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Abstract

The study of topological effects in quantum materials has been one of the hottest re-
search topics in condensed matter physics in recent years. Thanks to their high degree of
tunability, such systems can even be used to study, from a condensed matter point of view,
particles that have never been observed in high energy physics experiments, such as Weyl

fermions. In particular, this thesis is focused on 3D materials known as Weyl semimetals,
that under suitable conditions present a vanishing bulk gap in a finite number of points
(the so-called Weyl nodes) and peculiar topological surface states known as Fermi arcs.
Weyl systems exhibit a variety of interesting features, like the equivalent of the field theory
Adler-Bell-Jackiw anomaly (here known as Chiral anomaly) and many related phenomena,
such as negative magnetoresistence, anomalous Hall effect, and non-local transport.

The focus of this work is on the transport properties of these materials. We will con-
centrate on the analytical description of a junction between a Weyl semimetal and a BCS
superconductor, with particular emphasis on the Andreev reflection process. The latter is
anticipated to be strongly dependent on the orientation angle of the Weyl nodes relative to
the junction plane. Specifically, Andreev reflection is not expected to occur for Weyl nodes
that are parallel to the junction plane, due to the topological properties of the materials, a
phenomenon known as the Chirality Blockade.

The thesis is structured into four main sections: the first section outlines the foun-
dational concepts we will exploit, including basic principles of topology in physics, in-
troduction of the Berry parameters, the Weyl fermions Hamiltonian, definition of Weyl
semimetals and their topological properties, the most renown materials that present Weyl
semimetals characteristics, along with a review of standard BCS theory and an introduc-
tion to the BTK model for junction description, with the most famous results. The second
section reviews the existing literature on the subject, with a particular focus on what was
done in two papers and highlighting the main differences of our approach. The third sec-
tion offers a detailed analytical exposition of the model that we derived, in order to provide
the theoretical background and notation necessary to understand the results. We exploit a
four-band model Hamiltonian to represent both the Weyl semimetal and the superconduc-
tor, which, within the Bogoliubov-de Gennes framework, is characterized by eight degrees
of freedom. Subsequently, we apply a unitary transformation to render the Weyl semimetal
Hamiltonian block-diagonal. Next, we extend the previous work to accommodate any ori-
entation of Weyl nodes relative to the junction interface and with that we establish the
matching conditions necessary to derive the Transfer Matrix that connects all incoming
and outgoing wavefunctions. This results in a linear system of equations, the solution of
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which provides the probability of each process to occur. The concluding section focuses
on presenting and interpreting the results and drawing final insights. Specifically, we will
demonstrate how the probability of each process varies with the orientation of Weyl nodes
and the impurity potential at the interface. We will highlight the existence of the chirality
blockade effect, which leads to the total suppression of the Andreev reflection probability.
This allows us to determine a critical angle beyond which the chirality blockade becomes
effective. With these results, we will explore potential applications of this type of junction
and the resulting emergent phenomena.
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1
Introduction

1.1 NOTIONS OF TOPOLOGY IN PHYSICS

Topological phases possess a property to which an integer-valued parameter can be
assigned, which remains solely based on global characteristics in which phases cannot
be altered by local perturbations such as disorder and scattering. The integer linked to
a specific topological phase is termed a topological invariant. The chronologically first
and most renowned example of a topological phase is the integer quantum Hall effect.
This involved a system of electrons moving in two dimensions under a strong perpendic-
ular magnetic field (a time-reversal broken system). This resulted in the quantisation of
the transverse conductance of the system. It was soon understood that this effect had a
topological explanation the physically measured transverse current was associated with a
topological invariant, the first Chern number, which is the integral of the Berry curvature
over the Brillouin zone. The topological phase on each plateau was safeguarded by a bulk
gap, and the current was carried by metallic surface or edge states [6]. However, it has been
recently recognized that gaplessness is not a necessary condition for topological protection.
Band topology can be defined even if the gap closes at certain points in the Brillouin zone.
An example of such a phase is the Weyl semi-metal phase, first predicted in the pyrochlore
iridates [33]. This represents a new state of matter, whose low-energy excitations are Weyl
fermions. Unlike topological insulators, these materials exhibit gapless states both in the
bulk and at the surface.

Various classes of topological phases are characterized by different topological indices,
such as the Chern number, which will be formally introduced in Section 1.1.2. The Chern
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1.1. NOTIONS OF TOPOLOGY IN PHYSICS

number can be likened to the genus of a closed surface. The genus of a closed manifold
intuitively represents "the number of holes" in a shape. For instance, a sphere has a genus
of 0, a doughnut has a genus of 1, and a pretzel has a genus of 3, as illustrated in Figure
1.1.

Figure 1.1: Genus illustration as the "number of holes" in closed manifolds. Figure from [31].

An essential theorem in topology states that the genus of these topological objects
remains unchanged under any continuous transformation. Hence, the "number of holes" in
these baked goods serves as a primary example of a topological invariant.

To better understand all this, let us start by introducing some mathematical objects that
will help us understand what topological phases are.

1.1.1 BERRY PHASE, POTENTIAL AND CURVATURE

Let us examine a generic time-dependent Schrödinger problem, where both the Hamil-
tonian and the state are functions of a vector in a parameter space R(t), where the time
dependence is sufficiently smooth. The time-dependent Schrödinger equation is

ih̄
d
dt
|Ψ(t)〉= Ĥ(R(t))|Ψ(t)〉 (1.1)

where H has the eigensystem

Ĥ(R) |Φn(R)〉= En(R) |Φn(R)〉 (1.2)

where |Φn(R)〉 are generic wavefunctions in parameter space R and with band index n.

Following [6], we rewrite the state |Ψ〉 as

|Ψ̃(t)〉= ∑
n

Cn(t)e−
iT
h̄
∫ t

0 dt ′En(Rt′) |Φn (Rt)〉 (1.3)

Then it is a matter of writing down the time evolution of the C coefficients, which is
found to be
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CHAPTER 1. INTRODUCTION

Ċn(t) = iγ̇n(t)Cn(t)+ ∑
m 6=n

(. . .) (1.4)

where γn is a real quantity called Berry phase defined as

γn(t) = i
∫ t

0
dt ′Ṙt ′ 〈Φn (Rt ′ |∇RΦn (Rt ′)〉 (1.5)

Then it can be shown that [6], if the evolution is adiabatic and the gap between eigen-
values is preserved, the final state is proportional to the initial state, up to a phase factor.
Explicitly, we have

|Ψ(t)〉 ≈ eiγ0(t)e−
i
h̄
∫ t

0 dt ′E0(R(t ′)) |Φ0(R(t))〉 (1.6)

where γ0(t) has the form we stated before. This is what we call a geometrical phase

factor, as it is independent from the parametrization of the curve described by R(t). Let’s
define the Berry vector potential

An(R) = i〈Φn(R) | ∇RΦn(R)〉 (1.7)

that depends on the phase we choose for |Φn(R)〉 in the same way the magnetic poten-
tial depends on the gauge choice:

∣∣Φ′n(R)
〉
= e−iΛ(R) |Φn(R)〉 → A′n = An +∇RΛ(R) (1.8)

which becomes irrelevant if we move on a closed loop. Therefore, on a closed path the

Berry potential and the Berry phase are gauge-invariant.

We now define the so-called Berry curvature as

Ωn
αβ (R) =−2Im

〈
∂αΦn(R) | ∂β Φn(R)

〉
= i
[〈

∂αΦn(R) | ∂β Φn(R)
〉
−
〈
∂β Φn(R) | ∂αΦn(R)

〉] (1.9)

which has the parallel meaning of the Magnetic field. This is evident in three dimen-
sions, where one can rewrite the Berry curvature as

Ωn(R) = ∇R×An(R) (1.10)

which is also manifestly gauge invariant since it holds the identity

∇R×∇RΛ(R) = 0.
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1.1. NOTIONS OF TOPOLOGY IN PHYSICS

Now, the Berry phase can be written as a surface integral of the Berry curvature using
Stokes theorem

γn =
∮
C=∂S

dR ·An(R) =
∫
S

dΣ ·Ωn(R) (1.11)

where S is an arbitrary surface enclosed by the path C .

1.1.2 CHERN NUMBER

Let M be a generic closed manifold, the Chern number is defined as

Ch :=
1

2π

∫
M

dΣ ·Ωn(R) = n ∈ Z (1.12)

If we perturb the system via an adiabatic transformation, the Chern number cannot
change and therefore, being an interger, it is called a topological invariant and it is used
to probe in which topological phase we are in, with Ch = 0 usually being labelled as the
trivial phase.

1.1.3 THE NON-DEGENERATE BAND CROSSING

Consider the Hamiltonian

H = d ·σ = dxσ x +dyσ y +dzσ z (1.13)

with d = d(k) in three dimensions. The eigenvalues are of the form

Eν(d) = νd

where d = |d| and ν =± is a band index. It describes a generic situation in which there
is a non-degenerate level crossing with three parameters to tune to close the band gap.

We can write the Berry curvature in the vector d components as

Ωdadb =
1

2d3 εabcdc (1.14)

We can easily define a vector
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CHAPTER 1. INTRODUCTION

Ωa =
1
2

εabcΩkakb =
da

2d3

Ω =
d̂

2d2

(1.15)

I there exists a point such that d = 0, the last equation represents the field generated by
a monopole in d parameter space of strength 1

2 .

Integrating the Berry curvature on a closed sphere around the monopole, as we have
just seen, one obtains the Chern number→ Ch = 1.

1.1.4 EXPLICIT EXAMPLE WITH A MAGNETIC SYSTEM

As we said, the Berry potential and curvature mathematically resemble magnetic po-
tential and field.

Let’s start from the Hamiltonian of a spin 1/2 electron in a magnetic field

Ĥ(R(t)) = gµBŜ ·B(t) := R(t) · σ⃗ (1.16)

where R(t) absorbs the coefficients. Now we express R using spherical coordinates
and write down the eigenstates of the spin in direction R as

∣∣Φ+1/2(R)
〉
=

(
cosθ/2

eiϕ sinθ/2

) ∣∣Φ−1/2(R)
〉
=

(
e−iϕ sinθ/2
−cosθ/2

)
(1.17)

These expressions are valid near the North pole (θ = 0) but singular at θ = π due to the
undetermined exponential in ϕ . We now calculate the Berry potential in both cases, using
spherical coordinates.

A = ARR̂+Aθ θ̂ +Aϕ ϕ̂ (1.18)

From its definition, we obtain

AN
± =

(
0,0,∓1− cosθ

2Rsinθ

)
AS
± =

(
0,0,±1+ cosθ

2Rsinθ

)
(1.19)

each possessing a vortex at the southern (-) and northern (+) poles. In three dimensions,
we can easily compute the Berry curvature as the curl of A, leading to

Ω± =∓1
2

R̂
R2 (1.20)
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1.2. WEYL SEMIMETALS

which has a singularity at the origin and is regular everywhere else, exactly matching
the result in Eq. (1.15) of the previous section.

Now, this represents the expected magnetic monopole, i.e. the flux of the magnetic
field exiting from such an object through a spherical surface satisfies ∇ ·B = 4πqMδ (R)

with qM =±1
2 being the "magnetic charge" of the monopole.

Again, integrating this on a sphere around the monopole, one obtains the Chern number
→ Ch = 4πqM

2π =±1, analogously with the d-space generic case..

1.2 WEYL SEMIMETALS

1.2.1 SEMIMETALS DEFINITION

We shall start this section by defining the main properties of semimetals. Metals are
known for their gapless energy bands and a non-zero density of states (DOS) at the Fermi
energy, whereas semiconductors and insulators exhibit a gap in both the DOS and energy
bands around the Fermi energy. In contrast, semimetals have, at least at some points in
momentum space, gapless energy bands (like metals), but feature zero DOS at the Fermi
level (like semiconductors and insulators). A schematic representation is depicted in Figure
1.2.

Figure 1.2: A comparison of the density of states (DOS) of different materials. EF is the Fermi
energy. From [34].

For 3D semimetals, the DOS usually vanishes at the Fermi energy following a parabolic
power law. As previously stated, Weyl semimetals are materials that exhibit a gapless en-
ergy spectrum at a finite number of points in momentum-space, referred to as Weyl nodes,
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CHAPTER 1. INTRODUCTION

where the DOS also vanishes. Particles with energies close to these Weyl nodes behave
like Weyl fermions, which have never been observed in high energy physics experiments.

Before delving into the study of 3D Weyl semimetals, it is beneficial to recall the con-
cept of a Weyl fermion.

1.2.2 THE WEYL EQUATION

Let’s start from the Dirac equation

(/∂ +m)Ψ = 0 (1.21)

where Ψ is a Dirac spinor living in a 4-dimensional space S which naturally splits into
two invariant subspaces

W± =
1± γ5

2
S (1.22)

whose elements are called Weyl spinors. Hence, we can depict the Dirac spinor in a
chiral representation:

Ψ =

(
ϕ
χ

)
(1.23)

γ5 is called the chirality operator, because its eigenstates are precisely the two Weyl
spinors and its eigenvalues are ±1, the associated chiralities. This is easily seen from the
form of the operator

γ5 =

(
I 0
0 −I

)
(1.24)

where I is the 2x2 identity.

In the chiral representation the Dirac equation is expressed as a system of two coupled
equations for Weyl spinors:

i(∂0−σ ·∂ )ϕ = mχ

i(∂0 +σ ·∂ )χ = mϕ
(1.25)

In the zero-mass limit the two equations decouple, and we obtain a pair of independent
Weyl equations:

13
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i(∂0−σ ·∂ )ϕ = 0

i(∂0 +σ ·∂ )χ = 0
(1.26)

Once we move to momentum space, the Hamiltonian for each Weyl equation takes the
form:

H± =∓p⃗ · σ⃗ (1.27)

Thus Weyl fermions propagate parallel (or antiparallel) to their spin, which defines
their helicity, which, for massless particles, is the same as their chirality.

It now becomes evident that this formulation exactly corresponds to the form previously
seen in Eq. (1.13) for generic d-space parameters. Consequently, an intriguing connection
between Dirac theory and condensed matter physics emerges. If we succeed in engineering
a system in which the Hamiltonian locally takes the form of the Weyl Hamiltonian, likely
some topological phenomena will arise.

1.2.3 SYMMETRIES IN DIRAC-LIKE HAMILTONIANS

This part focuses on highlighting the primary differences that may arise in materials
characterized by Dirac-like Hamiltonians.

We can formulate Dirac-like Hamiltonians in the notation of γ matrices, which has the
advantage that it is independent from the representation and the attached physical meaning
(spin and orbital degrees of freedom). We start from the Dirac Lagrangian

LD = Ψ̄
(
iγµ∂µ −m

)
Ψ (1.28)

where Ψ̄ = Ψ†γ0 and the γ matrices satisfy the algebra

{γµ ,γν}= 2ηµν (1.29)

with metric η = diag(1,−1,−1,−1). The corresponding Hamiltonian is

H =
∫

d3rΨ†

[
∑

j
iγ0γ j∂ j +mγ0

]
Ψ (1.30)

Following [27], parity P is a unitary operator that inverts momentum and space coordi-
nates (they are vectors), but not spin (it is a pseudovector) of an electron. It is implemented
by a complex phase η satisfying ηη∗ = 1 and by the matrix γ0
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CHAPTER 1. INTRODUCTION

PΨ(t,r)P = ηγ0Ψ(t,−r) (1.31)

We note in passing that anti-fermions receive an extra -1 under parity . Time reversal
is an antiunitary operator that flips the spin and the sign of the momentum, but not of the
space coordinate. Defining a spin-up and -down spinor ξ±, one can flip the spin using

ξ−s =−iσ yKξ s (1.32)

where K implements complex conjugation. Time-reversal on the Dirac bi-spinor is
implemented by the matrix −γ1γ3 and acts on the full Dirac field as

T Ψ(t,r)T =−γ1γ3Ψ(−t,r) (1.33)

FInally, charge conjugation takes a particle with a given spin orientation and momen-
tum to a hole with the same spin orientation and momentum. It acts as

CΨ(t,r)C =−iγ2KΨ(t,r) =−iγ2
[
Ψ†(t,r)

]T
=−i

[
Ψ̄γ0γ2] (1.34)

The following table shows the result of C, P and T on some of the most common
Lagrangian terms:

Ψ̄Ψ iΨ̄γ5Ψ Ψ̄γµΨ Ψ̄γµγ5Ψ ∂µ Ψ̄γµ∂µΨ Ψ̄σ µνΨ

P +1 -1 (−1)µ −(−1)µ (−1)µ +1 (−1)µ(−1)ν

T +1 -1 (−1)µ (−1)µ −(−1)µ -1 −(−1)µ(−1)ν

C +1 +1 -1 +1 +1 -1 -1

CPT +1 +1 -1 -1 -1 +1 +1

With the notation

σ µν =
i
2
[γµ ,γν ] (1.35)

and

(−1)µ ≡

+1 µ = 0

−1 µ = 1,2,3
(1.36)

We see that the Hamiltonian (1.30) is even under inversion and also under time reversal.
The mass term is even with respect to T and P. Following [14], we add the axial vector
perturbation Ψ̄γµγ5Ψ, so that the Hamiltonian takes the form

15



1.2. WEYL SEMIMETALS

H =
∫

d3rΨ†

[
−∑

j
iγ0γ j∂ j +m0γ0 +bµγ0γµγ5

]
Ψ (1.37)

Now, let us rewrite this in the Weyl (or chiral) representation

γ0 = τx γ j =−iτyσ j

γ5 ≡ iγ0γ1γ2γ3 = iτx (−iτy)3 σ xσ yσ z = τz
(1.38)

The parity operation is written in the Weyl representation as

PΨ(t,r)P = γ0Ψ(t,−r) = τxΨ(t,−r) (1.39)

Time-reversal is represented as

T Ψ(t,r)T =−γ1γ3Ψ(−t,r) = iσ yΨ(−t,r) (1.40)

and charge conjugation is represented as

CΨ(t,r)C =−iγ2KΨ(t,r) =−τyσ yΨ∗(t,r) (1.41)

With b = (b0,b), the Hamiltonian in the chiral representation reads

H = τz [σ · (k)+b0]+m0τx +σ ·b (1.42)

In matrix form, this is

H =

(
H+ (k,b0,b,) m0

m0 H− (k,b0,b)

)
(1.43)

where

H+ (k,b0,b) = (k+b) ·σ +b0

H− (k,b0,b) =−(k−b) ·σ −b0 =−H+ (k,b0,−b)
(1.44)

where here the ± signs stand for high- and low-energy bands respectively. With this
notation, it also becomes evident that the σ ·b term has the form of the spin-orbit coupling
(SOC) we already encountered in Eq. (1.16).

