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Abstract

Bike-sharing systems are becoming increasingly popular in cities around the
world, providing a sustainable and convenient mode of transportation. How-
ever, one of the biggest challenges in operating a bike-sharing system is rebalanc-
ing, which refers to the redistribution of bikes from high-density to low-density
areas. In this study, we propose a greedy algorithm to rebalance bike-sharing
systems. The algorithm considers the current demand for bikes at each station
and dynamically adjusts the number of bikes that are being transported to en-
sure that all stations have a sufficient number of bikes. The results of our simu-
lation show that our greedy algorithm has a relatively worse than the one in the
ideal scenario, w. These results have important implications for the design and
operation of bike sharing systems in cities around the world.
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1
Introduction

The bicycle sharing system is a concept that has gained widespread popu-
larity in recent years as a convenient and sustainable mode of transportation in
urban areas. With Paris’ successful smart bike-sharing system, these systems are
bringing mobility into everyday European cities with rapid adoption in Euro-
pean cities [22]. The basic idea is to provide a network of bike stations through-
out the city, where people can rent bikes for short trips and return them to any
station. This system has proven to be a success in many cities, helping to reduce
traffic congestion and air pollution while providing a convenient and affordable
alternative to traditional modes of transportation [25, 28].

However, one of the biggest challenges in operating a bike-sharing system is
rebalancing [30], which refers to the redistribution of bikes from high-density
areas (where a large number of bikes are located) to low-density areas (where a
small number of bikes are located). Rebalancing is an effective technique to in-
crease efficiency and reduce the number of bikes to meet the demand for bicycle
use. It is about moving the bike from crowded stations to stations where users
need bikes. For example, an operator can send trucks to collect bicycles from
crowded stations and determine routes to unload bikes and leave at stations
where bicycles are needed. To reduce the cost, it is reasonable to decide on the
shortest route to cover all stations. Although there are different approaches un-
der different circumstances, there is a way to solve the static problem [4] and also
to solve the dynamic problem [7]. Static rebalancing refers to the practice of reg-
ularly moving bicycles between docking stations to ensure that each station has a
sufficient supply of bicycles for users. Dynamic rebalancing, on the other hand,
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is a more real-time approach that involves using data and technology to auto-
matically adjust the distribution of bicycles based on current demand. This is
necessary to ensure that bikes are available when and where people need them.
The rebalancing process can be time-consuming and costly, especially in large
cities with complex bike-sharing networks [13].

In response to this challenge, researchers and engineers have developed vari-
ous methods to optimize the rebalancing process [10, 6]. One such method is the
use of greedy algorithms, which can automatically and dynamically adjust the
bike distribution to meet changing demands. The use of algorithms can signifi-
cantly improve the efficiency of the rebalancing process, reducing the number of
bikes that must be transported and increasing the number of users served [31].

This research topic is of great importance for the design and operation of
bike-sharing systems, as well as for the overall sustainability of urban trans-
portation systems. By improving the efficiency of the rebalancing process, bike
sharing systems can become an even more attractive alternative to traditional
modes of transportation, helping to reduce traffic congestion and air pollution
while promoting sustainable transportation.

Bike-sharing systems can be categorized into two main types: station-based
and free-floating. The primary difference between these two types of systems is
the way in which users can access and return bicycles. In a station-based sys-
tem, bicycles are stored in fixed locations, known as docking stations. Users
must take and return bicycles to these stations, and payment is typically based
on the duration of use. Docking stations can be found throughout the service
area and users can use a mobile app or a membership card to check out and
return bicycles at any station. Station-based systems are typically larger and
more complex than free-floating systems and require more infrastructure, such
as dedicated parking spaces and bike racks. In a free-floating system, bicycles
are not anchored at a specific location and can be parked anywhere within a des-
ignated service area. Users can use a mobile app to locate and reserve bicycles,
and payment is based on the duration of use. Free-floating systems offer more
flexibility and convenience for users as they do not need to worry about finding
a docking station to pick up or return a bike. However, this system requires a
more advanced technology for bike tracking and monitoring, and bike parking
and vandalism become more difficult issues. Citi Bike is the largest bimodal
system in New York City. which was launched in May 2013 and has become a
key element in the transportation network, was launched in May 2013 and has
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CHAPTER 1. INTRODUCTION

become part of the network. It is possible to unlock a bike at any station and
return it to any other station in the system, making it ideal for one-way trips.
People ride a bike to work or school, run errands, get to appointments or so-
cial activities, and many more. Citi Bike is open to users 24 hours a day, 7 days
a week, 365 days a year. The bike is available for use for 365 days, and riders
can access thousands of bikes at hundreds of stations in Manhattan, Brooklyn,
Queens, and Jersey City.

We face two major challenges in handling the rebalancing issue. One is how
to predict which docks need bikes and which do not. Another is to decide the
shortest route to minimize the cost of this service. The proposal to answer the
first challenge is to model the occupancy of each station as a Birth-Death Pro-
cess (BDP) with time-varying birth and death rates (i.e., arrival and departure).
In such a manner, we can estimate how long the station is self-sufficient before
running out of bikes or available docks, as long as its original state is known.
Intuitively, the rebalancing cannot be performed every moment with respect to
the monetary cost and the traffic. Therefore, a threshold should be set to trigger
rebalancing. The solution to the second challenge can be done with the greedy
algorithm. The greedy algorithm works by selecting the best option available
at the moment, without considering the impact it may have on future options.
This approach can lead to the finding of an optimal solution in a relatively ef-
ficient manner and is often used in optimization problems such as scheduling
[26], minimum spanning trees [23], and Huffman coding [5]. In this study, the
optimization problem is quite close to the scheduling problem. When consid-
ering that the problem is NP hard, only a suboptimal solution can be found. In
this study, we are considering a scenario in reality where the truck has a capac-
ity when performing the rebalancing operation. In the ideal situation, there is
no such constraint on the rebalancing vehicle.

To assess the performance of our schemes, we use three different metrics:
the percentage of system outage (empty or full station), the number of daily re-
balancing operations, and the daily distance covered by the rebalancing trucks.
The final results are compared under different scenarios; one is static rebalanc-
ing twice a day for a fixed period of time. Another is rebalancing using the
greedy algorithm. All analyzes are based on data from Citi Bikes in New York
City. In particular, data collected from July 2013 to June 2016 is used as training
data sets, while data from July 2016 to June 2017 is used as a test data set. Ob-
servation should be taken into account that unusual events happen to affect our
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final analysis results. For example, a sudden increase or decrease in the num-
ber of bike rentals as a result of a change in the weather, the number of bike
malfunctions. Although there are some anomalies in the patterns, the proposed
framework should handle them properly under a bearable loss. An analysis of
the bike sharing system would give us a better understanding of urban mobility.
Provides valuable information on urban mobility patterns and behaviors, which
can inform planning and decision making for transportation at the city level. It
also increases user satisfaction by understanding the usage patterns and behav-
iors of bike sharing users; operators can make improvements to the system that
improve the user experience, such as improving the availability of bikes, reduc-
ing wait times, and improving the overall quality of bikes.

