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Abstract

Rigid body attitude estimation is the problem of finding the relative orientation between two
reference frames, that are respectively world and body.
In the case of a motorcycle, this task is performed by using Inertial Measurement Unit sensors,
like accelerometers and gyroscopes. Information about these sensors involves angular velocities
and body kinematics, which are related to body angles.
Since accelerometers and gyroscopes have complementary characteristics, their measures have
to be combined in order to improve the accuracy of the estimation.
Attitude estimation based on different sensor is known as Sensor Fusion, and in this thesis it is
performed using Extended Kalman Filter.
The accuracy of this Sensor Fusion filter is tested under simulative and experimental datasets,
in order to understand its properties and robustness.
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Chapter 1

Introduction

The problem of motorcycle attitude estimation is fundamental nowadays because it is the base
for vehicle control.
Attitude estimation is defined as the problem of estimating the three angles of a body, regarding
to a specific convention.
Tasks like traction control, anti-wheelie systems are based on the angles of the vehicle, and more
in general they are based on vehicle state. While the complexity of the state of a multi-body
system like a motorcycle depends on the choice of its dynamical model, its angles are always
involved because they define the relative orientation of the vehicle with respect to the world.
Attitude estimation techniques have been studied with all type of vehicles, in particular in
the aeronautic field. While car and motorcycles do not strictly need to know their attitude, air
vehicles are based on Inertial Navigation Systems (INS), that are a series of techniques needed to
estimate position, velocity and orientation from on-board sensors, without an external reference.
Similar techniques can be applied to other vehicles, with an adaptation to the particular case.
Attitude estimation is based on on-board sensors, that are Inertial Measurement Unit (IMU),
GPS, and other sensors capable of producing information about the vehicle, like star-tracking
sensors, cameras and lasers.
There are two main methods to proceed with attitude estimation, that are:

• Sensor Fusion methods: they combine information from different sensors to compute the
attitude estimation without using any dynamical equation of the body. These methods
are independent from the particular vehicle since they treat it as a generic body, and so
they are suited for each vehicle.

• Vehicle related methods: in addition with the combination of different sensors, these meth-
ods includes dynamical equations related to the vehicle, defining several vehicle states.
These methods are related to the particular vehicle because they are based on its dynam-
ics.

The problem of Sensor Fusion has been addressed in cases like [1],[2],[3], that are based on IMU
sensors, that coincides with gyroscopes, accelerometers and magnetometers.
Other sensor fusion methods use different sensors like optical sensors, as in [4], cameras, as in
[5].
Regarding to motorcycle related methods, several dynamical models with different complexity
have been studied. In [6], the motorcycle is studied in its longitudinal and vertical dynamics,
while in [7] the motorcycle is studied in its lateral dynamics. In other cases, like [8], the
motorcycle is studied as multi-body system, dividing the vehicle in main frame and wheels.
In this thesis Sensor Fusion methods will be discussed, and they will be applied to motorcycle,
even if they could be applied also with other vehicles with same sensor equipment.
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Sensors that will be used are accelerometer, gyroscope, together with the measure of velocities.
In particular, attitude estimation will be analyzed with sensors singularly, and then they will
be combined.
Regarding to Sensor Fusion methods, there are several techniques to combine information from
different sensors. In [3] and [9], two complementary filter are presented, while in [10] and [11],
statistical filter like Kalman Filter (KF) or Particle Filter (PF) are used.
Regarding to convention, methods are often implemented by resorting to quaternions, as in
[12], but in this case angles and rotation matrices will be used because they are related to the
physical system.
In this thesis, statistical sensor fusion methods will be analyzed and they will be tested on
simulative and experimental datasets.
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Chapter 2

Reference systems and rotation
matrices

2.1 Reference systems
The motion of an object in the three dimensional space is uniquely described by six variables
which depend on the chosen reference frame. These variables are three for position and three
for orientation. The position of an object is referred to the one of its center of mass, while the
orientation is a description of the whole rigid body.
The problem of estimating the position and orientation of a rigid body is known as pose, that
is determined by the rotation matrix and the origin of the coordinate system.
We will consider two reference frames where data can be expressed, that are:

• World reference frame (xw, yw, zw): the world reference frame, also known as global
or general, is fixed in space, and it is the reference for the inertial point of view for the
motion of a rigid body.

• Body reference frame (xb, yb, zb): the body frame is rigidly attached to the body of
the moving object, that means that it is the reference for the non-inertial point of view
for the motion of the object.

Reference frames are completely described by the center of coordinate system O and by the
triplet of axis versors, that is (ux,uy,uz), expressed with respect to the fixed frame.
Later on we will need another reference frame, which is related to the vehicle, that is

• Heading reference frame (xh, yh, zh): the heading reference frame is the one where
velocities of the vehicle are acquired, that is a frame which has the same xy plane as the
world frame, while rotates about z axis.

It is important to notice that while versors of the world reference are constant, versors of the
other frames are attached to the body, and then they are related to the motion, becoming time
variant. Having a point p ∈ R3, we denote as

pw .= (pwx , pwy , pwz ), pb .= (pbx, pby, pbz) (2.1)

the world and body frame representation of p respectively.
We now need to find the relation between the expression of the same point in two different
reference frame, that is the rototranslation matrix. Two different reference system are shown
in Fig.(2.1).
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Figure 2.1: Reference systems and relative position and orientation

2.2 Relation between reference systems

2.2.1 Rotation matrix

Axis rotation consists of a transformation which has to preserve the orthogonality and the
unitary norm of versors of the axis. This transformation is associated with a rotation matrix,
that is a matrix whose multiplication with a vector rotates it preserving its length.
Rotation matrix are defined by the three dimensional special orthogonal group, that is

SO(3) = {R ∈ R3×3 : RRT = I, |R| = 1} (2.2)

The transformation between two different coordinate systems is unique, but since the matrix
has 9 elements and 3 degrees of freedom it is possible to have several representation of the
transformation, depending on the problem.
The relation between coordinate system can also be expressed by quaternions, whose depend
on 4 variables and also avoid singularities problems. In our hypotheses we will be far from
singularities and rotation matrices will ease the problem, since they are intuitive and related to
the physical representation of the problem.

2.2.2 Coordinate transformation

In this thesis we define the rotation matrix as the matrix that pre-multiplied by a vector
expressed in world reference frame gives its body reference frame expression.
Depending on the chosen convention, it is possible to inverse the definition, that translates into
a transposition of the matrix.
Defining a vector v ∈ R3 we have that

vb = Rb
wvw (2.3)

vw = Rw
b vb (2.4)

We denote R .= Rb
w and then RT = Rw

b . When it is necessary, the matrix Rb
a transforms the

coordinate of a vector expressed in a-frame into b-frame.
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Since we are dealing with vectors, we have no information about the vector absolute position,
which means that we are rotating it from its point of application, but we are not translating it.
Calling Ow,Ob the origin of world and body coordinate systems respectively, we need to subtract
them from vectors in order to eliminate offsets due to translation.
We obtain, starting from Eq.(2.3),(2.4)

xb = R(xw −Ow
w) = Rxw + Ob

w (2.5)
xw = RT (xb −Ob

b) = RTxb + Ow
b (2.6)

It is common to define the augmented state vector as [xT 1]T ∈ R4 in order to obtain matrices
representation of the rototranslation, that are[

xb
1

]
=
[

R Ob
w

0T 1

] [
xw
1

]
(2.7)

[
xw
1

]
=
[
RT Ow

b

0T 1

] [
xb
1

]
(2.8)

In this thesis, since we are solving the problem of attitude determination, we will only care
about rotation matrices, while we will not need information about absolute position between
frames.

2.2.3 Coordinate rotation

There are several ways to build the rotation matrix, depending on the adopted convention.
The sequences are called Euler or Tait-Bryan rotations, depending on which axis we choose. A
simple case is to build the matrix as a sequence of three rotations, one for each axis.
In this case we will consider the Yaw-Pitch-Roll sequence, that is defined as the sequence of
rotation about z-axis, y-axis and x-axis. This sequence is a typical choice for vehicle attitude.
We can now define single rotations about axis, where each one is obtained by a rotation matrix.
The three coordinate rotations, that are shown in Fig.(2.2) are equal to:

• Yaw rotation ψ: rotation about z axis,

(x, y, z)→ (x′, y′, z) Rz(ψ) =

cos(ψ) sin(ψ) 0
-sin(ψ) cos(ψ) 0

0 0 1

 (2.9)

• Pitch rotation θ: rotation about y axis,

(x, y, z)→ (x′, y, z′) Ry(θ) =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.10)

• Roll rotation φ: rotation about x axis,

(x, y, z)→ (x, y′, z′) Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (2.11)
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Figure 2.2: Elementary rotations

The sequence of rotation about different axis translates into matrix premultiplication, and then
the Yaw-Pitch-Roll sequence gives

R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (2.12)

=

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)


cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)


cos(ψ) sin(ψ) 0
-sin(ψ) cos(ψ) 0

0 0 1

 (2.13)

Evaluating products in Eq.(2.13) we obtain the final relation between world and body frames,
that is:

R(φ, θ, ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ

 (2.14)

The inverse relation, that is the one which expresses a body reference vector in world coordinates
is given by the transpose of (2.14), that is

RT (φ, θ, ψ) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθcψ − sφcψ
−sθ cθsφ cθcφ

 (2.15)

Knowing matrix in Eq.(2.14), the single axis rotation angles can be obtained by

φ = atan2(r23, r33) (2.16)
θ = -asin(r13) (2.17)
ψ = atan2(r12, r11) (2.18)

where the entries of R are mapped as

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.19)

The main difference between different choice for the sequence of rotation is the inverse operation,
that is the previous one. Since in physical problems the aim consists of obtaining angles that
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are capable of describing true quantities, it is necessary to choice a consistent representation.
In the case of motorcycle there is a correspondence between these angles and vehicle attitude,
that is:

• Yaw: rotation about z axis is the first one applied and it corresponds to the turn of a
motorcycle, while staying upright.

• Pitch: rotation about y axis is applied when the vehicle has turned yet, and then when
it is still in vertical position. The pitch rotation corresponds to work of suspensions and
wheelie phenomena.

• Roll: rotation about x axis is applied when the vehicle has pitched yet. In this case the
roll rotation corresponds to the lean condition.

Last, it is important to remember that rotations are not commutative and then the same angles
but in a different sequence leads to different orientation, and so the sequence z-y-x is the most
similar to the real angles we are dealing with. A representation of the sequence of rotations in
show in Fig.(2.3).

O

x

y

z

x′

y′

z′

x′′

y′′

z′′

x′′′

y′′′

z′′′

ψ

θ

φ

Figure 2.3: Yaw-Pitch-Roll rotation sequence
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2.2.4 Heading frame

It is important to consider also the heading frame, which is the one where velocities are read.
Indeed, longitudinal, lateral and vertical velocities of the vehicle are determined by sensors in
this frame, whose x-axis always points the actual direction of the motorcycle.
The transformation between world and heading frame can be obtained from R by substituting
φ = 0, θ = 0, obtaining

Rh
w = R(0, 0, ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1

 (2.20)

while the transformation between heading and body frame can be obtained from R by substi-
tuting ψ = 0, obtaining

Rb
h = R(φ, θ, 0) =

 cθ 0 −sθ
sφsθ cφ cθsφ
cφsθ −sφ cθcφ

 (2.21)

An example of relation between world, heading and sensor frame is shown in Fig.(2.4).

xw

yw

zw

(a) World frame
xw

yw

zw

xh

yh

zh

(b) heading frame

xw

yw

zw

xh

yh

zh

xb

yb

zb

(c) heading and Body frame

Figure 2.4: World, Heading and Body reference systems
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2.3 Kinematics of rotation matrices
We now want to derive some kinematics properties of the rotation matrices, including their
dependence on the relative angular velocity between two frames.
First, we derive the rotation matrix derivative, and then we find the relation between rates of
angles and angular velocities.