Time reversal acts as
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T [H (k,b0,b)] = σyH∗ (−k,b0,b)σy = τz [σ · (k)+b0]+m0τx−σ ·b

= H (k,b0,−b)
(1.45)

as we can see, if b 6= 0 time-reversal symmetry is broken.

Instead, for the parity operation, one obtains

P [H (k,b0,b)] = τxH (−k,b0,b)τx = τz [σ ·k−b0]+m0τx−σ ·b

= H (k,−b0,b)
(1.46)

which means that if b0 6= 0 inversion symmetry is broken.

By tuning the parameters m0,b,b0 in the Hamiltonian (1.42), one can see the emergence
of different types of materials satisfying different symmetries. In Figure 1.3, the energy
bands for some examples of possible configurations of parameters m0,b,b0 are plotted.

Figure 1.3: (left to right) Energy spectra for the Dirac semimetal (m0 = b = b0 = 0), magnetic
semiconductor (m0 = 1,b = 0.5,b0 = 0), Weyl semimetal (m0 = 0.5,b = 1,b0 = 0), and nodal-line
semimetal (m0 = 0,b = 0,b0 = 1) for the Hamiltonian in Eq. (1.42). From [18].

We see that the generic effect of having m0 6= 0 is to open a gap between the energy
bands farther away from the Fermi energy and those closer to it. Then, in the case where
b < m0 one obtains a semiconductor (here labelled as "magnetic" due to the fact that the
σ ·b term is of the form of a SOC), while for the case in which b > m0, one has two distinct
non-degenerate band crossing points (i.e. gapless energy spectrum) separated by a distance
of ∆kW = 2

√
b2−m2

0. This type of materials are a first example of what we will refer to
as Weyl semimetals (WSM). Other types of semimetals can be obtained, for example the
nodal-line semimetals (right panel in Figure 1.2) which exhibit a closed "line" of points in
which the energy gap closes, and Dirac semimetals (left panel in Figure 1.2) that exhibit
degenerate points in which the energy gap closes, i.e. degenerate energy bands for the H+

and H− blocks of the Hamiltonian.
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1.2.4 WEYL SEMIMETALS DEFINITION

In the previous section, we have seen an example of a model that is able to show
two non-degenerate points in which the energy bands touch. As already mentioned, Weyl
semimetals are defined to be topological materials in which there is a finite number (usually
much larger than 2) of these band touching points. But we still have not explained what
happens around this points and why we refer to them as topological materials.

To answer the first question, we can discuss the generic dispersion near the band touch-
ing points ±kW . Any generic 2x2 Hamiltonian can be written in the form

H(k) = d0 σ0 +d ·σ = d0 σ0 +dxσ x +dyσ y +dzσ z (1.47)

where each component is d j = d j(k) for i = x,y,z (in 3D) and d0 represents a chemical
potential term, which we set to d0 = 0 for the moment. We can perform an expansion
around the band touching point k = δk+kW , which gives

H(k)∼ ∑
j=x,y,z

v j ·δk σ j (1.48)

where v j = ∇kd j(k)
∣∣
k=kW

(with j = x,y,z) are effective velocities which are typically
nonvanishing in the absence of additional symmetries. We see that around kW the Hamil-
tonian is linear in δk and vanishes for k = kW → δk = 0. This means that around the
band touching points, Hamiltonians of the form (1.48) describe particle behaving as Weyl

fermions. From now on, let us therefore refer to these points as Weyl nodes. This is still
not enough to define a Weyl semimetal. Indeed, Weyl nodes can be found in other materials
like Dirac semimetals (in 3D) and graphene-like materials (in 2D).

We have seen in the previous model Hamiltonian (1.42), that the case when m = b =

b0 = 0 corresponds to the so-called Dirac semimetal, which is composed of a pair of de-
generate linear bands, therefore with two degenerate Weyl nodes at k = kW = 0. We note
that in this limit, both P and T symmetries are preserved. Instead, if we break, for exam-
ple, T -reversal symmetry by adding a SOC perturbation like b ·σ (see Eq. (1.16)), the two
degenerate bands become split into two, therefore showing two different Weyl nodes at the
momenta k = ±kW 6= 0. It can be shown that the appearance of a finite number of Weyl
nodes can be achieved also by breaking P [24].

Therefore, we include in the definition of Weyl semimetals the fact that they are ma-
terials in which either T or P are broken or, more generally, the Weyl Hamiltonian is not
invariant under the combined transformation T P.

18



CHAPTER 1. INTRODUCTION

1.2.5 TOPOLOGICAL PROPERTIES OF WEYL SEMIMETALS

We still have not answered why Weyl semimetals are defined as topological materials.
The Berry flux piercing any surface enclosing a Weyl node at kW is what we defined as
Chern number. For any Hamiltonian like the one in Eq. (1.48), the Chern number takes the
form

Ch = sign(vx ·vy×vz) (1.49)

If we consider the sphere surrounding a Weyl node at |k|=±kW , it has a non-vanishing
Chern number Ch =±1. In Figure 1.4 there is a plot of the Chern number in a region with
two Weyl points.

Figure 1.4: Berry fluxes around Weyl points of opposite chiralities.

However, it is possible to show that a closed surface covering the entire Brillouin zone
must have net Chern number zero 1. Therefore, the net Chern number of all Weyl points in
the Brillouin zone must vanish. The Berry phase

γn =
∫

SBZ

d2Σk ·Ωn(k) = 0 (1.50)

over the Brillouin zone (BZ) vanishes, but can be expressed as an integral over the surfaces
of the excluded volumes (see Figure 1.5)

γn = ∑
i

∮
∂Ui

dΣk ·Ωn(k) =−2π ∑
i

Ci (1.51)

which must vanish to match the previous equation.

1see for example [35], page 10.
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1.2. WEYL SEMIMETALS

Figure 1.5: BZ depiction for the integral domain in Eq. (1.51). The orange circles are the closed
contours defined as ∂Ui, which in a 3D scheme would represent the surface of the spheres enclosing
Weyl nodes. The dots are indeed the Weyl nodes, with color matching their chirality.

Hence, in order to have the total chirality of the BZ equal to zero, we can state that
Weyl nodes always have to come in pairs. This argument can be seen as a heuristic proof
of the Nielsen-Ninomiya theorem. The theorem in a more complete form states that any
local, Hermitian, and translationally invariant lattice action in even-dimensional spacetime
possesses an equal number of left- and right-handed chiral fermions [25].

1.2.6 ROBUSTNESS OF WEYL SEMIMETALS

Let us introduce a small perturbation to the system of the form

∆(k) ·σ (1.52)

It is evident that the action of this perturbation is just that of a shift of the position of the
Weyl nodes that are now at k′W = kW +∆(k) and we can still expand around k = δk+k′W ,
which gives

H(k)∼ ∑
j=x,y,z

v′j ·δk σ j (1.53)

where now we have that v′j = ∇k
[
d j(k)+∆ j(k)

]∣∣
k=kW

(with j = x,y,z). We see that
the Hamiltonian is still linear in δk and vanishes for k = k′W .

The limiting case is when the perturbation reaches the value of ∆(k) = −kW , then we
obtain that the Weyl nodes merge into one degenerate point at k′W = 0, i.e. we do not have
a Weyl semimetal anymore, but we now in a Dirac semimetal phase.

Nevertheless, perturbations only caused by noise or impurities of this scale are highly
improbable, whereas they can be induced by external magnetic fields that, via SOC, alter
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the orientation and separation of the Weyl nodes. This is why we define Weyl semimetals
to be robust under perturbations.

1.2.7 CHIRAL ANOMALY

The basic idea of the chiral anomaly is that the conservation laws ∂µ jµ = 0 and ∂µ jµ
5 =

0 cannot be satisfied simultaneously. Now the axial vector current of the Dirac theory is
given by, Jµ

5 =ψγµγ5ψ . So in a WSM with chiral symmetry, we should have ∂µJµ
5 = 0 and

consequently, the conservation of chiral charge at the Weyl nodes. This charge, apart from
a prefactor, is the Chern number C at that Weyl node in the WSM, i.e. a closed surface
integral of Berry curvature in k-space around the Weyl node. The non-zero chiral charge is
an outcome of the band touching at Weyl node and singularity of the Berry curvature there.

By coupling the Weyl fermions to an external electromagnetic field we obtain an effec-
tive "axionic" θ term in the action given by [18]

Sθ =
e2

32π2

∫
d4xθ(x)εµναβ FµνFαβ (1.54)

where the axion field θ(x) = 2bµxµ = 2b · r−2b0t and bµ = b0,bi are the parameters
that break the parity (b0) and time-reversal (bi) that we have already encountered in the
model Hamiltonian in the previous section. The action in Eq. (1.54) can be derived from
the (4+1)-dimensional Chern-Simons action obtained from the electromagnetic coupling in
Dirac Hamiltonians via the procedure of dimensional reduction, see [28]. The axial current
for a single Weyl cone of chirality χ is given by

∂µ jµ
χ =−χ

e3

4π2h̄2 E ·B, (1.55)

where E is an electric and B a magnetic field and thus the current would not be con-
served when E and B have a parallel component. This obvious contradiction to current

conservation can be resolved by considering the complete system consisting of pairs of
Weyl cones of opposite chirality and hence, current conservation is restored in total, i.e.

∂
∂ t

(nR +nL) = 0,=⇒ ∂
∂ t

(nR−nL) 6= 0

∂
∂ t

(nR−nL) =±
e2

h2 E ·B
(1.56)

where nR and nL denote the number of fermions at the right and left chirality Weyl
nodes. This implies that by applying parallel electric and magnetic fields, we can change
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1.2. WEYL SEMIMETALS

the difference in their numbers, or if we really have an isolated Weyl node, we can change

the number of particles. However, in any real system, one always has total particle number
conservation. Due to the anomaly term, one obtains charge pumping between the nodes: nR

decreases and nL increases or vice-versa, at a rate given by the anomaly. However, the total
number of particles remains the same. If we had a single Weyl node, the chiral anomaly
would increase the number of particles in the node and therefore charge conservation would
be broken. However, by the previously announced Nielsen-Ninomiya theorem, Weyl nodes
always have to come in pairs, and particle number conservation is preserved.

1.2.8 A COMPARISON WITH GRAPHENE

The study of Dirac physics in condensed matter systems gained renewed attention
within the physics community following the well-known discovery of the exfoliation tech-
nique of graphene monolayers in 2004 [26]. It showed how a single two-dimensional
(2D) sheet scratched off a non-conducting three dimensional (3D) graphite lump can show
unique conducting properties such as large electron mobility, thermal conductivity or huge
tensile strengths. A simplified Hamiltonian of such system can be constructed from a
tight-binding model (by which electrons in an orbital localized around a lattice site can
move/tunnel to a different orbital localized around an adjacent lattice site) consisting of
nearest-neighbour hopping of electrons in the underlying honeycomb lattice. Dispersion
near the band crossings of such monolayers is linear and results in Dirac fermions for
the low energy excitations. Due to this point degeneracy between conduction and valence
band, graphene is dubbed as a semimetal. Considering low-energy physics around these
points, one comes up with a continuum model that resembles a massless Dirac Hamilto-
nian. Typically, a continuum model for graphene is given as H = h̄vF (σxkx +σyky). Like
S = 1/2 spins with spin-up and spin-down eigenstates, here the σ ’s have two eigenvectors
corresponding to two sublattices of the honeycomb lattice of graphene and thus σ ’s are
called the pseudo-spins. For comparison, Weyl semimetals (WSMs) may be thought as 3D
analogues of graphene, although a WSM has both gapless surface and bulk states, unlike
graphene-based topological insulators. We have already seen that the dispersion spectrum
of the 3D bulk WSM system have discrete k-points, called Weyl points (or nodes), is gap-
less. In addition to that, there are also gapless conducting surface states, localized only
within the surface of the WSM. These surface states will be the topic of the next section.

The major difference between graphene-based 3D systems and WSMs emerges when
we add a ∆σz term to the graphene Hamiltonian. The ∆ 6= 0 term can be induced, for
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example, by an external electric field [15]. We see that the spectrum becomes gapped out
due to inversion symmetry breaking. But in a 3D WSM, with generic bulk Hamiltonian
H = c0(k)σ0 +σxvx px +σyvy py +σzvz pz, such gaping out is not possible, as degeneracies
at Weyl nodes are accidental in nature. This, as we already pointed out, makes them more
robust. One can only shift the position of those Weyl nodes, but they cannot be knocked
out, unless pairs of nodes with opposite chiralities are made to coincide, as described by
the Nielsen-Ninomiya theorem in Section 1.2.5.

1.2.9 FERMI ARCS

Surface states are typically associated with band insulators and exist within the bulk
band gap, being exponentially localized near the surface. For gapless bulk systems like
WSMs, we assume translational invariance and label surface states by crystal momenta
within the 2D surface Brillouin zone (sBZ). We require regions of the sBZ free of bulk
states at the same energy. Considering a pair of Weyl nodes at the chemical potential
(EF = 0) at momenta±kW in the sBZ, surface states can exist at all momenta except at the
projection of the Weyl points onto the sBZ (Figure 1.7 top left). At these points, surface
states can leak into the bulk and are not well defined. At other energies, the momentum
region occupied by bulk states grows (Figure 1.7 bottom). These bulk states enable surface
states that are impossible in strictly 2D systems or on the surface of any 3D insulator with
a finite energy gap throughout the Brillouin zone. We will not focus on the theoretical
framework that describes these surface states, which can be found in many references, for
example [1].

Figure 1.6: Fermi arcs connecting two opposite chirality Weyl nodes. The plane showing C = 1 is
at kz = 0, while those showing C = 0 are at kz =±π

a . From [1].

The surface states all disperse in the same direction and inherit the chiral nature of the
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Chern insulator edge states. Concurrently, the bulk Fermi surface now encloses a non-zero
volume, and their projection onto the sBZ forms a pair of filled discs enclosing the Weyl
node momenta. How do the Fermi arc surface states connect to the projection of the bulk
Fermi surface? In the top right of Figure 1.7, a plot of both surface (pink) and bulk bands
projected onto the sBZ is shown.

Figure 1.7: (top left) Chern number, Weyl points and surface Fermi arcs. (top right) Connection
of surface states to bulk Weyl points. (bottom) Evolution of Fermi arc with chemical potential in
a particular microscopic model on raising the chemical potential from the nodal energy (E = 0).
Fermi arcs are tangent to the bulk Fermi surface projections, and may persist even after they merge
into a trivial bulk Fermi surface. From [1].

1.2.10 MATERIALS

As discussed above, the appearance of a Weyl semimetal phase is possible only if the
product of parity and time reversal is not a symmetry. One wants a material that is close to
a band inversion transition and which breaks either T or P symmetry. However, unlike the
case of some Dirac systems the existence of Weyl nodes is accidental which can make a
systematic search for them challenging. Moreover, because the band touchings can occur
at a generic momentum positions they can be over looked in band structure calculations.
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INVERSION SYMMETRY BREAKING MATERIALS

A large number of materials that are WSMs through the inversion symmetry breaking
mechanism have recently been predicted and discovered, such as TaAs,TaP, NbAs and
NbP. Although such systems are predicted to have 24 Weyl points, this family of materials
are completely stoichiometric without any additional doping, external strain or pressure
needed to fine tune the state. Signatures of the Weyl state were seen by ARPES in TaAs
and related materials soon afterwards. The node structure of the TaAs family is shown in
Figure 1.8

Figure 1.8: (a) Crystal structure of the non-centrosymmetric lattice in the TaAs-family of com-
pounds. (b) The first Brillouin zone showing twelve pairs of Weyl points. The red and blue spheres
represent the Weyl points with C =±1 chirality. From [4]

Although these materials have been successfully realized, the quest for a more optimal
family of WSM materials persists.. We note that the 24 Weyl nodes in the TaAs family
of compounds give rise to potentially complicated transport and spectroscopic properties.
Moreover, in the TaAs material class, all Weyl physics occur in a narrow range of energies.
This requires careful material preparation to ensure the Fermi level falls in this range. In
this regard, Weyl semimetals with larger characteristic energy scales are desirable.