The work is schemed as follows, 2 gives us insight about the latest work re-
lated bike-sharing system, optimization problems that have been conducted. 3
is about the modeling of the bike-sharing system and the methodologies to an-
alyze the overall problem. 4 includes the parameters and data processing. 5
concludes all the results we get and what further work may be needed to solve
them.
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2
Literature Review

2.1 DOCKING SYSTEM

Bike sharing systems have evolved significantly in recent years, incorporat-
ing various technological advances to improve their functionality and usability.
A notable development is the emergence of dockless systems, which allow rid-
ers to locate and rent bicycles from various locations within a designated service
area without the need for dedicated docking stations. From [21], we can get the
following pros and cons of dock-based and dockless systems.

Dock-based systems:
Dock-based bike-sharing systems require riders to pick up and return bikes

to designated docking stations. This model is often associated with more estab-
lished bike sharing programs, where bikes are rented for a specified time period,
and fees are charged based on the duration of the rental. Some advantages of
dock-based systems include:
• Organized system: Dock-based systems provide designated bike stations

where bikes can be easily located and returned. This makes the system orga-
nized and easy to manage. Predictable availability: Riders can be sure to find a
bike at a docking station as long as they are within the service area and the bike
is not already rented out. Reduced bike clutter: Since bikes must be returned to
docking stations, bike clutter is minimized, and public space is left clean.

However, dock-based systems also have some limitations, including a low
resolvability.
• Limited flexibility: The requirement of returning bikes to designated dock-
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2.2. BIKE REBALANCING PROBLEM

ing stations can make the system less flexible than dockless systems. Limited
coverage: Dock-based systems require significant infrastructure investment, which
can limit the coverage area of the system. Higher capital costs: Dock-based sys-
tems require significant capital investment, including the cost of bike parking
and maintenance.

Dockless Systems:
On the other hand, dockless bike sharing systems allow riders to pick up and

drop off bikes at any location within a specified service area. Dockless systems
are often associated with more recent bike sharing programs, where riders use
mobile apps to locate and rent bikes on demand. Some advantages of dockless
systems include:
•Greater flexibility: Dockless systems offer more flexibility than dock-based

systems, allowing riders to pick up and drop off bikes at any location within
the service area. Lower Infrastructure Costs: Dockless systems require fewer
docking stations, which can significantly reduce infrastructure costs. Increased
coverage: Dockless systems can cover a larger area than dock-based systems,
since there is no need to invest in expensive docking station infrastructure.

However, dockless systems also have some limitations, including:
• Bike clutter: Dockless bikes can be parked anywhere, leading to cluttered

sidewalks and public spaces and complaints from some communities. Lower
predictability: Because bikes can be parked anywhere, riders may not be able
to locate a bike when they need one, or may find one too far away from their
starting point. Vandalism and theft: Without the security of a fixed docking
station, dockless bikes are more susceptible to theft and vandalism.

[21] It suggests four key approaches to reduce carbon footprints with respect
to bike sharing systems. (1) using more sustainable approaches to optimize bi-
cycle distribution and rebalancing, (2) encouraging more private car users to
switch to using bike-sharing systems by incentives, (3) extending the life of dock-
ing infrastructure could significantly reduce the entire normalized environmen-
tal impact of station-based systems, and (4) increasing the efficiency of bike uti-
lization to improve the environmental performance of dockless systems.

2.2 BIKE REBALANCING PROBLEM

Bike sharing system rebalancing is the process of redistributing bikes be-
tween stations to ensure that there are enough bikes and docks available to users
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CHAPTER 2. LITERATURE REVIEW

at different times and locations. Rebalancing is a challenging and important task
for bike sharing operators, as it affects the quality of service, user satisfaction,
operational cost, and environmental impact of the system.

There are two main types of rebalancing strategies: station reallocation and
bike relocation. Station reallocation refers to changing the number and loca-
tion of stations in the system, usually based on long-term demand patterns and
spatial analysis. Bike relocation refers to the move of bikes from one station
to another, usually based on short-term demand fluctuations and optimization
models.

Station reallocation can be performed periodically or dynamically. Periodic
reallocation involves planning the station layout in advance for a certain period,
such as a season or a year, based on historical data and forecasts. Dynamic real-
location involves adjusting the station layout in real time or near real time, based
on current or predicted demand and supply. Dynamic reallocation can be more
responsive to changing conditions but can also be more complex and costly to
implement.

Relocation of bikes can be done manually or automatically. Manual reloca-
tion involves using vehicles or staff to transport bikes between stations, usually
following a predefined schedule or route. Automatic relocation involves using
self-driving vehicles or smart bikes that can move autonomously between sta-
tions, usually following an online optimization algorithm. Automatic relocation
can be more efficient and flexible, but also more technologically demanding and
risky.

The literature on rebalancing bicycle sharing systems is vast and diverse, cov-
ering different aspects such as problem formulation, solution methods, perfor-
mance evaluation, and case studies. Some of the main research topics include:
•Demand analysis and prediction: This involves studying the spatiotempo-

ral patterns of bike share demand and supply and developing models or meth-
ods to forecast future demand and supply at different stations or regions.
•Optimization models and algorithms: This involves formulating the rebal-

ancing problem as a mathematical program or a combinatorial optimization
problem and developing exact or heuristic algorithms to solve it efficiently and
effectively.
•Simulation models and tools: This involves developing simulation models

or tools to mimic the behavior and dynamics of bike sharing systems and using
them to test and compare different rebalancing strategies or scenarios.
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2.2. BIKE REBALANCING PROBLEM

•Performance metrics and indicators: This involves defining and measuring
different performance metrics or indicators to evaluate the effectiveness, effi-
ciency, robustness, and sustainability of rebalancing strategies or systems.
•Case studies and applications: This involves applying rebalancing strate-

gies or systems to real-world bike sharing systems and analyzing their impacts
on service quality, user behavior, operational cost, and environmental footprint.

