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A B S T R A C T

The aim of this thesis is to present a contemporary treatment of K-
theory for infinity categories, with an emphasis on stable ∞-categories.
To achieve this, we construct both K-theory animae and spectra, and,
more generally, we investigate the properties of additive, Verdier-
localising, and Karoubi-localising functors. In particular, we prove
additivity, universality, localising, and cofinality results for K-theory.
In this process, we also construct non-connective K-theory spectra and
certain Karoubi-localising functors.
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1
I N T R O D U C T I O N

1.1 motivations .

Algebraic K-theory is a vital tool for studying algebraic structures
such as rings, schemes, categories, ∞-categories, and many others.
It provides a way of associating sequences of abelian groups, called
K-groups, to the algebraic structures. These groups encode essential
information about the structure of the algebraic object in question. If
one considers the generalised Eilenberg-Steenrod cohomology theories
useful in algebraic topology, then it is reasonable to think that they
might also be interesting in algebraic geometry; algebraic K-theory
is in some sense the simplest and most widely studied among such
theories.

Algebraic K-theory is highly complex, which poses difficulties in
performing computations, but it enables us to establish a variety of
useful theorems. A case in point is in the study of topology, where the
analysis of chain complexes is fundamental, but the computation of
their homology groups can be challenging. With K-theory, it is possible
to extract additional information on the structure of the chain complex,
such as Poincare duality, which is not visible through homology alone.

Algebraic K-theory originated from Grothendieck’s attempts to
extend the Riemann-Roch theorem to include algebraic varieties and
projective morphisms between them. His goal was to provide a natural
framework for the intersection theory on algebraic varieties. Motivated
by the Grothendieck-Riemann-Roch theorem, Atiyah and Hirzebruch
soon developed the topological K-theory, following their intuition that
topological K-theory forms a multiplicative generalised cohomology
theory. Compared to the topological case, defining algebraic K-theory
is much more challenging. The concept of "lower" algebraic K-theory
can be traced back to classical materials that connect class groups, unit
groups, determinants, Brauer groups, and other related items for rings
of integers, fields, and so on, and it encompasses a lot of local-to-global
principles. Initially, defining higher algebraic K-theory appeared to be
extremely difficult. With time passing, many correct but unsatisfying
definitions of higher K-theory were given. Here, Quillen’s intuitions
come into play. He first realised that the K-groups of a ring R could
be written as homotopy groups of a certain simplicial space k(R)
enter into places. This first construction of k(R), through a process
called +-construction, was working but was not too much satisfying;
for example, k0(R) results separated by the other higher homotopy
groups kn(R). Later work by Quillen, Segal, Waldhausen and others
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2 introduction

led to more refined constructions, including the S and Q-constructions
we are using now.

Various definitions of K-theory exist, each with its own unique
flavor and significance. These different definitions stem from the
diverse needs that arise when tackling various problems in the field.
Due to the significant advantages they offer, we have chosen to focus
our study on stable ∞-categories rather than triangulated categories
or Waldhausen 1-categories. Firstly, ∞-categories provide the natural
setting to develop homotopy theory. Secondly, stable ∞-categories
are particularly appealing to algebraic geometers, as they provide
a richer and better-behaved way to consider the derived category
of a ring or a scheme in contrast to the triangulated setting. For
instance, the functor that associates to an affine scheme its derived∞-categories satisfies Zariski descent, whereas this is not the case
when considering the classical derived category in the triangulated
setting. Moreover, algebraic K-theory offers a Zariski (or Nisnevich)
sheaf of spectra on the category of schemes, which enables remarkable
computations that would be challenging to perform without the use
of stable ∞-categories. Another advantage of stable ∞-categories is
that being stable is a property rather than a structure, which means
we do not need to ask for additional data as we would in the case
of triangulated, exact, or Waldhausen 1-categories. This is especially
helpful when endowing them with a structure. For example, we do
not need to verify compatibility conditions when endowing a stable∞-category with a symmetric monoidal ∞-structure, whereas there
are many conditions to be met in the case of triangulated categories.
They are also well-behaved in families; for example, as they form a
semi-additive presentable ∞-category Catst∞. In addition, the sub-∞-
categories of a stable ∞-category are all generalisations of the standard
notion of additive 1-categories, being all additive ∞-categories.

We should also explain our choice of developing a K-theory of
stable ∞-categories instead of Waldhausen ∞-categories or exact ∞-
categories (à la Barwick [Bar15], [Bar16]). First of all, this theory is
itself very satisfying. While many result holds in all of these, the one
we worked on are very clean do to the symmetry that this case present.
Additionally, in some cases where nice factorization hypotheses are
present, these other approaches do not yield added generality; an
example of this is shown in [BM10, Thm 1.3]. Finally, this definition
allows for rich constructions and numerous applications of K-theory
in various ways.

1.2 overview.

We start with a small parenthesis on the construction of K0 for a
stable ∞-category in chapter 2. Next we deeply dive into the study
of Verdier and Karoubi sequences and the functors that have a nice
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behavior on them in chapter 3. These will be the tools we are going to
use throughout all the thesis. In particular, grouplike additive, Verdier-
localising, and Karoubi-localising functors will be our central focus,
being K-theory the central example for them. After this, we proceed
in chapter 4 with the definition of higher K-theory through S- and
Q-construction, and we show that they are indeed equivalent. The
reason to why we give both construction is that, while S-construction
appeared first and surely gives a good intuition on what is happening,
the Q-construction is often more aesthetically (and computation-wise)
pleasing. Chapter 5 is the core of the thesis, where we prove all the
important standard results for K-theory such as additivity, universal-
ity, localising, and cofinality results for K-theory. Here, we also talk
about the relative Q-construction and of a particular version of the
Waldhausen fibration theorem. Throughout this chapter, we provide a
more straightforward proof of the various statements to then move to
a more complex proof for some of the additive or localising functors.
The reason for this is, besides adding generality, the latter proofs
usually give a better insight of what is happening. In the appendix A
we resolve the problem of K ◦ Idem not being Karoubi localising by
introducing the non-connective K-theory spectrum. In the appendix B
we give a brief report on t-structures and weight structures.

1.3 conventions and notations .

We assume the reader has some familiarity with the concept of infinity-
category (foundational references for this are [Lur09] and [Cis19]) and
a few things of “brave new algebra”, that is at least the concept of
E∞-space, E∞-grouplike-space, and Spectra (references for these are
[Lur17] and [GGN13]). We will try not to fix a model for infinity
categories but rather work in the general case. The reader who is
averse to this can fix their favourite model; we suggest quasi-categories.
We call anima what is usually referred also as infinity groupoid or
space. The usual convention is to pluralise this word with “anima”.
However, we are going with the word animae; see this discussion on
English-Stackexchange.

We list the names we give to objects we are going to work with:
Cat∞ is the ∞-category of ∞-categories; An is the ∞-category of
animae; sAn is the ∞-category of simplicial animae; SAn is the∞-category of Segal animae; CSAn is the ∞-category of complete
Segal animae; Cat(2)1 is the 2-category of 1-categories; An⩽1 is the
2-category of 1-truncated animae; Catst∞ is the ∞-category of stable∞-categories; Catperf∞ is the ∞-category of idempotent-complete stable∞-categories; PrL is the ∞-category of presentable ∞-categories; and
PrL

st is the ∞-category of stable presentable ∞-categories. Moreover, we
are going to denote functor categories with Fun, mapping animae with
Map, and internal hom-objects with Hom (or with Fun, depending
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on the context). Also, k will denote the algebraic K-theory space, K
the algebraic K-theory spectrum, Kn the K-groups, and K the non-
connective algebraic K-theory spectrum.

1.4 some recalls .

Recall there is an equivalence of ∞-categories between the ∞-category
of ∞-categories and the ∞-category of complete Segal animae. Recall also
we have a diagram

Cat(2)1 Cat∞ CSAn

An⩽1 An const sAn
⊣

≃

⊣ ≃

⊣ ⊣ ⊣ ⊣ ⊣ ⊣

ho

Nr

asscat

|•| core

and a diagram

N(Set) An Cat∞
π0 |•|

core

⊣ ⊣

.

Recall that an ∞-category is pointed if it has a zero object, i.e.
an object which is both initial and terminal. A stable ∞-category is a
pointed ∞-category that admits pullbacks and pushouts in which
cartesian squares and cocartesian squares coincide. Catst∞, the ∞-
category of small stable ∞-category, is the sub-∞-category of Cat∞
spanned by stable ∞-categories and exact functors between them; a
functor is called exact if it preserves finite limits and finite colimits
(asking one of these is enough, it implies both). Catst∞ and its full sub-∞-category Catperf∞ admit all limits and colimits; furthermore, they are
compactly generated, so in particular presentable.

Stable ∞-categories are naturally enriched over spectra; if Map
C
(x,y)

is the mapping spectrum from x to y, objects of a stable ∞-category C,
then we have

MapC(x,y) ≃ Ω∞ Map
C
(x,y).

Given a stable ∞-category, a sub-∞-category of it is is a stable sub-∞-
subcategory if it is stable and the inclusion functor is exact, i.e. if the
sub-∞-category is closed under taking finite limits and finite colimits.
For two stable ∞-categories C and D, Funex(C,D) denotes the full
sub-∞-category of Fun(C,D) spanned by exact functors; moreover,
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MapCatst∞(C,D) ≃ core Funex(C,D). When C and D are stable (actu-
ally, just the latter is enough), we have that Fun(C,D) is stable and
Funex(C,D) is a stable sub-∞-category of it.

An ∞-category is idempotent-complete if its essential image through
the Yoneda lemma is closed under retracts. The existence of an
idempotent-completion is discussed in [Lur17, sec. 5.1.4]. Taking the
idempotent-completion of a (stable) ∞-category C is the same thing
as adjoining all the retracts of the essential image of C through the
Yoneda embedding. The idempotent completion functor is always
fully faithful. Moreover

PSh(C) ≃ PSh(Idem(C)),

and if C is already idempotent, then the idempotent completion gives
an equivalence

C ≃ Idem(C).

Catperf∞ is a full sub-∞-category of Catst∞, and the idempotent-completion
functor gives a left adjoint to the inclusion. Also, idempotent-completion
functor Catst∞ → Catperf∞ preserves limits and colimits. Catst∞ is closed
under finite limits, but not finite colimits, in Cat∞.

An ∞-category is semi-additive or additive if its homotopy cat-
egory is semi-additive or additive, respectively. For reference [GGN13].
As examples, any sub-∞-category of a stable ∞-category is additive,
while Catst∞ and An are semi-additive.

Consider a sequence of functors C
f→ D

p→ E in Catst∞. We say
that the sequence has vanishing composition if p ◦ f : C → E

is a zero object in the stable ∞-category Funex(C,E). Since the full
sub-∞-category of Funex(C,E) spanned by zero objects is contractible,
this means p ◦ f is equivalent in a (essentially) unique way to the
functor C→ 0→ {0} ⊂ E. This is therefore the same as asking that the
following diagram commute

C D

0 E

f

! p

!

The property of the sequence to be fibre or cofibre sequence refers
to this diagram being cartesian or cocartesian, respectively.





2
G R O T H E N D I E C K G R O U P

In this brief chapter, we will present an introduction to K9 for a stable∞-category and demonstrate the proof of the Thomason theorem.
This theorem establishes a correspondence similar to Galois theory
between subgroups of K0 and specific stable sub-∞-categories.

2.1 grothendieck group.

2.1 Definition (Grothendieck Group)

Consider a stable ∞-category C and the monoid(
π0(core (C)),⊕

)
of connected components of the core of C, with operation given by

[x]⊕ [y] := [x⊕ y],

where [x] denotes the connected component of x . We define the
grothendieck group K0(C) of C as

K0(C) :=
(
π0(core (C)),⊕

)
/ ∼

where ∼ is the equivalence relation given by

[x] = [x ′] + [x ′′] whenever x ′ → x→ x ′′

is a cofibre sequence in C.

2.2 Remark

π0(core (C)) is the set of isomorphism classes of objects of C.

2.3 Remark

The definition of K0 implies immediately that

• [0] = 0.

• [Σx] = [Ωx] = −[x]; so K0(C) actually a group, not only a
monoid.

7



8 grothendieck group

• If C admits infinite coproducts, then K0(C) is trivial, since any
x ∈ Ob(C) fits into a cofibre sequence

x→→ ⊕n⩾0x→ ⊕n⩾1x

and the last two terms are equivalent.

Also, K0(C) is an abelian group, since, for any pair of objects x,y ∈ C,
there are cofibre sequences

x→ x⊕ y→ y, y→ x⊕ y→ y,

from which we see

[x] + [y] = [x⊕ y] = [y] + [x].

2.4 Remark

There are some equivalent definitions for K0. The other most com-
mon is: K0(C) is the free abelian group with generators [x], where x
is an objects of C (or an isomorphism class of objects of C), modulo
relations given by

[x] = [x ′] + [x ′′] whenever x ′ → x→ x ′′

is a cofibre sequence in C.

2.5 Remark

We obtain a functor

K0 : ho(Catst∞)→ Ab.

2.2 thomason theorem .

The functor K0 : Catst∞ → Ab is already interesting; indeed, fixed
a small stable ∞-category C, it gives a “Galois-like correspondence”
between the subgroups of K0(C) and certain sub-∞-categories of C.
This theorem first appeared in [Tho97] for triangulated categories. To
state the theorem properly we need some definitions.

2.6 Definition (Karoubi Equivalences)

An exact functor of stable ∞-categories f : C → D is a karoubi

equivalence if it is fully faithful and has dense image.

With “dense image” we mean that for any x object of D there exists
an object y in the essential image of C such that y is a retract of x.
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The main example of Karoubi equivalence is C ↪→ Idem(C), the inclu-
sion of a stable ∞-category into its idempotent completion.
We will come back to discuss Karoubi equivalences in 3.2.5.

2.7 Definition

A replete sub-∞-category of C is a sub-∞-category A of C such
that if x ≃ y in C, then x ∈ A if and only if y ∈ A.

2.8 Theorem (Thomason for stable ∞-categories)

Consider a small stable ∞-category C. There is a one-to-one corre-
spondence between replete full dense stable sub-∞-categories A in
C and the subgroups H of the Grothendieck group K0(C).
To A corresponds the subgroup

HA := Im(K0(A)→ K0(C)) ⊂ K0(C).

To H corresponds the full sub-∞-category CH of C spanned by those
x in C such that [x] ∈ H ⊂ K0(C).
It follows that any Karoubi equivalences induce injections on K0 :
Catst∞ → Ab.

Proof. As a first step, we have to prove that the maps are well-defined.

• HA is clearly an image subgroup of K0(C). (We are fine with the
category-side of the correspondence because we chose to work
with replete sub-∞-categories; another solution would have been
to consider sub-∞-categories up to equivalence.)

• We want to prove CH is a replete full dense stable sub-∞-category
of C.
From how we defined CH, it is clearly full.
Next, if x ∈ CH and y ≃ x in C, then [y] = [x] ∈ H, so y ∈ CH;
therefore, CH is replete.
To show that it is stable, we want to prove it is closed under
finite limits and colimits. Consider x,y ∈ CH, then

[x⊕ y] = [x] + [y] ∈ H

since it is the sum of elements of H. Similarly, if we have a fibre
sequence

x→ y→ z

with y and z in C, then [x] = [y] − [z] ∈ H. The closure under
finite colimit follows from the additivity of C.
It remains us to show that CH is dense in C; for x ∈ C, we need
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to find a y ∈ CH such that x is a retract of y. Choose y := x⊕Σx,
then

[y] = [x⊕ Σx] = [x] + [Σx] = [x] − [x] = 0 ∈ H;

so y ∈ CH. Moreover, we know that x→ x⊕ Σx ≃ x× Σx→ x is
the identity; hence x is a retracts of y. We conclude that CH is
dense in C.

Next, we want to prove that these two maps of sets are inverses to
each other.

• We want to prove HCH = H. By definition of CH

Im(K0(CH)→ K0(C)) ⊂ H.

Now, take any h ∈ H ⊂ K0(C); h is for sure the class of a x in C.
So h = [x], hence x ∈ CH. Therefore

Im(K0(CH)→ K0(C)) = H.

• We want to prove CHA = A. This means proving that x ∈ A if
and only if [x] ∈ HA. The “only if” direction is clear. For the
other one, consider the isomorphism classes of objects of C and
define a relation as follows: x ∼ x ′ if there exists y,y ′ ∈ A such
that x⊕ y ≃ x ′ ⊕ y ′. This is evidently an equivalence relation x,
so we can consider the quotient

G := π0 core (C)/ ∼;

we denote with ⟨x⟩ the class of any x ∈ Ob(C). G is an abelian
group: the sum is given by the direct sum; ⟨0⟩ is the zero; if
⟨x⟩ ∈ G, x is a direct summand on an object of A, since A is
dense in C, say x⊕ x ′ = y ∈ A, therefore

⟨x⟩+ ⟨x ′⟩ = ⟨y⟩ = 0.

(i) Now we claim that x ∈ A if and only if ⟨x⟩ = 0 inG. If x ∈ A,
then x⊕ 0 = 0⊕ x, so x ∼ 0. If x ∼ 0, then x⊕ y ≃ y ′ ∈ A.
So x→ x⊕ y ≃ y ′ → y is a bifibre sequence in C. But since
both y,y ′ ∈ A and A is a stable sub-∞-category, x ∈ A.

(ii) We have a canonical monoid morphism α : π0 core (C)→ G.
We want to show this descends to a morphism of groups
K0(C)/HA → G. First, we have to show that α respects the
relation that gives K0(C; to do this, we have to prove that
for any bifibre sequence x → y → z, then ⟨y⟩ = ⟨x⟩+ ⟨z⟩.
Since A is dense in C, there exist x ′ and z ′ in C such that
x⊕ x ′, z⊕ z ′ ∈ A. Also,

x⊕ x ′ → y⊕ x ′ ⊕ z ′ → z⊕ z ′
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is a bifibre sequence. Now the two terms of this sequence
are in A, so also the middle term must be in A since A is a
stable sub-∞-category. So we have that both (x⊕x ′⊕ z⊕ z ′)
and (y⊕ x ′ ⊕ z ′) belongs to A. Therefore, we get

y⊕ (x⊕ x ′ ⊕ z⊕ z ′) ≃ x⊕ z⊕ (y⊕ x ′ ⊕ z ′),

which implies ⟨y⟩ = ⟨x⟩+ ⟨z⟩.
Until now we have prove α descends to a morphism K0(C)→
G. To show it descends to a morphism K0(C)/HA → G, we
have to show HA is mapped to 0 ∈ G. Let [x] ∈ HA ⊂ K0(C)
and take y ∈ C such that x⊕ y ∈ A (or better for any choice
of x in that equivalence class there exist such a y); then
⟨x⟩ = α[x] and ⟨x⟩+ ⟨y⟩ = ⟨x⊕ y⟩ = 0 ∈ HA.

(iii) Now, this morphism α : K0(C)/HA → G is clearly surjective,
and we know HA ⊂ ker(α). By (i) we have that HA =

ker(α).

We have therefore proved the correspondence.

It remains to prove that Karoubi equivalences induce injective
morphisms. To cite Thomason

“The reader may find the indirectness of the proof of this useful
corollary psychologically uncomfortable. ”

Let A be a dense stable sub-∞-category of C. Let Ã be the
replete full stable sub-∞-category of C spanned by object in the
essential image of A. The inclusion A ↪→ Ã is (by definition) an
equivalence of stable ∞-category, hence K0(A) ≃ K0(Ã). We can
therefore assume A to be replete.
Take N to be the kernel of the morphism K0(A)→ K0(C). Since
A is stable, we can also use the “Galois-like correspondence” for
A. We have the inclusion of dense stable sub-∞-categories

A0 ⊂ AN ⊂ A,

where A0 is the dense stable sub-∞-category of A corresponding
to the trivial sub-group of K0(A). Now, both A0 and AN are
dense stable sub-∞-category of C, and both K0(A0) → K0(C)
and K0(AN)→ K0(C) are trivial. Hence A0 = AN as full sub-∞-
category of C. Therefore K0(A0)→ K0(A) and K0(AN)→ K0(A)

have the same image. We conclude N = 0, so K0(A)→ K0(C) is
injective.
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2.9 Remark

Using the fact that Karoubi equivalences induce monomorphisms,
the “Galois-like correspondence” of the theorem can be explained
better as a correspondence of sets

{replete stable subcategories of C} ∼→ {subgroups of K0(C)}

A ⊂ C 7→ K0(A)

CH := {x ∈ C : [x] ∈ H} 7→H ⊂ K0(C).



3
A R R O W S , S E Q U E N C E S , A N D I N VA R I A N T S

This chapter aims to present an overview of the tools that will be
utilised throughout the thesis. It will start with a brief introduction to
the arrow and twisted arrows categories, followed by an exploration
of localisation and Verdier quotients. In the interest of time, we have
chosen to omit the various proofs; nevertheless, we assure that ev-
erything we state has a reference. Next, the concepts of Verdier and
Karoubi sequences will be introduced, and we will examine functors
that display favourable properties towards these sequences. These
results are widely recognised and are based on established findings
within triangulated categories. The proofs presented in this chapter
are, in a way, based on [Cal+21b], although we have made efforts to
expand and elaborate on certain aspects.

3.1 various .

3.1.1 Arrows and Twisted Arrows.

Our definition of K-theory anima for stable ∞-categories will be based
on the S•-construction and Q•-construction. For these it is necessary
to consider the higher analogue of the classical arrow category and
twisted arrow category.

Fix an ∞-category C. The arrow category of C is

Arr(C) := Fun([1],C)

and the twisted arrow category of C can be defined as the
pullback

TwArr(C) ∗/An

Cop × C An

⌟

(s, t)

MapC

,

i.e.

(s, t) : TwArr(C)→ Cop × C

is the left fibration classifying the Map-anima functor

MapC : Cop × C→ An .

13
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3.1 Remark (Definition of Twisted arrow category via simplicial set)

Alternatively (and more classically), TwArr(C) ca be defined level-
wise as the simplicial set

TwArr(C)n := HomsSet(([n])
op ⋆ [n],C) ∈ Set.

For every n ⩾ 0, there is a unique isomorphism of simplicial
sets ([n])op ⋆ [n] ∼= [2n + 1]; so we can identify n-simplices of
TwArr(C) with (2n+ 1)-simplices of C. Denote with σ an n-simplex
of TwArr(C), and with σ the corresponding (2n+ 1)-simplex of C.
Then, in terms of face and degeneracy maps, we have

diσ = dn−idn+i+1σ, and siσ = sn−isn+i+1σ.

There are canonical maps (induced level-wise by the two possible
inclusion of [n] in ([n])op ⋆ [n])

s : TwArr(C)→ Cop, and t : TwArr(C)→ C.

We should prove that TwArr(C) is actually an ∞-category. This
fact is a corollary of the following proposition.

3.2 Reference ([Lur17, sec. 5.2.1] or Kerodon)

The map

(s, t) : TwArr(C)→ Cop × C

is a left fibration and it classifies the Map-anima functor

MapC : Cop × C→ An .

This means that (s, t) is a left fibration and TwArr(C) fits into a
cartesian square in Cat∞

TwArr(C) ∗/An

Cop × C An

⌟

Let us see explicitly what the objects and 1-morphisms of these two∞-categories are.

• The objects of both are morphisms in C.

• A 1-morphism f→ g in Arr(C) is a (full) square
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p

f g

q .

A morphism f→ g in TwArr(C) is a (full) square

p

f g

q ,

which we can think as a factorization of g through f.

3.3 Remark

There are relation between the arrow (∞)-)category, the twisted
arrow (∞)-)category, and their 1-categorical counterparts. Consider
a 1-category C

• There exists an isomorphism of simplicial set

A : N(Arr(C)) ∼= N(Fun([1],C)) ∼= Fun([1], N(C)) ∼= Arr(N(C)).

• There exists an isomorphism of simplicial set

T : N(TwArr(C))→ TwArr(N(C)),

uniquely determined by the properties T(f) = f and (s, t) are
consistent with N(Cop × C) ∼= N(C)op ×N(C).

Arr([n]) can be pictured as follows

• • • • •

• • • •

• • •

• •

•

(0,0) (0,1) (0,2) (0,3)
(0,n)

(1,1)
(1,2) (1,3)

(1,n)

(2,2)
(2,3)

(2,n)

(n− 1,n− 1) (n− 1,n)

(n,n)
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The twisted arrow category of C has to do with spans in C. This be-
comes transparent when looking at TwArr([n]). Its objects are arrows
in [n], that we can organise as follows

•

• •

• • •

• • • •

• • • • •

(0,n)

(0,n− 1) (1,n)

(0,2)

(0,1) (1,2)

(0,0) (1,1) (n,n)

The object of Arr([n]) and TwArr([n]) will be denoted as (i ⩽ j)

and the image of (i ⩽ j) through a functor A : Arr([n]) → C) or
A : TwArr([n])→ C will usually be written as Ai,j.

3.1.2 Localisations.

We will use two different notion of localisation of an ∞-category:

• With the term localisation, we mean Dwyer-Kan localisation;
the dwyer-kan localisation of an ∞-category C at set of
morphism S is the essentially unique functor γ : C → C[S−1],
such that for any ∞-category D, the functor (of functor ∞-
categories)

γ∗ : Fun(C[S−1]),D)→ Fun(C,D),

is a fully faithful functor with essential image FunS(C,D), which
is the full sub-∞-category of Fun(C,D) spanned by those functor
mapping the morphisms from S to equivalences.

• With the term left (resp. right) bousfield localisation,
we mean a left adjoint (resp. right adjoint) to a fully faithful
functor. A left Bousfield localisation g, with fully faithful right
adjoint f, is called accessible if g or L := g ◦ f are accessible
functor [Lur09, sec 5.1.2], or, equivalently, if the essential image of
LC is an accessible sub-∞-category of C. A Bousfield localisation
is a functor that has both a fully faithful right adjoint and a fully
faithful left adjoint.

3.4 Lemma (When does Dwyer-Kan imply Bousfield? [Cal+21b,
Lemma A.2.1])

Consider a small ∞-category C, a collection of morphisms S in C,
and the canonical functor p : C→ C[S−1]. p has a left adjoint (resp.
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right adjoint), if and only if for any x ∈ C there exists y ∈ C and an
equivalence px→ py in C[S−1] such that

MapC(y, •) (resp. MapC(•,y))

sends morphisms of S to equivalences in An.
The Yoneda lemma combines the selection of objects y for all x
in the ∞-category C in both cases. This combination results in the
appropriate adjoint to the localisation functor. This adjoint is fully
faithful, which automatically makes p into either a right or left
Bousfield localisation, depending on the case.

3.5 Lemma (Bousfield always implies Dwyer-Kan, [Lur09, Prop.
5.2.7.12])

Consider a right Bousfield localisation (resp. a left Bousfield locali-
sation) p : C→ D, i.e. p has a fully faithful left (resp. right) adjoint
q. p is a Dwyer-Kan localisation at the class of morphisms f : x→ y

in C such that

f∗ : MapC(y,q•)→Map(x,q•) (resp. MapC(q•, x)→Map(q•,y))

is an equivalence of functors D→ An.

3.1.3 Verdier Quotients.

3.6 Definition

Consider an exact functors of stable ∞-categories f : C → D. A
morphism in D is called an equivalence modulo C if its fibre
lies in the smallest stable sub-∞category spanned by the essential
image of f. Let S denote the set of equivalences modulo C. The
verdier quotient D/C of D by C is the localisation of D with
respect to S.

3.7 Remark

To define equivalence modulo C we could ask that the cofibre of a
morphism lies in the smallest stable sub-∞-category spanned by
the essential image of f. Indeed we have a diagram

fib x 0

0 y cof

⌟ ⌟

⌜ ⌜

f

.



18 arrows, sequences, and invariants

So by the pasting law of pushouts

cofib ≃ ΣD(fib),

and vice versa

fib ≃ ΩD(cofib).

Therefore, if one belongs to the smallest stable subcategory spanned
by the essential image of f, so does the other.

There is a proposition that can be found in [NS18, Thm. I.3.3.(i)] that
gives another description of the Verdier quotient. The same proposition
is also proved in [BGT13, Prop. 5.6]

3.8 Proposition

Let f : C→ D be an exact functor of stable ∞-categories. Then:

(i) D/C is stable and the localisation functor D→ D/C is exact.

(ii) For any E stable ∞-category, the restriction functor

Funex(D/C,E)→ Fun(D,E)

is fully faithful, with essential image those functors which
vanish after pre-composing with f. In particular,

C→ D→ D/C

is cofibre in Catst∞.

3.2 verdier and karoubi sequences .

This second section concerns Verdier, Split-Verdier, and Karoubi se-
quences and their properties.

3.2.1 Verdier and Karoubi Sequence.

3.9 Definition (Verdier Sequence)

Consider a sequence C
f→ D

p→ E in Catst∞ with vanishing composite.
This is a verdier sequence if it is both fibre and cofibre in Catst∞.
In this case, the map f is referred to as the Verdier inclusion, and p
is referred to as the Verdier projection.
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3.10 Remark

In Catst∞, it is really a property, and not a structure, to be a Verdier
sequence.

3.11 Definition

A Verdier sequence C
f→ D

p→ E is called left-split (resp. right-
split, resp. split) if p admits a left adjoint (resp. right adjoint,
resp. both adjoints).

As we will see in lemma 3.21, it is equivalent to requiring f to have a
left adjoint (resp. a right adjoint, resp. both adjoints) instead of p.

3.12 Definition

A sequence C
f→ D

p→ E in Catst∞ with vanishing composite is a
karoubi sequence if the sequence

Idem(C)→ Idem(D)→ Idem(E)

is both fibre and cofibre in Catperf∞ . In this case, f is referred to as
Karoubi inclusion, and p is referred ti as Karoubi projection.

3.2.2 Properties of Verdier Sequences.

3.13 Proposition

Consider an exact functor of stable ∞-categories p : D → E. The
following are equivalent:

(i) p is a Verdier projection.

(ii) p is the canonical map into a Verdier quotient of D.

(iii) p is a localisation functor (at the morphisms it takes to equiva-
lences).

Proof. (i) ⇒ (ii) If p is a Verdier projection, then it fits into a fibre-
cofibre sequence

C
f→ D

p→ E

in Catst∞, where→ D is the kernel of the functor p. Then by 3.8 (ii), E
is equivalent to D/C in an essentially unique way, and the functor p is
therefore a canonical map into a Verdier quotient of D.

(ii) ⇒ (iii) The Verdier quotient of a ∞-category is defined as a
localisation.
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(iii)⇒ (i) Consider f : x→ y in D. Then pf is an equivalence in E if
and only if

p(cofib(f)) ∼= cofib(pf) ∼= 0

since p is exact. Hence, p is an equivalence if and only if cofib(f)
belongs to ker(p). Therefore p is the localisation at the class of equiv-
alences modulo ker(p), and again by 3.8 (ii) it is the cofibre of the
inclusion ker(p) ↪→ D. This means we have a cofibre sequence

ker(p) ↪→ D→ E.

But this sequence is fibre by definition of ker(p), and so it is bifibre in
Catst∞.

3.14 Corollary

Verdier projections are essentially surjective.

Proof. By our definition localisations are essentially surjective.

3.15 Lemma

Consider an exact functor of stable ∞-categories C→ D. The kernel
of the canonical map p : D → D/C consists of all the objects of D
which are retracts of objects in C.

Proof. Let us identify C with its essential image in D. First, we want
to prove that C ⊂ ker(p). Suppose x ∈ C, then fib(x → 0) ≃ x ∈ C;
therefore, p(x) ≃ 0 in D/C, so x ∈ ker(p). Secondly, we want to show
that any retract of an object of C lies in ker(p). Let x ∈ D be a retract
of an object y ∈ C, i.e. we have a commutative diagram in D

x y x
i r

idx
.

Now by applying p, we get a retract diagram

p(x) 0 p(x)
p(i) = 0 p(r) = 0

idp(x)
.

This immediately implies that p(x) ≃ 0, because p(x) → 0 and 0 →
p(x) are inverses to each other.

Finally, let us prove that any object of the kernel of p is a retract of an
object of C. To start, we want to prove that if a functor f : D→ Spectra
which vanishes on C, then it vanishes on ker(p). By proposition 3.8(ii),
the following diagram commute
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ker(p)

D

0 D/C

C Spectra

p

f

,

which immediately implies that f must vanished also on ker(p).
Next, consider for any x ∈ ker(p) the functor

ϕx : D→ Spectra, ϕx(y) := colim
(α:z→y)∈C/y

Map(x, cofib(α)),

where C/y is the comma ∞-category C×D/y. We want to prove that
ϕx vanishes on C.
If y ∈ C, then C/y has a final object, namely the identity on y, so we
can compute the colimit. Since cofib(idy) = 0 we get

ϕx(y) := colim
(α:z→y)∈C/y

Map(x, cofib(α))

∼= Map(x, cofib(idy))

= Map(x, 0)
∼= 0.

Now, by our first step, we have that ϕx vanishes on ker(p), so in
particular on x itself
At the moment, we know

ϕx(x) := colim
(α:z→x)∈C/x

Map(x, cofib(α)) ≃ 0,

and {(α : z → y) ∈ C/c} is non-empty, since for sure any zero mor-
phism is inside; we claim

Map(x, cofib(α)) ≃ 0

for any such α. To prove this, fix an α, take the identity on α and
the zero morphism α→ α, for any other α in the collection; then, by
universal property, we should have a diagram
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Map(x, cofib(α))

Map(x, cofib(α))

0 Map(x, cofib(α))0

0

id

0

0

0

;

this tells us that the identity morphism on Map(x, cofib(α)) is zero,
hence Map(x, cofib(α)) ≃ 0 for any object of C/x.
Now, consider the morphism

cofib(0→ x) ≃ x→ cofib(α : z→ x)

and the induced

Map(x, x)→Map(x, cofib(α)) ≃ 0.

In particular, the identity map on x vanishes once we compose it
with the map x → cofib(α); since D is stable, z is the kernel of
x→ cofib(α), so idx must factor through z by universal property of
the kernel; so the situation is as we see in the following diagram

z x

0 cofib(α)

x

⌟

⌜

α

idx

.

We can conclude idx factors though z, hence x is a retract of z ∈ C.

3.16 Proposition

Consider an exact functor of stable ∞-categories f : C → D . The
following are equivalent:

(i) f is a Verdier inclusion.

(ii) f is fully faithful and its essential image is closed under retract
in D.

Proof. Let us prove the two sides.
((i)⇒ (ii)) Any Verdier inclusion is the inclusion of a kernel. Also,

from lemma 3.15 we know that this is closed under retracts. Therefore,
(ii) holds.
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((ii) ⇒ (i)) Consider the cofibre of f, so that we obtain a cofibre
sequence

C
f→ D→ D/C.

But by the lemma 3.15 f must be equivalent to the kernel of the
projection. Therefore this is a fibre-cofibre sequence, hence f is a
Verdier inclusion.

It should now be clear that the following corollary, which sum-
marises the discussion above, is true.

3.17 Corollary

Consider a sequence C
f→ D

p→ E in Catst∞ for which the composite
vanishes The following are equivalent:

(i) The sequence is a Verdier sequence.

(ii) f is a fully faithful functor with essential image closed under
retracts in D, and p exhibits E as the Verdier quotient of D by
C.

(iii) p is a localisation functor, and f exhibits C as the kernel of p.

3.18 Lemma

The pullback of a Verdier projection (in Catst∞) is a Verdier projec-
tion.

Proof. Consider a pullback diagram in Catst∞
D D ′

E E ′

u

p p ′

l

such that the right leg p ′ is a Verdier projection.
First of all, notice that p and p ′ share the same fibre, which we denote
as C. This follows immediately by the pasting law for pullbacks.