TIME REVERSAL BREAKING (MAGNETIC) WEYL SEMIMETALS

An ongoing search has been for materials that are good examples of a WSM through
the T breaking mechanism. Half Heusler compounds often exhibit magnetic ordering.
The materials XCrTe(X = K,Rb) studied here contain transition metal elements Cr, which
possesses magnetic moment due to its partially filled 3d shell. With the inclusion of Spin-
Orbit Coupling (SOC), the band structure will depend on the magnetization direction. The
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SOC term will appear in the Hamiltonian in the form

HSOC ' σ ·B (1.57)

and, as discussed in the previous section, this term will break T -reversal symmetry, there-
fore leading to the creation of two separate Weyl nodes. This class of materials is therefore
much better suited (compared to the 24 nodes TaAs class) for studying the transport prop-
erties of Weyl semimetals. The electronic bands of KCrTe for different magnetizations are
shown below:

Figure 1.9: . (a) Band structure along Γ−Z path. W1 and W2 are the two Weyl points. (b) Location
of the Weyl points in the bulk Brillouin zone for magnetization along [001]. (c) Distribution of
Berry curvature field in the kx = 0 plane. From [20]

Figure 1.10: Band structures of KCrTe and distribution of the two Weyl points in BZ for magneti-
zation vector along (a)-(b) [110] and (c)-(d) [111] directions. From [20]
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From these results, we see that the position of the Weyl points can be flexibly moved
by controlling the magnetization direction. This movement will also affect surface Fermi
arcs as well as transport properties, as we will verify through this thesis.

In addition to this, the XCrTe class of materials exibits Weyl points which are exactly
located at the Fermi level enforced by the band filling condition. In addition, there is
no other trivial bands around the Fermi level, generating a ’clean’ environment to study
intrinsic Weyl features.
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1.3 SUPERCONDUCTOR THEORY

1.3.1 BCS THEORY AND BOGOLIUBOV-DE GENNES FORMALISM

The Bogoliubov equations represent a formulation of the self-consistent mean field
method for the description superconductors [36]. The presence of the impurities, the scat-
tering centers, or the spatially varying interactions result in a position dependent Hamilto-
nian. These effects are included in the Hamiltonian via the spatially varying scalar potential
U(r) and the pairing potential ∆(r).

The Hamiltonian is given by

Ĥ = Ĥ0 + Ĥ1 (1.58)

where Ĥ0 denotes the kinetic energy operator and Ĥ1 denotes the interaction energy
operator:

Ĥ0 =
∫

dr∑
σ

Ψ̂†
(rσ)

[
1

2m

(
−ih̄∇− eA

c

)2

+U0(r)−µ

]
Ψ̂(rσ)

Ĥ1 =−
1
2

V
∫

dr ∑
σσ ′

Ψ̂†
(rσ)Ψ̂† (rσ ′

)
Ψ̂
(
rσ ′
)

Ψ̂(rσ)

(1.59)

Here, m is the mass of the Fermi liquid quasiparticles, A is the vector potential, e

is the electric charge, c is the speed of light, U0(r) is the external potential due to the
impurities, the scatterings from surfaces etc, µ is the chemical potential, σ denotes the
spin direction and V is assumed to be the constant (BCS approximation) net interaction
between quasiparticles (pairing interaction and Coulomb interaction). The Ψ s and Ψ† s
are the annihilation and the creation field operators obeying the fermion anticommutation
rules and are given by

Ψ̂(rσ) = ∑
k

eik·râkσ

Ψ̂†
(rσ) = ∑

k
e−ik·râ†

kσ

(1.60)

where we have assumed that the single particle states are plane waves in unit volume
(V = 1). In the superconducting state the excited states at a point r with spin ↑ or ↓ are a
linear combination of electrons and holes, thus the field operators transform into
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Ψ̂(r ↑) = ∑
n

[
γ̂n↑un(r)− γ̂†

n↓v
∗
n(r)

]
Ψ̂(r ↓) = ∑

n

[
γ̂n↓un(r)+ γ̂†

n↑v
∗
n(r)

]
,

Ψ̂†
(r ↑) = ∑

n

[
γ̂†

n↑u
∗
n(r)− γ̂n↓vn(r)

]
Ψ̂†

(r ↓) = ∑
n

[
γ̂†

n↓u
∗
n(r)+ γ̂n↑vn(r)

]
(1.61)

where γ̂†
n↑ creates a quasiparticle in the state n with the spin up while γ̂n↓ annihilates a

quasiparticle with the spin down. These expressions are basically the Bogoliubov transfor-
mations for the field operators.

The term V Ψ̂†Ψ̂†Ψ̂Ψ̂ is replaced by a bilinear form according to the mean field method.
This leads to an effective Hamiltonian of the form

Ĥe f f =
∫

dr

[
∑
σ

Ψ̂†
(rσ)Ĥ0Ψ̂(rσ)+U(r)Ψ̂†

(rσ)Ψ̂(rσ)

+∆(r)Ψ̂†
(r ↑)Ψ̂†

(r ↓)+∆∗(r)Ψ̂(r ↓)Ψ̂(r ↑)
] (1.62)

where U(r) is the Hartree-Fock averaged Coulomb potentials and ∆(r) and ∆∗(r) are
the pairing potentials. Both Hartree-Fock and pairing potentials should be determined self-
consistently.

The effective Hamiltonian is quadratic in the quasiparticle creation and annihilation
field operators. Therefore, one can diagonalize it by the Bogoliubov transformations (1.28).
The diagonalized effective Hamiltonian attains the form [11]

Ĥe f f = EG +∑
nσ

Enγ̂†
nσ γ̂nσ (1.63)

Here, EG is the ground state energy and En is the excitation energy. We can calculate the
commutator

[
Ψ̂(rσ), Ĥeff

]
using Eq. (1.29) and the anticommutation rules of the operators

Ψ̂†
(rσ) and Ψ̂(rσ) as follows

[
Ψ̂(r ↑), Ĥe f f

]
=
[
Ĥ0 +U(r)

]
Ψ̂(r ↑)+∆(r)Ψ̂†

(r ↓)[
Ψ̂(r ↓), Ĥe f f

]
=
[
Ĥ0 +U(r)

]
Ψ̂(r ↓)−∆∗(r)Ψ̂†

(r ↑)
(1.64)

Applying the Bogoliubov transformations given by Eq. (1.28) to the above equations
and using Eq. (1.30), a pair of equations are obtained by which one can derive the Bogoli-
ubov equations by comparing the coefficients of γ̂n and γ̂†

n :
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{
Eu(r) =

[
Ĥ0 +U(r)

]
u(r)+∆(r)v(r)

Ev(r) =−
[
Ĥ∗0 +U(r)

]
v(r)+∆∗(r)u(r)

(1.65)

In the matrix form these equations are shown as[
Ĥ0 +U(r) ∆(r)

∆∗(r) −Ĥ∗0−U(r)

][
u(r)
v(r)

]
= E

[
u(r)
v(r)

]
(1.66)

In momentum space, for a quadratic form of Ĥ0 and including the effect of U(r) in the
effective mass mS, we can rewrite this as[

ξk ∆(k)
∆∗(k) −ξk

][
u(k)
v(k)

]
= E

[
u(k)
v(k)

]
(1.67)

where

ξk =
h̄2k2

2mS
+µS (1.68)

and

E =±Ek =
√

ξk +∆2 (1.69)

We define the functions u(k) = u0(k)e−iφ/2 and v(k) = v0(k)eiφ/2, so that we find

u2
0(k) =

1
2

(
1+

ξk
Ek

)
v2

0(k) =
1
2

(
1− ξk

Ek

) (1.70)

Using

arccoshx = ln
(

x+
√

x2−1
)

(1.71)

we have, for E2
k > ∆2

u2
0(k) =

1
2

(
1+

ξk
Ek

)
=

1
2Ek

(
Ek +

√
E2

k−∆2
)
=

∆
2Ek

earccosh Ek
∆

v2
0(k) =

1
2

(
1− ξk

Ek

)
=

∆2

2Ek

1

Ek +
√

E2
k−∆2

=
∆

2Ek
e−arccosh Ek

(997)
(1.72)

Instead, for E2
k < ∆2 we use
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arccosz =−i ln
(

z+
√

z2−1
)

(1.73)

to write

u2
0(k) =

∆
2Ek

eiarccos Ek
∆

v2
0(k) =

∆
2Ek

e−iarccos Ek
∆

(1.74)

This will be sufficient for our purpose, for further notions on Superconductivity, we
refer to [30].

1.3.2 ANDREEV REFLECTION

The process of Andreev reflection occurs when an electron from the normal state mate-
rial strikes the interface with energies below the superconducting energy gap. This electron
forms a Cooper pair in the superconductor, accompanied by the retro-reflection of a hole
with opposite spin and velocity but the same momentum as the incident electron, as illus-
trated in Figure 1.11. The junction is considered ideal here, meaning it has no impurity
potential. In a spin-singlet superconductor, the Cooper pair is composed of an ↑- and ↓-
spin electron; thus, a second electron with opposite spin to the incident electron from the
normal state forms the Cooper pair in the superconductor, resulting in the reflected hole.
This process is also applicable to other pairing types, as shown in the previous figure. Due
to time-reversal symmetry, the same process occurs with an incident hole, producing an
Andreev-reflected electron.

Figure 1.11: Visualization of the Andreev reflection process, for the case of a spin-singlet (a) and
spin-triplet (b) superconductor. From [10].

This is a charge-transfer process by which normal current is converted to supercurrent
in the superconductor. Each Andreev reflection transfers a charge 2e across the interface,
avoiding the forbidden single-particle transmission within the superconducting energy gap.
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1.3.3 METAL-SUPERCONDUCTOR JUNCTION AND BTK MODEL

Let us consider a planar NS interface lying in the xy-plane at z = 0 with a semi-infinite
non-superconducting material (N) for z < 0 and a semi-infinite superconductor (S) for
z > 0. The superconducting order parameter is assumed to vary in space only along the
z-direction. In order to solve the BdG equations, we include only scattering at the NS
interface. Following BTK [8], we model the scattering at the interface by a delta-function
potential

U(r) =V0δ (z)

where H is the strength of the potential barrier. For simplicity we neglect the phase of
the pairing potential since only the absolute value is important for the considered geome-
try. Furthermore, to avoid self-consistent calculations, we take the superconducting order
parameter to be zero in the normal conductor and uniform in the superconductor, i.e.

∆(r) = ∆0Θ(z),

where ∆0 is the BCS value of the energy gap and Θ(z) is a Heaviside function. Similarly
for the effective masses of the two materials, we assume that the mass changes abruptly
across the interface

m⋆(r) = m(N)Θ(−z)+m(S)Θ(z)

where m(N) and m(S) are the effective masses of the normal conductor and the supercon-
ductor, respectively.

Due to the simple form of the NS barrier potential, the superconducting order param-
eter and the effective mass, we can separate the variables and express the solutions in the
parallel direction as plane waves, i.e. ψ(N,S)(r) = exp

[
i
(

k(N,S)
x x+ k(N,S)

y y
)]

ψ(N,S)(z), re-
spectively. This yields the effective BdG equations for the z-direction

 [
− h̄2

2m(N,S)
∂ 2

∂ z2 +V0δ (z)−µ(N,S)
eff

]
∆0Θ(z)

∆0Θ(z) −
[
− h̄2

2m(N,S)
∂ 2

∂ z2 +V0δ (z)−µ(N,S)
eff

] ψ(z) = Eψ(z)

(1.75)

where the effective chemical potential is defined as

µ(N,S)
eff ≡ µ(N,S)− h̄2

2m(N,S)

([
k(N,S)

x

]2
+
[
k(N,S)

y

]2
)

(1.76)

We follow BTK and consider an electron-like quasiparticle incident on the NS inter-
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face from the normal side. At the interface it has an amplitude rhe of undergoing Andreev
reflection, ree of normal reflection, tee of normal transmission and the of Andreev transmis-
sion. The scattering amplitudes are obtained by matching the scattering states at the NS
interface, using the appropriate boundary conditions for a delta-function potential barrier
(see, e.g. [23]. The matching results in following linear system


0 1 −u0 −v0

1 0 −v0 −u0

0 2V0
h̄2 − i qN

e
m(N) −i qN

h
m(S)

u0 i qS
h

m(S) v0

2V0
h̄2 + i qN

h
m(N) 0 −i qS

e
m(S) v0 i qS

h
m(S) u0

 ·


rhe

ree

the

tee

=


−1
0

−2V0
h̄2 − i qN

e
m(N)

0


(1.77)

Here, the quantities u0 and v0 read

u0 =

√√√√√1
2

1+

√
1−
(

∆(r)
E

)2


v0 =

√√√√√1
2

1−

√
1−
(

∆(r)
E

)2


(1.78)

and the wavefunctions can in general be written as (we omit the N/S superscript and
refer to the value of ∆(r)) two electron-like solutions

Ψe
±(z) =

(
u0

v0

)
e±iqez (1.79)

and two hole-like solutions

Ψh
±(z) =

(
v0

u0

)
e±iqhz (1.80)

where

qe = kF

√√√√1+

√
E2−∆(r)2

µ2
eff

qh = kF

√√√√1−

√
E2−∆(r)2

µ2
eff

(1.81)
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and
kF =

√
2mµeff

h̄
(1.82)

Figure 1.12: Solutions in the normal (left) and superconducting (right) region. Figures taken from
[13].

The explicit solution of the linear set of equation is particularly simple in the so called
Andreev approximation, which consists in envisaging low energies with respect to the
Fermi level

E,∆0� µeff (1.83)

One can then approximate
qe/h ' kF (1.84)

Under the Andreev approximation one finds for the transmission and reflection ampli-
tudes

rhe =
u0v0

u2
0 +Z2

(
u2

0− v2
0
)

ree =

(
Z2 + iZ

)(
v2

0−u2
0
)

u2
0 +Z2

(
u2

0− v2
0
)

tee =
(1− iZ)u0

√
u2

0− v2
0

u2
0 +Z2

(
u2

0− v2
0
)

the =
iZv0

√
u2

0− v2
0

u2
0 +Z2

(
u2

0− v2
0
)

(1.85)

Here
Z =

V0m
h̄2kF

(1.86)
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The corresponding transmission and reflection coefficients read

A .
= |rhe|2

B .
= |ree|2

C .
= |tee|2

D .
= |the|2

(1.87)

In Figure 1.13 plot the two reflection coefficients A and B for different values of Z.

Figure 1.13: Normal (B) and Andreev (A) reflections for different values of renormalised barrier
strength Z. Figures taken from [13].

1.3.4 CURRENT AND CONDUCTANCE

Following BTK [8], the expression for the (single channel) current reads

I =
2e2

h

∫
dE T (E)︸ ︷︷ ︸

=1−R(E)

( fL(E)− fR(E)) (1.88)

where T (E) is the transmission coefficient of the sample, R(E) its reflection coefficient,
the pre-factor 2 stems from spin degeneracy, and fL/R(E) the Fermi functions of the Left
and Right reservoirs

fX(E) =
1

1+ e(E−µX )/kBT
X = L/R (1.89)

In the case of a (single channel) mesoscopic sample contacted to one normal and one
superconducting electrode, the formula is modified as follows

I =
2e2

h

∫
dE(1−B(E)+A(E))( fL(E)− fR(E)) (1.90)
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The non-linear conductance at zero temperature then reads

GNS(V )
.
=

dI
dV

=
2e2

h
(1−B(eV )+A(eV )) (1.91)

and we also note that
RN = G−1

NN =
h

2e2

(
1+Z2) (1.92)

is the resistance of the normal-normal junction. In Figure 1.14 there’s a plot for it at
some values of Z

Figure 1.14: Zero temperature non-linear conductance for different values of the barrier strength.
The cusp at eV = ∆0 corresponds to the singularity of the density of states of the superconductor at
the gap. Figure taken from [13].

