1.7. If λ > µ, then aλgbµ = 0 for all g ∈ C[Sn]. In particular, if λ > µ, then
cλcµ = 0.
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Proof. Similarly to the previous lemma, it suffices to find a transposition q ∈ Qµ so that
p = gqg−1 ∈ Pλ for all g ∈ Sn. The computation is completely similar to the previous proof
considering T and gT ′ where T is the tableau used to construct aλ and T ′ is the tableau used to
construct bµ.

Lemma 2.1.8. We have that cλcλ = nλcλ where nλ = n!/ dimVλ.

Proof. Lemma 2.1.6 implies that cλcλ = nλcλ for some nλ ∈ C. Consider the map F : C[Sn]→ Vλ
where x 7→ xcλ. F multiplies by nλ on Vλ, while F multiplies by 0 on KerF . Hence trF =
nλ dimVλ.

On the other hand, the coefficient of g in F (g) = gcλ is 1 because, as we have already noticed,
the coefficient for the identity in cλ is 1. Hence we also have that trF = dimC[Sn] = n!.

Lemma 2.1.9. For each partition λ of n, Vλ is an irreducible representation of Sn.

Proof. Using lemma 2.1.6 we get that cλVλ ⊂ Ccλ. Let W ⊆ Vλ be a subrepresentation. There
are two cases: either cλW = 0 or cλW = Ccλ. If cλW = 0, then W ·W ⊂ Vλ ·W = 0. We
claim that this implies W = 0. Indeed, by Maschke’s theorem there exists a complementary
subrepresentation W ′ of C[Sn] such that C[Sn] = W ⊕W ′. Define a projection p from C[Sn]
onto W by p(w + w′) = w. Since W,W ′ are invariant subspaces of V we have p(gx) = gp(x) for
all g ∈ Sn and x ∈ C[Sn]. But this means that p is given by right multiplication by an element
ϕ ∈ W . Indeed, for any g ∈ Sn we have p(g) = p(g · 1) = gp(1) with p(1) ∈ W and so, by
C-linearity, p(x) = xp(1) for all x ∈ C[Sn]. Thus , take ϕ = p(1) ∈W . Now since p2 = p we get
ϕ = ϕ2 ∈W ·W = 0, so that ϕ = 0. Since p is surjective, we must have W = 0.

If cλW = Ccλ, then

Vλ = C[Sn]cλ = C[Sn](cλW ) = (C[Sn]cλ)W ⊆W

because W is a representation of Sn. Therefore, Vλ is irreducible.

Lemma 2.1.10. If λ 6= µ, then Vλ 6' Vµ.

Proof. Without loss of generality, assume λ > µ. Then by the previous proof along with
lemma 2.1.7, we have that cλVλ = Ccλ but cλVµ = cλC[Sn]cµ = 0.

Now using lemmas 2.1.9 and 2.1.10 and the fact that partitions of n list all conjugacy classes
of Sn, which by Proposition 1.2.3, list all irreducible representations of Sn, we get theorem 2.1.2.

2.1.2 Induced representations for Sn

Let Uλ be the representation of Sn induced by the trivial representation of Pλ, so that

Uλ = IndSnPλC = C[Sn]⊗C[Pλ] C = C[Sn/Pλ],

where Sn acts on the last C-vector space through its action by left multiplication on Sn/Pλ.

Proposition 2.1.11. We have Uλ ' C[Sn]aλ as C[Sn]-modules.

Proof. If g, g′ ∈ Sn, we have gaλ = g′aλ if and only if gPλ = g′Pλ. Let (gi)i∈I be a system of
representatives of Sn/Pλ. Recall that the support of an element x =

∑
g∈Sn agg ∈ C[Sn] is the

set of g ∈ Sn such that ag 6= 0. Then the giaλ have support in pairwise disjoint subsets of Sn, so
they are linearly independent over C. So the (giaλ)i∈I form a C-basis of C[Sn]aλ. In particular,
we can define a C[Sn]-linear map u : Uλ = C[Sn/Pλ]→ C[Sn]aλ by sending gPλ to gaλ, for every
g ∈ Sn. This sends the basis (giPλ)i∈I of C[Sn/Pλ] to the basis (giaλ)i∈I of C[Sn]aλ that we
have just defined, and so it is an isomorphism.
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Lemma 2.1.12. Let A be a k-algebra over any field k and e be an idempotent in A. Then for any
left A-module M , we have HomA(Ae,M) ∼= eM (namely, x ∈ eM corresponds to fx : Ae → M
given by fx(a) = ax, a ∈ Ae).

Proof. Let us prove that this map is injective. Let x, y ∈ eM such that fx = fy. Then
0 = fx(e) − fy(e) = e(x − y). As x − y ∈ eM and e2 = e, we have e(x − y) = x − y, and so
x− y = 0. Now we prove that the map x 7→ fx is surjective. Let f ∈ HomA(Ae,M), let x = f(e).
Then x = f(e2) = ef(e) ∈ eM . Also, for every a ∈ Ae, f(a) = f(ae) = af(e) = ax. Hence
f = fx.

Proposition 2.1.13. We have Hom(Uλ, Vµ) = 0 for µ < λ, and moreover dimHom(Uλ, Vλ) = 1.
Thus,

Uλ = ⊕µ≥λKµλVµ

where Kµλ are non-negative integers and Kλλ = 1.

The integers Kµλ are called the Kostka numbers.

Proof. By proposition 2.1.11 and lemmas 2.1.8 and 2.1.12 (notice that aλ · aλ = |Pλ| · aλ, so aλ is
idempotent up to a factor |Pλ|),

Hom(Uλ, Vµ) = Hom(C[Sn]aλ,C[Sn]aµbµ) = aλC[Sn]aµbµ,

and the result follows from lemmas 2.1.6 and 2.1.7.

Now let us compute the character ψλ = χUλ of Uλ. For i = (i1, . . . , id) a d-tuple of non-
negative integers with

∑
αiα = n, denote by Ci ⊂ Sn the conjugacy class consisting of elements

made up of i1 1-cycles, i2 2-cycles,. . . , id d-cycles. For N ≥ k (where k is the number of parts
of λ), set λp = 0 for k + 1 ≤ p ≤ N and let x1, . . . , xN be independent variables. Consider the
power sum polynomials

Pj(x) = xj1 + · · ·+ xjN

and the power sum symmetric polynomial

P (i) =

k∏
j=1

Pj(x)ij = (x1 + · · ·+ xk)i1 · (x21 + · · ·+ x2k)i2 · ... · (xd1 + · · ·+ xdk)id .

If f(x) = f(x1, . . . , xN ) is a formal power series, and (l1, . . . , lN ) is an N -tuple of non-negative
integers, let

[f(x)](l1,...,lN ) = coefficient of xl11 . . . x
lN
N in f.

If g ∈ Sn, we write Zg = {h ∈ Sn | hg = gh} for the centralizer of g in Sn.

Proposition 2.1.14. Let g ∈ Ci ⊂ Sn. Then

|Zg| =
∏
j≥1

ij !j
ij

and

|Ci| =
n!∏

j≥1 ij !j
ij
.
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Proof. Let h ∈ Zg. Then h sends the support of each cycle of g to the support of any other cycle
of the same length, and it must also respect the cyclical order given by g on the support of these
cycles. This gives an isomorphism

Zg '
∏
j≥1

Sij n (Z/jZ)ij

where Sij acts on (Z/jZ)ij by permuting the entries of the ij-tuples. Hence

|Zg| =
∏
j≥1

ij !j
ij .

Now note that Ci = Sn/Zg. So we get

|Ci| =
n!∏

j≥1 ij !j
ij
.

Denote Xλ = xλ1
1 · ... · x

λk
k .

Theorem 2.1.15. We have

ψλ(Ci) = [P (i)]λ = coefficient of Xλ in P (i).

Proof. By theorem 1.3.1, we get

ψλ(Ci) =
1

|Pλ|
∑

h∈Sn|hgh−1∈Pλ

1 =
1

|Pλ|
|Zg||Pλ ∩ Ci|,

for a representative g ∈ Ci.
First, we have Pλ = Sλ ' Sλ1 × · · · × Sλk , so |Pλ| =

∏k
p=1 λp! =

∏N
p=1 λp!. Second, by

Proposition 2.1.14,
|Zg| =

∏
j≥1

ij !j
ij .

Finally, we have to calculate |Pλ ∩ Ci|. The conjugacy class Ci is the set of permutations in Sn
that have ij cycles of length j for every j ≥ 1. So its intersection with Pλ is a finite disjoint
union of the following conjugacy classes in Pλ ' Sλ1

× · · · × Sλk : the product for p = 1, . . . , k
of the conjugacy classes in Sλp of permutations with rpj cycles of length j for every j ≥ 1, for
every family (rpj)1≤p≤k,j≥1 such that, for every j ≥ 1, ij =

∑k
p=1 rpj and for every p ∈ {1, . . . , k},

λp =
∑
j≥1 jrpj . The cardinality of this product of conjugacy classes is

k∏
p=1

λp!∏
j≥1 rpj !j

rpj
,

by proposition 2.1.14. We can actually take p in {1, . . . , N} without changing the result, because
λp = 0 for p > k.

Put all this together, we get

ψλ(Ci) =
1∏N

p=1 λp!

∏
j≥1

ij !j
ij
∑
(rpj)

N∏
p=1

λp!∏
j≥1 rpj !j

rpj
,
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where the sum is over families (rpj) as above. This is equal to

∑
(rpj)

N∏
p=1

ij !∏
j≥1 rpj

.

On the other hand, for every j ≥ 1, we have

Pj(x)ij =

(
N∑
p=1

xjp

)ij
=

∑
ij=r1j+···+rNj

ij !∏N
p=1 rpj !

N∏
p=1

xjrpj !p .

So the coefficient of
∏N
p=1 x

λp
p in P i =

∏
j≥1 Pj(x)ij is indeed equal to∑

(rpj)

∏N
p=1

ij !∏
j≥1 rpj !

, where the sum is over families (rpj) as above.

For example, if n = 4, λ = (3, 1), and Ci is the conjugacy class of (123)(4), i.e., i1 = 1, i2 = 0,
i3 = 1, i4 = 0, then

ψ(3,1)(Ci) = [(x1 + x2)(x31 + x32)](3,1) = 1.

2.1.3 The Frobenius character formula
In this section we turn to Frobenius’ formula for the character χλ of Vλ.

Let ∆(x) =
∏

1≤i<j≤N (xi − xj). This is equal to the Vandermonde determinant:∣∣∣∣∣∣∣
1 xN . . . xN−1N
...

...
...

1 x1 . . . xN−11

∣∣∣∣∣∣∣ =
∑
σ∈SN

(sgn(σ))x
σ(1)−1
N · · ·xσ(N)−1

1 .

Given a partition λ = (λ1, . . . , λk) of n, set

l1 = λ1 + k − 1, l2 = λ2 + k − 2, . . . , lk = λk,

a strictly decreasing sequence of k non-negative integers, and denote l = (l1, . . . , lk). The character
of Vλ computed in g ∈ Ci is given by

Theorem 2.1.16 (Frobenius Formula). We have

χλ(Ci) =

∆(x) ·
∏
j

Pj(x)ij


(l1,...,lk)

.

We need some lemmas.

Lemma 2.1.17. Let λ = (λ1, . . . , λN ) ∈ ZN be such that λ1 ≥ · · · ≥ λN . Let σ ∈ SN , and let µ
be the N -tuple of integers (λ1 + σ(1)− 1, . . . , λN + σ(N)−N), rearranged to be in non-increasing
order. Then µ ≥ λ, and we have µ = λ if and only if σ = 1.

Proof. Let i0 ∈ {0, . . . , N} be an integer such that λi = µi for every 1 ≤ i ≤ i0. We claim that
σ(i) = i for every 1 ≤ i ≤ i0 and that, if i0 ≤ N − 1, then µi0+1 ≥ λi0+1. Applying this claim to
the biggest i0 with the above property, the lemma follows.

We proceed by induction on i0. If i0 = 0, the claim is trivial. Now let i0 ≥ 1 and suppose that
the result holds for i0 − 1. We have µi0 ≥ λi + σ(i)− i for i0 ≤ i ≤ N , so µi0 ≥ λi0 + σ(i0)− i0.
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As µi0 = λi0 , this gives σ(i0) ≤ i0. But σ(i0) ∈ {i0, . . . , N}, so σ(i0) = i0. Now, if i0 ≤ N − 1,
we have

µi0+1 = sup
i0+1≤i≤N

(λi + σ(i)− i) ≥ λi0+1 + σ(i0 + 1)− (i0 + 1) ≥ λi0+1,

because σ(i0 + 1) ∈ {i0 + 1, . . . , N} as σ|{1,...,i0} = id.

We state next a combinatorial lemma.

Lemma 2.1.18 (Cauchy). Let AN =
(

1
xi−yj

)
1≤i,j≤N . We have

det(AN ) =

∏
1≤i<j≤N (xi − xj)(yj − yi)∏

1≤i,j≤N (xi − yj)
.

Proof. See corollary 5.15.4 of [3].

Proof of Theorem 2.1.16. Let θλ be the class function defined on the right-hand side of the
equality in the theorem. We claim that this function has the property θλ =

∑
µ≥λ Lµλχµ, where

Lµλ are integers and Lλλ = 1. By definition, θλ(Ci) is the coefficient of
∏N
p=1 x

λp+N−p
p in

∆(x)
∏
j≥1 Pj(x)ij . As ∆(x) is equal to the Vandermonde determinant, we have

∆(x) =
∑
σ∈SN

sgn(σ)

N∏
p=1

xN−σ(p)p .

So

θλ(Ci) =
∑
σ∈SN

sgn(σ)

 N∏
p=1

xN−σ(p)p

∏
j≥1

Pj(x)ij


(λ1+N−1,λ2+N−2,...,λN )

=
∑
σ∈SN

sgn(σ)

∏
j≥1

Pj(x)ij


(λ1−1+σ(1),...,λN−N+σ(N))

.