Vallez et al. [27] provide a systematic review of the challenges and oppor-
tunities in rebalancing dock-based bike sharing, focusing on the algorithmic as-
pects of the problem. They performed a keyword analysis in the literature and a
timeline that shows the evolution of those keywords throughout the last decade.
They also include an exhaustive table that summarizes the main characteristics
of 114 papers on bike sharing rebalancing published between 2010 and 2020.
Beigi et al. [2] provide a comprehensive analysis of the usage pattern of Cap-
ital Bikeshare in the Washington DC metropolitan area, one of the prominent
bike sharing systems in the United States. They also propose an optimization
strategy formulated as deterministic integer programming to reallocating bike
stations daily and rebalancing the bike supply system. They tested their strat-
egy in a case study in Washington, DC, using historical data from 2019. Wang
et al. [29] investigate an extended bike sharing rebalancing problem (BRP) that
considers the influence of the number of bikes distributed by the operator on
the demand of users. They proposed a mixed-integer nonlinear programming
model for the problem and linearized it into a mixed-integer linear program-
ming model. The model aims to maximize the profit of bike-sharing operators
by making transportation vehicle route plans and determining the target num-
ber of bikes at each station after the redistribution operation. The model is tested
on real Beĳing Mobike data and shows that the rebalancing behavior signifi-
cantly impacts user demand, thus guiding the operator.

The following content will focus mainly on the topic of bike rebalancing. The
bike relocation problem is a type of optimization problem in which the goal is
to minimize the cost of moving bikes from surplus to shortage stations while
also ensuring that the bikes are available when needed. This problem is partic-
ularly challenging because it involves real-time decision making in response to
changing user demand patterns and requires a detailed understanding of the
underlying network of stations and how they are connected. The most widely
used approaches are static and dynamic.

Static Approach: In the static approach, the bike rebalancing problem is
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CHAPTER 2. LITERATURE REVIEW

viewed as a single optimization problem that can be solved using mathemat-
ical modeling and optimization techniques. The goal is to find a single opti-
mal solution that minimizes the cost of moving bikes from surplus to shortage
stations, based on a snapshot of the system at a particular point in time. This
approach assumes that demand patterns and bike availability remain constant
over time and does not take into account the real-time dynamics of the system.
Static rebalancing is usually performed by mixed integer programming (MIP).
Branch-and-cut algorithms are proposed to solve a relaxation problem. The up-
per bound of the optimal solution for a problem is obtained by a tabu search
based on some theoretical properties of the solution [4]. [12] It proposed a math-
ematical programming-based three-step heuristic for static repositioning prob-
lems. In the first step, the stations are organized based on considerations of
geographic location and bike inventory. The second step is to route the reposi-
tioning of vehicles through clusters while tentative inventory decisions are made
for each station individually. Third, the original repositioning problem is solved
with the restriction that the traversal of repositioning vehicles is allowed only
between stations belonging to consecutive clusters following the routes deter-
mined in the previous step or between stations belonging to the same cluster.
Pal et al. [24] propose a novel bike sharing model called free-floating bike shar-
ing (FFBS), where bikes can be parked and locked at any location within a pre-
determined area, thus eliminating the need for docking stations. They address
the static rebalancing problem for FFBS, which consists of adjusting the number
of bikes at each location to match the expected demand by using a fleet of vehi-
cles that can transport and relocate the bikes. They formulate the static complete
rebalancing problem as a mixed-integer linear program (MILP), which can ac-
commodate single and multiple vehicles and multiple visits to a location by the
same vehicle. The paper develops a hybrid nested large neighborhood search
with variable neighborhood descent (LNS-VND) algorithm, which is capable
of solving large-scale instances of the problem efficiently and effectively. They
evaluated the algorithm on some benchmark instances from the literature and
on some new instances based on real-life FFBS programs in Tampa and Chicago.
Lahoorpoor et al. [18] propose a bottom-up spatial cluster-based model to solve
the static rebalancing problem in bike sharing systems. The static rebalancing
problem aims to adjust the number of bikes at each station to a predetermined
level by using vehicles that can transport and relocate the bikes. They first in-
vestigate the spatial and temporal patterns of bike-sharing trips in the network.
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2.2. BIKE REBALANCING PROBLEM

They then define a similarity measure based on trips between stations and use
a hierarchical agglomerative clustering method to discover groups of correlated
stations. With assumption that there are two levels of rebalancing: intra-cluster
and inter-cluster. The intra-cluster level balances the bike distribution inside
each cluster, and the inter-cluster level balances the bike distribution between
different clusters. And optimizing the rebalancing tours according to the posi-
tive or negative balance at both levels using a single-objective genetic algorithm.
The rebalancing problem is modeled as an optimization problem that minimizes
the length of the tour.

Dynamic Approach: In the dynamic approach, the bike rebalancing prob-
lem is viewed as a continuous optimization problem that requires real-time de-
cision making and adaptation to changing user demand patterns. The goal is
to dynamically allocate bikes between stations based on current and predicted
future demand patterns, with the aim of minimizing the overall cost of cycling
rebalancing over time. This approach requires the use of machine learning and
optimization techniques that can be adapted to change user behavior and traffic
patterns. [8] It presents a modeling approach by taking advance of the Dantzig-
Wolfe and Benders decompositions to derive the lower and upper bound for
the solution of the pick-and-delivery problem. Chiariotti et al. [7] propose a
dynamic rebalancing strategy for bike sharing systems that uses historical data
to predict network conditions and decide when and how to redistribute bikes
between stations. The paper models the occupancy of the stations as birth-and-
death processes and uses graph theory to select the rebalancing path and the
stations involved. They validate the proposed strategy based on data provided
by the New York City bike sharing system and show that it outperforms static re-
balancing schemes based on a fixed schedule. Hu et al. [14] propose a dynamic
optimization rebalancing model for docked bike-sharing systems that aims to
minimize the operating cost of rebalancing while maximizing user satisfaction.
They evaluate the demand for rebalancing using historical and predicted data to
avoid unnecessary service for each station within a rebalancing horizon. They
use a time window satisfaction modeling to evaluate user satisfaction and adopt
a multiobjective evolutionary algorithm based on decomposition (MOEA/D)
under the rolling horizon strategy to solve the model. They improve algorith-
mic performance by applying a local search based on station priority and per-
form numerical experiments using real-world data to demonstrate the proposed
model and the advantage of the improved algorithm.
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However, from a practical point of view, only the static approach to operating
rebalancing is far from sufficient. A more practical method would be adopting
the dynamic method. Obviously, the dynamic approach is difficult to implement
when considering user activities and traffic during the day.

2.3 MARKOV DECISION PROCESS(MDP)

A Markov Decision Process (MDP) is a mathematical framework used to
model decision-making problems in which an agent interacts with an environ-
ment over a sequence of discrete time steps.

In an MDP, the agent takes actions that affect the state of the environment
and receives rewards based on the state transitions and actions taken. The state
of the environment at each time step depends only on the previous state and
action taken by the agent, and not on any earlier history.

Formally, an MDP is defined by a set of states S, a set of actions A, a transition
function T (s,a,s’) that specifies the probability of transition from state s to state s’
under action a, and a reward function R(s,a,s’) that specifies the reward received
by the agent for transition from state s to state s’ under action a.