For high transparency the sub-gap regime is dominated by Andreev processes (A' 1)
and therefore GNS is finite, whereas at low transparency (Z > 0) Andreev reflection is
strongly suppressed in favor of normal reflection, yielding a strong reduction of GNS(V ).
GNS(V ) exhibits a cusp at eV = ∆0, corresponding to the singularity of the density of states
of the superconductor at the gap.
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2
Background and Motivations

2.1 AIM OF THIS THESIS

We study a W/S interface, where S is a BCS superconductor and W is a magnetic Weyl
semimetal (i.e. with broken time-reversal symmetry). We are interested in the transport
properties of the junction, with a focus on Andreev reflection, based on the BTK model
briefly explained in the Introduction. More accurately, we are trying to understand the fate
of Andreev reflection for different orientations of the Weyl node separation vector with
respect to the interface. The existing literature predominantly addresses this topic by ex-
amining only two specific orientations of the Weyl nodes relative to the junction, i.e. the
perpendicular and the parallel cases. In contrast, our model is designed to work for arbi-
trary orientations of the nodes and to minimise the need for simplifying assumptions. To
better understand the purpose of this thesis, we first introduce what has already been done
by two papers, one is by Uchida, Habe, Asano [32] (later referred to as UHA) and the other
is by Bovenzi et al. [9]. The latter claims that Andreev reflection at the interface between
a Weyl semimetal and a superconductor must involve a switch of chirality, otherwise it is
blocked, defining the so-called chirality blockade. Instead, UHA do not claim to find any
blockade and apply a slightly different model compared to Bovenzi et al..

We will now provide a more detailed explanation of what has been done by each team,
to lay the basis for understanding our model, which will be described in the next section.
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2.2 REVIEW OF THE PAPER BY UCHIDA, HABE, ASANO

2.2.1 MODEL BACKGROUND

To describe the electronic states in Weyl semimetals, UHA use a simple model given
by

HW = ∑
α,β

∫
drψ†

α(r)
[
− h̄2

2mW

(
∇2 + k2

0
)

σ̂ z

−iλ (∂xσ̂ x +∂yσ̂ y)−µWσ̂0]α,β ψβ (r),

(2.1)

where ψ†
α(r) and ψα(r) are the creation and annihilation operators of an electron with

spin α at r,∇ is the three-dimensional Laplacian, mW is the effective mass of an electron, λ
denotes the coupling constant of the spin-orbit interaction, and µW is the chemical potential
measured from the Weyl nodes, which are found for |kz| = k0. The authors begin with a
spin-degenerate two-band model as shown in Figure 2.1.

Figure 2.1: Schematic band structures of the original model. The Zeeman effect shifts the bands
depending on the spin. Figure taken from [32].

The Zeeman field decreases (increases) the energy of the spin-up (spin-down) band.
Large enough Zeeman fields result in the inverted band structure. The effects of the Zeeman
field are taken into account through the k0 term. The Pauli matrices σ̂ j for j = x,y, and z

represent the real spins of an electron. The unit matrix in spin space is σ̂0. In the Fourier
representation, Eq. (1) becomes

HW(k) =

[
εk−µW λ (kx− iky)

λ (kx + iky) −εk−µW

]
(2.2)

with εk =
(
h̄2/2mW

)(
k2− k2

0
)
.

The Hamiltonian in a metallic superconductor, in the momentum space, was repre-
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sented by

HS(k) =

[
ξkσ̂0 ∆iσ̂ y

−∆iσ̂ y −ξ ∗−kσ̂0

]
,

ξk =
h̄2k2

2mS
−µS,

(2.3)

where ∆ is the amplitude of the pair potential, and mS (µS) is the mass of an electron
(the chemical potential) in the superconductor.

The wave functions on either sides of the junction are connected by the boundary con-
ditions,

ΨW(z = 0) = ΨS(z = 0),

− h̄2

2mW

[
σ̂ z 0
0 σ̂ z

]
∂zΨW(z)

∣∣∣∣∣
z=0

=− h̄2

2mS
∂zΨS(z)

∣∣∣∣
z=0

+[V0σ̂0 +V · σ̂ ]ΨS(z = 0),

(2.4)

for the current in the z-direction. Here, the barrier potential V0δ (z) and the magnetic
potential V · σ̂δ (z) at the interface are introduced. For the current in the x-direction, one
needs to change z to x in the above conditions and add

λ
2i

[
σ̂ x 0
0 −σ̂ x

]
ΨW(x = 0)

to satisfy the current conservation law.

2.2.2 RESULTS

By using the boundary conditions in the previous equation, UHA claim that for nodes
orientation perpendicular to the junction, the results do not show significant differences
with respect to the case of a normal metal / Superconductor junction. The differential
conductance results (see Figure 2.3) confirm that indeed, for this orientation, transport
properties are much like those of a normal Metal / Superconductor junction. However, we
do notice an important difference: the Andreev reflected hole is in the opposite node with
respect to the incoming electron, therefore having opposite sign of momentum (see Figure
2.2(a)), which differs from the normal metal case.

For nodes orientation parallel to the junction, the authors do not claim the presence
of any chirality blockade, making the argument that spin-momentum conservation is still
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possible for some incidence angles (see Figure 2.2(b)).

Figure 2.2: (Color online) Spin configuration on the Fermi surface within xz plane in spin space.
We only show the spin configuration on the Fermi surface around (0,0,k0) in (b). Spin is conserved
in the normal reflection and it becomes opposite direction in the Andreev reflection. The +(−) in
the bottom of figures indicates the sign of the velocity in the current direction. Figures taken from
[32].

However, the results for differential conductance do not support the claim of no block-
ade.

Figure 2.3: The differential conductance of Weyl-semimetal / superconductor junction is plotted as
a function of the bias voltage for the current parallel to the z-axis in (a) and for the current parallel
to the x-axis in (b). Figure taken from [32].

Indeed, by comparing the results in Figure 2.3 (b) with those in Figure 1.14 in Sec-
tion 1.3.1, we see that almost only normal reflection is present for the configuration with
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nodes orientation parallel to the junction and this implies that, by current conservation, no
Andreev reflection is present in that configuration, i.e. the chirality blockade is actually
present even though not claimed. However, the authors did not provide an analytical or
numerical form for the reflection and transmission coefficients.

The way of showing the chirality texture seen in Figure 2.2 will be useful for the following.

2.3 BOVENZI ET AL. REVIEW

In the paper by Bovenzi et al.[9], the authors study the junction between a Weyl
semimetal and a conventional (spin-singlet, s-wave) Superconductor by first considering
separately the Hamiltonians in the two regions and then modelling the interface. In this
paper, only the configuration of Weyl nodes parallel to the junction is studied. One ma-
jor result claimed in this paper is the so-called chirality blockade, i.e. fully suppressed
Andreev reflection due to a conservation of particle chirality in the Weyl semimetal. The
system is depicted in Figure 2.4.

Figure 2.4: Andreev reflection (AR) from a superconductor in a Weyl semimetal. The red and
blue wedges designate electron and hole quasiparticles (Weyl fermions) moving toward or away
from the interface (solid vs dashed arrows indicate v in the ±x direction). The orientation of the
wedge distinguishes the polarization σ =±1 of the spin band, and the color indicates the chirality
C = sgn(vσ). Andreev reflection switches σ and v, which is blocked if it must also switch C.Figure
taken from [9].

2.3.1 MODEL BACKGROUND

The first major difference with respect to UHA’s model is that in the present paper (as
we will do later) a four-band model for the Weyl semimetal is considered, and therefore
this allowed to add an orbital degree of freedom for the BCS superconductor as well.
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The model relates the electron and hole degrees of freedom in the Weyl semimetal by
the operation of time-reversal, with electron and hole Hamiltonians therefore given by:

H(e)
W (k) = HW(k), H(h)

W (k) = σyH∗W(−k)σy (2.5)

The two Hamiltonians are then incorporated in the 8x8 Bogoliubov-de Gennes (BdG)
Hamiltonian

HW =

(
H(e)

W 0

0 −H(h)
W

)
=νzτz (σx sinkx +σy sinky +σz sinkz)

+mW νzτxσ0 +βν0τ0σz−µWvzτ0σ0.

(2.6)

Electron-hole symmetry is expressed by

vyσyH
∗

W(−k)νyσy =−HW(k) (2.7)

The region x < 0 contains a conventional spin-singlet s wave superconductor (real pair
potential ∆0 ), with the BdG Hamiltonian

HS =

(
p2/2m−µS ∆0

∆0 −p2/2m+µS

)
(2.8)

For a chemical potential µS � µW, the momentum components py, pz parallel to the
NS interface at x = 0 can be neglected relative to the perpendicular component px.

The second major difference with respect to what done in the UHA paper is the ex-
pansion for px =±pF +kx around the Fermi momentum pF = mvF (with µS = p2

F/2m
)

by
carrying out the unitary transformation

HS 7→ e−iτz pFxHSeiτz pFx

= vFkxvzτzσ0 +∆0vxτ0σ0 +O
(
k2

x
) (2.9)

2.3.2 RESULTS

This linearization of the superconducting Hamiltonian leads to a different form of
transfer matrix, due to the fact that now only one boundary condition is required (i.e. the
continuity of the wavefunction at x = 0). This is because, once written in terms of differ-
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ential operators, only linear derivative terms will appear in the Hamiltonian.

The analytical results for the reflection coefficients (see Section 1.3.3 for the meaning
and origin of the coefficients in the BTK model) are found to be

|ree|2 = 1 , |rhe|2 = 0 (2.10)

i.e., fully suppressed Andreev reflection at all energies (and also at all angles of incidence).
This is what has been introduced as the chirality blockade. To better understand this
definition, let us first consider the single-cone Weyl Hamiltonian centered at k = (0,0,+K),

H+ = vxkxσx + vykyσy + vz (kz−K)σz. (2.11)

where we remind the reader that its chirality is found as C = sgn(vxvyvz), see Section
1.2.5. For the second Weyl cone centered at k = (0,0,−K) of opposite chirality, we can
take either

H− =−vxkxσx− vykyσy− vz (kz +K)σz (2.12)

or
H ′− = vxkxσx + vykyσy− vz (kz +K)σz (2.13)

or some permutation of x,y,z, but either all three signs or one single sign of the velocity
components must flip.

Figure 2.5: Illustration of the chiral texture for states at the Fermi energy in a pair of Weyl cones at
k = (0,0,±K). The arrows indicate the direction of the spin polarization for a momentum eigenstate
at ky = 0, as a function of kx and kz. The left column is for the Hamiltonian HW = (H+,H−) with
inversion symmetry, the right column is for H ′W =

(
H+,H ′−

)
without inversion symmetry. Figure

taken from [9].
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The first choice satisfies inversion symmetry, H−(−k) = H+(k), while the second
choice does not. In Figure 2.5 the spin-momentum locking in the pair of Weyl cones with
and without inversion symmetry is shown. Therefore, it is also claimed that the chirality
blockade can be removed by breaking inversion symmetry.

Nevertheless, we point that from these results is also not entirely clear weather or not the
authors assume that the hole sector has the same chiral texture as the nodes in the electron
sector, which is not true in the case of µW 6= 0. In addition, translational invariance across
the junction requires conservation of the kz component, and it is not clear from Figure 2.5
whether this is the case or not.

2.4 SUMMARY

To conclude this chapter, let us recap the main points and differences between the two
papers presented and this thesis:

â Both papers deal with a two-node Weyl semimetal / superconducor junction, study-
ing the transport properties of the latter.

â In UHA’s paper, a simplified two-band model is used, excluding bands not display-
ing Weyl nodes. There is no claim of having a suppression of Andreev reflection
for generic incidence, but the differential conductance results are actually showing
it. No explicit form (either analytical or numerical) of the reflection/transmission
coefficients is included.

â In Bovenzi et al., a less simplified four-band model is used for the Weyl side, but
then the superconducting Hamiltonian is linearized, leading to only one boundary
condition necessary. It is claimed a full suppression of Andreev reflection (i.e. chi-
rality blockade), but the chiral texture argument seems to contradict the result. An
explicit analytical expression for the reflection coefficients is provided in this paper.
However, since the authors only consider a single orientation of the Weyl nodes,
it remains unverified whether these reflection coefficients align with the results for
the simpler case where the orientation is perpendicular to the junction or to those
obtained by the BTK model.

â In this work, we will use a four-band model Weyl Hamiltonian (similar to the one of
Bovenzi et al.), but we will not linearize the BCS superconductor one, keeping terms
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(on both materials) of order k2. Consequently, our boundary conditions will lead to
a more extensive system of equations compared to those found in existing literature.
This thesis is also aimed at generalizing the formalism for a generic angle of Weyl
nodes orientation with respect to the junction, which may help understand the origin
and magnitude of the chirality blockade, if any is found. We will provide results
for each reflection and transmission coefficient, for any generic orientation of Weyl
nodes, along with the most important parameters that define the transport properties
of a system.

We have now finished this section and will move on to presenting the theoretical frame-
work we have created to explain what we mentioned in the last point.
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3
Theory Development

3.1 FOUR-BAND WEYL SEMIMETAL

3.1.1 MODEL HAMILTONIAN

As already mentioned in Section 1.2.3, the Hamiltonian model of a Weyl semimetal of
our choice will be

H =
∫

d3rΨ†

[
−∑

j
iγ0γ j∂ j +mW (k)γ0 +bµγ0γµγ5

]
Ψ (3.1)

with b = (b0,b), which is the term that breaks time reversal T (and also parity P in
the case where b0 6= 0) as presented in Section 1.2.3 and creates two Weyl nodes. For
the rest of this work, we will deal with time-reversal broken (magnetic) Weyl semimetals.
This requires that parity P is conserved, as explained in Section 1.2.3, and therefore we
set b0 = 0. Materials like this are those in the XCrTe class that we described in Section
1.2.10, with only two Weyl nodes, which is the minimum number of nodes and therefore
represents an ideal system to study the transport properties of Weyl semimetals.

Note also that here we have left the Dirac mass term in its most generic form, i.e. with
a possible dependence on k. A more explicit form and explanation will be provided later
in this chapter. The Hamiltonian in the chiral representation reads (see Section 1.2.3)

HW = τz [σ ·k]+mW (k)τx +σ ·b (3.2)

In matrix form
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HW =

(
H+ (k,b) mW (k)
mW (k) H− (k,b)

)
(3.3)

where

H+ (k,b) = (k+b) ·σ

H− (k,b) =−(k−b) ·σ
(3.4)

3.1.2 BLOCK DIAGONALIZATION OF THE ELECTRONIC SECTOR

Following the idea of Bovenzi et al. [9], for mW (k) 6= 0, one can bring the Hamiltonian
in block form using the transformation

Ωθ = e−
i
2 θτy(b̂·σ) = cos

θ
2
− iτy(b̂ ·σ)sin

θ
2

(3.5)

for a conveniently chosen value of θ ∈ [0,π].

This is implemented as

H̃W = Ωθ HW Ω†
θ

= τz
{

σ ·kcosθ −
[
mW (k)sinθ + b̂ ·k(1− cosθ)

]
(b̂ ·σ)

}
+ τx

[
mW (k)cosθ + b̂ ·ksinθ(b̂ ·σ)sinθ

]
+σ ·b

(3.6)

see Appendix A.1 for the detailed steps. In this way, one can choose

cotθk =− b̂ ·k
mW (k)

(3.7)

to make the off-diagonal term vanish. More explicitly, we take

sinθk =
mW (k)

dk
cosθk =− b̂ ·k

dk
(3.8)

with
dk =

√
mW (k)2 +(b̂ ·k)2 (3.9)

Therefore, one is left with
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H̃W = Ωθ HW Ω†
θ

= τzσ ·
{

k+
[
dk− b̂ ·k+ τzb

]
b̂
}
= τz {σ⊥ ·k⊥+σb [dk + τzb]}

(3.10)

where it was convenient to define the direction " b " along b and the directions⊥, which
are orthogonal to the first. It follows that there are two Weyl nodes at

kW =±
√

b2−mW (k)2 (3.11)

coming from the H−̃ block, as long as b > mW (k).
Let us rewrite the rotation matrix explicitly

Ωθk =
1√
2dk

{√
dk− kb + iτy(b̂ ·σ)

√
dk + kb

}
(3.12)

The block-diagonalized electron Hamiltonian therefore takes the form

H̃W = Ωθ HW Ω†
θ =

(
H̃+

H̃−

)
(3.13)

where the high- and low-energy transformed Hamiltonians now are

H̃+ = σ⊥ ·k⊥+[dk +b]σb

H̃− = σ⊥ ·k⊥+[dk−b]σb
(3.14)

The energy spectrum of the previous Hamiltonian is shown in Figure 3.1.

Figure 3.1: Energy spectrum of the Hamiltonian in Eq. (3.13). Here, mW (k) 6= 0 and |b| >
mW (k) , ∀k, so that two Weyl nodes of opposite chirality appear at kb ≡ b̂ · k = ±kW and a gap
is opened between the low-energy bands coming from the H̃− block and the high-energy ones com-
ing from the H̃+ block.
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3.1.3 HOLES SECTOR

We define the hole Hamiltonian using the property that a hole is a T -reversed electron,
meaning that we can write

Hh
W =−T [HW (k,b)] =− [τz [σ ·k]+mW (k)τx−σ ·b−µW ] =−HW (k,−b) (3.15)

where we have introduced a chemical potential term µW . Note that this term actually
signals the distance of the Weyl nodes from the Fermi energy, which was set here to be
E = 0. The shape of the Fermi pockets for the electronic sector at different values of µW is
shown in Figure 3.2.