Let σ ∈ SN , and denote µσ = (µσ,1, . . . , µσ,N ) the N -tuple of integers (λ1 +σ(1)− 1, . . . , λN +
σ(N)−N), rearranged to be in non-increasing order. Observe that the polynomial

∏
j≥1 Pj(x)ij

is symmetric in the variables xi, because all the Pj(x) are. So the coefficient of
∏N
p=1 x

λp−p+σ(p)
p

in
∏
j≥1 Pj(x)ij is equal to the coefficient of

∏N
p=1 x

µσ,p
p . Also, if one of the µσ,p is negative, then

this coefficient is zero, because there are no negative powers of the xi in
∏
j≥1 Pj(x)ij . Note that

saying that none of the µσ,p is negative is equivalent to say that µσ is a partition of n (because of
course

∑N
p=1 µσ,p =

∑N
p=1(λp + σ(p)− p) =

∑N
p=1 λp).

So we get that

θλ(Ci) =
∑
σ∈SN

sgn(σ)

∏
j≥1

Pj(x)ij


(µσ,1,...,µσ,N )

=
∑
σ∈SN

sgn(σ)ψµ(Ci).

Note also that, by lemma 2.1.17, for every σ ∈ SN , we have µσ ≥ λ, and that µσ = λ if and
only if σ = 1. Hence θλ = ψλ+

∑
µ>λ Jµλψµ, for some integers Jµλ ∈ Z. Using the decomposition

Uµ = Vµ ⊕ν>µ KνµVν of Proposition 2.1.13, we get that

θλ = χλ +
∑
µ>λ

Lµλχµ,
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for some integers Lµλ ∈ Z.
Therefore, to show that θλ = χλ, by lemma 1.2.5, it suffices to show that (θλ, θλ) = 1. We

have
(θλ, θλ) =

1

n!

∑
i

|Ci|θλ(Ci)
2.

Recall that, by Proposition 2.1.14,

|Ci| =
n!∏

j≥1 ij !j
ij
.

Note that, if we take an arbitrary family (ij)j≥1 of non-negative integers that are almost all zero,
then θλ(Ci) = 0 unless

∑
j≥1 jij =

∑N
p=1 λp for degree reasons. So we can take the sum over all

families (ij)j≥1 of non-negative integers that are almost all zero, and conclude that (θλ, θλ) is the
coefficient of xlyl in R(x, y) = ∆(x)∆(y)S(x, y), where

S(x, y) =
∑
i

∏
j

Pj(x)ijPj(y)ij

ij !jij
=
∑
i

∏
j

(
∑
m x

j
m)ij (

∑
n y

j
n)ij

ij !jij

=
∑
i

∏
j

1

ij !

(∑
m,n

xjmy
j
n

j

)ij
=
∏
j

exp

(∑
m,n

xjmy
j
n

j

)

= exp

(
−
∑
m,n

log(1− xmyn)

)
=
∏
m,n

(1− xmyn)−1.

Thus,

R(x, y) =

∏
m<n(xm − xn)(ym − yn)∏

m,n(1− xmyn)
.

So by lemma 2.1.18, R(x, y) is the determinant of the N ×N matrix
(

1
1−xmyn

)
, and we have

R(x, y) =
∑
σ∈SN

sgn(σ)
∏
m

1

1− xmyσ(m)
.

Recall that (θλ, θλ) is the coefficient of xlyl in this formal power series. If σ 6= 1, then there exists
j ∈ {1, . . . , N} such that q = σ(j) > j. In the formal power series expansion of

∏
m

1
1−xmyσ(m)

,
xj and yq must have the same exponent in each term. In particular, xlyl does not appear in this
expansion, because the exponent λj +N − j of xj in this product is greater than the exponent
λq +N − q of yq. So (θλ, θλ) is the coefficient of xlyl in

∏
m

1
1−xmym , i.e. 1, and we are done.

For example, if n = 4, λ = (3, 1), and Ci is the conjugacy class of (123)(4), i.e., i1 = 1, i2 = 0,
i3 = 1, i4 = 0, then

χ(3,1)(Ci) = [(x1 − x2)(x1 + x2)(x31 + x32)](3,1) = 0.

Let us use the Frobenius formula to compute the dimension of Vλ. The conjugacy class of the
identity corresponds to i = (n), so

dimVλ = χλ(C(n)) = [∆(x) · (x1 + · · ·+ xk)n](l1,...,lk).
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Recall that ∆(x) =
∑
σ∈Sk sgn(σ)x

σ(1)−1
k . . . x

σ(k)−1
1 and

(x1 + · · ·+ xk)n =
∑

r1+···+rk=n

n!

r1! . . . rk!
xr11 . . . xrkk ,

The coefficient of xl11 . . . x
lk
k in the product is then∑

sgn(σ)
n!

(l1 − σ(k) + 1)! . . . (lk − σ(1) + 1)!
,

the sum is taken over σ ∈ Sk such that lk−i+1 − σ(i) + 1 ≥ 0 for all 1 ≤ i ≤ k. Equivalently,

n!

l1! . . . lk!

∑
σ∈Sk

sgn(σ)

k∏
j=1

lj(lj − 1) . . . (lj − σ(k − j + 1) + 2)

=
n!

l1! . . . lk!

∣∣∣∣∣∣∣
1 lk lk(lk − 1) · · ·
...

...
...

...
1 l1 l1(l1 − 1) · · ·

∣∣∣∣∣∣∣ .
By column reduction this determinant reduces to the Vandermonde determinant, so

dimVλ =
n!

l1! . . . lk!

∏
i<j

(li − lj), (2.1)

with li = λi + k − i.
We can also express the dimensions of the Vλ in terms of hook lengths. The hook length h(i, j)

of a box (i, j) (i.e., the cell in the ith row and jth column) in a Young diagram is the number of
cells that are directly to the right or directly below the box, including the box once. For instance,
labeling each box by its hook length we have:

7 6 4 2 1
4 3 1
2 1

Theorem 2.1.19 (Hook length formula). We have

dimVλ =
n!∏

j≤λi h(i, j)
.

Proof. By (2.1) we have to show that

k∏
p=i+1

(li − lp)
λi∏
j=1

h(i, j) = li! for each i

Notice that the product on the left-hand side is a product of λi + k − i = li terms. Thus it is
enough to show that these factors are precisely 1, 2, . . . , li. We have

li − lk > li − lk−1 > · · · > li − lj+1

and
h(i, 1) > h(i, 2) > · · · > h(i, λi).
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Since λ has k parts and λ′1 is the length of the first column, λ′1 = k, and h(i, 1) = λi. So each
factor is ≤ li. Notice that h(i, j) = λi + r − i− j + 1 for any i, j. Thus it suffices to show that
h(i, j) 6= li − lp for any j, p. If r = λ′j then λr ≥ j and λr+1 < j, so we get

h(i, j)− li + lr = (λj + r − i− j + 1)− (λi + k − i) + (λr + k − r) = λr + 1− j > 0,

and

h(i, j)− li + lr+1 = (λj + r − i− j + 1)− (λi + k − i) + (λr+1 + k − r − 1) = λr+1 − j < 0.

So li − lr < h(i, j) < li − lr+1.

For the above partition 5 + 3 + 2 of 10, the dimension of the corresponding representation of
S10 is therefore dimV(5,3,2) = 10!

7·4·2·6·3·4·2 = 450.

2.2 Schur-Weyl duality
Given a finite-dimensional complex vector space V , consider the nth tensor power space V ⊗n.
We have two natural actions on this space. There is a natural right action of Sn by permuting
the factors, that is, for all σ ∈ Sn, we have

(v1 ⊗ v2 ⊗ · · · ⊗ vn)σ = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n).

Moreover, we have the natural left factorwise action of GL(V ) given by

g(v1 ⊗ v2 ⊗ · · · ⊗ vn) = g(v1)⊗ g(v2)⊗ · · · ⊗ g(vn)

for all g ∈ GL(V ). Notice that these two actions commute with each other.
Recall that a module is said to be simple if it contains exactly two submodules, namely 0

and itself, and it is said to be semisimple if it can be decomposed as a direct sum of simple
submodules. We say that an algebra is semisimple if all of its finite-dimensional modules are
semisimple. The following is an important theorem on the structure of semisimple algebras.

Theorem 2.2.1. Let A be a finite-dimensional k-algebra over an algebraically closed field k.
Then A has finitely many simple modules Ui up to isomorphism. These simple modules are
finite-dimensional. Moreover, A is semisimple if and only if as an algebra

A '
⊕
i

End(Ui),

where Ui runs over all simple A-modules.

Proof. See theorem 3.5.4 of [3].

Example 2.2.2. It is perhaps worth noting that theorem 2.2.1 does not hold if the field is not
algebraically closed. First, note that, as in the proof of proposition 3.5.8 in [3], if theorem 2.2.1
holds, A semisimple implies A ∼=

⊕
iMatdi(k) for some di. Thus, as an example, we take

H = R⊕ Ri⊕ Rj ⊕ Rk

where i2 = j2 = −1, ij = −ji = k, the quaternions. For all x ∈ H \ {0} there exists y ∈ H such
that xy = yx = 1, i.e., H is a division R-algebra. It follows then that H is a simple H-module
and hence H is a semisimple algebra (recall that A is a semisimple algebra if and only if A is a
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semisimple A-module). However, H cannot be isomorphic to Matd1(R)× · · · ×Matds(R) for any
d1, . . . , ds since there must be a di ≥ 2 (as H is not commutative) and then(

0 1
0 0

)2

=

(
0 0
0 0

)
which contradicts H being a division algebra.

The following is theorem 5.18.1 in [3].

Theorem 2.2.3 (Double Centralizer Theorem). Let V be a finite-dimensional k-vector space
over an algebraically closed field k, A be a semisimple subalgebra of End(V ), and B = EndA(V )
(i.e., the algebra of all A-module endomorphisms of V ). Then:

i) B is semisimple.

ii) A = EndB(V ) (i.e., the centralizer of the centralizer of A is A).

iii) As a module of A⊗B, we have the decomposition

V '
⊕
i

Ui ⊗Wi

where Ui are all the simple modules of A and Wi := HomA(Ui, V ) are all the simple modules
of B.

Proof. Since A is semisimple, by theorem 2.2.1 we have A '
⊕

i End(Ui). By Schur’s lemma we
get the A-module decomposition

V '
⊕
i

Ui ⊗Wi (2.2)

given (from right to left) by u⊗f = f(u), where Wi := HomA(Ui, V ) and Ui⊗Wi is an A-module
by the action a(u⊗ f) = au⊗ f for any a ∈ A. Moreover, we get a module isomorphism

B = EndA(V ) ' HomA(
⊕
i

Ui ⊗Wi, V ) '
⊕
i

HomA(Ui ⊗Wi, V )

ϕ
'
⊕
i

Hom(Wi,HomA(Ui, V )) =
⊕
i

End(Wi).

where ϕ (from right to left) is given by f 7→ (u ⊗ w 7→ f(w)u). We claim that Wi are simple
B-modules. Let U be a simple A-module and fix a nonzero u ∈ U . Since U is simple and Au is
a nonzero submodule of U , any map f ∈ HomA(U, V ) is uniquely determined by its evaluation
in u. Let f, f ′ ∈ HomA(U, V ) with f(u) = v and f ′(u) = v′ with v, v′ ∈ V . Since Av is an
invariant subspace of V , we can write V = (Av)⊕W for a subspace W of V . Define θ : V → V
by θ(av) = av′ for av ∈ Av and θ(w) = w for w ∈ W . Notice that θ(v) = θ(1 · v) = 1 · v′ = v′.
Hence θ ∈ B and it is such that θ ◦ f = f ′. It follows that B acts transitively on the nonzero
maps in HomA(U, V ), so that our claim follows.

By theorem 2.2.1, we get that B is semisimple, and so we have i). Now we can repeat the same
argument with (2.2) as a decomposition of V into simple B-modules Wi and Ui = HomB(Wi, V ).
Hence ii) and iii) follow.

Remark 2.2.4. To complete the previous proof of the Double Centralizer Theorem, one should
prove that the module isomorphism B '

⊕
i End(Wi) is in fact an isomorphism of rings and that

Wi are all the simple modules of B.
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We will now apply the Double Centralizer Theorem to the following situation: V is the nth
tensor product of the complex vector space considered above and A is the image of C[Sn] in
End(V ⊗n). Let us now characterize the algebra B. Recall that we may identify gl(V ) with
End(V ) endowed with the Lie bracket given by [a, b] = ab− ba for all a, b ∈ End(V ). The action
of b ∈ gl(V ) on v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n is defined by

b(v1 ⊗ v2 ⊗ · · · ⊗ vn) =

n∑
i=1

v1 ⊗ · · · ⊗ bvi ⊗ · · · ⊗ vn

for any v1, v2, . . . , vn ∈ V .

Lemma 2.2.5. The image of U(gl(V )) in End(V ⊗n) is B = EndSn(V ⊗n).

Proof. We have that the image of b in End(V ⊗n) is

∆n(b) := b⊗ id⊗ · · · ⊗ id + id⊗ b⊗ · · · ⊗ id + · · ·+ id⊗ · · · ⊗ id⊗ b.

Clearly, the image of gl(V ) and, thus the image of U(gl(V )), is contained in B.
By the fundamental theorem on symmetric functions, there exists a polynomial p with rational

coefficients in the power sum symmetric polynomials Pj(T ) = tj1 + tj2 + · · · + tjn such that
p(P1(t), P2(t), . . . , Pn(t)) = t1t2 . . . tn. Then

b⊗ b⊗ · · · ⊗ b = p(∆n(b),∆n(b2), . . . ,∆n(bn)).