Our goal is to prove that E ≃ D/C. p ′ is essentially surjective
because it is a Verdier projection, then its pullback must be essentially
surjective (this holds since we can take the pullback in Cat∞) and since
D→ D/C is essentially surjective, D/C→ E must be too. It remains to
prove that D→ E is fully faithful.

Consider a small stable ∞-category X, a small stable sub-∞-category
of X called Y, and their Verdier quotient X/Y; consider also z,w objects
of X, and denote as z̄, w̄ their projection on X/Y. [NS18, Theorem I.3.3
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(ii)] gives us a way to compute the mapping anima in the Verdier
quotient

MapX/Y(z̄, w̄) ≃ colim
α:x→w∈Y/x

Map(z̄, cofib(α)),

where the colimit is filtered.
We obtain, for d and d ′ objects of D,

MapD/C(d,d ′) ≃

(1) ≃ colim
c→d ′∈C/d ′

MapD(d, cofib( c︸︷︷︸
∈D

→ d ′))

(2) ≃ colim
c→d ′∈C/d ′

(
MapD ′(u(d),u(cofib( c︸︷︷︸

∈D

→ d ′)))

×MapE ′(lp(d),lp(cofib( c︸︷︷︸
∈D

→d ′))) MapE(p(d),p(cofib(c→ d ′)))
)

(3) ≃ colim
c→d ′∈C/d ′

(
MapD ′(u(d), cofib( c︸︷︷︸

∈D ′
→ u(d ′)))

×MapE ′(lp(d),lp(d ′)) MapE(p(d),p(d
′))
)

(4) ≃ colim
c→u(d ′)∈C/u(d ′)

(
MapD ′(u(d), cofib( c︸︷︷︸

∈D ′
→ u(d ′)))

×MapD ′/C(u(d),u(d ′)) MapE(p(d),p(d
′))
)

(5) ≃ colim
c→u(d ′)∈C/u(d ′)

(
MapD ′(u(d), cofib( c︸︷︷︸

∈D ′
→ u(d ′)))

)
×MapD ′/C(u(d),u(d ′)) MapE(p(d),p(d

′))

(6) ≃MapD ′/C(u(d),u(d
′))×MapD ′/C(u(d),u(d ′)) MapE(p(d),p(d

′))

(7) ≃MapE(p(d),p(d
′))

where

(1) we apply the formula;

(2) we use the fact that D is a pullback;

(3) all maps are exact, so they commute with cofibrations; moreover, u
maps c to c (the one in D to the one in D ′); p(c) ∼= 0 necessarily, so
cofib(lp(c)→ lp(d ′)) ∼= lp(d ′) and cofib(p(c)→ p(d ′)) ∼= p(d ′);

(4) we use the fact that C/d ′ ≃ C/u(d ′); this is true because

C/d ′ ≃ C×D D/d ′

is equivalently the pullback of

C× {d}→ D×D← Arr(D)

and by using the pasting law of pullbacks
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C/d Arr(D) Arr(D ′)

C× {d ′} D×D D ′ ×D ′

C× {u(d ′)}

⌟ ⌟

ev0 × ev1 ev0 × ev1

∼=

(5) the latter terms do not depend on c;

(6) we apply the formula again;

(7) we compute the pullback.

3.2.3 Properties of Split-Verdier Sequences.

We now want to show that split Verdier sequences satisfy similar
properties to the one we have just proved. In order to do this, we need
some criteria to recognise when a Verdier projection has a one-sided
adjoint.
Consider an exact category D and a full sub-∞-category C of it. An
object y ∈ D is called right (resp. left) orthogonal to C if
MapD(x,y) ∼= 0 (resp. MapD(y, x) ∼= 0) for any x object of C. We
denote by Cr (resp. Cl) the full sub-∞-category of D spanned by right
(resp. left) orthogonal objects to C.

3.19 Lemma (Some adjunction rules)

Let p : D → E be an exact functor of stable ∞-categories. The
following are equivalent:

(i) p is a Verdier-localisation and it admits a right (resp. left)
adjoint.

(ii) p is a localisation and ker(p)r (resp. ker(p)l) projects essen-
tially surjectively to E via p.

(iii) p is a localisation and p|ker(p)r (resp. p|ker(p)l) is an equiva-
lence.

(iv) p admits a fully faithful right (resp. left) adjoint.

Proof. We are going to prove the right-adjoint variant; the other one is
similar.

(i)⇒ (iv) Clear from 3.4.
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(iv)⇒ (i) Clear from 3.5.
(i)⇒ (ii) Suppose we have a Verdier sequence

C D E
⊥

p

q

so that C ≃ ker(p), E ≃ D/C, and p is a Verdier-localisation D → E.
By lemma 3.13 p is a localisation. The right orthogonal to ker(p)
is the full sub-∞-category of D spanned by those y ∈ D such that
MapD(x,y) ≃ 0 for any x ∈ ker(p). Take z ∈ E, since p is a localisation,
hence essentially surjective, there exists y ∈ D such that py ≃ z. Let
x ∈ ker(p). Then

MapD(x,qp(y)) ≃
≃MapE(px,py)

≃MapE(px, z)

≃MapE(0, z)

≃ 0

Then qpy ∈ ker(p)r and by adjunction p(qpy) ≃ py ≃ z. Therefore
ker(p)r projects essentially surjectively on E.

(ii)⇒ (i) We use 3.4, for x ∈ D take y the preimage of p(x) through
p|ker(p)r , which is well-defined up to equivalence. Take α : a→ b ∈ S,
then

p(cofib(a→ b)) ≃ cofib(p(a→ b)) ≃ cofib(p(a) ≃−→ p(b)) ≃ 0;

so cofib(a→ b) ∈ ker(p). This implies

fib(MapD(b,y)→MapD(a,y)) ≃Map(cofib(a→ b),y) ≃ 0,

because y ∈ ker(p)r. Therefore MapD(b,y) → MapD(a,y) is an
equivalence.

(iii) ⇒ (iv) Suppose p : D → E is a localisation at a class of mor-
phisms S, and the restriction of p to ker(p) gives an equivalence with
E. Consider any x ∈ D and y ∈ ker(p)r equivalent to p(x) via the
equivalence E ≃ ker(p)r (so that we have an equivalence p(x)→ p(y)

in E). Consider a→ b ∈ S; then Map(b,y)→Map(a,y) has cofibre

cofib(Map(b,y)→Map(a,y)) ≃Map(fib(a→ b),y) ≃ 0,

indeed the fibre belongs to ker(p), since a → b is mapped to an
equivalence, and y ∈ ker(p)r. Therefore MapD(b,y) → MapD(a,y)
and we can apply 3.4 and we are done.

(iv) ⇒ (iii) p is by definition a left Bousfield localisation, hence a
Dwyer-Kan localisation by lemma 3.5. We denote with q : E→ D the
right adjoint to p; we claim this is the inverse of p|ker(p)r .
We already know by adjunction rules that q and p|EssIm(q) are in-
verses to each other; so we just have to prove EssIm(q) ≃ ker(p)r.
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Clearly E ≃ EssIm(q); take x ∈ ker(p), y ∈ E,

Map(x,qy) ≃Map(px,y) ≃Map(0,y) ≃ 0.

So ker(p)r ⊃ EssIm(q) ≃ E.
For x ∈ ker(p)r, applying 3.4, we could choose both x and qp(x) as

a “y” for our x. Then Yoneda lemma gives us that this two must be
equivalent.

3.20 Remark

In particular, from the last lemma we get that for a right-split Verdier
sequence

C D E
⊥

p

q

we get

ker(p)r ≃ EssIm(q) ≃ E.

If we have a left-split Verdier sequence

C D E
⊥

p

q

we get

ker(p)l ≃ EssIm(q) ≃ E.

3.21 Lemma

Consider a sequence in Catst∞ with vanishing composite

(⋆) C
f→ D

p→ E.

The following are equivalent:

(i) It is a fibre sequence and p admits a fully faithful left (resp.
right) adjoint q.

(ii) It is a cofibre sequence, f is fully faithful, and f admits a left
(resp. right) adjoint g.

Furthermore, if these conditions hold, then both

(⋆) C
f→ D

p→ E and (⋆⋆) E
q→ D

g→ C
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are Verdier sequences.

Proof. We are going to prove the existence of the left adjoints; the
result for the right adjoints is then immediate just by replacing each∞-category with its opposite.

(i) ⇒ (ii). Suppose the sequence (⋆) is fibre and p admits a fully
faithful left adjoint q.
First, f is the inclusion of a kernel, being (⋆) fibre, so it is fully faithful.
We construct a functor g̃ : D→ D as the cofibre of the counit

qp⇒ idD : D→ D ∈ Fun(D,D).

Consider the cocartesian square in Fun(D,D) defining g̃

qp idD

0 g̃
⌜

counit

.

By applying p, which is exact, we obtain a cocartesian square in
Fun(D,E)

pqp p

0 pg̃

p

⌜

p(counit)unit ◦p

idp

where, by adjointness, the red-coloured triangle is commutative. (That
colour is actually called “ engineering orange”, but let us keep it
simple and call it red.) Moreover, by assumption q is fully faithful,
therefore the unit idE → pq is an equivalence. By 2-out-of-3 the map
p(counit) is an equivalence, therefore pg̃ must vanish. So g̃ must

factor (uniquely) through ker(p) ∼= C
f→ D. Define g as the unique

functor D→ C such that g̃ ≃ fg.
Consider the canonical transformation

χ : idD → g̃ = cofib(qp→ idD) ≃ fg;

we claim χ turns out to be the unit of an adjunction g ⊣ f.
Take x ∈ D and y ∈ C. We want to prove that the composition of maps

Map
C
(g(x),y)

f(•)−→Map
D
(fg(x), fy)

χ∗−→Map
D
(x, f(y))

is an equivalence of spectra. Indeed:

• The first map is an equivalence because f is fully faithful.
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• The second map is an equivalence because its fibre is

fib(Map
D
(fg(x), f(y))

χ∗→Map(x, f(y))) ≃

≃Map
D
(cofib(x

χ−→ fg(x)), f(y))

≃Map
D
(ΣDfib(x

χ−→ fg(x)), f(y))

≃Map
D
(ΣDqp(x), f(y))

≃ ΩMap
D
(qp(x), f(y))

≃ ΩMap
E
(p(x),pf(y))

≃ ΩMap
E
(p(x), 0)

≃ Ω0
≃ 0.

It remains us to show (⋆) is cofibre, or in other words that it is a
Verdier sequence.
p has a fully faithful left adjoint, so, being a right-Bousfield localisation,
it is a Verdier projection by 3.13. Therefore

ker(p)→ D→ E

is a Verdier sequence. But this is exactly (⋆) since it is already fibre.
Now that we have showed (i)⇒ (ii) and that (i)⇒ “(⋆) is Verdier”,

let us prove that (i)⇒ “(⋆⋆) is Verdier”.
First of all, the composition vanishes

MapC(gqx,y) ≃
≃Map(qx, fy)

≃Map(x,pfy)

≃Map(x, 0)

≃ 0

for any y ∈ C and any x ∈ E, hence gq ≃ 0. We want to show that
(⋆⋆) satisfies (i) for right adjoints. Clearly g admits f as a fully faithful
right adjoint; therefore, we have to prove the sequence is fibre, i.e. that
E ≃ ker(g). If x ∈ ker(g) ⊂ D, then for any y ∈ C,

Map(x, fy) ≃Map(gx,y) ≃Map(0,y) ≃ 0.

So ker(g) ⊂ Cl. On the other side, if x ∈ Cl, for any y ∈ C, then

0 ≃Map(x, fy) ≃Map(gx,y);

so by definition gx is a zero object, hence x ∈ ker(g). But now C ≃
ker(p), so ker(g) ≃ ker(p)l ≃ EssIm(q) ≃ E.

(ii)⇒ (i). Suppose the sequence (⋆) is cofibre, f is fully faithful, and
it admits a left adjoint g. First of all, g is a localisation by lemma 3.5.
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Therefore, the essential image of f coincides with the right orthogonal
to ker(g), by 3.19. Using proposition 3.13, since the sequence is cofibre,
we know p exhibits E is the localisation of D at ker(p). Applying 3.15

we see that EssIm(f) ∼= ker(p), and so it is a Verdier sequence.
To prove that p admits a fully faithful left adjoint we need to use 3.4.
We claim that, for x ∈ D, we can choose as object the fibre of x→ fg(x),
which is mapped to px through p, since p is exact and pfg(x) ≃ 0. So
we have to prove that for any l : a→ b equivalence modulo C, then

MapD(fib(x→ fg(x)), l) :

MapD(fib(x→ fg(x)),a)→MapD(fib(x→ fg(x)),b)

is an equivalence of anime. But, since MapD(fib(x→ fg(x)), •) is left
exact

fib
(
MapD(fib(x→ fg(x)),a)→MapD(fib(x→ fg(x)),b)

)
≃

≃MapD(fib(x→ fg(x)), fib(a→ b);

hence it is enough to consider c ∈ C and show that

MapD(fib(x→ fg(x)), f(c)) ≃ 0.

For c ∈ C we have

MapD(fib(x→ fg(x)), f(c)) ≃ cof

(
MapD(x, f(c))→MapD(fg(x), f(c))

)

and since f is fully faithful

MapD(fg(x), f(c)) ≃MapC(g(x), c)

which identifies with MapD(x, f(c)) via the adjunction f ⊣ g. There-
fore

MapD(fib(x→ fg(x)), f(c)) ≃ cof(id) ∼ 0,

and so the morphism l is sent to an equivalence.

3.22 Remark

To sum up what we have just seen in the proof:

• the left adjoint g to fidentifies with the cofibre of the unit
idD ⇒ pq “as a morphism” D→ C;

• the left adjoint q to p identifies with the fibre of the counit
fg→ idD “as a morphism” E→ D.

The following remark should be clear from the construction of g̃ in
the proof of lemma 3.21.
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3.23 Remark

If

C D E
f p

qg

is a left split Verdier sequence, then for all d ∈ D, there is a bifibre
sequence

qp(d)→ d→ fg(d).

Furthermore

E D C
q g

fp

is a right split Verdier sequence.
If

C D E
f p

q ′g ′

is a right split Verdier sequence, then for all d ∈ D, there is a bifibre
sequence

fg ′(d)→ d→ q ′p(d).

Furthermore

E D C
q ′ g ′

fp

is a left split Verdier sequence.

The following two corollaries summarise the discussion.

3.24 Corollary

An exact functor of stable ∞-categories p : D → E is a left (resp.
right) split Verdier projection if and only if it admits a fully faithful
left (resp. right) adjoint.

Proof. Lemma 3.19.



32 arrows, sequences, and invariants

3.25 Corollary

An exact functor of stable ∞-categories f : C → D is a left (resp.
right) split Verdier inclusion if and only if it is fully faithful and it
admits a left (resp. right) adjoint.

Proof. Lemma 3.21 and 3.19.

Similarly, the same also holds for split Verdier projections and split
Verdier inclusion by asking the existence of both adjoints.

As a consequence of this corollaries we have:

3.26 Corollary

The pullback of a left-split (resp. right-split) Verdier projection is a
left-split (resp. right-split) Verdier projection.
The pullback of split verdier projection is a split Verdier projection.

Proof. Let us prove the statement for left-split Verdier projection. Con-
sider a pullback diagram in Catst∞

D D ′

E E ′

u

p p ′

l

such that the right leg p ′ is a Verdier projection.
Using the pasting law for pullbacks, p and p ′ share the same fibre
that we denote as C. So, considering p ′ has a left adjoint q ′, we have a
diagram in Catst∞

C D D ′

0 E E ′

⊣

⌟ ⌟

u

l

p p′q′

.

Consider now the pair of morphism idE and q ′l : E→ D ′. Notice that

l ◦ idE ≃ l ≃ idE ′ ◦ l ≃ p ′(q ′l),

where p ′q ′ ≃ idE ′ . By universal property of the pullback D, there
exists a (essentially unique) functor q : E→ D such that

pq ≃ idE, and uq ≃ q ′l.
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Let us verify that q is left adjoint to p. Take x ∈ E and y ∈ D:

MapD(qx,y) ≃
(1) ≃MapE(pqx,py)×MapE ′(p

′uqx,p ′uy) MapD ′(uqx,uy)

(2) ≃MapE(x,py)×MapE ′(p
′q ′lx,p ′uy) MapD ′(q

′lx,uy)

(3) ≃MapE(x,py)×MapD ′(q
′p ′q ′lx,uy) MapD ′(q

′lx,uy)

(4) ≃MapE(x,py)×MapD ′(q
′lx,uy) MapD ′(q

′lx,uy)

(5) ≃MapE(x,py)

where

(1) we used the fact the mapping anima of a pullback is pullback of
mapping animae;

(2) we used the properties defining q;

(3) we used adjointness q ′ ⊣ p ′;

(4) we used q ′p ′q ′ ≃ q ′ by adjointness;

(5) we used the property of pullback.

Moreover, q is fully faithful because

MapD(qx,qy) ≃MapE(x,pqy) ≃Map(Ex,y)

because pq ≃ idE; or immediately because the unit of the adjunction
q ⊣ p is an equivalence.

We can now state a criterions to recognise when a left-split/right
split Verdier sequences.

3.27 Corollary

Consider a stable ∞-category D and two full stable subcategories
C,E ⊂ D such that MapD(x,y) ≃ 0 for any x ∈ C and y ∈ E. Then
the following are equivalent

(i) C ↪→ D admits a right adjoint p : D → C and the inclusion
E ↪→ Cr is an equivalence.

(ii) C ↪→ D is a Verdier inclusion and the projection E → D/C is
an equivalence.

(iii) E ↪→ D admits a left adjoint q : D → E and the inclusion
C ↪→ El is an equivalence.

(iv) E ↪→ D is a Verdier inclusion and the projection C → D/E is
an equivalence.

If these conditions are true, then

C ↪→ D
q→ E, and E ↪→ D

p→ C
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formed by the inclusions and their adjoints are right-split and left-
split Verdier sequences, respectively.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) are dual; also, the
implications (iv)⇒ (ii) and (iii)⇒ (i) are dual. So if we prove (i)⇒ (ii)
⇒ (iii), we are done proving the equivalences.

Assume (i): we have an adjunction

C D⊥

i

p

and E
≃
↪→ Cr. By assumption, i is a fully faithful functor with a right

adjoint. By corollary 3.25, i is a right-split Verdier inclusion. By taking
the cofibre, we obtain a right-split Verdier sequence

C→ D
π→ D/C.

But then

E ≃ Cr ≃ ker(π)r ≃ D/C,

where the last equivalence comes from 3.19. In particular, the map
D/E induced by p is an equivalence.

Assume (ii): C
j
↪→ D is a Verdier inclusion and the projection E →

D/C is an equivalence. Then we have a Verdier sequence

C
j
↪→ D

π→ D/C

where C ≃ ker(π)E. Now π is a localisation, and Cr ≃ ker(π)r ⊃ E

projects surjectively on D/C (by assumption the composition E ↪→
D

π→ D/C is an equivalence). Condition (ii) if lemma 3.19 is satisfied.
Therefore, we find a left adjoint to the projection D→ D/C. Moreover
the inclusion of E into Cr ≃ ker(π)r is an equivalence. Since both
project to D/C by an equivalence. Applying lemma 3.21, we get a right
adjoint q to i.

The fact that

C→ D→ E, and E→ D→ C

are Verdier sequences follows immediately from (ii) and (iv) combined
with lemma 3.21.

3.28 Lemma

Consider a split Verdier sequence
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C D E
f p

qg

q ′g ′ .

Then

gq ′ ≃ cofib(q⇒ q ′) ≃ cofib(g ′ ⇒ g) ≃ Σg ′q.

Moreover, for any d ∈ D there are bicartesian squares

d fg(d)

q ′p(d) fgq ′p(d)

⌟

⌟

and

fg ′qp(d) fg ′(d)

qp(d) d

⌟

⌟

.

Proof. Since q and q ′ are fully faithful we have that the q-unit and the
q ′-counit functors

idE ⇒ pq, pq⇒ idE.

are natural equivalences. We want a canonical morphism q⇒ q ′. To
obtain this, we notice that such kinds of functors correspond exactly
to morphisms

qp⇒ idD,

because by pre-composing with q ′ we obtain

q ≃ q(id) ≃ qpq ′ ⇒ q ′

and q ′ is fully faithful (so we can go back). We have a canonical
morphism qp⇒ idD, which is the q-counit. Moreover,

p(cofib(q⇒ q ′)) ≃ cofib(pq→ pq ′) ≃

≃cofib
(
id : idE

≃⇒
q−unit

pq
≃⇒

pq(q ′−counit−1)
pqpq ′ ⇒

p(q−counit)q ′

⇒ pq ′
≃⇒

q ′−counit
idE

)
≃cofib(id : idE ⇒ idE) ≃ 0
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This implies that cofib(q⇒ q ′) factors through f (and so C).
Now consider the bifibre sequence in D

qp(d)→ d→ fg(d),

which we have from the previous lemma. By plugging in q ′(e) in the
place of d, for e ∈ E, we obtain

q(e) ≃ qpq ′(e)→ q ′(e)→ fgq ′(e),

in which the composition of the first two maps comes exactly from
our morphism applied to e ∈ E. Thus

cofib(q(e)→ q ′(e)) ≃ fgq ′(e),

and since everything is natural in e we obtain

cofib(q⇒ q ′) ≃ fgq ′ ∈ Funex(E→ D).

Nevertheless, as cofibre of natural transformation, we want it as a
functor E→ C, so we can drop the f.

Now consider the bifibre sequence in D

fg ′(d)→ d→ q ′p(d)

and plug in d = q(e); we obtain

fg ′q(e)→ q(e)→ q ′pq(e) ≃ q ′(e),

in which the composition of the last two maps comes exactly from our
morphism applied to e ∈ E. So, since everything is natural in e, we
obtain that

Ωcofib(q⇒ q ′) ≃ fib(q⇒ q ′) ≃ fg ′q.

As above we drop f and get

cofib(q⇒ q ′) ≃ Σg ′q.

We want a similar construction for a canonical g ′ ⇒ g. Notice that
any such a morphism corresponds to fg ′ ⇒ id by composing with g ′.
A canonical morphism like that is the g ′-counit. Now

cofib(g ′q⇒ gq ≃ 0) ≃ Σg ′q

and

cofib(0 ≃ g ′q ′ ⇒ gq ′) ≃ gq ′,

and we already know Σg ′q ≃ gq ′. Notice that this factors through p:
by precomposing with f, which is exact and fully faithful

cofib(g ′f⇒ gf) ≃ cofib(id→ id) ≃ 0.

Therefore

gq ′ ≃ cofib(q⇒ q ′) ≃ cofib(g ′ ⇒ q)σΣg ′q.

It just remain to show that the two diagrams above are bifibre
squares in D. Consider
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fg ′(d) 0

qp(d) d q ′p(d)

0 fg(d) ,

which we complete to a diagram in which each square is bicartesian

Ω⋆ fg ′(d) 0

qp(d) d q ′p(d)

0 fg(d) ⋆

Now, consider the bifibre sequence

qp(d)→ d→ fg(d)

and plug in d ≃ q ′p(d ′) so that we obtain a bifibre sequence

qpq ′p(d ′)→ q ′p(d ′)→ fgq ′p(d ′)

where the first morphism turns out to be the same as the composition
of the central horizontal row of the diagram. Since everything is
natural in d ′,

⋆ ≃ fgq ′p

and

⋆[−1] ≃ fgq ′p[−1].

3.2.4 Stable Recollements.

The notion of recollement is developed in [Lur17, Appendix A.8] In
the stable case, it coincides with split Verdier sequences.
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3.29 Definition

Consider a stable ∞-category D and two stable sub-∞-categories C

and E. D is a stable recollement of C and E if

(a) Both inclusions have a left adjoint, which will denote LC and
LE, respectively.

(b) The composite

C→ D
LE→ E

vanishes.

(c) If α is a morphism in D such that LC(α) and LE(α) are equiva-
lences, then α is an equivalence. If the pair of functors (LC,LE)
satisfies this property, we say it is jointly conservative.

We can portray a stable recollement as a diagram of the form

C D E

⊣

⊣

LC
LE

For the sake of completeness, let us give the definition of recollement
in the general (non-stable) case.

3.30 Definition ([Lur17, Def A.8.1.])

Consider a stable ∞-category D, which admits finite limits, and two
full sub-∞-categories C and E. D is a recollement of C and E if the
following conditions are satisfied:

(a’) The full subcategories C and E are stable under equivalence;

(b’) Both inclusions have a left adjoint, which will denote LC and
LE, respectively. As a consequence, both C and E are closed
under limits in D, and therefore admit finite limits.

(c’) LC and LE are left exact.

(d’) LE carries every object of C to the final object of D.

(e’) If α is a morphism in D such that LC(α) and LE(α) are equiva-
lences, then α is an equivalence.

3.31 Proposition

Consider a stable recollement D of C and E. Then

C ↪→ D
LE→ E
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is a split Verdier sequence.

Proof. By lemma 3.21 if we are able to prove that

C ↪→ D
LE→ E

is a fibre sequence, then, since LE has a fully faithful right, the sequence
is right-split Verdier. But then again by lemma 3.21, we immediately
get that it is also left-split, since the inclusion C ↪→ D is fully faithful
and has a left-adjoint. Let us therefore proceed in this way.

We want to prove that ker(LE) is equivalent to C. We already know
that any object of C belongs to ker(LE), since the vanishing of the
composition is exactly condition (b). We have to prove that if x is an
object of ker(LE), then x belongs to the essential image of C in D. Call
k : ker(LE) ↪→ D, and c : C ↪→ D. Consider for x ∈ ker(LE), the unit
k(x)→ cLC(k(x)); then

LC(kx→ cLC(kx)) ≃
(
LC(kx)→ LC(cLC(kx))

)
≃
(
LC(kx)

id−→ LC(kx)
)

LE(kx→ cLC(kx)) ≃
(
LE(kx)→ LE(cLC(k))

)
≃ (0

≃→ 0).

By using (c), since kx → cLC(kx) is mapped to an equivalence by
both LC and LE, kx → cLC(kx) must be an equivalence. So we are
done, being kx equivalent to the image of LC(kx) through c.

So, from one side, all stable recollement produce split Verdier se-
quence. The converse is also true.

3.32 Proposition

Consider a split Verdier sequence

C D E
f p

qg

q ′g ′ .

Then D is a stable recollement of the essential images of f and q.

Proof. (a) and (b) are immediately satisfied. We have to show g and p
are jointly conservatives. Given that we are in a stable setting, proving
that the functor p and g can jointly detect zero objects is sufficient.
Indeed, supposed p and g have this property; we want to show that p
and g detect isomorphisms. Let α be a morphism x→ y. Then

fib(p(α)) ≃ p(fib(α)).

Now α is an isomorphism if and only if fib(α) ≃ 0. Then clearly
p(fib(α)) ≃ 0 and g(fib(α)) ≃ 0.
Suppose p(fib(α)) ≃ 0 and g(fib(α)) ≃ 0. By p(fib(α)) ≃ 0, we get
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fib(α) is in EssIm(f); so there exists a c ∈ C such that fib(α) ≃ f(c).
Then 0 ≃ g(fib(α)) ≃ gf(c) ≃ c. Therefore fib(α) ≃ f(c) ≃ 0, and α is
an equivalence.
Now the same reasoning with x ∈ D instead of fib(α) gives us that
they indeed jointly detect zero objects.

3.33 Remark

The sequence

C Arr(C) C
x 7→ (x→ 0)

t

s

fib

x 7→ (0→ x)

x 7→ idx

clearly is a stable recollement, hence a split Verdier sequence.

The functor c := gq ′ (or any other of the three equivalent definitions)
is called classifying functor of the recollement. This name is
justified by the following proposition.

3.34 Proposition

Consider a split Verdier sequence

C D E
f p

qg

q ′g ′ ,

then the following diagram is cartesian

D Arr(C)

E C

g⇒ cp

d 7→ (g(d)→ cp(d))

p t (target)

c .

Proof. We have a canonical map form D to the pullback P. The pullback
P has as objects pairs

(e,a→ c(e)).

The canonical map sends d to (p(d),g(d)→ cp(d)). The map we now
claim is the inverse sends this to

q ′(e)×f(c(e)) f(a),
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where the map q ′(e) → f(c(e)) is the unit of the (g ⊣ f)-adjunction
(valued in q ′(e), and the map f(a)→ f(c(e)) is clear.
We have to show that the two compositions are equivalent to identities.
First,

d 7→
(
p(d),g(d)→ cp(d)

)
7→ q ′p(d)×fgq ′p(d) fg(d)

≃ fg(d)
≃ d

and

(e,a→ c(e)) 7→
7→ q ′(e)×f(c(e)) f(a)

7→
(
p(q ′(e)×f(c(e)) f(a)),

g(q ′(e)×f(c(e)) f(a))→ cp(q ′(e)×f(c(e)) f(a))
)

≃
(
pq ′(e)×pfc(e) pf(a),

gq ′(e)×gfgq ′(e) gf(a)→ gq ′pq ′(e)×gq ′pfc(e) gq ′pf(a)
≃ (e×0 0, c(e)×c(e) a→ c(e)×0 0)

where we used pq ≃ idE, gf ≃ idC, pf ≃ 0, and we compute some
pullbacks.

3.2.5 More on Karoubi Equivalences.

Recall from definition 2.6 that a Karoubi Equivalence is a fully faithful
exact functor of stable ∞-categories with dense image.

Morita equivalences are commonly discussed as well. A functor
f : A→ B is called a morita equivalence if it becomes equivalent
after undergoing idempotent completion. It is worth noting that these
two concepts are actually the same.

3.35 Remark

There is also another notion of Morita equivalence, this last concern-
ing rings. Two rings R and S are Morita equivalent if their categories
of left modules are equivalent. These two notions of Morita equiva-
lence do not coincide. For example, the (connective) K-theory of a
ring is invariant under Morita equivalence (of rings) being defined
via (derived) module categories; however, (connective) K-theory is
not invariant under Karoubi-equivalences.

For the next results we need some notation; for a stable ∞-category
C we denote

• Idem(C) the idempotent completion of C;

• Cmin the full sub-∞-category of C spanned by those object
whose class in K0(C) is trivial.
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By 2.8) Cmin is the smallest dense sub-∞-category of C.
Also, we denote with Catst,K0=0∞ the full sub-∞-category of Catst∞
spanned by those stable ∞-categories C that have no dense stable
sub-∞-categories, or equivalently, by 2.8, with K0(C) = 0.
In particular, we have

Catperf∞ Catst∞ Catst,K0=0∞
Idem

3.36 Proposition

The localisation functor Catst∞ → Catst∞[Kar.Eq.−1] is both a left and
a right Bousfield localisation. The left adjoint is given the functor

L : C 7→ Cmin;

the right adjoint is given by the functor

R : C 7→ Idem(C).

Proof. Consider the functor

(•)min : Catst∞ → Catst∞,C 7→ Cmin.

We want to show this functor descends to a right adjoint of the in-
clusion Catst,K0=0∞ ↪→ Catst∞. If we can prove this, then by definition
Catst,K0=0∞ is a right Bousfield localisation of Catst∞. Before doing this,
we should prove that (•)min : Catst∞ → Catst∞,C 7→ Cmin is an actual
functor; the it should also be clear that this functor comes with a point-
wise fully faithful natural transformation (•)min ⇒ id. To see this, we
should consider an appropriate simplicial subset of the cocartesian
un-straightening of the non-full inclusion Catst∞ → Cat∞. We skip this
since it is easy but tedious.
There is a very important criterion, we can find in [Lur09, Prop. 5.2.7.4],
to verify if a functor L : D→ D descends to a left Bousfield localisation:

3.37 Reference

Let L : D→ D be a functor of ∞-categories with a natural transfor-
mation η : idC ⇒ L such that

ηLx : Lx→ LLx

and

Lηx : Lx→ LLx

are equivalences for all x ∈ D. Then L : C→ Im(C) is left-adjoint to
the inclusion Im(L) ⊂ C with unit η. In particular, L is a Bousfield



3.2 verdier and karoubi sequences. 43

localisation and Lη ≃ ηL as natural transformations (by the triangle
identities).

Thomason’s theorem 2.8 implies that (•)min satisfies the dual condi-
tion to the one just described, therefore it factor through the inclusion,
giving a functor

(•)min : Catst∞ → Catst,K0=0∞
which is a right Bousfield localisation of Catst∞.
(•)min clearly inverts Karoubi equivalences, since dense inclusions
are mapped to essentially surjective inclusions, and so it must descend
to a functor

(•)min : Catst∞[Kar.Eq.−1]→ Catst,K0=0∞ .

This functor is an equivalence, indeed the functor

Catst,K0=0∞ ↪→ Catst∞ → Catst∞[K.E.−1]

is an inverse.
So we are in this situation

Catst∞ Catst∞

Catst∞[Kar.eq.−1] Catst,K0=0∞

(•)min

π

(•)min

(•)min

inverse

Notice that Cmin is Karoubi equivalent to C.
This and the adjunction above prove that

(•)min : Catst∞[Kar.Eq.−1]→ Catst,K0=0∞ ⊂ Catst∞
is a left adjoint of

Catst∞ → Catst∞[Kar.Eq.−1].

More explicitly, consider the following diagram (where we used a and
b just to distinguish the two functors). Then we have

Map(iCmina ,D) ≃
≃Map(Cmina ,Dminb )

≃Map(C,πiDminb )

≃Map(C,πD)

Notice that we had a left-right switch.
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We already know, for example from [Lur17, Prop. 5.4.2.16], that

Idem : Catst∞ → Catperf∞
form a left adjoint to the inclusion Catperf∞ ↪→ Catst∞. The functor
Idem : Catst∞ → Catperf∞ takes dense inclusions to equivalences. Now
Idem descend to an equivalence (as above)

Idem : Catst∞[Kar.Eq.−1]→ Catperf∞ .

Therefore we have that

Idem : Catst∞[Kar.Eq.−1]→ Catperf∞ ⊂ Catst∞
is a right adjoint to Catst∞ → Catst∞[Kar.qE.−1], where we are having
the same switch we had above.

3.38 Corollary

An exact functor F : C → D of stable ∞-categories is a Karoubi
equivalence if and only if its is and equivalence after mininimaliza-
tion or idempotent completion.

Proof. Notice that Karoubi equivalence are closed under 2-out-of-3
and that any equivalence is a Karoubi equivalence.

(“If”) We have a diagram, in which we denote Karoubi equivalences
with ∼,

Cmin C Idem(C)

Dmin D Idem(D)

∼ ∼

∼ ∼ .

If one between Cmin → Dmin and Idem(C)→ Idem(D) is an equiva-
lence, then by 2-out-of-3 C→ D is a Karoubi equivalence.

(“Only if”) Suppose C→ D is a Karoubi equivalence. Then Cmin →
Dmin and Idem(C)→ Idem(D) are Karoubi equivalences. But Dmin

does not have any dense sub-∞-category, besides itself (and equiv-
alent sub-∞-categories). Therefore Cmin → Dmin is an equivalence.
Similarly, Idem(C) is already closed under taking retracts (every idem-
potent already splits), so Idem(C) → Idem(D) must be an equiva-
lence.

3.39 Definition

A small stable ∞-category C for which K0(C) ∼= 0 is called a mini-
mal. The functor (•)min : Catst∞ → Catst∞ given by the assignment
C 7→ Cmin is called minimalisation.
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To summarise, we have a Bousfield localisation

Catst∞ Catst∞[Kar.Eq.−1]

⊣
⊣

(•)min

Idem(•) ,

a Bousfield localisation

Catst∞ Catperf∞

⊣
⊣

Idem(•)

(•)min ,

and we obtain equivalences

Catst∞[Kar.Eq.−1] ≃ Catperf∞ ≃ Catst,K0=0∞ .

Moreover we have an adjunction

Catst∞ Catst∞⊥

(•)min

Idem(•)

We have also obtained a reason for why the idempotent-completion
functor Catst∞ → Catperf∞ preserves limits and colimits.

