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Introduction

This thesis project is part of a partnership between the Department of In-
formation Engineering in Padova (Padua) and the S. Camillo Hospital at
Lido of Venice started in september 2009.

A group of patients of the hospital underwent a battery of psychological
tests[1] aiming to define their neuro-psychical capabilities. At the same time,
a neuro-physiological test consisting in stimulating the subjects by means of
an auditory paradigm was administered to them. The response to the stim-
uli was extrapolated through an on-line acquisition system that acquired,
pre-processed and stored the electroencephalogram (EEG)[2] traces of the
subjects performing the test. In the literature, the EEG signals produced
with such a methodology are called evoked potentials, as it will be deeper
explained in chap. 1.

It could be said that both the tests aimed to distinguish classes among
all the subjects: In this case, the classes were only two, one for the healthy
and the other for the ALS-affected people. Following the above terminology,
the expectation was to find the same subjects into the two classes, that is
a confirmation from the neuro-physiological test to the former one. On the
contrary, the outcomes from them did not completely agree. Probably, it
was due to a knowledge lack in the meaning of this kind of EEG traces.

Indeed, the scope of the thesis work has consisted in extrapolating new
parameters to substitute or be associated to those already used to discrimi-
nate a disease state from an healthy one.

A number of techniques were implemented to reach the initial goal:
Firstly, the traditional time-domain analysis based on the average of several
EEG single traces was exploited, as the literature almost always proposes,
without finding any satisfactory outcomes. Then, the traces were filtered in
the frequency-domain thanks to a frequency filter realized to remove oscil-
lations that seemed not to have physiological meaning.

Finally, two new methods of EEG single sweeps processing were pro-
posed: They were called time warping and translation and the basic com-
mon idea was to compensate every single trace for phase displacements and
distortions, probably caused either by a tiredness or an inattention condition
of the subjects carrying out the task.

In the next, a general overview about the evoked potentials will explain
the background needed to understand the following chapters. Then, detailed
information will be provided regarding the kind of subjects undergoing the
tests, the type of paradigm employed and the system for the traces acquisi-
tion. But, the point of the thesis is made of chapters 3, 4, 5, and 6, where an
explanation of the implemented methods of EEG signals processing will be
presented. A chapter about the comparison ampng the different techniques,
mentioned in the previous chapters, will conclude the document, although
it will not end the research, as it will become clear in the following.



Chapter 1

Background: ERPs and
Generality about P300

Evoked Potentials can be described as electrical modifications that occur
in the central nervous system (CNS) after the application of an external
stimulus: They are measurable from the scalp and their fundamental char-
acteristics (latency and amplitude) depend on the kind of stimulus[3].

There exist two types of evoked potentials: the stimulus-related or ex-
ogenous and the event-related (ERPs) or endogenous or cognitive ones.

The first can be considered independent on the attention and vigilance
status of the subject and they are registered during the sleep in a simpler
way.

The cognitive potentials, instead, can be obtained only when the sub-
jects focus their attention on a semantically relevant stimulus or different
among the others: The ERPs seem, thus, to be related to the steps of the
identification that a person has to accomplish in response to the stimulus
and to reach the required task. For their relationship with these cognitive
processes, the ERPs became one of the most investigated topics and was
recognized as an interesting matter for the study of the superior cerebral
functions diseases.

As their origin as concerned, they can be elicited by every kind of sen-
sorial stimulus: although visual, somatosensorial and even olfactory stimuli
are employed, the most common used is the auditory one.

The EEG traces registered in correspondence to auditory stimuli are
made by several event-related components with short, medium and long
latency, respectively. In fig. 1.1 is presented the typical response to a se-
mantically relevant stimulus (usually called target stimulus).

In particular, five relevant deflections can be noted: three of them are
positive and named with a P ; the others are negative and named with an N.
They occur in the range between 50 and 250 ms: Their expected occurrence
is reminded by a number accompanying the previous letters. Thus, the P1
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Figure 1.1: Typical EEG response to a TG stimulus.

deflection, for example, is the positive peak near 100 ms.
The above mentioned peaks are characterized by a larger amplitude and

a larger latency in respect to the earlier stimulus-related components of the
traces. For this reason, a longer time between two stimuli, the so-called
inter-stimuli interval, has to be waited to make the generators of these long-
term components able to show their response to the stimulus. A special role
is played by the N2 peak (probably resulted from the combination of more
than one only component); analogously to the other peaks, its latency seems
to be related to the reaction time and the attention status of the subject
under test. Although these long-term components could have a connection
with the cognitive processes performed by the subject under test, they are
scarcely employed in the neurological field, maybe because of the uncertainty
of their generators.

The most studied long-term component, instead, is the P3 or P300, a
large positive symmetrical deflection, mainly represented in the regions of
the centre and the parietal lobe of the scalp. Similarly to the others, it
could be registered only when the subject identifies a significant or different
stimulus.

The simplest way to elicit it is the classical active Odd-Ball 2 sounds,
exploited in this research work and discussed more deeply in § 2.2. Generally,
with this kind of paradigm, the amplitude of the P3 takes values from 5 to
15 µV, while its latency is around 300 ms, even if it can vary in the whole
range of [250, 500]ms. It has surely be known[3] that both the latency and
the amplitude are strongly influenced by the occurrence of the stimulus,
the global sequence probability (that is the number of target stimuli in the
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whole sequence), the local sequence probability (that is the kind of stimulus
preceding the target one), the semantical meaning of the stimulus and the
type of the required task. The subject can be, indeed, informed or not to
pay attention to a stimulus of semantical importance. In both the cases
a P300 is elicited, but in a slightly different way[4]: in the absence of a
pre-warning, a component known as P3a occurs with a shorter latency and
localized in a more frontal region of the scalp. Otherwise, the P3b peak is
found on the ERP and it appears mainly in the central and parietal lobes. Its
meaning is not completely clear, but ”it probably represents the voluntary
end of a temporal period of processing of a stimulus by the associative
cortical areas”[3]. Probably, the usually measured P3 is a sum of both the
components, hardly distinguishable.

The P3 shape is not only influenced by the paradigm choice, but also
by several physiological variables that determine the psycho-physical status
of the subject. In particular, the P3 deeply depends on the conditions of
vigilance, attention and precision in the task execution. Indeed, the decrease
in one of the first two or the incorrect identification of the stimulus causes
a decrease of the P3 amplitude, that could be so remarkable that can make
the P3 peak unrecognizable. For this reason, it would be necessarily to
administer the test in the morning for all the subjects, being sure that
the subject has slept enough and checking the accuracy of the number of
recognized target stimuli at the end of the test.

If the gender seems not to be an important factor, the age plays a fun-
damental role in modifying the P3 waveform. Indeed, since the amplitude
is interpreted as an index for the set of resources of attention addressed to
the fulfilment of the task and the latency as a measure of the velocity in
classifying the stimulus, it can be understood that both a child and a elderly
person produce a P3 with a longer latency and a lower amplitude than an
adult. Therefore, it can be said that an ideal statistical approach would
require a set of subjects uniformly distributed in every decade of age.