Thus, elements of the form b⊗n for b ∈ End(V ) are generated by the images of elements in
U(gl(V )). And since these elements span

SymnEnd(V ) ' (End(V )⊗n)Sn ' (End(V ⊗n))Sn = EndSn(V ⊗n),

where the first and the last isomorphism follow by definition, while the second one is given by the
map End(V )⊗n → End(V ⊗n) defined as f1 ⊗ · · · ⊗ fn 7→ (v1 ⊗ · · · ⊗ vn 7→ f1(v1)⊗ · · · ⊗ fn(vn)).
Then the image of U(gl(V )) in End(V ⊗n) is B.

Proposition 2.2.6. The images of C[Sn] and U(gl(V )) in End(V ⊗n) are centralizers of each
other.

Proof. Since C[Sn] is semisimple and the fact that homomorphic images of semisimple rings are
semisimple, A is semisimple. By the Double Centralizer Theorem 2.2.3, we are done.

Lemma 2.2.7. The span of the image of GL(V ) in End(V ⊗n) is B.

Proof. Since GL(V ) commutes with Sn, the image of GL(V ), and thus its span, is contained in
B = EndA(V ⊗n).

Conversely, let b ∈ End(V ) and B′ be the span of the image of the elements g⊗n for g ∈ GL(V ).
For all but finitely many t ∈ C, tI + b is invertible. Thus the polynomial (tI + b)⊗n is in B′ for
all but finitely many t. But this implies that this holds for all t. In particular, for t = 0, we have
that b⊗n ∈ B′. As in the previous lemma, these elements span B = EndA(V ⊗n).

Therefore, by the Double Centralizer Theorem 2.2.3, we have the following theorem.

Theorem 2.2.8 (Schur-Weyl duality for GL(V )). We have a decomposition

V ⊗n '
⊕
|λ|=n

Vλ ⊗ SλV,

as a representation of Sn ⊗GL(V ) where Vλ runs through all the irreducible representations of
Sn and each SλV := HomSn(Vλ, V

⊗n) is an irreducible representation of GL(V ) or is zero.
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Let us calculate the characters of the representations SλV . For a partition λ = (λ1, . . . , λk) of
n, and N ≥ k, set

Dλ(x) =
∑
σ∈SN

sgn(σ)

N∏
i=1

xλi+N−iσ(i) = |xλi+N−ij |.

for independent variables x1, . . . , xN and x = (x1, . . . , xN ). These are alternating polynomials
by properties of the determinant and therefore they must be divisible by the Vandermonde
determinant ∆(x) = |xN−ij | =

∏
i<j(xi − xj). The Schur polynomials are defined as the ratio

Sλ(x) :=
Dλ(x)

∆(x)
=
|xλi+N−ij |
|xN−ij |

.

These are symmetric functions because the numerator and denominator are both alternating, and
a polynomial since all alternating polynomials are divisible by the Vandermonde determinant.

Proposition 2.2.9. We have∏
j

(xj1 + · · ·+ xjN )ij =
∑
λ:k≤N

χλ(Ci)Sλ(x).

Proof. Write ∆(x)
∏
j(x

j
1 + · · ·+ xjN )ij =

∑
k1,...,kN≥0 Ck1,...,kNx

k1
1 . . . xkNN . Since ∆(x)

∏
j(x

j
1 +

· · ·+ xjN )ij is alternating, the coefficients Ck1,...,kN are alternating in {k1, . . . , kN}. In particular,
Ck1,...,kN = 0 when km = kn for some m 6= n. If that is not the case, we can write (kj)j =
σ(λj +N − j)j for a unique partition λ of n and a unique σ ∈ SN . This gives

∆(x)
∏
j

(xj1 + · · ·+ xjN )ij =
∑
λ

Cλ1+N−1,...,λN

∑
σ∈SN

sgn(σ)

N∏
j=1

x
λj+N−j
σ(j) .

Now the identity follows from the Frobenius character formula.

Let us compute certain special values of Schur polynomials. Namely, using the Vandermonde
determinant, it follows that

Sλ(1, t, . . . , tN−1) =
∏

1≤i<j≤N

tλi+M−i − tλj+N−j

tN−i − tN−j
.

As t→ 1, this gives

Sλ(1, 1, . . . , 1) =
∏

1≤i<j≤N

λi − λj + j − i
j − i

.

Let dimV = N , g ∈ GL(V ), and x1, . . . , xN be the eigenvalues of g on V . To find the character
χSλV (g), we must compute tr V ⊗n(gσ), where σ ∈ Sn. Suppose σ ∈ Ci. Choosing a basis (ek)Nk=1

in V , we write gek =
∑
j gjkej . Then,

(gσ)(ek1 ⊗ · · · ⊗ ekn) =

N∑
j1,...,jn=1

gj1kσ−1(1)
. . . gjnkσ−1(n)

ej1 ⊗ · · · ⊗ ejn .

It follows that

tr V ⊗n(gσ) =

N∑
j1,...,jn=1

gjσ(1)j1 . . . gjσ(n)jn .
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Since
tr (gk) =

∑
j1,...,jk

gj1j2gj2j3 . . . gjk−1jkgjkj1 ,

this can be written as
tr V ⊗n(gσ) =

∏
j

tr V (gj)ij =
∏
j

Pj(x)ij .

On the other hand, by the Schur-Weyl duality

tr V ⊗n(gσ) =
∑
λ

χλ(Ci)tr SλV (g).

Comparing this to proposition 2.2.9 and using linear independence of columns of the character
table of Sn, we obtain

Theorem 2.2.10 (Weyl character formula for Sn). Let dimV = N , let λ = (λ1, . . . , λk) be a
partition of n and g ∈ GL(V ) have eigenvalues x1, . . . , xN . Then the representation SλV = 0 if
and only if N < k. Moreover, if N ≥ k, the character of SλV is the Schur polynomial Sλ(x), i.e.,

tr SλV (g) = Sλ(x1, . . . , xN ),

where on the right-hand side we complete λ to an N -dimensional vector by defining (λ1, . . . , λN ) =
(λ1, . . . , λk, 0, . . . , 0). In particular, the dimension of SλV is given by the formula

dimSλV =
∏

1≤i<j≤N

λi − λj + j − i
j − i

.

This shows that irreducible representations of GL(V ) which occur in V ⊗n for some n are
labeled by Young diagrams with any number of squares but at most N = dimV rows.

We can now define a covariant functor Sλ : FinVect → FinVect in the following way: if
f : V → W is a linear map, we define Sλf : SλV → SλW by (Sλf)(ψ) = f⊗n ◦ ψ. It can be
verified that

Sλ(f ◦ g) = (Sλf) ◦ (Sλg) and SλidV = idSλ .

We call the covariant functor Sλ the Schur functor of λ. Notice that all representations W of Sn
are self-dual since

χW∗(g) = χW (g) = χW (g−1) = χW (g)

for all g ∈ Sn because g and g−1 have the same cycle type and, thus, are in the same conjugacy
class, so that W ' W ∗. Thus we get the following more constructive description of the Schur
functor.

SλV = HomSn(Vλ, V
⊗n) ' (Vλ)∗ ⊗C[Sn] V

⊗n ' Vλ ⊗C[Sn] V
⊗n

= C[Sn]cλ ⊗C[Sn] V
⊗n = C[Sn]⊗C[Sn] V

⊗ncλ ' V ⊗ncλ.

So Schur-Weyl duality tells us that

V ⊗n '
⊕
|λ|=n

(SλV )⊕fλ

as a representation of GL(V ) where fλ = dimVλ.





Chapter 3

Algebraic Representations of GLnC

This chapter describes all irreducible algebraic representations of GLnC. The aim of section 3.1
is to find a procedure to study the structure of a general finite-dimensional representation of a
semisimple Lie algebra and to obtain more information about the structure of the Lie algebra
itself. In section 3.2 we will apply this general paradigm to the Lie algebras slnC. Finally, in
section 3.3 we will describe all the polynomial representations of GLnC.

In the first section, we will follow a “third” way mixing the root systems construction developed
in [8] and the algorithm illustrated in [5]. The last two sections reproduce the main concepts in
lecture 15 of [5].

3.1 Analyzing Semisimple Lie Algebras in General

A subspace h of a Lie algebra g is called an ideal if [x, y] ∈ h for all x ∈ h, y ∈ g. Clearly 0 and g
itself are ideals of g. Another example is the center Z(g) = {x ∈ g | [x, y] = 0 for all y ∈ g}. We
say that g is abelian if and only if Z(g) = g. Notice that g is abelian if all brackets are zero. A Lie
algebra g is said to be simple if dim g > 1 and it contains no ideals except itself and 0. Further,
we say that g is solvable if there exists a sequence of Lie subalgebras g = g0 ⊃ g1 ⊃ · · · ⊃ gk = 0,
such that gi+1 is an ideal in gi and gi/gi+1 is abelian.

Next we assemble a few simple observations about solvability.

Remark 3.1.1. Let g be a Lie algebra.

i) If g is solvable, then so are all subalgebras and homomorphic images of g.

ii) If h is a solvable ideal of g such that g/h is solvable, then g itself is solvable.

iii) If h, l are solvable ideals of g, then so is h + l.

It follows that the sum of all solvable ideals in g is a maximal solvable ideal, called the radical
of g and denoted Rad(g). g is called semisimple if Rad(g) = 0. Notice that the quotient g/Rad(g)
is semisimple. Now we state without proof Lie’s theorem.

Theorem 3.1.2 (Lie’s Theorem). Let V be a nonzero finite-dimensional complex vector space
and g ⊂ gl(V ) be a complex solvable Lie algebra. Then there exists a nonzero vector v ∈ V that is
an eigenvector of x for all x ∈ g.

Proof. See theorem 9.11 in [5].
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We define the Killing form as the bilinear map κ : g×g→ C such that κ(x, y) = tr (adx◦ad y)
for x, y ∈ g. Notice that κ is also associative, in the sense that κ([x, y], z) = κ(x, [y, z]). One can
prove that a Lie algebra g is semisimple if and only if its Killing form is non-degenerate.

Throughout the remaining part of this section g denotes a nonzero complex semisimple Lie
algebra. Recall that x ∈ g is said to be semisimple if adx is diagonalizable (see example 1.5.1). Fix
a maximal toral subalgebra h of g, i.e., a maximal subalgebra consisting of semisimple elements.
In general, there is no reason for such a subalgebra to exist. However, in the case of g being a
complex semisimple Lie algebra it always exists. One can prove that h is abelian, so that adgh is
a commuting family of semisimple endomorphisms of g. It follows that g is the direct sum of the
subspaces gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}, with α ∈ h∗. One can see that g0 is simply
h. The set of all nonzero α ∈ h∗ for which gα 6= 0 is denoted by R; the elements of R are called
the roots of g relative to h and are in finite number. Thus we have a root space decomposition
(or Cartan decomposition):

g = h⊕ (
⊕
α∈R

gα).

Since the restriction of κ to h is non-degenerate, we can identify h with h∗ in the following way:
to φ ∈ h∗ corresponds the unique element tφ ∈ h satisfying φ(h) = κ(tφ, h) for all h ∈ h. In
particular, R corresponds to the subset {tα | α ∈ R} of h. This allows us to extend the Killing
form to h∗: if α, β ∈ h∗, set κ(α, β) = κ(tα, tβ).

We can now state propositions 8.3 and 8.4 in [8].

Proposition 3.1.3 (Orthogonality properties). We have:

i) R generates a lattice ΛR ⊂ h∗ of rank equal to the dimension of h.

ii) If α ∈ R, the only scalar multiples of α which are roots are α and −α.

iii) Let α ∈ R, x ∈ gα, y ∈ g−α. Then [x, y] = κ(x, y)tα.

iv) If α ∈ R, then [gα, g−α] is one dimensional, with basis tα.

v) α(tα) = κ(tα, tα) 6= 0, for α ∈ R.

vi) If α ∈ R and xα is any nonzero element of gα, then there exists yα ∈ g−α such that
xα, yα, hα = [xα, yα] span a three dimensional simple subalgebra sα of g isomorphic to
sl2(C) via xα 7→

(
0 1
0 0

)
, yα 7→

(
0 0
1 0

)
, hα 7→

(
1 0
0 −1

)
.

vii) hα = 2tα
κ(tα,tα)

and hα = −h−α.

Proposition 3.1.4 (Integrality properties). We have:

i) α ∈ R implies dim gα = 1. In particular, sα = gα ⊕ g−α ⊕ hα (where hα = [gα, g−α]), and
for any given nonzero xα ∈ gα, there exists a unique yα ∈ g−α satisfying [xα, yα] = hα.

ii) If α, β ∈ R, then β(hα) ∈ Z, and β − β(hα)α ∈ R. (The numbers β(hα) are called Cartan
integers.)

iii) If α, β, α+ β ∈ R, then [gα, gβ ] = gα+β.

iv) Let α, β ∈ R, β 6= ±α. Let r, q be (respectively) the largest integers for which β− rα, β+ qα
are roots. Then all β + iα ∈ R (−r ≤ i ≤ q), and β(hα) = r − q.

v) g is generated (as Lie algebra) by the root spaces gα.
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In particular, we can pick a basis xα ∈ gα, yα ∈ g−α and hα ∈ hα satisfying the standard
commutation relations for sl2C; xα and yα are not determined by this, but hα is, being uniquely
characterized by the requirements that hα ∈ hα and α(hα) = 2.

Recall that the subalgebra h acts diagonally on any representation of g. So, if we consider the
eigenspaces of the action of h on V , we get the following decomposition:

V =
⊕
α∈h∗

Vα

where h(v) = α(h) · v for all h ∈ h and v ∈ Vα. Each index α ∈ h∗ is called weight and the
dimension of Vα is said the multiplicity of the relative weight. Let us analyse the action of every
gβ : for any root β, h ∈ h, x ∈ gβ and v ∈ Vα

h(x(v)) = x(h(v)) + [h, x](v) = x(α(h)(v)) + β(h)x(v) = (α(h) + β(h))x(v),

so that gβ : Vα → Vα+β .
Finally, define the weight lattice ΛW = {β ∈ h∗ | β(hα) ∈ Z for all α ∈ R}. By ii) of

proposition 3.1.4, we have R ⊂ ΛW , and thus ΛR ⊂ ΛW .
Fix a root α ∈ h∗. Consider the hyperplane

Ωα = {β ∈ h∗ | β(hα) = 0}

and the subspace C · α generated by α in h∗. Define Wα : h∗ → h∗ as

Wα(β) = β − 2β(hα)

α(hα)
α = β − β(hα)α.