Figure 3.2: Fermi surfaces of the electronic sector in the (kz,kx)-plane for different values of µw

One needs now to extend the transformation to the holes part, in order to make that
block diagonal as well. We can directly obtain the hole Hamiltonian transformation by
taking the time-reversal of the whole rotated electron Hamiltonian, since the latter is al-
ready block diagonal, i.e.

H̃h
W =−T

[
H̃W (k)

]
(3.16)

Then, since

H̃W (k) = Ωθ(k)HW (k)Ω−1
θ(k) (3.17)

we can write
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Ωθ (k) =

(
Ωθ(k)

T
[
Ωθ(k)

] )=

(
Ωθ(k)

σyΩ∗θ(−k)σy

)
(3.18)

that acts on the BdG extension of the Weyl Hamiltonian (i.e. on the full 8x8 Elec-
trons+Holes Matrix). Here

σyΩ∗θ σy = cos
θ
2

σy

(
1+ i tan

θ
2

τy(b̂ ·σ)

)∗
σy = Ω†

θ (3.19)

The last step in the time reversal operation is the inversion of the momenta, that acts
as

sinθk→ sinθ−k = sinθk cosθk→ cosθ−k =−cosθk

In other words

θ → π−θ :


sin θk

2 → cos θk
2

cos θk
2 → sin θk

2

tan θk
2 → cot θk

2

We conclude that

T
[
Ωθ(k)

]
= σyΩ∗θ(−k)σy = Ω†

π−θ(k) (3.20)

Grouping the terms and making some trigonometric simplifications, the transformed
holes Hamiltonian becomes

Ω†
θ(−k)T [H(k,b)]Ωθ(−k) =τx

[
−mW (k)cosθk− sinθk(b̂ ·k)

]
−σ ·b−µW

+τz
[
−σ ·k− [(1+ cosθk)(b̂ ·k)−2mW (k)sinθk](b̂ ·σ)

]
(3.21)

Using the choice made for the electron sector and one has

mW (k)cosθk+sinθk(b̂ ·k) =mW (k)
−b̂ ·k√

mW (k)2 +(b̂ ·k)2
+

mW (k)√
mW (k)2 +(b̂ ·k)2

b̂ ·k= 0

(3.22)

so we can extend the rotation matrix to
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Ω̂θk =

(
Ωθk

Ω†
θ−k

)
=

(
cos θk

2 1− iτyb̂ ·σ sin θk
2

sin θk
2 1+ iτyb̂ ·σ cos θk

2

)
(3.23)

The holes Hamiltonian is therefore given by

Hh
W =−Ω†

θ(−k)T [H(k,b)]Ωθ(−k) =

=−τz

k− (b̂ ·k)b̂− (b̂ ·k)2 +mW (k)2√
mW (k)2 +(b̂ ·k)2

b̂− τzb

 ·σ +µW =−τz
{

k⊥− (dk + τzb) b̂
}
+µW

(3.24)

In conclusion, the complete Hamiltonian in the rotated ˜basis is (we also re-introduce
the chemical potential term c0 = µW 6= 0)

H̃W =



k⊥ ·σ⊥
+(dk +b)σz−µW

−k⊥ ·σ⊥
−(dk−b)σz−µW

−k⊥ ·σ⊥
+(dk +b)σz +µW

k⊥ ·σ⊥
−(dk−b)σz +µW



= τz
[
νz k⊥+ν0 (dk + τzb) b̂

]
−µW νz

(3.25)

3.1.4 MASS TERM DEFINITION

The last equation is very general, but we now provide an explicit form for mW (k),
which will be exploited in the following. For topological materials, the Dirac mass term
can take the form [12]:

mW (k) = m0 +gmk2 (3.26)

The particular value of gm is not particularly relevant, as long as gm > −1. Its sign is
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the signal of the trivial (+) or topological (-) insulator phase when b = 0 [12], which is not
something we will focus on in this work. In this thesis we will make the assumption that

m0 >> |k| (3.27)

and keep terms to the order of O(k2). In this way, we can rewrite (3.9) by expanding,
obtaining

dk ' m0 +
(b̂ ·k)2

2m0
+gmk2 +O(k4) (3.28)

by redifining gm→ gm
2m0

, this becomes

dk ' m0 +

[
(b̂ ·k)2 +gmk2]

2m0
(3.29)

together with a redefinition of the Weyl nodes momentum

kW '

√
2m0

[
b−m0

1+gm

]
(3.30)

This approximation enables us to derive a transformed Hamiltonian that is quadratic
in kz for any orientation of the Weyl nodes, which is of the same order that we will main-
tain in the superconducting Hamiltonian, therefore allowing us to impose better matching
conditions at the interface.

3.1.5 WEYL SEMIMETAL WAVEFUNCTIONS

Each block in the full Hamiltonian is a 2x2 matrix in momentum space, therefore can
be written in the form

H̃± = dxσx +dyσy +dzσz (3.31)

The eigenvectors for each 2x2 block are then found to be

Ψ̃η ,ν =
(σx)

1−η
2−

ν
2

Nη ,ν

(
η |E±µW |−dz

ηνdx− idy

)
(3.32)

where ± here stands for electron/hole and

Nη =
√

2|E±µW |(|E±µW |−ηdz) (3.33)
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and we define the two indices

η = Sign(dz) , ν = Sign(E±µW ) (3.34)

and
|E±µW |=

√
d2

x +d2
y +d2

z (3.35)

is the energy band eigenvalue (modulus) with respect to the Fermi energy.

For θb = 0
(
i.e. b̂ = êz

)
we have that, for the low energy electronic bands (those de-

scribed by H̃−)

dx =−kx,

dy =−ky,

dz =−
[

m0−b+
(1+gm)

2m0
k2

z +
gm

2m0
k2

x

] (3.36)

As a reference, the sign of dz for the low-energy bands is highlighted in the following
graph.

Figure 3.3: Low energy bands for the Electrons (orange) and Holes (blue) sectors, showing the sign
of dz for b̂ = êz. The vertical dashed lines are at kz =±kW .

We see that dz changes sign whether |kz| is larger or smaller than the Weyl node mo-
mentum kW , the magnitude of which we remind the reader to be

kW '

√
2m0

[
b−m0

gm +1

]
(3.37)
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Introducing the notation

χ+ = λ+ =

(
1
0

)
, χ− = λ− =

(
0
1

)

with χ referring to the Nambu space and λ to the orbital space. We can generalise the
previous eignefucntion to any block of the Weyl Hamiltonian by writing it as

Ψ̃α,β ,η ,ν = χαλβ
(σx)

1−η
2−

ν
2

Nη ,ν

(
η |E +α µW |−dz

ηνdx− idy

)
(3.38)

Having defined this, one can then build particle wavevectors as

ψW
α,β ,γ(z) = Ψ̃α,β ,η ,ν eikW

α,β ,γ z (3.39)

Where we define the index γ =±, which, also for generic orientation, has the meaning
of signaling a momentum |kz| that is either larger or smaller than the value of kW cosθb.
The index η can be found once the index γ has been fixed, therefore it is discarded from
the notation we will use to label particles. The index ν is fixed by the energy E and by the
index α and therefore is excluded from the notation as well. Each particle wavefunction
can then be expressed through the combination of only three indices α,β ,γ .
The momenta kW

α,β ,γ used in the exponential in the wavefunctions are given by the solutions
of the dispersion relation. For example, for an orientation of Weyl nodes given by b̂ = êz,
they have the form

kW
α,β ,γ

[
b̂ = êz

]
=±

√
k2

W +η β 2m0

√
(E +α µW )2−

(
k2

x + k2
y
)

(3.40)

Note the now-evident meaning of the index γ , signaling a momentum |kz| >< kW cosθb.
Notice also that we have generalised the form of kW also for the higher energy bands, i.e.

kW =

√
2m0

(
−β b−m0

1+gm

)
(3.41)

although one clearly sees that these bands do not present Weyl nodes, having no real solu-
tion for β =+ for any energy. Nevertheless, this form is beneficial for maintaining a more
concise index notation.

As an example of the previous notation, let us fix the orientation of Weyl nodes with
b̂= êz and take an electron (α =+) in the low energy bands from the τz =− block (β =−)
with momentum greater than kz > kW (γ =+ , η =−) with E > µW (ν =+), one has that
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(σx)
1−η

2−
ν
2 = σx and the electronic wavefunction is given by

ψW
+,−,+(z) =

1
N



0
0

−dx− idy

−|E +µW |−dz

0
0
0
0


eikW

+,−,+ z (3.42)

Similarly, for a hole (α = −) in the low energy bands from the τz = − block (β = −)
with momentum kz > kW (γ =+ , η =−) with E < µW (ν =−), one has that

ψW
−,−,+(z) =

1
N



0
0
0
0
0
0

−dx− idy

|E−µW |−dz


eikW
−,−,+ z (3.43)

To make the last results clearer, in Figure 3.4 we re-plot the low-energy bands with the
momenta chosen in the earlier example.
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Figure 3.4: Example of momenta used in equations (3.42) and (3.43). The vertical dashed lines are
at kz =±kW . Note that the electronic and hole bands are non-degenerte because of the term µW 6= 0,
indicating the energy separation of the Weyl nodes from the Fermi energy, that is set to zero in this
context.

We trust that Section 4.2 will help to provide more clarity to the notation just used.

3.2 SUPERCONDUCTOR

On the superconducting side, we also construct a matrix that includes two orbitals and
two spins. The electronic component is based on a quadratic dispersion relation. We
assume the pairing to be diagonal in the orbital index and of spin-singlet type. Although
different effective masses, pairing parameters, and pairing types could be employed, which
would certainly affect the outcomes, we will adhere to the basic BCS framework and use
mS and ∆0 for both orbitals. Therefore, the BdG Hamiltonian with this choice is

HS =

(
ξkτ0σ0 −∆0eiφτ0iσy

∆0e−iφτ0iσy −ξkτ0σ0

)
(3.44)

(note that ν0 = τ0 = σ0 = 1). As a check, the Hamiltonian in second quantization is

HS =
1
2 ∑

k
Ψ†HSΨ =

1
2 ∑

k

(
ψ†

k,ψ−k

)( ξkτ0σ0 −∆0eiφτ0iσy

∆0e−iφτ0iσy −ξkτ0σ0

)(
ψk

ψ†
−k

)

= ∑
a=1,2

∑
k

{
ξk ∑

s=↑↓
ψ†

a,k,sψa,k,s +∆0

[
eiφψ†

a,k,↓ψ
†
a,−k,↑+ e−iφψT

a,−k,↑ψa,k,↓

]}
(3.45)
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Let us write explicitly the eight-component nambu spinor

Ψ =

(
ψk

ψ†
−k

)
=
(
ψ+↑,ψ+↓,ψ−↑,ψ−↓,ψ∗+↑,ψ

∗
+↓,ψ

∗
−↑,ψ

∗
−↓
)T (3.46)

so that it has the same ordering for both orbitals and spin degrees of freedom as in the
Weyl semimetal. The energy eigenvalues of any orbital have the same form that has been
derived in Section 1.3.1, as well as ξk. The energy bands are plotted in Figure 3.5

Figure 3.5: Energy bands in the superconductor. Electron-like excitations are the orange lines while
hole-like ones are the blue lines. Note that the bands are degenerate for the orbital and spin degrees
of freedom, therefore the total number is actually eight.

3.2.1 EIGENSTATES

For both fermionic species, we can write the eigenstates in terms of the functions
u(k) = u0(k)e−iφ/2 and v(k) = v0(k)eiφ/2 as for those obtained in Section 1.3.1. An ex-
citation with positive energy E will be a superposition of a spin- s particle and spin- (−s)

anti-particle in orbital c =± and s =↑,↓. which is described by the spinor

ψ(S)
(c=1,2),(s=↑,↓) =

(
u0(k)eiφ/2ηcχs

v0(k)e−iφ/2ηcχs

)
(3.47)

where we define

η+ = χ↑ =

(
1
0

)
η− = χ↓ =

(
0
1

)
(3.48)

and similarly for an excitation with energy −E

57



3.2. SUPERCONDUCTOR

ψ(S)
c,s =

(
−v0(k)eiφ/2ηcχs

u0(k)e−iφ/2ηcχs

)
(3.49)

For a given energy, the form of the momenta solutions found by inverting the dispersion
relation in the superconductor is

kS
e(h) =±

√
2mS

(
µS +(−)

√
E2−∆2

0

)
(3.50)

Of course, one should note that for E < ∆0 the previous equation can be analytically
continued to the form

kS
e(h) =±

√
2mS

(
µS +(−)i

√
∆2

0−E2
)

(3.51)

Note that we have

u0(k) =


1
2

(
1+ ξk

Ek

)
if |k|= kS

e

1
2

(
1− ξk

Ek

)
if |k|= kS

h

(3.52)

and

v0(k) =


1
2

(
1− ξk

Ek

)
if |k|= kS

e

1
2

(
1+ ξk

Ek

)
if |k|= kS

h

(3.53)

This can be rewritten as v0(kS
h) = u0(kS

e) and u0(kS
h) = v0(kS

e), for any energy.

3.2.2 SUPERCONDUCTOR IN THE TRANSFORMED BASIS

To derive the matching conditions for our junction interface, we need to first transform
the superconductor Hamiltonian using the same matrix that was employed to block diago-
nalize the Weyl part of the Hamiltonian. This ensures that we are working within the same
basis for the entire system (often referred to as the ’tilde’ basis). Hence, the transformation
acts as
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H̃S(k) = Ω̂θkHS(k)Ω̂
†
θk

=

(
ξk −eiφ∆0 Ωθk τ0iσy Ωπ−θk

e−iφ∆0 Ω†
π−θk

τ0iσy Ω†
θk

−ξk

)
(3.54)

then, for φ = 0, we can rewrite it as

H̃S(k) =ξkνzτ0σ0 +∆0νy [2 f+ (k) f− (k)τ0iσy

−
(

f 2
+ (k)− f 2

− (k)
)

iτy (σx cosθb−σz sinθb)
] (3.55)

where the angle θb gives the orientation of Weyl nodes and will be better defined in the
next section. We have also defined

f± (k) =

√√√√√
√

m2
0 + k2

b +gmk2± kb

2
√

m2
0 + k2

b +gmk2
(3.56)

Note that the superconductor Hamiltonian is not invariant under the transformation,
i.e. H̃S 6= HS. In particular, the form of the pairing parameter matrix has now changed and
displays an orbital mixing τy factor as well as a Weyl nodes orientation dependent σ⊥,1
factor.

Note that we define the transformed basis "tilde" through a rotation of the whole Hamil-
tonian, i.e.

(HW +HS)Ψ−→
(
H̃W + H̃S

)
Ψ̃ (3.57)

where Ψ has the ordering provided by Eq. (3.46) and was defined to maintain the same
orbital and spin ordering in both materials. The explicit form of the superconductor eigen-
states in the "tilde" basis depends on the orientation of Weyl nodes and will be addressed
in the next section.

3.3 GENERIC WEYL NODES ORIENTATION

3.3.1 GENERIC ORIENTATION OF THE WEYL HAMILTONIAN

We now compute both Hamiltonians in the coordinates in which the future interface
will be fixed at the z = 0 plane. We fix the initial position with an orientation of Weyl
nodes perpendicular to the junction (i.e. êz) and we rotate the vector b with respect to the
interface, i.e. write the versor b̂ as
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b̂ =

 cosθb 0 sinθb

0 1 0
−sinθb 0 cosθb


 0

0
1

 (3.58)

We remind the reader that this is easily achieved experimentally by rotating the mag-
netic field which is responsible for the separation of Weyl nodes, as explained in Section
1.2.10. We define θb = 0 for when the Weyl node separation in momentum space is per-
pendicular to the interface.

Figure 3.6: Fermi surfaces (not in scale) in the kx,kz plane for different values of Weyl nodes
orientations, i.e. different values of θb.

As we can still perform the transformation Ω̂θk , the Weyl Hamiltonian will preserve its
block diagonal form, which translates, in general, to a second-order differential equation.