The agent’s goal is to learn a policy π(s) that maps each state to an action,
to maximize the cumulative reward expected over time. This is typically done
using reinforcement learning algorithms that iteratively update the policy based
on the observed rewards and state transitions.

[20] It proposed MDP to help decide which station to prioritize and how
many bikes should be taken or added to each station. Its goal is to minimize the
arrival rate of unsatisfactory users who cannot deposit bikes or rent bikes. In [3],
their method also adopts MDP to prioritize stations according to the urgency
that must be operated.

2.4 GREEDY ALGORITHM

Greedy algorithm, this algorithm is based on the principle of moving bikes
from stations with a surplus to stations with a deficit. Select the station with
the largest surplus and the station with the largest deficit and move bikes from
the former to the latter until the surplus is eliminated or the deficit is filled. The
process is repeated until no further improvements can be made.
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2.4. GREEDY ALGORITHM

Returning to the context of the relancing problem, it is similar to the Traveling
Salesman Problem(TSP). To solve the TSP, the Nearest-Neighbor (NN) algorithm
is a heuristic approach used to find a suboptimal solution to the problem. The
TSP is a classic combinatorial optimization problem that asks for the shortest
possible route that visits a given set of cities and returns to the starting city.

The NN algorithm starts by selecting an arbitrary city as the starting point
and then repeatedly selects the nearest unvisited city as the next destination until
all cities have been visited. Finally, the algorithm returns to the starting city to
complete the tour. The resulting path is a suboptimal solution to the TSP.

One of the first greedy algorithms to solve the TSP was proposed by Duan
et al. [9], who adapted a Hamiltonian path algorithm to find a route that covers
all unbalanced stations (that is, stations that have more or less bikes than their
target level). The algorithm starts from an arbitrary unbalanced station and it-
eratively adds the nearest unbalanced station to the route until all unbalanced
stations are visited. Then, the algorithm greedily adjusts the route by insert-
ing or deleting stations if the vehicle capacity is violated. The algorithm can be
easily extended to a parallel version that assigns multiple vehicles to different
subsets of unbalanced stations. The main advantage of this algorithm is that it
has a flexible trade-off between running time and solution quality, as it can ad-
just the number of vehicles and the size of subsets. The main limitation is that a
feasible solution may not be found if there are too many unbalanced stations or
if the vehicle capacity is too small.

Another example of a greedy algorithm for the TSP is the one proposed by
Kadri et al. [16], which is based on an insertion heuristic. The algorithm starts
with an empty route for each vehicle and then iteratively inserts an unbalanced
station into an existing route that minimizes the increase in distance and does
not violate the capacity constraint. The algorithm stops when all unbalanced
stations are inserted or when no feasible insertion is possible. The authors com-
pared their algorithm with several other heuristics and exact methods in real-
world datasets and showed that their algorithm can find near-optimal solutions
in reasonable time.
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3
System Model

The basic modeling works thanks to the work of Chiariotti et al. [7]. While to
make the model more realistic, the capacity of the rebalancing vehicle has been
taken into consideration. The network of bicycle sharing system stations can be
defined as a fully connected graph 𝒢 = (𝒱 , ℰ). where 𝒱 = {1, · · · , 𝑉} is the
group of stations and ℰ ⊆ 𝑉 ×𝑉 denotes the edges, which are the distances be-
tween each two stations, on the graph 𝒢. For each station 𝑣 ∈ 𝑉 has a capacity of
bikes 𝑚𝑣(𝑡) ∈ ℳ𝑣(𝑡) = {0, 1, · · · , 𝑀𝑣} at time 𝑡. 𝑀𝑣 stands for the maximum ca-
pacity of the station. The distance between each node can be denoted as 𝑑(𝑣𝑖 , 𝑣 𝑗)
The goal of this work is to determine the route to rebalancing with an operat-
ing vehicle, with capacity 𝐶, minimize the cost and maximize user satisfaction.
Here, we define the cost related to the number of vehicles, 𝑋, and the total dis-
tance covered. We set 𝑁 = 1 in this study. For the satisfaction aspect of users,
we try to meet the demand of users when they need bike service. To meet this
requirement, we can increase the number of bikes at each station at the time 𝑡.
To process the data, the data was sampled every time length 𝑇𝑟 . In time frames
𝑇𝑟 , for each time frame 𝑘, we decide the ideal state 𝑚∗𝑣(𝑘𝑇𝑟) for 𝑣 ∈ 𝑉 . 𝑚∗𝑣(𝑘𝑇𝑟)
is the value that is least likely to be 0 or 𝑀𝑣 over a period of time. Maximizing
survival time is the first step in deciding on our rebalancing operation. Analyz-
ing historical data on the bike sharing system could achieve this goal. Second,
though we have the optimal survival time of each station, there is a trade-off
we are facing, which is minimizing the total distance and not visiting a station
twice simultaneously. The network-wide optimization was solved by introducing
the greedy algorithm.
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3.1. SURVIVAL TIME

Figure 3.1: Illustration of bike rebalancing route

3.1 SURVIVAL TIME

We can model the occupancy of each station as the Markov-modulated Pois-
son process (MMPP) [11]: with the time-varying Poisson-distributed birth and
death rates 𝜆𝑣(𝑡) and 𝜇𝑣(𝑡) (ie, arrival and departure rates), respectively. And
we can make a reasonable assumption that the use of bikes is irrelevant to the
current state of the stations, that is, the rates 𝜆𝑣(𝑡) and 𝜇𝑣(𝑡) are independent of
the state of the stations 𝑚𝑣(𝑡).

According to the Birth-Death Process(BDP) [17] to model the occupancy of
the stations. We adopt the discrete time 𝜆𝑣(𝑡) and 𝜇𝑣(𝑡) in the time frame 𝑇𝑟 and
the BDP slot 𝑇𝑝 . Therefore, the mapping is as follows:

𝑡 → 𝑛𝑇𝑟 + 𝑘𝑇𝑝 𝑤𝑖𝑡ℎ 𝑇𝑟 = ⌊𝑡/𝑇𝑝⌋ , 𝑘 = ⌊(𝑡 − 𝑛𝑇𝑟)/𝑇𝑝⌋ (3.1)

In 3.1, 𝑛 in the index of 𝑇𝑟(the time frame) and 𝑘 is the index of 𝑇𝑝(the BDP slot).
So far, we have made two assumptions, BDP and discrete time, which make it
possible to estimate arrivals and departures accurately. After determining 𝑇𝑟
and 𝑇𝑝 , the MMPP parameters can be calculated with the available data set.