Let W be the group generated by these operators, called the Weyl group of the Lie algebra g.
Now we want to define a notion of direction in h∗. We say that a subset B of R is called a base

if B is a basis of h∗ and each root β can be written as β =
∑
α∈B kαα with integral coefficients

kα all non-negative or all non-positive. The roots in B are called simple. We define the height
of a root (relative to B) as htβ =

∑
α∈B kα. If all kα ≥ 0 (resp. all kα ≤ 0), we call β positive

(resp. negative). Denote R+ (resp. R−) the set of positive (resp. negative) roots relative to B.
Clearly, we have R = R+ ∪R− and R− = −R+.

In fact, one can prove that a base of R always exists (for details see theorem 10.1 of [8]). Now
we are in the position to state theorem 10.3 of [8].

Proposition 3.1.5. Let B be a base of R.

i) If B′ is another base of R, then W (B′) = B for some W ∈W (so W acts transitively on
bases).

ii) If α is a root, there exists W ∈W such that W (α) ∈ B.

iii) W is generated by the Wα (α ∈ B).

iv) If W (B) = B, W ∈W, then W = 1 (so W acts simply transitively on bases).

Now let V be any finite-dimensional representation of g. A nonzero vector v ∈ Vα killed by
all gβ for all β ∈ R+ is called highest weight vector of weight α in V . We have

Proposition 3.1.6. For any semisimple complex Lie algebra g,

i) every finite-dimensional representation V of g possesses a highest weight vector;
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ii) the subspace W ⊂ V generated by the images of a highest weight vector v under successive
applications of root spaces gβ for β ∈ R− is an irreducible subrepresentation;

iii) a finite-dimensional irreducible representation V possesses a unique highest weight vector
up to scalars.

Proof. See proposition 14.13 in [5].

The weight α of the highest weight vector of an irreducible representation is called the highest
weight of that representation. Define the Weyl chamber W associated to B as the set of roots
such that α(hγ) ≥ 0 for every γ ∈ R+. Now we may state the following fundamental existence
and uniqueness theorem.

Theorem 3.1.7. For any α in the intersection of the Weyl chamber W associated to B with the
weight lattice ΛW , there exists a unique irreducible, finite-dimensional representation Γα of g with
highest weight α; this gives a bijection between W ∩ ΛW and the set of irreducible representations
of g. The weights of Γα will consist of those elements of the weight lattice congruent to α modulo
the root lattice ΛR and lying in the convex hull of the set of points in h∗ conjugate to α under the
Weyl group.

Uniqueness-proof. See theorem 14.18 in [5] for the proof of uniqueness. We will see the explicit
construction of the existence part for the cases we will be interested in.

Finally, we define the fundamental weights as the elements ω1, . . . , ωn ∈ h∗ such that ωi(hαj ) =
δi,j , where α1, . . . , αn are the simple roots (in some base). Every highest weight vector can be
expressed uniquely as a non-negative integral linear combination of fundamental weights. We will
write Γa1,...,an for the irreducible representation with highest weight a1ω1 + · · ·+ anωn.

3.2 Representations of slnC
In this section, we will deduce the existence part of theorem 3.1.7 for slnC. Define the special linear
algebra slnC as the set of linear transformations of End(V ) with trace zero. Since tr (xy) = tr (yx)
and tr (x+ y) = tr (x) + tr (y), slnC is a Lie subalgebra of gl(V ).

First, we have to find a maximal toral subalgebra h of slnC. Writing hi = Eii where Eij is
the endomorphism of Cn sending ej to ei and sending all the other ek to zero, we consider the
subalgebra of diagonal matrices

h = {a1h1 + a2h2 + · · ·+ anhn | a1 + a2 + · · ·+ an = 0}.

Clearly, h is toral. Let us prove that h is also maximal. Let h′ ⊃ h be another toral subalgebra.
Then for all h′ ∈ h′ we get ad(h)(h′) = 0. We have

0 = ad(a1h1 + a2h2 + · · ·+ anhn)(h′) = −
∑
i,j

(ai − aj)h′i,j(Eij)

if and only if h′ ∈ h. Hence h is a maximal toral subalgebra.
The dual space can be written as

h∗ = C{l1, l2, . . . , ln}/(l1 + l2 + · · ·+ ln = 0),
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where li(hj) = δi,j . Let us see how the diagonal matrices act on slnC: we have

ad(a1h1 + a2h2 + · · ·+ anhn)(Eij) = ai[hi, Eij ] + aj [hj , Eij ]

= ai(hi(Eij)) + aj(Eij(−hj))
= (ai − aj)(Eij).

Thus Eij is an eigenvector with eigenvalue li− lj , and the roots of slnC are precisely these pairwise
differences of the li. Thus the root lattice of slnC can be described as

ΛR =
{∑

aili | ai ∈ Z,
∑

ai = 0
}
/
(∑

li = 0
)
.

Our next goal is to find the subalgebras sα. The root space gli−lj is generated by Eij , so sli−lj
is generated by Eij , Eji and [Eij , Eji] = hi − hj . The action of hi − hj on Eij has eigenvalue
(li − lj)(hi − hj) = 2, by the same computation above, so that hli−lj = hi − hj .

A linear functional β =
∑
aili ∈ h∗ has integral values on all hα if and only if all the ai are

congruent to one another modulo Z. Since
∑
li = 0 in h∗, we have

ΛW = Z {l1, . . . , ln} /
(∑

li = 0
)
.

The Weyl group is generated by the reflections in the hyperplane perpendicular to the root li − lj .
In particular, Wli−lj will exchange li and lj in h∗ and leave the other lk alone. The Weyl group
W is then the group Sn, acting on the generators li of h∗.

Finally, we choose a base of R and describe the corresponding Weyl chambers. We have
R = {li − lj | i 6= j}. The vectors li − li+1 (1 ≤ i ≤ n − 1) are independent, and li − lj =
(li− li+1)+(li+1− li+2)+ · · ·+(lj−1− lj) if i < j, which shows that B = {li− li+1 | 1 ≤ i ≤ n−1}
form a base of R. The corresponding ordering of the roots will then be R+ = {li − lj | i < j} and
R− = {li − lj | j < i}. Thus the simple negative roots for this ordering are the roots li+1 − li.
The Weyl chamber associated to this ordering is then W = {

∑
aili | a1 ≥ a2 ≥ · · · ≥ an}.

Clearly, the fundamental weights (relative to B) are ωi = l1 + l2 + · · ·+ li for i = 1, . . . , n− 1.
Notice that the intersection of the Weyl chamber W with the weight lattice ΛW is in fact a
free semigroup Nn−1 generated by the fundamental weights ωi = l1 + · · · + li. Thus, for an
arbitrary (n−1)-tuple of natural numbers (a1, . . . , an−1) ∈ Nn−1 we will denote by Γa1,...,an−1

the
irreducible representation of slnC with highest weight a1l1+a2(l1+l2)+· · ·+an−1(l1+· · ·+ln−1) =
(a1 + · · ·+ an−1)l1 + (a2 + · · ·+ an−1)l2 + · · ·+ an−1ln−1.

Let 1 ≤ k ≤ n and let V be the standard representation of slnC. We want to prove that the
exterior power

∧k
V contains a highest weight vector of weight l1 + · · · + lk. Recall that the

standard basis vectors ei of Cn are eigenvectors for the action of h, with eigenvalues li. Consider
the vector e1 ∧ e2 ∧ · · · ∧ ek, and let α be a positive root. Hence α = li − lj for i < j, so it takes
ei to ej for j ≤ i. Thus, the action of gα must either take some ei in e1 ∧ e2 ∧ · · · ∧ ek to 0, or to
some ej already in the term, and so must be zero. Thus, e1 ∧ e2 ∧ · · · ∧ ek is a highest weight
vector of weight ωk = l1 + · · ·+ lk in

∧k
V .

Now, since every vector in W∩ΛW is a non-negative integral linear combination of the vectors
ωk = l1 + · · ·+ lk and

∧k
V has highest weight vectors with weights ωk = l1 + · · ·+ lk, it follows

that the tensor product

Syma1V ⊗ Syma2(
∧2

V )⊗ · · · ⊗ Syman−1(
∧n−1

V )

contains a highest weight vector with weight a1l1 + a2(l1 + l2) + · · ·+ an−1(l1 + · · ·+ ln−1), and
hence a copy of the irreducible representation Γa1,...,an−1

with this highest weight.
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3.3 Representations of GLnC
Let us introduce some notations. A finite-dimensional representation W of GL(V ) is algebraic if,
given the corresponding map ρ : GL(V )→ GL(W ), the coordinates of ρ(A) are rational functions
of the coordinates of A ∈ GL(V ). Any such rational function is, in fact, in C[aij ][1/ detA]. It
will turn out that the Schur functors Sλ, seen in chapter 2, only give us representations which are
polynomial, that is, the coordinates of ρ(A) are polynomials of the coordinates of A ∈ GL(V ).
Thus, we could never hope to get the algebraic representation det−1 : GL(V ) → GL(C) where
det−1(A) = 1/ detA. But this is essentially it.

Let V = Cn be the standard representation for GLnC and let detk denote the one-dimensional
representation of GLnC given by the k-th power of the determinant for k ∈ Z. Notice that

det1 ∼=
∧n

V, detk ∼= (det1)⊗k if k ≥ 0, detk ∼= (det−k)∗ if k ≤ 0.

Thus, if k ≥ 0, detk = (
∧n

V )⊗k and det−k is the dual (detk)∗. Let V be the standard
representation of GLnC. For any partition λ = (λ1, . . . , λn) of n, consider the representation
ψλ := SλV of GLnC. We saw in chapter 2 that SλV is an irreducible representation of GLnC.
We claim the following

Proposition 3.3.1.
ψλ1+k,...,λn+k = ψλ1,...,λn ⊗ detk.

Note that in lecture 15 of [5] the proof of the previous proposition is omitted. Let us develop
it in details.

First we need a slightly technical result. Let V be an m-dimensional complex vector space and
let n be a positive integer. Take a partition λ of n such that its Young diagram is partitioned into
two non-empty parts, say of sizes i and j = n− i, by a vertical wall. For example, if λ = (5, 3, 2, 1)
is a partition of 11 we could have

with i = 7 and j = 4. Let tλ be a tableau whose entries in the left-hand part are {1, 2, . . . , i}. Let
µ be the corresponding partition of i, so that tµ = tλ|µ. Let ν be the partition of j corresponding
to the right-hand part, with tableau tν . This is a map

tν : {Young diagram of ν} → {1′, . . . , j′} where k′ = k + i for 1 ≤ k ≤ j.

Lemma 3.3.2. There exists a surjective C[GL(V )]-map

(V ⊗icµ)⊗ (V ⊗jcν)→ V ⊗ncλ. (3.1)

Proof. Let Si = Aut{1, . . . , i} and Sj = Aut{1′, . . . , j′}. Since Si and Sj are embedded in Sn
and disjoint, we regard C[Si] and C[Sj ] as subsets of C[Sn] which commute. Also

Qλ = Qµ ×Qν and H = Pµ × Pν 6 Pλ

and H permutes each side of the wall. Take a transversal Pλ =
⋃
i giH. Then

cλ = aλbλ =
∑
i

giaµaνbµbν =
∑
i

gicµcν .
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So,
cλcµcλ =

∑
i

gic
2
µc

2
ν = cλk

where k = i!j!
dimVµ·dimVν

by lemma 2.1.8. We thus have a C[GL(V )]-map V ⊗i ⊗ V ⊗j → V ⊗ncλ
given by right multiplication by cλ. The restriction of this map to the left-hand side of (3.1) is
surjective, since

(x⊗ y)cλ =
1

k
(xcµ ⊗ ycν) · cλ.

Lemma 3.3.3. If λm+1 = 0 and λm > 0 then

V ⊗ncλ ∼= V ⊗n−mcλ1−1,...,λm−1 ⊗
∧m

V.

Proof. Put a wall in in the Young diagram of λ between the first column and the rest. Let tλ
be a tableau whose first column consists of {1, . . . ,m}. By lemma 3.3.2 there exists a surjection
V ⊗n−mcν ⊗

∧m
V → V ⊗ncλ, where ν = (λ1 − 1, . . . , λm − 1). Both V ⊗n−mcν and V ⊗ncλ are

nonzero, hence they are irreducible C[GL(V )]-modules. Since
∧m

V is one-dimensional, both
sides are irreducible and, by Schur’s lemma, the map is an isomorphism.

Now iterating lemma 3.3.3 we obtain, for the standard representation V of GLnC,

V ⊗ncλ1+k,...,λn+k = V ⊗ncλ1,...,λn ⊗
(∧n

V
)⊗k

.

Thus we have proved proposition 3.3.1. This allows us to define ψλ for any index λ with
λ1 ≥ λ2 ≥ · · · ≥ λn, even if some of the λi are negative: we simply take

ψλ1,...,λn = ψλ1+k,...,λn+k ⊗ det−k

for any sufficiently large k. By the non-triviality of detk for k 6= 0, ψλ is isomorphic to ψλ′
if and only if λ = λ′. Thus, to complete our description of the irreducible finite-dimensional
representations of GLnC, we just have to check that these are all the irreducible representations
of GLnC, that is we want to prove the following theorem.

Theorem 3.3.4. Every irreducible algebraic complex representation of GLnC is isomorphic to
ψλ for a unique λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn.