2.3.1 Rotation matrix time derivative

Starting from rotation matrix definition, we have that

R(t)RT (t) = I (2.22)

Taking the time derivative of both members of Eq.(2.22) we obtain

d

dt
[R(t)RT (t)] = d

dt
I (2.23)

Ṙ(t)RT (t) + R(t)ṘT (t) = 0 (2.24)

Let’s define

S(t) .= Ṙ(t)RT (t) (2.25)

Then, Eq.(2.24) becomes

Ṙ(t)RT (t) + R(t)ṘT (t) = 0 (2.26)
Ṙ(t)RT (t) + [Ṙ(t)RT (t)]T = 0 (2.27)

S(t) + ST (t) = 0 (2.28)

S matrix verifies the anti-symmetric property and then it appertains to so(3) group, defined as

so(3) = {S ∈ R3×3 : S = −ST } (2.29)

Starting from a vector s ∈ R3, its matrix S ∈ so(3) can be written as

[s]×
.= S =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 (2.30)

Depending on the case, we will write S or [s]× for simplicity.
Antisymmetric matrices, also known as skew-symmetric, are directly related to the cross prod-
uct. Having s,v ∈ R3, the cross product s× v can be written as

s× v = [s]×v (2.31)

where the previous definition has been applied. This is an important relation that will be useful
later on since it allows to express the cross product as a matrix-vector multiplication.
From Eq.(2.25) we obtain

Ṙ(t) = S(t)R(t), with S ∈ so(3) (2.32)

that is the rotation matrix derivative. We now want to find the expression for S(t).
If we consider a rotating vector v(t) we have that

|v(t)| = R(t)v(t) ⇒ v(t) = RT (t)|v(t)| (2.33)

9



since in the body frame this vector is constant, because it is attached to this moving frame.
Taking the derivative of this vector we obtain

v̇(t) = ṘT (t)|v(t)| = RT (t)ST |v(t)| = RT (t)[−s]×|v(t)| (2.34)

The rotating vector derivative is also equal to

v̇(t) = ωwb/w × v(t) = [ωwb/w]×v(t) (2.35)

where ωwb/w is the angular velocity of the body with respect to the world, expressed in world
frame. From Prop.(A.12) we have that

v̇(t) = [RTωbb/w]×v(t) = RT [ωbb/w]×Rv(t) = RT [ωbb/w]×|v(t)| (2.36)

Comparing Eq.(2.35)-(2.36) we have obtained that

S = [ωbb/w]T× =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 (2.37)

From this relation we have that the rotation matrix kinematics from world to body is equal to

Ṙb
w(t) = [ωbb/w]T×Rb

w(t) (2.38)

2.4 Rates of angles and angular velocities relation

2.4.1 Relation between angular velocities and rates of angles from rotation
matrix

Starting from the rotation matrix derivative

Ṙ(t) = [ω(t)]T×R(t) (2.39)

it corresponds to a matrix first order differential equation, which solution is

R(t) = e
∫

[ω(t)]T×dtR(0) (2.40)

Since the skew-symmetric matrix is time variant, we cannot find a closed form solution for the
previous equation.
Since we need an implementable version to calculate angles we can approximate the matrix
derivative. The simplest choice is to approximate the derivative with a first order difference,
that is forward Euler.
With this approximation we are supposing to have constant angular velocities during each
sample, and this results in

R(k + 1) = R(k) + T [ω(k)]T×R(k) = [I + T [ω(k)]T×]R(k) (2.41)

If we start from Eq.(2.40) we can find a better approximation for the continuous time expression
of R(t) that is

R(k + 1) = eT [ω(k)]T×R(k) (2.42)
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Starting from Eq.(2.42), we can derive Eq(2.41) by taking the first order Taylor series expansion
of the exponential. From Rodrigues formula, we have that

eT [ω(k)]T× = eT
[
I + sin||ω(k)||

||ω(k)|| [ω(k)]T× + 1− cos||ω(k)||
||ω(k)||2

(
[ω(k)]T×

)2
]

(2.43)

The update algorithm, which takes care of the entire series expansion of the matrix exponential
is

Algorithm 1 Rotation matrix estimates
Require: T, φ0, θ0, ψ0, ωx, ωy, ωz
for k = 0 to t− 1 do

Rk+1 = eT
[
I + sin||ω(k)||

||ω(k)|| [ω(k)]T× + 1−cos||ω(k)||
||ω(k)||2

(
[ω(k)]T×

)2
]
Rk

subject to Rk+1RT
k+1 = I, det[Rl+1] = 1

end for
return R1:t

Since we are dealing with an approximation of the matrix evolution, it is important to keep
the matrix to maintain its properties of rotation matrix, that are unitary determinant and
orthogonality. After we obtain its matrix rotation properties, we can find angles at time k by
the relations Eq.(2.16)-(2.17)-(2.18).
It is possible to derive a direct relation between the time derivatives of angles and angular
velocities expanding Eq.(2.39).

2.4.2 Direct relation between angular velocities and rate of angles

Let’s write the matrix

R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (2.44)

with a compact notation, where the single matrices become

Rx(φ) =

1 0 0
0 cφ sφ
0 −sφ cφ

 , Ry(θ) =

cθ 0 −sθ
0 1 0
sθ 0 cθ

 , Rz(ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1

 (2.45)

Recalling the matrix derivative equation, we have that

Ṙ(t) = [−ω(t)]×R(t) (2.46)
[−ω(t)]× = Ṙ(t)RT (t) (2.47)

Evaluating the explicit version of Ṙ(t) we obtain

Ṙ(t) = ṘxRyRz + RxṘyRz + RxRyṘz (2.48)

from which

[−ω(t)]× = (ṘxRyRz + RxṘyRz + RxRyṘz)RT
z RT

y RT
x (2.49)

= ṘxRT
x + RxṘyRT

y RT
x + RxRyṘzRT

z RT
y RT

x (2.50)
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Evaluating ṘxRT
x , ṘyRT

y , ṘzRT
z we obtain

ṘxRT
x = φ̇

0 0 0
0 −sφ cφ
0 −cφ −sφ


1 0 0

0 cφ −sφ
0 sφ cφ

 = φ̇

0 0 0
0 0 1
0 −1 0

 = φ̇[−e1]× (2.51)

ṘyRT
y = θ̇

−sθ 0 −cθ
0 1 0
cθ 0 −sθ


 cθ 0 sθ

0 1 0
−sθ 0 cθ

 = θ̇

0 0 −1
0 0 0
1 0 0

 = θ̇[−e2]× (2.52)

ṘzRT
z = ψ̇

−sψ cψ 0
−cψ −sψ 0

0 0 1


cψ −sψ 0
sψ cψ 0
0 0 1

 = ψ̇

 0 1 0
−1 0 0
0 0 0

 = ψ̇[−e3]× (2.53)

Inserting the previous terms in Eq.(2.50) we obtain

[−ω(t)]× = φ̇[−e1]× + Rxθ̇[−e2]×RT
x + RxRyψ̇[−e3]×RT

y RT
x (2.54)

Writing explicitly the previous terms of the sum we have

Rxθ̇[−e2]×RT
x = θ̇

1 0 0
0 cφ sφ
0 −sφ cφ


0 0 −1

0 0 0
1 0 0


1 0 0

0 cφ −sφ
0 sφ cφ

 (2.55)

RxRyψ̇[−e3]×RT
y RT

x = ψ̇

1 0 0
0 cφ sφ
0 −sφ cφ


cθ 0 −sθ

0 1 0
sθ 0 cθ


 0 1 0
−1 0 0
0 0 0


1 0 0

0 cφ −sφ
0 sφ cφ


 cθ 0 sθ

0 1 0
−sθ 0 cθ


(2.56)

= ψ̇

1 0 0
0 cφ sφ
0 −sφ cφ


 0 cθ 0
−cθ 0 −sθ

0 sθ 0


1 0 0

0 cφ −sφ
0 sφ cφ

 = (2.57)

= ψ̇

 0 cθcφ −cθsφ
−cθcφ 0 −sθ
sφcθ sθ 0

 (2.58)

The skew-symmetric representation of ω results

[−ω(t)]× =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 =

 0 −sφθ̇ + cθcφψ̇ −cφθ̇ − cθsφψ̇
sφθ̇ − cθcφψ̇ 0 φ̇− sθψ̇
cφθ̇ + cθsφψ̇ −φ̇+ sθψ̇ 0

 (2.59)

from which it is possible to derive the angles rates-angular velocities relation, that isωxωy
ωz

 =

 +φ̇− sθψ̇
+cφθ̇ + cθsφψ̇

−sφθ̇ + cθcφψ̇

 =

1 0 −sθ
0 +cφ +cθsφ
0 −sφ +cθcφ


φ̇θ̇
ψ̇

 (2.60)
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It is possible to invert the previous relation in order to obtain the rates of angles as an affine
function of the angular velocities of the system, that isφ̇θ̇

ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


ωxωy
ωz

 , with cθ 6= 0 (2.61)

The inversion of Eq.(2.60), has a singularity when cθ = 0, θ = ±90°, but in our case, since θ
represents the pitch angle, −90° < θ < +90°.
In order to compute the estimate of the attitude from angular velocities we need to discretize
Eq.(2.61), as we did for Eq.(2.39).
The simplest case to approximate the derivative operator is to consider a first order difference
equation. The equivalent first order discretized system is equal toφ(k + 1)

θ(k + 1)
ψ(k + 1)

 =

φ(k)
θ(k)
ψ(k)

+ T

1 sin[φ(k)]tan[θ(k)] cos[φ(k)]tan[θ(k)]
0 cos[φ(k)] −sin[φ(k)]
0 sin[φ(k)]/cos[θ(k)] cos[φ(k)]/cos[θ(k)]


ωx(k)
ωy(k)
ωz(k)

 (2.62)

In this case we have no constraints that have to be respected, and so it is possible to direct
implement the previous equation.
We can then construct the rotation matrix a posteriori once we have the estimates of angles,
keeping all rotation matrix properties satisfied.

Algorithm 2 Rates of angles and rotation matrix estimates
Require: T, φ0, θ0, ψ0, ωx, ωy, ωz
for k = 0 to t do
φk+1 = φk + T (ωx + sin[φk]tan[θk]ωy + cos[φk]tan[θk]ωz)
θk+1 = θk + T (cos[φk]ωy − sin[φk]ωz)
ψk+1 = ψk + T (sin[φk]/cos[θk]ωy + cos[φk]/cos[θk]ωz)
Rk+1 = R(φk+1, θk+1, ψk+1)

end for
return φ1:t, θ1:t, ψ1:t,R1:t
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Chapter 3

Gyroscope and Acceleration measure
characterization

The aim of this chapter is to derive the relations between gyroscope and accelerometer mea-
surements and body angles.
From these relation it is possible to solve attitude estimation problem with single IMU sensor.

3.1 Attitude estimation from gyroscope
The relation between rates of angles and angular velocities is

ζ̇(t) = f(ζ(t),ω(t)) (3.1)

where ζ = [φ, θ, ψ]T . The discretization with forward euler gives
ζk+1 − ζk

T
= f(ζk,ωk) ⇒ ζk+1 = ζk + T [f(ζk,ωk)] (3.2)

where the explicit version of previous equation is the one derived in Ch.(2), that is

φk+1 = φk + T [ωk,x + sin(φk)tan(θk)ωk,y + cos(φk)tan(θk)ωk,z] (3.3)
θk+1 = θk + T [cos(φk)ωk,y − sin(φk)ωk,z] (3.4)
ψk+1 = ψk + T [sin(φk)/cos(θk)ωk,y − cos(φk)/cos(θk)ωk,z] (3.5)

Since gyroscope measure at time k is ωk, the previous relation consists of the attitude estimation
algorithm based on gyroscope.

3.2 Attitude estimation from accelerometer
In the case we only have access to accelerometer, we deal with a measure of body accelerations,
with the gravity term in addition. Accelerometer readings are equal to

a = p̈ + Rg (3.6)

where g = [0, 0, g]T , g = 9.81m/s2, p̈ includes all acceleration terms beside gravity and R is the
rotation matrix from world to body frame.
Writing Eq.(3.6) in explicit form leads toaxay

az

 =

p̈xp̈y
p̈z

+

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ


0

0
g

 =

p̈xp̈y
p̈z

+

 −sin(θ)g
sin(φ)cos(θ)g
cos(φ)cos(θ)g

 (3.7)
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From the previous relation it is possible to derive exact values of φ and θ. The yaw angle ψ
cannot be estimated using only accelerometer, because the projection of gravity is invariant
with respect to z-axis rotations.
The estimates consist of a static relation, which does not depend on time and there are not
approximation due to discretization. From Eq.(3.7) we can state that

θ = asin
[ p̈x − ax

g

]
(3.8)

φ = atan
[ay − p̈y
az − p̈z

]
(3.9)

It is important to notice that in order to have a correct estimate for θ, we need to know p̈x, that
is the body longitudinal acceleration, while for φ, we need to know p̈y and p̈z, that are lateral
and vertical accelerations. In general, acceleration terms heavily depend on body dynamics,
and then in order to characterize this term we need a description of how the vehicle is moving.

3.2.1 Acceleration characterization

We will insert the knowledge about external forces by finding the acceleration that a point in
the body is subject to, through kinematics analysis.

Curvilinear motion

Our aim is to completely characterize the acceleration of a point moving with a curvilinear
motion, as shown in Fig.(3.1). The motion of the position of the center of mass of a rigid body
can be seen as a moving frame of reference described by p(t).

xw

yw

zw

Op(t1)

p(t2)

Figure 3.1: Curvilinear motion

The position of p(t) can be described by the position vector

rwb/w = xb/wuwx + yb/wuwy + zb/wuwz (3.10)

where uwx ,uwy ,uwz are world reference frame versors, which are constant by definition, and the
subscript b/w means that we are referring to distances between center of mass of body and
world frame. Since all vectors are expressed in world frame we omit the superscript w in order
to ease the notation. With these coordinates we are supposing to observe the moving point in
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an inertial fixed frame.
The velocity of the point, from derivative definition, is equal to

vb/w =
drb/w
dt

(3.11)

and inserting Eq.(3.10) in the previous one we obtain

vb/w =
dxb/w
dt

ux +
dyb/w
dt

uy +
dzb/w
dt

uz + xb/w
dux
dt

+ yb/w
duy
dt

+ zb/w
duz
dt

(3.12)

Since we have constant versors, the expression of the velocity becomes

vb/w =
dxb/w
dt

ux +
dyb/w
dt

uy +
dzb/w
dt

uz (3.13)

In the case we have access to angular velocity of rotation of the point and the position vector
with respect the world frme origin, we can express the velocity vector in closed form as

vb/w = ωb/w × rb/w (3.14)

where ωb/w is the angular velocity between the center of mass on the body frame and world,
expressed in world frame.
As we did for the velocity derivation, we can proceed with acceleration terms. Applying the
derivative definition to the velocity of Eq.(3.13), we obtain

ab/w =
d2xb/w
dt2

ux +
d2yb/w
dt2

uy +
d2zb/w
dt2

uz (3.15)

Differentiating Eq.(3.14) we obtain

ab/w =
dvb/w
dt

= d

dt
[ωb/w × rb/w] (3.16)

=
dωb/w
dt

× rb/w + ωb/w ×
drb/w
dt

(3.17)

= αb/w × rb/w + ωb/w × (ωb/w × rb/w) (3.18)
= αb/w × rb/w + ωb/w × vb/w (3.19)

where α is the derivative of the angular velocity vector. The acceleration term is made of two
components :

• αb/w × rb/w: longitudinal acceleration.