Actually, the thesis work included a typology of subjects distributed
in a different way, as regard as both the controls, took as the reference
group, and the patients. This could be explained because that was the
available set of subjects at the S.Camillo Hospital and they are those that
had previously undergone the battery of psychological tests whose results
would be compared with the experimental ones from this work.
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Chapter 2

Materials and Methods

2.1 Partecipants

The available set of subjects, as mentioned in the previous chapter, was
made of seventeen healthy subjects and twenty-four patients of the S.Camillo
Hospital with probable or define sporadic Amyotrophic Lateral Sclerosis
(ALS)[1], a degenerative disease that damages the motor neural system.

Tab. 2.1 is filled in with the major characteristics of the two groups,
chosen to match each other as mean age, education and other features as
regards [5].

CONTROLS PATIENTS
number 17 24
age 56.88±15.92 55.13±13.74
range 23-81 29-73
gender(m/f) 12/5 19/5

Table 2.1: Subjects information.

They were firstly evaluated by different types of tests to define both their
neuro-psychological status and physical disease. Indeed, as mentioned in the
introduction, they firstly underwent a battery of psychometric tests that
assess their non verbal intelligence, attention, executive functions, memory
and language capabilities.

At the end, it was basically concluded that only cognitive difficulties in
correctly reaching the goals of the tests characterize the patients’ state, but
the impossibility to success as the controls was discarded at all.

This result was not confirmed in a statistically significant way by the
experimental measures from the electroencephalogram traces and that gave
reason for the scope of this research work.

7
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2.2 Paradigm

The subjects early described underwent a classic Odd-Ball 2 sounds, that
fundamentally exploits the abilities of the subjects as the auditory discrim-
ination and working memory as concerned.

Indeed, a sequence of alternated sharp(beep) and grave(bop) sounds were
presented to the subject wearing stereophonic earphones. They follow each
others pseudo-randomly: in fact, the beeps of frequency equal to 2kHz were
presented as the rare or target(TG) stimuli twenty percent of the times,
while the bops at 1kHz of frequency occurred eighty percent of the times
and are called the frequent or non target (NT) stimuli.

The eliciting paradigm is active because the subject is educated to men-
tally count the number of TG stimuli occurring during each sequence of the
test. In this way, the person waits for a semantically important stimulus
and it is known that an increase in the P3 amplitude is thus achieved.

To make the recognizing process easier, an example of the sharp and of
the grave sound is played at the beginning, before the actual test starts.
Another shrewdness aiming to verify the attention and precision level of the
subjects is to ask them about the number of TG stimuli heard during the
test and check it with that showed by the electronic device that produces
the stimuli. A too high discrepancy between the two values would be the
index of a too low accuracy in the execution of the task and, in that case,
the test should be repeated.

However, more than one sequence is administered to the subject in order
to ensure the repeatability of the test. In each of them, about fifteen TG
stimuli are presented, on average: Too much of them could bring the subject
to develop an habit to the test, with subsequent decrease of the vigilance
level, or increase their tiredness with probable decrease in the counting pre-
cision. On the other hand, the number of this kind of stimulus has to be
large enough to ensure the statistical validity of the test.

Although the attention has been focused only on the TG stimuli prop-
erties till now, it is also important to know that after every NT event an
EEG trace is produced and registered, as well. The two kinds of signals
are both obtained with the same methodology and the same system for the
on-line EEG acquisition. In the next chapter it is going to be explained the
basic steps of the on-line processing, from the electrodes, used to catch the
electrical modifications on the scalp surface, to the signals start point and
object of the thesis work.

2.3 The On-Line Acquisition System

The on-line acquisition system is schematically represented by the blocks
diagram of fig. 2.1(for details, read the manual user guide [6]).



2.3 9

Figure 2.1: Blocks diagram of the on-line EEG acquisition system.

As mentioned above, a repeated auditory stimulation is administered
to the subjects through stereophonic earphones: A sequence of 2 seconds-
distanced 65 dB sounds, either sharp or grave, stimulate the coclear nerve
of the subject undergoing the odd-ball test.

The auditory stimulation propagates along the neural system and allow
the subject to identify whether the sound corresponds to a TG stimulus
or not. In any case, the activation of neural cells (the neurons) produces
electrical variations that could be registered outside the head: Precisely, a
potential difference could be measured between each two points on the scalp
surface.

The signal acquisition block operates this measurement by means of
several electrodes. Each of them reveals the overall electrical activity of the
area surrounding it, under the cerebral cortex. The spatial distribution of
the P300 is such that is mainly evident in the central and parietal lobes:
Therefore, three derivations, at least, have to be monitored in those regions
(and only those channels were used in the following analysis). It was, thus,
used a standardized system called 10-20 to localize the electrodes (see fig.
2.2). The three most important derivations were thus set as follows: one in
the frontal lobe (FZ ), the second in the central (CZ ) and the last one in the
parietal zone (PZ ).

Actually, other derivations were used: In particular, the electro-oculogram
(EOG) was registered in order to understand how strongly it had influenced
every single trace. In fact, the blinking of the eyes and their movements
can give rise to potentials much larger than the cognitive ones and they
usually deeply distort the EEG traces on the other locations, especially the
frontal one. For this reason, the traces for which the EOG is above a chosen
threshold (e.g. 100µV) are discarded from the analysis. Other distortion
factors are represented by the polarization of the electrodes and the scalp-
electrode impedance. The shrewdness usually adopted to avoid these effects
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Figure 2.2: The standardized localization of the electrodes on the human
scalp.

is to clean the scalp area in which the electrodes would be posted and to
apply a gelatine on it, in order to limit the impedance inside the interval
between 1 and 5 kΩ.

Further oscillations due not to cognitive processes can be found when an
EEG trace is registered: a pre-processing step is, thus, needed. During this
phase, an amplification action is employed to make the really low amplitudes
of cerebral signals (in the order of tens of microvolts) more easily measurable.
Moreover, a background noise affects the EEG acquisitions: It could be much
larger than the cognitive potentials, so the signals are typically analogically
pass-band filtered. The lower cut-off frequency is set to a value in the range
of [0.1-0.3]Hz, while the higher is chosen between 30 and 100 Hz. Then,
another filtering step could be included in the next off-line analysis: as
explained in the following, a digital filter will be employed to remove other
kinds of oscillations.

Moving forward in the blocks diagram, an analogical-to-digital (A/D)
step is encountered: The current step is necessarily to make the following
calculator able to recognize and store the acquired signals. Every analogical
trace undergoes a double digitalization process: A quantization block is ap-
plied to the amplitudes scale, while a sampling with a sampling frequency
(fs) to the time dimension. The frequency fs was chosen such that it re-
spects the Shannon’s sampling theorem[7]: As known, it states that to avoid
aliasing phenomena, fs has to be set to a value equal or greater than two
times the maximum frequency component of the signal. Thus, for instance,
an fs equal to 200Hz or, alternatively, 1kHz was employed for the current
analysis: Since the analog filter cuts all the frequencies above Fco=30Hz,



2.3 11

the Shannon’s theorem ensures the absence of aliasing phenomena.
Therefore, using hose frequencies and knowing that each EEG acquisition

takes 1.5 seconds, it can be noted that three hundreds or, alternatively, one
thousand samples traces are obtained in output of the on-line system. It
could be useful to notice that a pre-stimulus part of one hundred samples
is always included in each trace. This piece of signal could be used as an
indication of the baseline level of the brain activity of the subjects.