Notice that glnC = slnC × C, where C is identified with the one-dimensional ideal of glnC
formed by the scalar matrices aI with a ∈ C. In particular, C is the radical of glnC and slnC is
the semisimple part.

Remark 3.3.5. In the following we will use that SLnC is simply connected. For a proof of this
fact see section 23.1 of [5]. From results on Lie group theory, it follows that there is a one-to-one
correspondence between irreducible representations of SLnC and irreducible representations of
slnC (for details see lecture 8 in [5]).

We need the following lemma.

Lemma 3.3.6. Every irreducible representation of glnC is a tensor product of an irreducible
representation of slnC and a one-dimensional representation.
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Proof. Let V be an irreducible representation of glnC. Since Rad(glnC) = C is solvable and
Rad(glnC) ⊂ gl(V ), Lie’s theorem 3.1.2 implies that there exists a nonzero vector v ∈ V
that is an eigenvector for all x ∈ Rad(glnC). Hence there exists λ ∈ (Rad(glnC))∗ such that
W = {v ∈ V : x(v) = λ(x) · v for all x ∈ Rad(glnC)} is non-empty. So, since every element of
glnC can be written in the form x + y with x ∈ Rad(glnC) and y ∈ slnC, we get x · y · w =
y · x · w + [x, y] · w)λ(x)(y · w) for all w ∈W . It follows that y · w ∈W , so that W is a nonzero
subrepresentation of V . Hence W = V . Extend λ to a linear functional on glnC and let L be the
one-dimensional representation of glnC determined by λ, that is, x · z = λ(x) · z for all x ∈ glnC
and z ∈ L. Then V ⊗ L∗ is a representation that is trivial on Rad(glnC), and so it comes from
an irreducible representation of slnC.

For any partition λ of n, denote Wλ = Sλ(Cn) the representation of slnC determined by the
partition λ. We can extend it to slnC × C by acting trivially on the second factor. For any
w ∈ C∗, denote L(w) the one-dimensional representation of slnC× C which is zero on the first
factor and acts by multiplication by w on the second. By the previous lemma, every irreducible
representation of glnC = slnC×C is isomorphic to a tensor product Wλ⊗L(w). By remark 3.3.5,
going back to the corresponding groups this remains true for the simply connected group SLnC×C.
Consider now the exact sequence

1→ Ker (ρ) ↪→ SLnC× C ρ→ GLnC→ 1,

given by ρ(g × z) = ez · g. The kernel of ρ is generated by es · I × (−s), where s = 2πi/n since
es · I ∈ SLnC. Notice that every irreducible representation of GLnC can be lifted to an irreducible
representation on SLnC× C by acting trivially on Ker (ρ) since SLnC× C = GLnC×Ker (ρ).

Lemma 3.3.7. The representation Wλ ⊗L(w) of SLnC×C acts trivially on Ker (ρ) if and only
if w =

∑
λi + kn for k ∈ Z.

Proof. Notice that es ·I acts on (Cn)⊗d by multiplication by esd, where d =
∑
λi. We can restrict

this action to Sλ(Cn). Moreover, −s acts on L(w) by multiplication by e−sw, so the action of
es · I × {−s} on Wλ ⊗ L(w) by esd−sw, which is trivial if and only if sd − sw ∈ 2πiZ. Since
s = 2πi/n, this happens precisely when w =

∑
λi + kn for k ∈ Z.

To prove theorem 3.3.4, it remains only to show that every representation Wλ⊗L (
∑
λi + kn)

comes from the representation ψλ1+k,...,λn+k of GLnC. But this holds since both the representa-
tions restrict to the same representation on SLnC and to multiplication by ewz = e(

∑
λi+nk)z on

C.



Chapter 4

Symplectic Lie algebras

This chapter presents the symplectic Lie algebras on which we will work also in the next chapter.
In section 4.1, we will first describe in general the structure of a symplectic Lie algebra and
we will then compute the representations of sp2nC. In the final section we will describe Weyl’s
construction of the irreducible representations of the symplectic groups.

This chapter explains most of the general concepts illustrated in lectures 16 and 17 of [5] but
with more detailed explanations in some parts.

4.1 The structure of Sp2nC and sp2nC
Let V be a 2n-dimensional complex vector space, and let f : V × V → C be a non-degenerate,
skew-symmetric bilinear form on V . It can be shown that even dimensionality is a necessary
condition for existence of a non-degenerate bilinear form satisfying f(v, w) = −f(w, v). We define
the symplectic group as Sp2nC = {A ∈ Aut(V ) | f(Av,Aw) = f(v, w) for all v, w ∈ V }, and the
symplectic Lie algebra as sp2nC = {A ∈ End(V ) | f(Av,w) + f(v,Aw) = 0 for all v, w ∈ V }.

Let e1, . . . , e2n be a basis for V . In the following, we will always consider f to be the bilinear
form given by

f(ei, ei+n) = 1, f(ei+n, ei) = −1, and f(ei, ej) = 0 if j 6= i± n.

In matrix form, f can be expressed as f(x, y) = tx · s · y, where s is the 2n× 2n matrix given by

s =

(
0 In
−In 0

)
.

Thus we have Sp2nC = {a ∈ Mat2n(C) | s = ta · s · a} and sp2nC = {x ∈ gl2nC | tx · s+ s · x = 0}.
Writing x in block form as

x =

(
m l
p q

)
with m, l, p, q ∈ glnC, we have

tx · s =

(
− tp tm
− tq tl

)
and s · x =

(
p q
−m −l

)
Hence the condition for x to be symplectic is that the off-diagonal blocks l and p are symmetric,
and the diagonal blocks m and q of x are negative transposes of each other. Notice that the last

31
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condition forces tr (x) = 0. We can now compute a basis for sp2nC. Let Eij be the matrix having
1 in the (i, j)-position and 0 elsewhere for 1 ≤ i, j ≤ 2n. Notice that, since EijEkl = δjkEil, it
follows that

[Eij , Ekl] = δjkEil − δliEkj . (4.1)

Take the diagonal matrices Eii − En+i,n+i (1 ≤ i ≤ n). Add to these all Eij − En+j,n+i
(1 ≤ i 6= j ≤ n). For l we use the matrices Ei,n+i (1 ≤ i ≤ n) and Ei,n+j−Ej,n+i (1 ≤ i < j ≤ n),
and similarly for the positions in p. Summing the number of these elements, we get dim sp2nC =
n+ n2 − n+ 2

(
n+ 1

2n(n− 1)
)

= 2n2 + n.
The obvious candidate for maximal toral subalgebra h in sp2nC is the subalgebra of matrices

diagonal in this representation; in fact, this works exactly as in the case of slnC. As a subalgebra
of sp2nC, h is spanned by the n matrices hi = Ei,i−En+i,n+i whose action on V is to fix ei, send
en+i to its negative, and kill all the remaining basis vectors. Moreover, recall the dual basis lj
with li(hj) = δi,j . We already know how h acts on sp2nC since the latter is a subalgebra of sl2nC.
Since the following arguments are very similar to those for the group slnC explained in 3.2, we
will sketch most of the computations. The full discussion can be found in section 16.1 of [5].

Let us compute the action of h on the basis vectors of sp2nC. For instance, for 1 ≤ i, j ≤ n,
keeping in mind formula (4.1), we have

ad(a1h1 + a2h2 + · · ·+ anhn)(Eij − En+j,n+i)

= ad
(∑

akhk

)
(Eij)− ad

(∑
akhk

)
(En+j,n+i)

= (ai − aj)(Eij)− (ai − aj)(En+j,n+i)
= (ai − aj)(Eij − En+j,n+i).

Hence Eij − En+j,n+i is an eigenvector for the action of h, with eigenvalue li − lj . Similarly, for
i 6= j, Ei,n+j − Ej,n+i and En+i,j − En+j,i are eigenvectors with eigenvalues li + lj and −li − lj ,
respectively. Finally, Ei,n+i and En+i,i are eigenvectors with eigenvalues 2li and −2li, respectively.
Therefore, the roots of the Lie algebra sp2nC are the vectors ±li ± lj ∈ h∗.

Now we can find the distinguished subalgebras sα isomorphic to sl2C, and the corresponding
elements hα ∈ h. Considering the eigenvalues li − lj and lj − li corresponding to the elements
Eij − En+j,n+i and Eji − En+i,n+j , by (4.1) we have

[Eij − En+j,n+i, Eji − En+i,n+j ]
= [Eij , Eji]− [Eij , En+i,n+j ]− [En+j,n+i, Eji] + [En+j,n+i, En+i,n+j ]

= [Eij , Eji] + [En+j,n+i, En+i,n+j ]

= Eii − Ejj + En+j,n+j − En+i,n+i
= hi − hj .

Thus, the distinguished element hli−lj is a multiple of hi − hj . Since

ad(hi − hj)(Eij − En+j,n+i) = ((li − lj)(hi − hj)) · (Eij − En+j,n+i)
= 2(Eij − En+j,n+i),

we conclude that
hli−lj = hi − hj .

Analogously, we may compute that hli+lj = hi+hj , h−li−lj = −hi−hj , h2li = hi, and h−2li = −hi.
Thus, the distinguished elements {hα} ⊂ h are {±hi ± hj ,±hi}. In particular, the weight lattice
is ΛW = Z{l1, . . . , ln}.



4.2. Weyl’s construction for Symplectic Groups 33

Finally we choose a base of the set of roots R and describe the corresponding Weyl chambers.
We have R = {±li±lj | 1 ≤ i, j ≤ n}. The vectors li−li+1 (1 ≤ i ≤ n−1) and 2ln are independent.
Moreover, li+ lj = (li− li+1)+(li+1− li+2)+ · · ·+(lj−1− lj)+2(lj− lj+1)+ · · ·+2(ln−1− ln)+2ln
if i ≤ j and li − lj = (li − li+1) + (li+1 − li+2) + · · · + (lj−1 − lj) if i < j, which shows that
B = {li − li+1}i=1,...,n−1 ∪ {2ln} form a base of R. The corresponding ordering of the roots will
then be R+ = {li + lj}i≤j ∪ {li − lj}i<j and R− = {−li − lj}i≤j ∪ {li − lj}j<i. Thus the simple
negative roots for this ordering are the roots li+1− li and −2ln. The corresponding Weyl chamber
is

W = {a1l1 + a2l2 + · · ·+ anln | a1 ≥ a2 ≥ · · · ≥ an ≥ 0}.

Again, the fundamental weights are the weights ωi = l1 + · · ·+ li for i = 1, . . . , n, and, similarly to
the case of the special linear Lie algebras in chapter 3, these n fundamental weights generate as a
semigroup the intersection of the Weyl chamber W with the weight lattice ∆W . It follows that,
by the existence and uniqueness theorem, for any n-tuple of natural numbers (a1, . . . , an) ∈ Nn
there will be a unique irreducible representation with highest weight

a1ω1 + a2ω2 + · · ·+ anωn = (a1 + · · ·+ an)l1 + (a2 + · · ·+ an)l2 + anln,

denoted by Γa1,...,an .
Now let V = C2n be the standard representation of sp2nC. Let us find the irreducible

representation V (k) = Γ0,...,0,1,0,...,0, with 1 at the kth place, with highest weight l1 + · · ·+ lk. It
will be contained in the kth exterior power

∧k
V . Moreover, consider the natural contraction map

ϕk :
∧k

V →
∧k−2

V

defined by

ϕk(v1 ∧ · · · ∧ vk) =
∑
i<j

f(vi, vj)(−1)i+j−1v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk.

Since the representation
∧k−2

V does not have the weight l1+· · ·+lk, the irreducible representation
with this highest weight must be contained in the kernel of this map. To conclude the list of all
irreducible representations of sp2nC, we state without proof theorem 17.5 of [5] which claims that
also the converse holds.

Theorem 4.1.1. For 1 ≤ k ≤ n, the kernel of the map ϕk is exactly the irreducible representation
V (k) = Γ0,...,0,1,0,...,0 with highest weight l1 + · · ·+ lk.

Proof. See theorem 17.5 of [5].

4.2 Weyl’s construction for Symplectic Groups

In this section we will give a detailed picture of Weyl’s construction following the description in
section 17.3 of [5] providing more details, solving some exercises and giving some other results.

Let V = C2n be the standard representation for GL2nC. Let d ∈ N. For each pair J = (p, q)
of integers such that 1 ≤ p < q ≤ d, the symplectic form f determines a linear map

ΦJ : V ⊗d → V ⊗(d−2),

v1 ⊗ · · · ⊗ vd 7→ f(vp, vq)v1 ⊗ · · · ⊗ v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vd.
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The maps ΦJ are called contractions. Let V <d> ⊂ V ⊗d denote the intersection of the kernels of
all these contractions. Notice that the subspaces V <d> are Sd-invariant. Since Sp2nC preserves
f , we get ΦJ(g · v) = g · ΦJ(v) for all v ∈ V ⊗d. Hence V <d> is Sp2nC-invariant. Let λ be a
partition of d. We define the sp2nC-module

S<λ>V = V <d> ∩ SλV.

Let B = {e1, . . . , e2n} be the canonical basis of V and denote the dual basis of B relative to f
by {u1, . . . , u2n}. So f(ei, uj) = δij for all i, j. Let

ψ =

2n∑
i=1

ei ⊗ ui,

For each pair J = (p, q) of integers such that 1 ≤ p < q ≤ d, we define

ΨJ : V ⊗(d−2) → V ⊗d,

v1 ⊗ · · · ⊗ vd−2 7→
2n∑
i=1

v1 ⊗ · · · ⊗ vp−1 ⊗ ei︸︷︷︸
pth

⊗vp ⊗ · · · ⊗ vq−2 ⊗ ui︸︷︷︸
qth

⊗vq−1 ⊗ · · · ⊗ vd−2,

Notice that, since
∑2n
i=1 f(ei, ui) = 2n, we get ΦJ ◦ΨJ = 2nI. It follows that ΨJ is injective and

ΦJ is surjective. Moreover we define

ϑJ = ΨJ ◦ ΦJ : V ⊗d → V ⊗d.