Clearly, the direction y is not affected, so ê⊥,2 = êy and σ⊥,2 = σy. On the other hand,
the other two components are

k⊥,1 = k · ê⊥,1 = cosθbkx− sinθbkz

skb = k · b̂ = kx sinθb + kz cosθb
(3.59)

and the same holds for the σ matrices

σ⊥,1 = σx cosθ −σz sinθ

σb = σz cosθ +σx sinθ
(3.60)

Now, substituting this into (3.9), we have that
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dk ≈ m0 +
1

2m0

[
k2

x sin2 θb + k2
z cos2 θb +2kxkz sinθb cosθb +gm

(
k2

x + k2
z
)]

(3.61)

and the transformed Weyl Hamiltonian takes the form

H̃W =τz
[
νz k⊥+ν0 (dk + τzb) b̂

]
+µW νz,

=τz

{
σx

[
νzkx cos2 θb +(m0 + τzb)sinθb +

k2
x

2m0
sin3 θb+

+

(
kx

m0
sinθb−νz

)
sinθb cosθbkz +

1
2m0

sinθb cos2 θbk2
z + sinθb

gm

2m0

(
k2

x + k2
z
)]

+ νzσyky

+ σz

[(
m0 + τzb−νzkx sinθb +

k2
x

2m0
sin2 θb

)
cosθb

+

(
νz sinθb +

kx

m0
cos2 θb

)
sinθbkz +

cos3 θb

2m0
k2

z + cosθb
gm

2m0

(
k2

x + k2
z
)]}

(3.62)

In terms of the indices α,β , one can write

dx =β
[

αkx cos2 θb +(m0 +βb)sinθb +
k2

x
2m0

sin3 θb

+

(
kx

m0
sinθb−α

)
sinθb cosθbkz +

sinθb cos2 θb

2m0
k2

z + sinθb
gm

2m0

(
k2

x + k2
z
)]

dy =αβky

dz =β
[(

m0 +βb−αkx sinθb +
k2

x
2m0

sin2 θb

)
cosθb

+

(
α sinθb +

kx

m0
cos2 θb

)
sinθbkz +

cos3 θb

2m0
k2

z + cosθb
gm

2m0

(
k2

x + k2
z
)]

(3.63)

The structure of the Weyl eigenfunctions remains unchanged, as it holds for any gen-
eral form of dx,dy, and dz.
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3.3.2 GENERIC ORIENTATION FOR THE SUPERCONDUCTOR

On the superconducting side, the dependence on θb is limited to the transformed pairing
term. We remind the reader that H̃S is given by

H̃S(k) =ξkνzτ0σ0 +∆0νy [2 f+ (k) f− (k)τ0iσy

−
(

f 2
+ (k)− f 2

− (k)
)

iτy (σx cosθb−σz sinθb)
] (3.64)

The generic form of the superconducting eigenfunctions with positive energy E is

ψ(S)
c,s =

(
u0(k)ηcχs

v0(k)
[
2 f+ (k) f− (k)ηcsχ−s−

(
f 2
+ (k)− f 2

− (k)
)

cη−c (cosθbχ−s− sinθbsχs)
] )

(3.65)

while for those with negative energy −E is

ψ(S)
c,s =

(
−v0(k)ηcχs

u0(k)
[
2 f+ (k) f− (k)ηcsχ−s−

(
f 2
+ (k)− f 2

− (k)
)

cη−c (cosθbχ−s− sinθbsχs)
] )

(3.66)

As previously discussed, the pairing structure in the "tilde" basis causes the supercon-
ductor eigenfunctions to exhibit a mixing in both orbital and spin degrees of freedom.
Nevertheless, as demonstrated in the Results section, this does not limit the study of the
transport properties of the junction with a Weyl semimetal.

3.4 MATCHING CONDITIONS

The starting point to derive matching conditions at the junction interface is the generic
Schrödinger equation

HΨ = EΨ

which we rewrite in the rotated basis

H̃Ψ̃ = EΨ̃ (3.67)

In this context, H̃ denotes the overall Hamiltonian of the entire system, which is parti-
tioned into a z < 0 Weyl semimetal region and a z > 0 superconductor region. Essentially,
this is
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H̃ = H̃W Θ(−z)+ H̃S Θ(z) (3.68)

It is important to observe that for a hetero-junction the quadratic term in the Hamilto-
nian takes the form [19]

∫
dzΨ̃†

(z)∂z[M̂(z)∂z]Ψ̃(z) (3.69)

where M̂(z) can be seen as a generic space-dependent mass mattrix term. Therefore,
we can write the complete Hamiltonian in differential form as

H̃Ψ̃(z) =
{

∂z

[
M̂(2)

W Θ(−z)+ M̂(2)
S Θ(z)

]
∂z[

M̂(1)
W Θ(−z)+ M̂(1)

S Θ(z)
]

∂z +Const.
}

Ψ̃(z)
(3.70)

where, in general, M̂(n)
W/S are matrices of coefficients that are in front of the kn

z term.
Their form can be directly obtained from the results of the previous section in Eq. (3.62)
and (3.63), and it is found to be

M̂(2)
S =

νzτ0σ0

2mS

M̂(1)
S = 0

M̂(2)
W = ν0τz

[
cos2 θb +gm

2m0

]
(σz cosθb +σx sinθb)

M̂(1)
W = τz

[
σz

(
sinθb +

kx

m0
cos2 θb

)
+σx

(
kx

m0
sinθb−1

)
cosθb

]
sinθb

(3.71)

3.4.1 PROBABILITY CURRENT

The general form for the probability current is given by

j(r, t) =
h̄

2im
[Ψ∗(∇Ψ)−Ψ(∇Ψ∗)] (3.72)

We then impose the continuity of the wavefunction at z = 0,

Ψ̃
(
0−
)
= Ψ̃

(
0+
)
= Ψ̃(0) (3.73)

and derive a condition on the derivatives by imposing the continuity of the probability
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current at z = 0,

jW (0−) = jS(0+) (3.74)

Adding a delta-like potential V0δ (z) to model the transparency of the interface, this
results in

[
M̂(2)

S ∂zΨ̃
(
0+
)
− M̂(2)

W ∂zΨ̃
(
0−
)]
−V0Ψ̃(0) = 0 (3.75)

Equations (3.73) and (3.75) will therefore build a system of sixteen equations that will
provide the value of the coefficients of the Transfer Matrix.

Note that there is no dependence on the linear term coefficients M̂(1)
W/S, which is a result

of conservation of the probability current, see Appendix A.2 for details.

NOTE: The inclusion of the gm factor is crucial. Without it, the M̂(2)
W coefficient matrix

would decrease according to cos2 θb (for θb ∈ [0,π/2]) and would completely disappear
in the case of parallel orientation of Weyl nodes with θb = π/2. This would significantly
affect the matching conditions conceptually, particularly causing Eq. (3.75) to become

M̂(2)
S ∂zΨ̃

(
0+
)
−V0Ψ̃(0) = 0 (3.76)

leaving the derivative term of the superconductor unmatched by that of the other material.
Consequently, this would result in misleading or incomplete outcomes, as merely ensuring
the continuity of the wavefunction would be insufficient to accurately describe the trans-
port properties of a junction, lacking any momentum dependence. Instead, for gm 6= 0, the
derivative term is present also on Weyl side for ∀θb, therefore matching the superconduct-
ing one and providing a non trivial form of Eq. (3.75).

3.5 TRANSFER MATRIX

Let us now describe the formalism used to study the scattering processes across a
generic junction interface. The following argument is valid for any choice of orientation of
Weyl nodes and serves as an introduction for the notation used in the results section.
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Figure 3.7: Junction interface relating the outgoing waves to the incoming waves.

In general, linear relations between outgoing and incoming waves can be written as(
ΨW

inc(z = 0)
ΨS

inc(z = 0)

)
= Ŝ

(
ΨW

out(z = 0)
ΨS

out(z = 0)

)
, (3.77)

where the matrix Ŝ is the scattering matrix. By definition, the matrix Ŝ relates the
outgoing waves to the incoming waves as shown in figure 3.7. We can also define the
transfer matrix T̂ by the relation(

ΨW
inc(z = 0)

ΨS
inc(z = 0)

)
= T̂

(
ΨW

out(z = 0)
ΨS

out(z = 0)

)
. (3.78)

In our case, it turns out that it is much more efficient to write a transfer matrix in terms
of the probability with which each process contributes to the transport. To do this, we
take the most general case and write the wavefunctions as a superposition of all possible
processes, i.e. we define:

ΨW
inc =

8

∑
i=1

ai ΨW
inc,i

ψW
re f l =

8

∑
i=1

ci ψW
re f l,i

ΨS
inc =

16

∑
i=9

ai ΨS
inc,i

ψS
tot =

16

∑
i=9

ci ψS
trans,i

(3.79)

where |ai|2 provides the probability of each incoming process and |ci|2 the probability
of each reflected/transmitted. The number of possible processes is given by the nuber of
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degrees of freedom: having defined a four-band model and having added the BdG formal-
ism, the total degrees of freedom are 8. Furthermore, we note that for the superconductor
wavevectors we use index numbering i = 9, ...,16 to avoid defining a new set of coeffi-
cients.

In this way, we can rewrite (3.78) as
a1
...

a16

= T̂


c1
...

c16

 (3.80)

As we already pointed out, the transfer matrix (and also the scattering matrix) can be
derived by imposing the matching conditions equations (3.73) and (3.75) on each wavevec-
tor. Writing them in matrix notation, we obtain

M̂ inc


a1
...

a16

= M̂ out


c1
...

c16

 (3.81)

Where

M̂ inc =


ΨW

inc,1[
ikinc,1M̂(2)

W +V0

]
ΨW

inc,1

· · ·
ΨW

inc,8[
ikinc,8M̂(2)

W +V0

]
ΨW

inc,8

ΨS
inc,9[

ikinc,9M̂(2)
S

]
ΨS

inc,9

· · ·
ΨS

inc,16[
ikinc,16M̂(2)

S

]
ΨS

inc,16


(3.82)

and

M̂ out =


ΨW

re f l,1[
ikre f l,1M̂(2)

W +V0

]
ΨW

re f l,1

· · ·
ΨW

re f l,8[
ikre f l,8M̂(2)

W +V0

]
ΨW

re f l,8

ΨS
trans,9[

iktrans,9M̂(2)
S

]
ΨS

trans,9

· · ·
ΨS

trans,16[
iktrans,16M̂(2)

S

]
ΨS

trans,16


(3.83)

where, from here on, we leave out the z-dependence for conciseness. Note that since
each wavevector has 8x1 dimensions, the two matrices M̂ inc and M̂ out are 16x16 square
matrices.

Therefore, the generic transfer matrix T̂ for our junction interface is found to be:

T̂ =
[
M̂ inc

]−1
M̂ out (3.84)

which is, of course, a 16x16 matrix as well. This formalism is the most general one
and can basically provide all the transport properties of the system.
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In the case of a single incoming particle, all we have to do is select the type of incoming
particle by taking one of the ai coefficients with unit value. For example, let us take a3 = 1
(so that a j = 0 for j 6= 3), which will later be identified as an incoming electron from the
c = 1 Weyl node. What we obtain is an easier system to solve, i.e.

ΨW
inc,3[

ikinc,3M̂(2)
W +V0

]
ΨW

inc,3

= M̂ out


c1
...

c16

 , (3.85)

therefore significantly reducing the computational time required.
NOTE: it is important to mention that the momenta appearing in each wavefunction (and
therefore also in the last equations) can in general be complex-valued, i.e. ktype,i ∈ C,
hence giving rise to localized states (i.e. ∝ e−kzz) and therefore are regarded as evanescent
waves. However, these states must still be included in the matching conditions, as done
by Bovenzi et al. [9], in order to avoid having an over-determined system of equations,
which in turn might give null solutions. For example, we have seen in Section 3.1.5 that
for θb = 0, the form of the momentum solutions at a given energy is given by Eq. (3.40).
In this limit case, for

k2
W [β =+]> γ 2mW

√
(E +α µW )2−

(
k2

x + k2
y
)

(3.86)

one has complex-valued solutions. We will see that, for our choice of energy, the high-
energy bands (those with β = +) will always have complex-valued momenta and, there-
fore, only give rise to localized states.
In addition, one can define a "threshold" angle θ th

b after which only two kz solutions are
real-valued. For the range of energies of our interests, we can approximate Fermi pockets
with spheres in the (kx,ky,kz)-space of radius |E +αµW |. Therefore, the threshold angle is
expected to behave as

θ th
b ∼ α|E +αµW | (3.87)

For the high-energy bands, the concept of a threshold angle is not applicable, as it pertains
to the presence of two distinct Fermi pockets forming the Fermi surface. Indeed, the high-
energy bands lack Weyl nodes, resulting in a Fermi surface (in 2D) that is of single ellipse
shape.

This concludes our discussion of the theory. We are now prepared to present the results
derived from applying the formalism just described.

67



4
Results

The entirety of results presented in this chapter were obtained using the Mathemat-
ica software, in which we applied the analytical model described in the previous section.
Before presenting the results, some introduction is necessary.

4.1 PARAMETERS DEFINITION

We begin this section by specifying several numerical values for some of the key pa-
rameters.

As previously stated, the minimum quantity in the system is identified as the supercon-
ducting gap parameter ∆0. We will restrict our results to energies within the range

|E| ∈ [0,2∆0] (4.1)

since this is enough to capture low-energy transport properties of Weyl semimetals. For
the sake of clarity, in this section we will rename m0

.
= mW , so that it makes clearer the

material to which it belongs and we will set mW = mS. Then, we also set

b = mW +δb (4.2)

with δb < mW . Hence, substituting in (3.30), we find that the Weyl momenta is
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kW =

√
2mW

δb

1+gm
< mW (4.3)

as requested by our approximation (see Eq. (3.27)). The particular value of gm is not
relevant for us, as already mentioned in Section 3.1.4. Although for normal incidence it
can be proven that there is no dependence on µW , we still opt to set it with a finite value
and bigger than the energy range we are considering, i.e. µW > 2∆0.

To reduce momenta discrepancies between the Weyl semimetal and the superconductor,
we have tuned the values of the parameters in such a way that

kS ' kW (4.4)

This decision equates to assuming that the Fermi momentum is identical for both ma-
terials. This approach allows us to more efficiently compare our findings with existing
literature. Given that µS =

k2
S

2mS
, this finalizes our parameter selection.

4.2 RESULTS NOTATION

To ensure the reader fully understands the results, we provide definitions for the nota-
tion that will be used subsequently.

As we described in the Theory section, all of the transport properties of the junction
can be extrapolated from the solution of the system of equations

a1
...

a16

= T̂


c1
...

c16

 (4.5)

where |ai|2 gives the probability of having an incoming particle described by the wavevec-
tor ΨW/S

inc,i , while |ci|2 for i = 1, ...,8 gives the probability of having an outgoing particle
described by the wavevector ΨW

re f l,i and |ci|2 for i = 9, ...,16 the probability of having an
outgoing particle described by the wavevector ΨS

trans,i.

On the Weyl side, we build particle wavevectors as

ψW
α,β ,γ(z) = Ψ̃α,β ,η ,ν eikW

α,β ,γ z (4.6)

69



4.2. RESULTS NOTATION

which has been properly defined in Section 3.1.5. We recall that each coefficient
α,β ,γ,η ,ν =± , and they represent:

• α = electrons/holes

• β = high-energy / low-energy bands

• γ = |kz| >< kW cosθb

• η = Sign(dz)

• ν = Sign(E +αµ)

The index ν is fixed once we fix the energy. The range of energies of our interest is
with |E|< µW , since for higher energies one would not see the presence of Weyl nodes and
would retrieve the known results of Normal metals. Therefore, for this range of energies,
we have that ν = α . The index η is only relevant for the definition of wavefunctions and
can be found once the index γ has been fixed, therefore it is discarded from the notation we
will use to label particles.

This leaves us with eight possible combinations for the remaining indices. Conse-
quently, we can consolidate the indices α,β ,η into a single i-index notation. This nota-
tion is briefly outlined in Table 4.1 and will be applied to all particle types in the Weyl
semimetal, including both reflected and incoming ones.

i α β γ Description

1 + + + High bands electron, with |kz|> kW

2 + + - High bands electron, with |kz|< kW

3 + - + Low bands electron, with |kz|> kW

4 + - - Low bands electron, with |kz|< kW

5 - + + High bands hole, with |kz|> kW

6 - + - High bands hole, with |kz|< kW

7 - - + Low bands hole, with |kz|> kW

8 - - - Low bands hole, with |kz|< kW

Table 4.1: Synthetic description of index notation in the Weyl side. We remind that we are in the
normal incidence case, i.e. kx = kW sinθb.

The same reasoning can be applied to the superconductor and we are again left with
eight possible wave vectors, the meaning of which is underlined in Table 4.2.
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i Description

9 Electron-like particle from Orbital + with Spin-Z ↑
10 Electron-like particle from Orbital + with Spin-Z ↓
11 Electron-like particle from Orbital - with Spin-Z ↑
12 Electron-like particle from Orbital - with Spin-Z ↓
13 Hole-like particle from Orbital + , with Spin-Z ↑
14 Hole-like particle from Orbital + , with Spin-Z ↓
15 Hole-like particle from Orbital - , with Spin-Z ↑
16 Hole-like particle from Orbital - , with Spin-Z ↓

Table 4.2: Synthetic description of index notation in the superconductor side.

Note that this convention is only meaningful for the superconductor in the non-transformed
basis, because, once the transformation Ω̂k is applied, orbitals get mixed by the τy factor
in the transformation.

To conclude, we want to properly weigh the coefficients ci in such a way as to give
them a more physical meaning. To do so we opted for using the continuity of the current,
which we rewrite in terms of incoming / outgoing components es

jinc
tot (0) = jinc

W (0−)+ jinc
S (0+) = jout

tot (0) = jre f l
W (0−)+ jtrans

S (0+) (4.7)

The unitarity of the current is then expressed by

1 =
jout
tot (0)

jinc
tot (0)

=
jre f l
W (0−)+ jtrans

S (0+)
jinc
W (0−)+ jinc

S (0+)
(4.8)

By implementing the explicit form of each term in the continuity current (see Appendix
A.3), this allows us to define a new series of positive-definite coefficients

c̃i =

√√√√∣∣∣∣∣Re
{

kre f l/trans,i
}
|ci|2

jinc
tot (0)

∣∣∣∣∣ (4.9)

It is important to note that, in order to obtain transport properties of finite-size ob-
jects, all momenta in the previous equations must be of the form ktype,i ∈ R. As already
explained, complex-valued momenta give rise to localized state, with evanescent wavevec-
tors, and therefore they do not contribute to the current of finite-size materials.

