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I N T R O D U C T I O N

Every real optical system is in some way affected by aberrations,
due to the single optical components and their alignment, or more
frequently to the medium in which light waves propagate between
the sample and the objective. These aberrations are a limit in the per-
formances of the system, because they cause a loss of image quality.

The role of Adaptive Optics is to remove the aberrations from the
system or at least to set them under a certain threshold, using wave-
front correctors (which are in most of the cases deformable mirrors)
modelled in such a way that the aberrated wavefront becomes almost
plane passing through them. This idea was first proposed by H. W.
Babcock in 1953 [1], but in those years it was impossible to make the
technique practical (in 1970, P. Anderson used this idea in his science
fiction novel Tau Zero). The first practical developments were done
during the Cold War by the US military (the purpose was to track So-
viet satellites), but only after 1990, with the development of computer
technology, Adaptive Optics became possible and commonly used.

A conventional (linear) Adaptive Optics system consists of three
principal subsystems [2,3,5]:

- a wavefront sensor to detect the optical disturbance;

- a wavefront corrector, usually a deformable (or adaptive) mirror,
to correct the aberrations;

- a control unit, usually a computer, to decode the sensor informa-
tion for the active mirror.

Figure 1: Scheme of a typical Adaptive Optics system with closed loop control
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The first deformable mirrors were employed in astronomical tele-
scopes in order to correct distortions of light wavefronts coming from
stars and passing through atmospherical turbulences. These turbu-
lences spread out light coming from point-like sources that are im-
aged as blurred blobs in the image plane. In this problem the source
of aberration (i.e. the atmosphere) is rapidly time varying and the cor-
rection must be done in fractions of second. For this reason classical
methods in Adaptive Optics includes another device called wavefront
sensor employed to reconstruct directly the light wavefront in the sys-
tem’s pupil plane.

A very simple and commonly used wavefront sensor is the Shack-
Hartmann wavefront sensor: it consists of an array of lenses of the same
focal length. Each lens is focused onto a photon sensor, typically a
CCD array. The local tilt of the wavefront across each lens can then
be calculated from the position of the focal spot on the photon sensor.
Any phase aberration can be approximated by a set of discrete tilts.
All of these tilts can thus be measured in order to reconstruct the
whole wavefront.

After reaching the wavefront sensor, the shape of the wavefront is
known and sent to a computer or another control unit (e.g. FPGA)
which immediately deforms in the appropriate way the deformable
device, so it’s possible to perform a real time correction.

Over the past few years lots of deformable devices and wavefront sen-
sors have been developed, differing in technology, shape and price.
This fact favoured the diffusion of Adaptive Optics in many other
fields of research, concerning for example optical communications,
laser focusing, beam shaping, optical tweezers and microscopy.

In optical microscopy [7], even working with in-vivo samples, aber-
rations are usually slowly time varying and this have allowed to de-
velop alternative ways to correct light wavefronts without using a
wavefront sensor, also known as wavefront sensorless methods. Algo-
rithms employed in sensorless Adaptive Optics are based on param-
eters derivable from the image plane of the system and the correc-
tion process is appreciably slower than a wavefront sensor based one,
but it has some advantages too. Firstly, without the wavefront sen-
sor the complexity of the optical system is dramatically reduced (i.e.
the system will be more compact and less expensive). Secondly, the
most common wavefront sensors are intended to work with point-like
sources, or at least with a guide star, and this is impossible to do
in a microscope, where samples are closed to the objective and usu-
ally present a three-dimensional nature: this could lead to ambiguous
wavefront sensor readings and thus to an incorrect aberration correc-
tion.

The fundamental element of sensorless Adaptive Optics, first con-
ceived by Muller and Buffington in 1974 [13], is the concept of Imag-
ing Sharpness Metric: this is a function dependent only on the irradi-
ance of the light in the image plane, that reaches its global extremum
(maximum or minimum) when the quality of the image reaches its
maximum, that is, when all the aberrations are removed from the
system.

A collection of aberrated images is then taken, with aberrations in-
ducted by the deformable device, and the correct deformation (i.e. the
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one which gives the best image quality) is found through an appro-
priate algorithm that aims to find the global extremum of the Imaging
Sharpness Metric.

In the last few years, wavefront sensorless Adaptive Optics have been
implemented in several different applications: widefield microscopy
[30], confocal fluorescence and reflection microscopy [28,38], confocal
scanning ophthalmoscopy [56], two-photon fluorescence microscopy
[14,26,36,39,40,41], optical coherence tomography (OCT) with in vivo
samples [37], maximisation of harmonic generation with ultra-intense
laser pulses [35], intracavity aberration correction in lasers [42], opti-
cal tweezers[43] and coupling laser light into an optical fibre [44].

The purposes of this thesis are:

- to study some imaging sharpness metrics that can be found in lit-
erature, in order to understand their proprieties and their link
with the possible mathematical representations of the aberra-
tions;

- to find and use a good and fast algorithm to perform sensorless
aberration correction;

- to compare our prototype of deformable lens piezoelectrically
actuated with some deformable mirrors, to demonstrate that
the deformable lens is a good wavefront corrector;

- to simplify the adaptive system, using deformable lenses that
can be added to the system without using a beam splitter (which
is needed when working with deformable mirrors) and without
the wavefront sensor;

- to apply Adaptive Optics in a Confocal Fluorescence Micro-
scope, using the sensorless techniques developed.

The method developed here can be applied in many other fields,
including widefield microscopy, two-photons microscopy, optical co-
herence tomography (OCT) for retinal imaging and endoscopy. Fur-
thermore, the piezoelectric deformable lens can be used together with
a focus tunable deformable lens [58] in order to perform z-stack in
thick samples, without moving the sample itself.

At the beginning of this work some simulations were performed
(with Matlab R2011b, The MathWorks) to simulate imaging process
and sensorless aberration correction with different algorithms employ-
ing different Imaging Sharpness Metrics and different mathematical
ways to describe the aberrations. After this first part, the same algo-
rithms were tested in a simple experimental setup, ideated in particu-
lar to compare sensorless aberration correction with closed loop correc-
tion using a Shack-Hartmann wavefront sensor. Furthermore, several
deformable devices were used and compared. In the last part, sensor-
less Adaptive Optics has been employed in a Confocal Fluorescence
Microscope.
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1
I M A G I N G S Y S T E M S A N D A B E R R AT I O N S

1.1 sources of aberrations

In an ideal imaging system, according to geometrical optics, rays
coming from a point-like source and passing through the system are
focused to another point in its image plane. This means that a spher-
ical wavefront emerging from a point-like source is phase-delayed
from the system in such a way that after passing through it the wave-
front emerges as a converging spherical wavefront with its center
placed in the image plane of the system.

Aberrations are deviations from this ideal process: imperfections,
misalignment or other factors in a real system can cause a non-spherical
shape of the emerging wavefront, and thus a point-like source isn’t
imaged as a point on the image plane, but rather as a blob, whose
dimension and shape could vary with the magnitude and nature of
the aberration.

When imaging an extended object, aberrations manifest themselves
as a blur in the image of the object, so the imaging process causes a
loss of resolution and information.

In astronomical ground-based telescopes aberrations arises from
atmospherical turbulence, as mentioned in the introduction of this
thesis. Though space telescopes don’t have this problem, actually
their objective diameters are strongly limited (e.g. Hubble Space Tele-
scope has a maximum diameter of 2.4 meters), and big ground-based
telescopes can reach better resolutions than space ones if accountered
with Adaptive Optics.

In optical microscopy the main sources of aberration are clearly dif-
ferent from the astronomical case and can be summarized as follows
[7,21]:

- refractive index mismatch in media between the sample and the
objective lens;

- sample induced aberrations due to structures with different re-
fractive index within the sample;

- sample holder aberrations due to imperfections on the coverslip
or another structure that holds the sample;

- Imperfections in the optical system such as misalignment or
imperfections in the components of the system.

In the following paragraphs of this chapter we will see how to
represent in a correct mathematical way this aberrations, that is the
first important step to remove them from the system.
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1.2 image formation with an incoherent source

Figure 2: Main features of a simple imaging system.

Aberrations can be expressed mathematically as a wavefront func-
tionW(x,y) measured in waves (or an optical phaseΦ(x,y) measured
in radians, Φ(x,y) = 2πW(x,y)) introduced into the pupil of the ob-
jective lens. W(x,y) represents the optical path difference between
the physical wavefront of the system and a reference sphere or plane
(i.e. the wavefront of the same system, but aberration-free).

The complex Pupil Function of the system is given by [8,30]

P(r, θ) = P(r)eiΦ(x,y) (1)

where P(r) = 1 in the unit circle, 0 elsewhere.
In an optical system working with a spatially incoherent light, the

image irradiance I(u, v) can be described by the convolution of the
object irradiance I0(η, ξ) with the point spread function (PSF) |h(u, v)|2

of the system [8,30]:

I(u, v) =
∫∫

|h(u− η, v− ξ)|2I0(η, ξ)dηdξ = |h(u, v)|2 ⊗ I0(u, v) (2)

The PSF describes the response of an incoherent imaging system
to a point source, and it’s mathematically equivalent to the modulus
squared of the amplitude point spread function h(u, v). Using the scalar
approximation to diffraction theory, the field in the focus of the objec-
tive lens can be simply expressed as the Fourier trasform of the pupil
function, thus we can write [8]:

h(u, v) =
1

λz

∫∫
P(x,y)e−i

2π
λz (ux+vy)dxdy

=
1

λz
F(P(x,y))fx= u

λz ,fy= v
λz

(3)

where z is the image distance and F is the Fourier transform opera-
tion.

With these formulas, computer simulations of the imaging process
with a chosen aberration is quite simple and it’s described in the next
chapter. In the next paragraph we will introduce some smart ways to
represent an aberrated wavefront W(x,y).
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1.3 representation of aberrations

If we want to accurately describe what kind of aberrations affect
our system, it’s useful to express the shape of the wavefront as a com-
plete and orthogonal series of polynomials. There is more than a way
to express this series, everyone with different utilities and mathemat-
ical properties.

In the following paragraphs we will introduce two cbases that can
be used to represent aberrations (i.e. Zernike polynomials and Lukosz
polynomials), exploring their definitions and properties.

1.3.1 Zernike polynomials

Figure 3: First 15 Zernike polynomials (dual indexation is shown).

Zernike polynomials [9] are a set of functions that are orthogonal
on the unit circle, commonly used to describe wavefronts in optical
systems with circular aperture. Calling these polynomials Zi(r, θ) (or
Zmn (r, θ), for the relation between the two notations see Figure 3). In
polar coordinates the function W(r, θ) describing the wavefront can
be expressed as

W(r, θ) =
∞∑
i=1

ciZi(r, θ) (4)

Using Noll’s normalization for Zernike polynomials [10], each Zi(r, θ)
has a mean value of zero and a variance of one, and they can be ex-
pressed as:

Zmn (r, θ) =


√
n+ 1Rmn (r)sqrt2cos(mθ) for m > 0√
n+ 1R

|m|
n (r)sqrt2sin(|m|θ) for m < 0√

n+ 1R0n(r) for m = 0

where n,m are integers satisfying |m| 6 n and (m−n) = even. Rmn (r)

are the radial components of the polynomials defined as:

Rmn (r) =

n−m
2∑
k=0

(−1)k(n− k)!
k![n+m2 − k]![n−m2 − k]!

r(n−2k)

The orthogonality law satisfied by Zernike polynomials is given by:

1

π

∫∫
P(r)Zi1Zi2rdrdθ = δi1,i2 (5)
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where δi1,i2 is the Kronecker delta and P(r) (= 1 in the unit circle, 0
elsewhere) is the pupil function.

A remarkable consequence of this orthogonality law is that using
Zernike polynomials the total wavefront variance can be calculated
simply as [8]:

σ2 =
1

π

∫∫
P(r)[W(r, θ) −W]2rdrdθ

=
1

π

∫∫
P(r)[

∞∑
i=2

ciZi(r, θ)]2rdrdθ

=

∞∑
i=2

c2i

(6)

where ci are the same coefficients of Eq.4.
Note that the sum in the above equation begins at i = 2, because

W, that represents the mean value ofW(r, θ), matches with the piston
term (i.e., i = 1) in Eq.4.

We have found that the wavefront variance can be simply estimated
from Zernike coefficients, and this can be used to estimate another
interesting value called the Strehl intensity S of the wavefront. This
is a quantity that can be used as a measure of the quality of optical
image formation, and for small aberrations it’s well known [54] that it
doesn’t depend on the form of the aberration, but only on its variance:

S ' 1− σ2 = 1−
∞∑
i=2

c2i (7)

From these considerations we can conclude that Zernike polyno-
mials have got good properties to describe systems affected by small
aberrations, giving a simple way to evaluate the Sthrel intensity of the
wavefront.

1.3.2 Lukosz polynomials

Figure 4: First 15 Lukosz polynomials (dual indexation is shown).

An alternative basis of polynomials that can be used to represent
wavefront aberrations in optical systems with circular aperture is the

4



basis of Lukosz polynomials [11,12]. Calling them Li(r, θ) we can
write W(r, θ) as:

W(r, θ) =
∞∑
i=1

aiLi(r, θ) (8)

Like Zernike functions, Lukosz functions have two possible indexa-
tions (totally identical to Zernike ones) and they are expressed as the
product of a radial function and an azimuthal function [16,30]:

Lmn (r, θ) = Bmn (r)×
{

cos(mθ) for m > 0
sin(mθ) for m < 0

with

Bmn (r) =


1
2
√
n
(R0n(r) − R

0
n−2(r)) for n 6= m = 0

1√
2n

(Rmn (r) − Rmn−2(r)) for n 6= m 6= 0
1√
n
Rnn(r) for n = m 6= 0

1 for n = m = 0

where n,m and Rmn (r) satisfy the same conditions of the Zernike case.
The orthogonality law satisfied by these polynomials is rather dif-

ferent from Zernike one (i.e. Eq.5), and this fact will be important in
the results of this thesis. For simplicity, in the following equations
we won’t take into account the first 3 Lukosz polynomials (i.e. piston,
tip and tilt) because they don’t have effect on the image quality. The
normalization of Bmn (r) in the previous equations permits to write
the orthogonality law as [16,30]:

1

π

∫∫
P(r)(∇Li1) · (∇Li2)rdrdθ = δi1,i2 (9)

An interesting property of these polynomials is that they can be
used to give a simple expression for the rms spot radius in image plane,
defined as [12,16,55]:

ρ2rms = 〈(∆x)2 + (∆y)2〉 (10)

where ∆x,∆y are the so-called transverse aberrations, that are equal to

∆x = Rλ
∂W(x,y)
∂x

∆y = Rλ
∂W(x,y)
∂y

where λ is the wavelength, R is the radius of the reference sphere.
From Eqs.8-9 we can show that ρ2rms is proportional to the sum of

the squares of the Lukosz coefficients [12,16,30,55]:

ρ2rms = 〈(∆x)2 + (∆y)2〉

= (Rλ)2〈
(
∂W(x,y)
∂x

)2
+

(
∂W(x,y)
∂y

)2
〉

= (Rλ)2〈|∇W(x,y)|2〉
= (Rλ)2〈∇W(x,y) · ∇W(x,y)〉

= (Rλ)2
∞∑
i=4

∞∑
j=4

aiaj〈∇Li1(x,y) · ∇Li2(x,y)〉

5



=

(
λ

2πNA

)2 ∞∑
i=4

∞∑
j=4

aiaj
1

π

∫∫
P(r)∇Li1(r, θ) · ∇Li2(r, θ)rdrdθ

In the last step, a change from Cartesian to polar coordinates has
been performed. Now, using Eq.9 we finally find:

ρ2rms =

(
λ

2πNA

)2 ∞∑
i=4

a2i (11)

where NA is the numerical aperture of the wave.
This property of Lukosz polynomials makes them a good basis to

study systems affected by large aberrations [31]. In order to better
understand this property, it’s useful to take a geometrical optics view
of the imaging process.

Figure 5: Paths of geometrical rays in presence of aberrations

Taking into account Figure 5 we see that, if the aberration is large,
the spot radius in image plane (and so its rms) will be big enough to
neglect diffraction effects in the study of the aberration. Furthermore
the directions of the geometrical rays are described by the partial
derivatives of the wavefront function W(x,y), and this is why the
equations written above includes them.

1.4 imaging sharpness metrics

In describing an imaging system, it’s very useful to have an efficient
way to measure the image quality. Well known optical quality criteria
[21,55] are based on quantities derived directly from the wavefront,
such as the PSF or the OTF (i.e. Optical Transfer Function: it describes
how the spatial frequencies are transmitted from the object plane to
the image plane and it can be found by Fourier transforming the PSF).
However this kind of approach it’s not possible if the wavefront is not
accessible directly, or if a wavefront sensor isn’t used.

A possible alternative is to find an imaging sharpness metric that is
based on parameters extractable only from the image plane and gives
a measurement of the quality of the image on the form of a scalar.
This metric must have a well defined global extremum (maximum
or minimum point) in correspondence of the best image quality (i.e.
when all the aberrations are eliminated from the system), and it must
vary quite rapidly beyond this extremum with monotonicity.