Since ΨJ is injective, Ker (ϑJ) = Ker (ΦJ).
Let (·, ·) : V × V → C be the standard Hermitian product on V = C2n. This extends to an

Hermitian product on V ⊗d by

(v1 ⊗ · · · ⊗ vd, w1 ⊗ · · · ⊗ wd) = (v1, w1) . . . (vd, wd)

for all vi, wi ∈ V . Clearly, for all v, w ∈ V ⊗d and σ ∈ Sd we have (v · σ,w · σ) = (v, w). Let us
solve now Exercise 17.13 of [5] to get a direct sum decomposition of V ⊗d.

Lemma 4.2.1. Let J = (p, q) as above. Then:

i) (v ⊗ w,ψ) = f(v, w) for all v, w ∈ V ,

ii) Ker (ΦJ) = Im(ΨJ)⊥.

Proof. i) Let v =
∑
j ajej and w =

∑
j bjuj be arbitrary elements of V . Thus

(v ⊗ w,ψ) =
∑
i

(v, ei)(w, ui) =
∑
i

aibi = f(v, w).

ii) For the sake of simplicity we consider only the case J = (1, 2). Let Φ = Φ(1,2) and
Ψ = Ψ(1,2). Since

dim(ImΨ)⊥ = dimV ⊗d − dim(ImΨ) = dimV ⊗d − dimV ⊗(d−2) = dim(KerΦ),

it suffices to prove just one inclusion to get the equality Ker (ΦJ) = Im(ΨJ)⊥. Let us prove ⊂.
Let

x =
∑
j

v1j ⊗ · · · ⊗ vdj ∈ KerΦ, y = w3 ⊗ · · · ⊗ wd



4.2. Weyl’s construction for Symplectic Groups 35

with w3, . . . , wd ∈ V . We have

(x,Ψ(y)) =
∑
i,j

(v1j , ei)(v
2
j , ui)(v

3
j , w3) . . . (vdj , wd)

=
∑
j

(v1j ⊗ v2j , ψ)(v3j ⊗ · · · ⊗ vdj , y) =
∑
j

f(v1j , v
2
j )(v3j ⊗ · · · ⊗ vdj , y)

= (Φ(x), y) = 0.

Hence x ∈ Im(ΨJ)⊥.

Corollary 4.2.2. We have
V ⊗d = V <d> ⊕

∑
J

Im(ΨJ).

Proof. It is a general fact that, if A1, . . . , Ar are subspaces of a finite-dimensional Hilbert space,
then (⋂

i

Ai

)⊥
=
∑
i

A⊥i .

Consequently, (⋂
J

Ker (ΦJ)

)⊥
=
∑
J

(Ker (ΦJ))⊥ =
∑
J

Im(ΨJ).

Remark 4.2.3. Since
∑
J Im(ΨJ) is the orthogonal complement of an Sd-invariant space with

respect to an Sd-invariant Hermitian product, it is Sd-invariant.

Lemma 4.2.4. Let λ be a partition of d. Then

S<λ>V = V <d>cλ.

Proof. We have

SλV = V ⊗dcλ =

(
V <d> ⊕

∑
J

Im(ΨJ)

)
cλ = (V <d>cλ)⊕

(∑
J

Im(ΨJ)cλ

)

Taking the intersection with V <d>, we are done.

Remark 4.2.5. As in remark 2.1.3, it follows that S<λT>V and S<λT ′>V are isomorphic as
sp2nC-modules for tableaux T and T ′ of the same partition λ.

We need now the following fact on invariant theory. We will prove it in chapter 5 assuming
the first fundamental theorem of invariant theory for the symplectic groups.

Theorem 4.2.6 (Invariant Theory Fact). Any endomorphism of V ⊗d that commutes with all
permutations in Sd and all the operators ϑJ is a finite C-linear combination of operators of the
form g ⊗ · · · ⊗ g, for g ∈ Sp2nC.

Now let B be the algebra of all endomorphisms of the space V <d> that are C-linear combina-
tions of operators of the form g ⊗ · · · ⊗ g, for g ∈ Sp2nC.
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Proposition 4.2.7. The algebra B is precisely the algebra of all endomorphisms of V <d>
commuting with all permutations in Sd, i.e., B = EndSd(V <d>).

Proof. Let B′ = EndSd(V <d>). Clearly B ⊂ B′. Let β ∈ B′. From the decomposition
V ⊗d = V <d> ⊕

∑
J Im(ΨJ ), we can extend β to a linear map β̃ : V ⊗d → V ⊗d such that β̃(x) = 0

for all x ∈
∑
J Im(ΨJ ). Since both V <d> and

∑
J Im(ΨJ ) are Sd-invariant, β̃ is an endomorphism

that commutes with all permutations in Sd. We want to prove that β̃ also commutes with all the
operators ϑJ to apply theorem 4.2.6.

Let J = (p, q) with 1 ≤ p < q ≤ d. Let v = v1 + v2 with v1 ∈ V <d> and v2 ∈
∑
J Im(ΨJ).

Recalling that V <d> ⊂ Ker (ΦJ) = Ker (ϑJ) and Im(ϑJ) ⊂
∑
J Im(ΨJ) ⊂ Ker (β̃), we have

(β̃ ◦ ϑJ)(v) = (β̃ ◦ ϑJ)(v1 + v2) = β̃(0 + ϑJ(v2)) = 0 = ϑJ(β(v1)) = (ϑJ ◦ β̃)(v).

By theorem 4.2.6, we deduce that β̃ is a finite C-linear combination of operators of the form
g ⊗ · · · ⊗ g with g ∈ Sp2nC. It follows that β ∈ B, so that B′ ⊂ B.

Let us now state the following lemma about general group algebras. We will sketch the proof.
The full proof can be found in section 6.2 of [5].

Lemma 4.2.8. Let G be any finite group and A = C[G]. Let U be a finite-dimensional right
A-module and B = HomG(U,U) be the centralizer algebra. Notice that B acts on U on the left,
commuting with the right action of A. Moreover, if W is any left A-module, the tensor product
U ⊗AW is a left B-module by acting on the first factor: b · (v ⊗ w) = (b · v)⊗ w. We have:

i) For any c ∈ A, the canonical map U ⊗A Ac→ Uc is an isomorphism of left B-modules.

ii) If W = Ac is an irreducible left A-module, then U ⊗A W = Uc is an irreducible left
B-module.

iii) If Wi = Aci are the distinct irreducible left A-modules, with mi the dimension of Wi, then

U ∼=
⊕
i

(U ⊗AWi)
⊕mi ∼=

⊕
i

(Uci)
⊕mi

is the decomposition of U into irreducible left B-modules.

Sketch of the proof. i) For c ∈ A, the map U ⊗AAc→ Uc sending u⊗ a 7→ u · a has inverse given
by uc 7→ u⊗ c. This is well-defined because u⊗ c = uc⊗ 1 = u′c⊗ 1 = u′ ⊗ c for any u, u′ ∈ U
are such that uc = u′c.

ii) Let W = Ac be an irreducible left A-module. Consider first the case where U is an
irreducible A-module, so B = C. Since, by Maschke’s theorem, A is semisimple, we can identify
A with a direct sum

⊕r
i=1Mmi(C) of r matrix algebras (see [3], proposition 3.5.8) and W with a

minimal left ideal of A. By general results on matrix rings, one get dim(U ⊗AW ) ≤ 1 and we
are done. Now let U =

⊕
i U
⊕ni
i where all Ui are irreducible right A-modules. Thus U ⊗A W

is either zero or U ⊗A W =
⊕

i(Ui ⊗A W )⊕ni = C⊕nk for some k, which is irreducible over
B =

⊕
jMnj (C). Indeed, only the factor Mnk(C) acts on U ⊗AW (= Cnk), and the action is by

left multiplication. Let S be a non-zero Mnk(C)-submodule of Cnk . Let x ∈ S with xi 6= 0 for
some 1 ≤ i ≤ nk. Then for 1 ≤ j ≤ nk we have ejix = xiej ∈ S, so that ej ∈ S. Hence Cnk is an
irreducible Mnk(C)-module.

iii) Using i) and the isomorphism A ∼=
⊕

iW
⊕mi
i we get

U ∼= U ⊗A A ∼= U ⊗A (
⊕
i

W⊕mii ) ∼=
⊕
i

(U ⊗AWi)
⊕mi .
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Hence we can deduce the following theorem on the irreducible representations of Sp2nC.

Theorem 4.2.9. Let λ be a partition of d. The representations S<λ>V are either 0 or irreducible
representations of Sp2nC. For each partition λ, let mλ denote the dimension of the corresponding
representation Vλ = C[Sd]cλ of Sd. We have

V <d> '
⊕
|λ|=d

(S<λ>V )mλ

over Sp2nC.

Proof. Since, by proposition 4.2.7, B is the centralizer algebra to A = C[Sd] acting on the space
V <d> and Vλ is an irreducible left C[Sd]-module, lemma 4.2.8 implies that S<λ>V = V <d>cλ is
an irreducible left B-module. Again by proposition 4.2.7, a subspace of V <d> is Sp2nC-invariant
if and only if it is B-invariant. Hence S<λ>V is irreducible over Sp2nC. Finally, by part iii) of
lemma 4.2.8, we get

V <d> '
⊕
|λ|=d

(V <d>cλ)mλ =
⊕
|λ|=d

(S<λ>V )mλ .

The following is theorem 17.11 in [5]

Theorem 4.2.10. The space S<λ>V is nonzero if and only if the Young diagram of λ has at
most n rows, i.e., λn+1 = 0. In this case, S<λ>V is the irreducible representation of sp2nC with
highest weight λ1l1 + · · ·+ λnln.

For r = 1, . . . , bd/2c, let

V <d>d−2r =
∑

J1,...,Jr

(ψJ1 ◦ · · · ◦ ψJr )(V <d−2r>).

Since the expansions operator ψJ1 , . . . , ψJr are all injective, V <d>d−2r is isomorphic to the direct sum
of several copies of V <d>. Hence the irreducible Sp(V )-module occurring in V <d>d−2r as a summand
is exactly the same as these occurring in V <d>.

Proposition 4.2.11. The tensor power V ⊗d decomposes into a direct sum

V ⊗d = V <d> ⊕ V <d>d−2 ⊕ · · · ⊕ V
<d>
d−2k,

with k = bd/2c.

Proof. It follows from corollary 4.2.2 and by induction on r that V ⊗d is equal to the sum
V <d>+V <d>d−2 +· · ·+V <d>d−2k. It follows from theorem 4.2.9 and theorem 4.2.10 that V <d>d−2i and V <d>d−2j
contain different irreducible Sp(V )-modules for i 6= j. Hence the intersection V <d>d−2i ∩ V

<d>
d−2j = 0

when i 6= j. Therefore it is a direct sum.





Chapter 5

Schur-Weyl duality for Sp(V )

In this chapter we will illustrate the Schur-Weyl duality between the symplectic group and the
Brauer algebra over the complex field C. In section 5.1 we will present without proof (but
giving appropriate references to the proof) an important fact on invariant theory for symplectic
groups. In the last section, starting with the Double Centralizer Theorem and characterizing the
commutator of the action of Sp(V ) on the tensor product V ⊗d, we will we able to prove and state
the aforementioned duality.

The first section is based on lecture notes [2]. Also, chapter 5 of [6] treats the same topic with
much more details. The last section follows closely chapter 10 of [6].

5.1 Preliminaries on Invariant Theory

In the following we will need a fact from invariant theory, namely the first fundamental theorem
of invariant theory for Sp(V ). We present it now.

Let V be a finite-dimensional representation of a finite group G and let m ∈ Z≥1. Taking
the usual pointwise product of functions, we can define the C-algebra C[V m] of functions
F : V m → C generated by the elements of (V m)∗ viewed as functions on V m. Its elements are
called polynomial functions on V m. Let d = (d1, . . . , dm) ∈ Nm. We call a polynomial function
F ∈ C[V m] homogeneous of degree d if F (a1v1, . . . , amvm) = ad11 . . . admm F (v1, . . . , vm) for all
a1, . . . , am ∈ C \ {0} and v1, . . . , vm ∈ V . A polynomial function F ∈ C[V m] is called G-invariant
if F (g · v) = F (v) for all g ∈ G and v ∈ V m. The action of G on V m induces an action on the
polynomial functions on V m by defining (g · F )(v) = F (g−1 · v) for all g ∈ G, F ∈ C[V m] and
v ∈ V m. Now assume that G = Sp(V ) and let f be the defining non-degenerate, skew-symmetric
bilinear form on V . For each pair (i, j) of integers such that 1 ≤ i < j ≤ m, we define a function
f(i,j) : V m → C by

f(i,j)(v1, . . . , vm) = f(vi, vj).

Now we can state the following fact from invariant theory (for details, see proposition F.13 in [5]).

Theorem 5.1.1 (First Fundamental Theorem for Sp(V )). The polynomial invariants of Sp(V )
acting on V m can be written as polynomials in functions f(i,j) for 1 ≤ i < j ≤ m.

Let C[V 2d]1 be the space of homogeneous polynomials of degree 1 = (1, . . . , 1). As a
consequence, applying the theorem to the case of homogeneous polynomials of degree 1 = (1, . . . , 1),
one can see that the 1-homogeneous polynomial invariants of Sp(V ) acting on V m are all linear

39
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combinations of products

f(σ(1),σ(2))f(σ(3),σ(4)) . . . f(σ(m−1),σ(m)) (5.1)

for permutations σ ∈ Sm such that σ(2i− 1) < σ(2i) for 1 ≤ i ≤ m/2.