3.2.6 Properties of Karoubi Sequences.

Our definition of Karoubi sequence is a sequence which becomes fibre-
cofibre after idempotent-completlion. By corollary 3.38, it is equivalent
to ask the sequence to be fibre-cofibre after minimalisation, or that the
sequence is fibre-cofibre after inverting Karoubi equivalences.

3.40 Proposition

Consider a sequence C
f→ D

p→ E in Catst∞ with vanishing composite.
Then

(a) Idem(C)→ Idem(D)→ Idem(E) is fibre in Catperf∞ if and only if
f becomes a Karoubi equivalence when regarded as a functor
C→ ker(p).

(b) Idem(C) → Idem(D) → Idem(E) is cofibre in Catperf∞ if and
only if the Verdier quotient of D by the stable sub-∞-category
generated by Im(f) is Karoubi equivalent to E.
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(c) C→ D→ E is a Karoubi sequence if and only if f is fully faithful
and D/C→ E is a Karoubi equivalence.

In particular, Verdier sequences are Karoubi sequences.

Proof. (a) We know Idem : Catst∞ → Catperf∞ preserves limits and that
Catperf∞ is complete. Consider the functor f̃ : C→ ker(p) which arise as
natural factorization of f through ker(p).
("only if") Then

˜Idem(f) ≃ Idem(f̃) : Idem(C)→ ker(Idem(p)) ≃ Idem(ker(p))

is an equivalence. Therefore f(x) is a Karoubi equivalence.

("if") On the other hand, if f̃ is a Karoubi equivalence, then ˜Idem(f)

gives an equivalence with ker(Idem(p)). Since Idem(C) is closed under
retracts in D (all retracts already split), then the sequence must be
fibre.

(b) We already know Idem : Catst∞ → Catperf∞ preserves colimits
and Catperf∞ is cocomplete. Therefore Idem(D/C) ≃ Idem(D)/Idem(C),
where • is the stable closure of the essential image. So if D/C → E,
then

Idem(E) ≃ Idem(D/C) ≃ Idem(D)/Idem(C).

On the other hand, if it is cofibre, then

Idem(E) ≃ Idem(D)/Idem(C) ≃ (D/C).

So E is Karoubi equivalent to D/C.
(c) (“if”) Let f be a fully faithful functor, and D/C→ E and equiva-

lence. Then ker(p) ≃ ker(π) the kernel of the projection π : D→ D/C.
Then using lemma 3.15, the map f : C → ker(π) has dense essential
image and therefore is a Karoubi equivalence.
("only if") If it is a Karoubi equivalence, then Idem(f) is fully faithful
and essentially surjective. So f is essentially surjective by combining
(i) and (ii).

3.41 Corollary

An exact functor of stable ∞-categories is a Karoubi inclusion if and
only if it is fully faithful.

3.42 Corollary

An exact functor of stable ∞-categories p : D → E is a Karoubi
projection if and only if it has dense essential image and the induced
functor p : D→ EssIm(p) is a Verdier projection.

Combining this statement with Thomason’s result above, we find
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3.43 Corollary

Let p : D→ E be a Karoubi projection. The following are equivalent:

(i) p is a Verdier projection.

(ii) p is essentially surjective.

(iii) K0(p) : K0(D)→ K0(E) is surjective.

3.44 Lemma

The pullback of a Karoubi projection is a Karoubi projection.

Proof. Using lemma 3.18 and corollary 3.42, we just have to prove the
pullback of a Karoubi equivalence is a Karoubi equivalence. Consider
then a square

D D ′

E E ′

u

p p ′

l

in which the right leg is a Karoubi equivalence; we want to prove
D → E is a Karoubi equivalence. This pullback is given by the full
subcategory spanned by those x ∈ E such that l([x] ∈ K0(D ′) ⊂ K0(E ′).
Now Thomason’s theorem gives the claim.

In the context of triangulated categories, the Thomason-Neeman
localisation theorem, which appeared in [Nee92], provides a valuable
criterion for detecting Karoubi-sequences. We now present the theorem
after providing a brief review of the inductive completion of a small∞-category that admits finite colimits. To fully understand the Ind-
object and Ind-completion, a comprehensive overview is provided in
[Lur09, sec. 5.3] and to some extent, in [BGT13].
Consider a small ∞-category C which admits finite colimits. The
idempotent completion is a formal procedure to enlarge C to admit all
colimits: we can replace C by the ∞-category Ind(C) of Ind-objects of
C. This enlargement can be characterised as follows:

(i) There is a fully faithful embedding j : C→ Ind(C);

(ii) The ∞-category Ind(C) admits filtered colimits (in fact all colim-
its, and j preserves finite colimits);

(iii) every object of Ind(C) can be written as a filtered colimit lim−→Xα,
where each Xα belongs to C;

(iv) every object of C is compact as an object of Ind(C).
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3.45 Construction (Informal Construction of the Category of Ind-
Objects)

At informal level, we can define Ind(C) as follows. For each filtered
diagram {Aα} in the ∞-category C, let [lim−→Aα] denote the colimit of
the diagram in Ind(C). Morphisms in Ind(C) are given by

HomInd(C)([lim−→Aα], [lim−→Bβ])
∼= lim←−

α

HomInd(C)(Aα, [lim−→Bβ])

∼= lim←−
α

lim−→
β

HomInd(C)(Aα,Bβ)

∼= lim←−
α

lim−→
β

HomC(Aα,Bβ),

where the last two equivalences are obtained by (iv) and (i) respec-
tively.

While this construction is useful to understand what we are looking
for, it is not very formal. Formally, we can define the ∞-category of
Ind-object of a small ∞-category C as the smallest sub-∞-category
of Fun(Cop, An) ≃ PSh(C) containing all representable functors and
closed under filtered colimits. Another characterization of this is the
sub ∞-category of PSh(C) spanned by left exact functors. More gener-
ally we have the following definition.

3.46 Definition

Consider a small ∞-category C and a regular cardinal κ. Denote
with Indκ(C) the full sub-∞-category of PSh(C) spanned by those
functors f : Cop → An which are classified by right fibrations C→ C,
where C is κ-filtered. We call Ind(C) := Indω(C) the ∞-category of
Ind-objects of C.

There are many things we can say on Ind-completions.

• The Ind completion preserves the stability of ∞-categories and
the exactness of functors ([Lur09, Prop. 5.3.5.10]). The colimit pre-
serving extension of suspension is suspension, and the extension
of loops is its inverse.

• The extension of a fully faithful functor is again fully faithful
[Lur09, Prop. 5.3.5.11].

• The Ind-completion commutes with Verdier quotients ([NS18,
Prop. I.3.5].

More generally, there is an equivalence between

• the ∞-category of κ-compact stable presentable ∞-categories
with colimit preserving functors;
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• the ∞-category of κ-compact stable ∞-categories with exact
κ-continuous functors.

We can now state the theorem.

3.47 Theorem (Thomason-Neeman localisation theorem for stable
categories)

Consider a sequence C
f→ D

p→ E in Catst∞ with vanishing composite.
It is a Karoubi sequence if and only if Ind(C) → Ind(D) → Ind(E)
is a Verdier sequence (of non-necessarily small ∞-categories).

Proof. For the discussion above, an exact functor is a Karoubi equiva-
lence if and only if it induces an equivalence on inductive completions.
The “only if” direction is immediate. Conversely, given a Karoubi
equivalence C → D, Ind(C) is the kernel of by lemma 3.15; in fact
cocomplete categories are idempotent complete by [Lur09, Corollary
4.4.5.16]. The claim now follows from our characterisation of Verdier
(3.17) and Karoubi sequences (3.40).

3.48 Remark

This theorem is very important. In a certain sense, it facilitate the
transition from the theory we are developing in this thesis to the one
outlined in [BGT13], provided that it is applied with appropriate
caution and in a particular manner.

3.3 additive and localising functors .

Now that we have introduced the kind of sequences we are going to
work with, let us talk about functors that behaves well on them.

For a stable ∞-category C, we will denote with Seq(C) the ∞-
category of bifibre sequences in C, i.e. the full sub-∞-category of
Fun([1]× [1],C) spanned by those cartesian square with low-left corner
0. It is worth noting Seq(C) is equivalent to the category of arrows
in C, for example by taking pushouts; in particular,Seq(C) is a stable∞-category.

3.3.1 Squares.

3.49 Definition

Let us introduce some terminology.

• A verdier square is a square of stable ∞-categories and
exact functors that is cartesian and has Verdier projections as
vertical maps (or, equivalently, localisations as vertical maps).
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• A split verdier square is a square of stable ∞-categories
and exact functors that is cartesian and has split Verdier pro-
jections as vertical maps.

• A karoubi square is a square of stable ∞-categories and ex-
act functors that becomes a Verdier square after after idempotent-
completion.

3.50 Remark

From the discussion in the subsection 3.2.5 , it should be clear
that in the definition of Karoubi square, we could replace “after
idempotent-completion” with “after inverting Karoubi equivalences”
or ‘after inverting minimimalazing”.
To state more explicitly the condition we want to be satisfied: a
Karoubi square is a square that becomes cartesian after localising
idempotent completion and both its vertical maps are Karoubi
projections.

3.51 Remark

For what we proved in 3.18, 3.26, 3.44, we can just ask the right
vertical leg to be respectively a Verdier projection, a split Verdier
projection, or a Karoubi projection.

3.52 Remark

(a) A Verdier square (resp. split-Verdier square, resp. Karoubi square)
with lower left corner 0 ∈ Catst∞ is a Verdier sequence (resp. split-
Verdier sequence, resp. Karoubi sequence).
The converse also holds, any Verdier sequence (resp. split-
Verdier sequence, resp. Karoubi sequence) is a Verdier square
(resp. split-Verdier square, resp. Karoubi square) with lower left
corner 0 ∈ Catst∞. For example a split-Verdier sequence

C D E

is clearly a bicartesian square
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C D

0 E

⌟

⌜
.

(b) B→ B→ 0 is a split Verdier sequence. Indeed, the square

B B

0 0

⌟

⌜

is clearly bicartesian and the adjoints to B→ 0 are given by the
unique map 0→ B.

(c) For any A,B stable ∞-categories, their products exists in Catst∞.
Also, B→ 0 is a split Verdier projection, so

A×B B

A 0

⌟

is a split Verdier square.

(d) Catst∞ is semi-additive, so for any A,B stable ∞-categories A×
B ≃ A⊕B. We know, from the previous points, that A×B→ A

is a split-Verdier projection, so

B A×B

0 A

⌟

is a split Verdier square. It follows that B → A×B → A is a
Verdier sequence.

3.53 Remark

Any Verdier square is also cocartesian in Catst∞.
Consider a Verdier square
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D D ′

E E ′

u

p p ′

l .

As we have already seen above, by the pasting law of pullbacks, the
two vertical maps have common fibre 0. So, we obtain a diagram

D D ′

E E ′

C

0

u

p p ′

l

where all the squares are cartesian. So, both C → D → E and
C → D ′ → E ′ are Verdier sequences. In particular, both p and p ′

are Verdier projection, so both the external and the left square are
also cocartesian. Then by the pasting law for pushouts also the right
square must be cocartesian.
Similarly, also split-Verdier squares are cocartesian, and Karoubi
square are cocartesian after idempotent completion.

3.54 Remark

Every Verdier square is a Karoubi square, since the idempotent-
completion functor preserves limits.
A Karoubi square involving idempotent-complete ∞-categories is
a Verdier square if and only if its vertical maps are essentially
surjective.

3.3.2 Functors.

3.55 Definition

A functor F : Catst∞ → E such that F(0) is a terminal object of E is
called reduced.

3.56 Definition

Consider an ∞-category with finite limits E and a reduced functor
F : Catst∞ → E.
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• F is additive (or split-Verdier-localising) if it sends split
Verdier squares to Cartesian squares.

• F is verdier-localising if it sends Verdier squares to Carte-
sian squares.

• F is karoubi-localising if it sends Karoubi squares to
Cartesian squares.

The full sub-∞-category of Fun(Catst∞,E) spanned by respectively
by additive, Verdier-localising, and Karoubi-localising functor are
denoted respectively by

Funadd(Catst∞,E), FunVloc(Catst∞,E), FunKloc(Catst∞,E).

We clearly have inclusions

FunKloc(Catst∞,E) ⊂ FunVloc(Catst∞,E) ⊂ Funadd(Catst∞,E) ⊂ Fun(Catst∞,E).

3.57 Remark
These sub-∞-categories of Fun(Catst∞,E) are usually not locally
small. To work with locally small ∞-category we should restrict
our attention only to accessible additive/Verdier-localising/Karoubi-
localising functors. There is more: if we fixes a regular cardinal κ and
restrict our attention to κ-accessible additive/Verdier-localising/Karoubi-
localising functors then we obtain functor categories

FunKlocκ (Catst∞,E) ⊂ FunVlocκ (Catst∞,E) ⊂ Funaddκ (Catst∞,E) ⊂ Funκ(Catst∞,E).

All these are presentable. Any way, the most interesting examples of
such functors for us is K-theory, which preserves ω-filtered colimits.
Recall that a functor is (κ-)accessible if it preserves (κ-)filtered col-
imits.

3.58 Remark

An additive functor maps split Verdier sequences to fibre sequences.
Indeed, any split Verdier sequences

C D E

forms uniquely a bicartesian square

C D

0 E

⌟

⌜
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where the right leg is a split Verdier projection. Therefore the square

F(C) F(D)

∗ F(E)

⌟

is cartesian and hence is

F(C)→ F(D)→ F(E)

is a fibre sequence.
Similarly, a Verdier-localising functor maps Verdier sequence to
fibre sequences, and a Karoubi-localising functor maps Karoubi
sequences to fibre sequences.

If E is stable, the converse of this remark holds, as showed in the
following proposition.

3.59 Proposition

Consider a reduced functor F : Catst∞ → E, where E is a stable∞-category. Then F is

• additive if and only if it takes split Verdier sequences to fibre
sequences in E.

• Verdier-localising if and only if it takes Verdier sequences to
fibre sequences in E.

• Karoubi-localising if and only if it takes Karoubi sequences to
fibre sequences in E.

Proof. The “only if” part is contained the previous remark.
Let us prove the “if” part only in the additive case, the other two cases
are similar.
Suppose we have a functor which takes split Verdier sequences to
exact sequence. Consider a split Verdier square

D D ′

E E ′

⌟

⌜

u

p p ′

l .

Take the common fibre C of p and p ′
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D D ′

E E ′

C

0

⌟

⌜⌜

⌟

u

p p ′

l

where all three squares are cartesian. Apply F, so we get a diagram

F(D) F(D ′)

F(E) F(E ′)

F(C)

F(0)

F(u)

F(p) F(p′)

F(l)

The left and the external square are cartesian, since they form split-
Verdier sequences. By the pasting lemma also the right square is
cartesian.

For non-stable E it is expected that the condition of being additive
or Verdier-localising is strictly stronger than sending split Verdier or
Verdier sequences to fibre sequences, and similarly for the condition
of being Karoubi-localising.

3.60 Proposition

Additive functors preserve finite products. Therefore, Verdier-
localising and Karoubi-localising functors preserve finite products.

Proof. It is enough to recall that for any A, B stable ∞-categories, their
product exists in Catst∞ and

A×B B

A 0

⌟

is a split Verdier square, and that B→ 0 is a Split-Verdier projection.
Then

F(A×B) F(B)

F(A) ∗

⌟

is a cartesian square, which implies

F(A×B) ≃ F(A)× F(B).
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3.61 Remark

Recall Catst∞ is a semi-additive category.

3.62 Lemma

The forgetful functors

Funadd(Catst∞,CMon(E))→ Funadd(Catst∞,E),

FunVloc(Catst∞,CMon(E))→ FunVloc(Catst∞,E),

FunKloc(Catst∞,CMon(E))→ FunKloc(Catst∞,E)

are equivalences.

Proof. In [GGN13, Corollary 2.5.(iii)] is proved the following statement

3.63 Reference

Let C be an ∞-category with finite products and let D be a semi-
additive ∞-category. Then there is an equivalence

FunΠ(D,CMon(C))→ FunΠ(D,C).

The condition for this are clearly satisfied by considering C = E and
D = Catst∞. By proposition 3.60, our ∞-categories are sub-∞-categories
of FunΠ(Catst∞). This equivalence clearly restrict on both sides to the
equivalences we want to prove.

In particular any product preserving functor from Catst∞ to a cat-
egory with finite limits E uniquely lifts to CMon(E) in such a way
that

Catst∞ CMon(E) E
F̃ Forg

F

commutes. We also have canonical equivalences

Funadd(Catst∞,E) ≃ Funadd(Catst∞,CMon(E)) ≃ CMon(Funadd(Catst∞,E)).

3.64 Definition

An additive functor F : Catst∞ → E is grouplike if it lifts to
CMon(E) actually takes values in CGrp(E).
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Recall that CGrp(E) is a full sub-∞-category of CMon(E), spanned
by cartesian commutative groups. The full sub-∞-category of Fun(Catst∞,E)
spanned by grouplike additive functor is denote as Fungrp(Catst∞,E),
and we have

Fungrp(Catst∞,E) ⊂ Funadd(Catst∞,E) ⊂ Fun(Catst∞,E).

This definition makes sense because we have

Fungrp(Catst∞,E) ≃ Funadd(Catst∞,CGrp(E)) ≃ CGrp(Funadd(Catst∞,E)) ⊂

⊂ CMon(Funadd(Catst∞,E)) ≃ Funadd(Catst∞,E).

The second equivalence can be proved as in 3.62, using a similar
results for cartesian commutative groups that can be found in [GGN13]

3.65 Remark

If E is additive, then both forgetful functors

CGrp(E)→ CMon(E)→ E

are equivalences. Therefore, any additive functor to E is grouplike.

3.66 Example

Let us give some examples.

• The core functor

core : Catst∞ → An

is Verdier-localising, since it takes all cartesian squares to
cartesian squares. More generally, it preserves all limits since
it is right adjoint.

• We will introduce below functors

k : Catst∞ → An

and

K : Catst∞ → Spectra

that associate to a stable ∞-category its algebraic K theory
anima or spectrum. This functors are Verdier-localising and
grouplike (this will follows from Waldhausen’s additivity and
fibration theorems). However, they are not Karoubi-localising,
for this reason we will introduce the functor

K : Catst∞ → Spectra,
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which to a stable ∞-category associate its non-connective K-
theory spectrum.

• The functor

K ◦ Idem : Catst∞ → Spectra

is an additive, but not a Verdier-localising functor.

• (The cofinality theorem will imply)

k ◦ Idem : Catst∞ → An

is Karoubi-localising.

3.67 Lemma

The ∞-categories

Funadd(Catst∞,E), FunVloc(Catst∞,E), FunKloc(Catst∞,E)

are semi-additive.

Proof. In [GGN13, Cor. 2.4] it is proved the following statement.

3.68 Reference

Let C and D be ∞-categories with finite products and suppose that
either C or D is semi-additive. Then the ∞-category of product
preserving functors FunΠ(C,D) is semi-additive.

From this, we get that FunΠ(Catst∞,E) is semi-additive. Funadd(Catst∞,E)
is closed under finite products in FunΠ(Catst∞,E), since the products of
pullbacks is the pullbacks of products (because limits commute). Them
we immediately get that Funadd(Catst∞,E) is semi-additive. Similarly
for Verdier-localising and Karoubi-localising functors.

3.69 Lemma

The ∞-category

Fungrp(Catst∞,E)

is semi-additive.

Proof. Funadd(Catst∞,E) is semi-additive and Fungrp(Catst∞,E) ⊂ Funadd(Catst∞,E).
The product of two grouplike additive functor is grouplike again since
CGrp(E) is closed under limits. Therefore Fungrp(Catst∞,E) is semi-
additive.

In particular, notice that we have proved that all these ∞-categories
are closed under finite limits in Fun(Catst∞,E).
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3.70 Proposition

Consider a grouplike additive functor F : Catst∞ → An. Then for
every split Verdier sequence

A→ B→ C

we have

F(B) ≃ F(A)× F(C).

Proof. F(A)→ F(B)→ F(C) is a fibre sequence in An, whose elements
are in CGrp(An), hence it is fibre also in CGrp(An). By taking one of
the adjoint of B → C (it does not matter which one), we see that it
induces a split of F(B)→ F(C), hence it implies

π0(F(B))→ π0(F(C))

is surjective. Hence, if we take the fibre of F(B)→ F(C) in Spectra, it
must be connective too. Therefore it coincides with the fibre taken in
CGrp(An), which is F(A). Now every fibre sequence in Spectra with
a split must be split, by the splitting lemma.

3.3.3 Universal K-equivalences and Extension-splitting Functors.

3.71 Definition

Let KKex denote the 1-category whose objects are stable ∞-categories
and whose mapping-sets are HomKKex(C,D) := K0(Funex(C,D))

and composition induced by the composition of functors.

Consider now the functor of 1-categories

ho(Catst∞)→ KKex

defined as

C 7→ C

[f : C→ D] 7→ [f : C→ D] ∈ K0(Funex(C,D)).

3.72 Definition

A universal K-equivalence is an exact functor C → D that
becomes an equivalence in KKex.

3.73 Example

If

C D E
⊣ ⊣
f p

g q
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is a left split Verdier sequence where g ⊣ f and q ⊣ p denote the left
adjoints, then the functor

(g,p) : D→ C⊕ E

is a universal K-equivalence with inverse functor

f+ q : C⊕ E→ E.

Indeed

• C⊕ E
f+q−→ D

(g,p)−→ C⊕ E is already the identity functor, as on
components

g(f+ q) ≃ gf+ gq ≃ id+ 0 ≃ id

and

p(f,q) ≃ pf+ pq ≃ 0+ id ≃ id.

• We recall that as lemma 3.21 in there is a fibre sequence

pq⇒ idD ⇒ fg

in Fun(D,D). This implies

[(f+ q) ◦ (g,p)] = [fg+ pq] = [idD].

For the next definition we need some more notation. Consider a
stable ∞-category C; we define functors

fib,m, cof : Seq(C)→ C,

by

fib : x ′ → x→ x ′′ 7→ x ′

m : x ′ → x→ x ′′ 7→ x

cof : x ′ → x→ x ′′ 7→ x ′′.

3.74 Definition

Consider an ∞-category with finite limits E and a reduced functor
F : Catst∞ → E. F is called extension splitting if the map

(fib, cof) : Seq(C)→ C2

induces an equivalence F(Seq(C)) ∼= F(C)2 for any stable ∞-category
C.

Notice that we have a commutative diagram in E



3.3 additive and localising functors. 61

F(Seq(C)) F(C2) F(C)2

F(C)

F(C)

F(proj− 1)

F(proj− 2)

F(incl− 1)

F(incl− 2)

proj− 1

proj− 2

.

3.75 Lemma

Extension splitting functors preserve product.

Proof. The composition

F(Seq(C))→ F(C2)→ F(C)2

is an equivalence. This gives us a retraction of

F(Seq(C))→ F(C2)

given by

F(C2)→ F(C)2
≃→ F(Seq(C)).

Moreover, F(Seq(C))→ F(C2) admits a section induced by the functor

C2 → Seq(C), (x,y) 7→ x→ x⊕ y→ y.

We have therefore proved that F(Seq(C))→ F(C2) is an equivalence. It
follows that also F(C2)→ F(C)2 is an equivalence.
Now,

F(C⊕D)→ F(C)× F(D)

is a retract of

F((C⊕D)⊕ (C⊕D))→ F(C⊕D)× F(C⊕D),

which we proved is an equivalence. Indeed we have a diagram

F(C⊕D)
≃F(C×D) F(C)× F(D)

F((C⊕D)⊕(C⊕D))
≃F((C⊕D)×(C⊕D))

F(C⊕D)×F(C⊕D)
≃F(C×D)×F(C×D)

F(C⊕D) F(C)× F(D)

F

(
canon.
incl.1

)
F

(
canon.
incl. 1

)
× F

(
canon.
incl. 2

)

F

(
canon.
proj.1

)
F

(
canon.
proj. 1

)
× F

(
canon.
proj. 2

)
id id

The retract of an equivalence is an equivalence, so we are done.
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3.76 Proposition

Consider an ∞-category with finite limits E and a reduced functor
F : Catst∞ → E. Then the following are equivalent:

(i) F inverts universal K-equivalences and preserves pairwise
products.

(ii) F is extension splitting.

(iii) F is additive and grouplike.

The proof of the proposition is based on following observations made
in the original context by Waldhausen, and it is adapted to this context
for example in [HLS22].

3.77 Lemma (Waldhausen additivity)

Consider an ∞-category with finite limits E and an extension
splitting functor F : Catst∞ → E. Then there is a canonical equivalence
between the functors

m∗ and fib∗ + cof∗ : F(Seq(C))→ F(C).

In particular, any extension splitting functor is grouplike with the
inversion map of F(C) induced by the shift functor

ΣC : C→ C.

Proof. Consider the two functors Seq(C)→ Seq(C)

idSeq(C) and α : (x ′ → x→ x ′′) 7→ (x ′ → x ′ ⊕ x ′′ → x ′′).

Notice that they have the same evaluation on the first and third term
of the sequence, i.e. that

(fib, cof) ◦ idSeq(C) = (fib, cof) ◦α : Seq(C)→ C2.

Applying F to these functors we obtain

F(idSeq(C)) ≃ idF(Seq(C))

and F(α). Now

F(α) : F(Seq(C))
≃−→

F(fib,cof)
F(C2)

≃−→ F(C)2
≃−→ F(Seq(C))︸ ︷︷ ︸

Induced by (x,z) 7→(x→x⊕z→z)

;

Here all maps are equivalences, as we have seen in 3.75 . By definition,
this is equivalent to idF(Seq(C)); indeed, by using the equivalence

F(Seq(C)) ≃ F(C)2 ≃ F(C2)
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these two are induced by the same map. Therefore

m∗ = F(m) ≃ F(m) ◦ idF ≃ F(m) ◦ F(α) ≃
≃ F(m ◦α) ≃ F(fib+ cof) ≃ fib∗ + cof∗,

where in the last equivalence we use the fact that F preserves products.
Notice that the monoidal operation on F(C) is given by

F(C)2 ≃ F(Seq(C)) m∗→ F(C)

so the last claims follows from the existence of a natural bifibre se-
quence

x→ 0→ ΣCx,

which implies x+ ΣCx ≃ 0.

3.78 Remark

Notice there are many equivalences of stable ∞-categories between
Seq(C) and Arr(C), for C stable ∞-category. For example

Arr(C)→ Seq(C), (x→ y) 7→ (x→ y→ cofib)

and

Arr(C)→ Seq(C), (x→ y) 7→ (fib→ x→ y).

In the next lemma we will need the equivalence given by

Seq(C)→ Arr(C), (x→ y→ z) 7→ (z→ ΣCx).

An inverse of this can be constructed by taking pullbacks.

3.79 Lemma

Consider an ∞-category with finite limits E and a reduced product
preserving functor F : Catst∞ → E. F is extension splitting if and only
if the map (s, t) : Arr(C)→ C2 is mapped into an equivalence by F
for any C ∈ Catst∞.

Proof. For the “only if” part, we have

F(Arr(C)) ≃ F(Seq(C)) ≃ F(C)2 ≃−→
switch

F(C)2 ≃ F(C)2

which is induced by
(
a→ b

)
7→
(
b→ cof(a→ b)→ ΣCa

)
7→
(
b,ΣCa

)
7→
(
ΣCa,b

)
≃
(
a,b

)
.

For the “if”’ part, we have an equivalence
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(cof,ΣCfib)∗ : F(Seq(C)) F(Arr(C)) F(C)2
≃ ≃

(s, t)

induced by

a→ b→ c c→ ΣCa (c,ΣCa

which gives that F is extension splitting.

Proof of proposition 3.76. First of all, notice there is a left-split Verdier
sequence

C Seq(C) C⊥ ⊥

• id→ •→ 0

fib

cof

0→ • id→ •

(i)⇒ (ii) Suppose F satisfies (i). In particular, F(C2) ≃ F(C)2. Also by
the example 3.73

(fib, cof) : Seq(C)→ C2

is a universal K-equivalence. Therefore, applying f to (fib, cof) we get
an equivalence F(Seq(C)) ≃ F(C)2.

(ii)⇒ (i) Suppose F is extension splitting. We proved in lemma 3.75

that F preserve pairwise products. It is then enough to prove that

hF : hCatst∞ → hE

factors through KKex; then clearly it would invert universal K-equivalences.
Let f → g → h form a bifibre sequence of exact functors C → D,
so in Funex(C,D) . We want to show that [F(f)] + [F(h)] = [F(g)] in
π0(MapE(F(C), F(D))). But now this follows from 3.77 applied to
Funex(C,D).

(iii) ⇒ (ii) Suppose F is additive and consider the left-split fibre
sequence

F(C)→ F(Seq(C))→ F(C).

By the splitting lemma we obtain exactly that (fib, cof) induces an
equivalence F(Seq(C)) ≃ F(C)2.

(ii)⇒ (iii) Suppose F is extension splitting. Lemma 3.77 implies that
F is grouplike. Suppose there is a split Verdier sequence C→ D→ E.
Then by the example 3.73, there is a universal K-equivalence D →
C⊕ E. But then we have a sequence

F(C)→ F(D) ≃ F(C⊕ E) ≃ F(C)× F(E) → F(E)

which is fibre.
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3.80 Proposition ([Cal+21b, Prop. 1.5.11])

Consider a Verdier sequence

C
f→ C ′

p→ C ′′

and a grouplike Verdier-localising functor F : Catst∞ → E.
Assume that the Verdier projection p admits a section s : C ′′ → C ′

in Catst∞. Then f and s together induce an equivalence

(⋆) (f, s) : F(C)⊕ F(C ′′)→ F(C ′).

If also the Verdier inclusion f admits a retraction, r : C ′ → C, in
Catst∞, then p and r together induce an equivalence

(⋆⋆) p⊕ r : F(C ′)→ F(C)⊕ F(C ′′).

(⋆⋆) is inverse to the (⋆) when r ◦ s vanishes.

3.81 Remark

It is worth noting that Catst∞ is only semi-additive, but not additive.
Therefore, in general, the middle term in a Verdier sequence, ad-
mitting a split as in the proposition, does not split as a direct sum
before applying F. In example 3.73 we showed that in the case of
left (or right) split-Verdier sequences, there is a relation between
the middle term and the extremes, but this is, in general, only a
K-equivalence.

To prove the proposition we need a version of the splitting lemma
for additive ∞-categories. Before giving the ∞-version, let us recall
the classical version.

3.82 Lemma (Classical Splitting Lemma)

Consider an additive category A and a short exact sequence in A

0→ A
f→ B

p→ C→ 0.

The following three statements are equivalent:

(a) There exists a section of p;

(b) There exists a retract of i;

(c) There exists an isomorphism of sequences between our original
sequence and the exact sequence given by

0→ A
canon−→ A⊕C canon−→ C→ 0.

Although the splitting lemma is usually demonstrated for abelian
categories, but is also applicable to additive categories. The proof pre-
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sented in [Bor94, Prop. 1.8.7] is applicable to both types of categories.
We choose to state it in this manner because the abelian case is insuf-
ficient for our needs; indeed, we are going to work in the homotopy
categories of an additive ∞-category.

3.83 Lemma (Splitting Lemma, [Cal+21b, Lemma 1.5.12])

Consider an additive ∞-category which admits fibres and cofibres
A and a retract diagram.

x
i−→ y

r−→ x.

Then the followings statements are true:

(i) There is an equivalence x⊕ fib(r) (i,canon.)−→ y.

(ii) There is an equivalence y
(r,canon.)−→ x⊕ cof(i).

(iii) The fibre sequence fib(r)→ y→ x is also a cofibre sequence.

(iv) The cofibre sequence x→ y→ cof(i) is also a fibre sequence.

(v) The composite map fib(r)→ y→ cof(i) is an equivalence.

Proof of the lemma 3.83. First of all, notice that (i) and (ii) are equivalent
up to passing to the opposite ∞-category Aop, which is still additive.
Same for (iii) and (iv).

(i) We claim that we can work in Ho(A). If this is the case, then the
classical splitting lemma for additive categories ((a)⇒ (c)) applied to

fib(r)→ y
r→ x

gives us the result. Let us prove the claim. For any z ∈ A, MapA(z, •)
preserves limits. Therefore, we obtain a fibre sequence in An

MapA(z, fib(r))→Map(z,y) r∗→Map(z, x).

The map

π1(Map(z,y))→ π1(Map(z, x)),

induced by r, is surjective because r has a section. For this, the long
exact sequence of homotopy groups ends with a fibre sequence of sets

π0(MapA(z, fib(r)))→ π0(Map(z,y))→ π0(Map(z, x)).

This implies that, in ho(A), fib(r) is still the fibre of r. Now, since
ho(A) is an additive category, and since direct sums of objects are pre-
served when passing to ho(A), we can state the condition equivalently
in ho(A).

From (i) we get a retraction of y → fib(r) which vanishes when
composed with i : x→ y. So we have a commutative diagram in A
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0 fib(r) 0

x y x

0 fib(r) 0

i r

in which both the middle column and the middle row are retract
diagrams.

(iii) Applying the pasting law for pushouts to the two upper squares,
we get that

fib(r)→ y→ x

is a cofibre.
(v) Applying the pasting law for pushouts to the two left squares,

we get

x→ y→ fib(r)

is cofibre; hence, there is an equivalence fib(r)→ cof(i). But this map
is the same as the one fib(r)→ cof(i) obtained from the composition

fib(r)→ y→ cof(i)

because the fib(r)→ y→ fib(r) is a retract diagram.

Proof of proposition 3.80. Assume that the Verdier projection p admits
a section s : C ′′ → C ′ in Catst∞. Then we have a retract diagram in Catst∞

C ′′
s−→ C ′

p−→ C ′′,

which induce a retract diagram

F(C ′′)
s∗−→ F(C ′)

p∗−→ F(C ′′)

in the additive ∞-category CGrp(E). Then by (i) we obtain

F(C ′′)⊕ fib(p∗)
≃−→ F(C ′);

since F is Verdier-localising, we can identify the fibre of p∗ with F(C),
so we obtain an equivalence

F(C ′′)⊕ F(C) ≃−→ F(C ′).

By (iii) we also obtain that the fibre sequence

F(C)
f∗−→ F(C ′)

p∗−→ F(C ′′)
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is also cofibre.
Assume now the Verdier inclusion f admits a retraction, r : C ′ → C.

Then identifying F(C ′′) with cof(f∗) and applying (ii) to the retract
diagram

F(C)
f∗−→ F(C ′)→ r∗−→ F(C ′′),

we obtain an equivalence

F(C ′)
≃−→ F(C ′′)⊕ F(C).

Let us prove now the final statement. Since we already know the
two functors are equivalences, for them to be inverses it is equivalent
to be one-sided inverses. Composing in one of the verses we get

F(C ′′)⊕ F(C) ≃−→ F(C ′)
≃−→ F(C ′′)⊕ F(C)

which component-wise is given by the matrix(
id 0

r∗s∗ id

)
.

So the composition is equivalent to the identity if and only if r∗s∗ ≃
(rs∗) ≃ 0, and so if and only if r ◦ s ≃ 0.

3.3.4 Additive vs Verdier-localising Functors.

Let us use the following notation. Consider a stable ∞-category D ,
a full stable sub-∞-category C of D, and a small ∞-category I. We
denote with FunC(I,D) the full sub-∞-category of Fun(I,D) spanned
by those functor that take maps in I to equivalences modulo C.

The connection between additive and Verdier-localising functors
was essentially discussed in Waldhausen’s research on the fibration
theorem.