To conclude, the last block consists in the storage of the traces, with
the help of a procedure that splits the acquire signals up into two different
classes (TG and NT).

For the following developments of the work, it should be mentioned that
each single sweep registered from one single channel (one electrode) after one
stimulation will be called as sweep or trace, while the set of signals acquired
after one stimulation in all the available channels will be named as epoch.

The set of signals from which this thesis has started were gathered for
each subject (during the on-line acquisitions) into two matrices, one for the
TG signals and the other for the NT ones. The latter represnt the start
points for the off-line processing, that is precisely the topic of this thesis.

Thus, the next chapter will start to explain the first kind of analysis
performed on those signals and developed in the time domain.
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Chapter 3

Statistical Analysis In Time
Domain

The overall aim of this research, that covered the thesis period and that will
be probably carried on in the next future, is to find a characterization of the
disease state of the ALS patients thanks to the comparison with the group
of the controls. As said before, the thesis work started with a conventional
study in the time domain: the EEG traces were, thus, simply processed by
extrapolating few parameters that could identify the difference between the
healthy subjects and the patients.

3.1 Grand Average

Tipically, the literature on ERPs, such as [5] and [8], focuses its attention
on a time domain analysis of an average trace called grand average, that is
obtained by summing (one channel per time) every single sweep considered
good for the study registered on that channel all over the epochs and then
dividing, sample by sample, the total by the number of traces taken into
account.

In that, two different grand averages are computed: the first one is the
average from the TG sweeps and the other is from the NT ones. Usually,
these two mean traces are used for the analysis of ERPs: to be more specific,
the clinical staff is used to evaluate the cognitive performance of a subject
looking at the latency, defined as the interval of time from the beginning of
the stimulus to the instant in which the peak appears, and the amplitude
of the most neuro-physiologically meaningful peaks that appear in the TG
grand average and already mentioned in cap.2. In particular, during the test
sessions at the S.Camillo Hospital in which the subjects have undergone the
classical ODD BALL 2 sounds test, a matrix mrk was computed being filled
in with the latency and the amplitude of the N1, P1, N2, P2, P3a and P3b
peaks.

13
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The values in that matrix were computed thanks to a fuzzy algorithm [9]
implemented by the research group of the Neuro-Physiology Laboratory of
the hospital and, then, validated by the clinical staff. It works searching, in
the grand average trace of each channel, for the peaks which are most likely
one of the neuro-physiologically meaningful peaks of a typical P300 wave, by
means of particular features that were previously computed. The reader can
find all the details in [9], because the explanation of this algorithm is beyond
the goal of this thesis. At the end, the fuzzy algorithm provides the values
of those peaks as both the amplitude and the latency as concerned with a
good approximation; but, then, the manual validation of a person of the
clinical staff is however needed to confirm the automatic choice. Indeed, the
variability of the subjects responses to each stimulus could be so high that
it is often difficult to surely defined where the peaks are and even whether
a trace refers to an healthy or to an ALS condition.

The aim of this first part of the analysis was to find, if possible, a sta-
tistically significant difference between the control group and the patients’
one, processing data already acquired by the research group of the Labora-
tory. Thus, from the measured and validated values of the peaks, several
plots and tables were produced for comparing the two groups of subjects,
as regarding not only as the latency and the amplitude of the single peaks,
but also the difference between each other.

First of all, two tables with the amplitude and latency mean values of the
P3b peak, the most relevant peak among all were created from the TG grand
average waveforms of controls and patients, respectively (see tabb. 3.1 and
3.2). Moreover, an important information, when working on a statistical
set, is to know how significant the average is in respect to each instance of
the population. To this scope, an information of standard deviation was
included on the same tables in which the mean values were reported .

Controls Amplitude [µV] Latency [ms]
FZ 5.4190±5.1242 389.12±49.21
CZ 6.3817±7.0880 393.12±49.15
PZ 8.3482±7.0630 395.23±43.78

Table 3.1: P3b amplitude and latency for controls.

Patients Amplitude [µV] Latency [ms]
FZ 5.1540±4.9315 393.33±45.70
CZ 5.7585±4.7498 393.13±43.70
PZ 7.6604±4.2679 395.83±43.96

Table 3.2: P3b amplitude and latency for patients.

Although, globally, it can be seen from the previous tables that controls
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show a larger mean amplitude and a shorter mean latency than patients (as
expected), the values of the standard deviation are so high that it is really
difficult to discriminate between an healthy subject and a ALS-affected one,
when occurred individually.

Other methods were, then, employed with the aim of helping in dis-
tinguishing controls from patients, processing only their TG grand average
curve: for example, the amplitude distance between different peaks was also
computed. In particular, the difference between two components that char-
acterize the ERP, the P3b and the P3a peaks mentioned in chap.2, was used
to fill in tab. 3.3.

P3b-P3a Amplitude [µV] Controls Patients
FZ 2.4789±2.2157 2.6702±2.3470
CZ 2.8422±3.3098 3.0915±2.6453
PZ 3.2453±2.9309 3.3513±2.1517

Table 3.3: Difference between P3a and P3b amplitude.

Analogously to the former table, it can be seen a general larger difference
in the patients’ case, but a really relevant standard deviation, as well, that
does not allow to reach a satisfactory conclusion. A further attempt was
to compare the amplitudes of the peaks all together. The figg. 3.1 and 3.2
can help in visualizing such a comparison: It shows, for each subfigure, the
number of the subject on the rows and the name of the peak on the columns.

The idea behind this new representation was to have a look of the general
distribution of the peaks in the amplitude scale: For each subject, the darker
a box is, the larger the peak of the column is. This was the last attempt
to find an evident difference between the healthy and the disease cases by
means of the measured peaks only, and the visualization could help in that.
On the contrary, this analysis did not lead to a relevant outcome, so it was
decided to discard the use this kind of methodology.

The amplitude and the latency of the peaks are only partial information
about the response of a subject to the stimuli. The complete knowledge
is, instead, provided by the single traces registered during each stimulation.
The literature, as said at the beginning of this section, is used to study
the TG average curve resulting from the overall mean among all the TG
epochs. Thus, in the following, it is going to be plotted the grand average of
the three main channels (FZ, CZ and PZ) of one control and one patient1,

1A choice had to be made, because of the large amount of figures otherwise available
for each subjects: in this case, an example of healthy subject and one of the patients
were chosen and all the three main channels will be presented. In the following chapters,
instead, the attention will be pointed out more on the efficiency of some techniques of
signal processing than on the difference between the channels, therefore one only channel
will be taken into account. The most times it will be considered only CZ, because the
P300 should be more evident on it.
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Figure 3.1: Peaks sequence amplitudes of control subjects.
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Figure 3.2: Peaks sequence amplitudes of the patients.
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together with the standard deviation computed, sample by sample, as in the
next formula:

SD(n) =

√∑N
i=1 |xi(n)− x(n)|2

N − 1

where N is the number of instances of the population, that is, the number
of TG single sweeps used to compute the grand average, xi(n) is the n-th
sample of the i-th single TG, x(n) is the correspondent sample on the average
trace and, finally, n varies on the whole time interval of the EEG acquisition.