5.2 Symplectic Schur-Weyl duality
Let V be a 2n-dimensional complex vector space endowed with a non-degenerate, skew-symmetric
bilinear form f : V × V → C and let Sp(V ) be the corresponding symplectic group of V . By
restricting the action in section 2.2, we have the natural factorwise action ρ : C[Sp(V )]→ End(V ⊗d)
given by

g(v1 ⊗ v2 ⊗ · · · ⊗ vd) = g(v1)⊗ g(v2)⊗ · · · ⊗ g(vd),

for g ∈ Sp(V ), vi ∈ V . To determine the symplectic Schur-Weyl duality, we can use a similar
approach to the one followed in section 2.2. Consider the centralizer algebra

B = EndSp(V )(V
⊗d)

= {x ∈ End(V ⊗d) | xρ(g) = ρ(g)x for all g ∈ Sp(V )}.

We apply the Double Centralizer Theorem 2.2.3 to the following situation: V = V ⊗d, and A is the
image of C[Sp(V )] in End(V ⊗d). Since B is by definition EndSp(V )(V

⊗d), the Double Centralizer
Theorem gives a decomposition

V ⊗d '
⊕
i

Ui ⊗Wi

as a module of C[Sp(V )]⊗B, where Ui are all the irreducible representations of C[Sp(V )] and
Wi = HomSp(V )(Ui, V

⊗d) are all the irreducible representations of B. Thus now we want to
determine the structure of the algebra B.

Consider the isomorphisms

End(V ⊗d) ' (V ⊗d)∗ ⊗ (V ⊗d) ' (V ∗)⊗d ⊗ (V ⊗d)

as modules for Sp(V ) where the first isomorphism follows from chapter 1 and the last one is given
by the Sp(V )-isomorphism (V ∗)⊗d → (V ⊗d)∗ mapping ϕ1 ⊗ · · · ⊗ϕd to the linear map V ⊗d → C
such that v1 ⊗ · · · ⊗ vd 7→ ϕ1(v1) . . . ϕd(vd). Hence

B = EndSp(V )(V
⊗d) ' (End(V ⊗d))Sp(V ) ' [(V ∗)⊗d ⊗ (V ⊗d)]Sp(V ) (5.2)

as vector spaces. Since B contains EndGL(V )(V
⊗d), the image of C[Sd] in End(V ⊗d) is contained

in B, by the results seen in section 2.2.
Since, by definition, Sp(V ) leaves invariant the non-degenerate bilinear form f on V , we have

an Sp(V )-module isomorphism V ' V ∗ given by the map v 7→ f(·, v), and hence an isomorphism

(V ∗)⊗d ⊗ (V ⊗d) ' V ⊗2d

of Sp(V )-modules. The linear map (V ∗)⊗2d → C[V 2d]1 defined by

ϕ1 ⊗ · · · ⊗ ϕ2d 7→ [(v1, . . . , v2d) 7→ ϕ1(v1) . . . ϕ2d(v2d)]

is an isomorphism of Sp(V )-modules.
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Combining all these Sp(V )-module isomorphisms, we obtain a chain of Sp(V )-isomorphisms

C[V 2d]1 ' V ⊗2d ' End(V ⊗d).

In particular, denote T : V ⊗2d → End(V ⊗d) the last Sp(V )-module isomorphism above, which
we take in the following explicit form: if u = u1 ⊗ · · · ⊗ u2d with ui ∈ V , then T (u) is the linear
transformation

T (u)(v1 ⊗ · · · ⊗ vd) = f(v1, u2)f(v2, u4) . . . f(vd, u2d)u1 ⊗ u3 ⊗ · · · ⊗ u2d−1

for vi ∈ V . Extending f to a non-degenerate bilinear form on V ⊗d for every d by

f(x1 ⊗ · · · ⊗ xd, y1 ⊗ · · · ⊗ yd) =

d∏
i=1

f(xi, yi),

we can write

T (u1 ⊗ · · · ⊗ u2d)(v) = f(v, u2 ⊗ u4 ⊗ · · · ⊗ u2d)u1 ⊗ u3 ⊗ · · · ⊗ u2d−1

for v ∈ V ⊗d. Thus we have a vector space isomorphism

T : (V ⊗2d)Sp(V ) → EndSp(V )(V
⊗d).

Given the canonical basis e1, . . . , e2n of V and its dual basis u1, . . . , u2n relative to f , recall the
element

ψ =

2n∑
i=1

ei ⊗ ui.

Clearly, the identity operator IV ⊗d is Sp(V )-invariant. It follows that the preimage under T of
IV ⊗d ,

ψd = ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸
d

=

2n∑
i1,...,id=1

ei1 ⊗ ui1 ⊗ · · · ⊗ eid ⊗ uid ,

is Sp(V )-invariant. In particular, ψ is Sp(V )-invariant. Since the action of Sp(V ) on V ⊗2d

commutes with the action of S2d, the tensors ψd · σ−1 are also Sp(V )-invariants, for any σ ∈ S2d.
Now consider the Sp(V )-module isomorphism S : V ⊗2d → C[V 2d]1 sending each v1 ⊗ · · · ⊗ v2d

to the polynomial function

(w1, . . . , w2d) 7→ f(w1, v1)f(w2, v2) . . . f(w2d, v2d).

We claim that the preimage under S of the function (5.1) is ψd · σ−1. For, notice that for all
v, w ∈ V we have f(v ⊗ w,ψ) = f(v, w). Indeed, for v =

∑
j ajej and w =

∑
j bjuj we have

f(v ⊗ w,ψ) =

2n∑
i=1

f(v, ei)f(w, ui) =

n∑
i=1

f(v, ei)f(w, ui) +

2n∑
i=n+1

f(v, ei)f(w, ui)

=

n∑
i=1

(−ai+n)(−bi+n) +

2n∑
i=n+1

ai−nbi−n =

2n∑
i=1

aibi = f(v, w).
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Hence we get

S(ψd · σ−1)(w1, . . . , w2d) = S(ψ · σ−1 ⊗ · · · ⊗ ψ · σ−1)(w1, . . . , w2d)

= f(w1 ⊗ w2, ψ · σ−1) . . . f(w2d−1 ⊗ w2d, ψ · σ−1)

= f(w1 · σ ⊗ w2 · σ, ψ) . . . f(w2d−1 · σ ⊗ w2d · σ, ψ)

= f(w1 · σ,w2 · σ) . . . f(w2d−1 · σ,w2d · σ),

and we are done. Since the functions (5.1) span C[V 2d]1, we obtain the following characterization.

Theorem 5.2.1. [V ⊗2d]Sp(V ) is spanned by the elements ψd · σ−1 with σ ∈ S2d.

Now let S̃d ⊂ S2d denote the subgroup that permutes the ordered pairs {(1, 2), . . . , (2d−1, 2d)}:

σ̃ : (2i− 1, 2i) 7→ (2σ(i)− 1, 2σ(i))

for i = 1, . . . , d with σ ∈ Sd. The map Sd → S2d given by σ 7→ σ̃ is clearly injective. Notice that
ψd · σ̃ = ψd for all σ̃ ∈ S̃d.

Let Nd ⊂ S2d be the subgroup generated by the transpositions (2j − 1 2j) for j = 1, . . . , d.
Clearly Nd ' Zd2. Since ψ = −

∑
i ui ⊗ ei, we get that ψ · σ = ±ψd for all σ ∈ Nd. Moreover, Nd

is normalized by S̃d, so that Bd = S̃dNd is a subgroup of S2d. In particular we have ψd · σ = ±ψd
for all σ ∈ Bd. Hence theorem 5.2.1 has the following equivalent version:

Theorem 5.2.2. [V ⊗2d]Sp(V ) is spanned by the elements ψd · σ−1 with σ ∈ Υd, where Υd is any
collection of representatives for the cosets S2d/Bd.

Moreover, we define the homomorphism τ : Sd → S2d by

τ(σ)(2i− 1) = 2σ(i)− 1, τ(σ)(2i) = 2i,

for i = i, . . . , d and σ ∈ Sd. It is clearly injective. Hence τ(σ) permutes {1, 3, . . . , 2d − 1} and
fixes {2, 4, . . . , 2d} pointwise.

For any two subgroups H,K of a group G, denote H\G/K the quotient subset G/ ∼ of G
given by the equivalence relation ∼ in G defined by g ∼ g′ if and only if g = hgk for some
h ∈ H and k ∈ K. Its elements are called the (H,K)-double cosets in G. We say that a subset
X ⊂ G is a set of representatives for the (H,K)-double cosets in G if each of these double cosets
contains exactly one element of X. Finally, denote π : Sd → GL(V ⊗d) the natural action of Sd
on GL(V ⊗d) with π(σ) = πσ for any σ ∈ Sd.

Proposition 5.2.3. Let Γ ⊂ S2d be a set of representatives for the (τ(Sd), Bd)-double cosets in
S2d. Then

EndSp(V )(V
⊗d) = span{πσ−1 ◦ T (ψd · γ−1) | σ ∈ Sd, γ ∈ Γ}.

Proof. Applying theorem 5.2.1 we have

EndSp(V )(V
⊗d) = span{T (ψd · γ−1) | γ ∈ Υd}, (5.3)

where Υd is any set of representatives for the cosets S2d/Bd. It follows from the definition of T
that

πσ ◦ T (v) = T (v · τ(σ)) (5.4)

for all σ ∈ Sd and v ∈ V ⊗2d. Suppose now that γ1, γ2 ∈ Υd are such that γ1 = τ(σ)γ2ζ for some
σ ∈ Sd and ζ ∈ Bd. Then, since ψd · ζ = ±ψd, by (5.4) we get

T (ψd · γ−1) = T (ψd · ζ−1γ−12 τ(σ−1)) = ±πσ−1 ◦ T (ψd · γ−12 ).

The result now follows by (5.3).



5.2. Symplectic Schur-Weyl duality 43

Denote
B̃d(−2n) = EndSp(V )(V

⊗d).

Now we want to find a particular set Γ of representatives for the (τ(Sd), Bd)-double cosets in Sd
to describe the multiplicative structure of B̃d(−2n).

Let Xd denote the set of all 2-partitions of {1, 2, . . . , 2d}, that is partitions of {1, 2, . . . , 2d}
into d pointwise disjoint subsets containing two elements each. The Brauer diagram associated to
a 2-partition P ∈ Xd consists of two rows of d dots labeled 1, 3, . . . , 2d− 1 on the top row and
2, 4, . . . , 2d on the bottom row where the dots i, j are joined by an edge if and only if {i, j} ∈ P .
For example, if d = 4 and P is

{{1, 8}, {2, 6}, {3, 4}, {5, 7}}, (5.5)

the associated Brauer diagram is

1 3 5 7

2 4 6 8
(5.6)

There is a natural action of S2d on Xd given by

{{i1, j1}, . . . , {id, jd}} 7→ {{σ(i1), σ(j1)}, . . . , {σ(id), σ(jd)}},

for σ ∈ S2d. For example, if σ = (1 7 2) ∈ S8 and x is (5.5), then σ · x is represented by

1 3 5 7

2 4 6 8

Let x0 be the 2-partition corresponding to the Brauer diagram

1 3 5 2d− 1

2 4 6 2d

. . .

By the transitivity of the action of S2d on Xd, we have Xd = S2d · x0 and the stabilizer of x0 is
precisely Bd. Thus we may identify Xd with the quotient space S2d/Bd via the map σ ·x0 7→ σBd.
Notice that the subgroup τ(Sd) permutes the top row of dots and fixes each dot in the bottom
row. This action can be seen, via the previous identification, as an action on S2d/Bd by left
multiplication, with orbits coinciding with the (τ(Sd), Bd)-double cosets in S2d.

We call x ∈ Xd an r-bar diagram if there are r edges connecting two dots on the top row (or,
equivalently, on the bottom row). Such edges are called top bars (or, resp., bottom bars). All
diagrams in the τ(Sd)-orbit of x are also r-bar diagrams.

Each τ(Sd)-orbit on Xd has a unique representative z such that if {2i, 2j} ∈ z then {2i −
1, 2j − 1} ∈ z, and if {2i− 1, 2j} ∈ z then i = j. We call such a Brauer diagram normalized and
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we denote the set of all such diagrams by Zd. For instance, (5.6) is not normalized. Its normalized
representative is

1 3 5 7

2 4 6 8

via the action of σ = (1 7) = τ((1 4)) ∈ τ(S4). If both {2i, 2j} and {2i − 1, 2j − 1} belong to
x ∈ Xd, we say that x contains the (i, j)-bar.

We now determine the element of End(V ⊗d) corresponding to each normalized Brauer diagram.
For each pair J = (p, q) of integers such that 1 ≤ p < q ≤ d, recall the linear map ϑJ : V ⊗d → V ⊗d

given by

v1 ⊗ · · · ⊗ vd 7→
2n∑
i=1

f(vp, vq)v1 ⊗ · · · ⊗ vp−1 ⊗ ei ⊗ · · · ⊗ vq−1 ⊗ ui ⊗ · · · ⊗ vd.

Here {ei} and {ui} are bases for V with f(ei, uj) = δij . Let us begin with the 1-bar diagram z
containing the (i, j)-bar. Notice that z = (2i 2j − 1) · x0 and (2i 2j − 1)−1 = (2i 2j − 1), so
that z corresponds to the tensor ψd · (2i 2j − 1). Let Cp(w) denote the p-th coefficient of w
with respect to the basis e1, . . . , e2n of V . For all w1, . . . , wd ∈ V we have

T (ψ · (2i 2j − 1))(w1 ⊗ · · · ⊗ wd)

= T

 2n∑
p1,...,pd=1

ep1 ⊗ up1 ⊗ · · · ⊗ epj︸︷︷︸
2i-th

⊗ · · · ⊗ upi︸︷︷︸
(2j−1)-th

⊗ · · · ⊗ epd ⊗ upd


(w1 ⊗ · · · ⊗ wd)

=

2n∑
p1,...,pd=1

f(w1, up1) . . . f(wi, epi) . . . f(wd, upd)ep1 ⊗ · · · ⊗ upj ⊗ · · · ⊗ epd

=

2n∑
p1,...,pd=1

f(wi, epi)Cp1(w1) . . . Cpi−1
(wi−1)Cpi+1

(wi+1) . . . Cpd(wd)·

· ep1 ⊗ · · · ⊗ upj ⊗ · · · ⊗ epd

= f(wi, wj)

2n∑
pj=1

w1 ⊗ · · · ⊗ epj ⊗ · · · ⊗ upj ⊗ · · · ⊗ wd

= ϑ(i,j)(w1 ⊗ · · · ⊗ wd).