Intuitively, when the stations are empty or fully docked, users cannot rent or
park bikes. Therefore, it may affect or change users’ decision making. As a result,
the true demand for bikes would not be accurately reflected in the historical data
set. To reduce the impact of this scenario, we take these two states 0 and 𝑀𝑣 as

14



CHAPTER 3. SYSTEM MODEL

absorbing states. Based on the formulations above, the survival time 𝑆𝑣(𝑡 , 𝑚) of
station 𝑣 at time 𝑡with state𝑚 can be formally defined as the shortest time period
𝜏 after the probability 𝑃𝑚,𝑎(𝜏; 𝑡) of reaching state 𝑎 ∈ {0, 𝑀𝑣} where 𝑚 ∈ 𝑀𝑣

is the starting state at time 𝑡, until the probability 𝑃𝑚,𝑎(𝜏; 𝑡) exceeds the preset
threshold 𝑝𝑡ℎ , the expression as shown in 3.2

𝑆𝑣(𝑡 , 𝑚) = 𝑖𝑛 𝑓 {𝜏 : 𝑃𝑚 ,0 (𝜏; 𝑡) + 𝑃𝑚 ,𝑀𝑣 (𝜏; 𝑡) ≥ 𝑝𝑡ℎ} (3.2)

It should be noted that 𝑆𝑣(𝑡 , 𝑚) varies over time, it shows the variance of the
birth rate 𝜆𝑣(𝑡) and the death rate 𝜇𝑣(𝑡). The hyperparameter 𝑃𝑡ℎ controls the
frequency of rebalancing operation, and a lower value results in a shorter sur-
vival time, as a consequence of more frequent rebalancing. Vice versa, a higher
value of 𝑃𝑡ℎ produces a less frequent rebalancing. Here, we are facing a trade
off; more frequent rebalancing can increase the overall satisfaction of the users,
and it also increases the cost of the system.

The transition probability 𝑃𝑖 , 𝑗(𝑡) can be calculated on the basis of the state
distribution at each end of the previous time frame, since the birth and death
rates are different according to different time frames. After using the Markov
chain property, we get the following.

𝑃𝑖 , 𝑗(𝑡) = 𝑃𝑖 , 𝑗(𝑛𝑇𝑟 + 𝑘𝑇𝑝) =
∑
𝑙∈𝑀𝑣

𝑃𝑖 ,𝑙(𝑛𝑇𝑟)𝑃𝑙 , 𝑗(𝑘𝑇𝑝), 𝑖 , 𝑗 ∈ 𝑀𝑣 , (3.3)

as 𝑘 and 𝑛 are already given in 3.1. The transition matrix 𝑃𝑖 , 𝑗(𝑛𝑇𝑟 + 𝑘𝑇𝑝) after the
𝑘 steps is the (𝑘 + 1) − 𝑡ℎ power of the one-step transition matrix. for the system
in time frame 𝑛 and slot 𝑘, we use 3.3 to compute transition matrices.

Calculating 𝑃𝑚,0(𝑡) and 𝑃𝑚,𝑀𝑣 (𝑡) at station 𝑣 can be done by evaluating transi-
tion probabilities starting from state𝑚 for each time step. Then the length of the
slot 𝑇𝑝 will be our only focus, with birth and death rates 𝜆𝑣(𝑡) and 𝜇𝑣(𝑡). And 𝐴𝑣
and 𝐷𝑣 denote the arrival and departure numbers at station 𝑣 during the design
slot length. For empty docks (birth) and bike demand (death), they are modeled
as a Poisson process, with mean 𝜆𝑣𝑇𝑝 and 𝜇𝑣𝑇𝑝 , respectively. After a sequence of
events has occurred, the coming state is the same regardless of the order of the
events. Therefore, the sum of the number of arrivals and departures is what we
really care about. Technically, this statement is not strictly accurate. The state
may reach the absorbing state in the process, which can affect decision-making
over time. However, such a probability is relatively low, and the impact on the
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simplified model is neglected. The formulation of the probability 𝑃𝑖 , 𝑗 from state
𝑖 to state 𝑗 in slot length 𝑇𝑝 can be written as follows:

𝑃𝑖 , 𝑗 = 𝑃𝑟[𝐴𝑣 − 𝐷𝑣 = 𝑗 − 𝑖]

=
∞∑

𝑙=−∞
𝑃𝑟[𝐴𝑣 = 𝑗 − 𝑖 + 𝑙]𝑃𝑟[𝐷𝑣 = 𝑙]

=
+∞∑

𝑙=𝑚𝑎𝑥{0, 𝑗−𝑖}

(𝜆𝑣𝑇𝑝)−(𝑗−𝑖+𝑙)(𝜇𝑣𝑇𝑝)−𝑙
𝑙!(𝑗 − 𝑖 + 𝑙)!

(3.4)

𝐴𝑣 and 𝐷𝑣 follow the Poisson distribution in 3.4. According to [15], 3.4 can be
written in the form of a truncated Skellam distribution:

𝑃𝑆𝐾(𝑙;𝜇1, 𝜇2) = 𝑒−(𝜇1+𝜇2)
(
𝜇1

𝜇2

) (𝑙/2)
𝐼|𝑙 |(2√𝜇1𝜇2) (3.5)

where 𝑙 = 𝑗 − 𝑖, 𝜇1 = 𝜆𝑣𝑇𝑝(the mean of 𝐴𝑣) and 𝜇2 = 𝜇𝑣𝑇𝑝(the mean of 𝐷𝑣). 𝐼𝑘(𝑧)
is the modified Bessel function of the first kind and of order 𝑘 [1]:

𝐼𝛼(𝑥) = lim
𝑁→−∞

𝑁∑
𝑛=0

1
𝑛!Γ(𝑛 + 𝛼 + 1)

( 𝑥
2

)2𝑛+𝛼

Γ(𝑧) =
∫ ∞

0
𝑥𝑧−1𝑒−𝑥𝑑𝑥

(3.6)

Given 3.4, we need to consider it in the finite range {0, . . . , 𝑀𝑣}. The probability
transition function of the absorbing states {0, 𝑀𝑣} has the following form:

𝑃𝑖 ,0 =
0∑

𝑘=∞
𝑝𝑆𝐾(𝑘 − 𝑖;𝜇1, 𝜇2), 𝑖 ∈ 𝑀𝑣\{0, 𝑀𝑣},

𝑃𝑖,𝑀𝑣 =
+∞∑
𝑘=𝑀𝑣

𝑝𝑆𝐾(𝑘 − 𝑖;𝜇1, 𝜇2), 𝑖 ∈ 𝑀𝑣\{0, 𝑀𝑣}.
(3.7)

Intuitively, we know that when the state reaches the absorbing states 0 and 𝑀𝑣 .
Probability is unlikely to change. In other words, 𝑃0,0 = 𝑃𝑀𝑣 ,𝑀𝑣 = 1, while
𝑃0, 𝑗 = 0,∀𝑗 ≠ 0 and 𝑃𝑀𝑣 , 𝑗 = 0,∀𝑗 ≠ 𝑀𝑣 .