Actually, the three curves represented in figg. 3.3 and 3.4 are the TG
grand averages (in the middle) and the point-to-point sum (or subtraction,
the bottom one) of the grand average with standard deviation.

As it could be expected from the wide literature on the topic, the stan-
dard deviation assumes really high values and, plotting the so-called first
difference (a kind of derivative) of each of the previous curves (see figg. 3.5
and 3.6), it can be seen that the standard deviation is not constant from
time to time, but varies quite a lot during the EEG acquisition.

From a statistical point of view, a set of only such TG signals could be
not characterized. Therefore, the next step was to try to take advantage
from the knowledge of the NT traces, also: This is the idea behind the
method showed in the next section.

3.2 Standardized Mean

The observation that no solution to the problem could be found only pro-
cessing the TG curves and their peaks gave rise to the computation of a new
statistical quantity that, somehow, considers both the TG and the NT char-
acteristics of the ERPs. It was called standardized mean and was suggested
by Hinterberger & al. in [10] on February 2005.

At the beginning of this thesis, an algorithm to compute the standardized
mean was thus implemented using the article previously quoted as a starting
point. Later, it was modified to fit the needs of the other members of the
research team, the psychologists above all, that wanted to make statistical
analysis over that new quantity.

The algorithm simply works as follows. Let us consider two stimulus
conditions k, TG and NT (as in the example of fig. 3.7), and let us set k
equal to 1 for the TG case and k equal to 2 for the NT. Moreover, let Nk be
the number of trials in each conditions and Xk

t,n the EEG amplitudes where
t means the sample number at a time in the trial n.

In our study, a prestimulus period t0 of one hundred samples is considered
(see § 2.3) and its mean value is subtracted to the EEG signals in each trial,
before starting the next analysis. Therefore, let Y k

t,n be the baseline corrected
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Figure 3.3: Example: Grand average and standard deviation traces for a
control.
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Figure 3.4: Example: Grand average and standard deviation traces for an
ALS patient.
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Figure 3.5: Example: Grand average and standard deviation derivative
traces for a control.
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traces for an ALS patient.
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Figure 3.7: Example of TG and NT grand averages at the channel CZ for a
control.

signal. It can be computed as:

Y k
t,n = Xk

t,n −
1
L

L−1∑

l=0

Xk
t0−l,n k = 1, 2.

where the second term represents the mean baseline part.
All baseline corrected signals are then averaged for each condition as

follows:

Mk
t =

1
Nk

Nk∑

j=1

Y k
t,j k = 1, 2.

The standard deviations Sk
t of each trial relative to the averaged signal

are also calculated for the two conditions, separately, and serve as a data
pool for the further steps of the algorithm.

Once the averaged and the standard deviation signals are estimated, the
standardized mean can be evaluated on a proper interval of time. Thus, we
obtain:

E(k2−k1) =
1

Np

tp+r∑

j=tp−r

Mk2
j −Mk1

j√
S

(k1)
j

2
+ S

(k2)
j

2

with Np = 2r + 1, where tp is the center of the chosen interval and r is its
width.

Actually, in the implemented algorithm, the choice of r and tp was ini-
tially fixed and, only after a later change, it was left to the user. Therefore,
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in a first time, r was typically centered on 300 ms (the expected latency of
the P300) and tp was set to a value of 25 ms as Hinterberger & al. suggested
in their article.

Afterwards, two simple functions were implemented in the more elab-
orated software used by the research group at the S.Camillo Hospital to
process the ERPs. These two Matlab files make the users, that are mainly
the psychologists of the research staff, able to carry on statistical analysis
on the whole grand average traces, only by shifting the values of r and tp
given as input parameters of the two functions.

Finally, it has to be mentioned that a similar analysis was performed on
each channel separately, paying attention that not always the same channels
were acquired for all the subjects. Indeed, the first three channels, FZ, CZ
and PZ were common for the whole set of subjects and only those were
included in the remaining part of the study.

One more time a comparison between the values obtained for the controls
and for the patients is presented thanks to a table: indeed, tab. 3.4 shows
the mean value and the standard deviation of the standardized mean in each
of the common channels for controls and ALS-affected subjects, respectively.

Standardized mean Controls Patients
FZ 0.2824±0.3017 0.2670±0.4181
CZ 0.3412±0.2592 0.3152±0.4210
PZ 0.4682±0.2868 0.4339±0.3776

Table 3.4: Standardized mean.

It could be expected that the values of the standardized mean were
higher for the healthy subjects than for the patients, representing a kind
of weighted difference between TG and NT waves. The reason for that is
understandable thinking that controls should show better performance in
distinguish a TG from a NT stimulus than a patient and, consequently,
show a more evident distinction between the two kind of curves produced.
Actually, it can be seen from tab. 3.4 that generally the above observation
could be confirmed. But, one more time, the standard deviation is too high
to lead to a valid conclusion, although it appears higher for patients than
for controls as the literature had often stated.

3.3 Other Methods

Other methods using both TG and NT grand average traces are going to
be outlined in the following, although without given any numerical results
because of their poor performance. They hoped to find a new parameter
that could characterize the set of the controls compared with that of the
patients, exploited the diversity in the two conditions of stimulus.
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Theoretically, as mentioned above, the difference between healthy and
ALS-affected subjects should be evident in a better capability of the first
ones to selectively focus their attention on the target stimulus and neglect
the others as much as possible. To verify this, the area under the TG
and the NT grand averages was thus computed for each subject and then
a comparison between the target and the non target cases carried on, but
without significant findings.

The full width at half maximum (FWHM) of the TG and the NT grand
average traces was also calculated and the results for healthy people and
ALS patients compared. But, the outcomes were not satisfactory, because
of the large variability of the considered quantity within both the groups.

Finally, it can be observed that, in most cases, the P300 peak could be
assimilated to a triangle; therefore, another possible method to characterize
the required difference could be to compute its area in all the instances and
to evaluate its variation from subject to subject. This computation was not
actually performed during the thesis period, because it was already done by
the research group at the S.Camillo Hospital with no relevant results.

Conclusion

As shown earlier, all these time domain and statistical analysis did not
lead to find a significant differences between controls and patients, although
a difference was found through psychological cognitive tests made by the
psychologists of the research team at the I.R.C.C.S. S.Camillo Hospital. In
particular, those tests demonstrated that patients can reach the right target
of the experiment as the controls, but using more time and/or showing a
weaker P300 response.

At this point of the research, it seemed to be useful to look for a method
to elaborate each single sweep, in order to identify components due to cog-
nitive processes and discard those due to some kind of artificial noise. With
this goal, a spectral analysis was extensively employed. The following chap-
ter will explain reasons, methodology and findings of that.
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Chapter 4

Frequency Domain Analysis

Introduction

The poor performance of the statistical analysis in the time domain could be
due to the limited number of subjects and of EEG traces available. But, since
that set of subjects could be difficultly extended within a short period of
time, like that of the thesis is, different methods of analysis were needed. The
frequency domain analysis is, for example, one of the most important device
through which every signal could be processed and deeply characterized: the
idea that moved us in developing such an analysis was to exclude, first of all,
the main noise component due to the neighbouring electrical devices and,
then, remove (as much as possible) other artificial components that could
distort the P300 pure nature.