3.84 Theorem (Waldhausen’s fibration theorem)

Consider a Verdier sequence C → D → D/C and a grouplike
additive functor F : Catst∞ → An. For any [n] ∈ ∆, consider also the
constant map

const : D→ FunC([n],D)

defined on objects by

b 7→ b̃n : [n]→ D

collapsing everything to b. (Here the cofibre of any arrow in [n]

through b̃n is given by the zero object of D, which is in C; so b̃n
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actually belongs to FunC([n],D). The constant map induces a bifibre
sequence of E∞-groups

F(C)→ F(D)→ |F(FunC(•,D))|, (3.84.1)

where F(FunC(•,D)) : N(∆)op → Catst∞ → An is regarded as a
simplicial E∞-group and

|F(FunC(•,D))| := colim
∆

F(FunC([n],D)) ∈ An

is its realization.

Recall the following definitions. An ∞-category D is sifted if equiva-
lently:

• All colimits of diagrams D→ An commutes with finite products,
i.e. for any F : D× S→ An with S discrete and finite ∞-category,
we have

colim
d∈D

∏
s∈S

F(d, s) ≃→
∏
s∈S

colim
d∈D

F(d, s).

• (As in [Lur09, Def.5.5.8.1]) There exists a quasi-category K ∈ sSet
that models D, such that

(a) The simplicial set K is non-empty.

(b) The diagonal map K→ K×K is cofinal.

A sifted colimit is the colimit of a diagram D → C where D is sifted.

3.85 Remark

Sifted colimits in CGrp(An) are preserved by the forgetful functor
CGrp(An) → An; indeed the forgetful functor is a right adjoint.
In particular, |F(FunC(•,D))| is just the geometric realization of the
simplicial anima F(FunC(•,D)).

3.86 Remark

A sequence (⋆) L → M → N in CGrp(An) is bifibre if and only if
the underlying sequence of animae is a fibre sequence (over the unit
of N) and π0(M)→ π0(N) is surjective.
The idea to prove this, that we will also use during the proof
of 3.84, is the following. Let us call U the forgetful functor from
CGrp(An) → An. This functor is fully faithful, and it has as right
adjoint the group-completion functor. So we have an adjunction

An CGrp(An)

⊣

U



70 arrows, sequences, and invariants

or even better a diagram

An CMon(An) CGrp(An)≃ ⊣

(•)∞−cmon

Um

(•)∞−cgrp

Ug

U

(If) Suppose the sequence (⋆) is bifibre, then U being a right
adjoint preserve limits so

U(L)→ U(M)→ U(N)

is fibre. Moreover being cofibre, surely π0M→ π0N is surjective.
(Only if) Suppose the sequence of underlying animae of (⋆)

if fibre and π0(M) → π0(N) is surjective. Since L,M,N are in
CGrp(An),and CGrp(An) is a sub-∞-category of An closed un-
der taking limits, the sequence (⋆) is for sure fibre in CGrp(An).
Using the equivalence CGrp(An) ≃ Spectra⩾0 we have this is a
fibre sequence of spectra connective spectra. Since π0(M)→ π0(N)

we have this is also a fibre sequence in Spectra ⊃ Spectra⩾0. But
Spectra is stable, so it is also a cofibre sequence in Spectra and
hence in Spectra⩾0. By equivalence we conclude the sequence is
bifibre in CGrp(An).

3.87 Remark

Before proving the theorem, let us introduce the décalage functor,
which will be central in the proof. Fix an ∞-category C. We define
the following functor of simplicial objects in C,

dec : Fun(N(∆op),C)→ Fun(N(∆op),C)

as the functor induced by [0] ⋆ • : ∆→ ∆. The inclusions

[n] ↪→ [0] ⋆ [n] ∼= [1+n] and [0] ↪→ [0] ⋆ [n] ∼= [1+n]

induce natural transformations

dec⇒ id, and dec⇒ ev0.

In particular, if X : N(∆)op → C, then

dec(X)• = X[0]⋆•,

and we have maps

dec(X)• → X• and dex(X)• → const(X0).
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Also, dec(X) is always a split simplicial object over X0; with this we
mean we have an adjunction

dec(X) ⇄ const(X0)

where one map is given by the evaluation of the natural transfor-
mation dec→ ev0 and the other is given by the composition of the
0-th degeneracies map s0 of X (so for example, in level n, this is
sn0 ◦ s

n−1
0 ◦ · · · ◦ s20 ◦ s10). In particular, X0 is a colimit of dec(X) by

[Lur17, Lemma 6.1.3.16], i.e.

X0 ≃ colim
∆

dec(X)n.

3.88 Remark

In the proof of theorem 3.84, we also need the following criterion:
a square of E∞-groups with right vertical map π0-surjective is carte-
sian if and only if the induced map on vertical fibres over 0 is an
equivalence.
Since the right vertical map π0-surjective, its fibres in Spectra⩾0
and Spectra coincide; but then the sequence is also cofibre. Since the
fibres of the vertical right map and vertical left map are equivalent,
they are equivalent also in Spectra. Then by pasting law of pushouts
and stability of Spectra we can conclude.

3.89 Definition

A natural transformation of functors τ : Y ⇒W : I→ C is equifi-
bred if, for any f : i→ j ∈ I,

Y(i) W(i)

Y(j) W(j)

τi

Y(f) W(f)

τj

3.90 Lemma (Equifibrancy lemma of Segal and Rezk, from [Cal+21b,
Lemma 3.3.14])

Consider a cartesian square of functors from some small category I
to An
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X Y

Z W

τ

such that the natural transformation τ : Y ⇒W is equifibred. Then
the square

colim X colim Y

colim Z colim W

is cartesian.

Proof of Theorem 3.84. Consider now, for [n] ∈ ∆, the functor

dn+10 : FunC([1+n],D)→ FunC([n],D)

which maps ”sequences”

x0 → x1 → · · · → xn

such that cof(xi → xi+1) ∈ C, to

x1 → · · · → xn.

The kernel of this is FunC([0],D) ≃ C. So we obtain a fibre sequence

C ↪→ FunC([1+n],D)
dn+10−→ FunC([n],D)

where the first arrow is the inclusion of y ∈ C as y → 0 → · · · → 0.
dn+10 has a fully faithful right adjoint, so by lemma 3.21 this is a
right-split Verdier sequence. The right adjoint is given by the map(

x0 → x1 → · · · → xn−1

)
7→
(
x0 → x0 → x1 → · · · → xn−1

)
.

We now want to prove that the natural transformation

decFFunC([•],D)→ FFunC([•],D) : N(∆)op → An

is equifibred, i.e. that for every f : [m]→ [n] ∈ ∆

FFunC([1+n],D) FFunC([1+m],D)

FFunC([n],D) FFunC([m],D)

dec(FFunC(f,D))

d∗0 d∗0

(FFunC(f,D))
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is cartesian. To prove this we use the remark 3.88. In our case the map
is even π0-split-surjective, since we have a fully faithful left adjoint,
and the vertical fibres both identify with F(C).
(It is worth noting that also that before applying F, the square above is
not necessarily cartesian, for example if f = d0, and so not a Verdier
square; therefore we actually need the remark).
Now apply the equifibrancy lemma of Segal and Rezk: consider the
cartesian square of functors N(∆)op → An

constF(A) decFFunC([•],D)

constF(0) FFunC([•],D)

where we know the right vertical leg to be equifibred; then

|constF(A)| |decFFunC([•],D)|

0 ≃ |constF(0)| |FFunC([•],D)|

is cartesian, which means that

F(C)→ F(D)→ |FFunC([•],D)|

is a fibre sequence.
To see that this is a bifibre sequence, notice that the right hand map

is the inclusion of the 0-simplices into the realization. This induces a
surjection on π0 for every simplicial anima, so we can use the same
reasoning as above involving Spectra⩾0 and Spectra, and therefore
conclude.

Given a Verdier sequence C → D
p→ D/C, the restriction of the

projection

FunC([n],D) ↪→ Fun([n],D)
p∗→ Fun([n],D/C)

maps a diagram

x = x0 → · · · → xn

with cofibres in C to a diagram

x = x0 → · · · → xn

in which every xi → xj is an equivalence in D/C; therefore, it takes
values in the sub-∞-category of functors that send maps in [n] to
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equivalences in D/C. Since [n] is contractible (clearly |[n]| ∼= ∗), the
image of the projection is the essential image if the constant functor

const : D/C→ Fun([n],D/C), x 7→ x
id→ x→ · · · → x,

which is clearly fully faithful. For any F : Catst∞ → An we therefore
obtain a map

|F(FunC([•],D))|→ F(D/C).

3.91 Corollary

A grouplike additive functor F : Catst∞ → An is Verdier-localising if
and only if the following two conditions are satisfied:

(i) For every Verdier sequence C → D → D/C, the map we con-
structed above, |F(FunC([•],D))|→ F(D/C), is an inclusion of
path components.

(ii) For every Verdier square

D D ′

D/C D ′/C
f

then

im
(
π0F(D)→ π0F(D/C)

)
= f−1

(
im
(
π0F(D

′)→ π0F(D
′/C)

))
.

As a consequence, |F(FunC([•],D))| → F(D/C) is an equivalence for
any Verdier sequence if and only if F is Verdier-localising and

π0F(D)→ π0F(D/C)

is surjective for all Verdier sequences, since we know π0F(D) →
π0|FFunC([•],D) is always surjective.

3.92 Corollary

Consider an additive functor F : Catst∞ → Spectra. F is Verdier-
localising if and only if the canonical map

|F(FunC([•],D))|→ F(D/C)

is an equivalence for every Verdier sequence.

Proof. Let us start by applying theorem 3.84 to Ω∞F, Ω∞−1F, etc.
Recall that the spectrification functor preserves colimits, since it is left
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adjoint to the functor Ω∞. We get that the cofibre of F(C) → F(D) is
given by the spectrification of(

|Ω∞FFunC([•],D)|, |Ω∞−1FFunC([•],D)|, . . .
)
.

But this is exactly |FFunC([•],D)|, so we get a bifibre sequence

F(C)→ F(D)→ |FFunC([•],D).

Then by applying proposition 3.59 we finish.

3.3.5 Verdier-localising vs. Karoubi-localising Functors.

3.93 Proposition

Consider a reduced functor F : Catst∞ → E where E is a stable ∞-
category. F is Karoubi-localising if and only if it is Verdier-localising
and inverts Karoubi equivalences.

Proof. For the “only if” part. We already from remark 3.54 that F is
Verdier-localising, since every Verdier square is a Karoubi square. F
also inverts Karoubi equivalences since

C 0

Idem(C) 0

is a Karoubi square.
For the “if” part. Inverting Karoubi-equivalences makes Karoubi

square becomes a Verdier square, hence it is sent to a cartesian square.

Consider any functor F : Catst∞ → E. We have a universal approxima-
tion of F from the right by a functor inverting Karoubi equivalences,
defined as

F ◦ Idem : Catst∞ → E.

If F is additive, then F ◦ Idem is additive again; this follows imme-
diately, because the square remains cartesian and we still have the
adjunctions, making the square split Verdier. We would also like
F ◦ Idem to be Karoubi-localising whenever F is Verdier-localising.
However this is not true, it may fail to be even Verdier-localising; the
connective K-spectrum functor is a counter-example for this.
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3.94 Lemma

Consider a Verdier-localising functor F : Catst∞ → E where E is a
stable ∞-category. Then F ◦ Idem : Catst∞ → E is Karoubi-localising
if it takes pullbacks square in Catst∞, whose vertical legs are dense
inclusions, to pullbacks in E.

Proof. We just have to prove that F ◦ Idem is again Verdier-localising,
then it is clearly Karoubi-localising. Consider a Verdier square

A A ′

B B ′ ,

with common vertical fibre C, and also the diagram

IdemA IdemA ′

(IdemA)/C (IdemA ′)/C

IdemB IdemB ′ .

The outer square is cartesian, since Idem(•) preserves limits. The two
lower vertical maps are dense inclusions; indeed

• A/C→ Idem(A)/C and A/C→ B are dense inclusions;

• A ′/C→ Idem(A ′)/C and A ′/C→ B ′ are dense inclusions.

Now, the lower square is a pullback, from which follows that also
the upper square is a pullback for pasting laws. Moreover, the upper
vertical maps are Verdier projections, so F maps both the upper and
the lower square to pullbacks in E; by pasting laws, the outer square
is mapped to a pullback.



4
K - T H E O RY O F S TA B L E I N F I N I T Y C AT E G O R I E S

In this chapter, we will construct K-theory using two different meth-
ods, namely the S-construction and the Q-construction. We will also
demonstrate that these two approaches are equivalent. Additionally,
this chapter will feature a brief discussion on Segal animae and span.
We require the former throughout the chapter, while the latter is
necessary for the next one, but it fits very well here.

4.1 the waldhausen’s (or segal’s) s-construction.

Consider a stable ∞-category C and [n] ∈ ∆. The category Sn(C) of
[n]-gapped object of C is the full sub-∞-category of Fun(Arr([n]),C)
spanned by those functors A : Arr([n])→ C with the following prop-
erties:

(i) For every i ∈ [n], A(i ⩽ i) is a zero object of C.

(ii) A(i ⩽ j) → A(i ⩽ k) → A(j ⩽ k) is a cofibre sequence in C, or,
equivalently, the square

A(i ⩽ j) A(i ⩽ k)

A(j ⩽ j) = 0 A(j ⩽ k)

is a cocartesian in C. (Note that, since C is stable this sequences
is immediately bifibre).

An [n]-gapped object A of C can be pictured as a diagram

77
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0 A0,1 A0,2 A0,3 A0,4 A0,n−1 A0,n

0 A1,2 A1,3 A1,4 A1,n−1 A1,n

0 A2,3 A2,4 A2,n−1 A2,n

0 A3,4 A3,n−1 A3,n

0 An−2,n−1 An−2,n

0 An−1,n

0

⌟ ⌟ ⌟ ⌟

⌟ ⌟ ⌟

⌟ ⌟

⌟

in which each square is cocartesian.

4.1 Example

Let us study the first cases of S•C.

• S0(C) is the full sub-∞-category of C spanned by the zero
objects of C. Since C is pointed, this is a contractible anima.

• S1(C) is the ∞-category whose objects are diagram

0 A

0

where A is an object of C and 0 is a zero object. This is an∞-category equivalent to C.

• S2(C) is the ∞-category of arrows of C; however, it is better to
picture it as the ∞-category whose objects are diagrams
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0 A ′ A

0 A ′′

0

⌟

We can think this as a cofibre sequence

A ′ → A→ A ′′.

In this picture, the face maps d0,d1,d2 : S2(C) → S1(C) are
respectively the quotient, target, and source maps. Hence they
give A ′′, A, and A ′, respectively.

4.2 Remark

An [n]-gapped object A is determined by the sequence of maps in
the top row of the diagram (or better, the red-coloured part of the
upper row)

A0,1 → A0,2 → A0,3 → A0,4 → · · · → A0,n−1 → A0,n.

This because the condition (ii) implies the rest of the diagram can
be recovered by forming cofibres: Ai,j is the cofibre of the map

A0,i → A0,j := A0,i → A0,i+1 → · · · → A0,j.

It follows that, for any n ∈ N, the restriction of A to the top row
gives an equivalence of ∞-categories

Sn(C) ≃ Fun([n− 1],C).

Since C is stable, also SnC is stable.

4.3 Remark

Arr([n]) is functorial in [n]. Moreover, Fun(Arr([n]),C) is functorial
in both [n] and C.

4.4 Remark

The Sn(C) assemble into simplicial stable ∞-category

S•(C) : N(∆)op → Catst∞, [n] 7→ Sn(C).
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To prove this, we have to describe the face and degeneracy maps,
and check that they actually preserve the sub-∞-categories Sn(C)
(e.g. that restricting a degeneracy map sk to Sn(C) we actually land
in Sn+1(C)). Also we have to check that they satisfies the simplicial
identities. In the ”row description” (through the equivalence) these
are given as follows.

• The k-th face map, for i ̸= 0, is given by forgetting the object
A0,k in the diagram.

• The 0-th face map is given by taking quotient A1,j in the
diagram.

• The k-th degeneracy map, for k ̸= 0, is given by adding the
morphism idA0,k in the diagram.

• The 0-th degeneracy map, is given by adding the morphism 0

in front the diagram.

From the description of these maps it should be clear that everything
we want is satisfied.

To be complete, we also give the full description of the face and
degeneracy maps.

• The k-th face map, for k ̸= 0, is given by forgetting k-th column
and the k-th row; so we forget all objects Ai,k for 0 ⩽ i ⩽ k and
Ak,j for k ⩽ j ⩽ n.

• The 0-th face map is given by removing the 0-th row.

• The k-th degeneracy map, for k ̸= 0, is given by adding in
between the k-th and (k+ 1)-th column a copy of the column
extended by 0 below, and then extending on the right by copying
the element above.

• The 0-th degeneracy map by adding of the diagram a copy of
the 0-th raw extended by 0 on the left.

For example, in the case n = 6, the 3-rd face map would be
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0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6

0 A1,2 A1,3 A1,4 A1,5 A1,6

0 A2,3 A2,4 A2,5 A2,6

0 A3,4 A3,5 A3,6

0 A4,5 A4,6

0 A5,6

0

⌟ ⌟ ⌟ ⌟

⌟ ⌟ ⌟

⌟ ⌟

⌟

⌟

⌟

⌟

⌟ ⌟

4.5 Remark

It also should be clear that Sn(C) is functorial in C. If F : C→ D is an
exact functor, then we have a functor Sn(C)→ Sn(D), which applies
F object-wise (and this preserves cocartesian squares being exact);
this is also compatible with the degeneracy and face maps, so for
any morphism f : [m]→ [n] ∈ ∆ we get a commutative diagram

Sm(C) Sm(D)

Sn(C) Sn(D)

Sm(F)

f∗ f∗

Sn(F) .

We get a functor

S• : Catst∞ → sCatst∞, C 7→ S•(C).

This is called S•-construction.

4.6 Remark (A note on the name of the S-construction)

The S-construction is frequently known as Waldhausen’s S-construction
(probably as it first appeared in [Wal85]). However, Waldhausen
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named it Segal’s S-construction. Indeed, the S here stands for Segal,
indicating his pivotal role in its development.

Composing with the core functor we obtain

core S• : Catst∞ → sAn .

4.7 Remark

The anima |core S(C)| has a canonical base point (up to contractible
ambiguity) given by the map

core S0(C)→ |core S(C)|;

this because the left hand side is just the anima of zero objects in C.
More generally, for any simplicial anima X,

π0X0 → π0|X|

is surjective. Therefore, we also get that

0 ≃ π0 core S0(C)→ π0|core S•(C)|

is surjective, hence |core S•(C)| is connected.

4.8 Definition (Algebraic K-theory Anima)

Consider a stable ∞-category C. We define the algebraic K-
theory anima (or algebraic K-theory space, or projective anima
class) of C to be

k(C) := Ω|core S•(C)|,

where the loop is formed on the canonical base point.

We have defined in 2.1 the Grothendieck group, or 0-th K-group, of
a stable ∞-category. Now we can define the higher version on this.

4.9 Definition (Higher K-groups)

Consider a stable ∞-category C. For n ⩾ 1 we define the n-th
K-group of C as the abelian group Kn(C) := πn k(C).

4.10 Remark

If the reader wishes to choose a specific model, here they can work
either with topological spaces or simplicial sets. Let us just recall
that, when dealing with the simplicial sets context, the geometric
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realization of a simplicial anima X• : [n] 7→ Xn is given by the
diagonal colimit [n]→ (Xn)n.

4.11 Remark

Consider two stable ∞-categories C and D, and an exact functor f
between them. f induces a map of simplicial animae S•(C)→ S•(D),
so also a map of K-theory animae k(C) → k(D). We obtain the
K-theory functor

k : Catst∞ → An .

In the following remark we are showing that K0(C), as defined in
2.1, is equivalent to π0 k(C).

4.12 Remark

The anima |core S•C| can be written as a colimit of partial geometric
realizations

sk0|core S•C|→ sk1|core S•C|→ sk2|core S•C|→ · · ·

The partial geometric realization is given by

skn|core S•(C)| = |S•⩽n(C)|.

The 0-skeleton sk0|core S•(C)| is equivalent to |core S0(C)|, and so
it is contractible. Using the classical cocartesian square relating
the n-skeleton with the (n+ 1)-skeleton, the 1-skeleton is obtained
by attaching core S1C× [1] to the 0-skeleton. So it is equivalent to
the suspension of | core S1C| ≃ |core C|. In particular we obtain an
inclusion

sk1|core S•(C)| ≃ S1 ∧ |core C|→ |core S•(C)|.

It is worth noting two things

• This inclusion is 1-connected; in fact, all the inclusion skn|core S•|
↪→ |core S•| are n-connected. Recall that a map f : X → Y

of animae is n-connected if π(f) is an isomorphism for any
0 ⩽ i < n and πn(f) is surjective.

• By adjointness we have an inclusion

|core C|→ Ω|core S•C| = k(C).

(As Waldhausen points out in [Wal85] this bears resemblance
to Segal’s technique for group completion).
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Since the inclusion is 1-connected we have a surjection of funda-
mental groups

π1(S1 ∧ |core C|)→ π1|core S•(C)|.

The left hand side is the free group with generators the connected
components of core (C), modulo the single relation [0] = 1 unit of
the group.
The inclusion sk2|core S•(C)| → |core S•(C)| is 2-connected, hence
all the relations in π1|core S•(C)| come from connected components
of core S2C. But we can identify core S2C with cofibre sequences in
C. So the relations are exactly

[x] = [x ′] + [x ′′]

whenever x ′ → x→ x ′′ is a cofibre sequence in C. Consequently, we
obtain

K0(C) ≃ π1(|core S•C|) ≃ π0 k(C).

4.2 a small parenthesis on segal animae and complete

segal animae .

Prior to discussing the Q-construction, it would be useful to review
some information about Segal animae and complete Segal animae. It
is important to note that this chapter will not provide any proofs and
instead refer the interested reader to [Rez00] for the original source
on them and to [Ber18] for a text-book account on them.

Remember that a simplicial anima is a functor

X : N(∆)op → An .

Also, recall this classical theorem (for example [Lur09, Thm 5.1.5.6]).

4.13 Theorem

Consider a small ∞-category C and a cocomplete ∞-category D.
The Yoneda embeddingよC : C→ PSh(C) gives an equivalence

よ
∗
C : FunL(PSh(C),D)→ Fun(C,D),

where FunL(PSh(C),D) is the full sub-∞-category of Fun(PSh(C),D)

spanned by colimit preserving functors.
Furthermore, any functor in FunL(PSh(C),D) has a right adjoint.

This theorem is very important, and it allows us, for example, to
construct useful adjunction starting from a functor C→ D.
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4.14 Lemma

The inclusion of N(∆) ↪→ Cat∞, i.e. considering N(∆) as the full sub-∞-category spanned by the ∞-categories [n], gives an adjunction

asscat : sAn→ Cat∞ : Nr,

where the left adjoint is called associated category functor
and the right adjoint is the rezk nerve. If C is an ∞-category and
n ∈ N, then

Nrn(C) ≃MapCat∞([n],C) ≃ core Fun([n],C).

It is worth noting that if C is a 1-category, then Nr(C) is different
from the ordinary nerve

N•(C) ≃ HomCat1([•],C)

since Cat1 ↪→ Cat(2)1 is not a fully faithful functor. The difference is
that N(C) is always a discrete simplicial anima, while Nr(C) is usually
not.

4.15 Remark

For us [n] will denote either the category (or poset)

[n] := {0 < 1 < · · · < n} ∈ ∆

or the ∞-category N([n]). Instead, ∆n) will denote the simplicial set,
which we considered as a simplicial anima. These two are related
by

Nr([n]) ≃ ∆n.

Indeed

Nrm([n]) ≃MapCat∞([m], [n]) ≃ core Fun([m], [n]);

since there are no non-identity equivalences in [n] any isomorphism
of functors in Fun([n], [m]) must be an identity. Therefore, the right
hand side must be the discrete set (∆n)m.

4.16 Definition

A segal anima is a simplicial anima X : N(∆)op → An for which
the inclusion of the n-th spine spn ↪→ ∆n induces an equivalence

Xn ≃MapsAn(∆
n,X) ≃−→MapsAn(sp

n,X) ≃ X1×X0 · · · ×X0 X1,
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for all n.
A complete segal anima is a Segal anima X : N(∆)op → An
for which the diagram

X0 X0 ×X0

X3 X1 ×X1

⌟

∆

(s, s)

(d{0,2} ,d{1,3})

is Cartesian.

Segal anima can be thought of as simplicial anima with a unique
spine lifting, meaning that there is a unique (up to a contractible
choice) lifting against spn ↪→ ∆n.

There are many equivalent conditions for completeness; the follow-
ing are the most common.

4.17 Proposition

For a Segal anima X : N(∆)op → An the following are equivalent:

(a) The diagram

X0 X0 ×X0

X3 X1 ×X1

⌟

∆

(s, s)

(d{0,2} ,d{1,3})

is Cartesian.

(b) The morphism Nr(0 ≃−→ 1)→ ∆0 induces an equivalence

X0 ≃MapsAn(∆
0,X) ≃−→Map(Nr(0 ≃−→ 1),X).

(c) Before giving the condition we want to define a collection of
path components X×1 ⊂ X1. For any w, z ∈ X0 , we define Pw,z

as the pullback

Pw,z X1

∗ X0 ×X0

⌟

∆

(d1,d0)

(w, z) .
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Consider g ∈ X1, the “composition map”

X1 ×d1,X0,d0 X1
≃←−

(d0,d2)
X2 −→

d1
X1

induces maps

g∗ : Pw,d1(g) → Pw,d0(g)

and

g∗ : Pd0(g),z → Pd1(g),z

(that should be thought as post-composition and pre-composition)
simply by restricting to

Pw,d1(g)×d1(g) g ≃ Pw,d1(g) and g×d0(g) Pd0(g),z ≃ Pd0(g),z.

We say that g ∈ X×1 if g∗ and g∗ are equivalences for any
w, z ∈ X0.
Finally the condition is the following: the degeneracy map s :
X0 → X×1 is an equivalence.

(d) The simplicial sub-anima X×, which defined level-wise as the
collection of path components whose all edges lies in X×1 , is
constant. (Notice that X×0 = X0, so it is constant on X0.)

The completeness condition can be understood as saying that higher
simplices must have equivalences that correspond to degenerate edges.

4.18 Proposition

The Rezk nerve Nr : Cat∞ → sAn is fully faithful and has as
essential image the full sub-∞-category CS An spanned by complete
animae.

4.19 Remark

It immediately follows by the (asscat ⊣ Nr)-adjunction that for any∞-category C

asscat Nr(C) ≃ C.

Morevoer,

core asscat (X) ≃ |X×|,

and so

core asscat Nr(C) ≃ |Nr(C)|.



88 k-theory of stable infinity categories

Since

core C ≃ Nr0(C),

we get that Nr(C)× is constant on Nr0(C); therefore the colimit over
the category ∆op is just |Nr(C×)| ≃ Nr0(C).

4.20 Lemma

The completion functor

comp : sAn asscat−→ Cat∞ Nr−→ CSAn

is a left adjoint to the inclusion CS An ↪→ sAn.

4.21 Remark

Define sAnconst as the full sub-∞-category of sAn spanned by
constant simplicial anima (i.e. Xn ≃ X0 for any n). By restricting the
(asscat ⊣ Nr)-adjunction we obtain an equivalence

sAnconst An≃

ev0

const .

Indeed, for A ∈ An and [n] ∈ ∆,

Nrn(A) ≃ core Fun([n],A) ≃ Fun(|[n]|,A) ≃ Fun(∗,A) ≃ A.

Finally, let us state a lemma we are going to use later, which relates
the Rezk nerve of a category of twisted arrows in a ∞-category C and
the Rezk nerve of C.

4.22 Lemma

Consider an ∞-category C; then

Nrn(TwArr(C)) ≃
≃MapCat∞([n] ⋆ [n]op,C) ≃
≃MapsAn((∆

n)op ⋆∆n, Nr(C)),

where (∆n)op ⋆∆n is formed as a join in sSet and moved to sAn.

4.3 quillen’s q-construction.

Consider a stable ∞-category C and [n] ∈ ∆. We define the ∞-category
Qn(C) as the full sub-∞-category of Fun(TwArr([n])op,C) spanned
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by functors that take each square in TwArr([n])op to cartesian squares
in C. A functor A : TwArr([n])op → C can be pictured as a diagram

A0,n

A0,n−1 A1,n

A0,2 A1,3 An−2,n

A0,1 A1,2 A2,3 An−1,n

A0,0 A1,1 A2,2 A3,3 An,n

where all the squares

Ai,l

Ai,k Aj,l

Aj,k

⌟

are cartesian.

4.23 Remark

TwArr(•) is functorial in •; this is showed for example in [Ker, Rmk.
8.1.1.4] Fun(TwArr([n])op,C) is functorial in both [n] and C.

4.24 Remark

The Qn(C) assemble into a simplicial stable ∞-category

Q•(C) : N(∆)op → Catst∞ .

To prove this, we have to describe the face and degeneracy maps,
and check that they actually preserve the sub-∞-categories Qn(C)
(e.g. that restricting a face map dk from Qn(C) we actually land
inside Qn−1(C)). Also, we have to check that they satisfy the sim-
plicial identities. From the description of these maps, we should
immediately see that everything we want is satisfied. The maps are
given as follows.

• The face map, for k ̸= 0, dk : Qn(C) → Qn−1(C), forgets the
k-th diagonal

A0,k → A1,k → · · · → Ak,k

and the k-th anti-diagonal

Ak,k ← Ak,k+1 ← · · · ← Ak,n.
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• The face map, for k = 0, d0 : Qn(C) → Qn−1(C), forgets the
0-th anti-diagonal

A0,n → A0,n−1 → · · · → A0,0.

• The degeneracy map, for k ̸= 0, sk : Qn(C)→ Qn+1(C), adds,
after the k-th diagonal,

A0,k → A1,k → · · · → Ak,k → Ak,k,

and after the k-th anti-diagonal

Ak,k ← Ak,k+1 ← · · · ← Ak,n.

• The degeneracy map, for k = 0, s0 : Qn(C)→ Qn+1(C), adds,
before the 0-th anti-diagonal, a copy of the 0-th anti-diagonal
extended by A0,0 below.

4.25 Remark

Q•(C) is functorial also in C ∈ Catst∞; moreover, this is compatible
with that face and degeneracy map, i.e. for any F : C → D exact
functor of stable ∞-categories and for any morphism f : [m]→ [n] ∈
∆ we get a commutative diagram

Qm(C) Qm(D)

Qn(C) Qn(D)

Qm(F)

f∗ f∗

Qn(F) .

Therefore we obtain a functor

Q : Catst∞ → sCat∞ := Fun(N(∆)op, Cat∞).

The process that assigns to a stable ∞-category C the simplicial∞-category Q(C) is called the quillen’s Q-construction. Ap-
plying the core functor, we obtain

core ◦Q : Catst∞ → sAn .

4.26 Proposition
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Consider an ∞-category with pullbacks C. Then the simplicial∞-category

Q•(C) : N(∆)→ Cat∞
is a complete Segal object in Cat∞; this mean that Q•(C) satisfies the
Segal and the completness conditions. In particular, the simplicial
anima

core Q•(C) : N(∆)op → An

is a complete Segal anima.

Before proceeding with the proof, let us give some remarks.

4.27 Remark

What we want to verify is the following:

• Segal Condition. The Segal maps

ei : [1]→ [n], 0 7→ i, 1 7→ i+ 1

induces an equivalence

Qn(C)
≃−→ Q1(C)×Q0(C)Q1(C)×Q0(C) · · · ×Q0(C)Q1(C)

• Completeness Condition. The following square is cartesian

Q0(C) Q0(C)×Q0(C)

Q3(C) Q1(C)×Q1(C)

⌟

∆

(s, s)

(d{0,2} ,d{1,3}) .

Define Jn as the full sub-∞-category of TwArr([n])op spanned by
objects (i ⩽ j) such that j ⩽ i+ 1. In the case n = 4 we get J4 as the
red-coloured part here below.

0 ⩽ 4

0 ⩽ 3 1 ⩽ 4

0 ⩽ 2 1 ⩽ 3 2 ⩽ 4

0 ⩽ 1 1 ⩽ 2 2 ⩽ 3 3 ⩽ 4

0 ⩽ 0 1 ⩽ 1 2 ⩽ 2 3 ⩽ 3 4 ⩽ 4

.
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We will reserve the name Jn for this particular ∞-category all through-
out the thesis.

4.28 Lemma

Consider an ∞-category C with pullbacks. A functor

F : TwArr([n])op → C

belongs to Qn(C) if and only if it coincide with the right Kan exten-
sion of its restriction F|Jn along the inclusion of Jn in TwArr([n])op.

Proof. First, note that we can factor the inclusion Jn ↪→ TwArr([n])op

in n(n−1)
2 inclusions, adding in each step a single vertex. In our

example, we add first 0 ⩽ 2, then 1 ⩽ 3, then 2 ⩽ 4, then 0 ⩽ 3, etc.
Then the Kan extension can be compute in steps, as the composition
of the Kan extension given by adding a single vertex; this is possible
because these right adjoints compose to give the searched right adjoint.

We claim that the classical pointwise limit formula for right Kan exten-
sions shows that each of these Kan extension along a single vertex is
given by a pullback.
To prove this claim, recall the proposition giving the limit formula for
right Kan extensions.

4.29 Reference ([Heba, Ch.1])

Consider a small ∞-category A, ∞-categories B and Z, and a func-
tor f : A→ Z.

• If B is complete (resp. cocomplete) then the functor

f∗ : Fun(Z,B)→ Fun(A,B)

has a right adjoint Ranf (resp. left adjoint Lanf) and this must
satisfy

RanfF(z) ≃ lim
(a∈A,z→f(a)∈Z)∈z/f

F(a)

(
resp. LanfF(z) ≃ colim

(a∈A,f(a)→z∈Z)∈f/z
F(a)

)
for any F ∈ Fun(A,B).

• If B is not complete (resp. not cocomplete) but the limits (resp.
colimits) exist for all z ∈ Z, for a fixed functor F : A→ B, then
they build up a functor RanfF : Z→ B (resp. LanfF : Z→ B).

Working on the example n = 4, let us prove that the right Kan
extension of a functor F : Jn → C along Jn ↪→ Jn

∐
(0 ⩽ 2) is given

by a pullback. In this case A = Jn, B = C, and Z = Jn
∐

(0 ⩽ 2). Of
course if we take z ∈ A we get RanF(z) ≃ F(z). If we take z = (0 ⩽ 2),
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then z/f is given by the part of the diagram under (0 ⩽ 2); so by the
red coloured part in this diagram

0 ⩽ 2

0 ⩽ 1 1 ⩽ 2 2 ⩽ 3 3 ⩽ 4

0 ⩽ 0 1 ⩽ 1 2 ⩽ 2 3 ⩽ 3 4 ⩽ 4 .

So we have to compute the limit in C of the diagram
F(0 ⩽ 1) F(1 ⩽ 2)

F(0 ⩽ 0) F(1 ⩽ 1) F(2 ⩽ 2) .

Now, the pullback of the span F(0 ⩽ 1) → F(1 ⩽ 1) ← F(1 ⩽ 2) is
clearly the limit of this diagram.
We can apply the same reasoning to (1 ⩽ 3) and so on for that row.
This reasoning can also be applies to (0 ⩽ 3) and so on for any other
vertex of our diagram. More generally we can do this for any of the
vertex added to the diagram Jn, for any n, to get TwArr([n])op.
This indeed happen because the larger sub-∞-category in which we
compute the limit has the span in which we compute the pullback as
a cofinal (i.e. ´´limit preserving”) sub-∞-category.

Now the “if and only if” should be clear because the condition that
a functor F : TwArr([n])op → C must satisfy to be in Qn(C) is precisely
to map each square in TwArr([n])op to a cartesian square.

Let us give a useful lemma.