To actually compute the probabilities on the time stamp 𝑡, we divide the pro-
cess into three steps, since we show that time 𝑡 has equivalence in 3.1:

1. Separate the problem in time frame 𝑇𝑟 by exploiting the Markov property;
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for the probabilities in 𝑛 > 0, it is essential to compute the probabilities at
the end of the frame 𝑛′ < 𝑛

2. For computing the probabilities in slots length 𝑇𝑝 within a single time
frame 𝑛. We obtain it at the power of 𝑘 + 1(indexing from 0), in the slot
𝑘 > 0 within the time frame 𝑛.

3. Probabilities of transition at the beginning of the frame or slot(𝑛 = 0, 𝑘 =
0). Then we take advantage of equations 3.4 and 3.7.

For each time stamp 𝑡 and state 𝑚, we are capable of computing the prob-
ability in the absorbing states 0 and 𝑀𝑣 , without even mentioning the survival
time 𝑆𝑣(𝑡 , 𝑚) at the station 𝑣. Taking into account 𝑆𝑣(𝑡 , 𝑚), the optimal state of
each station should be around the mid value intuitively, and . Therefore, there
exists an optimal value 𝑚★

𝑣 (𝑡) makes the optimal survival time𝑆★𝑣 (𝑡) meets such
requirement:

𝑚★
𝑣 (𝑡) = arg max

𝑚∈𝑀𝑣
𝑆𝑣(𝑡 , 𝑚) 𝑆★𝑣 (𝑡) = 𝑆𝑣(𝑡 , 𝑚★

𝑣 (𝑡)), 𝑣 ∈ 𝑉. (3.8)

Consequently, we would like to stay in the state 𝑚★
𝑣 (𝑡) with the time stamp

𝑡 to maintain the longest survival, under which circumstances the rebalancing
operation is not requested. Next, we will discuss rebalancing with the help of
the optimal survival time.

3.2 NETWORK WIDE OPTIMIZATION

Previously, we have introduced that the bike sharing system can be modeled
as a graph 𝒢. The number of vehicles that are rebalancing is expressed as 𝑋,
and under a reasonable assumption that the subsets of the stations visited by
each vehicle are disjoint. Each rebalancing vehicle has a capacity 𝐶, and the
total number of rebalancing bikes cannot exceed this number. After that, we
define a routing graph ℋ = (𝒱′, ℱ ), where 𝒱′ ⊆ 𝒱 ∪ {0} is the sum of the
subsets of the stations that the rebalancing vehicles need to cover and {0} is the
vehicle storage station. ℱ denotes the edges that need to be solved in the Vehicle
Routing Problem (VRP) [19] on (𝒱′, ℰ).

Regarding station occupancy, we use the vector to express it in the vector of
the form m(∅)(𝑡) = [𝑚(∅)1 (𝑡), . . . , 𝑚(∅)𝒱 (𝑡)]. The occupancy vector after rebalanc-
ing is denoted as m(ℋ)(𝑡). The reward function can be designed on the basis of
the time before the rebalancing operation is performed. For example, the differ-
ence between the minimum survival times among all stations after and before
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3.2. NETWORK WIDE OPTIMIZATION

rebalancing operations. For every rebalancing operation, there is a fixed cost to
deploy a truck to carry out the operation, and the other cost is related to the dis-
tance𝐷𝑥(ℋ) of each truck 𝑥 ∈ [1, . . . , 𝑋]. Based on all of the above assumptions,
the optimization function 𝑓̃ (ℋ , 𝑡) can be designed as

𝑓̃ (ℋ , 𝑡) =
(
min
𝑣∈𝑉 𝑆𝑣(𝑡 , 𝑚

ℋ
𝑣 (𝑡)) −min

𝑣∈𝑉 𝑆𝑣(𝑡 , 𝑚
∅
𝑣 (𝑡))

)
− 𝛼𝑋 − 𝛽

𝑋∑
𝑥=1

𝐷𝑥(ℋ) (3.9)

where 𝛼 and 𝛽 are the cost of service on the number of rebalancing vehicles and
the total distance, respectively. Survival times 𝑆𝑣(·, ·) are expressed in 3.2.

Furthermore, we would like to introduce another parameter 𝛾 to set a thresh-
old on survival time to eliminate longer survival times, which may have unbear-
able estimation errors resulting in meaningless rebalancing operations. The up-
dated optimization function would be the following.

𝑓 (ℋ , 𝑡) =
(
min

{
min
𝑣∈𝑉 𝑆𝑣(𝑡 , 𝑚

ℋ𝑣(𝑡)), 𝛾
}
−min

{
min
𝑣∈𝑉 𝑆𝑣(𝑡 , 𝑚

∅
𝑣 (𝑡)), 𝛾

})
− 𝛼𝑋 − 𝛽

𝑋∑
𝑥=1

𝐷𝑥(ℋ)
(3.10)

As mentioned above, the operating day is discretized into frames 𝑇𝑟 . Prob-
lems can be solved periodically for every 𝑇𝑟 in the routing graphℋ = (𝒱′, ℱ ).
The results we will obtain from solving the problem will be to determine the
number of bikes that need rebalancing operations at each station and to plot the
route for each rebalancing vehicle. It should be noted that if the optimization
function 𝑓 (ℋ , 𝑡) is negative at time 𝑡 and station𝒱′ ≠ 0, no rebalancing opera-
tion is required (the reward is less than the cost).

The set of stations to visit, 𝒱′, and the route of the vehicle, ℱ , should be
jointly determined because the optimization function depends on the distance
covered by the truck. To simplify the calculation of𝒱′, we first assume that we
know the minimum path length of the rebalancing route for a given set of nodes.
We can then derive𝒱′ and describe how to compute this distance. The calcula-
tion is simplified by a theorem 3.2.1 taken from [7] that states that 𝒱′ contains
the nodes with the shortest survival times. All subsets that do not satisfy this
theorem 3.2.1 can be safely discarded as suboptimal.

Theorem 3.2.1. If 𝑣 ∈ 𝒱′, then 𝑆𝑣(𝑡 , 𝑚∅𝑣 (𝑡)) < 𝑆𝑢(𝑡 , 𝑚∅𝑢 (𝑡)) ∀𝑢 ∈ 𝒱\𝒱′
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The procedure for estimating𝒱′ is described in Algorithm 1. First,𝒱′ con-
tains the deposit point(Line 1); then identifying the node 𝑣(𝑖) ∈ 𝒱\𝒱′ in each
iteration 𝑖 (Line 9). Calculation of the reward after adding 𝑣(𝑖) to𝒱′ when the
survival time is optimal(Line 10), plus the cost to cover the route(Line 14). In
particular, the reward is designed as the difference between the smallest sur-
vival time in 𝒱′ and the smallest survival time before rebalancing (Line 4 and
Line 11), as for the cost which is decided by distance (Line 14). When the op-
timization function(the difference between reward and cost) increases, we add
node 𝑣(𝑖) to𝒱′ (Line 15). The termination condition of the iteration is either that
the station 𝑣 ∈ 𝒱 has been added to 𝒱′, that is, the iteraion condition is met,
or that the optimization function has converged because the minimum optimal
survival time for all 𝜔 ∈ 𝒱′ after rebalancing is less than the current optimal
survival time of each node(Line 19).