4.1 Fourier Theory and Implementation

As mentioned before, the frequency domain analysis, also called Fourier
analysis, was widely exploited to process the EEG traces (also in [11]).
The theory behind this is based on the statement that every signal can be
decomposed into its harmonic components, by means of a discrete or an
integral sum, depending on whether its periodical nature or not.

Since the work was developed using a computer, a discrete version of
this transformation should be exploited. A Discrete Fourier Transform
(DFT)[12] was thus implemented, using the following formula:

X(k) =
N∑

n=1

x(n)exp(−j2π(k − 1)(n− 1)/N) with1 ≤ k ≤ N.

where X(k) with 1 ≤ k ≤ N is each of the N Fourier coefficients that
characterize the signal x(n).

27
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Its inverse is achieved by means of the next expression:

x(n) =
1
N

N∑

k=1

X(k)exp(j2π(k − 1)(n− 1)/N) with1 ≤ n ≤ N.

where x(n) represents each of the N time domain samples that form the
whole signal.

Computing the Fourier transform of a signal, an information about the
amplitude, the frequency and the phase of each sinusoidal component con-
stituting the overall trace becomes available.

The Fourier transform computation was accomplished in Matlab by the
use of the fft command. This function implements the Fast Fourier Trans-
form algorithm, that is an algorithm that efficiently computes the DFT.
Then, since the transform is complex-valued, plotting its phase and mag-
nitude with the help of phase and abs commands of Matlab, it is possible
to extrapolate the information of magnitude, phase and frequency for each
component, mentioned above.

An example of single sweep spectrum and grand average one for a control
and a ALS-patient, respectively, are going to be plotted in the next (see figg.
4.2 and 4.1).

As it can be observed from the previously mentioned plots, the P300
is a slow wave. Thus, it is useful to limit all the spectra to an interval of
frequencies in which they are significant, as shown in fig. 4.3.

Finally, it could be usefully observed that the frequency step in the
spectra depends on the sample frequency fs used to acquire the EEG signals:
in the case in which fs is 200 Hz, the frequency step is equal either to 0.39
Hz or 0.78 Hz (if the prestimulus is considered or not1), whether if fs is 1
kHz, the step is 0.98 Hz.

Once the spectra had been computed, a kind a lowpass Fourier transform-
based filter was applied on each single sweep.

4.2 Frequency Domain Filtering

Since the P300 is a slow wave, it is known from the literature ([13], [14] and
[?]) that the peculiar frequencies that mainly characterize it are inside the
range that covers all the frequencies till 3-5 Hz.

Actually, the filtering program asks the user for choosing a cut off fre-
quency Fco above which discarding all the components: This process could
be viewed as a kind of lowpass process with an adaptable cut off frequency.
It is also clear that, if the users chose a cut off frequency lower than 5 Hz,
they would distort the P300 nature.

1With fs equal to 200Hz and a one hundred prestimulus samples a 512 samples-DFT
is computed otherwise, without prestimulus, a 256-DFT is enough. In the case in which
an fs of 1kHz is employed, in any case a 1024-DFT is considered.
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Figure 4.1: Grand average spectra of a control(left) and of a patient(right)
at CZ channel.
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Figure 4.2: Example of one single sweep for a control(left) and of a pa-
tient(right) at CZ channel.
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Figure 4.3: Limited grand average spectra of a control(left) and of a pa-
tient(right) at the CZ channel.
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Moreover, another choice is left to the user: as mentioned earlier, in
chap. 1, each signal has a prestimulus part made of one hundred samples.
Therefore, the question is to choose whether considering or not the prestim-
ulus portion of each trace. Soon, it will be clear that the outcomes strongly
depend on this decision.

Let us, now, present the algorithm implemented to operate the filtering
process on the single sweeps. It prepares the single traces to be filtered and
operates the actual filtering action, passing through the following steps:

• The single sweeps are individually extrapolated from the appropriate
matrix of the EEG data.

• If necessary, a zero-padding process is performed and each trace is
extended by adding a number of zeros such that the resulting new
trace has a number of samples equal to the closest higher power of
two, in order to improve the efficiency of the DFT computation.

• The Fourier transform with the same number of samples of the cor-
rispondent time domain trace is computed by using the fft algorithm.

• Then, the signal components with a frequency higher than the chosen
Fco are excluded.

• The IDFT is applied by using the ifft command of Matlab that imple-
ments the inverse Fast Fourier Transform algorithm. Thus, the new
filtered signal is obtained.

Then, all the filtered single sweeps were summed together to form the
new grand average curve, one for each channel (FZ, CZ and PZ were only
considered, as previously).

Thus, in figg. 4.4 and 4.5 the grand averages of two subjects, a control
and a ALS patient, are shown with three possible levels of filtering, taking
into account only the CZ channel.

As it can be seen, the most conservative result is achieved by setting
Fco to 50 Hz, but in some cases a stronger action is needed to remove non
physiological oscillations of the traces. In the next figg. 4.6 and 4.7, the same
plots of above are presented, with the only difference that the prestimulus
part of the signals was excluded.

Thus, it can be observed that the prestimulus part is strongly made by
high frequency components: Indeed, filtering the highest frequencies in a
signal with the prestimulus, a more relevant result is achieved than with the
same level of filtering applied to the signal without it.

To confirm the above findings, it will be also plotted the output of the
complementary filter, alternatively called error filter, that is the signal ob-
tained considering only the frequencies excluded before (see figg. 4.8, 4.9,
4.10 and 4.11).
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Figure 4.4: Original CZ channel grand average with prestimulus for a control
and three possible levels of filtering: above 50Hz, 40Hz and 30Hz, respec-
tively.
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Figure 4.5: Original CZ channel grand average with prestimulus for a ALS-
affected subject and three possible levels of filtering: above 50Hz, 40Hz and
30Hz, respectively.
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Figure 4.6: Original CZ channel grand average without prestimulus for a
control and three possible levels of filtering: above 50Hz, 40Hz and 30Hz,
respectively.
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Figure 4.7: Original CZ channel grand average without prestimulus for a
ALS-affected subject and three possible levels of filtering: above 50Hz, 40Hz
and 30Hz, respectively.
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Figure 4.8: Error filter on the CZ channel for the grand average with pres-
timulus of a control and its three possible levels of filtering: above 50Hz,
40Hz and 30Hz, respectively.
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Figure 4.9: Error filter on the CZ channel for the grand average with pres-
timulus of a ALS patient and its three possible levels of filtering: above
50Hz, 40Hz and 30Hz, respectively.
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Figure 4.10: Error filter on the CZ channel for the grand average without
prestimulus of a control and its three possible levels of filtering: above 50Hz,
40Hz and 30Hz, respectively.
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Figure 4.11: Error filter on the CZ channel for the grand average without
prestimulus of a ALS patient and its three possible levels of filtering: above
50Hz, 40Hz and 30Hz, respectively.
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It is again evident that, in the cases in which the prestimulus is taken
into account, the impact of the error filter is more visible, than in the others.
This could be explained saying that in the first part of the EEG acquisition,
where no stimulus is applied yet, the most important contribute is due to the
electrical field of the neighbouring electrical devices and to other oscillations
probably not meaningful from a neuro-physiological point of view.

