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Abstract

Non-covalent van Der Waals (vdW) forces are due to coupled-dipole oscillations, and with their long-
range they play a key role in determining structural and mechanical properties of large molecules,
thereby actively influencing the vibrational spectra. When molecules undergo optical excitation, non-
local charge oscillation modes can be activated, causing a dramatic change of vdW interactions that
introduces non-local stress in the molecular structure. Collective vibrational modes are thus expected
to be activated by energy transfer from these optical charge-fluctuation modes.
Semi-classical and quantum-mechanical models for the interaction between charge oscillations and
vibrational modes are proposed here, based on the many-body dispersion (MBD) model, where the
electronic description is reduced to a set of coupled quantum harmonic oscillators.
The aim is to study the activation of vibrational modes, analyzing the transition between relevant
quantum states within a perturbative framework, and to specifically analyze molecular systems such
as photo-receptors and host-guest complexes. The activation of vibrational modes is first addressed
within a semi-classical approach, where optical vdW forces are directly coupled to the available vibra-
tional modes. Subsequently, a rigorous quantum-mechanical framework is developed to overcome the
Born-Oppenheimer approximation, providing a quantum correction to the semi-classical approach.
Analysis of the combined optical and vibrational transitions in the benzene monomer, the C60-catcher
supramolecular complex, the 11-cis-retinal and the photoactive yellow protein consistently reveals
that: i) only a few vibrational modes could be optically activated, which indicates the emergence ef-
fective selection rules; ii) quantum corrections to transition rates can be larger than the semi-classical
predictions, which demonstrates the key role of a rigorous quantum approach; iii) the selectivity of
the coupling mechanism with respect to both optical and vibrational modes is qualitatively com-
patible with recent experimental observations on bovine proteins, which indicate macroscopic energy
conversion from absorbed light into a single vibrational mode.
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CHAPTER 1. INTRODUCTION

One of the paradigms of sciences that delve into the study, concept, and origin of life, is the complex-
ity and interconnection among systems, whether they be simple molecules or more intricate protein
structures, or macromolecules of various kinds. This complexity is often embodied in phenomena
that can be termed ’collective’ or ’emergent’. The identification of a macromolecule by its function
in relation to other systems, rather than as a mere sum of components, does not directly depend on
the single chemical bonds and short-range interactions, but it rather involves mechanisms capable
of influencing much larger scales. The duality between identity and function is certainly one of the
guiding principles that sciences with non-reductionist approach tend to address. The global properties
of a system are often connected to collective phenomena. Due to the ability to relate entities across a
wide range of scales, collective phenomena provide precious information about macroscopic properties
and functions, also in relation with other systems.
Currently, there is a growing interest in physical theories trying to address phenomena that have
already been extensively characterized and are coherent within biological and chemical theories. This
approach can create a solid bridge between disciplines, each of which is founded upon postulates and
tenets that are not necessarily congruent with those of other disciplines.
We note that local descriptions, based on knowledge of all parameters involving each component of
a physical system can be surpassed in predictivity and significance by a global approach, capable
of encompassing emergent properties with fewer relevant parameters. In spite of all technical and
computational advances, predicting the physical properties of biologically relevant systems, such as
proteins, in a reductionist spirit remains energy and time-intensive – and often conceptually limiting.

An intriguing and largely unexplored feature of both biomolecules and nanostructures is the mechanical
response to light absorption. When optical photons are absorbed, electrons can undergo photoexci-
tation, producing charge displacements that eventually cause the appearance of mechanical stress.
The computation of all ionic forces caused by photoexcitation can be accomplished in principle [20]
within the Bethe-Salpeter equation (BSE) framework. However, this approach is extremely demand-
ing from the computational point of view, so that BSE force calculations are realistically limited to
a few atoms, and cannot be presently extended to large-scale systems such as proteins or host-guest
nanosystems. However, recent work [3] demonstrated that a more efficient coarse-grained approach
(many-body dispersion [5] - or MBD), based on coupled quantum harmonic oscillators, can be ex-
ploited when only long-range optical van der Waals (vdW) forces are demanded. Optical vdW forces
are due to collective charge displacements induced by photoexcitations, and can exhibit extremely
non-local character. These forces can interest the whole structure, and are accordingly expected to
cause non-local mechanical distortions, and collective vibrations. Within the MBD model, the dipole
response of each atom is mapped into a charged quantum harmonic oscillator, bound to the atomic
nucleus. The Coulomb coupling between all atom-centered oscillators implies a full many-body treat-
ment of dipole oscillations, that are responsible for dispersion and optical vdW forces. The non-local
features of long-range charge oscillations are thus naturally inbuilt in MBD.