4.30 Lemma

Consider functor of ∞-categories ι : A→ Z. Then for any F : A→ B

with B complete and cocomplete (or at least such that the limits
and colimits we want to compute exist)

F ≃ ι∗Lanι(F) ≃ LanιF ◦ ι

and

F ≃ ι∗Ranι(F) ≃ RanιF ◦ ι.

In particular, Lanι and Ranι are fully faithful.

Proof. The first natural transformation is induced by the unit

idFun(A,B) ⇒ ι∗Lanι

of the adjunction Lanι ⊣ ι∗. The second natural transformation is
induced by the counit

ι∗Ranι ⇒ idFun(A,B)
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of the adjunction ι∗ ⊣ Ranι. Therefore we can just check object-wise if
they are equivalences. Using the colimit formula for left Kan extensions
we know

LanιF(ι(a)) ≃ colim
(x∈A,ι(x)→ι(a)∈Z)∈ι/ι(a)

F(x)

but the ∞-category ι/ι(a) in which we are computing the colimit has
(a, idι(a)) as a terminal object, hence

LanιF(ι(a)) ≃ colim
(x∈A,ι(x)→ι(a)∈Z)∈ι/ι(a)

F(x) ≃ F(a).

Similarly for the right Kan extension.
The fact that they are fully faithful follows from the fact that the unit
and counit, respectively, are equivalences.

What we obtain from this discussion is also the following.

4.31 Corollary

The restriction of Fun(TwArr([n])op,C) along Jn ↪→ TwArr([n])op

gives an equivalence

Qn(C)
≃−→ Fun(Jn,C).

Proof. We already showed a side of the equivalence. The other one
comes from 4.30.

Proof of the Proposition. Once we have proved that the first part holds,
the “in particular” part follows because the core functor preserve
limits, since it is a right adjoint.

For [n] ∈ ∆ fixed, consider the Segal maps

ei : [1]→ [n], 0 7→ i, 1 7→ i+ 1;

these maps induce an equivalence

Jn ≃ J1 ⊔J0 J1 ⊔J0 · · · ⊔ J0J1

in Cat∞, hence

Qn(C) ≃ Fun(Jn,C)

≃ Fun(J1 ⊔J0 J1 ⊔J0 · · · ⊔J0 J1,C)

≃ Fun(J1,C)⊔Fun(J0,C) · · · ⊔Fun(J0,C) Fun(J1,C)

≃ Q1(C)×Q0(C) · · · ×Q0(C) ×Q1(C).

This proves Q•(C) is a Segal object in Cat∞.
To prove the completeness, consider the commutative square



4.3 quillen’s q-construction. 95

Q0(C) Q0(C)×Q0(C)

Q3(C) Q1(C)×Q1(C)

∆

(s, s)

(d{0,2} ,d{1,3})

and take the pullback P. We have a map Q0(C)→ P, which we want
to show is an equivalence. Let us start by the fully faithfulness. The
degeneracy map Q0(C)→ Q3(C) is fully faithful; the canonical map
P → Q3(C) is fully faithful since it is the pullback of (s, s) : Q0(C)×
Q0(C)→ Q1(C)×Q1(C), which is fully faithful as s : Q0(C)→ Q1(C)

is. We notice that by definition the triangle

Q0(C) P

Q3(C)

canon.

s
canon.

commute, and conclude by 2-out-of-3 that also Q0(C) → P is fully
faithful.
For the essential surjectivity, let us start by describing P. The ob-
jects of P are functors F : TwArr([3])op → C, which maps squares in
TwArr([3])op to cartesian squares, and it satisfies

• d{0,2}F is equivalent to the image of s : Q0(C)→ Q1(C); s maps
an object x of Q0(C) ≃ C to the diagram

x

x x

id id

.

Therefore we must have a diagram

F(1 ⩽ 3)

F(1 ⩽ 1) F(3 ⩽ 3)

≃ ≃

in which the two arrows are equivalences.

• d{1,3}F is equivalent to the image of s : Q0(C) → Q1(C). There-
fore we must have a diagram

F(0 ⩽ 2)

F(0 ⩽ 0) F(2 ⩽ 2)

≃ ≃
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in which the two arrows are equivalences.

Therefore we have a diagram
F(0 ⩽ 3)

F(0 ⩽ 2) F(1 ⩽ 3)

F(0 ⩽ 1) F(1 ⩽ 2) F(2 ⩽ 3)

F(0 ⩽ 0) F(1 ⩽ 1) F(2 ⩽ 2) F(3 ⩽ 3) ,

in which all the red coloured arrows are equivalence.
We can say more; the red coloured square square

F(0 ⩽ 3)

• F(1 ⩽ 3)

F(0 ⩽ 1) • F(2 ⩽ 3)

F(0 ⩽ 0) F(1 ⩽ 1) F(2 ⩽ 2) F(3 ⩽ 3)

⌟

is cartesian. Since the arrow F(0 ⩽ 3)→ F(2 ⩽ 3) is the pullback of an
equivalence, it is an equivalence. Similarly F(0 ⩽ 3)→ F(2 ⩽ 3) is an
equivalence.
Furthermore, we know equivalences satisfy 2-out-of-6, so all the red
coloured arrows in the following diagram are equivalences

F(0 ⩽ 3)

F(0 ⩽ 2) F(1 ⩽ 3)

F(0 ⩽ 1) F(1 ⩽ 2) F(2 ⩽ 3)

F(0 ⩽ 0) F(1 ⩽ 1) F(2 ⩽ 2) F(3 ⩽ 3) .

Then considering again the red coloured square
F(0 ⩽ 3)

• F(1 ⩽ 3)

F(0 ⩽ 1) • F(2 ⩽ 3)

F(0 ⩽ 0) F(1 ⩽ 1) F(2 ⩽ 2) F(3 ⩽ 3)

⌟

we obtain by 2-out-of-3 that F(0 ⩽ 1) → F(1 ⩽ 1) is an equivalence.
Similarly F(2 ⩽ 3)→ F(2 ⩽ 2) is an equivalence.
Then by considering the cartesian squares
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F(0 ⩽ 2)

F(0 ⩽ 1) F(1 ⩽ 2)

F(1 ⩽ 1)

⌟

F(1 ⩽ 3)

F(1 ⩽ 2) F(2 ⩽ 3)

F(2 ⩽ 2)

⌟

we obtain that F(0 ⩽ 2) → F(1 ⩽ 2) and F(1 ⩽ 3) → F(1 ⩽ 2) are
equivalences.
Again by 2-out-of-3, we obtain that F(1 ⩽ 2) → F(1 ⩽ 1) and F(1 ⩽
2)→ F(2 ⩽ 2) are equivalences.
The image of Q0(C) → P consists of those F : TwArr([3])op → C ∈
Q3(C) such that F is constant. Therefore, the essential image contains
of all functors Fwhich maps the edges of TwArr([3])op to equivalences.
It is now clear that the functor is essentially surjective.

4.32 Remark (Important)

We actually proved something more specific. We know

Qn(C) ≃ Fun(Jn,C)

and the latter is a stable ∞-category for any n ∈ N and for any
stable ∞-category C. Therefore the Q-construction gives a functor

Q• : Catst∞ → sCatst∞,

and since Catst∞ is closed under finite limits in Cat∞, Q•(C) is a
complete Segal stable ∞-category, for any C stable ∞-category.

4.33 Definition

The ∞-category of spans in C is

Span(C) ≃ asscat core Q(C).

4.34 Remark

The K-theory anima of an ∞-category C could be described in term
of theQ-construction. Indeed, theQ-construction is a sort of cleaned-
up version of Segal’s edgewise subdivision of S-construction.

In order to get a relation between the Q- and the S-construction we
need to work a bit. Consider the functor

∆op → ∆op, [n]→ [n] ⋆ [n]op.
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Although we know that [n] ⋆ [n]op ≃ [2n+ 1], we should not interpret
it as the poset

(0 < 1 < · · · < 2n < 2n+ 1),

but rather as the poset

(0l < 1l < · · · < nl < nr < · · · < 1r < 0r),

where •l refers to the left part associated with [n] and •r refers to the
right part associated with [n]op. This functor induces the edgewise

subdivision functor

•esd : sAn→ sAn .

4.35 Lemma

For any ∞-category C, then

Nr(C)esd ≃ Nr(TwArr(Cop)).

Proof. For n ∈ N, we have

(Nr(C)esd)n ≃
≃ (MapCat∞([•],C))esdn
≃MapCat∞([n] ⋆ [n]op,C)

≃ Nr(TwArr(Cop))n,

where the last equivalence comes from lemma 4.22. Therefore, we
obtain the wanted equivalence.

4.36 Lemma

Consider a simplicial anima X; we have

|X| ≃ |Xesd|.

Proof. Both sides are colimit preserving functors sAn→ An; therefore,
it is enough to prove that they coincide on standard simplices (this
comes from 4.13). For any n ∈ N:

• the left hand side is |∆n| ≃ ∗;

• the right hand side |(∆n)esd| and

(∆n)esd ≃ (Nr([n]))esd ≃ Nr(TwArr([n])op).

We know TwArr([n])op is contractible, because it has an initial object,
therefore

|(∆n)esd| ≃ ∗.
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4.37 Proposition

For any stable ∞-category C, the collection of functors

χn : TwArr([n])op → Arr([n] ⋆ [n]op),

(i ⩽ j) 7→ (il ⩽ jr)

induces an equivalence

S•(C)
esd ≃→ Q•(C).

In particular

k(C) ≃ Ω|Span(C)|.

Proof. Let us describe with a picture what the functor

χn : TwArr([n]op)→ Arr([n] ⋆ [n]op)

does. We draw this in the case n = 2, the other cases are similar just
“larger”. For n = 2 we can portray Arr([2] ⋆ [2]op) as a diagram:

• • • • • •

• • • • •

• • • •

• • •

• •

•

(0l ⩽ 0l)

(0l ⩽ 1l) (0l ⩽ 2l) (0l ⩽ 2r) (0l ⩽ 1r) (0l ⩽ 0r)

(1l ⩽ 1l)

(2l ⩽ 2l)

(2r ⩽ 2r)

(1r ⩽ 1r)

(0r ⩽ 0r)

(1l ⩽ 0r)

(2l ⩽ 0r)

(2r ⩽ 0r)

(21 ⩽ 0l)

Let us establish some notation. We call:

• In the image of χn; in our picture it is the yellow part.

• ∆ln the sub-poset spanned by {(0l ⩽ 0l), . . . (nl,nl)}; in our
picture it is the red part.

• ∆rn the sub-poset spanned by {(nr ⩽ nr), . . . (0r, 0r)}; in our
picture it is the indigo part.

• Hn be the sub-poset spanned by

{(il ⩽ jl) : i ⩽ j}∪ {(il ⩽ jr) : i ⩽ j};
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in our picture it is the part inside the dotted line.

• Kn the whole diagram.

To start we have to prove that, for any n ∈ N, χn is a map of∞-categories. Both these categories

TwArr([n])op and Arr([n] ⋆ [n]op)

are the nerve of their 1-categorical correspondent notion. Since the
nerve functor is fully faithful, χn is induced by a 1-categorical map,
which for simplicity will be called χn.
The value of χn on the object (i ⩽ j) ∈ TwArr([n])op.

χn(i ⩽ j) = il ⩽ jr.

A morphism (i ⩽ j)→ (a ⩽ b) in TwArr([n])op is a square in [n]op

i a

j b

so in [n] it is the square

i a

j b .

This square is sent by χn to

il al

jr br

which is a morphism in Arr([n] ⋆ [n]op).
Secondly, we want to show these χn build up a natural transforma-

tion of functors

TwArr([•])op → Arr([•] ⋆ [•]op).

To prove this, it is enough to verify they are compatible with “face”
and “degeneracy” maps (in quotations marks because these are not
proper face or degeneracy maps), i.e. that, for dnk : [n− 1]→ [n] and
snk : [n]→ [n− 1], the squares
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TwArr([n])op Arr([n]× [n]op)

TwArr([n− 1])op Arr([n− 1]× [n− 1]op)

χn

d∗k d∗k

χn−1

and

TwArr([n− 1])op Arr([n− 1]× [n]op)

TwArr([n])op Arr([n]× [n]op)

χn−1

s∗k s∗k

χn

commute.
We already know how these maps are on TwArr([n])op ≃ TwArr([n])op;
they are basically the same as the one we have described to show that
Q•(C) form a simplicial anima.
For Arr([n] ⋆ [n]op), fix a k ̸= 0; counting from 0, the k-th face map
forgets

• the k-th column and the k-th row,

• the (2n− k)-th column and the (2n− k)-th row,

simply by composing the morphisms. The k-th degenracy map adds

• After the k-th column, a replica of this extended with a 0; also it
adds on the right of this 0 a row which is a copy of what it has
above.

• After the (2n− k)-th column, a replica of this extended with a 0;
also it adds on the right of this 0 a row which is a copy of what
it has above.

The 0-th face map forgets the first row and the last column. The 0-th
degeneracy map adds

• Add a 0-th row which is a copy of the first one extended by 0 on
the left;

• Add a 2n-th column which is a copy of the last one extended by
0 below;

• Add a final element on the top-right which is the same one of
the the previous top-right one.

From this description is then immediate that the χn define a natural
transformation

χ : TwArr([•])op ⇒ Arr([•] ⋆ [•]op).



102 k-theory of stable infinity categories

Applying Fun(•,C) to χ we obtain a natural transformations

χ∗ : Fun(Arr([•] ⋆ [•]op),C)⇒ Fun(TwArr([•])op,C)

of functors N(∆)op → Cat∞. Now notice that S•(C)esd ⊂ Fun(Arr([•]⋆
[•]op), i.e. that for any n ∈ N

Sn(C)
esd ⊂ Fun(Arr([n] ⋆ [n]op.

We would like to prove that the image of the S•(C)esd through χ∗

lands inside Q•(C).
In other words, for any n ∈ N, we have

χ∗n : Fun(Arr([n] ⋆ [n]op),C)→ Fun(TwArr([n])op,C),

and we want to show that the restriction χ∗n|Sn(C)esd has image is
inside Qn(C).

This is true, indeed (S•(C))
esd
n ≃ S2n+1(C), and any A ∈ S2n+1(C)

is represented by the diagram similar to Kn; applying χn means re-
stricting to In. This remaining part of the diagram diagram clearly
represent an object of Qn(C). By compatibility with face and degener-
acy maps, this extends to a map S•(C)esd → Q•(C).

What we want to do now is to construct a “pseudo-inverse”. First,
recall that a functor of Fun(Arr([n] ⋆ [n]op),C)) belongs to S2n+1(C)
if it maps all the square to cocartesian (and hence cartesian) squares
and the elements of the diagonal to 0. A functor of Fun(In,C) be-
longs to Qn(C) if it maps all the square of In to cartesian (and hence
cocartesian) squares. Consider the Kan extensions

Fun(In,C)

Fun(In ∪∆nl ,C)

Fun(In ∪∆nl ∪∆nr ,C)

Fun(Hn,C)

Fun(Arr([n] ⋆ [n]op),C)

Left Kan Ext.

Right Kan Ext.

Right Kan Ext.

Left Kan Ext.

where we use ∪ to denote the full sub-∞ category of Arr([n] ⋆ [n]op)
spanned by the union of objects.

All of the Kan extensions are along fully faithful embeddings of
subcategories. Therefore, by 4.30 all these Kan extensions are fully
faithful, thus

Fun(In,C)→ Fun(Arr([n] ⋆ [n]op),C)
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is fully faithful.
We know want to show that the essential image ofQn(C) ⊂ Fun(In,C)

through the Kan extension is S2n+1(C). To do so we use the limit and
colimit formulas for, respectively, right and left Kan extensions.

• For any (il ⩽ il) ∈ ∆ln the colimit to compute is on an empty
diagram, therefore it is the zero object.

• For any (ir ⩽ ir) ∈ ∆rn the limit to compute is on an empty
diagram, therefore it is the zero object.

We have proved it extends as 0 on the diagonal.

• For any (il ⩽ jl) ∈ Jn, the pullback of the span

0 ≃ (jl, jl)→ (jl ⩽ nr)← (il ⩽ nr)

already satisfies the universal property of the limit we have
to compute. Recalling that C is stable, all the squares we have
completed are cocartesian.

• In a similar fashion, all the rest of the extensions are pushouts.

For the last part, by lemma 4.36

|core S(C)| ≃ |(core S(C))esd| ≃ |core (S(C)esd)| ≃ |core Q(C)|.

Moreover, for any X simplicial anima

|asscat X| ≃ |X|.

Indeed, both sides are colimit preserving functors so for theorem 4.13

we can just verify they are equivalent on standard simplices

|asscat ∆n| ≃ |asscat Nr([n])| ≃ |[n]| ≃ ∗

and

|∆n| ≃ ∗

for any n ∈ N. It follows

|core Q(C)| ≃ |asscat core Q(C) ≃ |Span(C)|,

and so

k(C) := Ω|core S(C)| ≃ Ω|Span(C)|.
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4.4 a small parenthesis on spans .

4.38 Definition

For any additive functor F : Catst∞ → An, we define

SpanF(C) := asscat(F(Q(C))) ∈ Cat∞ .

As an example,

Spancore (C) ≃ Span(C).

4.39 Lemma

Consider a stable ∞-category C. For any 0 ⩽ i ⩽ n, the pushout
square in ∆

[0] [n− i]

[i] [n]

⌟

0

i incl. + i

incl. .

induces a split Verdier square

Qn(C) Qi(C)

Qn−i(C) Q0(C) ≃ C

⌟

.

Proof. The square is a cartesian square, because by the Segal condition
we get

Q1(C)×Q0(C) · · · ×Q0(C)Q1(C)︸ ︷︷ ︸
n

Q1(C)×Q0(C) · · · ×Q0(C)Q1(C)︸ ︷︷ ︸
n−i

Q1(C)×Q0(C) · · · ×Q0(C)Q1(C)︸ ︷︷ ︸
i

C

Proj. on first i.

Proj. on last n− i Proj. on last

Proj. on first
,

which is clearly cartesian. Let us prove it is split Verdier. Any inclusion
of an interval ι : [m] ↪→ [n], induces a fully faithful functor Jm → Jn.
Since all the Ji are finite, and C has finite limits and colimits, then

ι∗ : Fun(Jn,C)→ Fun(Jm,C)
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has both adjoints, given by the left and right Kan extension, which by
lemma 4.30 are given by fully faithful functors. Thus QnC→ QmC is
a split Verdier projection.

4.40 Remark

We already proved that for any stable ∞-category C, the simplicial∞-category Q(C) is a complete Segal ∞-category. Now, we also
have that

Qn(C) Qi(C)

Qn−i(C) Q0(C) ≃ C

⌟

.

is a split Verdier square.
We have already seen core Q(C) is a complete Segal anima. In

fact, for any additive functor F : Catst∞ → An,

F(Q(C))

is a Segal anima, which is complete if F preserves pullbacks. To
prove this, notice that the square

Qn(C) Q1(C)

Qn−1(C) Q0(C) ≃ C

⌟

is split Verdier; from this it follows that

F(Qn(C)) ≃ F(Q1)×F(Q0(C)) F(Qn−1(C)).

Iterating we obtain

F(Qn(C)) ≃ F(Q1)×F(Q0(C)) · · · ×F(Q0(C)) F(Q1).

For the completeness, recall that Q(C) is a complete Segal ∞-
category, so the following is by definition a cartesian square in
Catst∞
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Q0(C) Q0(C)×Q0(C)

Q3(C) Q1(C)×Q1(C)

⌟

∆

(s, s)

(d{0,2} ,d{1,3}) .

If F preserves pullback, then is cartesian, and F(Q(C)) is a complete
Segal anima.
It is also worth noting that that

|SpanFC| ≃ |asscat FQC| ≃ |FQC|.

4.41 Proposition

SpanF(C) is connected for every stable ∞-category C and any addi-
tive functor F : Catst∞ → An.

Proof. Notice that

|SpanFC| ≃
≃ |asscat F(Q(C))|

≃ |F(Q(C))|

≃ |(F(S(C))esd)|

≃ |(F(S(C)))esd|

≃ |F(S(C))|.

We have a surjective map

π0F(S0(C))→ π0|F(S(C))|;

in fact, more generally, for any simplicial anima X the map

π0X0 → π0X

is surjective. Since S0(C) ≃ ∗, it follows immediately that

π0|F(S(C))| = 0,

so |SpanF(C)| is connected.



5
R E S U LT O N T H E K - T H E O RY O F S TA B L E I N F I N I T Y
C AT E G O R I E S

This central chapter of the thesis is dedicated to establishing various
properties of K-theory. We begin by proving the additivity and uni-
versality theorems for K-theory, which immediately implies that the
K-theory anima functor descends to a (connective) spectrum-valued
functor. Once this is established, we prove similar but more general
properties for grouplike additive functors. (Although we do not pro-
vide additional examples, it is worth noting that there are many other
significant additive and Verdier localising functors, such as topolog-
ical Hochschild homology, topological cyclic homology, and others.
Moreover, similar investigations are conducted in Hermitian K-theory,
which presents a vast array of opportunities for exploration.) Next,
we present another construction of the K-theory spectrum, this time
through iterated S- and Q-constructions. We also discuss the localisa-
tion and cofinality properties, both in the context of K-theory and more
generally. Additionally, we introduce the relative Q-construction and
provide a particular statement of the Waldhausen fibration theorem.

All the proofs for these properties are already available in [HLS22],
[Heba], and similar proofs to those found in sections 5.4 and 5.5
can be found in [Cal+21b] concerning Hermitian K. As always, we
have endeavored to expand and provide comprehensive coverage of
various aspects, while making no claims of originality for the presented
content.

5.1 additivity.

5.1.1 Additivity and Proof.

This short proof of the additivity theorem comes from in [HLS22].

Theorem A (Additivity Theorem)

For every stable ∞-category C, the source-target projection

(s, t) : |Span(Arr(C))|→ |Span(C)|2

induces an equivalence of animae.

We break the proof of the theorem in two propositions.

107
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5.1 Proposition
Consider a stable ∞-category C. There are canonical equivalences

Span(C) ≃ Span(Cop), and Span(Arr(C)) ≃ Span(TwArr(C)op).

These equivalences fit into a commutative diagram

Span(Arr(C)) Span(TwArr(C)op)

Span(C)× Span(C) Span(C)× Span(Cop)

≃

(s, t) (s, t)

≃
.

Proof. (First equivalence).
Let us call α the functor

Span(C) −→ Span(Cop)

that we want to prove is an equivalence. α is given

• On objects by the identity.

• On a morphisms by

x

s

y x

s

y

x⊕s y

x

x⊕s y

y

.

To define α on higher cells we do the following.
We define with Q̂n(C) as the full sub-∞-category of Fun([n]× [n]op,C)
spanned by those diagrams A such that each square

Ai,j

Ai,j+1 Ai+1,j+1

Ai+1,j

⌟

⌜

is bicartesian, for any 0 ⩽ i, j ⩽ n. A functor A ∈ Q̂n(C) can be
portrayed as a diagram
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A0,0 A0,1 . . . A0,n

A1,0 A1,1 . . . A1,n

...

...

. . .
...

An,0 An,1 . . . An,n

⌟

⌟

in which all squares are bicartesian. Notice that the restriction of
[n]× [n]op to the (i, j) such that i ⩽ j we obtain TwArr[n]op. The
canonical functor

(s, t) : TwArr[n]op → [n]× [n]op

induces a functor

Fun([n] ⋆ [n]op,C)→ Fun(TwArr([n])op,C)

that restricts to a functor

Q̂n(C)→ Qn(C).

We want to show this map is an equivalence of ∞-categories. We can
do this in two ways.

• Let us call Jn the full sub-∞-category of [n]× [n]op (equivalently
of Arr([n])) spanned by (i ⩽ j) such that j ⩽ i+ 1. We already
showed that a functor A : TwArr([n])op → C belongs to Qn(C)
if and only if it is a right Kan extension of A|Jn along the fully
faithful embedding Jn ↪→ TwArr([n])op. We have also proved
Fun(Jn,C) ≃ Qn(C).
On the other hand B : [n]× [n]op → C belongs to Q̂n(C) if and
only if it is left Kan extension of B|Jn along Jn ↪→ TwArr([n])op

followed by a left Kan extension of LanJn↪→TwArr([n])opB|Jn along
TwArr([n])op ↪→ [n]× [n]op. Therefore, also Q̂n(C) is equivalent
to Fun(Jn,C).

• Call In the full sub-∞-category of [n]× [n]op spanned by (0, i)
and (i,n) for any 0 ⩽ i ⩽ n. Then A : TwArr([n])op → C belongs
to Qn(A) if and only if it is a left Kan extension of A|In along
In ↪→ TwArr([n])op, and B : [n]× [n]op → C belongs to Q̂nC if
and only if it is left Kan extension of B|In along In ↪→ [n]× [n]op.
Similarly at above,

Q̂n(C) ≃ Fun(In,C) ≃ Qn(C).
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These two last equivalences precisely compose to the morphism

Q̂n(C)→ Qn(C),

showing it is an equivalence. Moreover, this is natural in n. Let us
provide examples for this, the general case is totally analogous.
Let us describe d42. In the following diagram the top-right part is
TwArr([n])op and the red lines is what d42 forgets:

A0,0 A0,1 A0,2 A0,3 A0,4

A1,0 A1,1 A1,2 A1,3 A1,4

A2,0 A2,1 A2,2 A2,3 A2,4

A3,0 A3,1 A3,2 A3,3 A3,4

A4,0 A4,1 A4,2 A4,3 A4,4 .

An example of degeneracy map s42 is
A0,0 A0,1 A0,2 A0,2 A0,3 A0,4

A1,0 A1,1 A1,2 A1,2 A1,3 A1,4

A2,0 A2,1 A2,2 A2,2 A2,3 A2,4

A2,0 A2,1 A2,2 A2,2 A2,3 A2,4

A3,0 A3,1 A3,2 A3,2 A3,3 A3,4

A4,0 A4,1 A4,2 A4,2 A4,3 A4,4 .

We also have equivalences
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Fun([n]× [n]op,C)

Fun(([n]× [n]op)op,Cop)op

Fun(([n]× [n]op),Cop)op

•op

switch

where the second equivalence is induced by the equivalence

switch : [n]× [n]op → [n]op × [n], (i, j) 7→ (j, i).

This restrict to an equivalence (natural in n)

Q̂n(C) ≃ Q̂n(Cop)op;

hence we have

Qn(C) ≃ Q̂n(C) ≃ Q̂n(Cop)op ≃ Qn(Cop)op ⇒
⇒ core Qn(C) ≃ core (Qn(Cop)op) ≃ core Qn(Cop).

Both these equivalences are clearly natural in n. Therefore, we have
the equivalence α on all the higher cells:

core Q•(C) ≃ core Q•(Cop)⇒
⇒ asscat core Q•(C) ≃ asscat core Q•(Cop)

⇒ Span(C) ≃ Span(Cop).

(Second equivalence).
Let us call β the functor

Span(Arr(C))→ Span(TwArr(C))

that we want to prove is an equivalence. β is given by

• On the objects by the identity.

• On morphisms by

x

y

s

t

x ′

y ′

x

y

s

y⊕t y ′

x ′

y ′

To define β on higher cells we do the following. Consider the map χn
defined as
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HomCat∞([n]× [n]op × [1],C)

HomCat∞(TwArr([n]× [n]op × [1]), TwArr(C)op)

HomCat∞(TwArr[n]op, TwArr(C)op)

TwArr(•)op

(iop)∗

where the map (iop)∗ is induced by the map

i : TwArr([n]) ↪→ TwArr([n]× [n]op × [1])

(i ⩽ j) 7→ (i ⩽ j, j ⩽ i, 0 ⩽ 1) ≡ (i, j, 0)→ (j, i, 1),

which sends a morphism (i ⩽ j)→ (a ⩽ b), i.e. a square

i a

j b ,

into

(i, j, 0) (a,b, 0)

(j, i, 1) (b,a, 1) ,

We have inclusions

Q̂n(Arr(C)) ⊂ Fun([n]× [n]op, Arr(C))

≃ Fun([n]× [n]op, Fun([1],C))

≃ Fun([n]× [n]op × [1],C)

and

Qn(TwArr(C)) ⊂ Fun(TwArr[n]op, TwArr(C)).

χn restricts to a map

Q̂n(Arr(C))→ Qn(TwArr(C)op).

In a similar fashion as how we proved the naturality in the first
equivalence α, these functors χn are natural in n; hence they build up
a map of simplicial anima

χ : Q̂•(Arr(C))→ Q•(TwArr(C)).
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By applying asscat core we obtain our searched map β

Span(Arr(C)) ≃
≃ asscat core Q•(Arr(C)) ≃
≃ asscat core Q̂•(Arr(C))→
→ asscat (core Q•(TwArr(C)op)) ≃
≃ Span(TwArr(C)op)

β is an equivalence, in fact, χ is an equivalence. We can check this
levelwise, but then, because of the Segal condition, we can just verify
the cases n = 0 and n = 1. But we already saw that on the β is an
equivalence.

Finally, the diagram commute because of how we have defined these
equivalences α and β.

5.2 Proposition

Consider an ∞-category C with finite limits, finite colimits, and a
zero object. Then

Span(s, t) : Span(TwArr(C)op)→ Span(C× Cop)

is cofinal.

Before proving this, we need to discuss a useful lemma.

5.3 Lemma

Consider two ∞-categories with finite limits C and D, a left exact
right fibration f : C → D between them, and a object x ∈ D. Then
the functor given on objects by

(f/x)op → x/Span(f), (w, f(w)
ϕ→ x) 7→ (w, x

ϕ← f(w)
id→ f(w))

has a right adjoint given by

(w, x
χ← y

ψ→ f(w)) 7→ (ŷ, f(ŷ) ≃ y χ→ x)

where ŷ→ w is a lift of y
ψ→ f(w).

Proof of the Lemma. First of all, notice that the lift ŷ→ w of y
ψ→ f(w)

exists and it is well-defined because f is a right fibration.
Call A the morphism (f/x)op → x/Span(f), and B its supposed right
adjoint. What we want to prove is that

Mapx/Span(f)(A(w, f(w)
ϕ→ x), (v, x

χ← y
ψ→ f(v))) ≃(

≃Mapx/Span(f)((w, x
ϕ← f(w)

id→ f(w)), (v, x
χ← y

ψ→ f(v)))

)
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is equivalent to

Map(f/x)op((w, f(w)
ϕ→ x), B(v, x χ← y

ψ→ f(v))) ≃(
≃Map(f/x)op((w, f(w)

ϕ→ x), (ŷ, f(ŷ ≃ y χ→ x)))

≃Map(f/x)((ŷ, f(ŷ ≃ y χ→ x)), (w, f(w)
ϕ→ x))

)

naturally in (w, f(w)
ϕ→ x).

The first mapping anima Mapx/Span(f)(. . . ) fits into a cartesian
square (⋆)

Mapx/Span(f)(A(w, f(w)
ϕ→ x), (v, x

χ← y
ψ→ f(v)))

∗

MapSpan(C)(w, v)

MapSpan(D)(fw, fv)

MapSpan(D)(x, fv)

⌟
Span(f)

(x
ϕ← f(w)

id→ f(w))∗

(x
ϕ← f(w)

id→ f(w))∗ ◦Span(f)

(x
χ← y ψ→ f(v))

By definition

MapSpan(C)(w, v) ≃

≃ core (Fun(TwArr([1])op,C)×Cop×C {w, v})

≃ core Fun(TwArr([1])op,C)×core (Cop×C) {w, v}

≃ core (C/w)×core C core (C/v).

Similarly,

MapSpan(D)(x, f(v)) ≃ core (D/x)×core D core (D/f(v)).

So from (⋆) we obtain a pullback square

Mapx/Span(f)(A(w, f(w)
ϕ→ x), (v, x

χ← y
ψ→ f(v))) core (C/w)×core C core (C/v)

∗ core (D/x)×core D core (D/f(v))

⌟

(χ,ψ)
,

where the right vertical is now given by

C/w
f−→ D/f(w)

ϕ∗−→ D/x and C/v
f−→ D/f(v).

Now we can rearrange the order of the pullbacks, and since the fibre
of the right hand map is contractible, because f is a right fibration, we
re-write (⋆) as



5.1 additivity. 115

Mapx/Span(f)(A(w, f(w)
ϕ→ x), (v, x

χ← y
ψ→ f(v))) core (C/w)×core D/x {ψ}

∗ core C×core D {y}

⌟

ŷ

where ŷ → v is the lift of ψ in C. Switching again the order of the
pullbacks we obtain a pullback square

Mapx/Span(f)(A(w, f(w)
ϕ→ x), (v, x

χ← y
ψ→ f(v))) MapC(ŷ,w)

∗

MapD(y, f(w))

MapD(y, x)

⌟

f

ϕ∗

χ

.

But now, this pullback describe

Mapf/x((ŷ, f(ŷ) ≃ y χ→ x), (w, f(w)
ϕ→ x))

and the whole procedure is natural in (w,ϕ : f(w)→ x).

Proof of the Proposition. One of the many equivalent condition for the
functor Span(s, t) to be cofinal is to ask that, for any (c,d) ∈ Span(C×
Cop),

|(c,d)/Span(s, t)|

is connected. We are going to prove more, namely that

|(c,d)/Span(s, t)| ≃ ∗, for any (c,d) ∈ C× Cop.

We want to use the lemma we have just proved with

x = (c,d) and f = (s, t);

the fact that f = (s, t) : TwArr(C)op → C× Cop is a right fibration is
proved in [Ker, Proposition 8.1.1.11]. Therefore we obtain an adjunc-
tion

((s, t)/(c,d))op (c,d)/Span(s, t)⊣

and so we have an equivalence of animae

|(c,d)/Span(s, t)| ≃ |(s, t)/(c,d)|.

We want to prove |(s, t)/(c,d)| ≃ ∗. This is true because (s, t)/(c,d) has
an initial object; specifically, the identity arrow id0 serves as the initial
object, and since the pair (s, t) preserves it, the slices of (s, t)/(c,d)
inherit the initial object as well.
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5.1.2 Consequences.

5.4 Corollary (Additivity Theorem for K-theory, Version 1)

Consider a stable ∞-category C. The functor

(s, t) : Arr(C)→ C2

induces an equivalence

k(Arr(C))→ k(C2) ≃ k(C)2.

Proof. We already showed in the subsection 5.2.2 that k preserve finite
products. In theorem A, we proved |SpanArrC| ≃ |SpanC|2. By taking
loops in both side, and using the fact that Ω preserves product, we
obtain

k(s, t) : k(Arr(C)) ≃−→ k(C)2 ≃ k(C2).

5.5 Corollary

The K-theory anima functor k : Catst∞ → An is additive and group-
like.

Proof. Our goal is to prove k is extension splitting; indeed we know
from proposition 3.76 that is its equivalent for a reduced functor to be
extension splitting or grouplike additive, and it should be clear that

k(0) ≃ Ω|core S•(0)| ≃ 0,

so k is reduced.
We already showed in the subsection 5.2.2 that k preserve finite

products; by lemma 3.79, proving that, for any stable ∞-category C,

(s, t) : Arr(C)→ C2

is mapped to an equivalence, is enough to prove that k is extension
splitting. We conclude by 5.4.

5.6 Corollary (Additivity Theorem for K-theory, Version 2)

Consider a stable ∞-category C. The functor

χ : Arr(C)→ C2, (α : x→ y) 7→ (x, cofib(α))

induces an equivalence

k(Arr(C))→ k(C2) ≃ k(C)2.
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5.7 Corollary

Consider stable ∞-categories C and D, and a cofibre sequence

F ′
α→ F

β→ F ′′

of exact functors C→ D. Then

k F = k F ′ + k F ′′.

Proof. Consider the functors

m, fib+ cofib : Seq(Funex(C,D))→ Funex(C,D)

and notice that Funex(C,D) is a stable ∞-category. k is extension
splitting, so by lemma 3.77 we have

k(m) ≃ k(fib) + k(cofib).