• ωb/w × vb/w: centripetal acceleration term, generated by the curvilinear motion.

Relative motion

We start considering the point p(t) as seen by two different frames, that are the world frame
and the body frame, as shown in Fig.(3.2). In this case we treat p(t) as the location of the
sensors in the vehicle. Then, the position vector of p(t) can be decomposed in

rs/w = rb/w + rs/b (3.20)

17



xw

yw

zw

O

O′

P

xb

yb

zb

rb/w

rs/w
rs/b

Figure 3.2: Relative motion frames

The three members of previous equations are then
rs/w = xs/wux + ys/wuy + zs/wuz (3.21)
rb/w = xb/wux + yb/wuy + zb/wuz (3.22)
rs/b = xs/buxb + ys/buyb + zs/buzb (3.23)

Recalling that body frame is moving, we have that its versors are time variant.
The respective velocities are equal to

vs/w =
drs/w
dt

=
dxs/w
dt

ux +
dys/w
dt

uy +
dzs/w
dt

uz (3.24)

vb/w =
drb/w
dt

=
dxb/w
dt

ux +
dyb/w
dt

uy +
dzb/w
dt

uz (3.25)

vs/b =
drs/b
dt

=
dxs/b
dt

uxb +
dys/b
dt

uyb +
dzs/b
dt

uzb + xs/b
duxb
dt

+ ys/b
duyb
dt

+ zs/b
duzb
dt

(3.26)

Defining

v̄s/b
.=
dxs/b
dt

uxb +
dys/b
dt

uyb +
dzs/b
dt

uzb (3.27)

the velocity of a point which moves on a trajectory that is r(t) is equal to

vs/w = vb/w + vs/b = vb/w + v̄s/b + xs/b
duxb
dt

+ ys/b
duyb
dt

+ zs/b
duzb
dt

(3.28)

From Poisson relation, we have that
du
dt

= ω × u (3.29)

where ω is the rate of change of versors, that is the angular velocity of body with respect to
world frame.
Substituting Eq.(3.29) for each derivative in velocity equation we obtain

vs/w = vb/w + v̄s/b + xs/b(ωb/w × uxb) + ys/b(ωb/w × uyb) + zs/b(ωb/w × uzb) (3.30)
= vb/w + v̄s/b + ωb/w × (xs/buxb + ys/buyb + zs/buzb) (3.31)
= vb/w + v̄s/b + ωb/w × rs/b (3.32)

The previous equation depends on three terms, that are:
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• vb/w: Relative velocity between two frames, that is the velocity of the body frame center
with respect to the world fixed coordinates

• v̄s/b: Relative velocity of the point with respect to the body frame in world reference
frame

• ωs,w × rs/b: Rotational velocity of the point due to rotation of the body reference frame.

From velocity term, it is possible to derive the acceleration term of this point.
Differentiating Eq.(3.32) we obtain

as/w =
dvb/w
dt

+
dv̄s/b
dt

+ d

dt
[ωb/w × rs/b] (3.33)

=
dvb/w
dt

+
dv̄s/b
dt

+
dωb/w
dt

× rs/b + ωb/w ×
drs/b
dt

(3.34)

Since previous equation is made of several derivatives, we proceed by evaluating each term
separately.
For the term relative to vb/w, we have that

ab/w =
dvb/w
dt

=
d2xb/w
dt2

ux +
d2yb/w
dt2

uy +
d2zb/w
dt2

uz (3.35)

that coincides with the acceleration of the center of body frame.
Regarding to v̄s/b, we have that

dv̄s/b
dt

=
d2xs/b
dt2

uxs/b +
d2ys/b
dt2

uys/b +
d2zs/b
dt2

uzs/b + ωb/w × vs/b (3.36)

Defining

ās/b
.=
d2xs/b
dt2

uxs/b +
d2ys/b
dt2

uys/b +
d2zs/b
dt2

uzs/b (3.37)

we can substitute Eq.(3.36)-(3.37) in Eq.(3.34) obtaining

as/w = ab/w + ās/b + ωb/w × vs/b +
dωb/w
dt

× rs/b + ωb/w ×
drs/b
dt

(3.38)

= ab/w + ās/b + ωb/w × vs/b +αb/w × rs/b + ωb/w × vs/b + ωb/w × ωb/w × rs/b (3.39)
= ab/w + ās/b +αb/w × rs/b + 2ωb/w × vs/b + ωb/w × ωb/w × rs/b (3.40)

The previous expression is the complete acceleration under relative motion. Previous equation
includes all relative acceleration terms, where:

• αb/w × rs/b is the transverse acceleration with respect to body frame.

• 2ωb/w × vs/b is the Coriolis acceleration.

• ωb/w × ωb/w × rs/b is the centripetal acceleration with respect to body frame.
Starting from relative acceleration equations in Eq.(3.40), we can include the explicit version of
the relative acceleration between world and body frame, that is ab/w, which yields

a = αb/w × rb/w + ωb/w × vb/w + ās/b +αb/w × rs/b + 2ωb/w × vs/b + ωb/w × ωb/w × rs/b
(3.41)

In the case of a rigid body, we have that the relative position between sensor frame and a generic
point on the rigid body does not change over time, which means that vs/b = 0.
With this assumption, the acceleration of a fixed point on a rigid body is equal to

a = αb/w × rb/w + ωb/w × vb/w +αb/w × rs/b + ωb/w × ωb/w × rs/b (3.42)
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Body frame representation

Each of the previous relation can be obtained in body frame through the rotation matrix R.
The most important equations that we need to project into body frame are Eq.(3.19)-(3.42).
It is fundamental to project the acceleration terms in body frame, since we have access to body
measurements. Since positions, velocities and accelerations are referred to the center of mass
of the body we will omit the subscript b/w to ease the notation. In particular, we have:

• ωbb/w is the body angular velocity vector, which coincides with gyroscope readings

• ab is the acceleration vector of the sensor mounting position

• vb is the velocity vector of the center of mass of the body

• rbs/b is the radius vector which consists of the relative position of the sensor mounting
position with respect to the the center of mass

Applying distributive property of rotation matrix with respect to the cross product, Eq.(3.19)
becomes

ab = R[αwb/w × rw + ωwb/w × vw] (3.43)
= Rαwb/w ×Rrw + Rωwb/w ×Rvw (3.44)
= αbb/w × rb + ωbb/w × vb (3.45)

With gyroscope readings we can write the expression of the body acceleration as
ab = v̇b + ωbb/w × vb (3.46)

The evaluation of v̇b yields to
v̇b = Ṙvw + Rv̇w = −[ωbb/w]×Rvw + Rv̇w (3.47)

The body acceleration expression becomes
ab = −[ωbb/w]×Rvw + Rv̇w + ωbb/w × vb (3.48)

= −ωbb/w × vb + Rv̇w + ωbb/w × vb (3.49)
= Rv̇w (3.50)

that is the acceleration of the body expressed in body frame.
We can apply the same properties with Eq.(3.42), from which we obtain the body frame accel-
eration expression when the sensor placement is out of the center of mass of the vehicle.

ab = R[αwb/w × rw + ωwb/w × vw +αwb/w × rws/b + ωwb/w × ωwb/w × rws/b] (3.51)
= αbb/w × rb + ωbb/w × vb +αbb/w × rbs/b + ωbb/w × ωbb/w × rbs/b (3.52)
= v̇b + ωbb/w × vb +αbb/w × rbs/b + ωbb/w × ωbb/w × rbs/b (3.53)

While the first two terms of previous equations are the ones related to the acceleration of the
center of mass, the others are the additive terms due to relative position with respect to the
center of mass.
In the vehicle case, we have that the mounting position of the sensors does not coincide with
the center of mass of the vehicle, and then the measured acceleration is not the body one and
needs to be corrected.
In a real scenario, we can compute rbs/b based on an estimate of the vehicle center of mass and
correct the acceleration.
With this formula, we can also describe which acceleration is applied in every point of the body,
to understand the forces that a particular part of the vehicle is subjected to.
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3.2.2 Accelerometer description

Recalling the equation which describes the acceleration of the vehicle with respect to the body
frame, we have that the accelerometer readings are modeled as

ab = αbb/w × rb + ωbb/w × vb + Rgw = v̇b + ωbb/w × vb + Rgw (3.54)

where we suppose our sensor to be on the center of mass.
For an easier notation, we omit the notation referred to body frame, remembering that all
quantities are expressed in body frame. The explicit version of the acceleration term coincides
with axay

az

 =

v̇xv̇y
v̇z

+

−ωzvy + ωyvz
+ωzvx − ωxvz
−ωyvx + ωxvy

+

 −sin(θ)g
sin(φ)cos(θ)g
cos(φ)cos(θ)g

 (3.55)

Starting from these model, the estimates of roll and pitch angles from Eq.(3.55) are equal to

θ̂ = asin
(
v̇x − ωzvy + ωyvz − ax

g

)
(3.56)

φ̂ = atan
(
ay − v̇y − ωzvx + ωxvz
az − v̇z + ωyvx − ωxvy

)
(3.57)

From the previous equations it is possible to find estimates for pitch and roll angles, based on
gyroscope measurements and velocity measurements.

3.2.3 IMU noise characterization

In order to better characterize IMU sensors, it is useful to introduce the main noise sources
IMU are subjected to.
Following the analysis in [13], main IMU errors are:

• Scale and misalignment: these errors are intrinsic in IMU sensors, and depend on their
manufacturing technique. They will not be considered in this analysis.

• Constant bias: this error consists of a constant term which is added in every measure. This
is relevant in gyroscopes, because their measures are related to angles through non-linear
integration, making the constant bias to grow linearly with time. Since this type of error
can be estimated when no rotations are applied to gyroscope, it can be compensated, and
it will not be considered.

• Random source noise: this class includes all errors that arise due to random sources, and
so that are not predictable or directly compensated. The two major contributes are:

– Random additive gaussian noise: this error consists of an additive high frequency
noise that is always present in all sensors, caused by thermomechanical events.

– Random walk bias instability: the bias instability consist of a slowly changes over
time due to flicker noise in the electronics and other effects. For this reason it is
modeled as a random walk.
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According to [13], simple continuous time model for an IMU sensor is considered, that is
{

ỹ(t) = y(t) + r(t) + ny(t)
ṙ(t) = nr(t)

(3.58)

where y is the ideal measure, ỹ is the noisy measure, r is a random walk process and ny,nr are
gaussian random vectors.
The gaussian random vectors are equal to

ny(t) ∼ N (0,R), nr(t) ∼ N (0,Q) (3.59)

It is assumed to have independence between different axis and also to have the same variance
in all axis. With this assumption all covariance matrices are diagonal and depend only on one
parameter.
The dynamical system of errors, that is useful in order to simulate noise, is{

ṙ(t) = nr(t)
e(t) = r(t) + ne(t)

(3.60)

It is possible to write the previous system in explicit form, that is


ṙx(t)
ṙy(t)
ṙz(t)

 =


0 0 0
0 0 0
0 0 0



rx(t)
ry(t)
rz(t)

+


nr,x(t)
nr,y(t)
nr,z(t)



ex(t)
ey(t)
ez(t)

 =


1 0 0
0 1 0
0 0 1



rx(t)
ry(t)
rz(t)

+


ny,x(t)
ny,y(t)
ny,z(t)


(3.61)

Since this information is used to simulate data, the discretized version of the system is needed.
Sampling the system with sampling time T , and calling the state transition matrix and the
output matrix as A,C the discretized version are

AD = eAT = I (3.62)
CD = C = I (3.63)
RD = R (3.64)

Regarding to covariance matrix of the state, this corresponds to

QD =
∫ T

τ=0
eAτQeATTdτ =

∫ T

τ=0
Qdτ = TQ (3.65)

The discrete time propagation equations are equal to{
rk+1 = rk + nr, nr ∼ N (0,TQ)
ek = rk + ne, nr ∼ N (0,R)

(3.66)

Using this discretized system, measures from noisy sensors can be simulated by adding to ideal
values this simulation error. The algorithm used to simulate noisy IMU measures is the following
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Algorithm 3 Generation of noisy measures from noiseless ones
Require: T, yx, yy, yz, σ2

r , σ
2
e

for k = 0 to t− 1 do
nr ∼ N (0,TQ);
ne ∼ N (0,R);
rk+1 = rk + nr;
ek+1 = rk+1 + ne;
ỹk+1 = yk+1 + ek+1;

end for
return ỹ1:t

3.2.4 Consideration with single IMU sensor estimates

In this chapter we evaluated the differences about estimates using only gyroscope or only ac-
celerometer readings. The main differences between these sensors has been

• Gyroscope involves a differential equations, the estimates from angular velocities are re-
lated to previous values, which makes the estimate to be reasonable, but at the same time
it is affected by constant or slowly variant errors, which make the system to diverge.

• Accelerometer estimates in a static condition, and then it is affected by high frequency
errors, since it has no continuity between estimates at different sample instants.

• While gyroscope estimates all three angles, since accelerometer estimates are based on
gravity, it can only estimates roll and pitch angle. The lack of a yaw estimate is not an
issue in our case, since we are not interested in knowing the vehicle rotation about z-axis.
Since z-axis rotation is the first rotation in our reference system, pitch and roll rotation
are not affected by yaw angle, and then they are still correct even if we are not able to
estimates z-axis rotation.