In literature several imaging sharpness metrics can be found [13,19,30].
Two optimisation metrics has already been introduced in the previous
paragraphs: they are the Strehl intensity and the rms spot radius. Using

6



Figure 6: Simulated PSF in the image plane (a) in an aberration-free system and
(b) in a system with aberrations (0.32 waves rms of the first 11 Zernike
polynomials without piston, tip and tilt). Pupil diameter = 2.5 cm, λ =

633 nm, image distance z = 25 cm.

the appropriate basis of polynomials we have seen that they can be
rewritten in a simple way, where the single modes describing the aber-
rations are independent each other. Thus, aberration correction can
be performed one mode at a time, being the metric a N-dimensional
function (with N = number of modes to be corrected) with a well
defined global extremum (a maximum for the Strehl intensity, a mini-
mum for the rms spot radius). Nevertheless, they work only with point-
like samples, so they can’t be considered imaging sharpness metrics, and
we have also seen that these two quantities are good to describe only
small and large aberrations respectively.

In the next paragraphs two imaging sharpness metrics will be intro-
duced, one based on the irradiance in the image plane and one on its
Fourier transform, which can be used with extended samples. As we
will see in the next chapters of this thesis these two metrics were used
and compared in simulated and experimental aberration corrections.

1.4.1 Maréchal Criterion

Once the Strehl Intensity is known, it’s possible to estimate the qual-
ity of our optical system using the Maréchal Criterion. This criterion
states that a system can be considered well corrected if

S > 0.8

This means that if the rms deviation from the flat wavefront is < 0.08
waves rms

(
= λ
14

)
, the wavefront can be considered flat.

1.4.2 Irradiance Squared Metric

This metric was first proposed by R. A. Muller and A. Buffington
in 1974 [13], with a series of other similar metrics based on the irra-
diance in the image plane, for astronomical images atmospherically
degraded. The Irradiance Squared Metric (IQ) is defined as:

IQ =

∫∫
I(x,y)2dxdy (12)

where I(x,y) is the irradiance, as mentioned above.
In the original article is demonstrated that this metric is maximized

when the wavefront distortions are zero, and this is a global max-
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imum as requested for a good metric. Taking into account all the
image plane, this metric is useful for large extended objects, while
other metrics presented in the article by Muller and Buffington are
intended to work with point-like sources, and that’s not our case.
Other metrics defined in the same article that we will compare with
IQ metric in the simulations are

Sβ =

∫∫
I(x,y)βdxdy, β = 3, 4

S5 =

∫∫
I(x,y) · ln[I(x,y)]dxdy

S6 =

∫∫
I(x,y) · (x2 + y2)dxdy

1.4.3 Spectral Density Metric

The Spectral Density Metric (SD) was proposed by D. Débarre, M. J.
Booth and T. Wilson in 2007 [30]. This metric is based upon the low
spacial frequency content of the image, but leads to correction for all
spatial frequencies, and it’s ideal for incoherent imaging systems.
SD metric is defined as

SD =

∫2π
ξ=0

∫M2

m=M1

SJ(m)mdmdξ (13)

where SJ(m) is called spectral density of the image and can be calcu-
lated as follows. Applying the Convolution Theorem on Eq.2 we have

I(x) = |h(x)|2 ⊗ I0(x)

F(I(x)) = F(|h(x)|2) ·F(I0(x))

Multiplying the last equation by its complex conjugate and calling
SJ(m) = |F(I(x))|2, ST (m) = |F(I0(x))|2 and H(m) = F(|h(x)|2) (i.e.
the OTF), where m is the spatial frequency vector, we finally obtain

SJ(m) = |H(m)|2 · ST (m) (14)

SD metric defined in Eq.13 reaches its maximum in an aberration-
free system, as for the IQ metric [30].

SD metric has got some other interesting properties. First of all, as
it can be seen from its definition, the spatial frequencies considered in
the integration can be selected. The bigger is the range of frequencies
considered, the larger the aberration that can be corrected with this
metric, as we will see in the simulations. It’s better not to consider
frequencies close to zero, because they are only weakly affected by
aberrations and do not therefore contribute significantly to changes
in the SD metric [16]. Furthermore, it’s worth pointing out that the
Fourier Trasform of the irradiance, evaluated at the origin, is equal to
the mean value of the irradiance in the image plane:

F(I(x))|x=0 =< I(x) >

So excluding F(I(x))|x=0 from the SD metric evaluation makes the
metric less sensitive to variations in the light intensity from the sam-
ple (which means variations in < I(x) >).
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Secondly, if we consider only low spatial frequencies and samples
without noticeable periodicity in a predominant direction, Débarre,
Booth and Wilson demonstrated [30] that SD metric can be simply
expressed as a series of Lukosz coefficients, i.e.

SD ≈ 1

q1 + q2
∑∞
i=4 a

2
i

(15)

where q1 and q2 are two positive quantities which only depends
on (M1,M2), so they can be considered constants once the spatial
frequencies range is fixed.

Taking the inverse of this relation, the metric becomes a paraboloid
in N-dimensions (being N the number of Lukosz modes considered),
with a global minimum in correspondence of the aberration-free con-
dition, and each mode can be corrected independently from the oth-
ers:

SD−1 ≈ q1 + q2
∞∑
i=4

a2i (16)

This fact is very important to speed up and simplify the aberration
correction process, as we will show in the next chapters.

1.4.4 Link between SD and IQ metrics

An interesting thing to note is that, from Parseval Theorem, we can
relate the IQ metric with the SD metric. Furthermore from this rela-
tion it can be seen that the IQ metric is a particular case of the SD
metric [30].

Indeed a special case of Parseval Theorem states that if g(x,y) is a
square integrable complex-valued function on R with its first and
second derivatives absolutely convergent, then∫+∞

−∞
∫+∞
−∞ |g(x,y)|2dxdy =

∫+∞
−∞
∫+∞
−∞ |G(fx, fy)|2dfxdfy

where G(fx, fy) = F(g(x,y)).
In our case we can use this theorem to write∫+∞

−∞
∫+∞
−∞ |I(x,y)|2dxdy =

∫2π
ξ=0

∫+∞
m=0

SJ(m)mdmdξ (17)

Eq.17 shows that IQ metric is equivalent to SD metric integrated
over all the spatial frequencies from 0 to +∞.

1.5 optimisation algorithms

After choosing a basis of polynomials to represent the aberrations
and an imaging sharpness metric, we need an algorithm to find the
global extremum of the metric and so to have all the informations
required to perform a good aberration correction. Some considera-
tions by D. Débarre, M. J. Booth and T. Wilson leads to the Modes
Correction Algorithm [30], that is demonstrated to be good only under
some conditions. A classical way to proceed is instead to use a search
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algorithm to find the global extremum of the metric [17]. Both types
of algorithms are presented in the next two paragraphs.

1.5.1 Modes Correction Algorithm

We’ve seen in Eq.16 that using Lukosz polynomials it’s possible to
express the SD metric as a paraboloid in N-dimensions, being N the
number of Lukosz Modes used to describe the aberration (from now
on, we will use for simplicity the name ”SD metric” referring to the
quantity defined in Eq.16, i.e. the reciprocal of the spectral density).
In practice, this means that we can perform an aberration correction
for each Lukosz Mode independently [30]: for each dimension we
must find the vertex of a parabola, which value represents the correc-
tion that must be applied to the deformable device to cancel out the
aberration due to that Lukosz mode. This way to proceed will take
a minimum of three points for each mode, i.e. 2N+ 1 image evalua-
tions (being one of the images common for all the modes, if we take
the corresponding coefficient equal to zero), to perform a complete
aberration correction.

Let’s outline this procedure:

1 Evaluate SD0 = SD metric value of the image with the deformable
device relaxed. This value will be taken only once and it will be
used in the correction of all the modes (see Figure 7 (a)).

2 Select a bias b, i.e. a value that will be subtracted and summed
to the coefficients of each mode. This value must be selected
taking into account the size of the aberration that affects the
system and, for the experimental application, the limits of the
deformable device.

3 Choose a numberN of modes to correct. This number is limited
by the ability of the deformable device to reproduce high order
modes.

4 Excluding piston, tip and tilt, that don’t contribute to the aber-
ration, reproduce with the deformable device the first Lukosz
mode L4 with a coefficient −b (see Figure 7 (b)).
Take SD− = SD metric value of the resulting image.

5 Reproduce the same Lukosz mode L4, this time with a coeffi-
cient +b (see Figure 7 (c)).
Take SD+ = SD metric value of the resulting image.

6 We have now three values of the SD metric functions, that can be
fitted with a parabola to find the value acorr of the coefficient of
L4 that represents the vertex of the parabola (see Figure 7 (d)).

It can also be estimated as:

acorr =
−b(SD+ − SD−)

2SD+ − 4SD0 + 2SD−
(18)

7 Reproducing the Lukosz mode L4 with the coefficient acorr
with the deformable device, the aberration due to this Lukosz
mode will be removed from the system.
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8 Applying the same procedure for all the other modes L5,L6, ...LN
starting from the fourth point of this list, we can remove all the
aberrations from the system.

Obviously N must be big enough to represent the real aberration of
the system in a good way. The deformable devices we will use in the
experimental part of this thesis are in able to reproduce N = 15÷ 21
Lukosz and Zernike modes.

Although this procedure is theoretically correct only for the SD
metric and only expanding the aberration using Lukosz polynomials,
it can’t be excluded that it works in practice, within certain limits,
also with Zernike polynomials or with the IQ metric (Eq.17 shows
that IQ and SD metrics are strictly related). For the IQ metric the
fitting function won’t be a parabola, we can try to apply this method
evaluating more metric values for each mode and fitting them with a
polynomial of degree 3 or 4.

Figure 7: Steps of the Modes Correction Algorithm, where ai is the coefficient of
the i-th Lukosz mode Li, SD the Spectral Density metric.

It is worth trying this alternatives because the Modes Correction Al-
gorithm allows to do sensorless aberration correction faster than other
algorithms commonly used in this field, such as the Nelder-Mead Sim-
plex Algorithm that we will introduce in the next paragraph.

1.5.2 Nelder-Mead Simplex Algorithm

The Nelder-Mead Algorithm [17] (or Simplex Search Algorithm, Nelder
and Mead, 1965) is one of the best known algorithms for multidi-
mensional unconstrained optimization, which attempts to minimize
a scalar-valued nonlinear function of N variables using only function
values, without any derivative information: it can be used in prob-
lems where the function values are uncertain or subject to noise, even
with discontinuous functions.

In order to define a Nelder-Mead method, we must specify 4 pa-
rameters (the values presented here are the standard ones):

- reflection ρ = 1,

- expansion χ = 2,

- contraction γ = 1
2 ,

- shrinkage σ = 1
2 .

At the beginning of the kth interation (k > 0) a non-degenerate sim-
plex ∆k with n+ 1 vertices xi ∈ Rn is given (e.g., in 2 dimensions a
simplex is a triangle, in 3 a tetrahedron and so on). The kth interation
by ordering and labelling these vertices x(k)1 ,...,x(k)n+1 such that
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Figure 8: Operations through which the simplex moves within the search space

f
(k)
1 6 f(k)2 6 ... 6 f(k)n+1

with f(k)i = f(xi)
(k).

The kth iteration generates a set of n+ 1 vertices that define a new
different simplex for the next iteration, ∆k+1 6= ∆k. Because we want
to minimize f, we refer to x(k)1 as the best point, to x(k)n+1 as the worst
point and to x(k)n as the next-worst point. Similarly, we refer to fk1 as
the best function value and so on.
One iteration of the Nelder-Mead Algorithm can be performed as fol-
lows.

1 Order
Order the n+ 1 vertices to satisfy f1 6 f2 6 ... 6 fn+1 using the
tie-breaking rules given below.

2 Reflect
Compute the reflection point xr from

xr = x̄+ ρ(x̄− xn+1) = (1+ ρ)x̄− ρxn+1

where x̄ =
∑n
i=1

xi
n . If f1 6 fr < fn accept xr and terminate the

iteration.

3 Expand
If fr < f1 calculate the expansion point xe as

xe = x̄+ χ(xr − x̄) = x̄+ ρχ(x̄− xn+1) = (1+ ρχ)x̄− ρχxn+1

and evaluate fe = f(xe). If fe < fr accept xe and terminate the
iteration, otherwise accept xr and terminate the iteration.

4 Contract
If fr > fn perform a contraction between x̄ and the better be-
tween xn+1 and xr.

a) Outside
If fn 6 fr < fn+1 perform an outside contraction, calculating

xc = x̄+ γ(xr − x̄) = x̄+ γρ(x̄− xn+1) = (1+ ργ)x̄− ργxn+1
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and evaluate fc = f(xc). If fc < fn+1 accept xc and terminate
the iteration, otherwise go to step 5.

b) Inside
If fr > fn+1 perform an inside contraction, calculating

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄+ γxn+1

and evaluate fcc = f(xcc). if fcc < fn+1 accept xcc and termi-
nate the iteration, otherwise go to step 5.

5 Perform a shrink step
Evaluate f at the n points vi = x1 + σ(xi − x1); i = 2, ...,n+ 1.
The vertices of the simplex at the next iteration will be

x1, v2, ..., vn+1

The main virtue of this algorithm is that if the problem is well
defined (i.e. if the function f is a good metric) we are sure to find the
right solution of it. The big limit is that Nelder-Mead Algorithm takes
hundreds of iterations to converge to a good solution, and the time
taken to perform an aberration correction is too much longer than
that implied with the Modes Correction Algorithm: we’ll see this fact in
the simulations.

1.6 optimum modes

Analytic functions such as Zernike and Lukosz polynomials are
very useful to represent aberrations in an optical system. Neverthe-
less such functions can’t be perfectly reproduced by real deformable
devices and the approximation errors can affect the aberration cor-
rection process. These errors might become large if the number of
actuators of the deformable device is small, and this can be the case
for some of the devices we will use.
Starting from the influence matrix of the deformable device, it’s pos-
sible to derive alternative modal basis sets which are the natural op-
timum modes of the device [16]. These optimum modes are perfectly
reproducible by the device, thus avoiding the approximation errors.

1.6.1 Influence Matrix

The influence matrix A of a deformable device describes how the ac-
tuator commands affect its surface, as measured by a wavefront sensor
[5]. It is usually determined at run time by setting one actuator at a
time to a determined value (e.g. one unit) and then measuring the
results with the wavefront sensor: each measure forms a column in the
influence matrix. Calling c the actuator commands vector composed of n
elements, and Φ the wavefront vector containing the m wavefront mea-
surements, A can be thought of as an m×n matrix which transforms
c in Φ, that is:

Φ = Ac

Once the influence matrix is known, we can take its inverse to de-
termine the actuator commands vector c to be sent to the deformable
device in order to obtain a desired wavefront vector Φ:
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c = A−1Φ

1.6.2 Optimum Modes O1 and O2

As previously mentioned, it’s possible to derive the natural opti-
mum modes of a deformable device from its influence matrix. This can
be done using a singular value decomposition (SVD) algorithm. The
derivation presented here is due to B. Wang and M. J. Booth, 2009.
Applying the SVD algorithm to an m× n influence matrix A, we ob-
tain

A = UWVT (19)

where U is an m×m matrix whose columns represents the orthogo-
nal optimum modes, W is an m×n diagonal matrix with non-negative
real numbers on the diagonal called singular values and VT is the
transpose of an n× n unitary matrix that permits the conversion be-
tween A and U. Using the modes contained in U we can express our
wavefront vector Φ simply as:

Φ = Ua

where a is a vector whose m elements are the coefficients of the opti-
mum modes. They are related to the actuator commands vector by

a = WVTc

Let’s call ui,uj respectively the i-th and j-th columns of matrix U.
The orthogonality law used by the SVD algorithm is the same of Eq.5:

〈ui,uj〉1 =
1

π

∫∫
P(r)uiujrdrdθ = δi,j (20)

where where δi,j is the Kronecker delta.
We will refer to the optimum modes satisfying Eq.19 as O1 modes.

If we want to express Eq.16 with these new modes, we need a mod-
ified algorithm which gives us a set of optimum modes that satisfy an
orthogonality of the Eq.9 type, that is [16,30]

〈ui,uj〉2 =
1

π

∫∫
P(r)(∇ui) · (∇uj)rdrdθ = δi,j (21)

We will refer to the optimum modes satisfying Eq.20 as O2 modes. Let’s
see how the algorithm must be modified. Eq.19 and Eq.20 are related
as follows

〈ui,uj〉2 = 〈
∂ui
∂x

,
∂uj

∂x
〉1 + 〈

∂ui
∂y

,
∂uj

∂y
〉1

If ∂ui∂x and ∂ui
∂y are concatenated to give a single vector u ′

i of twice
the length, the previous equation can be rewritten as

〈ui,uj〉2 = 〈u ′
i,u

′
j〉1

From these considerations follows that we must take partial deriva-
tives of the columns of the matrix A before applying the SVD algo-
rithm. We thus obtain a 2m×n matrix A ′:
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A =


p11 . . . p1n
p21 . . . p2n

...
...

...
pm1 . . . pmn

 A ′ =



∂x(p11) . . . ∂x(p1n)

∂x(p21) . . . ∂x(p2n)
...

...
...

∂x(pm1) . . . ∂x(pmn)

∂y(p11) . . . ∂y(p1n)

∂y(p21) . . . ∂y(p2n)
...

...
...

∂y(pm1) . . . ∂y(pmn)



The standard SVD algorithm can now be applied to A ′ resulting in

A ′ = U ′W ′V ′T

and O2 modes can finally be calculated as

U2 = AV ′W ′−1 (22)

Both O1 and O2 modes are a complete representation of the de-
formable device aberration in a finite set of modes.
The only difference between them is the orthogonality law.

These modes are very useful, because in the experimental part of
this thesis are used deformable lenses with only 16 and 18 actuators:
as we will see, with this kind of devices the optimum modes can be
reproduced better than theoretical modes such as Zernike and Lukosz
ones.

1.7 closed loop control system

In this last paragraph a conventional Adaptive Optics system with
a closed loop control will be discussed (Figure 9) [5].