Thus
T (ψ · (2i 2j − 1)) = ϑ(i,j). (5.7)

Suppose now that z ∈ Zd is an r-bar diagram containing the (i1, j1), . . . , (ir, jr)-bars. Let γz ∈ S2d

be the product of the transpositions (2ip 2jp − 1) for p = 1, . . . , r. Then z = γz · x0 corresponds
to the tensor ψd · γ−1z . Since the transpositions do not intersect, we have

T (ψd · γ−1z ) = T (ψd · γz) = ϑ(i1,j1) ◦ · · · ◦ ϑ(ir,jr)

by the same calculation that gives (5.7). For such a z ∈ Zd, denote ϑz = ϑ(i1,j1) ◦ · · · ◦ ϑ(ir,jr).
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Proposition 5.2.4. Let 2n = dimV . The algebra B̃d(−2n) = EndSp(V )(V
⊗d) is spanned by the

set of operators πσ−1 · ϑz for σ ∈ Sd and z ∈ Zd.

Proof. Given z ∈ Zd take γz ∈ S2d as above. Since Zd is a set of representatives for the τ(Sd)-
orbits on Xd, Γ = {γz | z ∈ Zd} is a set of representatives for the (τ(Sd), Bd)-double cosets in
S2d. Now it suffices to apply proposition 5.2.3.

As a consequence, applying the Double Centralizer Theorem 2.2.3 with A = {g ⊗ · · · ⊗ g |
g ∈ Sp(V )} ⊂ End(V ⊗d) and B the subalgebra of End(V ⊗d) spanned by the operators ϑ(p,q)
(1 ≤ p < q ≤ d) and πσ (σ ∈ Sd), proposition 5.2.4 claims that B = EndA(V ⊗d) and thus
A = EndB(V ⊗d), that is theorem 4.2.6.

We next study the relations in the algebra B̃d(−2n).

Lemma 5.2.5. The operators ϑ(i,j) satisfy the following relations, where 2n = dimV :

i) ϑ2(i,j) = 2nϑ(i,j).

ii) ϑ(i,j)ϑ(j,l) = π(i l)ϑ(j,l) for 1 ≤ i < j < l ≤ d.

iii) πσ−1ϑ(i,j)πσ = ϑ(σ(i),σ(j)) for all σ ∈ Sd.

iv) π(i j)ϑ(i,j) = −ϑ(i,j).

Proof. Recall that Φ(i,j) ◦Ψ(i,j) = 2nI. This implies property i). To verify ii), note that

ϑ(i,j)ϑ(j,l)(v1 ⊗ · · · ⊗ vd)

= f(vj , vl)
∑
p,q

f(vi, ep)v1 ⊗ · · · ⊗ eq︸︷︷︸
ith

⊗ · · · ⊗ uq︸︷︷︸
jth

⊗ · · · ⊗ up︸︷︷︸
lth

⊗ · · · ⊗ vd.

But ∑
p

f(vi, ep)v1 ⊗ · · · ⊗ eq︸︷︷︸
ith

⊗ · · · ⊗ uq︸︷︷︸
jth

⊗ · · · ⊗ up︸︷︷︸
lth

⊗ · · · ⊗ vd

= −v1 ⊗ · · · ⊗ eq︸︷︷︸
ith

⊗ · · · ⊗ uq︸︷︷︸
jth

⊗ · · · ⊗ vi︸︷︷︸
lth

⊗ · · · ⊗ vd,

which gives ii). For iii), we have

(πσ−1ϑ(i,j)πσ)(v1 ⊗ · · · ⊗ vd)

= πσ−1

∑
p

f(vσ(i), vσ(j))vσ(1) ⊗ · · · ⊗ ep︸︷︷︸
ith

⊗ · · · ⊗ up︸︷︷︸
jth

⊗ · · · ⊗ vσ(d)


=
∑
p

f(vσ(i), vσ(j))v1 ⊗ · · · ⊗ ep︸︷︷︸
σ(i)-th

⊗ · · · ⊗ up︸︷︷︸
σ(j)-th

⊗ · · · ⊗ vd

= ϑ(σ(i),σ(j))(v1 ⊗ · · · ⊗ vd).

Finally, iv) follows from the fact that
∑
i ei ⊗ ui = −

∑
i ui ⊗ ei.



46 Schur-Weyl duality for Sp(V )

We can describe the generators of B̃d(−2n) in terms of Brauer diagrams. Let σr ∈ Sd be the
transposition (r r + 1) corresponding to the Brauer diagram

r r + 1

. . . . . .

Recall that Sd is generated by σ1, . . . , σd−1. Let zr ∈ Zd be the 1-bar Brauer diagram containing
the (r, r + 1)-bar

r r + 1

. . . . . .

From what we have seen, it corresponds to the operator ϑ(r,r+1). From proposition 5.2.4 and
property iii) in lemma 5.2.5, it follows that the algebra B̃d(−2n) is generated by the operators
σ1, . . . , σd−1 and z1, . . . , zd−1. Thus we can define the multiplication in B̃d(−2n) in terms of
concatenations of Brauer diagrams in the following way: for any x, y ∈ B̃d(−2n) we place the
diagram for x above the diagram for y, we join the lower row of dots in x to the upper row of
dots in y and we perform the following operations:

• Multiply by a factor (2n) for each closed loop.

• Multiply by a factor −1 for every path beginning and ending on the same row after the
concatenation.

We see now the definition of Brauer algebra.

Definition 5.2.6. Let d ∈ Z>0 and δ ∈ C. The Brauer algebra Bd(δ) is the associative unital
C-algebra generated by the elements si, ei for 1 ≤ i ≤ d− 1, subject to the relations

s2i = 1, sisj = sjsi, sksk+1sk = sk+1sksk+1, (5.8)

e2i = δei, eiej = ejei, ekek+1ek = ek, ek+1ekek+1 = ek+1, (5.9)
siei = ei = eisi, skek+1ek = sk+1ek, sk+1ekek+1 = skek+1, (5.10)

for 1 ≤ i, j ≤ d− 1, |i− j| > 2, and 1 ≤ k ≤ d− 2.

We can define a right action of Bd(−2n) on V ⊗d on generators in the following way. For any
integer 1 ≤ i ≤ 2n, we set i′ = 2n+ 1− i. We fix an ordered basis {v1, v2, . . . , v2n} of V such that

(vi, vj) = 0 = (vi′ , vj′), (vi, vj′) = δij = −(vj′ , vi) for all 1 ≤ i, j ≤ 2n.

For any i, j ∈ {1, 2, . . . , 2n}, let

εij =

1 if j = i′ and i < j,
−1 if j = i′ and i > j,
0 otherwise.

Then

(vi1 ⊗ · · · ⊗ vid)sj = −(vi1 ⊗ · · · ⊗ vij−1
⊗ vij+1

⊗ vij ⊗ · · · ⊗ vid),

(vi1 ⊗ · · · ⊗ vid)ej = −
2n∑
k=1

εijij+1vi1 ⊗ · · · ⊗ vij−1 ⊗ vk ⊗ vk′ ⊗ vij+2 ⊗ · · · ⊗ vid .
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Lemma 5.2.7. The operators πσ for σ ∈ S2d and ϑ(i,j) satisfy the relations (5.8), (5.9) and (5.10)
with si = −π(i i+1) and ei = −ϑ(i,i+1).

Proof. Relations (5.8) follow from general results on transpositions in S2d. The first relation
in (5.9) is condition i) in lemma 5.2.5. We already know that ϑ(i,i+1) commutes with ϑ(j,j+1) if
|i− j| > 1. Let us prove

ϑ(r,r+1)ϑ(r+1,r+2)ϑ(r,r+1) = ϑ(r,r+1).

For v1, . . . , vd ∈ V we have

(ϑ(r,r+1)ϑ(r+1,r+2)ϑ(r,r+1))(v1 ⊗ · · · ⊗ vd)

= (ϑ(r,r+1)ϑ(r+1,r+2))

(∑
p

f(vr, vr+1)v1 ⊗ · · · ⊗ ep ⊗ up ⊗ · · · ⊗ vd

)

= f(vr, vr+1)ϑ(r,r+1)

(∑
p,q

f(up, vr+2)v1 ⊗ · · · ⊗ ep ⊗ eq ⊗ uq ⊗ · · · ⊗ vd

)
= −f(vr, vr+1)

∑
p,q,s

f(up, vr+2)f(ep, uq)v1 ⊗ · · · ⊗ es ⊗ us ⊗ eq ⊗ · · · ⊗ vd

= −f(vr, vr+1)
∑
p,s

f(up, vr+2)v1 ⊗ · · · ⊗ es ⊗ us ⊗ ep ⊗ · · · ⊗ vd

= f(vr, vr+1)
∑
s

v1 ⊗ · · · ⊗ es ⊗ us ⊗ vr+2 ⊗ · · · ⊗ vd

= ϑ(r,r+1)(v1 ⊗ · · · ⊗ vd).

The last relation in (5.9) is computed similarly. The first relation in (5.10) is condition iv) in
lemma 5.2.5. The remaining relations in (5.10) follow by similar calculations.

Since, as we have seen, B̃d(−2n) is spanned by the operators π(i i+1), ϑ(i,i+1) we have

Corollary 5.2.8. B̃d(−2n) is the image of the Brauer algebra Bd(−2n) via the assignment
si 7→ −π(i i+1) and ei 7→ −ϑ(i,i+1).

Notice that the action of Bd(−2n) on V ⊗d is precisely

(v1 ⊗ · · · ⊗ vd)sr = −π(r,r+1)(v1 ⊗ · · · ⊗ vd),
(v1 ⊗ · · · ⊗ vd)er = −ϑ(r,r+1)(v1 ⊗ · · · ⊗ vd).

Summarizing, we have proved that the representations

C[Sp(V )]
ρ→ End(V ⊗d)

ν← Bd(−2n),

where ν is the C-algebra homomorphism induced by the above action, satisfy the following

Theorem 5.2.9 (Symplectic Schur-Weyl duality). Let V be a complex vector space of dimension
2n endowed with a non-degenerate, skew-symmetric bilinear form f : V × V → C.

i) The natural left action of Sp(V ) on V ⊗d commutes with the right action of the Brauer
algebra Bd(−2n). Moreover,

ν(Bd(−2n)) = EndSp(V )(V
⊗d),

ρ(C[Sp(V )]) = EndBd(−2n)(V
⊗d).
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ii) We have a decomposition

V ⊗d '
⊕
|λ|≤d

|λ|≡2 (mod d)

S<λ>V ⊗ βλ,d

where S<λ>V are all the irreducible representations of C[Sp(V )] corresponding to λ and
βλ,d = HomSp(V )(S<λ>V, V ⊗d) are all the irreducible representations of Bd(−2n).



Bibliography

[1] Brauer R., On Algebras which are Connected with the Semisimple Continuous Groups, Annals
of Mathematics, Vol. 38, 1937, pp. 857-872

[2] Draisma J., and Gijswijt D., Invariant Theory with Applications, Online notes, available at
https://www.win.tue.nl/~jdraisma/teaching/invtheory0910/lecturenotes12.pdf,
2009, accessed on June 17th 2019

[3] Etingof P., Golberg O., Hensel S., Liu T., Schwender A., Vaintrob D., and Yudovina E.,
Introduction to Representation Theory, AMS, 2011

[4] Frobenius F. G., Über Gruppencharaktere, Sitzungberichte der Königlich Preussischen
Akademie der Wissenschaften zu Berlin, 1896, pp. 985-1021. Reprinted in Gesammelte
Abhandlungen, Vol. 3, Springer-Verlag, Heidelberg, 1968, pp. 1-37

[5] Fulton W., and Harris J., Representation Theory: A First Course, Springer, New York, 2004

[6] Goodman R., and Wallach N. R., Symmetry, Representations, and Invariants, Springer, 2009

[7] Hawkins T., Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics
1869-1926, Springer-Verlag, New York, 2000

[8] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag,
New York, 1972

[9] Petersen D., Tavakol M., and Yin Q., Tautological classes with twisted coefficients, Preprint,
arXiv:1705.08875, 2017

[10] Schur I., Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen,
Doctoral dissertation, Universität Berlin, 1901. Reprinted in Gesammelte Abhandlungen, Vol.
1, Springer-Verlag, Heidelberg, 1973, pp. 1-72

[11] Weyl H., The Classical Groups. Their Invariants and Representations, Princeton University
Press, second edition, Princeton, 1946

49

https://www.win.tue.nl/~jdraisma/teaching/invtheory0910/lecturenotes12.pdf

	Introduction
	Acknowledgement
	Preliminaries
	Representations of finite groups
	Character Theory
	Induced representations
	Group Algebra
	Lie algebras

	Schur-Weyl duality for GL(V)
	Representations of the symmetric group Sn
	Irreducible representations for Sn
	Induced representations for Sn
	The Frobenius character formula

	Schur-Weyl duality

	Algebraic Representations of GLn C
	Analyzing Semisimple Lie Algebras in General
	Representations of sln C
	Representations of GLn C

	Symplectic Lie algebras
	The structure of Sp 2n C and sp 2n C
	Weyl's construction for Symplectic Groups

	Schur-Weyl duality for Sp(V)
	Preliminaries on Invariant Theory
	Symplectic Schur-Weyl duality

	Bibliography