The idea of solving the dynamic rebalancing problem can be divided into two
parts: (i) plot the route to connect the stations that need rebalancing operation
plus consideration of the vehicle capacity and the traveling time, and (ii) work
out which stations have to be visited. For the first part, we calculate the function
𝑝𝑎𝑡ℎ to connect all nodes with the shortest distance under the constraint of ve-
hicle capacity. The latter part has been widely discussed in 2. However, route
plotting can adopt other algorithms or strategies depending on different factors.

As for the distance function, the sum of requested bikes of rebalancing is not
zero. Reflecting on the real world is that there are always some bikes that should
be taken away or added to the stations from some other place. Here we make
the assumption that there is a warehouse at the base with infinite bikes to take
and space to store the bikes. As a result, when the truck does not have enough
bikes to add to the next station or space to take the bikes back. The truck needs
to go back to the base to reload the truck to the maximum capacity or unload all
bikes to the empty.

The route plotting strategy can be solved by the famous VRP, which is a prob-
lem that has been solved before and possibly at the lowest cost. As mentioned
before, VRP is an NP-hard problem; there are only existing suboptimal solutions.
We can make the following assumptions to reduce the computational complex-
ity of VRP:

1. For the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 function in Line 13, we use the Euclidean distance to rep-
resent the distance metric for the edges in ℰ. In other words, 𝑑(𝑣𝑖 , 𝑣 𝑗) =
𝑑(𝑣 𝑗 , 𝑣𝑖) for any two stations 𝑖 and 𝑗.
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Algorithm 1 Rebalancing routing plotting
1: 𝑖 = 0,𝒱′ = {0}, 𝑓 (ℋ , 𝑡) = 0, 𝑑𝑜𝑛𝑒 = 0 ⊲ Initialization
2: 𝛼, 𝛽, 𝛾, 𝑋 ⊲ Hyperparameter initialization
3: S(𝑡) = [𝑆1(𝑡 , 𝑚∅1 ), . . . , 𝑆|𝒱 |(𝑡 , 𝑚∅|𝒱|)] ⊲ Survival time vector before

rebalancing for each station 𝑣 ∈ 𝒱
4: 𝜎 = min𝜔∈𝒱 S(𝑡) ⊲ Smallest survival time before rebalancing
5: 𝜎 = min{𝜎, 𝛾} ⊲ Put a threshold on the survival time
6: S★(𝑡) = [𝑆★1 (𝑡), . . . , 𝑆★|𝒱|(𝑡)] ⊲ Optimal survival time vector for each station
𝑣 ∈ 𝒱

7: while (𝑖 < 𝒱)&(𝑑𝑜𝑛𝑒 = 0) do: ⊲ Until the visited nodes can improve the
overall reward

8: 𝑖 ← 𝑖 + 1 ⊲ The iteration
9: 𝑣(𝑖) ← arg min𝜔∈𝒱\𝒱′ S(𝑡) ⊲ Choose unvisited node with smallest

survival time
10: [S]𝑣(𝑖)(𝑡) ← [S★]𝑣(𝑖)(𝑡) ⊲ Update the survival time of each node 𝑣(𝑖)
11: 𝑟𝑒𝑤𝑎𝑟𝑑← min{min S(𝑡), 𝛾} − 𝜎 ⊲ Update the reward
12: ℱ ← 𝑝𝑎𝑡ℎ{𝒱′ ∪ 𝑣(𝑖)} ⊲ Determining the rebalancing path ℱ
13: 𝐷 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒{ℱ } ⊲ The distance of the path ℱ
14: 𝑐𝑜𝑠𝑡 ← 𝛼𝑋 + 𝛽𝐷 ⊲ Update the cost
15: if 𝑟𝑒𝑤𝑎𝑟𝑑 − 𝑐𝑜𝑠𝑡 > 𝑓 (ℋ , 𝑡) then:
16: 𝒱′←𝒱′ ∪ 𝑣(𝑖) ⊲ Include node 𝑣(𝑖) in the rebalancing
17: 𝑓 (ℋ , 𝑡) ← 𝑟𝑒𝑤𝑎𝑟𝑑 − 𝑐𝑜𝑠𝑡
18: end if
19: if min𝜔∈𝒱′{[S★(𝑡)]𝜔} < min𝜔∈𝒱\𝒱′{[S(𝑡)]𝜔} then
20: 𝑑𝑜𝑛𝑒 ← 1 ⊲ The optimization function 𝑓 (ℋ , 𝑡) converge
21: end if
22: end while
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Algorithm 2 Distance calculation
𝑏𝑖𝑘𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ⊲ the number of bikes need rebalancing operation at each
station
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ⊲ the capacity of the truck
𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 = 0 ⊲ initialize the the load of truck at the base
𝑡ℎ𝑒_𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ⊲ the next station is the closest station to the current station
while 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ≠ 𝑎𝑙𝑙_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 do ⊲ until all stations have been
visited

if 𝑠𝑢𝑚(𝑏𝑖𝑘𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠) > 0 then
𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

else
𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 = 0

end if
if 0 ≤ 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 + 𝑏𝑖𝑘𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠[𝑡ℎ𝑒_𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑖𝑜𝑛] ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 then

𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 = 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 + 𝑏𝑖𝑘𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠[𝑡ℎ𝑒_𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑖𝑜𝑛] ⊲ update
the load on the truck

else
𝑡ℎ𝑒_𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ⊲ update the next station by selecting the next

closest station
end if

end while

2. Only one vehicle will be taken into consideration, that is, 𝑋 = 1, with
capacity 𝐶.

For the 𝑝𝑎𝑡ℎ function is designed with the idea of a greedy algorithm. es-
pecially the Nearest Neighborhood algorithm, which chooses the closest station
heuristically at each step. Set 𝑈𝑖 ⊆ 𝒱′ as the nodes visited up to iteration
𝑖. The starting point of the vehicle can be defined as 𝑈0 = 𝑢(0) = {0}, while
𝑖 ∈ {1, . . . , |𝒱′| − 1}. It is noted that {0} is included in 𝒱′, so iteration 𝑖 stops
until |𝒱′| −1. And we have𝑈𝑖 = 𝑈𝑖−1∪{𝑢𝑖}, where 𝑢𝑖 denotes the station visited
in the 𝑖 − 𝑡ℎ iteration. Therefore,

𝑢𝑖 = arg min
𝜔∈𝒱′\𝑈𝑖−1

𝑑(𝜔, 𝑢(𝑖 − 1)) (3.11)

For the function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, Euclidean distance 𝑑(𝑥, 𝑦) between node 𝑥 and 𝑦.
The implementation of 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 on the total travel path can be
expressed as

𝐷(ℋ) =
|𝒱′ |−1∑
𝑖−1

𝑑(𝑢𝑖 , 𝑢𝑖−1) + 𝑑(𝑢|𝑈 |−1,0) (3.12)
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4
Analysis

In order to compare the optimization in how it works under different sce-
narios, we have developed the following circumstances to design the simulation
and record the corresponding key data. Here is how the design works and the
data collected.