Figure 9: Basic diagram of a conventional Adaptive Optics system with a closed
loop control. The dashed arrows represent optical signals, while the solid
ones represent electrical signals.

Generally, these control systems incorporates an integrator to in-
duce memory in the system, otherwise the information about the
previous aberrations would be lost.
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A state space representation of the system can thus be written as{
Φk+1 = Φk + Ack
yk = Φk + vk

where Φ is the vector of wavefront aberrations, A is the influence ma-
trix of the deformable device, c is the actuator commands vector, v is the
vector of measurement noise, y is the vector of measured aberrations
and k is the sample time index.

In a discrete time system, the integrator for the command vector c
can be implemented as

ck = −Ryk + ck−1

where R is a matrix that must be determined, called reconstructor.
If we want to correct the aberrations, we must find an R such that

Φk+1 = 0. This can be done by determining the inverse of the influ-
ence matrix, so that the actuator commands vector is given by (setting
ck−1 = 0)

ck = −Ryk = −A−1yk ' −A−1Φk

and then we find

Φk+1 = Φk + Ack = Φk − AA−1Φk = Φk − Φk = 0

Since the influence matrix usually isn’t a square matrix, its inverse
must be determined by least squares techniques. The simplest solu-
tion to this problem is the Moore-Penrose pseudo inverse, given by

R = Ã−1 = [ATA]−1AT

Nevertheless, the piston term in the influence matrix can cause it to be
singular. There is a simple trick that can be used to compensate for
the piston term, which consists in adding a row of ones to the bottom
of A: in this way the singularity is removed.

Another easy (and more numerically reliable) way to estimate Ã−1

is a singular value decomposition (SVD), already explained in paragraph
1.6.2. If we apply the algorithm on A we find

A = UWVT

and then

R = Ã−1 = VW−1UT

Once R is known, it’s thus possible to implement a closed loop
control system.
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2
S I M U L AT I O N S

The simulations presented in this chapter were performed with
Matlab (R2001b, The MathWorks).

2.1 common parameters

In all the simulations we are going to perform, some of the param-
eters defining the optical system are fixed.
Let’s list them:

- the source of illumination is supposed to be incoherent, and this
is easy to model using the equations described in paragraph 1.2;

- the system has got a circular pupil with a diameter D = 2.5 cm;

- the light that goes through the system is monochromatic, with
wavelength λ = 633 nm;

- the distance from the pupil to the image plane is z = 25cm.

Furthermore, the first 3 Zernike and Lukosz polynomials (i.e. pis-
ton, tip and tilt) aren’t used to simulate system’s aberrations.
In Figure 10 an imaging simulation is shown, using the parameters
listed above.

Figure 10: The same sample convolved (a) with an aberration-free PSF and (b)
with an aberrated PSF (0.32 waves rms of the first 11 Zernike polyno-
mials without piston, tip and tilt). The PSFs are those shown in Figure
6
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2.2 sharpness metrics behaviour

2.2.1 Muller and Buffington metrics

A simulation to compare the sharpness metrics listed in paragraph
1.4.2 was performed. They are all very simple to estimate starting
from the irradiance in the image plane.
A (fixed) random combination of 8 Zernike polynomials (Zi, i = 4, ..., 10, 13)
was used to simulate the aberration. Then the value of each Zernike
coefficient was changed in order to change the amplitude of the aber-
rated wavefront without changing its shape. In this way we can see
how the sharpness metrics vary with the aberration amplitude. The
results are shown in Figure 11.

Figure 11: Comparison of the irradiance-based metrics (Muller and Buffington)
listed in paragraph 1.4.2. Each metric is normalised with respect to its
maximum value. The x-axis contains the rms of the aberrated wavefront
expressed in waves.

We can see that all the metrics present a maximum when the wave-
front rms is zero, as expected. The metrics IQ, S3 and S4 (previously
defined in paragraph 1.4.2) have also a good behaviour beyond the
maximum: they vary quite rapidly so they are easy to fit. On the con-
trary, S5 and S6 metrics aren’t so good because they vary very slowly
with increasing aberration amplitudes: we would need a greater num-
ber of metric evaluations to find their maximum with a fit.

An important thing that must be taken into account is that these
irradiance-based metrics are strongly sensitive to light variations. The
amount of light from one image to the next may vary due to the
deformations introduced by the deformable device (in particular by
the defocus mode) or to the light from the environment. This problem
can be avoided adding a normalisation to the IQ metric, that is

IQ =

∫∫
I(x,y)2dxdy(∫∫
I(x,y)dxdy

)2 (23)
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Finally, in 2003 Fienup and Miller showed that S3 and S4 metrics
are well suited to bright features on dark background, while IQ met-
ric is good for a larger set of image properties.
From now on we will use the IQ metric defined in equation 23.

2.2.2 Properties of IQ metric and SD metric

Using the the definition of the IQ metric in Eq.23, the same random
combination of Zernike polynomials of the previous paragraph was
used to create the aberration, and then the IQ metric was plotted
against the aberration amplitude. Then a (fixed) random combination
of Lukosz polynomials (Li, i = 4, ..., 10, 13) was used to perform the
same simulation. The results are shown in Figure 12.

Figure 12: IQ metric defined on Eq.23 against the rms of the aberrated wavefront
(in waves). The metric is normalised with respect to its maximum value.
The polynomials used to generate the aberration are (a) Zernike and (b)
Lukosz ones.

As expected, the new IQ metric (Eq.23) varies less rapidly than the
previous one (Eq.12), but preserves the same shape and properties.

We are now interested in comparing this metric with the SD metric.
Using the same combination of polynomials to generate the aberra-
tions, three simulations were performed, changing the range of inte-
gration of the spatial frequencies each time (i.e. M1 and M2 in Eq.13,
which in the simulations can vary from 0 to 1). This is shown in
Figures 13 and 14.

Figure 13: (left) Forurier Transform of Figure 10 (a) and (right) the same Fourier
Transform where only spatial frequencies in the range (0.03, 0.1) were
selected. The maximum range of spatial frequencies is (0, 1).
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Figure 14: Imaging sharpness metrics against the rms of the aberrated wavefront
(in waves). The metrics are normalised with respect to their maximum
value. The polynomials used to generate the aberration are (a) Zernike
and (b) Lukosz ones. For the SD metrics, the range of integration of the
spatial frequencies (M1,M2) is indicated on the top right of the graphs.

From Figure 14 we can see that SD metrics have a maximum when
the wavefront is flat and they varies more rapidly beyond this maxi-
mum than IQ metric. Furthermore, the higher the spatial frequencies
used in the SD metric are, the more rapid the decay of the metric
beyond its maximum is. This property is very interesting because
changing the range of integration (M1,M2) it’s possible to correct
different types of aberrations: low frequencies ranges are useful to
correct large aberrations, while high frequencies ranges are useful to
correct small ones.

We can also verify Eq.16: if we choose the range (M1,M2) in the
low spatial frequencies, the reciprocal of the SD metric should be a
parabola [30].
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Figure 15: Imaging sharpness metrics and their reciprocals. The x-axis contains
the sum of the Lukosz coefficients that together form the aberration: in
this way we can plot also the negative values to point out the geometry
of the functions (a sum of Lukosz coefficients equal to 5 (or −5) cor-
responds to a wavefront rms ' 1 waves). The metrics are normalised
with respect to their global extremum. Lukosz polynomials were used
to generate the aberration. IQ metric and its reciprocal are shown in
(a,b) while SD metric and its reciprocal are represented taking into con-
sideration three different ranges of spatial frequencies: (c,d) from 0.03
to 0.1, (e,f) from 0.1 to 0.2 and (g,h) from 0.2 to 0.4.

The reciprocals of the metrics are shown in Figure 15. The aberra-
tion is generated using Lukosz polynomials, as required in Eq.16.
We can see that the reciprocal of the IQ metric doesn’t have any inter-
esting property (it has the same characteristics of the IQ metric itself),
while the reciprocal of the SD metric presents the shape that we ex-
pected. In greater detail, the reciprocal of the SD metric is clearly a
parabola for low spatial frequencies (Figure 15 (d)) and it gradually
lose this shape taking into account higher spatial frequencies (Figure
15 (f,h)). If we want to take advantage of Eq.16, then we must work
with low spatial frequencies (M1,M2) = (0.03, 0.1).

The reciprocal of the SD metric with (M1,M2) = (0.03, 0.1) was
also taken, using Zernike polynomials. The result, in Figure 16, shows
that with Zernike polynomials we still find a parabolic shape (at least
approximately).

Finally, the Parseval Theorem (outlined in paragraph 1.4.4) was ver-
ified. For this purpose, the IQ metric and the SD metric (integrated
over all the spatial frequencies) were plotted on the same graph, both
for Zernike and Lukosz polynomials. Figure 17 shows that Eq.17 is
perfectly satisfied: the Parseval Theorem has been verified.
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Figure 16: (a) SD metric with (M1,M2) = (0.03, 0.1) and (b) its reciprocal against
the sum of Zernike coefficients. A sum of Zernike coefficients equal to
5 (or −5) corresponds to a wavefront rms ' 1 waves.

Figure 17: IQ metric and SD metric with (M1,M2) = (0, 1) overlapped to verify
the Parseval Theorem. The aberration is made up of a random combina-
tion of (a) Zernike and (b) Lukosz polynomials.

2.3 aberration correction

We are now ready to simulate the aberration correction using the
optimisation algorithms explained in the previous chapter. A lot of
simulations were performed using the Modes Correction Algorithm in
order to understand its potentialities and limits. Then the Nelder-
Mead Simplex Algorithm was used with the S3 metric [22] to compare
the two methods.

2.3.1 Aberration correction using the Modes Correction Algorithm

The Modes Correction Algorithm was tested in the simulated opti-
cal system using both IQ metric and SD metric, first with Zernike
polynomials and then with Lukosz ones. The aberrations consist of
a random combination of eight polynomials (Zi or Li, i = 4, ..., 10, 13)
with total amplitude fixed. The same polynomials are used to cor-
rect the aberration: after choosing a bias b, the algorithm can be
applied, requiring a total of 2N + 1 = 17 SD metric evaluations or
4N+ 1 = 33 IQ metric evaluations (N = 8 is the number of polyno-
mials used in the correction process) to perform a complete aberra-
tion correction. Indeed, if we use the inverse of the SD metric with
(M1,M2) = (0.03, 0.1) the functions we have to fit in the algorithm
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will be parabolas and each parabola needs only 3 points to be com-
pletely defined, while for the IQ metric there isn’t a simple function
thus it’s necessary to use a polinomial of degree 4 (or more) to fit it,
that is, we have to estimate at least 5 points per mode.
30 corrections of random aberrations were performed for each value

of the initial wavefront rms, and then the mean and the standard de-
viation of the wavefront rms after the correction were calculated. The
results are shown in Figure 18.

Figure 18: Initial wavefront rms against wavefront rms after the correction. The
aberration corrections are performed with 5-points fits for the IQ metric
(black squares) and with 3-points fits for the SD metric (red circles).
Each point in the graphs represents a mean of 30 random aberration
corrections. The red dashed lines represent the Maréchal Criterion. (a)
Zernike polynomials and (b) Lukosz polynomials were used to generate
the aberrations and also to correct them.

From the graphs in Figure 18 we can see that

- the IQ metric works in the same way with both Zernike and
Lukosz polynomials, and the correction is good (according to
Maréchal Criterion) for an initial wavefront rms up to 0.25 waves.

- the SD metric is better than the IQ one in both cases: working
with Zernike polynomials, the correction is good for an initial
wavefront rms up to 0.30waves, while with Lukosz polynomials
the correction is good for an initial wavefront rms up to 0.50
waves.

2.3.2 Modes crosstalk in the Modes Correction Algorithm

The results achieved in the previous paragraph are in agreement
with Eq. 16 and the considerations advanced in the previous chapter:
the SD metric used with Lukosz polynomials gives the best results.
Nevertheless, even in the best configuration the algorithm doesn’t
correct completely wavefront aberrations with an rms greater than
0.5 waves (Figure 18). The principal cause of this fact is that each
single mode correction is not totally independent from the others. We
can verify this as follows:

- after choosing a polynomial basis, generate an aberration using
only a certain mode (i.e. set the first polynomial coefficient c4
to a certain value, for example 0.5, and the others to zero);
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- perform an aberration correction of the first eight modes using
the Modes Correction Algorithm;

- save the coefficients of each mode that the algorithm provides
to correct the aberration;

- repeat this procedure for all the modes used in the correction.

If each single mode correction is independent from the others, the
only component that could be different from zero must be the same
used to generate the aberration.

The procedure described above was implemented using the SD
metric with Zernike (Figure 19) and Lukosz (Figure 20) polynomials.
The image in Figure 10 was used as sample.

Figure 19: Crosstalks between each single Zernike mode and the other ones in the
Modes Correction Algorithm. Black bars represent the Zernike coefficients
of the initial aberrated wavefront, while red bars represent the Zernike
coefficients (provided by the algorithm) of the wavefront that must be
subtracted to the initial one in order to obtain a flat wavefront. The
sample used in the simulations is that of Figure 10
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Figure 20: Crossstalks between each single Lukosz mode and the other ones in the
Modes Correction Algorithm. Black bars represent the Lukosz coefficients
of the initial aberrated wavefront, while red bars represent the Lukosz
coefficients of the wavefront (provided by the algorithm) that must be
subtracted to the initial one in order to obtain a flat wavefront. The
sample used in the simulations is that of Figure 10

From these graphs we can see that effectively the modes aren’t in-
dependent of each other: in some cases, the metric appears distorted
and an ideal aberration correction can’t be performed. Changing the
sample in the simulations, the results are quite the same in terms of
quantity, even if some modes interfere with the others in different
ways than those shown in Figures 19 and 20. In our example, the
most significant difference between Lukosz and Zernike polynomi-
als is the crosstalk between defocus (mode 5) and spherical aberration
(mode 13). Indeed, in the case of Zernike polynomials, from Figure
19 we can see a great crosstalk between these two modes, while us-
ing Lukosz polynomials (Figure 20) this crosstalk disappears. We can
better understand this fact plotting the SD metric for a variable value
of defocus, maintaining a fixed value of spherical aberration (Figure
21).
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Figure 21: Simulation of defocus correction in presence of a fixed quantity of speri-
cal aberration (0.5waves rms) using the Modes Correction Algorithm with
(a) Zernike polynomials and (b) Lukosz polynomials, both with the SD
metric integrated in the spatial frequencies range (M1,M2) = (0.03, 0.1).
The squares on the top right of the graphs shows the correction coeffi-
cient acorr that maximises the sharpness metric. The sample used in
the simulations is that of Figure 10

It’s clear that using Zernike polynomials the algorithm fails: we are
expected to find a maximum of the SD metric when the defocus coeffi-
cient is zero, that is, when our system is free from defocus aberration.
Nevertheless, we find a value of c5,corr ' 0.6 (= 0.34 waves rms)
with Zernike modes, a5,corr ' 0.1 (= 0.04 waves rms) with Lukosz
ones. Further errors emerge from other dependent modes, such as
coma and trefoil (modes 9 and 10) or defocus and astigmatism (modes 5
and 6).

This explains why in Figure 18, using the SD metric, the Modes
Correction Algorithm performs better with Lukosz modes than with
Zernike ones, but the correction isn’t perfect even if we use Lukosz
modes.

Figure 22: Maximum values of aberrations, composed of a single mode, that can
be corrected by the Modes Correction Algorithm. The aberrations are
expressed in waves. In the caption (top right of the graph) the metric
and the polynomials used in the algorithm are specified.

The graph in Figure 22 shows the maximum aberrations, com-
posed of a single mode, that can be corrected (according to Maréchal
Criterion) using the Modes Correction Algorithm: the sample and the
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modes in the simulations are the same of the previous ones, and both
the metrics (SD and IQ) and the basis of polynomials (Lukosz and
Zernike) were used. Once again, it can be seen that the best results are
obtained with the SD metric (here in the range (M1,M2) = (0.03, 0.1))
using Lukosz polynomials. In particular, a big improvement can be
noticed in the correction of the spherical aberration by moving from
Zernike to Lukosz polynomials, for both the metrics.

2.3.3 Bias dependence in the Modes Correction Algorithm

Trying different values of the bias b, it can be noticed that if we are
using the SD metric its value isn’t so important (i.e. we must choose
b reasonably large according with the amplitude of the aberration
that affects the system, but without particular care), while if we are
using the IQ metric the value of b must be chosen very carefully: in
the first case we know a priori that the function is a parabola, and
choosing a bias smaller than the aberration amplitude we might find
the global extremum of the function with a lack of precision (but
we will actually find it), while in the second case we are fitting our
function with a more complex polynomial and if we choose a bias
smaller (or much greater) than the aberration amplitude we won’t
find the correct global extremum.

In Figure 23 a trefoil aberration (Lukosz mode L7) of initial rms
value equal to 0.23 waves was corrected, for different values of the
bias: from Figure 22 it can be seen that this mode can be well corrected
up to ∼ 0.38waves rms with both the SD and the IQ metrics, therefore
the dependence of the correction on the bias value can be highlighted.

Figure 23: Trefoil aberration (Lukosz mode L7, 0.23 waves rms) corrected with
different values of the bias b (on x-axis). The y-axis contains the value
of the wavefront rms after an iteration of the Modes Correction Algorithm.
The red dots are obtained with the SD metric, while the black ones
with the IQ metric. Finally, the red dashed line represents the Maréchal
Criterion.