The key idea is then to fuse gyroscope and accelerometer readings in order to compute the
attitude estimation based on a combination of the sensors, exploiting their properties.
In all methods we will give more importance to gyroscope readings: gyroscope measurements
can be affected by errors but their continuous time equations are mathematically exacted, while
accelerometer readings are affected by the position of the sensor with respect to the center of
mass and they also depend on velocity measurements, that in a real scenario are estimated.
For this reasons, accelerometer readings are affected by errors, and then they will be used in
order to correct the estimates provided by gyroscopes.
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Chapter 4

Sensor Fusion Estimation

In previous chapter we evaluated the main characteristics of attitude estimation based on single
IMU measurement. Since gyroscope and accelerometer present complementary properties, the
idea is to combine information about both sensors to compute the attitude estimation.
These methods, known as sensor fusion estimation, are well described in literature, as they are
implemented following different approaches.
It is important to notice that all these methods are computed under the assumption of having
null external forces. This translates in a strong constraints about the motion that the body
can do, since in order to have negligible external forces it has to move mainly under uniform
motion. With this approximation the accelerometer only measures the gravity force, and then
it is used as an absolute direction of the gravity vector.
In [2] the problem is solved using a complementary filter which first solves the problem for
accelerometer and gyroscope separately, and after it weights each estimate to obtain a fused
one.
The complementary filter is the simplest fuse algorithm, since it only combines information
obtained by different IMU in a static way.
The general equation of a complementary filter is

ξ̂k = βξ̂gk + (1− β)ξ̂ak , β ∈ [0, 1] (4.1)

where ξ̂gk and ξ̂ak are the estimates from gyroscope and accelerometer respectively, and β is a
filter coefficient which weights the measures, and has to be optimized.
This type of filter is simple but it does not consider any correction method, and so it is strongly
dependent on the value of the weight. Since accelerometer measures are difficult to describe,
the weighting parameter will be set very close to 1.
In [14],[15], attitude estimation problem is solved by finding an optimal rotation matrix, instead
of finding directly the estimates of the angles.
These methods are based on finding an optimal matrix in SO(3) under gyroscope and accelerom-
eter constraints. This translates into an optimization problem that is

R̂ = arg min
R∈SO(3)

(λ1||a −Rg||2) (4.2)

s.t. Ṙ = [−ω]×R (4.3)

The problem is solved in suboptimal manner, applying gyroscope and accelerometer condition
in sequence. Since the accelerometer is able to describe only two variables with respect to the
three that a rotation matrix depends on, the problem is ill-defined.
In these papers, this issue is solved by inserting a third IMU sensor, that is the magnetometer.
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The magnetometer is used because it describes the absolute direction of the earth magnetic
field, and then it has information about z-axis rotation, which is the one that accelerometer is
invariant to.
With the addition of the magnetometer the problem becomes well-defined, and then the opti-
mization problem is solved as

R̂ = arg min
R∈SO(3)

(λ1||a −Rg||2 + λ2||m−Re||2) (4.4)

s.t. Ṙ = [−ω]×R (4.5)

where m is the measure from magnetometer, and e is the earth magnetic field direction.
Since magnetometer measures are sensitive to external electromagnetic fields, in the case of
motorcycle, we will not assume to have this sensor, because it would be affected by too high
noise.
The aim is then to develop a sensor fusion algorithm which has the following properties:

• It is based only on gyroscope and accelerometer measurements, while magnetometer sensor
is assumed to be absent.

• It is based on velocity measures, it includes information about acceleration, and then it
is not based on the assumption of treating accelerometer data as gravity direction vector.

• It has to combine IMU information in a more complete way with respect to complementary
filter.

This problem is analyzed in [10], where the accelerometer outputs are described adding the
longitudinal and centripetal acceleration beside gravity. The chosen fusion algorithm is an Ex-
tended Kalman Filter, which implicitly combines IMU data.
Sensor fusion problem solution can start from this method, with some advances regarding the
addition of more information about acceleration characterization, and different fusion algo-
rithms.
The fusion algorithm will be derived always with an optimization approach, in particular:

• The maximum a posteriori problem is derived, based on a non-linear system.

• Kalman filter and Extended Kalman Filter equations are derived as an optimization prob-
lem.
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4.1 MAP estimation
Consider a discrete time non linear system with additive white gaussian noise,{

xk+1 = f(xk,uk) + wk, wk ∼ N (0,Q)
yk = h(xk,uk) + nk, nk ∼ N (0,R)

(4.6)

The aim is to estimate the state based on state propagation and measurements, which means
that a full information estimator is needed, which translates into finding the maximum of the
posterior distribution, that is

{x̂0, x̂1, . . . , x̂t} = arg max
{x0,x1,...,xt}

p(x0,x1, . . . ,xt|y0,y1, . . . ,yt) (4.7)

The posterior distribution can be written in compact form, defining

p(x0:t|y0:t)
.= p(x0,x1, . . . ,xt|y0,y1, . . . ,yt) (4.8)

Applying Bayes rule it is possible to express the posterior distribution as

p(x0:t|y0:t) = p(x0:t,y0:t)
p(y0:t)

= p(yt|x0:t,y0:t−1)p(x0:t,y0:t−1)
p(y0:t)

(4.9)

= p(yt|x0:t,y0:t−1)p(yt−1|x0:t,y0:t−2)p(x0:t,y0:t−2)
p(y0:t)

(4.10)

= p(yt|x0:t,y0:t−1)p(yt−1|x0:t,y0:t−2) . . . p(y0|x0:t)p(x0:t)
p(y0:t)

(4.11)

= p(yt|x0:t,y0:t−1)p(yt−1|x0:t,y0:t−2) . . . p(y0|x0:t)p(xt|x0:t−1)p(x0:t−1)
p(y0:t)

(4.12)

= p(yt|x0:t,y0:t−1)p(yt−1|x0:t,y0:t−2) . . . p(y0|x0:t)p(xt|x0:t−1)p(xt−1|x0:t−2) . . . p(x0)
p(y0:t)

(4.13)

Previous relation can be expressed by a product of sequence as

p(x0:t|y0:t) = p(y0|x0:t)p(x0)∏t
k=1[p(yk|x0:k,y0:k−1)p(xk|x0:k−1)]

p(y0:t)
(4.14)

It is now necessary to evaluate the previous expression, based on system in Eq.(4.6). Since noise
at different time instants are independent, the conditioned probabilities are equal to

p(yk|x0:k,y0:k−1) = p(yk|xk) (4.15)
p(xk|x0:k−1) = p(xk|xk−1) (4.16)

Based on these properties, the posterior distribution of Eq.(4.14) is

p(x0:t|y0:t) = p(x0)∏t
k=0 p(yk|xk)

∏t−1
k=0 p(xk+1|xk)

p(y0:t)
(4.17)

In maximizing the posterior distribution over x, the denominator of Eq.(4.17) does not affect
the maximization, and then only its numerator is considered. Then, defining

p̃(x0:t|y0:t)
.= p(x0)

t∏
k=0

p(yk|xk)
t−1∏
k=0

p(xk+1|xk) ∝ p(x0:t|y0:t) (4.18)
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the maximization problem becomes

arg max
{x0,x1,...,xt}

p̃(x0:t|y0:t) = arg max
{x0,x1,...,xt}

p(x0:t|y0:t) (4.19)

Applying log function to p̃(x0:t|y0:t) it becomes

log[p̃(x0:t|y0:t)] = log[p(x0)
t∏

k=0
p(yk|xk)

t−1∏
k=0

p(xk+1|xk)] (4.20)

= log[p(x0)] +
t∑

k=0
log[p(yk|xk)] +

t−1∑
k=0

log[p(xk+1|xk)] (4.21)

The previous relation is based on conditioned probabilities expressions, and then it is necessary
to evaluate them. Starting from noise Gaussian distribution one has that

yk ∼ N (hk(xk,uk),R) (4.22)
xk+1 ∼ N (fk(xk,uk),Q) (4.23)

which means that

p(yk|xk) = 1√
det(2πR)

e−
1
2 (yk−hk(xk,uk))TR−1(yk−hk(xk,uk)) (4.24)

p(xk+1|xk) = 1√
det(2πQ)

e−
1
2 (xk+1−fk(xk,uk))TQ−1(xk+1−fk(xk,uk)) (4.25)

p(x0) = 1√
det(2πP0)

e−
1
2 (x0−µ0)TP−1

0 (x0−µ0) (4.26)

The log function applied to previous densities gives

log[p(yk|xk)] = −1
2(yk − hk(xk,uk))TR−1(yk − hk(xk,uk)) + c (4.27)

log[p(xk+1|xk)] = −1
2(xk+1 − fk(xk,uk))TQ−1(xk+1 − fk(xk,uk)) + c (4.28)

log[p(x0)] = −1
2(x0 − µ0)TP−1

0 (x0 − µ0) + c (4.29)

where c is made of terms which does not depend on x and then they are considered as constants
is the maximum problem.
With these results, taking the -log function, the maximization problem is equal to

arg max
{x0,x1,...,xt}

p̃(x0:t|y0:t) = arg max
{x0,x1,...,xt}

log[p̃(x0:t|y0:t)] = arg min
{x0,x1,...,xt}

−log[p̃(x0:t|y0:t)] (4.30)

and Eq.(4.21) becomes

arg min
{x0,x1,...,xt}

1
2 ||x0 − µ0||2P−1

0
+ 1

2

t∑
k=0
||yk − h(xk,uk)||2R−1 + 1

2

t−1∑
k=0
||xk+1 − f(xk,uk)||2Q−1

(4.31)

This means that maximizing the posterior distribution translates into solving a non linear least
square problem.
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This state estimation is known as full information estimation, which is associated with cost
index

J0:t(X) = 1
2 ||x0 − µ0||2P−1

0
+ 1

2

t∑
k=0
||yk − h(xk,uk)||2R−1 + 1

2

t−1∑
k=0
||xk+1 − f(xk,uk)||2Q−1 (4.32)

Depending on the assumption and the form of the system, the problem can be solved in different
ways. The main problems that arise are:

• Kalman Filter (KF): if the system is linear both in state and measure equations, then it
is possible to find a recursive closed form algorithm that update the estimate based only
on previous and actual step variables.

• Extended Kalman Filter (EKF): if the system is nonlinear we can proceed as the standard
kalman filter whose matrices are the linearization of the system at the current step. Even
in this case, it is possible to derive a recursive algorithm that is based only on previous
and actual step variables.

• Moving Horizon Estimation (MHE): if the system is nonlinear we can solve the optimiza-
tion problem in a longer horizon, instead of consider only one step before, as EKF does.
This procedure cannot be solved in closed form, in fact the minimization is done by using
a mathematical programming technique. In the particular case of a linear system, moving
horizon estimation coincides with smoothed Kalman filter.

4.2 Kalman Filter from MAP problem

Starting from the quadratic cost index as in Eq.(4.32), it is possible to find the closed form
solution in the case of linear system. This can be an alternative derivation of the Kalman filter,
based on an optimization approach, instead of the statistical derivation.
Consider the system

{
xk+1 = Axk + Buk + wk

yk = Cxk + Duk + nk
(4.33)

where x ∈ Rn,u ∈ Rm,y ∈ Rp, and

E[w(k)] = 0, E[w(k)w(k)T ] = Qk > 0 (4.34)
E[v(k)] = 0, E[v(k)v(k)T ] = Rk > 0 (4.35)
E[x(0)] = µ0, E[x(0)x(0)T ] = P0 > 0 (4.36)

together with independence of noise at different time instants. Let’s assume to have the same
number of inputs and observations, that are

{y1, . . . ,yk}, {u0, . . . ,uk−1} (4.37)
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Starting from the initial condition, it is possible to write a recursion for the state and the output,
that is

x0 = µ0 + w−1 ⇒ µ0 = x0 −w−1 (4.38)
x1 = Fx0 + Gu0 + w0 ⇒ Gu0 = x1 − Fx0 −w0 (4.39)
y1 = Hx1 + Du1 + v1 ⇒ y1 −Du1 = Hx1 + v1 (4.40)

... (4.41)
xk = Fxk−1 + Guk−1 + wk−1 ⇒ Guk−1 = xk − Fxk−1 −wk−1 (4.42)

yk = Hxk + Duk + vk ⇒ yk −Duk = Hxk + vk (4.43)

From the previous series of equations, it is possible to write the right part as a large linear
system, that is

bk = Φkzk + εk (4.44)

where

bk =



µ0
Gu0

y1 −Du1
...