1. Optimization is not performed to get the overall failure rates that include
the empty and maximum states.

2. Dynamic rebalancing optimization is performed and the rebalancing vehi-
cle has unlimited capacity. The failure rate and the overall cover distance
have been compared.

3. Dynamic rebalancing optimization performed and a single rebalancing ve-
hicle with limited capacity. The failure rate and distance are calculated.

while conducting the simulation, we were facing a few problems, In order to
make the modeling more generalizable to the real problem and computationally
affordable. The following assumptions need be made,

1. The data from Citibike can stand for the demand of the bikes’ use. The
true demand is not yet known due to the censoring effect. However, the
lower bound of the demand can be represented by the data.

2. The bikes that users use are not included in the optimization framework;
the reason is that part of the data is not available.

3. If the user goes to a station but cannot find a bike there or the user with
the bike goes to park, the bike cannot find a stall available to lock the bike.
Both scenarios are considered as they exit the system.

4. At the beginning of the month, the state of all stations is set as half of the
entire capacity of the station. As the initial states of the stations are not
known, this premise would be a necessity to start the simulation.
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Figure 4.1: The full state failure rate in June 2017

All the above assumptions have zero effect on the optimization framework,
while the final numerical results may change slightly, but the difference between
different scenarios should be maintained. Simulations are carried out only in
June 2017, and numerical results are presented on weekdays. We take the cost
of performing a single rebalancing operation, 𝛼, to 1800 s (30 min), and the pa-
rameter 𝛽 represents the cost of deploying the truck per meter, set at 0.02 s / m.
As for the truck capacity, 𝐶 is simulated with 5, 10, 20.

As shown in 4.1, after the rebalancing operation the full state failure rates
are even worse than in the unoptimized scenario. However, the failure rates of
the empty state are much improved in Fig.4.2. Overall, total failure rates have
improved considerably according to Fig.4.3. Even though the empty state failure
rates are not as expected, the total failure rates are significantly improved. The
full state failure rates are even worse than the unoptimized scenario. However,
the full state failure rates are relatively smaller than the empty state failure rates.
As a result, empty state failure rates are the main factor in total failure rates by
comparing Fig.4.2 and Fig.4.3. Obviously, the empty state matters more to the
overall failure state by comparing Fig.4.2 and Fig.4.3. Without any limits on the
capacity of the truck, which is the dynamic scenario in Fig.4.3, the failure rate is
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Figure 4.2: The empty state failure rate in June 2017
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Figure 4.3: The total failure rate in June 2017
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Figure 4.4: The distance covered by the truck by different capacities in June 2017

roughly four times better than the situation with the limit of the capacity of the
truck. Furthermore, with a larger truck capacity, failure rates could be relatively
higher than those with smaller trucks if we observe Fig.4.3.

It is clear to see in Fig.4.4, the 20-capacity truck covered the most distances
under a low failure rate during most of the week. On the contrary, the distance
on weekends is lower as the capacity of the truck decreases, the reason is that the
failure rates are close to each other from 4.3. Additionally, with higher capacity,
the truck does not need to go back to the base to retrieve the bike or remove
the truck load. We move to Fig.4.5, it shows how many trucks it needs to do in a
single rebalancing on average a day. Apparently, with larger capacity, it requires
fewer trucks to do the rebalancing.

Looking at Fig.4.6, red dots represent stations that need to be rebalanced,
while the purple dots represent stations without rebalancing operation at all. It
shows the pattern that the stations in Upper Manhattan and Williamsburg re-
quire less rebalancing compared to Lower Manhattan and Downtown Brooklyn.
Some of the guessing we have is that there are more commercial activities con-
ducted in Lower Manhattan and Downtown Brooklyn. Therefore, commuters
are the main users of the bike sharing system. In addition, as many visitors
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Figure 4.5: The trips one truck takes from base in June 2017

want to see the sights of downtown, such as the Brooklyn Bridge, the World
Trade Center, Battery Park, and the Seaport. Another, Upper Manhattan has
more hills, which discourages cyclists from going there, and it has more metro
lines that pass through.

After removing non-rebalancing stations, Fig.4.7 represents the number of
visits the truck visited a month. It shows that the most visited station is Henry
& Poplar Station. The station is located around the subway station in downtown
Brooklyn. Where it is a transition point for metro users and bike users consid-
ering that downtown Brooklyn has commercial and residential neighborhoods.
AS for the second most rebalanced station is in upper Manhattan, a place near
the Lexington Avenue / 59 Street metro station; it is also a transition point where
people change the metro to bicycles.
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5
Conclusions

In this work, we have adopted a dynamic rebalancing technique in the bike
sharing system with considering a more realistic scenario, which is the rebalanc-
ing vehicle has a limited capacity and when there a no space or bikes available on
the truck, it returns to the base to unload the bikes or reload the bikes depend-
ing on the situations. To identify the stations where a rebalancing operation was
required, we chose to analyze the previous data under the assumption without
any human intervention. Specifically, MMPP with BDP helps to decide the op-
timal survival time, where the birth and death rates are depending on the time
frame and time slot. After getting the survival of each station, we designed an in-
centive to decide which stations are worth including into the route by the greedy
algorithm. More realistically, the truck has a capacity that would force the truck
to go back to the base to clear the truck load or full load the truck depending on
the situation.

The results were obtained based on the assumptions made and the models
designed in 3, which are reasonable. With a larger capacity, the truck needs
more trips from the base to complete the rebalancing. The distance it covers
would also decrease; as a result, it is more likely to be incentivized to add more
stations to the rebalancing routes. However, failure rates and distance will not
change once the truck capacity reaches some point. Intuitively, the truck with
the more capacity would cost more money and have failure rates compared to
other trucks of a lower capacity would make another trade-off.

It should be noted that the most visited stations are Henry and Poplar Station
and Lexington Av/59 St Station. An option to help us is to arrange some special
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trucks only responsible for them in order to meet the demand to achieve the
maximum satisfactory of the users. Another is that the visited stations are in
the area of Lower Manhattan and downtown Brooklyn. It could be better to set
the base near that neighborhood.
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