From Figure 23 we can conclude that, in the case of the IQ metric,
the bias value must be chosen as close as possible to the value of
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the initial wavefront rms value. This is true for the SD metric too,
but the range of bias values which allows to reach a good aberration
correction is larger.

2.3.4 Multiple iterations of the Modes Correction Algorithm

When the aberration is too large, one iteration of the Modes Cor-
rection Algorithm isn’t sufficient to correct the aberration completely.
Nevertheless the final rms value of the total aberration, in many cases,
is smaller than the initial one. If this is the case, we can try to apply
the algorithm to the final wavefront again, until reaching a value of
the wavefront rms under the Maréchal Criterion.
These simulations were performed using Lukosz polynomials and
the SD metric. Furthermore, it can be noticed that changing the order
of correction of the modes leads to improvements in the correction:
trying different combinations, also using the informations contained
in Figure 20, and it can be found that the best order of correction for
the eight Lukosz modes Li, i = 4, ..., 10, 13 for the sample of Figure 10

is
4, 13, 7, 10, 8, 6, 5, 9.

We can easily understand why this combination is the best: if we first
correct the modes that are independent from the others (i.e. modes 4
and 13), we’ll reduce the total aberration before correcting the modes
that are more dependent from the others (i.e. modes 5 and 9), so we
have the best conditions to perform a good correction.
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Figure 24: Aberration correction performed with (a) one, (b) two, (c) four and (d)
ten iterations of the Modes Correction Algorithm. The initial aberration is
composed of a random combination of the same Lukosz polynomials
used in the correction. The metric used in the algorithm is the SD metric
with (M1,M2) = (0.03, 0.1). Each acorr was evaluated with a three-
points fit (i.e., every iteration requires 8 · 2+ 1 = 17 metric evaluations).
The red line in the graphs represents the Maréchal Criterion.

Clearly, this sequence depends on the sample that we are using, and
may vary for other samples (for example, modes 4 and 6, which are
the two astigmatism aberrations, interfere with defocus, mode 5, in dif-
ferent amounts depending on the sample). Let’s see some aberration
corrections with multiple iterations of the Modes Correction Algorithm
with the conditions outlined above (Figure 24).

If we want to take advantage of the procedure just outlined, we
must apply the correction relative to a certain mode immediately af-
ter that the corresponding mode coefficient has been evaluated: this
doesn’t allow to take only 2N+ 1 metric measurements, because now
the aberration will change at each single mode correction (i.e., every
time we apply a correction to the wavefront), so we now need a total
of 3N metric measurements.

Finally, Figure 24 (d) shows that, with ten iterations of the Modes
Correction Algorithm, it’s possible to correct aberrations larger than 3
waves rms: it will take a great number (∼ 250) of metric evaluations,
but in principle it can be done.
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2.3.5 Optimum modes used in the Modes Correction Algorithm

In all the simulations which have been made so far, we haven’t
considered the fact that in a real optical system the deformable device
has some limitations:

- the magnitude of its deformation is limited by its physical pro-
prieties, such as its dimensions and materials (e.g., the breaking
limits of the membrane in a membrane deformable mirror);

- Lukosz and Zernike modes can’t be perfectly reproduced by
real deformable devices: this is especially true for devices with
a small number of actuators.

We also have seen that we can try to minimize the second of these
limitations using the natural optimum modes of the device.

In this paragraph we will generate O1 and O2 optimum modes of two
real deformable devices: a deformable mirror with 36 piezoelectric
actuators and a deformable lens with 16 piezoelectric actuators (these
devices will be described in detail in the next chapter).

Let’s outline the simulation procedure. First of all, we need the
influence matrix of the deformable device we want to use in our op-
tical system. This matrix can be measured following the procedure
outlined in paragraph 1.6.1 using a Shack-Hartmann wavefront sen-
sor (the experimental setup of these measurements will be studied in
Chapter 4).

The singular value decomposition of a matrix in Matlab can be easily
performed with the function svd(): thus O1 modes can be determined
immediately performing the svd decomposition of the influence ma-
trix. O2 modes needs some further work: you need first determine
the partial derivatives of the influence matrix using the Matlab func-
tion grad(), and then set the resulting matrices as delineated in para-
graph 1.6.2 before applying the function svd(). In Figures 25 and
26 we can see the influence matrix of the deformable lens and mirror
respectively, and their optimum modes.

Figure 25: (a) Influence matrix, (b) O1 modes and (c) O2 modes of a deformable lens
with 16 piezoelectric actuators. The influence matrix was evaluated using
a Shack-Hartmann wavefront sensor. The deformable lens is controlled
by an high voltage (+/- 125 V) driver (Adaptica srl, IO64).
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Figure 26: (a) Influence matrix, (b) O1 modes and (c) O2 modes of a deformable
mirror with 36 piezoelectric actuators. The influence matrix was evalu-
ated using a Shack-Hartmann wavefront sensor. The deformable lens is
controlled by an high voltage (+/- 125 V) driver (Adaptica srl, IO64).
All these devices will be described in detail in the next chapter.

Now we want to test these modes in an aberration correction sim-
ulation using the Modes Correction Algorithm. A random aberration
were generated, using the first eight O1 modes, and then a random
combination of eight Zernike modes (Zi, i = 4, ..., 10, 13) was added,
in such a way that the total aberration consisted of 70% O1 modes and
30% Zernike modes. Then the aberrated wavefront was normalised to
a fixed initial rms value. Including Zernike modes enables us to sim-
ulate a more realistic initial aberration, because in this way we’ll have
aberrations that could and could not be corrected by the deformable
device (as is usually the case in real optical systems). All the 16 O1

modes of the deformable lens were used in the Modes Correction Algo-
rithm to perform the aberration correction, while for the deformable
mirror only the first 30 O1 modes were used, because the last 6 op-
timum modes were actually noise (see Figure 26 (b) and (c)). The SD
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metric with (M1,M2) = (0.03, 0.1) was used, and a three-point fit for
each mode to evaluate the correction coefficients. The same proce-
dure was followed using O2 modes instead of O1 modes. The results
are shown in the graphs in Figure 27.

Figure 27: Aberration correction with the Modes Correction Algorithm and the
SD metric integrated in the spatial frequencies range (M1,M2) =

(0.03, 0.1), using (a) O1 and O2 modes of the deformable lens in Fig-
ure 25 and (b) O1 and O2 modes of the deformable mirror in Figure
26. The sample used is that of Figure 10. The initial aberration consists
of (black squares) 70% O1 modes (first eight) and 30% Zernike modes
(Zi, i = 4, ..., 10, 13) or (red circles) 70% O2 modes (first eight) and 30%
Zernike modes (Zi, i = 4, ..., 10, 13). For each inital wavefront rms value
a total of 30 aberration corrections were performed (each one with a dif-
ferent random initial aberration). Each point in the graphs represents a
mean of these 30 aberration corrections and the standard deviations of
the wavefront rms after the correction are shown. The red dashed lines
represent the Maréchal Criterion.

The results obtained in these simulations are in agreement with the
theory: for a fixed initial wavefront rms, the algorithm performs bet-
ter with O2 modes than with O1 modes in both the devices.
In the case of the deformable lens the difference between the two
modes is quite broad, and the correction is good for an initial wave-
front rms up to ∼ 0.45 waves. In the case of the deformable mirror the
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difference becomes to be noticeable only at large aberrations (> 0.55
waves rms) and the correction is good for an initial wavefront rms up
to ∼ 0.65 waves.

We conclude that the greater the number of actuators of our de-
formable device is, the larger the aberrations it can correct are. Fur-
thermore, we could also apply more than one iteration of the algo-
rithm in order to correct large aberrations. Nevertheless, the results
might not be as good as those found in paragraph 2.3.4, because the
residual aberration now consists mainly of a combination of Zernike
modes that can’t be completely corrected by our deformable devices,
especially if they have a small number of actuators. We will see in the
experimental part of this thesis how good Zernike, Lukosz, O1 and
O2 modes can be reproduced by deformable devices with different
features.

2.3.6 Aberration correction using the Nelder-Mead Simplex Algorithm

Finally, some aberration correction simulations were performed us-
ing the Nelder-Mead Simplex Algorithm outlined in paragraph 1.5.2.
A Matlab function called fminsearch() was employed: this function
uses the Nelder-Mead Simplex Algorithm to find the global minimum
of a function of N variables (where N = 8, if we want to correct eight
Zernike modes at the same time). The function used in the simula-
tion is −S3, where the minus sign is necessary because the function
fminsearch() finds the global minimum of a given function and S3 is
one of the Muller and Buffington metrics that we rewrite here:

S3 =

∫∫
I(x,y)3dxdy

The choice of this sharpness metric is due to [22], where one of the
results was a much faster convergence of S3 metric compared to IQ
and S4 metrics in the Nelder-Mead Simplex Algorithm.
A random combination of eight Zernike polynomials (Zi, i = 4, ..., 10, 13)
was used to create the initial aberration, fixing their initial rms value.
Furthermore, another random combination of the same eight Zernike
polynomials was generated to initialize the algorithm (an initial sim-
plex with eight vertex is required to initialize the Nelder-Mead algo-
rithm), with a total rms value of ∼ 0.02÷ 0.05 waves.

In Figure 28 three of these aberration corrections are shown, with
increasing initial wavefront rms (0.2, 0.35 and 0.5 waves rms). We
can see that, as expected, the correction of a large aberration requires
more algorithm iterations (and thus more time) than a small one: 457
iterations were taken to fall below the Maréchal limit in the case of an
initial wavefront of 0.2 waves rms, 724 iterations for an initial wave-
front of 0.35 waves rms and 1075 iterations for an initial wavefront of
0.5 waves rms. This means that we have to take hundreds of metric
measurements to correct the aberration (each iteration of the algo-
rithm corresponds to a metric measurement), and in a real system
this would take a lot of time. Furthermore, this time will increase
rapidly if we want to correct more than eight Zernike modes. Thus,
even if the aberration correction with the Nelder-Mead Simplex Algo-
rithm is good, it can’t compete with the Modes Correction Algorithm
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in terms of time: we have seen that the same aberrations corrected
in Figure 28 can be corrected with only 17 ÷ 24 metric evaluations
using the Modes Correction Algorithm, and correcting further modes
would require only 2 or 3 other metric evaluations per mode. For this
reason, we will use only the Modes Correction Algorithm in all of the
experimental aberration corrections.

Figure 28: Aberration correction using the Nelder-Mead Simplex Algorithm with the
S3 metric. The inital wavefronts are combinations of the Zernike poly-
nomials Zi, i = 4, ..., 10, 13 with amplitude (a) 0.2, (b) 0.35 and (c) 0.5
waves rms. The x-axis contains the number of iterations of the algo-
rithm. The red lines represent the Maréchal Criterion.
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3
A D A P T I V E O P T I C S D E V I C E S

In this chapter all the devices that are useful in an Adaptive Optics
system are described. As we have already seen there are three prin-
cipal subsystems in a typical Adaptive Optics systems: a wavefront
corrector, a wavefront sensor and a control unit (i.e. a computer). We
will start listing the principal deformable devices available as wave-
front correctors, and then we will talk about the different ways to per-
form a wavefront measurement and the closed loop wavefront control
[2,3,5,6].

3.1 wavefront correctors : deformable mirrors

Deformable mirrors (DMs) are mirrors with a deformable surface,
and they are the most frequently used wavefront correctors. They are
good candidates as wavefront correctors because they can work with
different types of light, they don’t introduce chromatic aberration,
they can be coated with extremely highly reflective coatings (this is
important to avoid power loss in the system) and they can be repre-
sented as linear systems, so that the optical system can be controlled
using the traditional linear control theory [5].

The principal parameters that characterize a deformable mirror are:

- The number of actuators, that determines the number of degrees
of freedom of the DM (approximately one actuator corresponds
to one degree of freedom). The bigger the number of actuators
is, the higher the order of the aberrations that the DM can repro-
duce is (e.g., reasoning in terms of Zernike polynomials, a DM
with a small number of actuators can reproduce less Zernike
polynomials than a DM with a big number of actuators).

- The distance between the actuator centres, a.k.a. actuator pitch.
DMs with a large actuator pitch and a big number of actuators
are bulky and expensive.

- The actuator stroke, that is the maximum possible actuator dis-
placement from a certain initial position (Typical values ranges
from ±1 to ±10µm).

- The Influence Matrix, already explained in paragraph 1.6.1.

- The actuator coupling, that is, how much the movement of one
actuator will displace its neighbours.

- The response time, that can vary from microseconds (e.g. MEMS
mirrors) to tens of seconds (e.g. thermally controlled mirrors).
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- The hysteresis, that can affect the mirror (e.g. DMs with piezo-
electric actuators) or not (e.g. DMs electrostatically actuated).
It is a residual positional error from previous actuator position
commands, that limits the mirror ability to work in a predictable
way.

There are several types of deformable mirrors. In the following
paragraphs we will describe the most common ones and their fea-
tures.

3.1.1 Segmented DMs

Segmented deformable mirrors are formed by independent flat mir-
ror segments with piston and/or tip-tilt actuators. A segmented mir-
ror with three degrees of freedom per segment(i.e., with piston, tip
and tilt actuators) works rather better than one with less degrees of
freedom.

Normally these mirrors have no cross-talk between actuators (as
is instead the case for almost all the other types of deformable mir-
rors), but they suffer from diffraction on the segment edges and from
light scattering due to the sharp edges of the segments and the gaps
between the segments.

Their main advantage is that they can be very large, but they are
also very expensive: they are usually used in big telescopes to cor-
rect piston, tip and tilt aberrations due to atmospherical turbulences,
while higher order aberrations are corrected using other types of de-
formable mirrors.

3.1.2 Continuous faceplate DMs

Continuous faceplate deformable mirrors are made from a thin de-
formable reflective faceplate. Behind the faceplate they can have ei-
ther force actuators (e.g. electromechanical or hydraulic) or displace-
ment actuators (e.g. piezoelectric, magnetostrictive or thermal) that
push and pull on the surface to deform it. The shapes that the mirror
can assume depend on the combination of the forces applied to the
faceplate, its boundary conditions (i.e. the way the faceplate is fixed
to the mirror) and the geometry and the material of the faceplate: all
these things contribute to the influence matrix of the DM.

Figure 29: Simple schematic representations of (a) a segmented deformable mirror
with piston, tip and tilt actuators and (b) a continuous faceplate mirror.
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Figure 30: The 76-segmented deformable mirror NAOMI (William Herschel Tele-
scope, UK) [57].

3.1.3 Piezostack DMs

The continuous faceplate DMs with displacement actuators usually
use as faceplate a thin glass face-sheet with an high-reflection coating.
The most common DM displacement actuators for DMs with a diam-
eter larger than 2 cm are piezoelectric (and this is because they are the
less expensive ones). The piezoelectric effect is essentially the creation
of a strain-inducing stress under an applied electric field. Some ma-
terials exhibit a strong piezoelectric effect, such as the lead zirconate
titanate Pb(Zr, Ti)O3, commonly called PZT. The PZT is made in the
form of a ceramic that is initially isotropic with randomly oriented
dipoles: to produce piezoelectric effects, it must bee poled, which is
accomplished at a temperature of ∼ 150°C by applying a DC electric
field to align the dipoles parallel to the field.

The main limit of piezoelectric actuators is that they suffer from
hysteresis (from 10% to 20% for PZT): for this reason the actuator
deformation isn’t perfectly proportional to the electric field applied,
but rather follows an hysteresis curve. This fact implies that, if a
certain shape is reproduced with a piezoelectric DM and this shape
is reached after several consecutive command vectors sent to the device,
and after relaxing the DM we want to repeat the same shape, we have
to send exactly the same command vectors in the same order to the DM.
Furthermore, if we send a command to the DM and then we send
the inverse command, its shape won’t be the same of the initial one,
because of the hysteresis. The software which controls these devices
must thus be realized with particular care of these properties in order
to work in a correct way. An example of the effects of hysteresis in
these actuators will be shown for a deformable lens with piezoelectric
actuators in paragraph 3.3.1.

Finally, another commonly used material to build actuators is the
lead magnesium niobate Pb(Mg1/3,Nb2/3)O3, called PMN. This is
an electrostrictive material (electrostriction is a property of all di-
electrics without piezoelectric effects, in which the strain is propor-
tional to the square of the applied electric field) with a huge dielectric
constant, which doesn’t need electric poling and doesn’t suffer from
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hysteresis (less than 1% at 25°C). Nevertheless, it is very sensitive to
temperature variations.

3.1.4 Bimorph DMs

A bimorph is made from two thin layers of material bonded together,
the relative sizes of which can be varied with a stimulus (e.g. temper-
ature or voltage). We must distinct between bimorph actuators and
bimorph mirrors.

Bimorph actuators employ two layers of piezoelectric material (such
as PZT), or one piezoelectric and one inert layer (sometimes referred
to as unimorph), to produce a controllable force. They are discrete
devices that can be used in continuous faceplate or segmented DMs.

Bimorph DMs are devices in which the mirror faceplate itself is
a continuous bimorph structure consisting of two layers, the shapes
of which can be locally changed. When one or both the layers are
made from piezoelectric material, the application of a voltage causes
a change in size of the area under the electrodes and a consequent
bending of the faceplate. The actuators of the DM are formed by a pat-
tern of electrodes on the surface of the bimorph, and the construction
of this type of devices is much simpler than that of discrete-actuator
DMs.

Figure 31: Simple schematic representation of three different possible configura-
tions for a bimorph DM [2].