Guk−2
yk−1 −Duk−1

Guk−1
yk −Duk


Φk =



1 0 0
−F 1 0 . . .
0 H 0

. . .
−F 1 0
0 H 0

... 0 −F 1
0 0 H


zk =



x0
x1
x2
...

xk−1
xk


εk =



w−1
w0
v1
...

wk−2
vk−1
wk−1
vk


(4.45)

and the covariance matrix of ε is

Wk = diag(P−1
0 ,Q−1

0 ,R−1
1 , . . . , ,Q−1

k−1,R
−1
k ) (4.46)

Since Eq.(4.44) is a linear system, its least square solution can be found by minimizing the cost
index

J(zk) = 1
2 ||Φkzk − bk||2W (4.47)

The LS solution for linear system, corresponds to

ẑk = (ΦT
kWkΦk)−1ΦT

kWkbk (4.48)

where the inverse term in Eq.(4.48) is possible because Φk never loses rank.
The solution of this LS problem yields to smoothed estimates, given all observation until k, that
means that we obtain

[x̂0|k, x̂1|k, . . . , x̂k|k]T = (ΦT
kWkΦ)−1

k ΦT
kWkbk (4.49)

In [16] it is proven that in the case of linear system, the solution of this minimization corresponds
to the smoothed Kalman filter estimation.
With this results we have a derivation for the Kalman filter which does not use any statistical
property. This means that the Kalman filter is the best unbiased linear estimator, which
translates into minimum error covariance, and at the same time is the optimal filter in the case
that we have Gaussian distribution.
Since Eq.(4.48) is quite complex to solve due to its linear time dependent dimension, it is possible
to derive a recursive version for solving the problem in (4.32), obtaining the same equation as
the standard Kalman filter.
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4.2.1 Kalman Filter derivation from quadratic cost function

Recursive Kalman filter equations will be derived, where we suppose to have a discrete time
linear system, that is {

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + nk
(4.50)

The idea is to recursively solve the LS problem, adding one term to the cost index at each
iteration, knowing that previous estimates are optimal for the previous cost index. This method
is known as Recursive Least Squares (RLS).
It is important to notice that solving an RLS problem does not solve the entire cost index:
indeed, while with the RLS the Kalman filter equations are derived, with the entire LS problem
Kalman smoother equations are obtained.
The minimization of the LS problem at each time instant is performed by Gauss-Newton method,
that is

xk+1 = xk − [∇2J(xk)]−1∇J(xk) (4.51)

Since the cost function J is quadratic, a single iteration of Gauss-Newton descent yields to the
minimum. The complete solution of RLS problem is shown in [17].
The cost function with linear system becomes

Jt|t = 1
2 ||µ0 − x0||2Q−1

0
+ 1

2

t∑
k=1
||yk −Cxk −Duk||2R−1

k

+ 1
2

t∑
k=1
||xk −Axk−1 −Buk−1||2Q−1

k

(4.52)

The kalman filter will be derived following the two steps approach as in [17], that are prediction
and correction. Let’s define

F =


0
0
...
A

 , zk =


x0
x1
...

xk

 (4.53)

The system index can be propagated through

Jk|k−1 = Jk−1|k−1 + 1
2 ||xk − Fzk−1 −Buk||2Q−1

k

(4.54)

where the cost index depends on zk−1 and xk. The computation of both gradient and hessian
of J yields to

∇Jk|k−1(zk) =
[
∇Jk−1|k−1(zk−1) + FT

kQ−1
k (xk − Fzk−1 −Buk)

−Q−1
k (xk − Fzk−1 −Buk)

]
(4.55)

∇2Jk|k−1(zk) =
[
∇2Jk−1|k−1(zk−1) + FT

kQ−1
k Fk −FT

kQ−1
k

−Q−1
k Fk Q−1

k

]
(4.56)

Since ∇2Jk|k−1(zk) is positive definite, a single iteration of Newton’s method makes the cost
function to converge to the minimum, which is

ẑk|k−1 = zk −∇2J−1
k|k−1(zk)∇Jk|k−1(zk) (4.57)
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A good initial guess for the Newton’s method is

zk =
[

ẑk−1|k−1
Ax̂k−1|k−1 + Buk

]
(4.58)

The optimal estimate given the measurements y0, . . . ,yk−1, is

x̂k|k−1 = Ax̂k−1|k−1 + Buk (4.59)

The estimate of the covariance matrix coincides with the bottom right block of the hessian
matrix, which is, from matrix inversion property

Pk|k−1 = [∇2Jk|k−1(zk)]−1
2,2 (4.60)

Pk|k−1 = FkPk−1|k−1FT
k + Q (4.61)

After we measure yk we can update and correct the estimate with the new measure. Let’s define
H = [0 . . . 0 C]T .
The update objective function becomes

Jk|k = Jk|k−1 + 1
2 ||yk −Hzk −Duk||2R−1

k

(4.62)

The gradient and Hessian of the correction step index are

∇Jk|k(zk) = ∇Jk|k−1(zk) + HTR−1(yk −Hzk −Duk) (4.63)

∇2Jk|k(zk) = ∇2Jk|k−1(zk) + HTR−1H (4.64)

Also this time the Hessian is positive definite and then a single Newton’s iteration is enough to
converge to the minimum. Again, if we choose the initial guess as zk|k = zk|k−1 we obtain that

Pk|k = (P−1
k|k−1 + CTR−1C)−1 (4.65)

x̂k|k = x̂k|k−1 + Pk|kCTR−1(yk −Cx̂k|k−1 −Duk) (4.66)

We proved that Kalman filter equations can also be derived by a quadratic optimization ap-
proach, in the case of linear system. It is important to notice that no probabilistic model has
been used, in fact the derivation is not dependent from the noise source.

4.3 EKF from quadratic optimization

From the previous derivation of the Kalman filter it is possible also to derive the Extended
Kalman Filter, recalling that we approximate the covariance matrix with the one of the lin-
earized system.
We now derive the EKF recursive algorithm starting from Eq.(4.52) extended to the non-linear
case. Also in this case we divide the procedure in two parts, that are propagation and correc-
tion, with their associated cost functions.
Starting from the prediction step, we consider the cost function

Jk|k−1(zk) = Jk−1|k−1(zk−1) + 1
2 ||xk − f(xk−1,uk)||2Q−1

k

(4.67)
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Computing the gradient and hessian of Jk|k−1(zk) yields

∇Jk|k−1(zk) =
[
∇Jk−1|k−1(zk−1)−∇fT (xk−1,uk)Q−1(xk − f(xk−1,uk))

Q−1(xk − f(xk−1,uk))

]
(4.68)

∇2Jk|k−1(zk) =
[
∇2Jk−1|k−1(zk−1) + Θ(zk) ∇fT (xk−1,uk)Q−1

Q−1∇f(xk−1,uk) Q−1

]
(4.69)

where

Θ(zk) = ∇2f(xk−1,uk)Q−1(xk − f(xk−1,uk)) +∇fT (xk−1,uk)Q−1∇f(xk−1,uk) (4.70)

We want to find ẑk|k−1 such that ∇Jk|k−1(zk) = 0. This clearly happens when

ẑk|k−1 =
[

ẑk−1|k−1
f(xk−1,uk)

]
(4.71)

which means that the propagated state is equal to

x̂k|k−1 = f(xk−1,uk) (4.72)

The covariance state estimate is the lower right block of hessian inverse, that is

Pk|k−1 = Q−1 +∇f(xk−1,uk)Pk−1|k−1∇fT (xk−1,uk) (4.73)

Regarding to correction step, we have to minimize the cost function

Jk|k = Jk|k−1 + 1
2 ||yk − h(xk,uk)||2R−1

k

(4.74)

Again, we compute the gradient and hessian, which are equal to

∇Jk|k(zk) = ∇Jk|k−1(zk)−∇hT (xk,uk)R−1(yk − h(xk,uk)) (4.75)

∇2Jk|k(zk) = ∇2Jk|k−1(zk)−∇2h(xk,uk)R−1(yk − h(xk,uk)) +∇hT (xk,uk)R−1∇h(xk,uk)
(4.76)

Since we have that, after the prediction step we have zk = ẑk|k−1, then, from Newton’s method
we obtain

ẑk|k = ẑk|k−1 − [∇2Jk|k(ẑk|k−1)]−1∇Jk|k(ẑk|k−1) (4.77)

while the updated covariance matrix is given by the hessian inverse, which is

Pk|k = [P−1
k|k−1 +∇hT (xk,uk)R−1∇h(xk,uk)]−1 (4.78)

Finally, the corrected estimate, that is the last row of the Newton equation is

x̂k|k = x̂k|k−1 + Pk|k∇hT (xk,uk)R−1(yk − h(xk,uk)) (4.79)

This is the standard formulation for a discrete time EKF, but since our system will evolve in
continuous time we need some variant of EKF, which are able to handle hybrid systems.
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4.3.1 Extended Kalman Filter Estimation

Consider a nonlinear discrete time system with additive gaussian noise{
xk+1 = f(xk,uk) + wk, wk ∼ N (0,Qk)
yk = h(xk,uk) + vk, vk ∼ N (0,Rk)

(4.80)

The problem of state estimation can be solved via Extended Kalman Filter (EKF) as derived in
previous section as an approximation of the solution of the MAP problem. The final formulation
is

E[x0] = µ0, Var[x0] = P0 (4.81)
x̂k|k−1 = f(x̂k−1|k−1,uk−1) (4.82)

ŷk = h(x̂k|k−1,uk) (4.83)

Ak−1 =
∂f(x̂k−1|k−1,uk−1)

∂x , Ck =
∂h(x̂k|k−1,uk)

∂x (4.84)

P̂k|k−1 = Ak−1P̂k−1|k−1AT
k−1 + Qk−1 (4.85)

Kk = P̂k|k−1CT
k (CkP̂k|k−1CT

k + Rk)−1 (4.86)
x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (4.87)

P̂k|k−1 = (I−KkCk)P̂k|k−1 (4.88)

The paradigm is assumed to have a discrete time system, but in real systems the general the
state equation is continuous, while the output one is discrete.
This conditions, that is called an hybrid system, corresponds to{

ẋt = fc(xt,ut) + wt, wt ∼ N (0,Qt)
yk = h(xk,uk) + vk, vk ∼ N (0,Rk)

(4.89)

Since the EKF attitude estimation can be solved only in discrete time, there are two different
strategies:

• Apply Kalman filter equations with an hybrid implementation, that propagates the differ-
ential equation for predict part, while using discrete equation for correction part. The issue
with this implementation are the difficulties in resolving differential non linear equations.

• First discretize the dynamical relation, obtaining a full discrete system, and then apply
EKF. The issue with this method is that the continuous additive noise may be not be
additive when discretized, and in this way we will need the non-additive noise formulation.
It is possible then to suppose to have the continuous system without noise, and add it
after the discretization, in order to ensure the additivity of it.

Forward Euler integration EKF

A special case of discretization is the one when forward euler (FE) integration is applied to the
original system, obtaining a discretized one that is{

xk+1 = xk + Tfc(xk,uk) + Twk, wk ∼ N (0,Qk)
yk = h(xk,uk) + vk, vk ∼ N (0,Rk)

(4.90)
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With this method the noise remains additive even in discrete time, with Twk ∼ N (0,T2Q) and
then original formulation of EKF can be applied, obtaining

E[x0] = µ0, Var[x0] = P0 (4.91)
x̂k|k−1 = x̂k−1|k−1 + Tfc(x̂k−1|k−1,uk−1) (4.92)

ŷk = h(x̂k|k−1,uk) (4.93)

Ak−1 = I +
∂fc(x̂k−1|k−1,uk−1)

∂x T, Ck =
∂h(x̂k|k−1,uk)

∂x (4.94)

P̂k|k−1 = Ak−1P̂k−1|k−1AT
k−1 + T2Qk−1 (4.95)

Kk = P̂k|k−1CT
k (CkP̂k|k−1CT

k + Rk)−1 (4.96)
x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (4.97)

P̂k|k−1 = (I−KkCk)P̂k|k−1 (4.98)

Since the linearized matrix A can also be obtained by exponential series expansion, if a better
representation is needed higher order terms can be included, with an increment of computational
cost.
A different numerical integration approach make the noise to become non-additive in discrete
time. In this case EKF can still be applied, but with a linearization about the noise, in order
to understand its equivalent linear covariance. In that case the formulation is known as non-
additive noise EKF.
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Chapter 5

Simulation Results

The aim of this chapter is to perform attitude estimation with different methods, using infor-
mation from IMU sensors. In particular:

• Attitude estimation is performed by gyroscope and accelerometer singularly, by using their
characterization obtained in Ch.(3).

• Gyroscope and accelerometer outputs are combined with the Extended Kalman Filter,
building a sensor fusion estimation method.

• The sensor fusion method is applied under a simulated noisy version of IMU measures.

5.1 Simulation Setup

Simulation of a riding motorcycle are performed by Vi-Bike Simulator, a tool that is able to
simulate the motion of a motorbike on a circuit. In this case of interest, it is able to generate
references for the angles, and to read data from an IMU mounted on a certain position of the
vehicle.
The simulation that will be used are:

• Vi-Track: this corresponds to a lap on the track in Fig.(5.1). All data is sampled at
T = 0.01s.

• Slalom: this corresponds to a slalom condition, sampled at T = 0.001s.

In both datasets, the IMU mounting position is assumed to be the center of mass, and its
measures are noiseless.
Regarding to conventions, the simulation returns the references for angles as a ZXY sequence,
while the Yaw-Pitch-Roll convention corresponds to ZYX. For this reason, the references in
ZYX convention are obtained by the ones in ZXY convention by Eq.(2.16)-(2.17)-(2.18), where
the rotation matrix is Rzxy = RyRxRz.
Regarding to noisy data, starting from ideal IMU measurements obtained by simulation, it is
possible to insert additive noise a posteriori, as explained in Ch.(3). In this case, noise intensity
is modeled as the one of the Xsens Mtx, that is a MEMS IMU containing three gyroscope,
accelerometers and magnetometer. From its datasheet and from [13], its noise variance compo-
nents are found. In Sec.(3) the noise value are described in detail.
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Figure 5.1: Vi-Track

5.2 Single IMU attitude estimation

5.2.1 Gyroscope attitude estimation

With the access to discrete time measurements of angular velocities it is possible to recursively
estimate the body angles, once that initial conditions are set.
Regarding to this type of estimates, that are called dead reckoning, there are several issues,
related to simplicity and lacking of information, that are:

• This attitude estimation method supposes to have perfect angular velocities values, but
since in real scenario they coincide with gyroscope readings, they present different kind
of errors. In particular, the two main contribution are:

– Additive random noise: each measured value presents a random additive high fre-
quency noise, which value depends on the type of gyroscope.

– Bias instability: gyroscope measures can present some constant or slowly variant bias
with respect to the real value.

• In general the initial condition [φ0, θ0, ψ0]T is not known, which is fundamental for a good
estimate. With a non perfect initial condition, the system evolves in open loop and cannot
converge to real values, even if the gyroscope measures are not affected by any error.

• Without using any correction approach it is not possible to guarantee convergence of this
method. This open-loop method is known as Dead Reckoning.

• Depending on the sampling time and bandwidth of the measured signal, the first order
derivative approximation could not be enough correct, and so different numerical integra-
tion can be applied, like Runge-Kutta.