A measure of the quality and the efficiency of the method till now pre-
sented can be found in figg. 4.12 and 4.13, where the grand average curves
of channel CZ of the same two subjects considered before are plotted with
the information of a point-to-point standard deviation.

50 100 150 200 250 300
−30

−20

−10

0

10

20

30

40

50

60

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20

30

40

50

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

50 100 150 200 250 300 350 400 450 500
−20

−10

0

10

20

30

40

50

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

50 100 150 200 250 300 350 400 450 500
−20

−10

0

10

20

30

40

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

Figure 4.12: CZ channel grand average and standard deviation information
for a control subject in the original case and with its three possible levels of
filtering: above 50Hz, 40Hz and 30Hz, respectively.

The plots of the derivatives of the previous 40Hz filtered curves are
shown in fig. 4.14. From that figure, it is confirmed that no fundamen-
tal improvements are achieved after the filtering as the standard deviation
regards (indeed, compare with figg. 3.5 and 3.6).

Conclusion

It can be concluded that this frequency domain method could help in ana-
lyzing the ERP traces, because it can strongly remove noisy oscillation but,
at the same time, it should be probably only the first step of a chain of pas-
sages towards a complete explanation of a P300 wave: Indeed, the standard
deviation assumes, even after the filtering process, such high values that it
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Figure 4.13: CZ channel grand average and standard deviation information
for an ALS subject in the original case and with its three possible levels of
filtering: above 50Hz, 40Hz and 30Hz, respectively.

is not possible to make a relevant statistical analysis on the filtered signal
yet.

Thus, in the next, different strategies are going to be experimented in
order to reduce the standard deviation within the set of traces of each sub-
jects and, hopefully, to find features that could distinguish the group of the
controls from that of the patients.
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Figure 4.14: CZ channel grand average and standard deviation derivatives
for a control subject (left) and a ALS patient (right) after filtering at 40 Hz.
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Chapter 5

Time Warping

5.1 Neuro-Physiological Meaning

Besides noisy oscillations due to the electrical fields that could interfere with
the on-line EEG acquisition system and other non neuro-physiological waves
proper to the EEG background, other factors of distortion could arise from
the psycho-physiological conditions of the subject that is undergoing the
odd-ball test. This means that a modification of the P300 waveform could
be also caused by the attentional level of the person and their tiredness
state, besides several other variables can influence the test result, such as
their expectation to either a TG or the NT stimulus.

In particular, in this chapter, a method that aims to reduce the variabil-
ity of the P300 as the tiredness as concerned will be proposed. It was called
Time warping method, because its goal is to remove as much as possible the
dependence on a possible slowing down of the performance in the test due
to a tiredness state that is peculiar for each trace of each subject. The idea
behind is that every subject (controls and patients are supposed to behave
in a similar manner) reacts to a stimulus with a certain delay, not necessar-
ily constant, during the whole interval of time of the task. Moreover, this
behaviour could be different from epoch to epoch, as well as from subject
to subject. It can also be expected that the standard overall grand average
can not take into account such a factor of distortion, probably omitting im-
portant contributions to the total signal. Therefore, in order to normalize
the different reactions of each subject in every single sweep, a compression
or, alternatively, an expansion was implemented in the time domain.

The algorithm works as explained in the next section.

5.2 Algorithm and Reference Sample Choice

Fundamentally, the point is to align each single sweep (in each channel) on
a so-called Mean or Reference Sample chosen in an appropriate way. Then,
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a distortion of the signal is operated depending on the reference point used
as a center for all the traces.

In particular, the first step of the algorithm consists in finding the abso-
lute maximum within the range between 250 and 500 ms, where the P300
is most expected to appear. This passage is performed thanks to a Matlab
function implemented in [16] by searching for all the local maxima, choos-
ing the largest one and, finally, setting the sample that corresponds to the
absolute maximum in the interval of time mentioned above as the mean
sample.

As an example, let us consider the grand average of the CZ channel of an
healthy subject. If the algorithm that looks for the local maxima is applied,
the plot of fig. 5.1 is found.
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Figure 5.1: Local maxima on the CZ channel grand average of an healthy
subject.

In that, the absolute maximum is localized in correspondence of the
170-th sample, that is consequently chosen as the reference sample for the
time warping. It has to be thought that employing such a sample for the
realignment basically means that it is assumed that a subject reacts, on
average, with the latency of the original grand average curve. Equally likely,
it would be possible to choose another sample as the reference one: For
example, a different choice could consist in selecting the analogous peak of
one of the first TG traces, that are supposed to be tiredness effects free.

Moving forward to the second step of the algorithm, the same maxima
research is applied on each of the single traces of the subject in each channel,
separately. Indeed, it has to be observed that the time warping or normaliza-
tion process takes into account a conceivable different behaviour for different
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channels: Thus, the method is distinctly applied for each of them. As an
example, the fifth TG single sweep of the healthy subject under study shows
several local maxima, identified by the algorithm in [16] and showed in fig.
5.2.
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Figure 5.2: Local maxima of the fifth TG single sweep of the healthy subject
considered for this example.

In a similar way in which the mean sample was earlier chosen on the
grand average trace, the main peak (that is, the absolute maximum) of each
single sweep within the window from 250 to 500 ms is considered.

Then, a so-called normalization ratio is computed for each TG trace as
the ratio between the sample correspondent to the main peak of each one
and the mean sample, common for all of them. It can be used as a measure
of the severity of the time warping action.

The fourth, and final, phase creates new traces by linearly interpolating
the original single sweeps on a new axis of samples equally spaced by a new
step as large as the normalization ratio is.

To be more clear, let us consider the previous example. The curve
achieved at the end of the process is reported in fig. 5.3.

It has to be noted that, after the application of this method, the length of
the new single curves could be modified: They could become either shorter,
as that in fig. 5.3, or longer, as in fig. 5.4, depending on the normalization
ratio. To be precise, a compression of the signal is expected if that ratio is
greater than one, otherwise an expansion takes place.

Once the algorithm is employed, a new set of single sweeps is available
for each subject for the further analysis. The simplest way to continue the
signal processing is to sum all the traces of a channel and dividing for their
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Figure 5.3: Time warped fifth TG single sweep of the CZ channel.

0 50 100 150 200 250 300
−40

−30

−20

−10

0

10

20

30

40

50

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
standard
norm

Figure 5.4: Time warped sixth TG single sweep of the CZ channel.
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total number: It is thus achieved the new grand averages, three per subject
(as three are the involved channels for each person).

5.3 Findings and Statistical Results

Theoretically, this time warping technique could, at least, correct for an
uniform tiredness condition effecting the acquisition period of 1.5 seconds:
Indeed, the normalization ratio is assumed as a constant during the whole
interval of time.