There are several possible bimorph configurations (Figure 31): in
all of them an array of controlling voltages is applied to a pattern of
electrodes placed on one of the layers, using a continuous electrode
as the common element. Furthermore, the dimensions of the elec-
trodes must be large with respect to the thickness of the layers to
have a useful effect (tipically > 4 times): this limits the spatial reso-
lution and the maximum number of actuators of a practical bimorph
DM (#actuators 6 100). Despite this, bimorph DMs have two significant
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advantages: their performance matches very well with a curvature sen-
sor (so there is no need of complex reconstruction circuitry to convert
the curvature wavefront sensor signals into actuator commands) and,
unlike other wavefront correctors, they can be configured to remove
tip-tilt aberrations as well as higher order aberrations.

Figure 32: A deformable bimorph mirror with 19 piezoelectric actuators used in
the experimental part of this thesis. The faceplate (left) is a sheet of
silicon with a thin layer (∼ 200µm) of Ag. (right) The piezoelectric
actuators are visible.

3.1.5 Membrane DMs

The continuous faceplate DMs with force actuators are usually
formed by a thin conductive and reflective membrane stretched over a
solid flat frame. This membrane can be stretched with the electrodes
positioned under it by electrostatic pressure.

Figure 33: (Top) Simple schematic representation of a membrane DM and (bottom)
a membrane DM with 32 electrodes used in the experimental part of
this thesis.
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The electrostatic pressure Pi exerted on the membrane by the i-th
electrode is proportional to the square of the voltage Vi applied on it,
that is:

Pi =
ε0
2

(
Vi
d

)2
(24)

where ε0 is the vacuum permittivity and d is the distance between
the membrane and the electrodes.

From Eq. 24 is clear that a certain voltage Vi and its negative pro-
duce the same deformation on the DM: electrostatic pressure is only
attractive. If we want to reproduce positive and negative aberrations,
we thus must initially set our DM in the so-called bias position, that
is, the initial electrostatic pressure of the mirror must be half of the
maximum electrostatic pressure that can be applied on it: this can be
done setting all the electrodes to a voltage equal to Vi,max/

√
2. In

this way we can generate both positive and negative aberration, re-
membering that the relation between the control commands (voltage)
and the deformation (electrostatic pressure) is quadratic as described
in Eq.24.

3.1.6 MEMs (micro-electro-mechanical system) DMs

Figure 34: Four different types of MEMs deformable mirrors are shown. (a) Delft
University (OKO): array of electrodes under a continue metallic mem-
brane. (b) JPL, SY Tech., AFIT: micromachined segmented surface
with an array of microlenses that improves the detection efficiency. (c)
Boston University: micromachined surface connected to a membrane
continuous mirror. (d) Texas Instruments: micromachined segmented
surface with tip-tilt actuators only, used in digital light processing (DLP)
televisions. (e) A 1024 actuators MEMs DM (Boston Micromachines).
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MEMs deformable mirrors [45,46,47] are a quite new class of cheap
DMs. This devices are derived from the membrane DM concept and
can be made with hundreds of actuators, high bandwidths and low
hysteresis, and fit into a microchip. They are actuated with electro-
static forces between a thin common electrode membrane that acts
also as mirror surface and the electrodes. Modern CMOS microchip
manufacturing techniques are used to produce this devices.

MEMs devices have the same basic structures as continuous face-
plate DMs or segmented DMs except that:

- they can have diameters of about 1 cm;

- they can have hundreds of actuators, typically more than 300;

- the voltage needed for a stroke of few microns is only ∼ 15 V
with very low current;

The possibility to integrate this DMs directly with driver circuitry
opens up a wide range of uses for Adaptive Optics in medical applica-
tions and communications (e.g. A.O. imaging in severe environments
and tactical laser weapons).

3.2 wavefront correctors : liquid crystal correctors

Liquid crystals are materials that have an intermediate phase (called
mesophase) between liquid and crystalline, maintaining some of the
ordered characteristics of the crystalline state, while having the flow
properties of a liquid. The mesophase state occurs because the liquid
crystal molecules are polarized in such a way that the intermolecu-
lar forces keep them aligned in one direction (this alignment is lost
at high temperatures). Their most interesting property is that the
molecular structure in the mesophase changes when an electric field is
applied, producing a change in the refractive index. When a liquid
crystal cell is used as wavefront corrector, the correction zones are de-
fined by an array of transparent electrodes placed on the windows
of the cell: in this way each electrode can produce a local variation
of the refractive index, leading to a piston correction. This is also
the main limit of these device, that is, they can’t correct wavefront
tip-tilt aberrations (if a tip-tilt correction is needed, they may be com-
bined with a tip-tilt mirror). The other limit of liquid crystal devices
is that they work only with polarized light. On the other hand they
can have many advantages, such as small size, high spatial resolution,
low-voltage operation no moving parts and low cost.

3.3 wavefront correctors : deformable lenses

In the last few years some deformable lenses (DLs) has been de-
veloped to perform wavefront correction. DLs are very interesting,
because in many cases they enable to compact the adaptive optical
system, and this is useful in several applications (such as microscopy
and vision science). There are a lot of different possibilities to build a
deformable lens: here we introduce two different deformable lenses
that will be used in our experiments.
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3.3.1 Piezoelectrically actuated DL

The deformable lens used in almost all of the experiments of this
thesis is a prototype DL composed of two thin glass windows (borosil-
icate glass, refractive index n ' 1.474, 150µm thick), upon each of
which is mounted a piezoelectric actuator ring. The space between
the windows is filled with a transparent liquid (Vaseline oil, refrac-
tive index n ' 1.475). The piezoelectric actuator ring (Physics Instru-
ments) have an external diameter of 25mm and an internal diameter
of 10mm with a thickness of 200µm. Two deformable lenses of this
type were used, one with 8 independent actuators per ring and one
with 9 (i.e., the first deformable lens has 16 piezoelectric actuators,
the second one 18). The rings are glued to the windows and act as a
bimorph actuator: therefore the application of a voltage generates a
bending of the glass window. The actuators can be controlled using
an high voltage (+/- 125 V) driver (Adaptica srl, IO64).

Figure 35: Layout of the deformable lens. The figures shows what happens if we
actuate (a) one electrode on the top window, (b) one electrode on the
bottom window, or (c) all the actuators with the same voltage value.
Panel (d) shows a top view of the PZT actuator ring and a photo of the
DL where the lens is mounted in a 2 inches tube mount.

The actuators generate different effects on the top and on the bot-
tom window: this happens because the top window is glued to an
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elastomer foam and it is free to move, while the bottom window
is blocked at its border by a rigid aluminium ring. This constraint
moves the maximum (or the minimum) of the deformation inside the
clear aperture (see Figure 35 (b)). Thus the actuator, although placed
outside the clear aperture, acts as it was pushing the window from
inside. Furthermore, the shape of the top window is restrained in the
center by a glass disc with the same refractive index. Figure 35 (c)
shows the effect on the wavefront when a positive voltage is applied
to all the actuators: both the windows bend upward, so the resultant
wavefront is compensated everywhere in the aperture except in the
center, where the glass disc stiffens the window. Therefore the resul-
tant wavefront have a peak in the center (this is the so-called spherical
aberration).

Clearly this DL suffers from hysteresis (due to the piezoelectric
actuators): with a simple experimental setup (Figure 36) we can show
this effect.

Figure 36: Experimental setup used to evaluate the effects of hysteresis in the
piezoelectrically actuated DL described in this paragraph. The light
source is a red laser (< 5 mW, λ = 600 ÷ 700 nm), and a Shack-
Hartmann wavefront sensor (described in paragraph 3.4.1) was used to
detect the shape of the wavefront. The DL and the wavefront sensor are
placed in conjugate planes.

Figure 37: Hysteresis curves for different values of the Zernike coefficients relative
to (a) Astigmatism 0 and (b) defocus. The y-axis contains the peak-to-
valley measurements of the wavefront in correspondence of the coef-
ficient value sent to the DL. The curves were detected starting from
an initial zero position with the DL relaxed. Increasing values of the
coefficients were sent to the lens (with steps of 0.1) until reaching a
coefficient value of 0.6. Then, without relaxing the DL, decreasing val-
ues of the coefficients were sent to the lens (with steps of −0.1) until
reaching a negative coefficient value of −0.6: this second curve doesn’t
follow the initial path, and when the zero coefficient is sent to the lens,
the wavefront isn’t flat but has a positive peak-to-valley value. Finally,
starting from the coefficient value −0.6, increasing values of the coeffi-
cients were sent to the lens (with steps of 0.1) until reaching the value
0.6 again: this time, when the zero coefficient is sent to the lens, the
wavefront has a negative peak-to-valley value. The final curves are tipi-
cal hystereis curves, as expected.
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Astigmatism 0 and defocus aberrations (Z4 and Z5 Zernike modes
respectively) was reproduced with the lens with increasing and then
decreasing coefficients. This can be done solving a linear least squares
problem between the influence matrix of the DL and the desired target
function (in this case Z4 or Z5) in order to find the correct command
vector. A linear least squares problem can be solved with the Matlab

function lsqlin() after selecting the right boundary conditions. The
results of these wavefront measurements are shown in Figure 37.

A simple way to relax the DL to the initial deformation after having
applied a certain voltage on it, is to perform smaller and smaller
hysteresis cycles, until the initial position is finally restored (it’s quite
simple to implement this relaxation procedure in Matlab).

Further properties of this DL will be explained in the next chapter.

3.3.2 Fast electrically tunable DL

Another useful deformable lens is a DL produced by Optotune
(model EL-10-30) [58]. It has an external diameter of 30 mm and a
clear aperture of 10 mm, and it’s 10.75 mm thick. It consists of a
container (two thin glass windows with a 400− 700 nm broad band),
which is filled with a low dispersion transparent liquid (with refrac-
tive index n ' 1.300) and sealed off with an elastic polymer mem-
brane. The deflection of the lens is proportional to the pressure in the
fluid.

Figure 38: Working principle of the electrically tunable deformable lens. (a) Ini-
tially the lens is relaxed, and (b) appliyng a pressure with the electro-
magnetic actuator it’s possible to deform it. The final result is a change
of its focal length. This pictures are taken from the manual of the lens,
available in the official Optotune website [58].

Figure 39: Focal length of the electrically tunable DL against current applied on it
(the DC voltage is fixed between 0 and 5 V). The focal length is maxi-
mum when the current is zero, and it’s equal to fmax ' 14 cm. The
minumum focal length fmin ' 4.5 cm is reached when the current is
maximum (i.e. 300 mA). Higher values of the current should damage
the lens. This graph is taken from the manual of the lens, available in
the official Optotune’s website.
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The DL has a unique electromagnetic actuator that is used to exert
pressure on the container: thus, the focal length of the lens is con-
trolled by the current flowing through the coil of the actuator (see
Figure 38). The best way to control the electromagnetic actuator is
to set a fixed DC voltage between 0 and 5 V and then to control it
in current from 0 to ∼ 300 mA (in this way we can limit unwanted
temperature effects). The focal length changes with the current apply
in a way described in Figure 39.

This DL can only change its focal length, that is, it can only correct
defocus aberrations. Our purpose is to use it in a microscope in order
to perform focus and focus stacking without moving the sample.

Figure 40: (left) A photo of the EL-10-30 Optutune deformable lens and (right) its
optical layout. This pictures are taken from the manual of the lens,
available in the official Optotune’s website.

3.4 wavefront sensors

Anther important device in Adaptive Optics is the wavefront sensor.
Wavefront sensors are very useful not only in closed loop systems, but
also in studying and characterising the wavefront correctors: we can
use a wavefront sensor to determine their intrinsic aberrations and their
influence matrix. There are a lot of different devices in able to do this.
We will introduce only three of the most common ones of them [2,5].

3.4.1 Shack-Hartmann wavefront sensor

The working principle of the Shack-Hartmann wavefront sensor is
extremely simple, which may explain its great popularity. An array
of identical converging small lenses, called lenslets, is placed in the
pupil of the light beam that we want to measure. The original beam
is brought to a separate focus by each lenslet, thus producing an
array of spots in the focal plane. If the initial wavefront is plane
(Figure 41 (top)), each spot will be located on the optical axis of its
corresponding lenslet. But if the initial wavefront is distorted (Figure
41 (bottom)), we’ll have a local gradient over each lenslet: calling this
gradient α(x,y), each spot will be displaced by a distance

D(x,y) = α(x,y) · F
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where F is the focal length of the lenslets. The lenslet array there-
fore converts wavefront gradients into misurable spot displacements.
These displacements are proportional to the wavefront tilts, thus start-
ing from them it’s possible to fully reconstruct the wavefront incident
on the lenslet array.

Figure 41: Working principle of a Shack-Hartmann wavefront sensor.

The wavefront slope measurement is usually performed with a con-
ventional CCD camera. The simplest arrangement is to use a 2× 2
pixel detector for each lenslet (Figure 42). To obtain better linearity
and dynamic range, a larger array of 4× 4 pixels can be employed.

Figure 42: Simple schematic representation of the detection of a light beam pass-
ing through a lenslet.

Figure 43: The custom-built Shack-Hartmann wavefront sensor used in the experi-
mental part of this thesis.

In the experimental part of this thesi a custom-built Shack-Hartmann
wavefront sensor was employed (Figure 43). It consists of a monochrome
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CMOS camera (Thorlabs, DCC1645C) with a 32×32 lenslet array placed
in front of it. The lenslet pitch is 300µm and each lenslet has a focal
length F ' 14.68 mm.

3.4.2 Shearing interferometer wavefront sensor

Shearing interferometry is a technique for measuring phase differ-
ences in a wavefront. The working principle of a shearing interferom-
eter is to combine the wavefront with a laterally shifted (or sheared)
replica of itself, in order to produce and interference pattern of over-
lapping copies of the wavefront. In this way, optical phase differences
are converted into intensity variations which can be easily detected.
This type of interferometers can also work with light sources that are
temporally incoherent and of finite size.

Figure 44: Working principle of a shearing interferometer wavefront sensor.

Let’s suppose to have a wavefront described by the complex ampli-
tude

U(x,y) = A(x,y)eikW(x,y)

where W(x,y) is the wavefront function and A(x,y) its amplitude
distribution. If the shear distance s (supposed along the x-axis) is
small compared with the scale of the disturbances in the wavefront,
we obtain an intensity I(x,y) of the interference pattern described by

I(x,y) = 2
[
1+ |A(x,y)|2cos

(
ks
∂W(x,y)
∂x

)]
(25)

From Eq.25 we can see that the intensity of the interference pattern
is proportional to the cosine of the wavefront slope multiplied by the
shear distance. This means that

- changing the shear distance s is possible to adjust the sensitivity
of the shearing interferometer;

- measuring the intensity of the interference pattern I(x,y) it’s
possible to determine the wavefront gradient in the shear direc-
tion at any point.

In order to fully reconstruct the wavefront it’s clearly necessary to
make two lateral shear measurements, one with s along the x-axis
and one along the y-axis.
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There are several types of shearing interferometers, each one with
different specific characteristics. For example, if achromaticity is needed,
the shear can be generated with a diffraction grating instead of the
plane parallel plates in Figure 44. Furthermore, if we want to measure
rotationally simmetric aberrations, such as defocus and spherical aber-
ration, it might be useful the so-called radial shear, where the replica
of the wavefront is magnified or demagnified before combining with
the original.

Finally, in Figure 45 is shown a shearing interferometer (Thorlabs,
SI254) [59] used to collimate the laser beams in the experimental se-
tups of Chapters 4,5.

Figure 45: An example of a simple shearing interferometer (Thorlabs, SI254) used
to collimate laser beams. The three pictures on the top shows how it
works for collimated, converging or diverging laser beams. This pic-
tures are taken from the manual of the shearing interferometer, avail-
able in the official Thorlabs website [59].

3.4.3 Curvature wavefront sensor

The curvature wavefront sensor was first proposed by F. Roddier in
1988. It consists in an image plane measurement of local wavefront
curvature, that is, the second derivative (a.k.a. Laplacian) of the wave-
front ∇2W(r), deduced from two specific out-of-focus images (Figure
46). It can be demonstrated that a point by point subtraction of these
two images is proportional to the difference between the wavefront
curvature term and the partial derivative of the wavefront at the edge
and over the direction perpendicular to it:

I1(r) − I2(r) ∝
[
∇2W(r) −

(
∂W(r)
∂n

)
r=R

]
(26)

Eq. 25 is based on geometrical optics considerations: to assure its
validity, some conditions must be fulfilled. The irradiance distribu-
tions I1 and I2 are a blurred copy of the pupil, and the blur size
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is determined by the diffraction due to the turbulence at the input
aperture. If the scalar size of the turbulence is r0, then the diffrac-
tion angle is λ/r0 and the blur size of I1 is λ(F− p)/r0 (F and p are
distances defined in Figure 46). This blur must be smaller than the
areas over which we want to measure the curvature, that is, r0p/F.
All these requirements lead to the condition

p >
λF2

λF+ r20

Figure 46: Working principle of a curvature wavefront sensor.

A practical implementation of the curvature wavefront sensor can be
realized using an oscillating membrane mirror that vibrates rapidly
(∼ 2 kHz) between the two out-of-focus positions. The intensity of
the light in each subaperture can then be detected with an avalanche
photodiode (one per subaperture).
Avalanche photodiodes can detect even individual photons, that is, they
have no read noise (so curvature wavefront sensors can be used with
fainter light sources than other types of wavefront sensors), but they are
very bulky and expensive, and it’s quite hard using a large number
of them.