Different results of dead reckoning estimates are shown in Fig.(5.2)-(5.3)-(5.4). In particular,
estimates are computed with Vi-Track dataset, and noise is generated as explained in Ch.(3).
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Figure 5.2: Dead reckoning method estimates with noiseless gyroscope measurements and
correct initial condition

Figure 5.3: Dead reckoning method estimates with noiseless gyroscope measurements and
wrong initial condition
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Figure 5.4: Dead reckoning method estimates with noisy gyroscope measurements and correct
initial condition

From previous figures we can notice that

• Fig.(5.2) consists of dead reckoning estimate when initial conditions are correct and when
gyroscope readings are ideal. This corresponds to the ideal case, where the only possible
errors are due to discretization of non-linear system. In this case we have almost perfect
estimates, and this means that the approach of first order derivative approximation is
enough precise for this problem. Since the first order approximation depends on the
sampling time, and in Vi-Track T = 0.01s, a sampling frequency of f = 100Hz is great
enough to make this approximation to be precise.

• Fig.(5.3) shows the error due to wrong initial condition, while the gyroscope readings
are still ideal. In this case the wrong initial condition are not compensated, since the
equations are evolving in open loop, and the system is not converging.

• Fig.(5.4) shows the error due to constant noises, even if we have correct initial condi-
tion. With the addition of noise components, the estimates does not necessarily converge
because Eq.(3.5) consists of a discrete time integration.

5.2.2 Accelerometer attitude estimation

The attitude estimation from accelerometer is computed as in Eq.(3.8)-(3.9).
Starting from these equations, it is possible to understand which velocities better describe the
acceleration by performing several tests having access to different velocities combinations.

Accelerometer attitude estimation under uniform motion assumption

In many cases, like [2],[3],[15], it is assumed to measure accelerometer data when external
acceleration are not present or are negligible. This is a strong assumption, because the vehicle
has to move mainly on uniform motion.
With these assumptions we have that

a ' Rg (5.1)
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and an estimate for roll and pitch angles can be directly found only by accelerometer readings,
obtaining

θ̂ = asin
[−ax
g

]
, p̈x ' 0 (5.2)

φ̂ = atan
[ay
az

]
, p̈y ' 0, p̈z ' 0 (5.3)

First, differences between the measured acceleration and the gravity projection are evaluated
in order to understand if the assumption of negligible external forces can be made.
Fig.(5.5)-(5.6) show acceleration comparisons and estimates under assumptions of negligible
external forces.

Figure 5.5: Acceleration model with null external forces

Figure 5.6: Accelerometer attitude estimation with null external forces
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These figures clearly show that the gravity term is not prevalent with respect to external
forces, in fact the characterization is completely different.
It is necessary to insert some knowledge about the external forces applied to the vehicle.

Accelerometer attitude estimation with complete model

The estimates can be computed through the complete model of Eq.(3.8)-(3.9), which is based
on the assumption of having access to all velocities.
Since the axis accelerations are necessary, namely v̇, but they are not measured, it is possible
to compute them by approximating the derivative with the first order difference of the velocity,
that is

v̇(k) ' v(k)− v(k − 1)
T

(5.4)

Fig.(5.7)-(5.8) show the results of complete acceleration characterization and related estimates.

Figure 5.7: Acceleration model with complete information

From the comparison between measured and modeled acceleration, the knowledge of all ve-
locities is able to describe the accelerometer readings, and this reflects into good estimates of
roll and pitch angles.
The main errors are made of peaks in pitch angle estimates, they are generated by two assump-
tions that are:

• IMU on the center of mass: the dynamic motion of a motorcycle depends also on chassis
and suspension. With the motion of the suspensions, the center of mass of the vehicle
changes, and this translates into a different reading from accelerometer.

• First order velocity derivative: the approximation of the derivative with the first order
difference can produce some errors when the velocity rapidly varies, when the sampling
frequency is not high enough.

Previous results are obtained knowing velocities about all axis, which can be a strong assumption
in a real scenario.
In this way, different cases will be considered, that are:
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Figure 5.8: Accelerometer attitude estimation from complete information

• Only vx: this scenario is the most similar to the real one, since longitudinal velocity can
be estimated through GPS sensors.

• A combination of vx and vx,vy in order to understand the main contribution for a good
characterization.

For each case the acceleration expression and the estimate of the angles are evaluated.

Accelerometer attitude estimation with access only to vx

The characterization of accelerometer with measure of vx is

axay
az

 =

v̇x0
0

+

 0
+ωzvx
−ωyvx

+

 −sin(θ)g
sin(φ)cos(θ)g
cos(φ)cos(θ)g

 (5.5)

while estimates are equal to

θ̂ = asin
(
v̇x − ax

g

)
(5.6)

φ̂ = atan
(
ay − ωzvx
az + ωyvx

)
(5.7)

The comparison of measured and modeled acceleration are shown in Fig.(5.9) and the estimates
are shown in Fig.(5.10).
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Figure 5.9: Acceleration model with access to vx

Figure 5.10: Accelerometer attitude estimation with knowledge of vx

From previous figures we can notice that the knowledge of vx is fundamental in order to
make a first characterization of the accelerations. With respect to the case with no access to
velocity where the accelerations are totally wrong, in this case they present errors but they are
shaped in a better way.
In particular, the longitudinal acceleration is shaped correct, while lateral and vertical acceler-
ation present some errors, especially with peaks.
Body longitudinal velocity is the main variable that has to be taken into account to have a good
estimates since it is directly related to effective velocity of the vehicle.
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Accelerometer attitude estimation with access to vx and vy

In the case of knowing vx,vy the acceleration expression results

axay
az

 =

v̇xv̇y
0

+

 −ωzvy
+ωzvx

−ωyvx + ωxvy

+

 −sin(θ)g
sin(φ)cos(θ)g
cos(φ)cos(θ)g

 (5.8)

while estimates are equal to

θ̂ = asin
(
v̇x − ωzvy − ax

g

)
(5.9)

φ̂ = atan
(

ay − v̇y − ωzvx
az + ωyvx − ωxvy

)
(5.10)

The comparison of measured and modeled acceleration is shown in Fig.(5.11)-(5.12) In this case,
with respect to previous one, there is an improvement in lateral acceleration, but there are some
errors during peaks phenomena.
It is important to notice that longitudinal acceleration characterization seems almost exact, and
then this should be reflects into a correct pitch estimate, since it depends only on ax. From
this figure pitch estimates is full of peaks, and this means that even a little error in longitudinal
acceleration leads to errors in estimates, due to the asin function.

Figure 5.11: Acceleration model with complete information with access to vx,vy
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Figure 5.12: Accelerometer attitude estimation with access to vx,vy

Access to vx and vz

In the case of knowing vx,vz the acceleration expressionaxay
az

 =

v̇x0
v̇z

+

 +ωyvz
+ωzvx − ωxvz
−ωyvx

+

 −sin(θ)g
sin(φ)cos(θ)g
cos(φ)cos(θ)g

 (5.11)

while estimates are equal to

θ̂ = asin
(
v̇x + ωyvz − ax

g

)
, φ̂ = atan

(
ay − ωzvx + ωxvz
az − v̇z + ωyvx

)
(5.12)

The comparison of measured and modeled acceleration is shown in Fig.(5.13)-(5.14)

Figure 5.13: Acceleration model with complete information with access to vx,vz
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Figure 5.14: Accelerometer attitude estimation with knowledge of vx,vz

With the addition of vertical velocity with respect to the lateral one all peaks in az are
shaped correctly, thanks to v̇z term.
Even if the vertical acceleration is shaped better with respect to the previous cases, there is a
little improvement in estimates. This means that even if a large error in acceleration charac-
terization is present it is not necessary related to error in estimates.

5.2.3 Only accelerometer estimates results

From the previous figures, one can state that:

• The assumption of having only gravity term is too strong, since the major contributions are
centripetal and longitudinal acceleration which give totally different acceleration terms.
Consequently, the estimates based on this assumptions are wrong, because they can be
correct only when the motorcycle is running on uniform motion.

• In the case of having access to all velocities the acceleration is well characterized, but there
are still some errors, because estimates are full of peaks. In the case of strong accelera-
tion or in braking condition the approximation of considering numerical derivative of the
velocity and the assumption of being in the center of mass produce some high frequency
errors.

• The estimation equation is static, which means that it is not affected by motorcycle
dynamics but only by instantaneous measurements. This can be a good property if the
acceleration model is approximated, because an error on an estimate does not affect the
next ones.

From the previous issues accelerometer attitude estimation can be reasonable under the knowl-
edge of all body velocities and angular velocities, but it presents large error if some variables
are not known or present uncertainties.
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5.3 EKF with the original model
In this sectionr the EKF algorithm is tested in simulation dataset, as it has been done with
attitude estimation from single IMU.
Fusion algorithm considers a system which has continuous time state, discrete time measure-
ments and additive noise in discrete time.
Let’s assume first to know all velocities, gyroscope outputs and accelerometer outputs. It is
possible to formulate the problem as a nonlinear system, solvable via EKF.
The state equation is the relation between rates of angles and angular velocities, for which we
assume angular velocities as inputs, while noise is added in discrete time.
Defining ζ = [φ, θ, ψ]T , the continuous time state equation is

ζ̇ = fc(ζ,ω) + w =

ωx + sin(φ)tan(θ)ωy + cos(φ)tan(θ)ωz
cos(φ)ωy − sin(θ)ωz

sin(φ)/cos(θ)ωy + cos(φ)/cos(θ)ωz

 (5.13)

The measurement equation, which is the one obtained by the characterization of the acceleration
with additive white gaussian noise is equal to

a = h(ζ,ω,v, v̇) + n =

 v̇x + ωzvy + ωyvz − sin(θ)g
v̇y + ωzvx − ωxvz + cos(θ)sin(φ)g
v̇z − ωyvx + ωxvy + cos(θ)cos(φ)g

+

vxvy
vz

 , v ∈ N (0,R) (5.14)

Writing the system in state space representation, we have{
ẋ = fc(x,u)
y = h(x,u) + v, v ∈ N (0,R)

(5.15)

where

x =

x1
x2
x3

 =

φθ
ψ

 , u =



u1
u2
u3
u4
u5
u6
u7
u8
u9


=



ωx
ωy
ωz
vx
vy
vz
v̇x
v̇y
v̇z


, y =

y1
y2
y3

 =

axay
az

 (5.16)

and

fc(x,u) =

u1 + sin(x1)tan(x2)u2 + cos(x1)tan(x2)u3
cos(x1)u2 − sin(x2)u3

sin(x1)/cos(x2)u2 + cos(x1)/cos(x2)u3

 (5.17)

h(x,u) =

 +u7 − u3u5 + u2u6 − sin(x2)g
+u8 + u3u4 − u1u6 + cos(x2)sin(x1)g
+u9 − u2u4 + u1u5 + cos(x2)cos(x1)g

 (5.18)

Since EKF algorithm first discretize and then linearize, applying Forward Euler the discretized
system is equal to {

xk+1 = xk + Tfc(xk,uk) + wk, w ∈ N (0,Q)
yk = h(xk,uk) + vk, v ∈ N (0,R)

(5.19)
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where the process noise has been added after discretization.
The discretized system, where EKF is applied to is


x1

x2

x3

 =


x1 + T(u1 + sin(x1)tan(x2)u2 + cos(x1)tan(x2)u3)

x2 + T(cos(x1)u2 − sin(x2)u3)
x3 + T(sin(x1)/cos(x2)u2 + cos(x1)/cos(x2)u3)

+


w1

w2

w3



a1

a2

a3

 =


+u7 − u3u5 + u2u6 − sin(x2)g

+u8 + u3u4 − u1u6 + cos(x2)sin(x1)g
+u9 − u2u4 + u1u5 + cos(x2)cos(x1)g

+


v1

v2

v3


(5.20)

Before applying EKF it is important to understand how IMU measures are used:

• The system is adapted for sensor fusion since it includes gyroscope and accelerometer
measures: in particular, gyroscope readings are present both in state and output equations,
while accelerometer readings are present only in output equations.

• Gyroscope angular velocities are treated as inputs, and then they have to be considered
exact. Since in a real system angular velocities are noisy, their uncertainties and noise are
described by the additive noise wk. In this way, errors on gyroscopes are considered as
model errors.

• Accelerometers are treated as outputs, which is correct since they are measured from
IMU sensor. Since angular velocities are present also in accelerometer equations, then the
additive noise of output, that is vk has to include both accelerometer noise and gyroscope
one.

• The differential equation of the system does not consider any dynamical relation about
the vehicle, indeed it is independent from the rigid body this method is applied to.

The tuning variables of EKF are covariance matrix of model and output errors, that are called
Q and R, and initial state covariance P0. In [10], an optimization has been performed in order
to capture the best weighting matrices to be chosen. In this case, covariance matrices values
are taken similar to the one that has been found in [10] and then they will be tuned it for the
specific cases.
Covariance matrices will be set as diagonal with starting values

Q = qI, q = 10−7, R = rI, r = 102 (5.21)

It is important to notice that state and output covariance matrices has a difference of 109, which
means that state equations are assumed to be almost perfect, while acceleration measures are
considered as high noisy.
This choice of weights is correct since the state equation is correct, while the acceleration one
is approximated.
Another important parameter to be chosen is the initial state covariance P0. This matrix
includes the uncertainty about the initial condition, and weight how much the algorithm is
based on the initial state. In the statistical version of the Kalman filter equation, this matrix
is equal to

P0 = E[(x0 − µ0)(x0 − µ0)T ] (5.22)
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where x0 is the true unknown initial state and µ0 is the initial guess.
Since in real scenario there is little knowledge about initial state the high initial state covariance
is chosen as

P0 = pI, p = 102 (5.23)

Even if the initial covariance is high, it is updated by the EKF algorithm and decreases if the
state is converging.
Regarding to initial state, since it is unknown, the algorithm will start from

x0 = [0, 0, 0]T (5.24)

Once that covariance matrices are set, which act as weight matrices, EKF is applied to Slalom
and Vi-Track datsets.