We apply this to the sequence F ′ α→ F
β→ F ′′ and we are done.

5.8 Corollary

Consider a stable ∞-category C. Then the suspension functor

ΣC : C→ C

induces the map k(C)→ k(C) given by multiplication by −1.

Proof. Apply lemma 3.77 to the sequence the Verdier functors C→ C

id→ 0→ Σ.

Then we get

k(id)⊕ k(Σ) ≃ k(0) ≃ 0.
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5.2 k-theory spectra .

In our investigation of the K-theory of a stable ∞-category, we now
proceed to establish the definition of a K-theory spectrum. There are
multiple equivalent ways to achieve this. We will address two of these
techniques now and postpone two for later.
Throughout all the section C and D will denote stable ∞-categories.
Before starting, let us recall that a spectrum is connective if its ho-
motopy groups in all negative degrees are trivial and that there is an
equivalence between grouplike E∞-anima and connective spectra.

5.2.1 Through Additive Theorem.

Our first construction of the K-theory spectrum is immediate. The
corollary 5.5 of the additivity theorem A tell us that k is in fact grouplike.
Therefore, it descends a functor

k : Catst∞ → CGrp(An)

and since CGrp(An) ≃ Spectra⩾0 we obtain the algebraic K-theory
spectrum functor

K : Catst∞ → Spectra⩾0 ⊂ Spectra .

5.9 Remark

Considering the (Σ∞ ⊣ Ω∞) : Spectra⩾0 ⇆ CGrp(An)-adjunction
and recalling that Σ∞ is fully faithful, we can recover the K-theory
anima as

k(C) ≃ Ω∞ K(C).

5.2.2 Through Monoidal Structure.

Our second description concern with explicitly constructing the “carte-
sian commutative group structure” on k(C). While this construction
may seem less formal, it is for sure more explicit.
We want to prove k(•) preserves finite products. The morphisms

C← C×D→ D

induce a natural morphism

k(C×D)→ k(C)× k(D),

which turns out to be an equivalence. This is true because

k(C×D) ≃ Ω|core S•(C×D)|,
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and we know Ω, |•|, and core preserve finite products, indeed Ω is
given by a finite limit, |•| is a sifted colimit, and core is a right adjoint
functor. Therefore if we prove S• preserve products we are done. This
immediately follows from the equivalence

Fun(Arr([•]),C×D) ≃ Fun(Arr([•]),C)× Fun(Arr([•]),D)

that clearly restricts to an equivalence

S•(C×D) ≃ S•(C)× S•(D).

Therefore k is a product preserving functor Catst∞ → An, and so it
naturally descends to a functor

k : Catst∞ → CMon(An),

since Catst∞ is additive. Hence, for any C stable ∞-category, k(C) has a
symmetric cartesian monoidal structure.

If we want to express this symmetric cartesian monoidal structure
more esplicitely, we can do ass follow. Since C is stable, it is additive
(i.e. finite products and coproducts are equivalent and the shear map
is an equivalence). The coproduct ⊕C : C× C → C preserves finite
colimits, therefore it induces a multiplication

m : k(C)× k(C) ≃ k(C× C)
k(⊕)−→ k(C).

The coproduct on C is coherently commutative and associative, there-
fore, the multiplication m is also coherently commutative and associa-
tive. This is exactly the symmetric cartesian monoid structure on k(C)
we wanted to express.

The structure on k(C) endow the set π0 k(C) =: K0(C) with a com-
mutative monoid structure, which coincides with the abelian group
structure that we gave it in 2.1. Consequently, k(C) is a grouplike
E∞-anima, and so a connective spectrum.
Thanks to this equivalence, since exact functors preserve coproducts,
we obtain the algebraic K-theory spectrum functor

K : Catst∞ → Spectra⩾0 ⊂ Spectra .

These first two methods produce equivalent K-theory spectrum
functors, since they both concern with the canonical commutative
cartesian group structure on k(C).
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5.3 universality.

To start this section, we want to show there exists a canonical natural
transformation

τ : core ⇒ k .

For any C stable ∞-category, this map comes from

core (C) ≃MapSpan(C)(0, 0)→Map|Span(C)|(0, 0) ≃ Ω|Span(C)|.

The right equivalence should be clear. For the left equivalence, Span(C)
is an ∞-category, so by definition

MapSpan(C)(0, 0) Arr(Span(C))

∗ Span(C)× Span(C)

⌟
(ev0, ev1)

(0, 0) .

It is also true that for every (not necessarily complete) Segal anima X,
for any x,y objects of X0 there is a pullback diagram (in An)

Mapasscat X(x,y) X1

∗ X0 ×X0

⌟
(d11,d10)

(x,y) .

(For clearness, recall that the object of asscat X are precisely the objects
of X0, hence the object of Span(C) are the object of C). Applying this
to X ≃ core Q(C) we obtain

MapSpan(C)(0, 0) core Q1(C)

∗ C× C

⌟

(d11,d10)

(0, 0) ,

and this square clearly shows core (C) as the pullback.
The morphism is clearly natural in C; therefore, we obtain a natural
transformation

core ⇒ k ∈ Fun(Catst∞, An),

which descends to a natural transformation

core ⇒ k ∈ Fun(Catst∞,CMon(An)) ≃ CMon(Fun(Catst∞, An)).

Indeed,
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• core preserves all limits;

• k preserve finite products.

5.10 Remark

We know (for example from [Lur17] and [GGN13]) that there exists
a left adjoint to the forgetful functor

CGrp(An) ↪→ CMon(An),

which we call

(•)∞−grp : CMon(An)→ CGrp(An).

By composing with this left adjoint, we can lift any additive functor
F : Catst∞ → An (or in general any functor which preserves finite
products) to a functor

F∞−grp : Catst∞ → CGrp(An).

The question now is whether or not this is still an additive functor.
The answer is yes, and we are going to show this in the section 5.4.
Let us direct our attention, for a moment, to the core functor case,
which is far less complicated than the general one.

The goal for this section is to prove the following theorem.

Theorem B (Universality Theorem - Blumberg, Gepner, Tabuada)

The functor k : Catst∞ → An is the initial grouplike additive functor
under core : Catst∞ → An.

Let us explain what this means. Consider the ∞-category

core/Fun(Catst∞, An),

which is the ∞-category of functors Catst∞ → An with natural trans-
formation from the core functor.
We define

(core / Fun(Catst∞, An))grp,add

as the full sub-∞-category of core/Fun(Catst∞, An) spanned by group-
like additive functor.
The theorem shows that the natural map τ : core ⇒ k : Catst∞ → An is
an initial object for this ∞-category, which means

|Mapcore (k, F)| ≃ ∗

for any grouplike additive functor F : Catst∞ → An, or equivalently that

τ∗ : Nat(k, F) ≃→ Nat(core , F)
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is an equivalence.
There are many versions of this theorem, first established in [BGT13];

a version for higher Waldhausen category is presented by [Bar16], and
a proof for Hermitian K-theory is present in [Cal+21b, Sec. 2.7]. In all
these references, we generally find proofs of more general statements
concerning additive functor to An (preserving filtered colimits in
[BGT13]), which result in theorem 2 when specified to core . Our proof
comes from [HLS22], where is itself adapted from a proof in [Ste17].
This version of the proof is for sure easier and shorter but loose much
generality. With our restriction, it is not possible to prove that given
an additive functor F : Catst∞ → An, the functor Ω|FQ−| is again
additive and that it is a “group-completion” of F, i.e. that Ω|FQ−| is
the initial grouplike additive functors under F. The reason why this
proof does not extend is that it makes use of the fact that the core
functor is defined on TwArr(C) (which is non-stable). We will see this
the general version in section 5.5.

Proof. Our goal is to prove that, for any grouplike additive functor
F : Catst∞ → An,

τ∗ : Nat(k, F)→ Nat(core , F)

is an equivalence. The inclusion

C→ Q1(C), x 7→ (0← x→ 0)

induces a map

F(C)→ F(Q1(C))→ Ω|FQC|

natural in C. This induces a natural transformation

F• ⇒ Ω|FQ•|,

and since this is natural in F, we get a natural transformation of
grouplike additive functors Catst∞ → An

η : id⇒ G(−) := Ω|(−) ◦Q•|.

(If the existence of the mapping function η is not apparent to the
reader, they can refer to the next remark.) There is now a diagram
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Nat(G core , F) Nat(core , F)

Nat(GG core ,GF) Nat(G core ,GF)

Nat(G core ,GF) Nat(core ,GF)

(ηcore )
∗

G

(ηF)∗

G

(ηF)∗
(Gηcore )

∗

(ηG core )
∗ (ηcore )

∗

(ηcore )
∗

where

• the upper square commute because G is a functor;

• the other square, and the two triangles (left and right) commute
as a consequence of the naturality of η.

Suppose the red-coloured arrows are equivalences, then

(i) The upper-left vertical arrow “G” is an equivalence by 2-out-of-3;

(ii) The composition of the upper horizontal arrow with the upper-
right vertical arrow “G ◦ (ηcore )

∗” is an equivalence by 2-out-of-3;

(iii) Both the upper horizontal arrow “(ηcore )
∗”, the upper-right ver-

tical arrow “G”, and the lower-right vertical arrow “(ηcore )
∗” are

equivalences by 2-out-of-6;

(iv) The lower horizontal arrow “(ηcore )
∗” is an equivalence by 2-out-

of-3.

In particular, the upper arrow

Nat(k, F)→ Nat(core , F)

is an equivalence. The fact that the red-coloured arrow are equiva-
lences follows from the following two propositions.

5.11 Proposition

Consider an additive grouplike functor F : Catst∞ → An. Then

ηF : F⇒ Ω|FQ•|

is an equivalence.

This implies (ηF)∗ and (Gηcore )
∗ are equivalences.
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5.12 Proposition

The two natural transformations

ηGF,GηF : GF→ GGF

differ by an automorphism of the target.

This implies (ηG core )
∗ is an equivalence.

Before proving these propositions, let us gives a definition.

5.13 Definition

Consider a stable ∞-category C. We define the simplicial ∞-category

Null(C) : N(∆)op → Cat∞
as

fib
(
dec(Q(C))

(dec⇒ev0)Q(C)−→ constQ0(C)
)

,

where the fibre is formed over 0 ∈ Q0(C) ≃ C.

The natural transformation dec⇒ id induces a map Null(C)→ Q(C),
so we have a diagram

NullC decQC QC

∗ constQ0C

⌟ (dec⇒ id)Q(C)

(dec⇒ ev0)Q(C)

0

The right vertical map has a right adjoint, given by the composition
of 0-th degeneracy maps, as we so previously. It follows that also
Null(C) is split over 0.

5.14 Remark

Since Null(C) is split over 0, for any reduced (non-necessarily)
additive functor F : Catst∞ → An,

|F(NullC)| ≃ ∗.

Consider the cartesian square
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constC NullC

0 QC

where the upper-horizontal map is given on objects by

x 7→ (0← x→ 0).

By applying F and the geometric realization that we obtain a com-
mutative diagram

FC |FNullC| ≃ 0

0 |FQC|

Ω|FQC|
⌟

The map FC→ Ω|FQC| is exactly ηF(C) by construction.

5.15 Lemma

Null(C) is a complete Segal ∞-category.

Proof of the lemma. Let us start by proving it is a Segal ∞-category. By
passing to the levelwise cartesian square we obtain

NullnC
dec(QC)n ≃Q1+nC ≃

≃Q1C×Q0C · · · ×Q0CQ1C

0 (constQ0C)n ≃ C

⌟

(dec⇒ ev0)Q(C)

Recall that an element of Q1+nC can be represented by a diagram A

A0,0

A0,1

A1,1

A1,2

. . .

An,n+1

An+1,n+1

where the rest can be recover by taking pullbacks.
The map (dec⇒ ev0)Q(C) sends A to A0,0. Since NullnC is the fibre
over 0, we get that NullnC consists of the full sub-∞-category of
Q1+nC spanned by diagrams with A0,0 ≃ 0. In particular,
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• A ∈ Null0(C) corresponds to

0← A0,1 → A1,1

which is equivalently an object of Arr(C). In fact, we actually
have Null0C ≃ Arr(C).

• A ∈ Null1(C) corresponds to

0

A0,1

A1,1

A1,2

A2,2 ;

furthermore, d0 maps this to A1,2 → A2,2 and d1 maps it to
A0,1 → A1,1.

Now it should be clear that

Nulln(C) ≃ Null1(C)×Null0(C)Null1(C)×Null0(C) · · ·×Null0(C)Null1(C).

To prove it is a complete Segal object in Catst∞, we should prove

Null0(C) Null0(C)×Null0(C)

Null3(C) Null1(C)×Null1(C)

⌟

∆

(s, s)

(d{0,2} ,d{1,3})

is Cartesian. The description of d{0,2} and d{1,3} makes this clear. An
object of Null3(C) correspond to a diagram of the form

0

A0,1

A1,1

A1,2

A2,2

A2,3

A3,3

A3,4

A4,4 .

d{0,2} maps it to

0

A1,2

A2,2

A2,4

A4,4 .

d{1,3} maps it to

0

A0,1

A1,1

A1,3

A3,3 .

In case this does not convince the reader, the condition of completeness
involving the free living isomorphism category Nr(0 ≃−→ 1) should be
self-evident.
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The following remarks are not strictly necessary for the proof of
universality, but they fits very well with our discussion and it helps
us make the statements more clear. Proofs for the various statements
can be found in [Cal+21b, Lemma 2.4.7].

5.16 Remark

It is possible to define a décalage functor for ∞-categories, by
setting

dec(C) ≃ core (C)×C Arr(C)

for any ∞-category C.
There is a canonical equivalences

Nr(dec(C)) ≃ decNr(C),

natural in the C. Moreover, this equivalence makes the Rezk nerve
of the functors

dec(C)→ core (C) and dec(C)→ C

correspond to the canonical functors

Nr1+n(C)→ Nr0(C) and Nr1+n(C)→ Nrn(C).

Moreover, for any ∞-category C and x ∈ C, there is an equivalence

Nr(x/C) ≃ fibx(dec(Nr(C))→ Nr0(C)),

natural in C and x. On the other hand, for any Segal anima X and
x ∈ X0, then

x/ asscat(X) ≃ asscat (fibx(dec(X)→ constX0)),

in such a way that they fit into a commutative diagram

x/ asscat(X) asscat (fibx(dec(X)→ constX0))

asscat(X)

≃

t d0

.

5.17 Remark

Before starting with the proof, we would like to show that

asscat F(Null(C)) ≃ 0/SpanF(C).
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We have

F(Null(C)) ≃ fib0(dec(FQ(C)))→ const(F(C))).

Indeed, we know

Null(C) decQ(C)

0 constC

⌟

is a split Verdier square, so F being additive maps it to the cartesian
square

F(Null(C)) F(decQ(C)) ≃ decF(Q(C))

F(0) ≃ ∗ F(constC) ≃ constF(C)

⌟

The two equivalences on the right hand side come from the fact that
the equivalences are clear level-wise.

Then, applying 5.16,

asscat F(Null(C)) ≃
≃ asscat F(fib0(decQ(C)→ constQ0(C)))

≃ asscat (fib0(decFQ(C)→ constFQ0(C)))

≃ 0/asscatFQC

≃ 0/SpanF(C).

Now that we have some more notation, let us give a better version
of the statement of 5.11 in the following theorem.

5.18 Theorem

Consider a stable ∞-category C and a grouplike additive functor
F : Catst∞ → An. Consider also the cartesian square in Cat∞

MapSpanF(C)(0, 0) ≃ ΩSpanF(C) 0/SpanF(C)

∗ SpanF(C)

⌟

t

0

.

By applying the realization functor |•|Cat∞ → An, we get a carte-
sian square
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F(C) ∗

∗ |SpanF(C)|

⌟

.

In particular

F(C) ≃ Ω|SpanF(C)|.

Proof of the theorem 5.18. We would like to prove that the following is
a cartesian diagram

constF(C) F(Null(C))

const∗ F(Q(C))

⌟
F(d0)

0

with right vertical map equifibred. If we prove this, we can then apply
the Segal-Rezk equifibrancy lemma 3.90 and conclude.

Consider the fibre over 0 of Nulln(C)
d0−→ Qn(C). It consists of

diagrams of the form (or better, the completion after taking pullbacks)

0

x

0

0

. . .

0

0 ,

and hence it is equivalent to C. Moreover, Null(C) d0−→ Q(C) is a split
Verdier projection, with fully faithful left and right given by left and
right Kan extensions. Therefore F maps this split Verdier sequence
into a fibre sequence. This builds up into our cartesian square of Segal
animae

F(constC) F(Null(C))

∗ F(Q(C))

⌟

0

Now, we want to show F(d0) is equifibred, i.e that, for any arrow
[n]→ [m] ∈ ∆, the following square is cartesian

F(Nullm(C)) F(Nulln(C))

F(Qm(C)) F(Qn(C))

⌟
F(dm0 ) F(dn0 )

.
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The Segal condition and the fact that there is a split Verdier square
such that QnC ≃ Qn−1C×CQ1C reduce this to show that

F(Null2(C)) F(Null1(C))

F(Q2(C)) F(Q1(C))

⌟
di

for i = 0, 1, 2. For i = 1 and i = 2, the square without F is split Verdier,
therefore the square with F is cartesian. For i = 0, the square the
square without F is given as follows, in C

a

b c

d e f

0 g h i

⌟

⌟ ⌟
c

e f

g h i

⌟

a

b f

0 h i

⌟
f

h i

.

The fibre over 0 of the left map is given by

0

0 y

x y 0

0 x⊕ y 0 0

⌟

⌟ ⌟

,

which is equivalent to C2.
The fibre over 0 of the right map is given by

x

x z

0 0 0

⌟

,
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which is equivalent to Arr(C). The induced map between the fibres is
a right inverse to the equivalence in animae

(s, cof) : F(Arr(C))→ F(C)2.

Now we recall remark 3.88 and finish.

Proof of proposition 5.12. We want to show that ηGF and GηF differ
by an automorphism on GGF. Let us decompose the definition of
ηGF,GηF : GF→ GGF. (The different colors should help us)

ηGF : GF(−) = Ω|FQ−|→ Ω|(Ω|FQ−|)(Q−)| =

= Ω|Ω|FQQ−|| = Ω|Ω|FQ
(2)
•,• ||.

Also,

GηF : Ω|FQ−|→ Ω|Ω|FQQ−||=

= Ω|Ω|FQ
(2)
•,•−||

Therefore, this two maps are induces by maps into different Ω and Q.
Using the limits-colimits interchange map, to take out the internal Ω,
we obtain

Ω|FQ−|
ηGF⇒ Ω|Ω|FQ

(2)
•,• ||

⋆⇒ ΩΩ|FQ
(2)
•,•−|

and

Ω|FQ−|
GηF⇒ Ω|Ω|FQ

(2)
•,•−||

⋆⇒ ΩΩ|FQ
(2)
•,•−|.

The target of these two morphism are equivalent through the natural
transformation given by flipping both Ω and Q. The morphism ⋆ is
not always an equivalence, indeed the geometric realization is not
always compatible with pullbacks. However, we claim it is, and this
will finish the proof.

Consider, for [k] ∈ ∆, we have an obvious fibre sequence

Ω|FQQkC|→ 0→ |FQQkC|.

This sequence is also a cofibre sequence of E∞-groups, or equivalently
π0|FQQkC| = 0. This is true, indeed, more generally for any stable∞-category D,

π0|FQD| ≃ 0.

To prove this aim notice that there is a surjective map

0 ≃ π0|FS0D|→ π0|FSD| ≃ π0|FSesdD| ≃ π0|FQD|.

Another equivalent method to prove this (the one used in [HLS22])
is to notice that

Q0D ≃ D→ Q1D, x 7→ (0← 0→ x)
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composed with d0 gives the identity, and composed with d1 gives
the null-morphism. This immediately implies π0|FQD| ≃ 0 as a conse-
quence of F being reduced.

Then it follows that we have a bifibre sequence of E∞-groups (for
the usual reasoning on spectra)

|Ω|FQ(2)C||→ 0→ |FQ(2)C|,

so in particular a fibre sequence of the underlying anima. We obtain

|Ω|FQ(2)C|| ≃ Ω|FQ(2)C|

and by looping again, the equivalence

Ω|Ω|FQ(2)C|| ≃ ΩΩ|FQ(2)C|

that we were searching.

5.19 Remark

Our methodology presents a more direct demonstration of the addi-
tivity theorem and the universal property of algebraic Ktheory. This
is achieved without having to refer to non-commutative motives,
which is instead what is done in [BGT13].
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5.4 additivity, once more .

In section 5.1, we have showed that

k ≃ Ω|Span(•)| ≃ Ω|core Q•|

is an additive functor Catst∞ → An. This works fine, but, as we have
already claimed, more is true. For any additive functor F : Catst∞ → An,
it is true that

Ω|FQ•|

is additive.
Before proving the theorem, we need to discuss some things.

5.4.1 Waldhausen Additivity Theorem.

We can finally discuss the theorem.

Theorem C (Waldhausen Additivity for additive functors)

Consider an additive functor F : Catst∞ → An. Then

|SpanF(•)| ≃ |FQ•| : Catst∞ → An

is additive too.

The proof is divided in seven steps.

STEP 1. If p : C → D is a split Verdier projection, then p is a bicartesian
fibration.
Recall that bicartesian fibration means both cartesian and cocartesian
fibration. To prove this we need the following lemma.

5.20 Lemma

Consider an adjunction of ∞-categories

B A

⊣

g

f

with counit ϵ : gf⇒ idA. Then

(i) An arrow ϕ : x → y ∈ A is f-cocartesian if and only if the
square
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gf(x) gf(y)

x y
⌜

gf(ϕ)

ϵ ϵ

ϕ

is cocartesian in A.

(ii) Suppose A admits pushouts, f preserves pushouts, and g is
fully faithful. Then f is a cocartesian fibration.

Proof. (i) “If ” part.
We want to prove that for any ψ : x→ z and any u : p(y)→ p(z) such
that f(ϕ)u ≃ f(ψ), then there exists a essentially unique û : y → z

such that f(û) ≃ u. Therefore, we have the following

x yz
ϕ∀ψ

f(x) f(y)f(z)
f(ϕ)f(ψ)

u

.

By applying g to the diagram below we get a diagram

x yz

gf(x) gf(y)gf(z)

⌜ϕψ

gf(ϕ)gf(ψ)

g(u)

ϵ ϵψ

,

where the right square is cocartesian by assumption. By universal
property there exist an essentially unique morphism y→ z.

“Only if ” part.
If ϕ is a cocartesian morphism, then also gf(ϕ) is a cocartesian mor-
phism. If
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gf(x) gf(y)

x z

gf(ϕ)

ϵ

is another cocone under x← gf(x)→ gf(y), then we have the triangle

f(z)

f(x) ≃ fgf(x) f(y) ≃ fgf(y)
f(ϕ) ≃ fgf(ϕ)

.

Now, we have another

z

gf(x) gf(y)
gf(ϕ)

and a horn

z

x y
ϕ

.

which gives a unique filler y→ z by the fact that ϕ is cocartesian. But
now we have two fillers of

gf(x) gf(y)

x z

gf(ϕ)

ϵ

,

the original gf(y) → z and the new gf(y) → y → z. Since gf(phi) is
cocartesian, the two fillers must be equal. Since the morphism such
that all these commute in unique, we get that the original square was
a pushout by universal property.
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(ii) Fix a morphism ϕ ′ : x ′ → y ′ ∈ B and a x ∈ A such that f(x) ≃ x ′.
One of such x for surely exists, for example g(x ′); indeed, fg(x ′) ≃ x ′
because g is a fully faithful left adjoint to f.
Consider now the morphism

f(x) ≃ x ′ ϕ
′

−→ y ′;

by applying g we obtain a morphism

gf(x) ≃ g(x ′) g(ϕ)−→ g(y ′).

Forming the pushout, which exists by assumption, we obtain

gf(x) ≃ g(x ′) g(y ′)

x y
⌜

g(ϕ ′)

ϵ

,

and we call ϕ the morphism x→ y. By applying f, which preserves
pushout by assumption, we obtain

fgf(x) ≃ x ′ fg(y ′) ≃ y ′

f(x) ≃ x ′ f(y)
⌜

fg(ϕ ′) ≃ ϕ ′

f(ϵ)

f(ϕ)

where the left vertical maps is equivalent to the identity on x ′. There-
fore, y ′ → f(y) must be an equivalence and f(ϕ) ≃ ϕ ′. Therefore
ϕ : x→ y is a lift of ϕ ′. By applying (i), we get that ϕ is f-cocartesian,
so f is a cocartesian fibration (it has all lift to f-cocartesian mor-
phisms).

To prove STEP 1, we just have to apply the lemma to p and its fully
faithful left adjoint to obtain that p is cocartesian, and the dual lemma
(by considering the opposite of everything) to p and its fully faithful
right adjoint to obtain that p is cartesian. Notice that all functors are
exact between stable ∞-categories, so all condition are verified.

STEP 2. [Barwick] Consider an exact bicartesian fibration p : C → D

between stable ∞-categories. Then a morphism x← y→ z is
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(i) Span(p)-cocartesian if and only if y→ x is p-cartesian and y→ z is
p-cocartesian.

(ii) Span(p)-cartesian if and only if y→ x is p-cocartesian and y→ z is
p-cartesian.

Reference for this are [Spectral Mackey functors and equivariant
algebraic K-theory (I), Theorem 12.2] and [Two-variable fibrations,
factorization systems and infinity-categories of spans, Theorem 3.1]

But let us prove the if part of (i) anyway, since that is actually what
we need.
Fix ϕ : x → z in Span(C), i.e. a span x ← y → z in C, such that
x ← y is p-cartesian and y → z is p-cocartesian. We want to prove
for any ψ : x→ a ∈ Span(C) and any µ : z→ a ∈ Span(C) such that
p(ϕ) ◦ µ ≃ p(ψ), there exists an (essentially unique) ρ : z→ a lifting
µ.
The two morphism ϕ and ψ form a diagram in C

y

x z

b

a .

With µ, this gives a diagram in D

p(y)

p(x) p(z)

p(b)

p(a)

u

,

and the commutativity implies that actually the diagram is of this
form (notice the rearrangement we had)

p(y)

p(x) p(z)

p(b)

p(a)

u

⌟

.
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Then the original diagram is better represented as

y

x z

b

a

⋆

⌟

(a) (b)

(c) (d)

,

where we aim to fill in the missing objects denoted by the dotted
arrows. Since by assumption x ← y is p-cartesian, we can fill the
dotted arrow (a). p is a cocartesian fibration, so we can lift p(b)→ u

to a p-cocartesian edge b→ ⋆, filling (b). Now considering the map
b→ a we can fill (d), and by considering b→ y→ z we can fill (c).
Now we claim the middle square is a pullback if and only if b to⋆ is
cocartesian. Consider the central square and suppose b → ⋆ is a co-
cartesian morphism. z satisfies the universal property for the pushout.
Indeed, take y→ z ′ and ⋆→ z ′ such that the square commutes. Then
since y→ z is cocartesian, there exists a unique z→ z ′ such that the
triangle commutes. But since b→ ⋆ is cocartesian, there is a unique
filling of b → y → z ′ such that these commute, which must be the
original morphism, so also the right triangle commute. Since C is
stable, this is also a pullback.
Conversely, if the square is cartesian, and we have a morphism b→ z ′,
then by universal property of the pullback, we have (essentially unique)
morphisms y → z ′ and ⋆ → z ′. Applying p to the cartesian square,
which remains cartesian since p is exact, we get that the morphism
p(⋆) ≃ u → p(z ′) such that all the triangle formed by p(b), u, and
p(z ′) commute, is essentially unique; moreover this is equivalent to
the image of the essentially unique morphism ⋆ → z ′ we already
found. Therefore, b→ ⋆ is p-cocartesian.

STEP 3. Consider a split Verdier projection p : C→ D. Then

Span(p) : Span(C)→ Span(D)

is a bicartesian fibration.
By STEP 1, p is a bicartesian fibration. Consider a morphism x ′ → z ′ in
Span(D), i.e. a span x ′ ← y ′ → z ′ in D. Fix x ∈ D such that p(x) ≃ x ′,
which surely exists because p is essentially surjective.
We can lift the arrow x ′ ← y ′ to a p-cartesian arrow x ← y (so now
we have a fixed y), and the arrow y ′ → z ′ to a p-cocartesian arrow
y→ z. Then STEP 2 implies this is a Span(p)-cocartesian morphism,
and so Span(p) is a cocartesian fibration. Applying the dual of this,
we obtain Span(p) is a cartesian fibration.
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STEP 4. Consider a split Verdier projection p : C→ D. Then

SpanF(p) : SpanF(C) ≃ asscat FQ(C)→ SpanF(D) ≃ asscat FQ(D)

is a bicartesian fibration for any F : Catst∞ → An additive.
Let E ⊂ Q1(C) ≃ Fun(J1,C) denote the full sub-∞-category of Q1(C)
spanned by Span(p)-cocartesian morphisms of Span(C), i.e. those
with left arrow p-cartesian and right arrow p-cocartesian. We claim
the following square (⋆) is split Verdier

E C

Q1(D) D

⌟

d1

p p

d1
(x′ ← y′ → z′) 7→ x′ .

Fix P the pullback of the square. We call η canonical map : E→ P.

• η is essentially surjective for the following reason. Any span
p(x) ← y ′ → z ′ ∈ Q1(D) admits an essentially uniquely lift to
x← y→ z ∈ E. The “uniqueness” comes from the fact that the
left arrow is required to be a p-cartesian lift and the right one a
p-cocartesian lifts.

• The fully faithfulness follows from the computation of the map-
ping animae

MapE(α,β) and MapP(η(α),η(β)),

using the fact that MapP can be computed as a pullback of
mapping animae, and that since E is a full sub-∞-category of
Q1(C) ≃ Fun(J1,C), we have

MapE(α,β) ≃ lim
(x→y)∈Ob(TwArr(J1)≃Jop2 )

MapC(αx,βy)

and similarly for the mapping anima in Q1(D).

(⋆) is split Verdier because the right vertical leg p : C → D is split
Verdier.

Next, consider the pullback square E×Q1(C)Q2(C), where the map
Q2(C)→ Q1(C) is d2, which can be described as

•

•

•

•

• •

•

• .

We claim the following square (⋆⋆) is split Verdier
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E×Q1(C)Q2(C) E×CQ1(C)

Q2(C)

Q2(D)

Q1(C)×CQ1(D)

Q1(D)×DQ1(D)

⌟

d1

p p

.

Fix R the pullback. The fact that the canonical map ρ : E ×Q1(C)
Q2(C)→ R is essentially surjective is basically contained in the proof
of STEP 2. The fully faithfulness follows from the computation of the
mapping anima in E×Q1(C)Q2(C) and R using similar limit formula
as above.
Next, we want to prove that the map

E×CQ1(C)→ Q1(D)×DQ1(D)

is split Verdier. We have

E×CQ1(C)

Q1(D)×DQ1(D)

(Q1(D)×D C)×C ×Q1(C)

Q1(D)×DQ1(D)

Q1(D)×DQ1(C)

Q1(D)×DQ1(D)

Q1(C)

Q1(D)

⌟ ⌟ ⌟

p p

1st square
≃ ≃ canon.

id id canon. on 2nd
.

Therefore the map E×CQ1(C)→ Q1(D)×DQ1(D) is the pullback of
Q1(C)

p→ Q1(D). This is a split Verdier projection because the fully
faithful left and right adjoints of p : C→ D extend to Q1(D)→ Q1(C).

Being split Verdier squares, both (⋆) and (⋆⋆) are mapped by pull-
back square by any additive F. So in An we have pullbacks squares

F(E) F(C)

F(Q1(D)) F(D)

⌟

F(d1)

F(p) F(p)

F(d1)

and

F(E×Q1(C)Q2(C)) F(E×CQ1(C))

F(Q2(C)) F(Q1(D)×DQ1(D))

⌟
F(p) F(p)

.

The combination of these two diagrams shows that SpanF(p) is a
cocartesian fibration.
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• The second diagram exhibits the image of F(E)→MapCat∞([1],SpanF(C))
as spanned by SpanF(p)-cocartesian edges.

• The first diagram demonstrates the existence of the different
liftings.

STEP 5. The realization functor |•| : Cat∞ → An sends pullbacks squares
that have as right vertical leg a bicartesian fibration to pullback squares in
An.
Consider a cartesian square in Cat∞

C ′ C

D ′ D

⌟

u

f ′ f

l

such that f : C → D, and consequently f ′ : C ′ → D ′ are bicartesian
fibration. We denote with Stcocart the cocartesian straightening, and
with Uncocart the cocartesian unstraightening. Then we call

F := Stcocart(C→ D) : D→ Cat∞
the cocartesian straightening of C→ D. We obtain

Uncocart(F) ≃ C and Uncocart(F ◦ l) ≃ C ′,

because unstraightening turns compositions into pullbacks.
We have a diagram

D Cat∞

|D| An

F

|•|

.

It is worth noting that any morphism ϕ : x → y in D is mapped
to a left-adjoint functor F(ϕ) : F(x) → F(y) by F, because F is the
straightening of a bicartesian fibration. This gives rise to an equiva-
lence |F(ϕ)| : |F(x)|→ |F(y)|. As a result, we have an arrow |D|→ An,
which complete the diagram to a commutative square, due to the
universal property of localisations of ∞-categories.

We denote with Unleft the left unstraightening. Now unstraighten-
ing the functor into An, we obtain a cartesian square

Unleft(|F| ◦ |l|) Unleft(|F|◦)

|D ′| |D|

⌟

|l| .
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We aim to prove that there is an equivalence

Unleft(|F| ◦ |l|) ≃ |C ′|,

or better an equivalence

Unleft(|F| ◦ |l|) ≃ |Uncocart(F ◦ p)|,

and similarly another equivalence

Unleft(|F|) ≃ |Uncocart(F)| ≃ |C|.

To achieve this, we need the following proposition from [Hebb, Thm
XI.23].

5.21 Reference

Consider a diagram F : I→ Cat∞. Then

colim
I

F ≃ Uncocart(F)[{cocart.edges}−1]

and

lim
I
F ≃ Γcocart(Uncocart(F)).

Here, for p : E→ S a cocartesian fibration, Γ(p) is the ∞-category
of sections of p defined by the pullback

Γ(p) Fun(S,E)

{idS} Fun(S,S)

⌟
p∗

,

and Γcocart(p) is the full sub-∞-category of Γ(p) spanned by sec-
tions that take all edges in S to p-cocartesian edges.

Now, colim
D

(F) is a localisation of Uncocart(F), therefore

|colim (D
F−→ Cat∞)| ≃ |Uncocart(F)|.

On the other hand, since |•| is a left adjoint, it preserves colimits,
therefore

|colim

(
D

F−→ Cat∞
)
| ≃

≃ colim |(D
F−→ Cat∞)|

≃ colim

(
D

F−→ Cat∞ |•|−→ An

)

≃ colim

(
|D|

F−→ An

)
,
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where the last equivalence is true because the localisation map D→ |D|

is cofinal. Then it follows

|Uncocart(F)| ≃ colim

(
|D|

F−→ An

)
≃ Unleft(|F|).

Similarly for Unleft(|F| ◦ |l|).

STEP 6. SpanF(•) : Catst∞ → Cat∞ is an additive functor.
Consider a split Verdier square

C ′ C

D ′ D

⌟

u

p ′ p

l .

For any n ∈ N, Qn(•) ≃ Fun(Jn, •) preserves pullbacks, and in fact
all limits. Moreover the fully faithful adjoints to p and p ′ gives fully
faithful adjoints to Qn(p) and Qn(p

′); we have so a split verdier
square

Qn(C
′) Qn(C)

Qn(D
′) Qn(D)

⌟

Qn(u)

Qn(p
′) Qn(p)

Qn(l) .