Finally, since curvature wavefront sensors directly measure the Lapla-
cian of the wavefront, they are usually coupled with bimorph de-
formable mirrors in closed loop systems, as they have Laplacian influ-
ence functions (and this allows to simplify the aberration correction
procedure).
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4
E X P E R I M E N TA L VA L I D AT I O N S

4.1 first experimental setup

All the simulations performed in Chapter 2 of this thesis need to
be tested in an experimental setup, with the real Adaptive Optics
devices described in Chapter 3. Thus, a simple experimental setup
was built on an optical table, which enabled to perform both closed
loop corrections and sensorless corrections. In this way we can directly
compare these two approaches. Furthermore the experimental setup
is designed also to compare different wavefront correctors, as we will
see in the next chapter.

Figure 47: Schematic representation of the experimental setup. There are two
sources of illumination: a red laser (< 5 mW, λ = 600÷ 700 nm, for
the measurements with the wavefront sensor) and a white LED (for sam-
ple illumination). L0 (f0 = 6 cm) collimates the light coming from the
sources, L1 and L2 (f1 = f2 = 6 cm) are two identical achromatic dou-
blets which enable to place the mirror M and the deformable lens DL in
conjugate planes (this will be useful especially when we will substitute
M with a deformable mirror), BS1 and BS2 are two beamsplitters, L3
(f3 = 13cm) and L4 (f4 = 6 cm) are two achromatic doublets used as
beam reducer for the WS (Shack-Hartmann wavefront sensor), and finally
L5 (f5 = 6 cm) is an achromatic doublet that focalizes the light beams
into a colour camera (Thorlabs, DCC1645C). The DL and the wavefront
sensor are in conjugate planes too.
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All the lenses used in this setup, which is shown in Figure 47, are
VIS achromatic doublets, so that aberration corrections of color images
can be performed too. The collimation of the beam in each part of the
system (where it is required) was verified using the shear interferom-
eter described in paragraph 3.4.2 (see Figure 45) and the alignment of
each element with the others was accurately verified using a mobile
pinhole. The deformable lens used here is the 16 actuators DL de-
scribed in paragraph 3.3.1, while the Shack-Hartman wavefront sensor
is the custom-built one described in paragraph 3.4.1. They are placed
in conjugate planes, in order to preserve the diameter of the light
beam incident on the wavefront sensor while the wavefront is being
deformed by the DL.

There are two sources of illumination:

- a red laser (< 5 mW, λ = 600 ÷ 700 nm) useful to align the
system but especially for the closed loop control (the Shack-
Hartmann wavefront sensor works only with point-like sources);

- a white LED for sample illumination, useful to perform imaging
and sensorless corrections.

4.2 theoretical wavefronts reproduced by the dl

First of all, it has been verified how well the DL can reproduce the
various modes (Zernike, Lukosz, O1 and O2).

If we want to reproduce Zernike or Lukosz polynomials without
using the wavefront sensor, we must find the correct command vector for
the DL by solving a linear least squares problem between the influence
matrix of the DL and the desired target function (i.e., the polynomial
that we want to reproduce). As previously suggested, a linear least
squares problem can be solved in Matlab with the function lsqlin().

In the case of O1 and O2 modes, instead, is much easier: the
command vector is already known by the SVD decomposition. The
columns of the matrices V in Eq.19 and V ′ in Eq.22 are none other
than the command vectors that we are looking for.

Figure 48: Influence matrix of the DL with 16 actuators used in the experimental
setup in Figure 47. The deformations produced by each single actuator
are shown as interferograms.

After implementing some Matlab programs, all the modes feasi-
ble with the deformable lens were reproduced. Each mode was re-
produced with increasing peak-to-valley values, until the saturation
of one of the actuators (i.e., the maximum value of a certain mode
that the DL can reproduce because of its physical limits). The vec-
tor commands were normalized in such a way that the saturation of
one of the actuators, for each mode, occurs in correspondence of a
selected coefficient value equal to 1 (or −1 for negative commands).
Thus, starting from a coefficient value equal to 0.2 and increasing it
with steps of 0.2, and then (after relaxing the DL) starting from −0.2
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with steps of −0.2, a total of 10 experimental wavefronts per mode
were obtained. The experimental wavefronts were evaluated using
the Shack-Hartmann wavefront sensor, and then a decomposition of
the wavefront was made using modes of the same type of the one
reproduced with the DL.

Now, we need a way to quantify the purity of the experimental
modes, that is, how well they approximate the theoretical modes.

This can be done defining the Spectral Purity of the i-th mode as
[24]:

Pi =
ci√∑
j(cj)

2
(27)

where ci is the experimental coefficient of the i-th mode we want
to reproduce with the deformable device, while cj are the values of
all the experimental coefficients (including ci) evaluated from the de-
composition of the experimental wavefront.
The Spectral Purity Pi can vary from 0 to 1:

- Pi = 0 if there isn’t any trace of the i-th theoretical mode in the
experimental wavefront;

- Pi = 1 if the i-th theoretical mode perfectly coincides with the
experimental wavefront.

After calculating the Spectral Purity of each experimental wavefront,
the means of the 10 Spectral Purities evaluated for each mode were
taken.

Figure 49: Mean Spectral Purity of the experimental wavefronts reproduced by the
16-actuators DL using (a) Zernike modes (Zi, i = 1, ..., 15), (b) Lukosz
modes(Li, i = 1, ..., 15), (c) O1 modes (from 1 to 12) and (d) O2 modes
(from 1 to 12). The modes shown in the histograms are those that the
DL can reproduce. Higher modes can’t be reproduced by the DL, so
it’s useless to evaluate their Spectral Purity.
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The histograms in Figure 49 show the mean Spectral Purity for each
mode evaluated with the procedure outlined above. From Figure 49

we can notice that

- Zernike and Lukosz modes are well reproduced by the DL, with
some difficulties for the spherical aberration (mode 13) and the
two quadrafoils (modes 11 and 15). In particular, mode 15 can’t
substantially be reproduced (even in closed loop it can’t) for
both the basis of polynomials.

- O1 and O2 modes are well reproduced by the DL until mode 12,
while modes > 12 are not. In the case of O1 modes, also mode
12 can’t be reproduced.

4.3 sensorless vs . closed loop corrections

Once it was known which modes could be reproduced with the
deformable lens without using the wavefront sensor and which ones
couldn’t, some sensorless corrections were performed, and then they
were compared with the closed loop ones.

To perform closed loop corrections, the laser beam is turned on,
and its wavefront is flattened using the feedback from the wavefront
sensor: then, the laser beam is turned off and we can take the image
of the sample corrected.

To perform sensorless corrections, the hysteresis of the DL doesn’t
allow to take the first image (with the DL relaxed) only one time for
the correction of all the modes: each time we find a correction coeffi-
cient for a mode, we need to apply the deformation corresponding to
that correction immediately, because only in this way we can follow
the hysteresis curve. So every time we change the mode we want to
correct, we need to take also the image with a zero value of the new
mode considered. Using for example 3 image evaluations for every
mode, this will take a total of 3N (N = number of modes to be cor-
rected) instead of 2N+ 1 image evaluations, but this is fundamental
to avoid problems due to the hysteresis.

Figure 50: (left) Aberration of the wavefront due to the optical system plus the
16-actuators DL relaxed. The resulting wavefront have a peak-to-valley
= 1.78 waves and an rms = 0.31 waves. (right) The interferogram is also
shown.
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The initial aberration of the wavefront is principally due to mis-
alignments and imperfections of the optical components of the sys-
tem, plus the initial aberration of the deformable lens: it is shown in
Figure 50.

A noticeable result obtained with this experimental setup is that, af-
ter a closed loop correction, the corrected wavefront measured by the
Shack-Hartmann wavefront sensor is flat (according with the Maréchal
criterion), but after a sensorless correction the corrected wavefront
measured by the wavefront sensor isn’t flat (that is, it isn’t under the
Maréchal limit). Nevertheless, the metric evaluations are in favour of
the corrections performed with the sensorless method. This result can
be clarified assuming that the system is afflicted by non common path
errors: the laser beam doesn’t follow the same path of the light com-
ing from the sample, so it’s possible that the two beams are afflicted
by different aberrations because of this difference in the optical path.
This is not a problem for the sensorless corrections, which don’t work
with the laser beam.

The non common path errors of this experimental setup will be dis-
cussed more in detail in the next chapter, in paragraph 5.6.

4.3.1 Area of correction

An important thing that we must take into account while perform-
ing an aberration correction is the choice of the area of correction, that
is, the part of the total image taken by the camera that will be cor-
rected. The camera has a resolution of 1280× 1024 pixels, and if we
use all this area we will have final images only partially corrected (i.e.
we’ll have some sharp areas but also some blurred ones).

Thus, some aberration corrections were performed (Figure 51), both
sensorless and closed loop, varying the area of correction in the camera,
and they were compared. The sensorless corrections was performed
using the Modes Correction Algorithm with O2 modes (from 1 to 12)
and the SD metric. For every mode, 5 images were taken to find
(with a parabolic fit) the correction coefficient of the corresponding
mode.

From Figure 51 we can see that all the initial images are improved
by the corrections. Furthermore, sensorless corrections enables us
to reach a better image quality (in terms of imaging sharpness metric
value) than close loop corrections performed in the same conditions.

All the closed loop images were taken after that the close loop pro-
cedure flattened the wavefront of the laser beam under the Maréchal
limit (i.e. when the wavefront rms is < 0.08 waves). So it was interest-
ing to verify with the wavefront sensor if the wavefront was flat after a
sensorless correction performed with a certain area of correction.

From the results of these measurements, which are shown in Figure
52, emerges that:

- in spite of the fact that sensorless corrections lead to better met-
ric values than closed loop ones, the wavefronts measured with
the wavefront sensor have an rms that in the best case is equal
to ∼ 0.12 waves: this is clearly a result due to non common path
errors between the paths of the laser beam and the light from
the sample;
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Figure 51: Initial aberrated images (aberration shown in Figure 50), closed loop
corrected and sensorless corrected images of the same sample (a lily
ovary) for different dimensions of the area of correction (that is always
taken in the central part of the total image). The values of the SD
metric (with (M1,M2) = (0.03, 0.1)) of each image is provided under
it and also reported in an histogram (the lower this value is, the better
the quality of the image).
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- the flattest wavefronts are those found with an intermediate area
of correction. This was to be expected, because for small areas of
correction we have a lack of information that doesn’t allow us to
perform a good correction, while for big areas of correction the
difficulties for the deformable device to correct all the area are
amplified, and in addition the wavefront sensor doesn’t work in
a correct way because it is thinked to work only with point like
sources, but this is not the case if we consider a large area of the
sample in the imaging process.

In our system, a good area of correction is between 300× 300 and
400× 400 pixels. This choice allows to perform good aberration cor-
rections and to compare in the best way closed loop and sensorless
corrections.

Figure 52: Wavefront rms measured by the wavefront sensor after a sensorless cor-
rection (described in this paragraph) against the side of the square area
used as area of correction. These measurements were performed more
than a time, in order to verify the sability and reliability of the rms val-
ues of the wavefronts, and all the times the sames results were found.

4.3.2 Comparing metrics and modes in the Modes Correction Algorithm

Using the results discussed on the previous paragraph, an area of
correction of 300× 300 pixels was setted and then different combina-
tions of modes and metrics were tried with the same sample and the
optical system in the same initial conditions.

First of all, some sensorless corrections were performed using the
SD metric and the O2 modes, varying the number of points used in
the fit for each mode (see Figure 10 in Chapter 1). This is useful
to understand if a 3-points fit is sufficient in a real system or if it’s
better to use more points. In the simulations, using 3 or more points
were the same, but there wasn’t any kind of noise. After performing
several corrections, it can be realized that the number of points that
leads to the best metric value is 5.
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Figure 53: Initial aberrated image (aberration shown in Figure 50), closed loop
and sensorless corrected images of the same sample (a lily ovary) with
different number of fit points per mode used in the Modes Correction
Algorithm (first 12 O2 modes, SD metric with (M1,M2) = (0.03, 0.1).
The value of the SD metric of each image is provided under it and also
reported in an histogram (the lower this value is, the better the quality
of the image).

An example of these corrections is shown in 53, where the same
aberrated image was corrected with a Mode Correction Algorithm using
3, 5 and 7 fit points per mode. In all the cases, we also see that the
sensorless corrections are better than the closed loop one.

Secondly, several sensorless correction were performed using the
Mode Correction Algorithm with Zernike, Lukosz, O1 and O2 modes
(all those that the lens can reproduce), using both IQ and SD metric.
For the IQ metric, a polynomial of degree 4 was used to fit 5 points
per mode: in this way the same number of fit points per mode was
used with both the metrics. These results are shown in Figure 54

As it can be seen, the lowest metric values are found with the SD
metric using Lukosz and O2 modes, according with the simulations.
All the corrections are in each case good, and once again all of them
are better than the closed loop one. Furthermore, Lukosz and O2

corrections lead to quite the same results (at least in terms of SD
metric values).

The experiments are thus consistent with the theory and the simu-
lations.
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Figure 54: Initial aberrated image (aberration shown in Figure 50), closed loop
and sensorless corrected images of the same sample (a lily ovary) with
different combinations of metrics and modes (outlined on the top of
each image) used in the Modes Correction Algorithm. The value of the SD
metric (with (M1,M2) = (0.03, 0.1)) of each image is provided under it,
also for the images corrected with the IQ metric (the lower this value is,
the better the quality of the image): this enables us to directly compare
all the images. All the SD metric values are also reported and also
reported in an histogram below the images.
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4.3.3 Coloured sample

Being the optical system all composed of achromatic doublets, a
closed-loop and a sensorless correction were performed also with a
different coloured sample (a tilia stem), in order to show that the sys-
tem can also correct coloured images. For the sensorless correction,
the Modes Correction Algorithm was used with O2 modes (the first 12)
and the SD metric. As we can see from Figure 55, the correction is
good.

Figure 55: Initial aberrated image (aberration shown in Figure 50), closed loop and
sensorless corrected images of a coloured sample (a tilia stem). For the
sensorless correction the Modes Correction Algorithm was used with O2

modes, SD metric (with (M1,M2) = (0.03, 0.1)), 5 fit points per mode.
The area of correction, as for the previous sample, is 300 × 300 pixels.
The value of the SD metric of each image is provided under it and also
reported in an histogram (the lower this value is, the better the quality
of the image).
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5
C O M PA R I S O N B E T W E E N D I F F E R E N T
D E F O R M A B L E D E V I C E S

5.1 second experimental setup

In this chapter two deformable mirrors were compared with a de-
formable lens with 18 piezoelectric actuators. The DMs have been
shown and described in Chapter 2: a piezoelectric DM with 19 actu-
ators (paragraph 3.1.3 and Figure 32) and a membrane DM actuated
with 32 electrodes (paragraph 3.1.4 and Figure 33). The new DL lens
is perfectly identical to the 16-actuators one, apart from two more ac-
tuators: this DL had been developed in parallel with the experiments
of this thesis. The additional actuators allows the DL to reproduce
also mode 15 (both Zernike and Lukosz one), which the DL couldn’t
reproduce with only 16 actuators (as it can be seen from Figure 49).

Figure 56: (left) Experimental setup on the optical table and (right) its schematic
representation. This setup is similar to that of Figure 47, with two main
differences: a 10× objective was used in the imaging path (to improve
the quality of the images on the camera), and a DM was used (firstly
the DM in Figure 32, and then the DM in Figure 33), replacing the flat
mirror of the first experimental setup (Figure 47). The DM, the DL and
the Shack-Hartmann wavefront sensor are placed in conjugate planes. All
the other components are the same of those in Figure 47.
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5.2 influence matrices of the deformable devices

First of all, the Influence Matrix (cfr. paragraph 1.6.1) of each de-
formable device was evaluated using the Shack-Hartmann wavefront
sensor. These matrices, which are the starting point for the characteri-
sation of our deformable devices, are shown in Figure 57.

Figure 57: Influence matrices of (a) the 18-actuators DL, (b) the 19-actuators piezo-
electric DM and (c) the 32-actuators membrane DM used in the exper-
imental setup in Figure 56. The deformations produced by each sigle
actuator are shown as interferograms.

5.3 generation of zernike polynomials

After evaluating the Influence Matrix of the three devices, the closed
loop system was used to generate the Zernike polynomials with each
one of them. Zernike polynomials were chosen because they are the
most commonly used, and thus they are also commonly used to com-
pare deformable devices [48,49].

Setting a desired target (in this case a selected Zernike polynomial)
in the closed loop control software, the closed loop system tries to
minimize the residual between the selected target and the wavefront
generated by the deformable device (detected by the Shack-Hartmann
wavefront sensor). In this way, we can generate with the deformable
devices all the Zernike polynomials that they can reproduce, until the
maximum value of wavefront rms (different for each mode) that they
can reach.

In order to decide if a certain wavefront can be reproduced or not,
the Maréchal Criterion was used: according with it, a wavefront can be
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reproduced by the device if the residual wavefront between the target
wavefront and the measured one has an rms < 0.08 waves.

All the Zernike polynomials that can be generated with the DL and
the two DMs are shown in Figure 58, with their maximum rms and
peak-to-valley values.

Figure 58: Maximum (a) rms and (b) peak-to-valley values of the Zernike poly-
nomials that can be generated by the 18-actuators DL (black bars), 19-
actuators piezoelectric DM (gray bars) and 32-actuators membrane DM
(white bars), following the procedure outlined in this paragraph. As it
can be noticed, thanks to the two new actuators the DL can now gener-
ate also the Zernike mode 15, which couldn’t be reproduced with only
16 actuators (see Figure 49).