5.3.1 EKF simulation results

As it has been done before in the case of accelerometer attitude estimation, estimates are
computed assuming to have access only to some velocities, in order to understand how the
algorithm works with lack of variables.
Since EKF works as a Kalman filter, is based on the two steps approach that are prediction and
correction: prediction is based on the relation between rates of angles and angular velocities,
while correction uses the predicted state and the output measure to adjust the state, through
accelerometer readings.

Complete acceleration model

First it is considered the best case, that is when we read all velocities, namely vx,vy,vz. In
this case the acceleration are well described and the model is

x1
x2
x3

 =

x1 + T(u1 + sin(x1)tan(x2)u2 + cos(x1)tan(x2)u3)
x2 + T(cos(x1)u2 − sin(x2)u3)

x3 + T(sin(x1)/cos(x2)u2 + cos(x1)/cos(x2)u3)

+

w1
w2
w3

 (5.25)

a1
a2
a3

 =

 +u7 − sin(x2)g
+u3u4 −+cos(x2)sin(x1)g
−u2u4 + +cos(x2)cos(x1)g

+

v1
v2
v3

 (5.26)

The associated estimates of the two datasets are shown in Fig.(5.15)-Fig.(5.16).

50



Figure 5.15: Vi-Track: EKF estimates with complete acceleration characterization

Figure 5.16: Slalom: EKF estimates with complete acceleration characterization

With the complete acceleration characterization the estimates are almost perfect with re-
spect to the reference signal, even if the initial condition is not correct. This means that EKF
is behaving as a good sensor fusion algorithm.
The estimate is also able to converge almost instantly to the true value, thanks to the initial
state covariance matrix.
Since this is the ideal case, with access to all velocities, it is necessary understand how the
algorithm behaves in the case of only vx knowledge.

Reduced acceleration model: vy = 0,vz = 0

This case is the most important one, since the longitudinal velocity is the one we have access
in a real scenario, and so it is fundamental to understand the behavior with this assumption.
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The original model when vx = 0,vy = 0 becomesx1
x2
x3

 =

x1 + T(u1 + sin(x1)tan(x2)u2 + cos(x1)tan(x2)u3)
x2 + T(cos(x1)u2 − sin(x2)u3)

x3 + T(sin(x1)/cos(x2)u2 + cos(x1)/cos(x2)u3)

+

w1
w2
w3

 (5.27)

a1
a2
a3

 =

 +u7 − sin(x2)g
+u3u4 −+cos(x2)sin(x1)g
−u2u4 + +cos(x2)cos(x1)g

+

v1
v2
v3

 (5.28)

The associated estimates are shown in Fig.(5.17)-Fig.(5.18).

Figure 5.17: Vi-Track: EKF estimates with vy = 0,vz = 0

Figure 5.18: Vi-Track: EKF estimates with vy = 0,vz = 0

Even if we suppose vy = 0,vz = 0, the estimates are still good, which means that the main
variable that characterize the accelerations in the longitudinal velocity, as we show in previous
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chapter.
This is reasonable because the longitudinal velocity, which is solidal to body, is related to the
effective velocity of the vehicle through the pitch angle. For small pitch angles, we have that vx
is almost equal to the effective velocity which generates the two main acceleration components,
that are linear and centrifugal accelerations.
Linear and centrifugal acceleration can appear also on other axis in conditions like sideslip, but
these phenomena are negligible with respect to the one generated by vx.
It is not necessary to show results in the case of a combination of vx and other velocities, since
the estimate is almost perfect yet.
Regarding to convergence velocity, a test is made by starting the algorithm from different initial
conditions, up to the limit case for a motorcycle. The test is performed with the complete
acceleration model.
In Fig.(5.19)-(5.20) the convergence of EKF is shown.

Figure 5.19: Vi-Track: convergence with different initial conditions

Figure 5.20: Slalom: convergence with different initial conditions
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From previous figures it is visible that even in the case where the initial condition is wrong
for the motorcycle case, like a roll angle of 80°, the algorithm is able to converge in about 50
steps. Since gyroscope and accelerometer measures are ideal in these datasets, the next step is
to insert an additive noise to the sensors, in order to have a system that approximate a real
one.

5.4 Extended Kalman Filter applied to Noisy IMU measure-
ments

Since in the ideal case EKF estimate works well even with only vx readings, its robustness is
now tested, in particular under noisy measurements.

5.4.1 EKF results with noisy IMU measurements

From Algorithm(3) it is possible to generate noisy measurements, starting from ideal values.
Since it is necessary to understand the impact of noise in real IMU sensors, variance of errors
will be taken from real sensors. In particular, the considered sensor is Xsens Mtx, that is a
MEMS IMU containing three gyroscope, accelerometers and magnetometers. Magnetometers
measures will not be considered.
From specifics of the components, the covariances that will be used to simulate noise are

Q = qI, q = 11e− 4 (5.29)
R = rI, r = 4e− 2 (5.30)

for gyroscopes and

Q = qI, q = 2.7e− 6 (5.31)
R = rI, r = 2e− 2 (5.32)

for accelerometers.
As what has been done for EKF estimates in previous section, two datasets are considered, that
are Vi-Track and Slalom.
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Vi-Track results

Comparisons of noisy and ideal gyroscope and accelerometers are shown respectively in Fig.(5.21)-
(5.22).

Figure 5.21: Vi-Track: Comparison between noisy and ideal gyroscope measures

Figure 5.22: Vi-Track: Comparison between noisy and ideal accelerometer measures

Is is now possible to apply EKF with noisy gyroscope and accelerometer. Even in this case
it is assumed to have access first to all velocities and after only to vx.
Extended Kalman Filter results with complete acceleration information and with knowledge of
only vx are shown in Fig.(5.23)-(5.24).
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Figure 5.23: Vi-Track: EKF with complete acceleration information under noisy IMU
measurements

Figure 5.24: Vi-Track: EKF with only vx, under noisy IMU measurements

56



Slalom results

Comparisons of noisy and ideal gyroscope and accelerometers are shown respectively in Fig.(5.25)-
(5.26).

Figure 5.25: Slalom: Comparison between noisy and ideal gyroscope measures

Figure 5.26: Slalom: Comparison between noisy and ideal accelerometer measures

Is is now possible to apply EKF with noisy gyroscope and accelerometer. Even in this case
it is assumed to have access first to all velocities and after only to vx.
Extended Kalman Filter results with complete acceleration information and with knowledge of
only vx are shown in Fig.(5.27)-(5.28).
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Figure 5.27: Slalom: EKF with complete acceleration information under noisy IMU
measurements

Figure 5.28: Slalom: EKF with only vx characterization, under noisy IMU measurements

In both datasets it is shown that even the presence of noise in both IMU does not strongly
affects the estimates. Since the additive white noise acts as an high frequency noise, EKF also
acts as a smoothing filter, hence its estimates are not affected by high frequency noise.
This ability of smoothing estimates is important in particular for the gyroscope measure, because
the filter has little weights on accelerometer.

5.5 Attitude estimation in simulation: conclusion

Different methods under different condition has been tested in simulation, and what has been
obtained is that:

• Single IMU sensor attitude estimation is not enough robust to be implemented in real
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system: gyroscope is dependent on initial condition and low frequency errors, like bias,
while accelerometer is sensitive to its characterization and to high frequency noise.

• Extended Kalman Filter can be used as a sensor fusion algorithm, because it handles
wrong initial condition, reduced acceleration characterization and additive noise in IMU
sensors.

• Each attitude estimation method presented does not include any dependence on the par-
ticular system to which the algorithm is applied to. This is clearly visible from state
equation, which depends only on angular velocities which are treated as inputs, and does
not include any dynamics.
In the case of a motorcycle, a possible improvement in these methods is the insertion of a
dynamical model depending on other variables of the particular vehicle, as done in [7],[6].
In that case, the state space equation consist of vehicle dynamics, while output equations
are related to gyroscope and accelerometers.
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Chapter 6

Experimental Results

The Extended Kalman Filter is applied with experimental data, in order to understand its
robustness with real data.
The experimental dataset is made of a motorcycle riding on a track, and its values are not
reported because they are property of the motorcycle manufacturing company.
The experimental dataset is made of readings of gyroscope and accelerometer, together with
an estimate of the vehicle velocity. The references for angles have been obtained by laser
measurements.
It is important to notice that the vehicle velocity that is estimated is not the body velocity, but
it is the velocity in the heading frame.
For this reason it is necessary to modify EKF accelerometer equations in order to have the
dependence on the heading velocity.
The accelerometer description with the dependence on the headings velocities is equal to

ax = cθv̇xi − sθv̇zi − cφωzvyi − sφωyvyi − sθg (6.1)

ay = sφsθv̇xi + cφv̇yi + sφcθv̇zi + sφcφ
cθ

ωyvxi +
c2
φ

cθ
ωzvxi −

s2
φsθ

cθ
ωyvyh −

sφcφsθ
cθ

ωzvyh + sφcθg

(6.2)

az = cφsθvxh − sφvyh + cφcθvzh −
s2
φ

cθ
ωyvxh −

sφcφ
cθ

ωzvxh −
cφsφsθ
cθ

ωyvyh −
c2
φsθ

cθ
ωzvxh + cφcθg

(6.3)

where the complete derivation is found in Appendix.
In this case, since we have the estimate of only vxh , previous equations become

ax = cθv̇xh − sθg (6.4)

ay = sφsθv̇xh + sφcφ
cθ

ωyvxh +
c2
φ

cθ
ωzvxh + sφcθg (6.5)

az = cφsθvxh −
s2
φ

cθ
ωyvxh −

sφcφ
cθ

ωzvxh + cφcθg (6.6)

In the next section, main results are shown.

61



6.1 Experimental Results
In Fig.(6.1) gyroscope readings are shown. These readings presents some high noise that is
clearly visible in particular in y-z axis. This readings are used as they are, without applying
any filtering technique.
In Fig.(6.2) accelerometer readings are shown. This readings are supposed to be on the vehicle
center of mass, and they are referred to the body frame. Even in this case, this readings are
used without applying any filter.
With on-board measurements, it is possible to apply EKF to the system and compare its results
with references. Weight matrices are chosen as in simulation, with values

Q = qI, q = 1e− 7 R = rI, q = 1e2 P0 = pI, p = 1e2 (6.7)

In Fig.(6.3) estimates are shown.
From this comparison it is possible to notice that:

• Roll angle is able to track the reference signal with little error.

• Pitch angle presents some errors with respect to the reference, and it is also affected by
high frequency noise.

• Pitch reference presents some peaks that are not consistent with real phenomena, and so
they are considered as outliers and we expect the algorithm not to follow them.

• References are treated as real data, but they are estimates, and so they can present some
errors.

A possible improvement when dealing with real data is to filter all acquired signals, in order
to reduce the high frequency components that are clearly visible in IMU measurements, which
reflect into pitch estimate.
The applied filter is a second order Butterworth low pass filter with cut-off frequency of 5Hz.
The EKF estimates, when IMU and velocity measurements are filtered are shown in Fig.(6.4).
Comparing estimates of Fig.(6.3)-(6.4) the main differences are present in pitch angle.
From filtered estimates the high frequency noise component is reduced, and this reflects into a
better estimate.
From these results some issues with experimental data has been studied, that are:

• Real measured data is affected by errors, which means that the choice of the filter is
fundamental to improve the estimate accuracy.

• Experimental references are estimated too, and so they are not an exact reference, because
they depend on the technique that is used to generate them.

• The best weight matrices values are equal to the ones in simulation, which means that
the importance that the algorithm gives in simulative and experimental scenario are the
same.
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Figure 6.1: Gyroscope readings from on-board IMU

Figure 6.2: Accelerometer readings from on-board IMU
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Figure 6.3: EKF attitude estimation from on-board readings

Figure 6.4: EKF attitude estimation from on-board filtered readings
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Chapter 7

Conclusion

In this thesis, the attitude estimation problem has been studied. In particular, the accelerometer
expression has been characterized based on velocity measurements.
Pros and cons of single IMU sensor attitude estimation have been evaluated, and the necessity
of a sensor fusion algorithm has been proved.
From simulative results, Extended Kalman Filter worked as a good sensor fusion algorithm,
because it took into account the equations of both gyroscope and accelerometer and it has been
able to weight their contribution.
In particular, the filter has been tested with different assumption on accessibility to velocities,
in order to prove its robustness with lack of variables.
In simulation it has been shown that the longitudinal velocity is the most important variable
to have access to in order to obtain good estimates.
In experimental results, it has been shown that EKF still works well, but it presents some errors
due to real values, in particular it is affected by high frequency noise.
Improvements can follow two different ways that are:

• The choice of a different sensor fusion algorithm, as the Moving Horizon Estimator, which
follows an optimization approach and then it able to handle constraints. The challenge
with this type of algorithm is its complexity because it has to solve the problem through
mathematical programming techniques.