A good measure of the efficiency of the process is provided by the plots
of the new grand average curve with its relative standard deviation infor-
mation, as in fig. 5.5.

From fig. 5.5, it can be noticed that a relevant improvement is reached:
a reduction in the standard deviation in respect to the mean curve, at least
in the neighbourhood of the main peak, could verify the effectiveness of this
new strategy.

Several remarks could arise about this methodology: First of all, it can
be guessed that the tiredness effects increase with the time progress of the
test. But, gathering the values of the normalization ratios of all the subjects
for all the tested sequences, it has to be stated that they seem not to follow
a specific rule, that is no appreciable increase in those ratios is found along
subsequent TG epochs.

Another hypothesis can be guessed as the relation between the level
of ALS disease and that of the applied normalization: the disease should
contribute to distort more the traces. Thus, higher mean values are expected
for the patients into respect of the controls. The results of this investigation
fill in tab. 5.1, where the statistics for the control and the patient of the
previous example has considered1.

Normalization ratio Control ALS-patient
FZ 3.1111±2.6943 11.7778±0.6939
CZ 4.8889±0.9623 7.5556±7.1983
PZ 11.7778±0.3849 10±9.6839

Table 5.1: Statistics on normalization ratio for all the subects.

A higher level of time warping seems to be necessary for the ALS pa-
tients, at least in the frontal and the central areas. This observation should
be later verify for all the controls and all the patients, taking into account an
analogous table for each subject. But, till now, the interest is more focused
on highlighting the performance of this technique in the process of the EEG
signals.

1A choice had to be made for space reasons: Indeed, a table analogous to tab. 5.1 can
be filled in for every subject.
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Figure 5.5: Time warped TG grand averages and relative standard devia-
tions on the CZ channel of an healthy(left) and a ALS(right) subject.
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Although some results have still no explanation, an improvement is nev-
ertheless significant: in particular, the new grand averages (like that of fig.
5.5) show a very important peak within the range of [250, 500]ms that could
be assimilated as the P300 peak without employing further algorithms to
find it. Its amplitude is, indeed, really increased into respect of the original
measured and validated P3 peaks, as it can be confirmed by comparing tabb.
3.1 and 3.2 with tab. 5.2. This could mean that, actually, a component of
tiredness is strongly present in each EEG trace and has to be removed before
starting any other statistical analysis.

P300 peak Controls Patients
FZ 16.0706±5.9377 17.1458±5.9315
CZ 18.4176±8.3347 18.0018±6.4720
PZ 19.2754±8.0853 20.6990±6.3981

Table 5.2: P300 peaks amplitude measured from the time warped grand
averages.

It is still not clear if a good estimation of the latency of the P300 peak
could be also derived from these new traces because, somehow, the reference
sample was forced to be in a location previously set and fixed for all of them.
But, a possible justification could be that this method has removed only
psycho-physical conditions and not the cognitive ones: Therefore, in this
case, the latency should be modified like this method modifies it. This is
still an open question that will be probably one of the starting points for
the future analysis.
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Chapter 6

Translation

6.1 Neuro-Physiological Meaning

In the previous chapter, it was tried to exclude the tiredness influence on
the EEG acquisitions; in the current one the focus is on the vigilance factor.
Indeed, the level of attention plays a very important role in the origin and the
determination of the shape of the P300 wave: Explicitly, it could create an
initial delay in the subject response to the stimulus, whether they disregard
the test for any reason. But once they come back to the highest vigilance
state then, they should show an analogous reaction speed like any other
aware subject.

The following analysis aims at excluding from each single sweep all the
effects due to the inattention conditions and, at the same time, probably
other unknown delaying causes.

6.2 Algorithm and Reference Sample Choice

The algorithm implemented to perform the latter methodology is quite sim-
ilar to that used for the time warping technique discussed in the previous
chapter.

Indeed, the first two steps are pretty the same: Let us consider a subject
and one channel per time. The local maxima are searching on the TG
original grand average curve and the largest one in the range between 250
and 500 ms is assumed to be the reference sample, alternatively called Mean
Sample. Subsequently, the same maxima analysis is performed on each TG
single trace and the highest maximum in the time window of above is taken
into account for the following steps of the algorithm.

The third step consists in computing a quantity that characterizes the
impact level of the method on the EEG curves: the Translation Factor. It
was calculated by taking the difference between the sample that corresponds
to the chosen maximum in the single trace and the reference sample of
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the grand average. Obviously, this quantity could be positive or negative
depending on the relative location of the two peaks considered on the single
sweep and the mean trace. It can be noted that a positive value could be
interpreted as a delayed response of the subject to the stimulus (compared
with the mean response).

If the same example of the previous chapter is considered, the first two
steps of this new methodology are again exemplified by figg. 5.1 and 5.2.

Then, the final step of the algorithm is to apply a rigid translation of
each TG curve of an amount equal to the translation factor.

In the case of those control and patient used as examples, the outcome
for two different TG single traces is reported in figg. 6.1 and 6.2.

Comparing the new translated traces with the corrispondent original
ones, it can be noticed that, in the first case, a positive time shifting was
operated while, in the second one, a kind of advance was corrected by a
negative translation.

Once the new set of translated traces has been found, a new grand
average could be computed for each subject (see fig. 6.3).

6.3 Findings and Statistical Results

As done in the time warping chapter, the new translated grand average and
the correspondent standard deviation were computed and are reported in
fig. 6.4.

It is clear that the standard deviation suffered a substantial reduction
that could confirm the effectiveness of the process.

Besides the earlier general observation, a similar guess to that proposed
at the end of the chapter about the normalization could be repeated here:
In the disease case or after a certain number of stimuli, the subject should
become less reactive, less careful in performing the test. From this point of
view, it can be expected to find increasing values of the translation factor
along subsequent epochs.

But, analogously to the normalization case, the distribution of the trans-
lation factor is not regular at all: It can vary with the subject, the channel
and the number of the stimulus in a random way.

Moreover, the distinction between controls and patients seems to be
highlighted thanks to this method. Indeed, from the results of tab. 6.1,
where the mean translation factor for the healthy case and the ALS one is
shown, a stronger shifting action seems to be necessarily in the latter case.

Generally, it can be concluded that for ALS patients a stronger transla-
tion action is needed than for controls and, moreover, that the variability in
the disease cases is more important. The emblematic channel is the frontal
one, in which a translation of more than twenty-five samples is applied to
the patients’ traces, with a standard deviation larger the half of the shift.
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Figure 6.1: Two original and translated TG single sweeps on the CZ channel
of an healthy subject.

Translation factor Control ALS-patient
FZ 7.4±6.7908 25.3750±14.5148
CZ 7±5.8919 11.1667±8.0954
PZ 6.6667±6.3770 9.6250±8.3239

Table 6.1: Statistics on the translation factor for all the subjects.
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Figure 6.2: Two original and translated TG single sweeps on the CZ channel
of a patient.
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Figure 6.3: Translated TG grand averages compared with the standard ones
on the CZ channel of an healthy(left) and an ALS(right) subject.
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Figure 6.4: Translated TG grand averages and relative standard deviations
on the CZ channel of an healthy(left) and an ALS(right) subject.
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Although the high values of the standard deviation, the two classes of
controls and patients remain distinct enough: The validity of this method
could be thus increased by the previous observation about the translation
factor. Finally, similarly to the time warping case, from the new translated
grand averages, the P300 peak information can be extrapolated in a simpler
way than what was done in the literature, because in the most instances a
relevant peak is clearly identifiable as P300 deflection.