From the graphs in Figure 58 we can infer that:

- the 18-actuators deformable lens can generate all the Zernike
modes between 4 and 15, with a bigger (modes between 4 and
10) or at least equal (modes between 11 and 15) peak-to-valley
(and rms) values than those reproducible with the two DMs;

- the 19-actuators piezoelectric DM can generate modes between
4 and 15, all of them with a smaller peak-to-valley (and rms)
value than the 32-actuators membrane DM;
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- the 32-actuators membrane DM can also generate higher Zernike
modes (thanks to its greater number actuators) than the ones re-
producible with the other two deformable devices. Indeed, it
can generate modes between 4 and 21.

5.4 closed loop aberration corrections

Once known the ability (and also the limits) of our deformable
devices to generate Zernike polynomials, some random aberrations
were introduced in the optical system using one of the two DMs,
and then the DL was used to correct these aberration in the closed
loop system with the laser beam (so this time the target was a flat
wavefront). The initial aberration was generated sending to the DM
a random command vector, with values chosen between the minimum
and the maximum value that each actuator can support.

The DL, in addition to the aberrations due to the optical system and
to the deformable mirrors, must correct also its own initial aberration.
The initial aberration due only to the DL relaxed plus the optical
system is shown in Figure 59.

Figure 59: (left) Aberration of the wavefront due to the optical system plus the
18-actuators DL relaxed. The resulting wavefront have a peak-to-valley
= 2.07 waves and an rms = 0.37 waves. (right) The interferogram is also
shown.

5.4.1 19-actuators piezoelectric DM vs. 18-actuators DL

The 19-actuators piezoelectric DM was firstly used to introduce
aberrations in the optical system. 20 different initial random aber-
rations were corrected by the DL using the closed loop system. The
results are shown in Figure 60.

As it can be seen, all the 20 initial aberrations are corrected by the
DL within the Maréchal Limit: this means that the DL is absolutely
equivalent to the DM (or even better than it) in correcting aberrations.

Furthermore, all the residual wavefronts of the 20 corrections were
decomposed in Zernike polynomials, and then a mean of the residual
coefficients related to each mode was performed over all the correc-
tions. From this graph (Figure 61) we can see that the low order (Zi,
i = 4, ..., 15) aberrations were corrected, and that the residual aber-
ration is mainly composed of modes higher than mode 15. Those
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modes can’t be generated by the 19-actuators piezoelectric DM (Fig-
ure 58). Nevertheless, all their values are under the Maréchal Limit:
they might be due to the system itself plus distortions from the DM
(or even from the DL, which might generate some high order modes
while trying to correct the low order ones).

Figure 60: Aberration corrections of 20 random initial aberrations due to the 19-
actuators piezoelectric DM and corrected by the 18-actuators DL. The
black squares represent the initial aberrations, with a total rms value
given in the y-axis, while the red circles are the corresponding final
aberrations. The red dashed line represents the Maréchal Criterion

Figure 61: Mean of the coefficients (in waves rms) of the residuals wavefronts after
the 20 aberration corrections performed in 60.

5.4.2 32-actuators membrane DM vs. 18-actuators DL

The 32-actuators piezoelectric DM was then used (instead of the
19-actuators piezoelectric DM) to introduce aberrations in the optical
system. Also with this DM, 20 different initial random aberrations
were corrected by the DL using the closed loop system. The results
are shown in Figure 62.

65



Figure 62: Aberration corrections of 20 random initial aberrations due to the 32-
actuators membrane DM and corrected by the 18-actuators DL. The
black squares represent the initial aberrations, with a total rms value
given in the y-axis, while the red circles are the corresponding final
aberrations. The red dashed line represents the Maréchal Criterion

Figure 63: Mean of the coefficients (in waves rms) of the residuals wavefronts after
the 20 aberration corrections performed in 62.

This time we can see that the aberrations aren’t completely cor-
rected: the majority of them are above, even if quite close, the Maréchal
Limit. Decomposing the residual wavefront as it has already been
done in the analysis in paragraph 5.4.1 (Figure 61) we can see that
(Figure 63), also in this case, low order (Zi, i = 4, ..., 15) aberrations
were corrected, and that the residual aberration is mainly composed
of modes higher than mode 15. In addition, a residual of mode 13
(spherical aberration) greater than that found for the 19-actuators piezo-
electric DM can be noticed. Nevertheless, this can be understood
from the graphs in Figure 58. Finally, the 32-actuators membrane
DM can actually generate modes from 16 to 21, so it’s obvious that
the residual coefficients of these modes must be greater than the same
coefficients in the system with the 19-actuators piezoelectric DM.
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5.5 imaging : closed loop and sensorless corrections

The Modes Correction Algorithm was tested in the experimental setup
of Figure 56, and compared with the closed loop correction.

Figure 64: (top left) Initial image: aberration (= 0.56 waves rms) due to the sys-
tem, the DL relaxed (Figure 59) and the randomly actuated piezoelec-
tric DM. (top right) Closed loop corrected image. (bottom) Sensorless
corrected images: Modes Correction Algorithm, SD metric with (M1,M2)
= (0.03, 0.1), using 12 (bottom left) Lukosz modes (Li, i = 4, ..., 15) or
(bottom right) the first 12 O2 modes, 5 fit points per mode. The value
of the SD metric of each image is provided under it and also reported
in an histogram (the lower this value is, the better the quality of the
image).

The sample is the same lily ovary used in Chapter 4. The 19-
actuators piezoelectric DM has firstly been used to generate the ini-
tial random aberration (= 0.56 waves rms). The corrections are then
performed with the 18-actuators DL. The closed loop correction was
performed using the laser beam and the Shack Hartman wavefront
sensor to flatten the wavefront with the DL. The laser was then turned
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off and an image of the sample was taken. The sensorless corrections
were performed using the Modes Correction Algorithm and the SD met-
ric, a correction using 12 Lukosz polynomials (Li, i = 4, ..., 15) and the
other with the first 12 O2 modes, in both cases with 5 fit points per
mode. All this is shown in Figure 64.

In Figure 65 the values of the SD metric in the 12 steps of each
sensorless correction are also shown. We can see that, at each step,
the SD metric value decrease, until it reaches the lowest value in the
last mode correction.

Figure 65: Steps of the sensorless corrections in Figure 64, using (left) Lukosz or
(right) O2 modes. The mode 0 on the x-axis in both the graps cor-
responds to the initial aberration. The y-axis contains the SD metric
values, evaluated in the frequencies spatial range (M1,M2) = (0.03, 0.1).

The same corrections with a different portion of the same sample
were performed using the 32-actuators membrane DM instead of the
19-actuator piezoelectric DM.
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Figure 66: (top left) Initial image: aberration (= 0.94 waves rms) due to the sys-
tem, the DL relaxed (Figure 59) and the randomly actuated membrane
DM. (top right) Closed loop corrected image. (bottom) Sensorless cor-
rected images: Modes Correction Algorithm, SD metric with (M1,M2) =
(0.03, 0.1), using 12 (bottom left) Lukosz modes (Li, i = 4, ..., 15) or (bot-
tom right) the first 12 O2 modes, 5 fit points per mode. The value of the
SD metric of each image is provided under it and also reported in an
histogram (the lower this value is, the better the quality of the image).

The initial aberration (= 0.94 waves rms) is larger than the previ-
ous one, because the membrane DM can produce broader distortions
than the piezoelectric DM (see Figure 58). The initial image and the
corrected ones are shown in Figure 66, while the values of the metric
in the 12 steps of each sensorless correction can be seen in Figure 67.

Figure 67: Steps of the sensorless corrections in Figure 66, using (left) Lukosz or
(right) O2 modes. The mode 0 on the x-axis in both the graps cor-
responds to the initial aberration. The y-axis contains the SD metric
values, evaluated in the frequencies spatial range (M1,M2) = (0.03, 0.1).

In both the cases (Figures 64 and 66), all the corrections are good
and the final images are clearly sharper than the initial one. Further-
more, all the sensorless corrections are better than the closed loop
ones in terms of SD metric.

5.6 non common path errors

In this last paragraph the effects of the non common path errors that
affect the closed loop corrections in the experimental setup of Figure
56 are discussed. This phenomenon has already been explained in
paragraph 4.3, where it was used to justify the better quality of the
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sensorless corrected images compared to the closed loop corrected
ones. In this new experimental setup we obtained the same result.

Thus, using the new experimental setup, a random aberration was
generated using the 19-actuators piezoelectric mirror, and then the
closed loop correction was studied step by step.
After each iteration of the closed loop correction

- an image of the sample was taken, and its SD metric with
(M1,M2) = (0.03, 0.1) evaluated (Figure 68);

- the rms of the wavefront detected by the Shack-Hartmann wave-
front sensor was recorded (Figure 69).

If our system wasn’t affected by non common path error, a decrease
in the rms of the wavefront detected by the wavefront sensor would
also cause a decrease in the SD metric value (i.e. an enhancement in
the image quality).

Nevertheless, from Figures 68 and 69 it can be seen that this is not
the case. Indeed, while the rms of the wavefront decreases, the quality
of the image is increased in the first 3 steps, but then decrease another
time. The presence of non common path errors is then demonstrated,
because it is the only possible explanation for this malfunction in the
closed loop system.

Figure 68: Images of the sample (a tilia stem) shown after each iteration (the first 6)
of a closed loop correction obtained with the optical system in Figure 56,
with a random aberration generated by the 19-actuators piezoelectric
DM (total initial aberration ' 0.66 waves rms) and the 18-actuators DL
used as wavefront corrector. The value of the SD metric of each image is
provided under it (the lower this value is, the better the quality of the
image).
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Figure 69: The black dots represent the values of the wavefront rms of the laser
beam (left y-axis) detected by the wavefront sensor after each iteration (on
x-axis) of the closed loop correction. The blue dots represent instead the
SD metric values (right y-axis) of the first 6 iterations, which correspond
to the 6 images in Figure 68. The red line in the graph represents the
Maréchal Criterion.





6
S E N S O R L E S S A D A P T I V E O P T I C S A P P L I E D T O
C O N F O C A L M I C R O S C O P Y

Sensorless Adaptive Optics, and in particular the Modal Correction
Algorithm, have been already applied successfully in different types of
microscopy, including widefield [30], two-photons [14] and confocal
[28,56] microscopy. In this chapter all the results reached previously
in this thesis has been employed in a confocal microscope.

6.1 description of the microscope

Figure 70: Schematic representations of the Olympus confocal mi-
croscope described in this paragraph, also available at
http://www.olympusamerica.com/files/seg_confocal_dsu_bro.pdf

The confocal microscope used to test the developed algorithms and
the 18-actuators piezoelectric deformable lens is schematized in Fig-
ure 70.

The light emitted from a LED reflects at a dichroic mirror and
passes through a rotary disk placed in the light path. The rotary
disk (which is located in a plane conjugate to the focal plane of the
objective lens) has a pattern of linear lines that provides the effect
equivalent to pin holes by high speed rotation. The light that passes
through the disk further passes through the objective lens and goes
to the specimen. The fluorescence emitted from the specimen passes
through the objective lens again and forms an intermediate image on
the rotary disk: a portion of light that is in focus will pass through
the disk, so the CCD camera (Edmund Optics, EO-3112C) captures the
image and a specimen image will be displayed on the monitor of the
computer.
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The LED which illuminates the sample is a blue high-power led
(Thorlabs, M470L2) that emits light with nominal wavelength λ = 470

nm and a bandwidth (FWHM) ∆λ = 29 nm. The filter kit is suitable
for the FITC Fluorescein, and comprises: an excitation filter (Edmund
Optics, 67− 028) with a bandpass λex = 467÷ 498 nm, an emission
filter (Edmund Optics, 67 − 031) with a bandpass λem = 513 ÷ 556
nm, and a dichroic mirror (Edmund Optics, 67 − 080) with a cut-on
wavelength λcut = 506 nm, a reflection wavelength range λR = 440÷
500 nm and a transmission wavelength range λT = 513÷ 730.

The disk which enables to obtain the confocal effect is shown in
Figure 71. It is about the size of a CD, and has defined slits in it.
Approximately half the slits are vertical and half horizontal so that
when the disk rotates (' 2000÷ 6000 rpm) the lateral resolution is
matched in both x-axis and y-axis.

The optimal slit width and the spacing between the slits are related
to the objective lenses used and to the thickness of the sample. Typical
values of these quantities are listed in the table in Figure 71.

Figure 71: Schematic representation of the Olympus slit-based confocal used in
the microscope in Figure 70. In the table are described five different
disks available: S is the slit width, while D is the spacing between the
slits.

6.2 practical implementation of sensorless ao

The implementation of the 18-actuators piezoelectric DL in the mi-
croscope described in the previous paragraph is very simple: the DL
can be placed immediately after the objective.

In Figure 72 three photos of the microscope are shown, and in one
of them this type of implementation is clearly visible. The mount in
which the 18-actuators DL is embedded can also contain further DLs,
such as the Optotune’s electrically tunable lens described in para-
graph 3.3.2. This DL is ideated to change its focal lenght: placing
it between the 18-actuators DL and the objective, it’s possible to per-
form focusing and even z-stack into the sample without moving the
sample itself.
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Figure 72: The microscope schematized in Figure 70. Two photos (left) of the mi-
croscope from different point of views are shown, and a third (right)
showing in detail the implementation of one or more deformable lenses
in the light path.

6.3 sensorless aberration correction of fluorescent sam-
ples

The microscope was firstly used without the confocal disk, in a
simple epi-fluorescence setup, with the 18-actuators DL placed after
the objective as shown in Figure 72. In this way we can test the modes
correction algorithm with some fluorescent samples, that in our case
are:

- a tilia stem (already used in the previous experimental setups on
the optical table) which embodies some fluorescent structures
that are ideal for our purposes;

- some fluorescent beads (diameter = 15µm) with excitation and
emission wavelengths compatible with the characteristics of our
microscope (i.e., those outlined in paragraph 6.1).

Having the microscope almost no aberrations at all, most of the
initial aberration is in fact due to the DL itself. In order to add some
further aberrations, a thin slice of poor quality glass was placed just
above the coverslip of the tilia stem, with a drop of water between
them: in this way some low order aberrations were introduced in
the system. The beads, instead, already manifest some aberrations
caused by the matrix in which they are embedded.

The Modes Correction Algorithm was thus employed in both the sen-
sorless corrections, using the SD metric in the spatial frequencies
range (M1,M2) = (0.03, 0.1), 12 Lukosz modes (Li, i = 4, ..., 15) and
5 fit points per mode. The aberrated images and the corrected ones
are shown in Figure 73: from the values of the SD metric before and
after the correction and from the profiles in Figure 74 it’s clear that
the sensorless corrections led to an improvement of the initial images.
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Figure 73: Aberration corrections of fluorescent samples, (a) a tilia stem and (b)
three 15-nm fluorescent beads, using the epi-fluorescence setup out-
lined in this paragraph, with the 18-actuators DL and an Olympus 20x
objective visible in Figure 72. (left) The initial aberrated images and
(right) the sensorless corrected ones are shown, and the value of the SD
metric (with (M1,M2) = (0.03, 0.1)) of the images is provided under
them (the lower this value is, the better the quality of the image). The
yellow lines in the images shows the location of the sections plotted in
Figures 74 (tilia stem) and 75 (fluorescent beads).

Figure 74: Profile of the sample tilia stem before (black line) and after (red line)
the sensorless correction. The location of the profile is shown in Figure
73 (a) by the yellow lines. On the y-axis is reported the value of green
corresponding to each pixel, being it the unique colour that constitutes
the images.
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Figure 75: Profile of the sample fluorescent beads before (black line) and after (red
line) the sensorless correction. The location of the profile is shown in
Figure 73 (b) by the yellow lines. On the y-axis is reported the value
of green corresponding to each pixel, being it the unique colour that
constitutes the images.

6.4 sensorless aberration correction in confocal setup

Finally, we want to obtain a sensorless aberration correction with
the confocal disk mounted on our microscope, as shown in Figure 76.

Figure 76: Confocal disk mounted on the microscope in Figures 70, 72. The confo-
cal disk used here has a slit width S = 140µm and a gap between the
slits D = 13µm (see Figure 71).

The confocal disk must be placed in a plane conjugate to the focal
plane of the objective. This can be checked by removing the emission
filter from the microscope (see Figure 70) and watching the blue light
reflected from the disk to the camera: we must move the disk back
and forth until its slits are in the sharpest focus. The focused slits are
shown in Figure 77, and this is the position which enables confocal
imaging.
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Figure 77: Slits of the confocal disk imaged on the CCD camera by reflection of
the blue excitation light incident on it.

It must be taken into account that the total amount of fluorescence
light from the sample is now dramatically reduced, because the con-
focal disk has a transmission of only ∼ 10%: this means that, since
the light from the blue LED must pass through the disk to reach the
sample, and then the fluorescence light emitted by the sample passes
another time through the disk, the light incident on the camera is
only 1% of the light that would reach the camera in an simple epi-
fluorescence setup (i.e. without confocal disk). This fact, in addition
to the poor sensibility of our CCD camera, restricts our analysis to
strongly fluorescent samples, that is, the fluorescent beads used in the
previous paragraph (the tilia stem doesn’t emit enough fluorescence
photons to be detected with our CCD camera).

Nevertheless, also with the fluorescent beads the confocal images
didn’t have enough contrast to perform aberration correction with the
Modes Correction Algorithm, because the images contained too much
noise to measure the imaging sharpness metric correctly. Thus, an aber-
ration correction was performed with the confocal disk temporarily
removed, and then, leaving the DL deformed by the estimated com-
mand vector, the disk was restored in order to take the corrected con-
focal image. This procedure, similar to that used in [56], leads to
an improvement of the confocal image with respect to the aberrated
initial one.