Indeed, we remind the reader that (see Section 1.3.4) the non-linear differential con-
ductance at zero temperature reads
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GWS(V )
.
=

dI
dV

=
2e2

h
(1−NR(eV )+AR(eV )) (4.10)

where WS stands for "Weyl semimetal / superconductor" junction and we also define

GWN = lim
∆0→0

GWS (4.11)

is the differential conductance of the WSM-normal metal junction, which will be used
as a reference value in presenting the results. In addition, NR(eV ) represents the total of
all normal reflection processes, while AR(eV ) denotes the total of all Andreev reflection
processes.

This concludes this notation section, which we hope will meet the reader’s needs for
understanding the results in their entirety. Let us therefore start presenting them.

4.3 SCATTERING OF A SINGLE WEYL ELECTRON WITH

TRANSPARENT INTERFACE

To start presenting our results, we will initially concentrate on the two simplest orienta-
tions of the Weyl nodes relative to the junction: the perpendicular orientation case (θb = 0)
and the parallel orientation case (θb =

π
2 ). For the moment, we also assume a transparent

interface, which means setting V0 = 0.

4.3.1 WEYL SEMIMETAL PART OF THE JUNCTION

The momenta of the reflected wavevectors are found with the following procedure:

1. Fix an energy value E and an orientation angle θb.

2. Choose the value of kx and ky according to the intended electron incidence angle
wrt. the junction. For the rest of this section we will focus on normal incidence with
ky = 0, so that we have

kx = kW sinθb
ky = 0 (4.12)

3. Then, invert the eigenvalue equation

d2
x +d2

y +d2
z = (E±µW )2 (4.13)

to find the possible values of the kz-component of the momentum and select the
proper one according to the reflection type. The analytical expression for kz when
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θb 6= 0 is complicated, which makes it more practical to compute it numerically
during each iteration of this procedure.

Figure 4.1: Depiction of the procedure for finding kz values. Orange (Blue) contours are for elec-
trons (holes) Fermi surfaces. Red dashed lines represent the value of kx = kW sinθb. The intersect
of the red dashed lines and the orange (blue) contours gives the possible real-valued solutions for
kz.

In the case we are exploring now, one can write the total wavevector on the Weyl side
as a superposition of the single incoming particle and all the possible reflections, i.e.

ψW
tot = ψW

inc +ψW
re f l = ψW

inc +
8

∑
i=1

ci ψW
re f l,i (4.14)

where |ci|2 give the probability of being reflected as a particle described by the ith

wavevector.

Figure 4.2: Depiction of momenta of the reflected particles (only real valued ones), for a fixed value
of energy and θb = 0.
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4.3.2 SUPERCONDUCTOR PART OF THE JUNCTION

In the superconductor, the situation is quite a bit easier. We already derived the wave-
functions in the transformed "tilde" basis and, for positive energies, they are given by Eq.
(3.65). For the choices of parameters we have made, we have set µS to be much larger than
E,∆0. This is the so-called Andreev approximation, as already mentioned in Section
1.3.3, which slightly simplifies the system. In particular, under the Andreev approxima-
tion, we have that

kS '
√

2mSµS. (4.15)

In addition to this, translational invariance through the junction is required for the kX

and ky components of the momenta. Since kS is a conserved quantity under rotation (it is a
scalar), we can apply translational invariance kW

x
.
= kS

x and, remembering that we are under
the assumption of normal incidence (i.e. kW

x = kW sinθb), we can write:

kS
z =

√
k2

S− (kS
x)

2− (kS
y)

2 =
√

k2
S− (kW sinθb)2− (kS

y)
2 (4.16)

Furthermore, since we imposed a choice of parameters such that kS
.
= kW , we obtain:

kS
z =

√
(kW cosθb)2− (kS

y)
2 (4.17)

Figure 4.3: Depiction of momenta of the transmitted particles, for a fixed value of energy E > ∆0.

In Figure 4.3 one can see that, for E > ∆0, there are eight solutions for outgoing (trans-
mitted) momenta, four degenerate electron-like ones and four degenerate hole-like ones,
i.e. one for each orbital, spin and type of particle.
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4.3.3 RESULTS FOR ZERO BARRIER POTENTIAL

With the help of Table 4.1, we see that to study the case of the scattering of a single
electron coming from the C = 1 Weyl node (low-energy bands), it all reduces to solving
the linear system of equations given by

ΨW
inc,3[

ikinc,3M̂(2)
W +V0

]
ΨW

inc,3

= M̂ out


c1
...

c16

 , (4.18)

The solution of this system returns the value of each coefficient ci, which, once squared,
provides the probability of a process to occur after the scattering.

As already pointed in Section 4.2, the quantities that we will plot are actually the mod-
ified coefficients c̃i, which in the present case are given by

c̃i =

√∣∣∣∣kre f lt/trans,i

kinc,3
|ci|2

∣∣∣∣ (4.19)

According to our notation (see Table 4.1,) for electrons incoming from any band, the
normal reflection and Andreev reflection components are then expressed as follows:

NR =
4

∑
i=1
|c̃i|2

AR =
8

∑
i=5
|c̃i|2

(4.20)

WEYL NODES PERPENDICULAR TO THE JUNCTION

In Figure 4.4, we plot all the non-zero coefficients c̃i for fixed orientation θb = 0, for
positive energies in the range E ∈ [0,2∆0]. It is evident that they closely resemble the
results of the BTK model presented in Section 1.3.3 for a Normal Metal / Superconductor
junction (NS). Specifically, the only reflection coefficients that are non-zero are c̃3 (normal
reflection in the opposite Weyl node, resulting in negative momentum) and c̃8 (Andreev
reflection in the same Weyl node, resulting in positive momentum). It is observed that for
energies below the gap, Andreev reflection is by far the dominant process. The non-zero
probability of normal reflection, which was not present in the simple BTK model for the
case V0 = 0, is only due to a small, but hard to avoid in our model, mismatch in momentum
magnitude between the Weyl and superconductor sides, which generates the same effect as
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having an higher barrier strength V0 6= 0, as already studied and quantified by Blonder and
Tinkam [7].

θb = 0 , V0 = 0
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Figure 4.4: Non-zero coefficients c̃i with V0 = 0, fixed orientation θb = 0, for positive energies in
the range E ∈ [0,2∆0]. Vertical grey-dashed lines are at E = ∆0.

On the superconductor side, for E < ∆0 there is no transmitted process allowed, due to
the term u2

0− v2
0 in the superconductor current, and only localized states are therefore al-

lowed. For E > ∆0, to better understand the results, we sum all the wavevectors (weighted
with the apposite coefficients) to see what type of particle is transmitted in the supercon-
ductor. This is because, after the transformation Ω, each wavevector obtains both an Orbital
"+" and an Orbital "-" component, due to the transformed pairing that has a τy dependence.
However, summing all weighted wavevectors, we find that the total transmitted particle in
the superconductor is a spin-↓ electron-like excitation, with only Orbital "-" components,
because the Orbital "+" components exactly cancel out. This is in agreement with spin-
momentum conservation, therefore allowing for the formation of a spin-↓↑ Cooper pair in
the (spin-singlet) superconductor thanks to an Andreev reflected hole with spin-↑ in the
Weyl semimetal with an incoming spin-↓ electron.

These initial results validate the hypothesis that when Weyl nodes are orientated per-
pendicular to the junction, the transport properties of the WS junction are very similar to
those of the NS junction. In fact, the differential conductance for the WS case at V0 = 0,
shown in Figure 4.5, is almost the same as that of the NS case.

We note, however, that the Andreev reflected hole belongs to the same Weyl node of
the incoming electron, in contrast to what found by UHA [32], but in agreement with the
case of a NS junction.
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θb = 0 , V0 = 0
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Figure 4.5: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb = 0,
for positive energies in the range E ∈ [0,2∆0]. The vertical grey-dashed line is at E = ∆0.

WEYL NODES PARALLEL TO THE JUNCTION

In Figure 4.6, we plot all the non-zero coefficients c̃i for fixed orientation θb = π/2, for
positive energies in the range E ∈ [0,2∆0].
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Figure 4.6: Non-zero coefficients c̃i with V0 = 0, fixed orientation θb = 0, for positive energies in
the range E ∈ [0,2∆0]. Vertical grey-dashed lines are at E = ∆0.

From this figure, we see that the Andreev reflection coefficient c̃8 is basically zero for
any energy, and the dominant process for E < ∆0 is now the normal reflection, given by c̃4.
This is exactly what Bovenzi et al. [9] defined as chirality blockade. Note that the coef-
ficient c̃4 is related to a normal reflected electron in the same Weyl node as the incoming
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electron, which is the expected result due to the conservation of the kx components across
the junction, which indeed fixes the chirality of the Weyl particles.

θb = π/2 , V0 = 0
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Figure 4.7: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb = π/2,
for positive energies in the range E ∈ [0,2∆0]. The vertical grey-dashed line is at E = ∆0.

In Figure 4.7, we see that due to the fact that for E < ∆0 there is almost only nor-
mal reflection probability, which contributes negatively to the differential conduction, the
latter is basically null up to E = ∆0. This means that the chirality blockade also results
in a vanishing value for the current. For E > ∆0, the differential conductance reaches its
asymptotic value of GWS = GWN , as expected, since excitation with energies above the
superconductor’s gap are always allowed.

The spin texture plot in Figure 4.8 for some possible angles θb may help to better
understand the previous results.
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Figure 4.8: Spin texture of the low-energy bands, for an arbitrary positive energy E < µW , for both
types of particle and for different angle θb.

In the following argument, we refer to normal incidence only, i.e. fixing kx = kW sinθb.
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For θb = 0, the only normal reflection process allowed by spin-momentum conservation oc-
curs in the opposite Weyl node relative to the incoming particle. In the case of spin-singlet
superconductors, the Andreev reflected particle must have an opposite spin and velocity
compared to the incoming particle, as described in Section 1.3.2. Based on our spin tex-
ture, this reflection must occur in the Weyl node with the same chirality as the incoming
particle. This is exactly what we have reported above in the previous section. Conversely,
for θb = π/2, it is impossible to find an Andreev reflection process that respects the afore-
mentioned spin-momentum characteristics. This is indeed what leads to the emergence of
the chirality blockade, confirming the findings of Bovenzi et al. [9].

4.3.4 RESULTS FOR NON-ZERO BARRIER POTENTIAL

In the following, we provide the same type of plots as presented in the previous section,
but with non-zero potential barrier V0. The results for the θb = 0 case show that the normal
reflection process becomes now the dominant one for most of the energy values, due to a
non-zero barrier potential V0, which is the expected behaviour, as described by the BTK
model for the NS junction (see Figure 1.13(b)-(c) and Figure 1.14).
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Figure 4.9: Non-zero coefficients c̃i with V0 = 0.5, fixed orientation θb = 0, for positive energies in
the range E ∈ [0,2∆0]. Vertical grey-dashed lines are at E = ∆0.

79



4.3. SCATTERING OF A SINGLE WEYL ELECTRON WITH TRANSPARENT INTERFACE

θb = 0 , V0 = 0.5
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Figure 4.10: Normalized differential conductance GWS/GWN with V0 = 0.5, fixed orientation θb = 0,
for positive energies in the range E ∈ [0,2∆0]. The vertical grey-dashed line is at E = ∆0.

Andreev reflection still has an important slice of the total probability for E < ∆0, while
for energies above the gap it is more suppressed. The transmission processes have the
same for as before, with some attenuation, because these type of processes are governed
by a tunnelling effect, which naturally depends on the strength of the barrier potential.

The results for the θb = π/2 case show that the normal reflection process is still the
dominant process. Due to the presence of a non-zero barrier potential V0, it remains domi-
nant even when E > ∆0.
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Figure 4.11: Non-zero coefficients c̃i with V0 = 0.5, fixed orientation θb = π/2, for positive energies
in the range E ∈ [0,2∆0]. Vertical grey-dashed lines are at E = ∆0.
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θb = π/2 , V0 = 0.5
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Figure 4.12: Normalized differential conductance GWS/GWN with V0 = 0.5, fixed orientation θb =
π/2, for positive energies in the range E ∈ [0,2∆0]. The vertical grey-dashed line is at E = ∆0.

Andreev reflection is still completely suppressed due to the chirality blockade. The
transmission coefficients retain the same structure as in the scenario without a potential
barrier, experiencing attenuation for the same reason as explained for the θb = 0 case. In
addition, a small pike in the differential conductance in Figure 4.12 confirms the increase
in the tunnelling barrier and the subsequent decrease in the transmission process.

4.3.5 CRITICAL ANGLE OF ORIENTATION

In this section, the energy is set to an arbitrary E < ∆0 to examine the behaviour of the
reflection coefficients in the Weyl semimetal for various orientation angles θb.

E = ∆0/2 , V0 = 0.2

Figure 4.13: Non-zero reflection coefficients c̃4 (normal reflection) and c̃4 (Andreev reflection) with
V0 = 0.2, fixed energy E = ∆0/2, for orientation angles in the range θb ∈ [0,π/2].

From the results in Figure 4.13, it is observed that beyond a specific angle, the Andreev
reflection coefficient c̃8 becomes significantly suppressed. This enables us to define (at
least numerically) a specific "critical" angle θ c

b , beyond which normal reflection becomes
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the predominant process as the chirality blockade starts to take effect. We define it as the
angle at which the total of non-zero normal reflection coefficients exceeds the total of non-
zero Andreev reflection coefficients (that is, when NR(θ c

b)> AR(θ c
b)), as shown in Figure

4.13. This angle certainly depends on the energy that we fix, but it also varies with the
barrier potential V0. This dependence is illustrated in Figure 4.14.
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Figure 4.14: Critical angle θ c
b at which the chirality blockade becomes effective, for different values

of barrier potential V0.

It is evident that the critical angle θ c
b decreases monotonically with increasing V0. This

clearly indicates that the chirality blockade effect is highly dependent on the interface
potential, which may lead to some possible experimental applications.

4.4 OTHER TYPES OF INCOMING PARTICLES

In this section, we present, in a form similar to what we have just done, the results for
the other possible particles behaving as Weyl fermions, i.e. for electrons and holes with
dispersion around a Weyl node of chirality C =±1. The case we presented in the previous
section was arbitrarily chosen to be the one of an electron coming from the Weyl node with
C = 1. Let us now focus on the other possibilities.

ELECTRON INCOMING FROM WEYL NODE WITH C =−1

In Figures 4.15 and 4.16 we plot the case of an electron incoming from the node with
opposite chirality with respect to the previous case, i.e. C = −1. Note that the incoming
particle spin-Z is switched in the present case, as can be confirmed by the spin texture
in Figure 4.8. It is evident that the only non-zero reflection coefficients are now c̃4 and
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c̃7. This implies that the results are analogous to the scenario where an electron arrives
from the Weyl node with C = 1, i.e., normal reflection occurs at the opposite Weyl node
and Andreev reflection occurs at the same node. The transmission coefficients also yield
similar results to the previous scenario; however, it is important to note that they now
correspond to wavefunctions with the spin-Z component inverted, as expected.
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Figure 4.15: Non-zero coefficients with V0 = 0, fixed orientation θb = 0, for positive energies in
the range E ∈ [0,2∆0] for an electron incoming from Weyl node with C =−1. Vertical grey-dashed
lines are at E = ∆0.
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Figure 4.16: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb = 0,
for positive energies in the range E ∈ [0,2∆0] for an electron incoming from Weyl node with C =−1.
The vertical grey-dashed line is at E = ∆0.

For the case where θb = π/2, we obtain the results shown in Figures 4.17 and 4.18.
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Note that since the superconducting side does not provide significant insight, we will no
longer plot the transmission coefficients.

θb = π/2 , V0 = 0

Figure 4.17: Non-zero reflection coefficients with V0 = 0, fixed orientation θb = pi/2, for positive
energies in the range E ∈ [0,2∆0] for an electron incoming from Weyl node with C =−1. Vertical
grey-dashed lines are at E = ∆0.
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Figure 4.18: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb =
π/2, for positive energies in the range E ∈ [0,2∆0] for an electron incoming from Weyl node with
C =−1. The vertical grey-dashed line is at E = ∆0.

It is evident that, also for this Weyl nodes orientation, the scenario is comparable to
what was previously described for the other electron. Specifically, normal reflection at the
same node (c̃3) prevails, while Andreev reflection (c̃7) is entirely suppressed at all energies,
indicating that the chirality blockade is also effective in this case.

HOLE INCOMING FROM WEYL NODE WITH C = 1

In Figures 4.19 and 4.20 we plot the case of a hole incoming from the node with chi-
rality C = 1, with θb = 0. Also for this case of scattering, normal reflection (of a hole)
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occurs at the opposite Weyl node (c̃7) and the dominant process is Andreev reflection (of
an electron), which occurs at the same node (c̃4).