• The choice of a different dynamical system, which involves the specific vehicle dynamics.
In this case, the main challenges are finding an efficient description of the motorcycle
dynamics, which is a complex multi-body system.
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Appendix A

Skew symmetric matrix and rotation
matrix properties

A.1 Distributive property of rotation matrix under cross prod-
uct

Prop. Let R be a rotation matrix, that is RRT = I, det[R] = 1, and a,b ∈ R3. Then

R(a × b) = (Ra)× (Rb) (A.1)

Proof. Having a,b, c ∈ R3, we define the triple product as

< c,a × b >= cT (a × b) = det
[
c a b

]
(A.2)

where the second equivalence is due to the fact that

< c,a × b >= det

cx cy cz
ax ay az
bx by bz

 = det

cT
aT
bT

 = det
[
c a b

]
(A.3)

Starting from the third definition of triple product we have that

det[c,a,b] = det[RTR]det[c,a,b] = det[RT ]det[Rc,Ra,Rb] (A.4)
= det[RT ] < Rc,Ra ×Rb >=< Rc, det[R](Ra ×Rb) > (A.5)
= (Rc)Tdet[R](Ra ×Rb) = cTRTdet[R](Ra ×Rb) (A.6)
=< c,det[R]RT (Ra ×Rb) > (A.7)

From this equivalence, exploiting the triple product definition we obtain

<x,a × b >=< x,det[R]RT (Ra ×Rb) > (A.8)
⇒ a × b = det[R]RT (Ra ×Rb) (A.9)
⇒ R(a × b) = Rdet[R]RT (Ra ×Rb) (A.10)
⇒ R(a × b) = (Ra)× (Rb) (A.11)
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Prop. Let R be a rotation matrix, that is RRT = I, det[R] = 1, and let [s]× ∈ so(3) be a
skew-symmetric matrix. Then

R[s]×RT = [Rs]× (A.12)

Proof. Multiplying both members of Eq.(A.12) by v ∈ R3 yields

R[s]×RTv = [Rs]×v (A.13)

Exploiting the cross product in the first member of Eq.(A.13) leads to

Rs× (RTv) = R[s× (RTv)] (A.14)

Applying Prop.(A.1) we have that

(Rs)× (RRTv) = (Rs)× v = [Rs]×v (A.15)

Prop. Let R2
0 ∈ SO(3) be a rotation matrix that represents a sequence of rotation, namely

R2
0 = R2

1R1
0. Then, the angular velocity referred to R2

0 expressed in world frame is equal to

ω0
2/0 = ω0

2/1 + R0
1ω

1
1/0 (A.16)

Proof. From the sequence of rotation

R2
0 = R2

1R1
0 (A.17)

we can compute its derivative, that is

Ṙ2
0 = Ṙ2

1R1
0 + R2

1Ṙ1
0 (A.18)

= [ω2
2/0]T×R2

0 (A.19)

Expanding the matrix derivative for both members of Eq.(A.18) and applying Prop.(A.12) we
obtain

Ṙ2
0 = [ω2

2/1]T×R2
1R1

0 + R2
1[ω1

1/0]T×R1
0 (A.20)

= [ω2
2/1]T×R2

0 + R2
1[ω1

1/0]T×(R2
1)TR2

1R1
0 (A.21)

= [ω2
2/1]T×R2

0 + [R2
1ω

1
1/0]T×R2

0 (A.22)

By additivity of skew-symmetric matrices we have that

Ṙ2
0 = [ω2

2/1 + R2
1ω

1
1/0]T×R2

0 (A.23)

and from Eq.(A.16) we have that

ω2
2/0 = ω2

2/1 + R2
1ω

1
1/0 (A.24)

If we express the previous relation in world frame we obtain

R0
2ω

2
2/0 = ω0

2/0 = R0
2ω

2
2/1 + R0

2R2
1ω

1
1/0 (A.25)

= ω0
2/1 + R0

1R1
2R2

1ω
1
1/0 (A.26)

= ω0
2/1 + R0

1ω
1
1/0 (A.27)
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Appendix B

Acceleration expression with
velocity on heading frame

In the case that we have access to velocity measured by GPS, namely vxh , this does not coincide
with the usual vx since it is not affected by pitch and roll effects.
As we can see in Fig.(B.1), the effective velocity of the vehicle is the vector that is always
parallel to the ground, that is different from the general vx, which direction coincides with the
nose.
The difference between vx and vxh is mainly visible in the case of pure wheeling, where vxh
remains constant, while vx decreases and vz increases.
It is important then to find the dependence of body velocities with respect to the measured
ones.

xi

zi

vxh

xb

zb

vx

xw

zw

vxh

Figure B.1: Heading frame and Body frame

Defining an heading frame between the global and the body one as (xh, yh, zh), we want to
find the transformation that relates this frame to the other ones.
The three reference frames are shown in Fig.(B.2), where we can notice the sequence of rotation
between global, heading and body frame.
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xi

yi

zi

xb
yb

zb

ψ

ψ

Figure B.2: World, Heading and Body reference systems

This heading frame always maintains the x − y horizontal plane, and then it only rotates
about the z axis with respect to the global frame. Then, the relations between global and body
frame are equal to

Rh
w(ψ) = Rz(ψ) = Rb

w(0, 0, ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1

 (B.1)

Rb
h(φ, θ) = Rxy(φ, θ) = Rb

w(φ, θ, 0) =

 cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ

 (B.2)

Suppose that we have access to velocities of the heading frame vxh , vyh , vzh , that is the most
suitable case, we want to find an expression for the body acceleration which depends on those
velocities. In this case we are supposing that our IMU is mounted on the center of mass of the
vehicle, accelerometer readings are in body frame, while velocities are read in heading frame.
First, we express body velocities as a function of heading velocities through the heading rotation
matrix.vxvy

vz

 = R(φ, θ, 0)

vhxvhy
vhz

 =

 cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ


vhxvhy
vhz

 =

 cθvxh − sθvzh
sφsθvxh + cφvyh + sφcθvzh
cφsθvxh − sφvyh + cφcθvzh

 (B.3)

Recalling the acceleration expression

a = v̇ + ω × v (B.4)

it depends on body velocities and their derivatives. It is possible to derive the expression for
time derivative of the velocities differentiating the last term of Eq.(B.3), obtaining

v̇x = −sθθ̇vxh + cθv̇xh − cθθ̇vzh − sθv̇zh (B.5)
v̇y = cφφ̇sθvxh + sφcθθ̇vxh + sφsθv̇xh − sφφ̇vyh + cφv̇yh + cφφ̇cθvzh − sφsθθ̇vzh + sφcθv̇zh (B.6)
v̇z = −sφφ̇sθvxh + cφcθθ̇vxh − cφsθv̇xh − cφφ̇vyh − sφv̇yh − sφφ̇cθvzh − cφsθθ̇vzh + cφcθv̇zh

(B.7)

We can notice that derivatives depend on angle rate of φ and θ, while we only want to have
dependence on angular velocities. Substituting the angle rates with their relation with the
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angular velocities we obtain

v̇x =− sθ(cφωy − sφωz)vxh + cθv̇xh − cθ(cφωy − sφωz)vzh − sθv̇zh (B.8)
v̇y = + cφ(ωx + sφtθωy + cφtθωz)sθvxh + sφcθ(cφωy − sφωz)vxh + sφsθv̇xh − . . .

· · · − sφ(ωx + sφtθωy + cφtθωz)vyh + cφv̇yh + cφ(ωx + sφtθωy + cφtθωz)cθvzh − . . .
· · · − sφsθ(cφωy − sφωz)vzh + sφcθv̇zh (B.9)

v̇z =− sφ(ωx + sφtθωy + cφtθωz)sθvxh + cφcθ(cφωy − sφωz)vxh − cφsθv̇xh − . . .
. . . cφ(ωx + sφtθωy + cφtθωz)vyh − sφv̇yh − sφ(ωx + sφtθωy + cφtθωz)cθvzh − . . .
· · · − cφsθ(cφωy − sφωz)vzh + cφcθv̇zh (B.10)

Regarding to centrifugal acceleration, ω × v, again we substitute body velocities, resulting

[ω × v]x = −ωz(sφsθvxh + cφvyh + sφcθvzh) + ωy(cφsθvxh − sφvyh + cφcθvzh) (B.11)
[ω × v]y = +ωz(cθvxh − sθvzh)− ωx(cφsθvxh − sφvyh + cφcθvzh) (B.12)
[ω × v]z = −ωy(cθvxh − sθvzh) + ωx(sφsθvxh + cφvyh + sφcθvzh) (B.13)

(B.14)

Combining longitudinal and centrifugal term of acceleration we obtain

ax =− sθ(cφωy − sφωz)vxh + cθv̇xh − cθ(cφωy − sφωz)vzh − sθv̇zh . . .
· · · − ωz(sφsθvxh + cφvyh + sφcθvzh) + ωy(cφsθvxh − sφvyh + cφcθvzh) (B.15)

ay = + cφ(ωx + sφtθωy + cφtθωz)sθvxh + sφcθ(cφωy − sφωz)vxh + sφsθv̇xh − . . .
· · · − sφ(ωx + sφtθωy + cφtθωz)vyh + cφv̇yh + cφ(ωx + sφtθωy + cφtθωz)cθvzh − . . .
· · · − sφsθ(cφωy − sφωz)vzh + sφcθv̇zh + ωz(cθvxh − sθvzh)− ωx(cφsθvxh − sφvyh + cφcθvzh)

(B.16)
az =− sφ(ωx + sφtθωy + cφtθωz)sθvxh + cφcθ(cφωy − sφωz)vxh − cφsθv̇xh − . . .

. . . cφ(ωx + sφtθωy + cφtθωz)vyh − sφv̇yh − sφ(ωx + sφtθωy + cφtθωz)cθvzh − . . .
· · · − cφsθ(cφωy − sφωz)vzh + cφcθv̇zh − ωy(cθvxh − sθvzh) + ωx(sφsθvxh + cφvyh + sφcθvzh)

(B.17)
The simplification of acceleration terms leads to the final form for the body acceleration de-
pending on heading velocities, that is

ax = cθv̇xh − sθv̇zh − cφωzvyh − sφωyvyh (B.18)

ay = sφsθv̇xh + cφv̇yh + sφcθv̇zh + sφcφ
cθ

ωyvxh +
c2
φ

cθ
ωzvxh −

s2
φsθ

cθ
ωyvyh −

sφcφsθ
cθ

ωzvyh (B.19)

az = cφsθvxh − sφvyh + cφcθvzh −
s2
φ

cθ
ωyvxh −

sφcφ
cθ

ωzvxh −
cφsφsθ
cθ

ωyvyh −
c2
φsθ

cθ
ωzvxh (B.20)

Eq.(B.18)-(B.19)-(B.20) can be written in matrix form, obtainingaxay
az

 =

 cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ


v̇xhv̇yh
v̇zh

+


0 −cφωz − sφωy 0

sφcφ
cθ
ωy + c2

φ

cθ
ωz − s2

φsθ
cθ
ωy −

sφsθcφ
cθ

ωz 0
− sφcφ

cθ
ωz −

s2
φ

cθ
ωy − c2

φsθ
cθ
ωz −

sφsθcφ
cθ

ωy 0


vxhvyh
vzi


(B.21)

=

 cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ


v̇xhv̇yh
v̇zh

+ sφωy + cφωz
cθ

 0 −1 0
+cφ −sφsθ 0
−sφ −cφsθ 0


vxhvyh
vzh

 (B.22)
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In order to understand the meaning of Eq.(B.22), we can substitute back angle rates from the
angular velocities, where we do not report derivation for simplicity.
The acceleration expression results

ax = cθv̇xh − sθv̇zh − cθψ̇vyh (B.23)
ay = sφsθv̇xh + cφv̇yh + sφcθv̇zh + cφψ̇vxh − sφsθψ̇vyh (B.24)
az = cφsθv̇xh − sφv̇yh + cφcθv̇zh − sφψ̇vxh − cφsθψ̇vyh (B.25)

It is possible to write the expression through rotation matrix, that isaxay
az

 = Rb
h(φ, θ)

v̇xhv̇yh
v̇zh

+ Rb
h(φ, θ)

−ψ̇vyh+ψ̇vxh
0

 (B.26)

The most important version of Eq.(B.26) is the one for which we have access only to vxh , that
means that we suppose to have vyh , vzh ' 0.
Under this hypothesis Eq.(B.26) becomesaxay

az

 = Rb
h(φ, θ)

v̇xh0
0

+ Rb
h(φ, θ)

 0
+ψ̇vxh

0

 (B.27)

Expanding the matrices we obtain the Eq.(B.18) with the knowledge of vxh only, that isaxay
az

 =

 cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ


v̇xh0

0

+ sφωy + cφωz
cθ

 0 −1 0
+cφ −sφsθ 0
−sφ −cφsθ 0


vxh0

0

 (B.28)

=


cθv̇xh

sφsθv̇xh + sφcφ
cθ
ωyvxh + c2

φ

cθ
ωzvxh

cφsθvxh −
s2
φ

cθ
ωyvxh −

sφcφ
cθ
ωzvxh

 (B.29)

In the case where we are in a frame which is out of the center of mass we have the additive
terms described in Ch.(3), which are not related to the heading frame, since they do not depend
on the body velocity. An example fo this case in shown in Fig.(B.3). The acceleration formula
with the IMU out of the center of mass, combined with the headings velocities expression leads
to

a = Rvh + ω ×Rvh + ω̇ × r + ω × [ω × r] (B.30)

whose explicit version is

ax = cθv̇xh − sθv̇zh − cφωzvyh − sφωyvyh − ω̇zry + ω̇yrz − ω2
zrx − ωzωyrz − ω2

yrx + ωyωxry

(B.31)

ay = sφsθv̇xh + cφv̇yh + sφcθv̇zh + sφcφ
cθ

ωyvxh +
c2
φ

cθ
ωzvxh −

s2
φsθ

cθ
ωyvyh −

sφcφsθ
cθ

ωzvyh + . . .

· · ·+ ω̇zrx − ω̇xrz − ω2
zry + ωzωyrz + ωxωyrx − ω2

xry (B.32)

az = cφsθvxh − sφvyh + cφcθvzh −
s2
φ

cθ
ωyvxh −

sφcφ
cθ

ωzvxh −
cφsφsθ
cθ

ωyvyh −
c2
φsθ

cθ
ωzvxh + . . .

· · · − ω̇yrx − ω̇xry − ωyωzry − ω2
yrz + ωxωzrx − ω2

xrz (B.33)
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Figure B.3: Heading, Body frame and Sensor frame
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