All the Modes Correction Algorithm parameters and the initial con-
ditions are the same of those outlined in paragraph 6.3: the only
exception was the confocal disk mounted on the microscope when
the confocal images were taken.

In Figure 78 (a) the sensorless aberration correction without the
confocal disk is shown, while Figure 78 (b) displays the images taken
with the confocal disk before and after the sensorless correction.

We can notice that:

- the epi-fluorescent image results improved after the sensorless
aberration correction;

- the confocal images are not affected by the out-of-focus light,
and this can be seen by the fact that the halo around the beads,
visible in the epi-fluorescent setup, now disappears.

- the sensorless aberration correction leads to an improvement
also in the confocal image: from the line profiles on Figure 79

we can deduce that the edges of the beads after the correction
result sharper than before.
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Figure 78: (a) Aberration corrections of three 15-nm fluorescent beads, using the
epi-fluorescence setup without the confocal disk, with an Olympus
20x objective. (left) The initial aberrated images and (right) the sen-
sorless corrected ones are shown, and the value of the SD metric (with
(M1,M2) = (0.03, 0.1)) of the images is provided under them (the lower
this value is, the better the quality of the image). (b) The same initial
and final images were taken with the confocal disk mounted on the mi-
croscope. The yellow lines in the confocal images shows the location of
the sections plotted in Figure 79.

Figure 79: Profile of the confocal images fluorescent beads before (black line) and
after (red line) the sensorless correction. The location of the profile is
shown in Figure 78 (b) by the yellow lines. On the y-axis is reported the
value of green corresponding to each pixel, being it the unique colour
that constitutes the images.
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7
C O N C L U S I O N S

7.1 results achieved

The key results achieved in this thesis can be listed as follows.

- A complete wavefront sensorless algorithm has been developed
and optimized, comparing different possible choices that can
be found in literature.

- In Chapters 1,2 two different metrics based on the irradiance
in the image plane, called IQ (Irradiance Squared metric) and
SD (Spectral Density metric), have been found to be good imag-
ing sharpness metrics, using both Zernike or Lukosz modes to
describe the aberration. In particular, the reciprocal of the SD
metric (when integrated over the range of low spatial frequen-
cies) is a parabola, which global extremum can be calculated
with only 3 metric evaluations per mode.

- The Modes Correction Algorithm has been employed in the aber-
ration correction procedure, first in simulations (Chapter 2) and
then in real experimental setups (Chapter 4), trying several dif-
ferent combinations of imaging sharpness metrics and modes, and
it has been shown that the best performances are obtained with
the reciprocal of the SD metric minimized using Lukosz modes.
This is in line with the theoretical considerations outlined in
Chapter 1, because the reciprocal of the SD metric can be ap-
proximated with a linear combination of squared Lukosz coef-
ficients, that is, each Lukosz mode can be corrected indepen-
dently from the others (this property comes directly from the
orthonormality law of Lukosz polynomials, which is different
from the Zernike polynomials one). Being the Modes Correction
Algorithm based on the independence between the modes in the
evaluation of the global extremum of the metric, the lower the
crosstalk between the modes is, the better the performance of
the algorithm and the larger the aberrations it can correct.

- In Chapter 2 it has also been shown the possibility to

1) optimize the order in which the modes are corrected; this
optimization depends on the sample (as a general rule,
the correction should be applied first to the modes which
mainly affect the system and are less affected by crosstalk
with other modes);

2) take multiple iterations of the Modes Correction Algorithm
in order to correct larger aberrations, up to ∼ 3 waves rms
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(λ = 633 nm). This value has been demonstrated only in
the simulations and is clearly sample-dependent.

- At the end of Chapter 2 it has been demonstrated that the Modes
Correction Algorithm requires much less metric evaluations (and
than much less time) to converge than search algorithms such
as the Nelder-Mead Simplex Algorithm: for an initial aberration
of ∼ 0.5 waves rms (λ = 633 nm), the Modes Correction Algo-
rithm needs from 17 (best simulated case, 2N+1) to 40 (our ex-
perimetal case, 5N) metric evaluations to correct N=8 modes,
while the Nelder-Mead Simplex Algorithm needs several hundreds
of metric evaluations to correct the same modes.

- In Chapters 2,4 the optimum modes of a prototype of deformable
lens piezoelectrically actuated (described in Chapter 3) have
been employed instead of Zernike and Lukosz modes in the
Modes Correction Algorithm. It has been found that optimum
modes satisfying a Lukosz-like orthonormality law (called O2

modes) lead to better aberration corrections than optimum modes
satisfying a Zernike-like orthonormality law (called O1 modes),
once a time according with theory.

- In Chapter 4, comparing different combinations of modes and
metrics in a simple experimental setup, it has been demon-
strated that for our deformable lens, in order to obtain the best
sensorless aberration correction with the Modes Correction Al-
gorithm, the aberration must be corrected using Lukosz or O2

modes (which leads to quite the same results) and the SD met-
ric integrated over a range of low spatial frequencies (in our case
from 0.03 to 0.1, being the total range from 0 to 1). This means
that, even if the DLs we used have only 16 and 18 actuators, they
can reproduce Lukosz mode as well as they can reproduce their
optimum modes. This has been demonstrated experimentally for
aberrations of amplitude 6 1 waves rms (λ = 633 nm).

- In Chapter 5 our prototype of deformable lens with 18 piezo-
electric actuators has been compared with

1) a bimorph deformable mirror with 19 piezoelectric actua-
tors: the DL is perfectly equivalent to – or even better than
– this DM in the close loop corrections, and they can re-
produce the same Zernike modes – the DL with equal or
higher peak-to-valley values than the DM;

2) a membrane deformable mirror with 32 electrodes: the DL
can reproduce less Zernike modes than this DM, thus the
closed loop corrections of random aberrations generated
with the DM and corrected with the DL can’t lead all the
times to a flat wavefront (at least under the Maréchal Limit).
Nevertheless, the residual aberration after the correction
was mainly composed of those modes that the DL can’t
generate, so the two wavefront correctors are equivalent at
least for low order Zernike modes (Zi, i 6 15).

- At the end of Chapter 5, after comparing the wavefront correc-
tors, the DMs have been used to generate random aberrations
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in the experimental setup, and closed loop and sensorless cor-
rections of an extended sample have been performed: in all
the cases the corrections led to an improvement of the image
quality (measured by the imaging sharpness metric) and the sen-
sorless corrections resulted all the times better than the closed
loop ones. This result has been also obtained in all the aberra-
tion corrections performed in Chapter 4 and is principally due
to non common path errors, which effects have been shown and
discussed in Chapter 5.

- In Chapter 6, finally, the deformable lens has been implemented
in a Confocal Microscope, and the Modes Correction Algorithm
has been used with the optimized modalities explained and de-
veloped in the previous chapters. The implementation of the
DL in the light path of the microscope is very simple, there are
no beam splitters or beam expanders/reducers needed, nor any
wavefront sensor. Wavefront sensorless aberration correction has
been demonstrated in an epi-fluorescence setup and also in a
confocal setup, using some 15µm fluorescent beads commonly
used in the calibration of these systems.

7.2 further improvements and applications

In the previous paragraph the main results of this thesis have been
summarized. Now we discuss some possible improvements that could
be made in this work, and other applications that could be realized
starting from it.

7.2.1 Improvements in the Modes Correction Algorithm

The sensorless aberration correction process using the Modes Cor-
rection Algorithm could be improved by removing crosstalk effects be-
tween tip-tilt modes and the modes we want to correct. This crosstalk
causes the image of the sample to shift laterally (i.e. along the x- and
y-axis) in the image plane, and this leads the algorithm to fail, espe-
cially if the shift is comparable with the portion of the image plane
selected for sensorless correction. The same problem could emerge,
when imaging thick samples, for the crosstalk between defocus and
other modes, which could cause undesired shifts in the z-axis direc-
tion. Two possible solutions to this problem have been provided by
the authors of the Modes Correction Algorithm in [14] and [34], so we
could try to implement these methods in our sensorless correction
code.

7.2.2 Improvements in the Confocal Microscope

Several improvements are needed also in our Confocal Microscope.

- First of all, a CCD camera more sensible than the one used in
Chapter 6 (Edmund Optics, EO-3112C) is needed, in order to
work also with weakly fluorescent samples. Furthermore, with
a better camera we could also try to perform sensorless aberra-
tion corrections without removing the confocal disk during the
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optimization, and then compare the images obtained with those
taken with the confocal disk removed during the sensorless op-
timization.

- Different types of confocal disks should be tried in the micro-
scope, in order to find the quantities S and D (see Figure 71)
which optimize the disk performance to different objective nu-
merical apertures and specimen thickness.

- Our prototype of deformable lens removes only the low or-
der modes which constitute the aberration, in such a way that
the residual aberration is mainly composed by Zernike modes
Zi, i > 15. Modes higher than Z15 could be removed using a
deformable mirror with more than 18 actuators which can re-
produce them: the DL could be used to remove low order aber-
rations while simultaneously the DM removes the high order
ones, using a so-called woofer-tweeter control).

7.2.3 Other applications

Finally, we want to outline further applications that could be real-
ized starting from the work described in this thesis.

Z-Stack. Optotune’s fast electrically tunable DL described in Chap-
ter 3 could be implemented with (or without) the 18-actuators DL in
the microscope. The focal length of this lens can be changed electri-
cally, so it enables to perform focusing and z-stack into the sample
without moving it. Furthermore, it releases the 18-actuators DL from
correcting defocus aberration. Unfortunately, trying it with differ-
ent objectives and samples, we have realized that our Optotune’s DL
probably doesn’t suit with our microscope, because the focal lengths
it can reach are too short for a 20x objective or more. Thus, further in-
vestigations are needed, with this or other similar focus tunable DLs.

Endoscopy. The objective of the microscope can be substituted by
a GRIN (graded index) optical probe, like the one described in [26].
The GRIN rod lenses guide light using internal variations in the re-
fractive index rather than the curved refractive surfaces employed by
conventional lenses, and their small size (0.5 mm diameter) enables
in-vivo micro-endoscopy. The resolution values of these systems are
generally not limited by diffraction, but rather by optical aberrations
within the GRIN probe: the longer the probe is, the larger the aber-
rations which affect the light passing through it. These aberrations
consist mainly in low order modes, thus our 18-actuators DL is a
good candidate to remove them, using the same sensorless aberra-
tion correction procedures outlined in this thesis.

OCT. Our prototype of deformable lens has been already employed
successfully in optical coherence tomography (OCT) for in-vivo mouse
retinal imaging, with an approach similar to that described in [37]. In
those experiments, sensorless corrections were performed using the
Modes Correction Algorithm with the Irradiance Squared metric (IQ).
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Thus, some improvements could be done using the Modes Correction
Algorithm with the optimized modalities described in this thesis.
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[36] Débarre, D. et al. (2009),”Image-based adaptive optics for two-
photon microscopy”, Opt. Letters, 34 (16), 2495-2497

[37] Jian, Y. et al. (2014), ”Wavefront sensorless adaptive optics optical
coherence tomography for in vivo retinal imaging in mice”, Biomed.
Opt. Express, 5 (2), 547-559

[38] Wright, A. J. et al. (2005), ”Exploration of the optimisation algo-
rithms used in the implementation of adaptive optics in confocal
and multiphoton microscopy”, Microsc. Res. Technol., 67, 3644

[39] Sherman, L. (2002), ”Adaptive correction of depth-induced aber-
rations in multiphoton scanning microscopy using a deformable
mirror”, J. Microsc., 206, 6571

[40] Marsh, P. N. et al. (2003), ”Practical implementation of adaptive
optics in multiphoton microscopy”, Opt. Express, 11, 11231130

[41] Albert, O. et al. (2000), ”Smart microscope: an adaptive optics
learning system for aberration correction in multiphoton confocal
microscopy”, Opt. Lett., 25, 5254

[42] Lubeigt, W. et al. (2002), ”Active transverse mode control and op-
timization of an all-solid-state laser using an intracavity adaptive-
optic mirror”, Opt. Express, 10, 550-555

[43] Theofanidou, E. et al. (2004), ”Spherical aberration correction for
optical tweezers” Opt. Commun., 236, 145150

[44] Gonte, A. C. F. & Dandliker, R. (2002), ”Optimization of single-
mode fiber coupling efficiency with an adaptive membrane mir-
ror”, Opt. Eng., 41, 10731076

[45] Perreault, J. A. et al. (2002), ”Adaptive optic correction using mi-
croelectromechanical deformable mirrors”, Opt. Eng., 41 (3), 561-
566

[46] Vdovin, G. & Sarro, P. M. (1995), ”Flexible mirror microma-
chined in silicon”, Appl. Opt., 34 (16), 2968-2972

89



[47] Bifano, T. G. et al. (1999), ”Microelectromechanical Deformable
Mirrors”, IEEE J. Sel. Top. Quant. Electron., 5 (1), 83-89

[48] Dalimier, E. & Dainty, C. (2005), ”Comparative analysis of de-
formable mirrors for ocular adaptive optics”, Opt. Express, 13 (11),
4275-4285

[49] Loktev, M. et al. (2001), ”Comparison study of the performance
of piston, thin plate and membrane mirrors for correction of
turbulence-induced phase distorsions, Opt. Communications, 192,
91-99

[50] Devaney, N. et al. (2008), ”Correction of ocular and atmo-
spheric wavefronts: a comparison of the performance of various
deformable mirrors”, Appl. Opt., 47 (35), 6550-6562

[51] Vdovin, G. & Loktev, M. (2001), ”Deformable mirror with ther-
mal actuators”, Opt. Letters, 27 (9), 677-679

[52] Long, C. S. et al. (2008), ”Development of a Piezoelectric Adap-
tive Mirror for Laser Beam Control”, In ACTUATOR 2008, 11th
International Conference on New Actuators, Bremen, Germany, 9 11
June 2008, paper no. 17, 584-587

[53] Dainty, J. C. et al. (1998) , ”Low-order adaptive deformable mir-
ror”, Appl. Opt., 37 (21), 4663-4668

[54] Born, M. & Wolf, E. (1983), Principle of Optics, 6th ed., Pergamon
Press

[55] Loomis, J. S. (1992), ”Evaluation of optical aberrations in point
images”, Appl. Opt., 31 (13), 2211-2222

[56] Sulai, Y. N. & Dubra, A. (2014), ”Non-common path aberra-
tion correction in an adaptive optics scanning ophthalmoscope”,
Biomed. Opt. Express, 5 (9), 3059-3073

[57] Myers, R. M. et al. (2002), ”The NAOMI Adaptive Optics System
for the 4.2m William Herschel Telescope”, available at http://www.
ing.iac.es/Astronomy/instruments/naomi/naomispie2002.pdf

[58] http://www.optotune.com/images/products/Optotune%

20EL-10-30.pdf

[59] http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_

id=2970

90

http://www.ing.iac.es/Astronomy/instruments/naomi/naomispie2002.pdf
http://www.ing.iac.es/Astronomy/instruments/naomi/naomispie2002.pdf
http://www.optotune.com/images/products/Optotune%20EL-10-30.pdf
http://www.optotune.com/images/products/Optotune%20EL-10-30.pdf
http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2970
http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2970

	Imaging systems and aberrations
	Sources of aberrations
	Image formation with an incoherent source
	Representation of aberrations
	Zernike polynomials
	Lukosz polynomials

	Imaging sharpness metrics
	Maréchal Criterion
	Irradiance Squared Metric
	Spectral Density Metric
	Link between SD and IQ metrics

	Optimisation Algorithms
	Modes Correction Algorithm
	Nelder-Mead Simplex Algorithm

	Optimum Modes
	Influence Matrix
	Optimum Modes O1 and O2

	Closed loop control system

	Simulations
	Common parameters
	Sharpness metrics behaviour
	Muller and Buffington metrics
	Properties of IQ metric and SD metric

	Aberration correction
	Aberration correction using the Modes Correction Algorithm
	Modes crosstalk in the Modes Correction Algorithm
	Bias dependence in the Modes Correction Algorithm
	Multiple iterations of the Modes Correction Algorithm
	Optimum modes used in the Modes Correction Algorithm
	Aberration correction using the Nelder-Mead Simplex Algorithm


	Adaptive Optics devices
	Wavefront correctors: deformable mirrors
	Segmented DMs
	Continuous faceplate DMs
	Piezostack DMs
	Bimorph DMs
	Membrane DMs
	MEMs (micro-electro-mechanical system) DMs

	Wavefront correctors: liquid crystal correctors
	Wavefront correctors: deformable lenses
	Piezoelectrically actuated DL
	Fast electrically tunable DL

	Wavefront sensors
	Shack-Hartmann wavefront sensor
	Shearing interferometer wavefront sensor
	Curvature wavefront sensor


	Experimental validations
	First experimental setup
	theoretical wavefronts reproduced by the DL
	Sensorless vs. closed loop corrections
	Area of correction
	Comparing metrics and modes in the Modes Correction Algorithm
	Coloured sample


	Comparison between different deformable devices
	Second experimental setup
	Influence Matrices of the deformable devices
	Generation of Zernike polynomials
	Closed loop aberration corrections
	19-actuators piezoelectric DM vs. 18-actuators DL
	32-actuators membrane DM vs. 18-actuators DL

	Imaging: closed loop and sensorless corrections
	Non common path errors

	Sensorless Adaptive Optics applied to Confocal Microscopy
	Description of the microscope
	Practical implementation of sensorless AO
	Sensorless aberration correction of fluorescent samples
	Sensorless aberration correction in confocal setup

	Conclusions
	Results achieved
	Further improvements and applications
	Improvements in the Modes Correction Algorithm
	Improvements in the Confocal Microscope
	Other applications


	Bibliography