Applying F we obtain a pullback square

F(Qn(C
′)) F(Qn(C))

F(Qn(D
′)) F(Qn(D))

⌟

F(Qn(u))

F(Qn(p′)) F(Qn(p))

F(Qn(l)) .

Since we can check equivalences levelwise, we get a pullback square
in sAn

F(Q(C ′)) F(Q(C))

F(Q(D ′)) F(Q(D))

⌟

F(Q(u))

F(Q(p′)) F(Q(p))

F(Q(l)) .



144 result on the k-theory of stable infinity categories

Recalling the remark 4.40, this is a cartesian square of Segal animae.
Unfortunately, asscat : sAn → Cat∞ do not necessarily preserve
pullbacks of non-complete Segal animae, and F do not necessarily
preserve pullbacks so that proposition is useless. We have a more
tricky way to show that this is anyway a cartesian square.
Consider three Segal animae X, Y,Z ∈ sAn. Then the (essentially
unique) canonical map

asscat(X×Y Z)→ asscat(X)×asscat(Y) asscat(Z)

is always fully faithful. To see this, consider the diagram

asscat(X×Y Z)

asscat(X)×asscat(Y) asscat(Z) asscat(Z)

asscat(X) asscat(Y)

⌟

πasscat(Z)

πasscat(X) g

f

Φ

asscat(πZ)

asscat(πX)

.

Recall that for any Segal animae S the mapping anima in S can be be
computed as

Mapasscat(X)(x,y) ≃ {x,y}×X0×X0 X1.

Therefore

Mapasscat(X)×asscat(Y)asscat(Z)(Φa,Φb) ≃

≃Mapasscat(X)(πXa,πXb)×Mapasscat(Y)(fπXa,fπXb) Mapasscat(Z)(πZa,πZb)

≃ ({πXa,πXb}×X0×X0 X1)×({fπXa,fπXb}×Y0×Y0Y1)
({πZa,πZb}×Z0×Z0 Z1)

≃ {a,b}×(X0×X0)×Y0×Y0(Z0×Z0)
(X1 ×Y1 Z1)

and

Mapasscat(X×YZ)(a,b) ≃

≃ {a,b}×(X0×Y0Z0)×X0×Y0Z0)
(X1 ×Y1 Z1)

≃ {a,b}×(X0×X0)×Y0×Y0(Z0×Z0)
(X1 ×Y1 Z1).

It remains us to prove that that Φ is essentially surjective. Recall

core asscat(X) ≃ |X×|.
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Φ is essentially surjective if and only if

core (asscat(X×Y Z)) ≃
≃ |(X×Y Z)×|
≃ |X× ×Y× Z×|→
→ core (asscat(X)×asscat(Y) asscat(Z)) ≃
≃ core (asscat(X))×core (asscat(Y)) core (asscat(Z))

≃ |X×|×|Y×| |Z
×|

is essentially surjective. This is equivalent to the map

π0(|X
× ×Y× Z×|)→ π0(|X

×|×|Y×| |Z
×)

being surjective.
We claim this is surjective if asscat(X) → asscat(Y) is a bicartesian
fibration, which is is enough for our case. The connected component
on |X×|×|Y×| |Z

×| is represented by

{(x, z,γ) : x ∈ X0, z ∈ Z0,γ path connecting x and z in |Y×|}

where we clearly have to quotient by (x, z,γ) ∼ (x ′, z ′,γ ′) if x and
x ′ are in the same path component, z and z ′ are in the same path
component, and γ is equivalent to γ ′. A path in |Y×| connecting the
images in Y of x ∈ X0 and z ∈ Z0, can be represented by a sequence
of edges yi ∈ Y×1 and a path w in Y0 of the form

x

y1

s1

y2

. . .

yn

sn z

d1 d0 d1 d0

w
,

since

π1sk1Y
× → π1|Y

×|

is surjective. Using now the assumption that asscat(X)→ asscat(Y) is
a bicartesian fibration, we can lift this to a sequence in X which gives
a connected component in

π0|X
× ×Y× Z×|.

Therefore the square in Cat∞
SpanF(C ′) SpanF(C)

SpanF(D ′) SpanF(D)

⌟

u∗

p′
∗ p∗

l∗
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is cartesian, and so SpanF(•) is an additive functor.
STEP 7. |SpanF(•)| is additive.
Consider a split Verdier square

C ′ C

D ′ D

⌟

u

p ′ p

l .

By Step 4, SpanF(p) and SpanF(p ′) are bicartesian fibration. By Step
6, the induced square is cartesian. Therefore, by Step 5, also

|SpanF(C ′)| |SpanF(C)|

|SpanF(D ′)| |SpanF(D)|

⌟

is cartesian. So we are finally done done.

5.4.2 K-theory is Additive.

5.22 Corollary (K-theory is additive, once more)

The K-theory anima functor

k : Catst∞ → An

is additive.

Proof. We have

k(•) ≃ Ω|Span(•)| ≃ Ω|Spancore (•)|.

core is additive, because it is right adjoint, so |Spancore (C)| is additive.
Ω preserves all limits because it is a right adjoint.

More generally, for any additive functor F,

Ω|SpanF(•)| ≃ Ω|FQ•|

is again additive.
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5.5 universality, once more .

5.23 Lemma

Consider a stable ∞-category C and a grouplike additive functor
F : Catst∞ → An. Then

F(Arr(C)) ≃ F(C)× F(C).

Proof. Consider the split exact sequence

C Arr(C) C
x 7→ (x→ 0) t

x 7→ (0→ x)s

x 7→ (0→ x)s
,

then for any F : Catst∞ → An grouplike and additive, using proposition
3.80 we can immediately conclude.

5.24 Lemma

Consider a stable ∞-category C and a grouplike additive functor
F : Catst∞ → An. Then

F(Qn(C)) ≃ F(C)2n+1.

Proof. We have showed in 4.26 that Q•C is a complete Segal object,
and in 4.39 that there is a split Verdier square such that

Qn(C) ≃ Qn−1(C)×Q0(C)Q1(C).

Therefore

F(QnC) ≃ F(Qn−1(C))×F(Q0(C)) F(Q1(C))

because F is additive. Iterating this we get

F(QnC) ≃ F(Q1(C))×F(C) F(Q1(C))×F(C) · · · ×F(C) F(Q1(C)).

There is a split Verdier sequence

C Q1(C) Arr(C)
(x← y→ z) 7→ (y→ z)

(a→ b) 7→ (0← a→ b)

(a→ b) 7→ (a← a→ b)

But then we have, by proposition 3.80,

F(Q1(C)) ≃ F(C)× F(Arr(C)) ≃ F(C)3.
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By plugging this above we get

F(QnC) ≃
≃ F(Q1(C))×F(C) F(Q1(C))×F(C) · · · ×F(C) F(Q1(C))
≃ F(C)3 ×F(C) F(C)3 ×F(C) · · · ×F(C) F(C)3

≃ F(C)2n+1.

In section 5.3, we showed that k is the initial grouplike additive
functor under core . As we already claimed in 5.10, more than this
is true: for any additive functor F : Catst∞ → An, Ω|SpanF(•)| is the
grouplike additive functor under F.

Theorem D (Universality - Blumberg, Gepner, Tabuada)

The inclusion functor

Fungrp(Catst∞, An) ↪→ Funadd(Catst∞, An)

admits a left adjoint (•)grp, given by

Fgrp ≃ Ω|SpanF(•)|

In particular,

core grp ↪→ k,

i.e. the projective anima class functor k : Catst∞ → An is the initial
grouplike additive functor under the anima-core functor core :

Catst∞ → An.

Therefore, for any F : Catst∞ → An additive functor, we have a functor
Fgrp which is the initial grouplike functor under F, i.e

unit : F⇒ Fgrp

has the property that, for any other grouplike additive functorGCatst∞ →
An,

Nat(F,G) ≃ Nat(Fgrp,G).

5.25 Remark

We proved in theorem C that, for any additive functor F : Catst∞ →
An, |SpanF(•)| is additive, and consequently also Ω|SpanF(•)| is
additive. In order to prove the universality theorem, we know need
a more detailed study of the functors Ω and |•|.
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5.26 Reference ([Heba, Cor. II.21])

The functor Ω : CMon(An)→ CMon(An) actually takes values
in CGrp(An).

By this it should be clear that the functor Ω|SpanF(•)| is grouplike
and additive.

It is maybe the right moment to add some more information
about the functor. There exists a functor

B = |•| : CMon(An)→ CMon(An)

which is a left adjoint to Ω. Also B takes values in CGrp(An), and
when restricted to a functor CGrp(An) → CMon(An) the functor
B is fully faithful. Furthermore, the functor

ΩB : CMon(An)→ CGrp(An)

forms a left adjoint to the inclusion

CGrp(An) ↪→ CMon(An)

Proof of Universality. What we want to prove is that the functor

Ω|Span−(•)| : Funadd(Catst∞, An)→ Funadd,grp(Catst∞, An)

is a left adjoint to the inclusion

Funadd,grp(Catst∞, An) ↪→ Funadd(Catst∞, An).

To do this, we want to apply [Lur09, Prop. 5.2.7.4] to the functor

L ≃ Ω|Span(−)(•)| : Funadd(Catst∞, An)→ Funadd,grp(Catst∞, An).

Therefore we just have to prove there is a natural transformation

η : id⇒ L

such that

ηLF : LF→ LLF

and

LηF : L→ LLF

are equivalences for all F ∈ Funadd(Catst∞, An).
Consider map

MapSpanF(C)(0, 0)→Map|SpanF(C)|(0, 0),

which is natural in F.
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• The right hand side is equivalent to Ω|SpanF(C)|.

• We claim the left hand side is equivalent to F(C). Consider the
square

C Q1(C)

0 Q0(C)×Q0(C)

(d1,d0)

.

This is a split Verdier square. The fact that it is cartesian should
be clear. The adjoints to (d1,d0) coincide and are given by

(x,y) ∈ Q0(C)×Q0(C)→ x← x⊕ y|y ∈ Q1(C).

It should be clear this are fully faithful, for example from

(d1,d0)(x← x⊕ y→ y) ≃ (x,y).

Applying F additive functor we obtain a cartesian square

F(C) F(Q1(C))

0 F(Q0(C))× F(Q0(C)) ;

by the description of mapping anima of associated category to a
Segal anima, we get

F(C) ≃MapSpanF(C)(0, 0).

Now the map becomes

F(C) ≃MapSpanF(C)(0, 0)→Map|SpanF(C)|(0, 0) ≃ Ω|SpanF(C)|;

since it is natural in both F and C, we define

ηF : F(•) ≃MapSpan(F)(•)(0, 0)→Map|SpanF(•)|(0, 0) ≃ Ω|SpanF(•)|.

Theorem 5.18 implies

ηL,Lη : L⇒ L ◦ L

are both equivalences.
Therefore L is a left adjoint to

Im(L) ↪→ Funadd(Catst∞, An).

Im(L) ≃ Funadd,grp(Catst∞, An) because
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• For sure the essential image is contained in the grouplike addi-
tive functors as checked;

• Every grouplike additive functor F is equivalent to Ω|SpanF(•)|
by 5.18.

5.5.1 Co-representability.

5.27 Lemma

The evaluation at the sphere spectrum S ∈ Spectraω exhibits Spectraω

as co-representing the anima core functor

core : Catst∞ → An,

this means

Map(Spectraω,D) ≃ core (D)

for any stable ∞-category D.

Recall a functor F : C→ D between two ∞-categories C to D, where C

has all pushouts, is called excisive if it takes pushouts to pullbacks.

Proof. Recall that the ∞-category of finite animae is given by Anfin ≃
Lwhe(CW

fin), i.e. it is the localisation of finite CW-complex (i.e. CW-
complexes with finite number of cells) at equivalences. Then the∞-category of finite spectra can be defined as

Spectrafin := SW(Anfin),

i.e. as the Spanier-Whitehead stabilization of finite animae. For spectra
we have

Spectrafin ≃ Spectraω,

(but not for animae where

Anfin ⊊ Anω .)

For any D stable ∞-category,

Funex(Spectrafin,D) ≃
≃ Funrex(Anfin∗ ,D)

≃ Excisive(Anfin∗ ,D)

≃ Sp(D) := lim(· · · → D→ D) ≃ D;

where
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• The first equivalence comes from [Spectral Algebraic Geometry,
Lurie, C.1.1.7];

• The second equivalence comes from [HA, rmk. 1.4.2.2];

• The last two equivalences comes from [HA, section. 1.4.2].

Then we have

MapCatst∞(Spectrafin,D) ≃ core Funex(Spectrafin,D) ≃ core D

naturally in D. Then by the Yoneda lemma

MapCatst∞(Spectrafin, •) ≃ core (•).

We have proved in D that there exists a groupification functor

(−)grp ≃ Ω− •Q| : Funadd(Catst∞, An)→ Fungrp,add(Catst∞, An)

which is left-adjoint to the inclusion

Fungrp,add(Catst∞, An)←↩ Funadd(Catst∞, An).

By the co-Yoneda lemma, we have a functor

coよ : Catst∞ → Fun(Catst∞, An), C 7→MapCatst∞(C, •) ≃ core Funex(C, •).

In the last lemma we have seen that core is co-represented by finite
spectra (through this functor)
Also, the functor lifts to coよ : Catst∞ → Funadd(Catst∞, An) since, for
any C ∈ Catst∞, Map(C, •) preserves all limits. But then we have a
“Yoneda-like” functor defined as

gよ
grp

:Catst∞ coよ−→ Funadd(Catst∞, An) •
grp

→ Funadd,grp(Catst∞, An),

C 7→ (MapCatst∞(C, •))grp ≃ Ω|MapCatst∞(C,Q.•)|

≃ Ωcolim
n∈N

MapCatst∞(C,Qn•)

The functor K-theory anima functor k is co-represented by finite
spectra under this functor; indeed

Spectrafin 7→ Ωcolim
n∈N

(
core Funex(Spectrafin,Qn•)

)
≃ Ω|core Q•| ≃ k(•).

Similarly the K-theory spectrum functor K is co-represented by
finite spectra under the composition of this functor and Σ∞

+ .
In particular we obtain that for any grouplike additive functor

F : Catst∞ → An, then

Nat(k, F) ≃ Nat(Map(Spectrafin, •), F) ≃ F(Spectrafin),

by the Yoneda’s lemma.
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5.6 k-theory spectra , once more .

We will now proceed to construct an explicit delooping of the anima
k(C) by iterating the S− and Q− constructions.

5.6.1 Through Iterated S-construction.

Let us start with the one that first appeared and was first seen in
[Wal85].

By the (product ⊣ internal Hom)-adjunction we can do it in two
equivalent ways.

For any stable ∞-category C, S•(C) is a simplicial stable ∞-category,
so we can apply the S•-construction to it. Indeed, we define

S•(S·(C)) ∈ Fun(N(∆)op, sAn),

S•(S·(C)) ⊆ Fun(Arr[•],S·(C)) ⊂ Fun(Arr[•], Fun(Arr[·],C))
just by asking the vanishing condition of the diagonal and the cartesian
condition of the squares to be respected level-wise .
Iterating this construction we obtain a multi-simplicial ∞-category
S
(•)
• (C), where, for any q ∈ N,

S
(q)
• : (N(∆)op)q → Catst∞, ([n1], . . . , [nq]) 7→ §nq(· · · (Sn1(C))).

For the other construction, let us denote with

Ai1,j1;...;iq,jq

the values of a functor

A : Arr([n1])× · · · ×Arr([nq])→ C

at ((i1 ⩽ j1), . . . , (iq ⩽ jq)). Define Sn1,...,nq(C) as the full sub-∞-
category of

Fun(Arr([n1])× · · · ×Arr([nq]),C)

spanned by those functors A such that

• Ai1,j1;...;iq,jq = 0 whenever there exists k ∈ {1, . . . ,q} such that
ik = jk.

• For any (i1 ⩽ j1; . . . ; iq ⩽ jq) in Arr([n1])× · · · ×Arr([nq]), for
any 1 ⩽ r ⩽ q, and for any k such that jr ⩽ k ⩽ nr

Ai1,j1;...;ir,jr;...;i1,jq Ai1,j1;...;ir,k;...;iq,jq

0 Ai1,j1;...;jr,k;...;i1,jq
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is cocartesian.

This builds up to be a multi-simplicial ∞-category S(•)• C where, for
any q ∈ N,

S
(q)
• C : (N(∆)op)q → Cat∞, ([n1], . . . , [nq]) 7→ S

(q)
n1,...,nqC.

5.28 Remark

We can identify S(0)C with C and S(1)n C with SnC.

5.29 Lemma

Consider an additive functor F : Catst∞ → An. Then

Ω|F(S(•)) ≃ Ωi|F(Si(•))|,

where Ωi means i-times Ω. Moreover, if F is group-like, then both
corresponds to F.

Proof. We know for any additive functor F : Catst∞ → An,

|FQ(•)|

is again additive, by Waldahusen additivity theorem C. But then also

|FS(•)| ≃
≃ |FS(•)esd|
≃ |FSesd(•)|
≃ |FQ(•)|

is also additive. Then we can apply this again to get that

||FS(−)|
(
S(•
)
| ≃ ||FSS(•)||,

is still additive. Iterating we get that

|FSi(•)|

is additive. This is also grouplike since

0 ≃ π0(|FS0Si−1(C)|→ π0|FSS
i−1(C)|

is surjective. Notice also that

|F(SesdSesd · · ·Sesd(C)| ≃ |F(Si(C))| ≃ |FQi(C)|.
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We apply therefore theorem 5.18

|FSi(•)| ≃
|FQi(•)|

≃ Ω|Span|FQi(−)|(•)|
≃ Ω|FQi+1(•)|
≃ Ω|FSi+1(•)|.

Then inductively

Ωi+1|FSi+1(•)| ≃ Ωi|FSi(•)| ≃ · · · ≃ Ω|FS(•)|.

If F is already grouplike, we have proved

F(•) ≃ Ω|FQ(•)| ≃ Ω|FSesd(•)| ≃ Ω|FS(•)|.

Now for any F : Catst∞ → An additive functor descents to a pre-
spectrum valued functor

Catst∞ → PreSpectra, C→
(
F(C), |F(S(C))|,Ω|F(S2(C))|, . . .

)
.

Since the construction is functorial in F, we get a functor

Funadd(Catst∞, An)→ Fun(Catst∞,PreSpectra).

If F is group-like then(
F(C), |F(S(C))|,Ω|F(S2(C))|, . . .

)
is a spectrum, because

F(•) ≃ Ω|FS(•)| ≃ Ω2|FS2(•)| ≃ . . .

by the lemma. We obtain than a functor

Funadd,grp(Catst∞, An)→ Fun(Catst∞, Spectra).

5.30 Definition

Consider a stable ∞-category C. We define the K-theory spec-
trum of C as the connective spectrum

K(C) ≃
(

k(C), |k(S•C)|,Ω|k(S2•(C))|,Ω
2|k(S3•(C))|, . . .

)
.

Notice that we have a sequence of equivalence

k(C) ≃ Ω|k(S•(C))| ≃ Ω2|k(S2•(C))| ≃ . . . ,

or more explicitly

k(C) ≃ Ω|Ω|core(S•(C))|| ≃ Ω2|Ω|core (S2•(C))|| ≃ . . . .
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5.31 Remark

Another equivalent description of this K-spectrum, surely more
aesthetically pleasing, is

K(C) ≃
(

k(C), k(S(C)),Ω k(S2(C)),Ω2 k(S3(C)), . . .
)

.

This are equivalent because level-wise, for n > 0, the animae are

Ωn−1|Ω|core (Sn• (C))|| and Ωn−1 k(Sn(C)) ≃ Ωn|core Sn(C)|,

and exactly as in the proof of proposition 5.12 the limit-colimit inter-
change map, which take Ω out of the realization, is an equivalence.
(Notice that this is not free, we actually need that argument.) These
maps build up an equivalence between these two spectra.

5.32 Remark

For any stable ∞-category C, the K-theory spectrum for C con-
structed in 5.2, call it K̃(C), and the K-theory spectrum K(C) that we
just defined in 5.30 are equivalent. Indeed the former one is

K̃(C) =
(

k(C),Σ k(C),Σ2 k(C), . . .
)

and the latter one is

K(C) =
(

k(C), |k(S•C)|,Ω|k(S2•(C))|,Ω
2|k(S3•(C))|, . . .

)
.

Now recalling that the infinite loop-space functorΩ∞ is conservative
when restricted to connective spectra we can immediately conclude
that these are indeed equivalent.

5.6.2 Through Iterated Q-construction.

Let us talk now about the iterated Q-construction. The proof of the
main lemma of subsection is (almost) identical to the one before, but
we left it for completeness.
We denote with Qi the i-fold Q-construction. Qi is a functor
that at each stable ∞-category associates an i-simplicial ∞-category;
more precisely

Qi : Catst∞ → Fun(N(∆op)i, Catst∞) =: s(i) Catst∞
C 7→ Q• · · ·Q•︸ ︷︷ ︸

i−times

C.

There is, of course, a realization functor

|•| : s(i) Cat∞ → An, X 7→ colim
(∆op)i

.
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5.33 Lemma

Consider an additive functor F : Catst∞ → An. Then

Ω|F(Q(•))| ≃ Ωi|F(Qi(•))|,

where Ωi means i-times Ω. Moreover, if F is grouplike, then both
sides correspond to F.

Proof. For any additive functor F : Catst∞ → An,

|SpanF(•)| ≃ |FQ(•)|

is again additive, by Waldhausen additive theorem. Therefore, we can
apply Waldhausen additivity theorem C again and get an additive
functor

||FQ(−)|
(
Q(•)

)
| ≃ ||FQQ(•)||.

By iterating this process, we obtain that

|FQi(•)|

is additive. This is also grouplike since, for any C stable ∞-category,

π0|FQ
i(C)| ≃

≃ π0|FQQi−1(C)|
≃ π0|FSesdQi−1(C)|
≃ π0|(FSQi−1(C))esd|
≃ π0|FSQi−1(C)|

and

0 ≃ π0(|FS0Qi−1(C)|)→ π0|FSQ
i−1(C)|

is surjective. Therefore, applying theorem 5.18

|FQi(•)| ≃

≃ Ω|Span|FQi(−)|(•)|
≃ Ω|FQi+1(•)|

But then

Ωi+1||FQi+1(•)| ≃
≃ Ωi|FQi(•)|
≃ Ωi−1|FQi−1(•)|
. . .

≃ Ω|FQ(•)|

If F is also grouplike, then we already know

Ω|FQ(•)| ≃ F(•).
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For what we have just proved, any F : Catst∞ → An additive functor
descends to a pre-spectrum valued functor

SpanF(•) : Catst∞ → PreSpectra,C 7→
(
F(C), |F(Q(C))|,Ω|F(Q2(C))|, . . .

)
.

The construction is clearly functorial in F, so we obtain a functor

Span(−) : Funadd(Catst∞, An)→ Fun(Catst∞,PreSpectra).

If F is grouplike, then

SpanF(C) =
(
F(C), |F(Q(C))|,Ω|F(Q2(C))|, . . .

)
is a spectrum, because

F(•) ≃ Ω|FQ(•)| ≃ Ω2|FQ2(•)| ≃ . . .

by the previous lemma. So we obtain

Span(−) : Funadd,grp(Catst∞, An)→ Fun(Catst∞, Spectra).

5.34 Definition

Consider a stable ∞-category C, we define (again) the K-theory
spectrum, or projective spectrum class, of C as

K(C) := Spank(C).

The equivalence with the definition coming from iterated S•-construction
should be clear.
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5.7 localisation.

This section goal is to prove the following theorem.

Theorem E (Localisation Theorem)

The algebraic K-functors

k : Catst∞ → An and K : Catst∞ → Spectra

are Verdier-localising.

By the corollary 3.91 of the Waldhausen fibration theorem, a grou-
plike additive functor F : Catst∞ → An is Verdier-localising if the
following condition, which we will call (⋆), holds: for any Verdier
sequence C → D → E, the canonical map |F(FunC([•],D))| → F(E) is
an equivalence.
Our goal is to prove that k satisfies (⋆). The following proposition tells
us that to prove this it is enough to see that the core functor satisfies
(⋆).

5.35 Proposition

For any additive functor F : Catst∞ → An satisfying (⋆), |FQ(•)|
satisfies (⋆).

We get more than the result on k. Indeed, for any additive functor
F : Catst∞ → An satisfying (⋆), both |FQ(•)| and Ω|FQ(•)| are group-
like additive functor satisfying (⋆), hence grouplike Verdier-localising
functor.

To prove the proposition, we need the following lemma.

5.36 Lemma

Verdier sequences are preserved by the functor

Fun(N(P), ·) : Catst∞ → Catst∞
for any poset P.

Proof. More generally, one can call an ∞-category I strongly finite

if

• I is finite, i.e. categorically equivalent to a finite simplicial set, so
a a simplicial set with finitely many non-degenerate simplices.

• For any i, j objects of I, then MapI(i, j) is a finite anima.

In particular, any poset is strongly finite. Denote

CI := Fun(I,C), CI := Fun(Iop,C),
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so that we have functors (•)I : Catst∞ → Catst∞, and (•)I : Catst∞ → Catst∞ .
Then

(•)I ⊣ (•)I ⊣ (•)I.

Indeed, for the first adjunction we want to prove Map(CI,D) ≃
Map(C,DI). We have

Map(CI,D) ≃ core Fun(CI,D)

≃ core Fun(Fun(Iop,C),D)

≃ core Fun(I, Fun(C,D))

and

Map(C,DI) ≃ core Fun(C,DI)

≃ core Fun(C, Fun(I,D))

≃ core Fun(I, Fun(C,D))

For the other adjunction see that (•)Iop ≃ (•)I, so we obtain (•)Iop ⊣
(•)Iop and by choosing (Iop) as I we are done.

Proof of Proposition 5.35. Suppose F is a grouplike additive functor sat-
isfying (⋆). We want to prove

||FQ|(FunC([•],D))|→ |FQ|(E), i.e. ||F(FunQC([•],QD))||→ |FQ(E)|

is an equivalence. This is the same as proving that in each simplicial
degree (of the Q-construction), the map of animae

|F(FunQkC([•],QkD))|→ FQk(E).

is an equivalence. By the lemma 5.36,

QkC→ QkD→ QkE

is also a Verdier sequence, indeed

Qk• ≃ Fun(Jk, •).

Since F satisfies (⋆) and QkC → QkD → QkE is a split Verdier se-
quence, we get that

|F(FunQkC([•],QkD))|→ F(QkE)

is an equivalence.

Now, if the core functor satisfies (⋆), then also the K-theory functor
satisfies (⋆). Consider a stable categories D such that C and a stable
sub-∞-category of D. Then we get

core FunC([•],D) ≃ core Fun([•],DC) ≃MapCat∞([•],DC) ≃ Nr(DC)
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where DC is the (wide) sub-∞-category of D spanned by equivalences
modulo C in D.
It is well known fact (since it already holds for any simplicial anima)
that the canonical map |Nr(DC)|→ |DC| is an equivalence. Therefore,
there is an equivalence

|core FunC([•],D)| ≃ |DC|.

The last piece of the puzzle consists in proving that |DC| ≃ core (D/C).

5.37 Proposition

Consider a stable ∞-category D, a stable sub-∞-category C ⊂ D,
and DC the ∞-category of equivalence modulo C. Then

|DC|→ core (D/C)

is faithful. If, furthermore, C ↪→ D is a Verdier inclusion, then it is
an equivalence.

This proposition is a special case of the following proposition. Once
we proved this following proposition, by taking S = DC we are done.

5.38 Proposition

Consider D an ∞-category and S a sub-∞-category which is closed
under 2-out-of-3 and pushouts in D. Then

|S| = S[S−1]→ D[S−1]

is faithful. Also, the following are equivalent

(i) |S| ↪→ core D[S−1] is fully faithful.

(ii) The morphisms of S satisfy 2-out-of-6 in D.

(iii) A morphism of D lies in S if and only if its source and target
are in S and it is invertible in B[S−1].

Proof of the Proposition 5.38. The proof of the theorem is based on the
following formula.

5.39 Reference ([Cis19, Sec. 7.2] or [Nui16])

Consider an ∞-category D and a sub-∞-category S of D such that
S contains all the equivalences in D and it is closed under pushouts
in D (i.e. any pushout in D of a morphism in S exists and the
corresponding map lies in S).
Then, the canonical map

colim (y→y ′)∈y/SMapD(x,y ′)→MapD[S−1](x,y)
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is an equivalence, where y/S is the full subcategory of y/D spanned
by maps in S.
Furthermore, this gives us an equivalence

MapD[S−1](x,y) ≃ |x/ty|,

where ty : y/S→ D is the functor mapping arrows to their target.
This equivalence, which arise inside the proof, describes

MapD[S−1](x,y)

as an anima of zig-zags

x→ z← y

with z← y ∈ S. This gives the homotopy categories of the localisa-
tion a calculus of fractions.

Apply the formula to D ⊃ S and S ⊃ S. We obtain that the canonical
map

MapS[S−1](x,y)→MapD[S−1](x,y)

is induced by a map between colimits

colim (y→y ′)∈y/SMapS(x,y ′)→ colim (y→y ′)∈y/SMapD(x,y ′);

this map is induced by inclusion maps

MapS(x,y ′)→MapD(x,y ′)

for any y → y ′ ∈ y/S. Therefore it is a direct colimit of faithful
inclusions, so it is a faithful map.

To prove the equivalence between the three condition, let us start
by noticing that all three are conditions on the respective homotopy
categories.

(i)⇒ (iii) Take f with source and target in S which becomes invertible
in D[S−1]. Then for (i), it is represented by a zig-zag in Ho(S).
By calculus of fractions and 2-out-of-3, we conclude that f does
belong to S.

(iii)⇒ (ii) Equivalences satisfy 2-out-of-6.

(ii)⇒ (i) Assume the morphisms of S satisfy 2-out-of-6. We want to show
the |S| ↪→ D[S−1] is full; so take f invertible morphism in B[S−1]
between objects of S. We want to show that f is represented by a
zig-zag in S. Assume (we clearly can) that f is a morphisms in B.
By calculous of fractions, f is a split monomorphism in B[S−1] if
and only if there exists g in B such that gf lies in S. Since f is an
equivalence in B[S−1], so it is g. Applying this argument to g we
find h in B such that hg lies in S. Then by 2-out-of-6, f belongs
to S.
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Proof of the Proposition 5.37. First, we want to prove

|DC|→ core (D/C)

is faithful by using proposition 5.38. Take S = DC. DC is closed under
pushouts; take f : a→ b ∈ DC, then we have a diagram

a

b

a ′

b ′

0

c ∈ C

⌜

where the left and external square are cocartesian. By pasting law of
pushouts the right square is cocartesian, hence a ′ → b ′ ∈ DC.
Again by pasting laws, DC satisfies 2-out-of-3.

By the proposition

|DC|→ D/C

is faithful, and this functor must factor through the faithful functor

core (D/C) ↪→ D/C.

So we end up with a faithful functor

|DC|→ core (D/C).

Now assume C ↪→ D is a Verdier inclusion; in particular C is closed
under retracts. Assume f ∈ D is an equivalence in D/C (the condition
on source and target does not impose something, since DC is a wide
subcategory). Then is a retract of a morphism in DC, but this must be
already in it, since C is closed under retracts.

5.40 Remark

As a consequence of proposition 5.37, we obtain that, for any dense
stable inclusion of stable ∞-categories C ⊂ D, the anima |DC| is
discrete. Moreover

π0(|DC|) ≃ π0(core (D))/π0(core (C)) ≃ K0(core (D))/K0(core (C)).

Proof of Localisation. We proved

|core FunC([•],D)| ≃
≃ |Nr(DC)|

≃ |DC|

≃ core (D/C).
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So the core functor satisfies (⋆). From the proposition 5.35, we con-
clude that |core Q•| also satisfies (⋆). Therefore |core Q| is a Verdier-
localising functor, and so is k.
For K, recall that a fibre sequence of E∞-groups gives rise to a fibre
sequence of spectra if and only if it is surjective on π0; any verdier
projection induces isomorphisms in K0, since π0|core Q(C)| = 0 for
any C ∈ Catst∞ and using the fact that |core Q| is localising.

5.7.1 Waldhausen Fibration Theorem.

In a similar way to what we just proved, we could also prove the
following.

5.41 Theorem (A version of Waldhausen’s Fibration Theorem)

Consider a stable ∞-category D and stable sub-∞-category C of D.
Consider also a finite ∞-category K. Then the map

Γ : |FunC(K,D)|→ Fun(K,D/C).

is faithful, i.e. it induces inclusions of path components on mapping-
animae.
Moreover

(a) If C ↪→ D is a Verdier inclusion, then Γ is an equivalence onto

core Fun(K,D/C).

(b) If C is dense in D, then |FunC(K,D)| is equivalent to the discrete
group

K0(Fun(K,D))/K0(Fun(K,C)).
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5.8 relative q-construction.

5.42 Definition

Consider an exact functor of stable ∞-categories f : C → D. We
defined the relative Q-construction Q(f) ∈ sCatst∞ as the
pullback in sCatst∞ of

Q(f) Null(D)

Q(C) Q(D)

⌟

d0

f

We portray Qn(f) as the completion by taking pullbacks of the
diagram

0

d

f(c0,0)

f(c0,1)

f(c1,1)

f(c1,2)

. . .

f(cn−1,n)

f(cn,n)

in D, where the red-coloured part comes from an element of Qn(C) of
the form

c0,0

c0,1

c1,1

c1,2

. . .

cn−1,n

cn,n .

5.43 Remark

The relative S-construction already appeared in Waldhausen’s work
[Wal85]. There he defined There, for and exact functor f C → D

between Waldhausen 1-categories he defined S(f)

S(f) dec(S(D)

S(C) S(D)

⌟

d0

f
,

and S(f) turns out to be a Waldhausen 1-categories as well.

5.44 Corollary

Consider an exact functor of stable ∞-categories f : C → D, and
a grouplike additive functor F : Catst∞ → An. Then there is a fibre
sequence in CGrp(An)

(⋆) |F(Q(f))|→ |F(Q(C))|→ |F(Q(D))|.
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In particular there is a bifibre sequence

(⋆⋆) F(C)→ F(D)→ |F(Q(f))|.

Proof. The square definingQ(f) is split Verdier, being d0 a split-Verdier
projection. Moreover, we have already proved in 5.18 that the functor

F(d0) : F(Null(D))→ F(Q(D))

is equifibred. Therefore, by 3.90 we obtain a cartesian square

|F(Q(f))| |F(Null(D))|

|F(Q(C))| |F(Q(D))|

⌟

d0

f
.

We also know that

|F(Null(D))| ≃ |0/SpanF(D) ≃ ∗,

therefore there is a fibre sequence

|F(Q(f))|→ ||F(Q(C))|→ ||F(Q(D))|.

Computing the pullback twice and using

Ω|F(Q(C)| ≃ F(C) andΩ|F(Q(D)| ≃ F(D),

we obtain that (⋆⋆) is a fibre sequence. To prove this is also a cofibre
sequence, it is enough to show that

π0(F(Q(C)) ≃ 0,

and we have already proved many times this fact.

5.45 Proposition ([HLS22, Prop. 8.3])

Consider a fully faithful and exact functor f : C → D of stable∞-categories. Then there is an equivalence of simplicial categories

FunC([•],D) ≃ Q(f)

which fits into a commutative diagram

constD FunC([•],D)

Q(i) constD/C .
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5.46 Corollary

Consider a grouplike additive functor F : Catst∞ → An. F is Verdier-
localising if and only if, for all Verdier inclusions i : A ↪→ B, the
canonical map

|F(Q(i))|→ F(B/A)

is an equivalence.
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5.9 cofinality.

The goal of this section is to prove the following.