Thus, the tab. 6.2 can be filled in with the new mean amplitude values
of the P300 peak.

P300 peak Controls Patients
FZ 11.5944±8.4266 10.3096±9.6858
CZ 13.6275±11.7095 9.9720±10.0695
PZ 8.2765±12.2566 9.8685±10.1944

Table 6.2: P3b peaks amplitude measured from the translated grand aver-
ages.

It can be further appreciated the improvement into respect of the original
values of P300 amplitude validated at the S.Camillo Hospital and presented
in chapter 3. As in chap. 5 case it happened, higher amplitude values can be
found and the relevant reduction in the standard deviation from the mean
measure could be considered as a proof of the utility of the method.
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Chapter 7

Comparisons and Hints For
Future Studies

7.1 Comparison among Different Methods

In this chapter the most important findings of this thesis work are going to
be reviewed: The comparison among the three main methods used so far,
the frequency-domain analysis, the translation and the time warping pro-
cess, will be based on the grand average and the relative standard deviation
information. Indeed, once the set of signals is optimized from a statistical
viewpoint, further analysis can be more simply developed.

As known, a mean value together with a too large variance (as it happens
for the original grand average sample by sample), can not be a valid estimate
for the signals class that has given rise to it.

As an example, let us consider fig. 7.1, where the original TG grand
averages are computed as the sum of the original EEG traces without any
other process. The left panel shows the information about an healthy case,
while the right one corresponds to an ALS-affected patient.

It can be seen from that figure, but it was also mathematically com-
puted, that the standard deviation exceeds the 100% of the mean value in
correspondence to some samples. This obviously means that the amplitude
that the grand average reaches in such a sample is the mean of a set of
samples (one for each single sweep) that lie in an extremely wide range of
amplitude.

Therefore, took cognizance of this occurrence, the methods of chapp.
4, 5 and 6 were exploited in order to find a new set of traces that, once
summed, produce a new grand average curve more representative of them.

Indeed, let us firstly take a look of fig. 7.2, whose plots were obtained by
applying a filter with a cut off frequency set to 50 Hz. It is observed that a
slight improvement is already visible into respect to the previous situation
(fig. 7.1), although it is not the decisive solution, yet.

59



60 cap.7

50 100 150 200 250 300
−30

−20

−10

0

10

20

30

40

50

60

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

25

Number of samples

A
m

pl
itu

de
 [µ

V
]

 

 
avg
avg+SD
avg−SD

Figure 7.1: Original TG grand averages and relative standard deviations on
the CZ channel for a control(left) and a patient(right).
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Figure 7.2: 50Hz Filtered TG grand averages and relative standard devia-
tions on the CZ channel for a control(left) and a patient(right).
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Looking for more relevant results, it is found that the best achievement
using the available set of the EEG traces as a starting point is reached
employing the time warping and the translation methods: They, indeed,
allow to decrease considerably the standard deviation, as already mentioned
in chapp. 5 and 6 and shown in figg. 7.3 and 7.4, even if mostly in the range
surrounding the presumed P300 peak.
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Figure 7.3: Time warped TG grand averages and relative standard devia-
tions on the CZ channel for a control(left) and a patient(right).

The displayed improvement should enhance the validity of the above
methods: The future developments on the topic could nevertheless bring us
to modify those strategies, at least in some of their steps, with the goal of
increasing their performance more and more.
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Figure 7.4: Translated TG grand averages and relative standard deviations
on the CZ channel for a control(left) and a patient(right).
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Another possible comparison could be made by plotting all the TG grand
averages obtained from each of the three over-cited methods. In can be
noted that all the strategies brought to emphasize the main peak in the
[250, 500]ms range of each single sweep, counted as the P300 peak: As a
result, each of the TG grand averages (especially the time warped and the
translated ones) presents a very important peak amplitude. Figg. 7.5 and
7.6 can confirm this observation in two specific cases of an healthy subject
and an ALS one.
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Figure 7.5: Comparison between the 50Hz filtered, the time warped and the
translated TG grand averages of the CZ channel for a control.

From this perspective, it could be guessed that the best method to be
exploited should be that which mostly stresses that peak, highlighting its
location in the grand average curve. In this way, no further algorithm should
be used to find the right P300 peak and a major effort could be involved to
search for other useful parameters that characterize these ERPs.

7.2 Future Targets and Suggestions

The analysis presented so far has led to a uniform improvement of the set of
the available signals, without be actually able to answer the initial question
and target of the overall research project: Univocally identifying the P300
wave of an ALS-affected subject from that of an healthy one.

In fact, human EEG traces are singular, peculiar of each person and,
depending on a number of variables, it is not classifiable[2].

Probably, what we are looking for is to study the effect of a set of causes
acting in conjunction: thus, not the tiredness, the level of attention or other
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Figure 7.6: Comparison between the 50Hz filtered, the time warped and the
translated TG grand averages of the CZ channel for a patient.

factors separately, but all together and inseparable among each other. In
order to have a wider record of occurrences, it could be useful to extend
the set of subjects, paying attention in considering a group of them uni-
formly spread as the gender and the whole age-domain as regard: As the
literature[?] suggests, the same number of subjects has to be counted in
every decade of age, half of them being male and the other half female.

Moreover, it would be useful if a baseline trace was registered for each
subject in a rest condition for an interval of time long enough. With this
information, it could be possible to know the background activity of the
brain and, maybe, remove its contribution from the EEG traces, when a
stimulus is then presented to the subject: Thus, hopefully, only the cognitive
part of the EEG would remain to be analyzed.

Once gathered a new group of traces from this new hypothetical set of
subjects, the methodologies proposed in this thesis could be employed again,
with the scope to confirm the previously discussed outcomes and find new
ones. Then, other methods already outlined or even only thought during the
last months could be exploited, hoping to definitely discover such features
that support the identification of the disease or healthy state of every new
subject that undergoes the neuro-physiological test.

Conclusion

Moving from the initial and standard temporal analysis on the grand average
curves to the time warping and the translation techniques applied on the
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single EEG sweeps, relevant improvements seem to be reached.
If, on one hand, the frequency-domain filtering removed non physiologi-

cal or, maybe, non cognitive-based oscillations, on the other hand, the latter
two methods of processing allow us to find new grand averages more rep-
resentative of the set of signals of which they are the overall sum. Indeed,
applying those techniques, the standard deviation decreases by a relevant
amount and only one really high peak appears in each grand average, sim-
plifying its detection.

The average traces arisen after undergoing the time warping and the
translation method could be probable considered as the overall mean P3
response to a TG stimulus, independently on the different tiredness and
vigilance conditions of the subjects, variable during the test. Removing
these factors should be the first step in the future procedure of discovering,
more precisely, the deep meaning of the P3.
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