θb = π/2 , V0 = 0
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Figure 4.19: Non-zero coefficients with V0 = 0, fixed orientation θb = 0, for positive energies in the
range E ∈ [0,2∆0] for a hole incoming from Weyl node with C = 1. Vertical grey-dashed lines are
at E = ∆0.
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Figure 4.20: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb = 0,
for positive energies in the range E ∈ [0,2∆0] for hole incoming from Weyl node with C = 1. The
vertical grey-dashed line is at E = ∆0.

Also for this case of scattering, normal reflection (of a hole) occurs at the opposite Weyl
node (c̃7) and the dominant process is Andreev reflection (of an electron), which occurs at
the same node (c̃4).
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θb = π/2 , V0 = 0

Figure 4.21: Non-zero reflection coefficients with V0 = 0, fixed orientation θb = pi/2, for positive
energies in the range E ∈ [0,2∆0] for a hole incoming from Weyl node with C = 1. Vertical grey-
dashed lines are at E = ∆0.
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Figure 4.22: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb =
π/2, for positive energies in the range E ∈ [0,2∆0] for a hole incoming from Weyl node with C = 1.
The vertical grey-dashed line is at E = ∆0.

For this incoming particle, we see from Figures 4.21 and 4.22 that in the θb = π/2
orientation of Weyl nodes, normal reflection (of a hole) at the same node (c̃8) prevails,
while Andreev reflection (c̃4) is completely suppressed at all energies, indicating that the
chirality blockade has taken place.

HOLE INCOMING FROM WEYL NODE WITH C =−1

In Figures 4.23 and 4.24 we plot the coefficients for a hole incoming from the node
with chirality C = −1. Again, normal reflection (of a hole) occurs at the opposite Weyl
node (c̃8) and the dominant process is Andreev reflection (of an electron), which occurs at
the same node (c̃3).
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θb = 0 , V0 = 0
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Figure 4.23: Non-zero coefficients with V0 = 0, fixed orientation θb = 0, for positive energies in the
range E ∈ [0,2∆0] for a hole incoming from Weyl node with C =−1. Vertical grey-dashed lines are
at E = ∆0.
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Figure 4.24: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb = 0,
for positive energies in the range E ∈ [0,2∆0] for hole incoming from Weyl node with C =−1. The
vertical grey-dashed line is at E = ∆0.

In Figures 4.25 and 4.26 we plot the results for the θb = π/2 case.
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Figure 4.25: Non-zero reflection coefficients with V0 = 0, fixed orientation θb = pi/2, for positive
energies in the range E ∈ [0,2∆0] for a hole incoming from Weyl node with C = 1. Vertical grey-
dashed lines are at E = ∆0.
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θb = 0 , V0 = 0
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Figure 4.26: Normalized differential conductance GWS/GWN with V0 = 0, fixed orientation θb =
π/2, for positive energies in the range E ∈ [0,2∆0] for a hole incoming from Weyl node with
C =−1. The vertical grey-dashed line is at E = ∆0.

For this particle, in the θb = π/2 orientation of Weyl nodes, normal reflection (of a hole)
at the same node (c̃7) prevails, while Andreev reflection (c̃3) is completely suppressed at
all energies, indicating that the chirality blockade has taken place.

4.5 DIFFERENT TYPES OF SUPERCONDUCTOR PAIRINGS

In the most general case, we define the superconductor pairing matrix ∆̂ as an Hermitian
8×8 matrix that satisfies the electron-hole symmetry relation

vyσy∆̂∗νyσy =−∆̂ (4.21)

In choosing a form of the pairing matrix, we make the following additional assump-
tions:

1. ∆̂ anticommutes with vz (so it is fully off-diagonal in the electron-hole degree of
freedom).

2. ∆̂ is independent of the momentum perpendicular to the NS interface.

3. ∆̂ squares to a scalar ∆2
0.

For example, under this notation, the spin-singlet pairing used in the initial (untrans-
formed) basis is

∆̂ = ∆0νyτ0σy (4.22)
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Table 4.3 shows a summary of the key results, as in those discussed earlier, based on
various pairing matrices choices, for an electron incoming from the Weyl node with C = 1.

Pairing matrix Dominant process at Dominant process at Chirality
(in the initial basis) θb = 0 θb = π/2 Blockade

∆0νyτxσy AR NR Yes

∆0νyτzσy NR NR No

∆0νyτyσx AR NR Yes

∆0νyτyσz AR NR Yes

∆0νyτyσy NR NR No

Table 4.3: Schematic view of the key results for different initial pairing matrices. AR = "Andreev
Reflection" and NR = "Normal Reflection".

We note to the reader that we are considering the scenario of normal incidence only.
Observe that for θb = π/2, it appears that normal reflection is the only allowed reflec-
tion process. This is likely due to spin-momentum conservation, which prevents Andreev
reflection from occurring, at this incidence angle. However, although Andreev reflection
seems to always be suppressed for θb = π/2, we only talk about chirality blockade when
Andreev reflection is the dominant process for the opposite Weyl nodes orientation (i.e.
θb = 0). From Table 4.3, we can see that the chirality blockade does not occur for the
pairing matrices ∆0νyτyσy and ∆0νyτzσy. In particular, the latter is a pseudoscalar spin-
singlet pairing, which is not inversion symmetric τx∆̂τx = ∆̂, and since this is essentially
the pairing used in [11], [16], and [22], this, as already pointed out by Bovenzi et al. [9],
explains why no chirality blockade was obtained in these studies. Notice also that the pair-
ings ∆0νyτyσx and ∆0νyτyσz are of spin-triplet type; however, they still display the chirality
blockade effect. This type of pairing has found applications in Majorana physics and in
quantum computation, as briefly described in the next section.
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5
Conclusions and Future Works

This thesis explores the transport properties of a junction between a topological Weyl
semimetal with broken time-reversal symmetry and a BCS superconductor. Our model
extends the existing literature by generalizing the orientation of Weyl nodes relative to
the junction interface and accounting for higher energy bands in the construction of the
Transfer Matrix. Consequently, it is applicable to any junction system that has the same
degrees of freedom.

Initially, we showed the results for the simpler scenario where the Weyl nodes are ori-
ented perpendicular to the junction. This setup is anticipated to closely resemble the results
of a normal metal/superconductor junction because of the comparable band structure. In
fact, our results confirmed this alignment, validating the functionality of the model.

As a second major result, our model indicates that, as hypothesised by Bovenzi et al.
[9], when the Weyl nodes are oriented parallel to the junction, a phenomenon called chiral-
ity blockade occurs. This implies that the probability of Andreev reflection vanishes across
all energy ranges and interface impurity strengths, allowing only alternative scattering pro-
cesses to occur. This was observed to hold true for all kinds of incoming particles, thereby
reinforcing the result.

Due to the general structure of our framework, we could examine the probability of
each scattering process across various intermediate angles of Weyl node orientations. This
allowed us to define a novel quantity, previously unreported in the literature, referred to
as the critical angle of orientation (of Weyl nodes). Beyond this angle, the Andreev re-
flection process becomes rapidly suppressed, thanks to the effect of the chirality blockade.
Additionally, we presented a numerical plot illustrating the behaviour of this parameter for
different interface potential strengths.
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Given the considerable tunability of Weyl nodes orientation via a magnetizing field,
demonstrated as experimentally feasible in Section 1.2.10, we anticipate our findings to
have potential applications in spintronics and quantum information. Specifically, by alter-
ing the magnetization of the Weyl semimetal, one could "switch" on or off the Andreev
reflection process, which is a spin-dependent process, thereby making such systems valu-
able for spintronics technology.

As a concluding remark, we presented a diagrammatic overview of the aforementioned
results for various types of superconducting pairings, which were readily derived by simply
modifying the pairing matrix in the superconductor segment of our model. This is particu-
larly relevant for experiments, due to the diversity of pairings already observed in nature,
but also links to the theoretical exploration of unconventional superconductivity, which has
sustained considerable interest over the last years. In particular, we note that some of the
pairings that we mentioned in Table 4.3 are of spin-triplet type, which have found recent
interest in Majorana fermions physics and fault-tolerant quantum computing [29].

In this thesis, our analysis was restricted to the special case of particles hitting the
junction at normal incidence. Consequently, our results should not be interpreted as rep-
resenting transport properties in their entirety. Investigating the full spectrum of incidence
angles might be the goal of our future research. Nevertheless, the scenario of normal inci-
dence is expected to be the most influential on the transport properties, as indicated in [23]
for a normal metal/superconductor junction.
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Appendix

A.1 STEPS TO OBTAIN THE BLOCK-DIAGONALIZATION OF

THE WEYL HAMILTONIAN

Here we denote some steps to derive the transformed Hamiltonian in Eq. (3.6). Explic-
itly, we have that

H(k,b)˜ = Ωθ(k)H(k,b)Ω†
θ(k)

=

[
cos

θk
2
− iτy(b̂ ·σ)sin

θk
2

]
(τzσ ·k+m0τx +σ ·b)

[
cos

θk
2
+ iτy(b̂ ·σ)sin

θk
2

]
(A.1)

Let us break it down. The first term is

cos2 θk
2
(τzσ ·k+m0τx−σ ·b) (A.2)

Then we have the mixed terms,
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[
iτy(b̂ ·σ),τz(σ ·k)+m0τx−σ ·b

]
sin

θk
2

cos
θk
2

=
(
iτyτz(b̂ ·σ)(σ ·k)− iτzτy(σ ·k)(b̂ ·σ)

)
sin

θk
2

cos
θk
2

+ im0
[
τy(b̂ ·σ),τx]sin

θk
2

cos
θk
2
− iτy[(b̂ ·σ),σ ·b]sin

θk
2

cos
θk
2

=− τx{(b̂ ·σ),(σ ·k)}sin
θk
2

cos
θk
2
+2m0τz(b̂ ·σ)sin

θk
2

cos
θk
2

=−2τx(b̂ ·k)sin
θk
2

cos
θk
2
+2m0τz(b̂ ·σ)sin

θk
2

cos
θk
2

=− τx(b̂ ·k)sinθk +m0τz(b̂ ·σ)sinθk

(A.3)

Finally, we have the three terms proportional to sin2 θk
2

τy(b̂ ·σ)τz(σ ·k)τy(b̂ ·σ)sin2 θk
2

=−τz(b̂ ·σ)(σ ·k)(b̂ ·σ)sin2 θk
2

=−τz(b̂ ·σ)[(b̂ ·k)+ i(k× b̂) ·σ ]sin2 θk
2

=−τz{(b̂ ·σ)(b̂ ·k)+ i[b̂ · (k× b̂)+ i[b̂× (k× b̂)] ·σ ]}sin2 θk
2

=−τz{(b̂ ·k)(b̂ ·σ)+ [b̂× (b̂×k)] ·σ}sin2 θk
2

=−τz{(b̂ ·k)(b̂ ·σ)+ [b̂(b̂ ·k)−k] ·σ}sin2 θk
2

=−τz{2(b̂ ·k)(b̂ ·σ)− (k ·σ)}sin2 θk
2

(A.4)

and also the remaining two terms

m0τy(b̂ ·σ)τxτy(b̂ ·σ)sin2 θk
2

=−m0τx(b̂ ·σ)(b̂ ·σ)sin2 θk
2

=−m0τx sin2 θk
2

(A.5)

and

τy(b̂ ·σ)σ ·bτy(b̂ ·σ)sin2 θk
2

= σ ·bsin2 θk
2

(A.6)

Joining all the contributions, we obtain
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Ωθ(k)H(k,b)Ω†
θ(k) =cos2 θk

2
(τzσ ·k+m0τx +σ ·b)

+ sin2 θk
2
[
−2τz(b̂ ·k)(b̂ ·σ)+ τz(k ·σ)−m0τx +σ ·b

]
− τx(b̂ ·k)sinθk +m0τz(b̂ ·σ)cosθk

(A.7)

Simplifying

Ωθ(k)H(k,b)]Ω†
θ(k) =τx [−m0 cosθk− (b̂ ·k)cosθk

]
+σ ·b

+ τz [(σ ·k)− (b̂ ·k)(b̂ ·σ)(1+ cosθk)+m0(b̂ ·σ)cosθk
] (A.8)

From this we can go back to Eq. (3.6).

A.2 DIGRESSION ABOUT THE LINEAR TERM IN THE PROB-

ABILITY CURRENT

In this section, we give an argument to why we did not include a linear term in the
probability current.

The probability density function is in general given by

ρ(r, t) = Ψ∗(r, t)Ψ(r, t) = |Ψ(r, t)|2. (A.9)

which must satisfy the continuity equation:

∇ · j+ ∂ |Ψ|2

∂ t
= 0 (A.10)

where j is the probability current.

For a generic Hamiltonian (in 1D for simplicity) of the form

H = ∂zM̂2 (z)∂z + iM̂1 (z)∂z + const. (A.11)
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One obtains that

∂tΨ
∫

dzΨ+Ψ =
∫

dz (ΨiH)†Ψ+Ψ+(iHΨ)

=−i
∫

dzΨ†
[

∂z
←

M̂2∂z
←
− i∂z
←

M̂1−∂z
→

M̂2∂z
→
− iM̂1∂z

→

]
Ψ

(A.12)

The linear term reads

−
∫

dzΨ†
[

∂z
←

M̂1 + M̂1∂z
→

]
Ψ (A.13)

Taking Ψ ∝ eikzz, this is

−
∫

dzΨ† [−ikzM̂1 + iM̂1kz
]

Ψ = 0 (A.14)

Hence, the linear term will not contribute to the probability current, as we wanted to
prove.

Note that if instead we take an Hamiltonian of the form

H ′ = ∂zM̂2 (z)∂z + i∂zM̂1 (z)+ const. (A.15)

where now ∂z also acts on the the space-dependent coefficient M̂1, the linear term would
result in

−
∫

dzΨ†
[

M̂1∂z
←
+∂z
→

M̂1

]
Ψ =−

∫
dzΨ† [2∂zM̂1

]
Ψ (A.16)

For coefficients of the form M̂1 = M̂W
1 Θ(−z)+ M̂S

1Θ(z), this becomes

−
∫

dzΨ† [2∂zM̂1
]

Ψ =−
∫

dzΨ†
[
2δ (0)

(
M̂S

1− M̂W
1

)]
Ψ (A.17)

Which is in general non-zero for M̂S
1 6= M̂W

1 and would break the conservation of prob-
ability density by adding a source term in the continuity equation. Therefore, in the main
text, we discard this form and exploit the result obtained with Eq. (A.14).

95



A.3. EXPLICIT FORM OF THE UNITARITY OF THE CURRENT

A.3 EXPLICIT FORM OF THE UNITARITY OF THE CURRENT

We remind the reader that the second-order coefficient matrices are given by

M̂(2)
S =

νzτ0σ0

2mS

M̂(2)
W = ν0τz

[
cos2 θb +gm

2m0

]
(σz cosθb +σx sinθb)

(A.18)

The first-order ones are not relevant for this section, since they do not appear in the
probability current as explained in A.2. The current for each type of process (incoming,
reflected or transmitted) can be re-written as

ji (z) =−
i
m

Im
{

Ψ†
i (z)M̂2∂zΨi (z)

}
(A.19)

where i is a generic index for identifying a particular process, and

Ψi (z) = ciψi eikiz (A.20)

We therefore obtain that

ji(0) =−
iRe{ki}|ci|2

m

[
ψ†

i M̂2ψi

]
(A.21)

Following the notation introduced in the Results section, the unitarity of the current is
expressed by

1 =
jout
tot (0)

jinc
tot (0)

=
jre f l
W (0−)+ jtrans

S (0+)
jinc
W (0−)+ jinc

S (0+)
(A.22)

With the use of Eq. (A.21), this becomes

1 =
∑8

i=1 Re
{

kW
i
}
|ci|2

[
ψ†

i M̂W
2 ψi

]
+
(
|u0|2−|v0|2

)
∑16

i=9 Re
{

kS
i
}
|ci|2

[
ψ†

i M̂S
2ψi

]
∑8

i=1 Re
{

kW
inc,i

}
|ai|2

[
ψ†

i M̂W
2 ψi

]
+(|u0|2−|v0|2)∑16

i=9 Re
{

kS
inc,i

}
|ai|2

[
ψ†

i M̂S
2ψi

]
(A.23)

This allows us to define a new series of positive-definite coefficients

c̃i =

√√√√∣∣∣∣∣Re
{

kre f l/trans,i
}
|ci|2

jinc
tot (0)

∣∣∣∣∣ (A.24)

so the the unitarity of the current becomes
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1=
8

∑
i=1
|c̃i|2

Sign
(
Re
{

kre f l,i
})

Sign
(
jinc
tot (0)

) [
ψ†

i M̂W
2 ψi

]
+
(
|u0|2−|v0|2

) 16

∑
i=9
|c̃i|2

Sign(Re{ktrans,i})
Sign

(
jinc
tot (0)

) [
ψ†

i M̂S
2ψi

]
(A.25)

In this way, we recovered the same form of the unitarity of the probability current as
defined in the BTK model [8].
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