Theorem F (Cofinality theorem)

Let C ↪→ D be a dense inclusion of stable ∞-category. The map
induced on K-theory fits into a fibre sequence

k(C)→ k(D)→ G,

where G is the abelian group K0(D)/K0(C) regarded as discrete
simplicial set.
In particular,

Ki(C)→ Ki(D)

is an isomorphism for any i > 0, and there is a short exact sequence
(as we already know from Thomason theorem 2.8)

0→ K0(C)→ K0(D)→ K0(D)/K0(C) ≃ π0 core (D)/π0 core (C)→ 0.

There are two ways to prove the cofinality theorem. The first method,
which is shorter, builds upon our work to prove the localisation theo-
rem. The second method (which we will investigate in the next section)
is more general and only relies on the existence of a grouplike additive
functor under an additive functor. Both of our proofs strictly follows
[HLS22].

Proof. In previous sections we have demonstrated that

|core Q•|

is a grouplike additive functor Catst∞ → An. By applying 3.84 to the
Verdier sequence

C→ D→ D/C

we obtain a fibre sequence as follows

|core QC|→ |core QD|→ ||core QFunC(•,D)||.

Furthermore, as bisimplicial animae, we can identify

core QFunC(•,D)

with

core FunQC(•,QD)

as we did in the last section. Using the identification above, we can
also identify

|core FunQkC(•,QkD)| ≃ |NrQkDQkC| ≃ |QkDQkC|.



5.9 cofinality. 169

We know C→ D is dense, so QnC→ QnD is also dense. This implies
QnD/QnC ≃ 0. We also have an equivalence

|DC|
≃−→ core (D/C).

According to proposition 5.40, |Qn(D)Qn(C)| is discrete with compo-
nents K0(Qn(D))/K0(Qn(C)).
K0(Q(D/C)) is the edgewise subdivision of Bar(K0(D/C)). Therefore

||core QFunC([•],D)|| ≃ |Bar(K0(D)/K0(C))|

is an Eilenber-Mac Lane anima in degree 1. Now, looping the first
sequence (and hence shifting the homotopy groups of Eilenber-Mac
Lane anima the down by one), we obtain a fibre sequence

Ω|core QC|→ Ω|core QD|→ Ω||core QFunC(•,D)||,

which it is exactly the fibre sequence

k(C)→ k(D)→ K(K0(D)/K0(C), 0)

(where K denotes the Eilenberg-Mac Lane anima).
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5.10 cofinality, once more .

The second proof of the cofinality theorem is applicable to any additive
functor F : Catst∞ → An and it provides a clearer reason for why the
theorem is referred to as the cofinality theorem.

5.47 Definition

A map F : X→ Y ∈ CMon(An) is called cofinal if

(a) It is an inclusion of a collection of path components, i.e.

π0(F) : π0(X)→ π0(Y)

is an inclusion.

(b) For each x ∈ π0(X), there exists a x ′ ∈ π0(X) such that

x+ x ′ ∈ π0(Y).

A cofinal map is called dense if in addition

(c) The sequence of monoids

0→ π0(X)→ π0(Y)→ π0(Y)/π0(X)→ 0

is exact.

or, equivalently, if

(c’) x ∈ π0(Y) belongs to π0(X) if there exists y ∈ π0(X) such that
x+ y ∈ π0(X).

To prove the cofinality theorem we need the following technical
lemma.

5.48 Lemma ([HLS22, Lemma 7.5])

If F : X→ Y ∈ CMon(An) is a cofinal map, then its cofibre Y/X in
CMon(An) is a discrete group.

5.49 Definition

An additive functor F : Catst∞ → An is called karoubian if

(i) it turns dense inclusion of stable ∞-categories dense map
F(A)→ F(B) ∈ CMon(An) of commutative cartesian monoid
in An;

(ii) it preserves pullback squares in Catst∞ whose vertical maps are
dense.
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5.50 Remark

The core functor is Karoubian.

• Condition (ii) is satisfied because core commutes with all
limits.

• Condition (i). Given A → B dense inclusion of stable ∞-
categories core (A)→ core (B) is clearly cofinal. Moreover, say
there is b object of B (or better, an isomorphism class of objects
of B) and a in A such that a⊕b ∈ A; then b ≃ fib(a⊕b→ a)

belongs to A too, so core is cofinal.

Theorem G (General Cofinality Theorem)

Consider an additive and Karoubian functor F : Catst∞ → An, and, as
always, denote with Fgrp the “group completion” Ω|FQ(•)| of F. For
any dense inclusions A ↪→ B of stable ∞-categories, the canonical
map

F(B)/F(A)→ Fgrp(B)/Fgrp(A)

is an equivalence. Therefore, Fgrp induces isomorphisms

πnF
grp(A)

≃−→ πnF
grp(B)

for any n > 0, and a short exact sequence of abelian groups

0→ π0F
grp(A)→ Fgrp(B)→ π0F(B)/π0F(A)→ 0,

where the last term is a discrete commutative monoid.

Proof Sketch. For the first part we want to prove

F(B)/F(A)→ Fgrp(B)/Fgrp(A)

is an equivalence. Let us start by considering the sequence of dense
inclusions

A ↪→ B ↪→ Idem(A) ≃ Idem(B).

By pasting law we obtain that all the square in the following diagram
are cocartesians

F(A) F(B) F(Idem(A))

0 F(B)/F(A) F(Idem(A))/F(A)

0 F(Idem(A))/F(B) ,
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and therefore a cofibre sequence

F(B)/F(A)→ F(Idem(A))/F(A)→ F(Idem(A))/F(B).

We have a similar result for Fgrp, so we are reduced to consider the
case consider the case B ≃ Idem(A).

Next, we should prove that the functor F̃ : Catst∞ → CMon(An)
given by

F̃(A) := F(Idem(A))/F(A)

• represents the quotient of the functors F ◦ Idem and F in the∞-category of additive functors;

• is grouplike.

(We already noticed that F ◦ Idem is still additive, indeed Idem :

Catst∞ → Catst∞ is right adjoint to the (•)min functor and we still have
the adjoints.) Furthermore, we should prove that F̃grp

• represents the quotient of functors Fgrp ◦ Idem and Fgrp in the∞-category of grouplike additive functors Catst∞ → CGrp(An).

To prove these two claims, it is enough to show that F̃ and F̃grp are
both functors.

To prove the claim that F̃ is additive we can combine proposition
3.76, lemma 3.77, and the splitting lemma to obtain that the split
Verdier sequence

A→ Arr(A)→ A

is mapped by F ′ to a split fibre sequence. By lemma 5.48, it remains
only to prove that the following sequence

(⋆) 0→ π0(F̃(A))→ π0(F̃(Arr(A)))→ π0(F̃(A))→ 0

is an exact sequence of abelian groups. To prove this, notice first that
short exact sequences of monoids are in particular cofibre sequences
of monoids. By commuting quotients and using the fact that F and
F ◦ Idem are additive, we see that the sequence (⋆) is a cofibre sequence
of abelian groups. In particular the sequence is right exact, and since
the first map is split injective, the sequence is indeed split exact.

To prove the claim that F̃grp is additive we want to prove that

(⋆⋆) 0→ πn(F̃grp(A))→ πn(F̃grp(Arr(A)))→ πn(F̃grp(A))→ 0

is a short exact sequence for any n ∈ N. For n = 0 it is proved as
above; for n > 0 it follows from the fact that for any map G → H of
commutative cartesian groups in An

fib(G→ H) ≃ Ω(G/H)
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(by the usual argument in spectra and pasting laws.)
We proceed by noticing that the canonical map

F ◦ Idem→ Fgrp ◦ Idem

is a group completion; indeed, for every grouplike additive functor G

Nat(F ◦ Idem,G) ≃ Nat(F,G ◦ (•)min)
≃ Nat(Fgrp,G ◦ (•)min)
≃ Nat(Fgrp ◦ Idem,G).

It follows that F̃ → ˜Fgrp is a group completion, but F̃ is already
grouplike, therefore the map must be an equivalence.

We have not yet used the second condition for being a Karoubian
functor, nor the density of the functor; just the first condition and the
cofinality.

5.51 Corollary

For any an additive and Karoubian functor F, also Fgrp is also
Karoubian.
In particular if Fgrp is Verdier-localising, then Fgrp is Karoubi-
localising.

Proof. The cofinality theorem immediately implies that Fgrp sends
dense functors of stable ∞-categories to dense maps of E∞-monoid
animae. Next we have to show that any cartesian square in Catst∞

C ′ D

C ′ D

⌟

with dense inclusion as vertical maps is mapped to a cartesian square
by Fgrp. This is true for F (by assumption) and also for π0F. We can
then deduce that canonical the map of quotient monoids

π0F(D
′)/π0F(C

′)→ π0F(D)/π0F(C)

is injective, by the density of the maps and the fact that the square
(with π0F) is cartesian. By the cofinality theorem, this identifies with

π0F
grp(D ′)/π0F

grp(C ′)→ π0F
grp(D)/π0F

grp(C).

We have therefore that the square with π0Fgrp is cartesian. Finally, by
the cofinality theorem, Fgrp maps the square to a pullback square in
An.
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5.52 Corollary

The functor

k ◦ Idem : Catst∞ → An

is Karoubi-localising.

5.53 Remark

On the other hand, the functor

k ◦(•)min : Catst∞ → An

is not even Verdier-localising. A counter-example (presented in
[HLS22]) is the following: the Verdier projection

Dp(Z)→ Dp(Q)

with kernel the torsion complexes, does not yield an exact sequence
on K-groups after minimalisation, since

k1(Dp(Z))→ k1(Dp(Q))

is not surjective.

5.54 Remark

Corollary 5.52 immediately implies the following. For any a stable∞-category D and a dense stable ∞-subcategory C ⊂ D, Then, for
any i > 0,

Ki(C)→ Ki(D)

is an equivalence.
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This appendix provides a concise overview of non-connective K-theory
and its relevance to our study. To achieve this, we will present a con-
struction similar to the axiomatic framework introduced by Schlichting
[Sch06], which was further developed in [BGT13]. (However, our ap-
proach is considerably simpler and was developed based on a valuable
discussion I had with Denis-Charlse Cisinski.) To maintain clarity and
brevity, we will omit some proofs; nevertheless, these proofs should
not be too challenging given the foundation we have already estab-
lished and the discussion we are going to have throughout the chapter.

In this chapter, to keep the notation more clean, we are going to
denote the idempotent completion of a stable ∞-category C as C#

instead of Idem(C), for shortness. The idempotent completion functor
will therefore be denote as

(•)# = Idem : Catst∞ → Catperf∞
and it will have all the properties discussed in 3.2.5.

A.1 Definition

Consider a stable ∞-category C.We define the derived category

of C as

D(C) := Funlex(Cop, An) ≃ Funex(Cop, Spectra).

With this notation, we can now identify the idempotent completion
of a stable ∞-category C with the ∞-category of compact objects in
D(C).

Let us outline some of the issues that give rise to non-connective
K-theory.

• We have showed in 5.10 that k ◦(•)# is a Karoubi-localising func-
tor, i.e. that given a Karoubi square

D ′ D

C ′ C

⌟

,

k ◦(•)# maps this into a cartesian square in CGrp(An)

175



176 non-connective k-theory of stable infinity categories

k(D
′#) k(D#)

k(C
′#) k(C#)

⌟

.

It follows that the following square is cartesian in the ∞-category
Spectra⩾0 of connective spectra

K(D
′#) K(D#)

K(C
′#) K(C#)

⌟

.

However, this is false when considering the diagram inside
Spectra. (Indeed the inclusion Spectra⩾0 ↪→ Spectra is right
exact, not left exact.)

• Another reason comes from algebraic geometry. In this context
the non-connective K functor have been known from a long time;
for example, it is the Bass K-theory functor “KB” considered by
Thomason and Trobaugh in [TT90]. For example, considering a
Zarinski cover of a scheme X given by open subschemes U and
V , by Mayer-Vietoris one obtains a long exact sequence

Ki(X)→ Ki(U)⊕Ki(V)→ Ki(U∩ V)→ · · · →
→ K0(X)→ K0(U)⊕K0(V)→ K0(U∩ V)

that however results incomplete.

Our aim is to construct a functor K : Catst∞ → Spectra that is
Karoubi-localising and such that,for any stable ∞-category C,

Ω∞K(C) ≃ k(Idem(C)).

Once we have constructed the spectrum K(C) we will denote with
Kn(C) its homotopy groups.

We can start by defining the 0-th non-connective K-group of a stable∞-category C as

K0(C) := K0(C#) ∈ Ab.
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A.2 Remark

By the Thomason theorem 2.8, we know that K0(C) is a subgroup
of K0(C#) since C is a replete full stable sub-∞-category of C#.

A.3 Definition

A stable ∞-category C is called flasque if there exist an exact
functor T : C→ C such that there is a cofibre sequence

Tx→ Tx→ x ∈ C,

naturally in x ∈ C.

By the additivity theorem 1, this implies that

[Tx] ≃ [Tx]⊕ [x],

from which immediately follows

[x] = 0 ∈ K(C)

for any x ∈ C, so that k(C) vanishes.

A.4 Proposition (Eilenberg Swindle)

Consider a stable ∞-category C with countable coproducts. Then,
for any grouplike additive functor F : Catst∞ → An,

F(C) ≃ 0.

In particular, such ∞-categories are all flasque and their K-theory
always vanish.

Proof. Consider the functor

T : C→ C, x 7→
⊕

N

x.

Then there is cofibre sequence of functors in Funex(C,C)

idC ⇒ T ⇒ T .

So by additivity theorem 1

F(idC)⊕ F(T) ≃ F(T),

which implies F(idC) ≃ 0, and so F(C) ≃ 0.
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A.5 Construction

Consider a stable ∞-category C. We define a stable ∞-category

F(C)

as the full stable sub-∞-category of D(C)

• containing the essential image of C through the Yoneda em-
bedding

よ : C→ D(C);

• stable under countable sums.

Notice that, if C is already stable under countable sums in D(C)

then C is idempotent complete. This because if x ∈ C and p : x→ x

is any functor such that p2 ≃ p, then

colim
n

(x
p−→ x

p−→ . . . ) = Im(p)

exists; indeed it fits into cofibre sequence

⊕nx→ ⊕nx→ Im(p).

Therefore there is a retraction

x→ Im(p)→ x,

and so every idempotent morphism would already split.
We have inclusions

C F(C)

C# F(C#)

≃

where the right vertical arrow is an equivalence since

D(C#) ≃ D(C).

A.6 Remark

Consider a Karoubi sequence of stable ∞-categories

A→ B→ C.



non-connective k-theory of stable infinity categories 179

Then, by definition, there is an equivalence

(B/A)# ≃ C#,

and we have a pullback squares of anima

k(A#) k(B#)

∗ k(C#)

⌟

Applying this to the Karoubi sequence

C→ F(C)→ F(C)/C

we obtain a pullback square

k(C#) k(F(C)) ≃ 0

0 k((F(C)/C)#)

⌟

.

Therefore,

k(C#) ≃ Ω k((F(C)/C)#).

In particular we have

K1(F(C)/C) ≃ K0(C) := K0(C#),

and for any n ⩾ 0, we could define

Kn(C) ≃ Kn+1(F(C)/C)

Recall that, by cofinality, Ki(C) ≃ Ki(C#) for any i > 0.
A problem that we meet after all this discussion is that F(•) does

not preserve filtered colimits, which would turn out to be very useful.

A.7 Remark

Recall, for example from [BGT13], that there exists a tensor product
on the Catst∞ (and by restricton, one in Catperf∞ ), which unit 1 is

Spectraω ≃ Spectrafin := SW(Anfin∗ ).

This can for example be deduced after constructing a tensor product
on the ∞-categories PrL

st of stable presentable ∞-categories.
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Consider stable ∞-categories A, B, and C. We define Bil(A,B,C)
as the full sub-∞-category of Fun(A×B,C) spanned by those func-
tor F : A×B→ C, which are exact in both variables once we fix the
other. It turns out that the functor

core Bil(A,B, •) : Catst∞ → An

is precisely represented by the tensor product of A and B in the
sense that there exists an exact functor

γ : A×B→ A⊗B, (a,b) 7→ a⊗ b,

such that there is an equivalence

core Funex(A⊗B,C)→ core Bil(A,B,C), F 7→ F ◦ γ.

There is an adjunction
(
Bil(•, •,C) ⊣ ⊗

)
. Furthermore, the ten-

sor product is compatible with Karoubi equivalence and Karoubi
sequences in both variables.

A.8 Remark

Recall there is an equivalence

FunL(Spectra,C) ≃ C, F 7→ F(S).

A.9 Proposition

For any exact fully faithful functor f : A→ B of stable ∞-categories
and for any stable ∞-category C, the functor

f⊗ idC : A⊗ C→ B⊗ C

is fully faithful.

This is not too difficult to prove just by studying the function induced
between the mapping spectrum on both sides and the tensor product.
In order to not loose to much time on the study of this tensor product,
we omit the proof.

A.10 Theorem

If

A→ B→ C

is an Karoubi sequence of stable ∞-categories, then so is

A⊗D→ B⊗D→ C⊗D
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for any stable ∞-category D.

A.11 Remark

Consider an exact fully faithful embedding of stable ∞-categories
i : A ↪→ B and another a stable ∞-category C. We define

Funex
A(B,C)

as the full sub-∞-category of Funex(B,C) spanned by those functors
F which vanishes on A, i.e. such that F(x) ≃ 0 for all x ∈ A. Then
the canonical morphism

γ : B→ B/A

induces an equivalence

Funex(B/A,C) ≃ Funex
A(B,C).

There is a cocartesian square in Catst∞
A⊗ C B⊗ C

∗ ⊗ C (B/A)⊗ C

⌜

i⊗ idC

.

Since i exact fully faithful functor, also i ⊗ idC is an exact fully
faithful functor which implies there is an equivalence

(B/A)⊗ C ≃ (B⊗ C)/(A⊗ C).

A.12 Definition

We define Σ(1) as the pushout

1 = SW(Anfin∗ ) F(1)

∗ Σ(1) := F(1)/1
⌜

.

A.13 Remark

If a stable ∞-category C is flasque, so is A⊗ C for any A.
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Indeedm, if T : C→ C is the functor for C, then idA ⊗ T : idA ⊗ C→
idA ⊗ C gives a sequence

idA ⊗ T → idA ⊗ T → idA⊗ idC ≃ idA⊗C

in

Funex(A⊗C,A⊗C) ≃ Funex(A, Funex(C,A⊗C)) ≃ Bil(A×C,A⊗C).

A.14 Remark

Consider a stable ∞-category A. There is a cocartesian square

A ≃ A⊗ 1 A⊗F(1)

0 ≃ A⊗ 0 A⊗ Σ(1)
⌜

idA ⊗ i

We obtain a diagram

A A⊗F(1)

F(A) F(A)⊗F(1)

A⊗ Σ1

F(A)/A (F(A)⊗F(1))/A

A⊗ i

which gives us equivalences

k(F(A)/A) ≃ k(F(A)⊗F(1)/A) ≃ k(A⊗Σ(1)).

We can iterate this construction to get consecutive cocartesian
squares of the form
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A A⊗F(1) 0

0 A⊗Σ(1) A⊗Σ(1)⊗F(1) 0

0 A⊗Σ(1)⊗Σ(1) . . .

0 . . .

. . . A⊗Σ(1)⊗n . . .

. . . . . .

⌜

⌜

Applying the K((•)#) to this, we get a diagram

K((A)#) K((A⊗F(1))#) ≃ 0

0 K((A⊗Σ(1))#) K((A⊗Σ(1)⊗F(1))#) ≃ 0

0 K((A⊗Σ(1)⊗Σ(1))#)

K((A⊗Σ(1)⊗n)#)

This is the same as giving the diagonal and maps from each element
of the diagonal to th loop of the next one, such as

K(A#)→ ΩK((A⊗Σ(1))#).

A.15 Definition

Consider a stable ∞-category A. We define the non-connective
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K-theory spectrum K(A) of A (sometimes also called Bass-Karoubi-
spectrum) as the colimit indexed by N in Spectra of

K(A#)→ ΩK((A⊗Σ(1))#)→ · · · → ΩnK((A⊗Σ(1)⊗n)#)→ . . .

i.e.

K(A) := colim
n

ΩnK((A⊗Σ(1)⊗n)#).

A.16 Remark

This construction is functorial in A and gives the non-connective
K-theory spectrum functor

K : Catst∞ → Spectra .

Recall that there exists a right adjoint to the inclusion

Spectra⩾0 ↪→ Spectra

which is given by a truncation, usually called the connective cover

functor

τ⩾0 : Spectra→ Spectra⩾0 .

The counit of this adjunction, which for any X ∈ Spectra, is given by

τ⩾0(X)→ X ∈ Spectra,

induces an isomorphism of stable homotopy groups for any n ⩾ 0, i.e.

πn(τ⩾0X)→ πnX

for any n ⩾ 0. However

πn(τ⩾0X) = 0

for any n < 0.
It follows that, fixed A stable ∞-category, the map

K(A#)→ K(A)

factors through the counit τ⩾0K(A) → K(A). The next proposition
then follows by the fact that πn : Spectra → Ab commutes with
filtered colimits.

A.17 Proposition

For any stable ∞-category C

τ⩾0K(C) ≃ K(C#).
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A.18 Theorem

For any Karoubi sequence of stable ∞-categories

A→ B→ C

there is a fibre sequence of spectra

K(A)→ K(B)→ K(C)

and thus a long exact sequence of non-connectiveK-theory groups

Kn(A)→ Kn(B)→ Kn(C)→ Kn−1(A)

for any n ∈ Z.

Proof. Let us start by noticing that, for any n ⩾ 0,

ΣnK(A) ≃ K(A⊗Σ(1)⊗n).

We also know from theorem A.10, that

A⊗Σ⊗n → B⊗Σ⊗n → C⊗Σ⊗n

is a Karoubi sequence for any n ∈ N. Then, for any i ⩾ n, by applying
K and the i-th homotopy groups we get

Ki((A⊗Σ(1)⊗n)#) ≃ πiK(A⊗Σ(1)⊗n) ≃ πi−n(K(A))→
→ πi−n(K(B))→ πi−n(K(C))

which know fits in an long exact sequence of abelian groups. By
5-lemma we can conclude that the canonical map

K(A)
≃−→ fib(K(B)→ K(C))

is an equivalence.

A.19 Theorem

A stable ∞-category, then

K−1(A) = 0

if and only if for any exact fully faithful embedding A ↪→ B with B

stable idempotent complete ∞-category, the Verdier quotient B/A
is idempotent complete, i.e. B/A ≃ (B/A)#.

Proof. Assume that K−1(A) = 0 and consider a Karoubi sequence

A→ B→ C.
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Then we have an exact sequence

· · · → K0(A)→ K0(B)→ K0(C)→ K−1(A) = 0→ . . . ,

that is equivalently an exact sequence

· · · → K0(A#)→ K0(B#)→ K0(C#) ≃ K0((B/A)#)→ 0→ . . .

Recall that we have an inclusion

B#/A# ↪→ (B#/A#)# ≃ (B/A)#.

This induces by 2.8 an injective morphism in K0

K0(B#/A#)→ K0((B/A)#).

By 5-lemma this is an equivalence; so by 2.8 and the fact that B is
idempotent complete, we get an equivalence

B#/A# ≃↪→ (B/A)# ≃ B/A.

Conversely, fix B ≃ A⊗F(1), so that B/A ≃ A⊗Σ(1) is idempotent
complete. Then we have an exact sequence abelian group

· · · → K0(A#)→ K0(A⊗F(1))→ K0(A⊗Σ(1))→ 0

and so an exact sequence of abelian groups

· · · → K(A)→ K0(A⊗F(1))︸ ︷︷ ︸
=0

→ K0(A⊗Σ(1))︸ ︷︷ ︸
≃K−1(A)

→ 0,

which implies K−1(A) = 0.

Similarly to the connective case we have theorems like the followings.

A.20 Theorem

Consider a stable ∞-category A. Then the map

(fib, cofib) : Seq(A)→ A2, (x→ y→ z) 7→ (x, z)

induces an isomorphism of spectra

K(Seq(A))→ K(A)2.

A.21 Theorem

Consider stable ∞-categories A and B. Consider also an Karoubi
sequence of functors

F ′ → F→ F ′′

in Funex(A,B). Then

K(F) ≃ K(F ′) + K(F ′′)
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in π0(MapSpectra(K(A), K(B))).

We also have the following theorem.

A.22 Theorem

The functor Ω∞ : Fun(Catst∞, Spectra)→ Fun(Catst∞, An) induces an
equivalence between the full sub-∞-category of Karoubi-localising
functor on both sides.

In particular, under this equivalence, the non-connective K-thoery
functor

K : Catst∞ → Spectra

correspond to the approximation of the K-theory anima functor to a
Karoubi localising functor

k ◦ Idem : Catst∞ → An .

The way we can construct an inverse to this functor is similar
to what we have done to construct the non-connective K-theory
spectrum. Consider a Karoubi-localising functor F : Catst∞ → An
and its grouplike completion Ω|FQ(•)|. The latter functor is still
Karoubi-localising. We denote with F̃ the functor corresponding to
Ω|FQ(•)| : Catst∞ → CGrp(An) valued into connective spectra. Then
we define the Karoubi-localising functor F : Catst∞ → Spectra, as

F(C) := colim
n∈N

ΩnF̃(C⊗Σ(1)⊗n)

for any stable ∞-category C.
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In this appendix we are going to briefly discuss t-Structures and
Weight Structured. This are generalizations of truncations of chain
complexes to stable ∞-categories.

b.1 t-structures .

A t-structure is a way of decomposing an triangulated category or
stable ∞-category into two subcategories, which abstract the idea
of complexes whose cohomology vanishes in positive and negative
degrees. The concept of t-structures first appeared in [BBD82]. In the∞-categorical setting they arise as torsion/torsion-free classes asso-
ciated to suitable factorization systems on a stable infinity-category
C

Let us start by giving the classical definition of t-structure on a
triangulated category.

B.1 Definition (t-structure on Triangulated categories)

Consider a triangulated category T. A t-structure on T is defined
as a pair of full subcategories T⩽0,T⩾0 ⊂ T such that

(tsT-1) T⩽0,T⩾0 are both closed under isomorphisms.

(tsT-2) If x ∈ T⩾0 and y ∈ T⩽0, then HomT(x,y[−1]) ≃ 0.

(tsT-3) T⩾0[1] ⊂ T⩾0.

(tsT-4) T⩽0[−1] ⊂ T⩽0.

(tsT-5) If y ∈ T, then there exists a distinguished triangle

x→ y→ z→ x[1]

where x ∈ T⩾0 and z ∈ T⩽0[−1].

If T is a triangulated category equipped with a t-structure we define,
for any m,n ∈ Z,

T⩾n := T⩾0[n],

T⩽n := T⩽0[n],

T[m,n] := T⩾m ∩ T⩽n,

189
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(where ∩ means the largest full subcategory spanned by the objects in
both).
We also define the heart of the t-structure as the subcategory

C♡ := C[0,0].

B.2 Remark

With this notation we can re-write the properties that have to be
satisfied

(tsT-2) If x ∈ T⩾0 and y ∈ T⩽−1, then HomT(x,y) ≃ 0.

(tsT-3) T⩾1 ⊂ T⩾0.

(tsT-4) T⩽−1 ⊂ T⩽0.

(tsT-5) If y ∈ T, then there exists a distinguished triangle

x→ y→ z→ x[1]

where x ∈ T⩾0 and z ∈ T⩽−1.

B.3 Remark

Each of the full subcategories T⩾0,T⩽0 ⊂ T determines the other. If
x ∈ T, then x ∈ T⩽−1 if and only if

HomT(x,y) ≃ 0

for all y ∈ T⩾ 0.

B.4 Definition (t-structure on Stable infinity-categories)

Consider a stable ∞-category C. A t-structure on C is defined as
a pair of full subcategories C⩽0,C⩾0 ⊂ C such that

(tsS-1) C⩾0 is closed under pushout;

(tsS-2) C⩽0 is closed under pullbacks;

(tsS-3) C⩾0,C⩽0 are closed under retracts;

(tsS-4) If x ∈ C⩾0 and y ∈ C⩽0, then the spectrum Map
C
(x,y) is

co-connective, i.e. all of its homotopy groups of positive
degrees vanishes.

(tsS-5) If y ∈ C, then there exists

x→ y→ z
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bifibre sequence with x ∈ C⩾1 and z ∈ C⩽0.

In the definition we have used the following notation. For any m,n ∈
Z,

C⩾n :=Σn(C⩾0) = C⩾0[n],

C⩽n :=Σn(C⩽0) = C⩽0[n],

C[m,n] :=C⩾m ∩ C⩽n,

(where ∩ means the largest full sub-∞-infinity category spanned by
the objects in both).

B.5 Definition

Consider a stable ∞-category C with a t-structure. We define the
heart of the t-structure as

C♡ := C[0,0].

B.6 Definition

A t-structure on C is called bounded if

C ≃ ∪n∈NC[−n,n],

(where ∪ means the smallest full sub-∞-infinity category spanned
by the objects in one of these.)

B.7 Remark

Consider a stable ∞-category C. A t-structure on C is equivalent to
a t-structure on its homotopy category hoC, where we defineC⩾n

(resp. C⩽n) to the full sub-∞-category of C spanned by objects in

hoC⩾n (resp. hoC⩽n).

The most standard example of a stable ∞-category with a t-structure
is the following.

B.8 Example

Consider a ring R. Then we can impose a t-structure on D(R), the de-
rived stable ∞-category of R, which consists of full sub-∞-categories
D⩾0(R), consisting of complexes whose homology is concentrated
in non-negative degrees, and D⩽0, consisting of complexes whose
homology is concentrated in non-positive degrees.
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B.9 Remark

Notice that a t-structure is an additional structure of a stable ∞-
category, and that the same stable ∞-category can have many dif-
ferent t-structures.

B.10 Proposition ([Lur17, Prop. 1.2.1.5])

Consider a stable ∞-category C with a t-structure. For any n ∈ N

• C⩽n is left Bousfield localisation of C.

• C⩾n is right Bousfield localisation of C.

Let us denote

• with τ⩽n the left adjoint to the inclusion C⩽n ↪→ C;

• with τ⩾n the right adjoint to the inclusion C⩾n ↪→ C.

B.11 Corollary

For any n ∈ N,

• C⩽n ↪→ C is stable under limits that exists in C.

• C⩾n ↪→ C is stable under colimits that exists in C.

We have that given y ∈ C, the fibre sequence in (tsS-5) must be of
the form

τ⩾1y→ y→ τ⩽0y

hence it must be (essentially) unique. Moreover, this process if functo-
rial.

The proof of the following theorem can be found in [Lur17, Sec.
1.2.1], where all the concept of t-structure is well and carefully ex-
plained

B.12 Theorem

The heart C♡ is equivalent to (the nerve of) an abelian 1-category.

b.1.1 The Theorem of the Heart.

B.13 Theorem (Heart, [Bar15, Thm. 6.1])

Consider a small stable ∞-category C equipped with a bounded
t-structure (C⩽0,C⩾0). The inclusions

C♡ ↪→ C⩾0 ↪→ C
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induce equivalences

k(C♡) ≃−→ k(C⩾0)
≃−→ k(C).

Given two small stable ∞-categories each equipped with a t-structure,
C with (C⩽0,C⩾0) and D with (D⩽0,D⩾0), a functor F : C → D is
called t-exact if

F(C⩽0) ⊂ D⩽0) and F(C⩾0) ⊂ D⩾0.

B.14 Theorem (Simil-Dévissage)

Consider two small stable ∞-categories each equipped with a t-
structure, C with (C⩽0,C⩾0) and D with (D⩽0,D⩾0). Consider also
an exact and t-exact functor between them F : C→ D. Suppose that

• the restriction

F♡ : C♡ → D♡

is fully faithful;

• the essential image closed under sub-objects and quotients;

• such that every object in d ∈ D♡ has a finite filtration

0 = d0 ⊂ d1 ⊂ · · · ⊂ dn = d

whose sub-quotients di+1/di are in the essential image of F♡.

Then F induces an equivalence F : k(C)→ k(D).

A very short proof of this theorem, using the theorem of the Heart, is
given in [Heba] and is itself based on a proof from Charles Weibel’s
K-book [Wei13].



194 t-structures and weight structured

b.2 weight structures .

A similar concept to that of a t-structure is known as a weight structure.

B.15 Definition (Weight Structure)

Consider a stable ∞-category C. A weight structure on C is
defined as a pair full sub-∞-categories C⩽0,C⩾0 ⊂ C such that

(ws-1) C⩾0 is closed under pushout;

(ws-2) C⩽0 is closed under pullbacks;

(ws-3) C⩾0,C⩽0 are closed under retracts;

(ws-4) If x ∈ C⩽0 and y ∈ C⩾0, then MapC(x,y) is a connective
spectrum.

(ws-5) If y ∈ C, then there exists

x→ y→ z

bifibre sequence with x ∈ C⩽0 and z ∈ C⩾1.

In the definition we used the following notation: for any m,n ∈ Z,

C⩾n :=Σn(C⩾0) = C⩾0[n],C⩽n := Σn(C⩽0) = C⩽0[n],C[m,n] :=C⩾m ∩ C⩽n,

(where ∩ means the largest full sub-∞-infinity category spanned by
the objects in both.)

B.16 Remark

It is worth noting that, despite being similar, the two notion dif-
fer. This should be immediately clear by the fact that in (ws-5)
and (tsS-5), ⩽ and ⩾ are inverted. However, we can think both as
generalization of the notion of “truncation of chain complexes”,
where t-structure is the more sophisticated generalization of the
two. Also, the choice of a fibre sequence for the weight-structure
is non-canonical, while the choice of one for the t-structure (which
will become a d.t. in the homotopy category) is canonically given by
the truncation functors τ⩽n and τ⩾n.

B.17 Definition

Consider a stable ∞-category C with a weight structure. We define
the heart of the weight structure as

C♡ := C[0,0].
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B.18 Definition

A weight structure on a stable ∞-category C is exhaustive if

C ≃ ∪n∈NC[−n,n],

(where ∪ means the smallest full sub-∞-infinity category spanned
by the objects in one of these).

B.19 Remark

Notice that both C⩽0 and C⩾0 are non empty because of (ws-5).
Also, 0 belongs to both, because of (ws-3), being 0 a retract of any
object.

In a similar fashion to the t-structure case, we could prove the
following lemmas, which comprise many results on weight structure.

B.20 Lemma

Consider a stable ∞-category C with a weight structure.

• Consider an object x ∈ C; x ∈ C⩽0 if and only if MapC(x,y) is
a connective spectrum for all y ∈ C⩾0.

• Consider an object x ∈ C; x ∈ C⩾0 if and only if MapC(y, x) is
a connective spectrum for all y ∈ C⩽0.

B.21 Lemma

Consider a stable ∞-category C with a weight structure. Both C⩽0

and C⩾0 are closed under extension, i.e. if there is a (bi)fibre se-
quence

x→ y→ z

with x, z ∈ C⩽0 (resp. C⩾0), then also y ∈ C⩽0 (resp. C⩾0).

B.22 Lemma

Consider a stable ∞-category C with a weight structure. Then C♡ is
an additive ∞-category. Furthermore, a fibre sequence x→ y→ z

in C splits if x,y, z lies in C♡.

A proof of the following theorem can be found (in the case of
Poincaré categories) in [HS21]. This theorem should be thought as a
less sophisticated version of the theorem of the Heart.
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B.23 Theorem (Resolution Theorem, Gillet-Waldhausen)

Consider a stable ∞-category C with an exhaustive weight structure.
Then

core (C♡)∞−grp → core (C)∞−grp → k(C)

is an equivalence of animae.
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Useful discussions were found in

• This mathoverflow answer by Denis Nardin.

• This mathoverflow answer by Denis Nardin.

• This mathoverflow answer by Denis-Charles Cisinski.

• This whole mathoverflow conversation.
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