The aim of this work is to investigate how the photoexcitation of collective charge-fluctuation modes,
that are responsible for optical vdW forces, is eventually traduced into quantum mechanical vibrations.
Molecular vibrations are thus explored in this thesis as induced by the interaction between electronic
and ionic degrees of freedom. The significance of molecular vibrational modes is now well-established,
as evidenced by recent findings linking theory to biologically relevant processes such as protein folding
and intracellular signaling, as well as to properties involving the geometric structure of a molecular
system in general.

This thesis will introduce a rigorous quantum mechanical theory for the quasi-electron–phonon cou-
pling, beyond the Born-Oppenheimer approximation, and will be applied to large-scale systems that
could not be addressed within the standard BSE framework. Despite the various contributions on
electron-phonon interactions (EPI), (for an overview see F. Giustino, Electron-phonon interactions
from first principles [10]), large-scale effects still pose major challenges, which we try to address here.
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CHAPTER 1. INTRODUCTION

1.1 Main contribution to electron-phonon coupling

One of the most significant and pioneering contributions to electron-phonon interaction (EPI) or cou-
pling (EPC) can be traced back to the works of Herbert Fröhlich [9], characterized by the introduction
of the quasi-particle known as the ’polaron’. This quasi-particle denotes the polarization of the crys-
talline lattice that is created by a charge distortion. In Fröhlich’s model, this distortion gives rise to
lattice vibrations capable of propagating, undergoing scattering processes, and reciprocally influencing
the motion and energy of electrons, all within a self-consistent process. Formally, Fröhlich’s theory is
founded on the ’Fröhlich Hamiltonian’, from which, employing a second quantization formalism, the
fundamental parameter representing the coupling strength between vibrations and electrons, known
as the ’Fröhlich coupling constant’, is derived. This constant depends on electronic masses, phonon
frequency, and dielectric constants. The values of these constants are now established for several solids.
Good for studying superconductivity, semiconductors, and charge transfer, it represents a simplified
model that may not fully catch all aspects of the complex EPI that occur in real materials.
Another popular model, highly compatible with the study of systems amenable to ’ab initio’ nu-
merical simulations, is reported in [10]. The Kohn-Sham DFT formalism is identified here as the
foundational framework for coupling electrons and phonons, which emerges by expanding the Kohn-
Sham effective potential to first order for small atomic displacements. The result is a coupling Hamil-
tonian dependent on ’electron-phonon matrix elements’. Furthermore, building upon the Fröhlich
and Kohn-Sham DFT frameworks, the Migdal-Eliashberg theory [22] provides a comprehensive ap-
proach to electron-phonon coupling in superconductors. While Fröhlich’s theory mainly focuses on
weak-coupling regimes, the Migdal-Eliashberg theory extends its applicability to the strong-coupling
regime, where electron-phonon interactions are more significant. The focal point of this theory is
the capability of prediction of the superconductive gap, i.e. the energy involved in the separation of
electrons involved in the Cooper pair bounded state (see BCS theory), and the critical temperature
for superconduction threshold. In quantum field theory, the electron-phonon coupling is instead based
on the assumption of introducing Green’s functions for electrons and ions, according to the following
scheme [10]. The non-relativistic ’electron-phonon’ Hamiltonian is defined using second quantization
operators. Then the single-electron zero-temperature Green function Gel is introduced. Evaluating
the thermal average of Schrödinger’s equation, a new equation for Gel arises. Inside it, a new term
appears, namely the scalar electric potential which couples to both electronic and ionic degrees of
freedom. The latter is used as a perturbative term. Eventually, by studying both the time and space
evolution of the system, the ionic ‘displacement-displacement’ correlation function is obtained. The
displacement-displacement correlation function measures how the displacement of a particle is corre-
lated with the displacement of another one, at different (or equal) times. Without going into details,
this correlation function is used for calculating the screened Coulomb potential, which provides the
interaction strength for the electron-phonon coupling.

1.2 Molecular vibrations in structural biology

Biological molecules are extremely complex systems, whose geometrical, dynamical, and functional
features can be hardly predicted by a unified theory. However, despite the approximations necessarily
introduced in their modeling, significant correlations are found between experimental results, theoret-
ical insights, and numerical simulations. An intriguing, and yet largely unexplored aspect involves the
conversion of light absorption into mechanical vibrations. When a normal vibrational mode [32] is ex-
cited, atoms coherently fluctuate along preferred directions around the equilibrium positions, sharing
a frequency that pervades the entire system. Theoretical assessments of these vibrations often involve
the harmonic approximation to the interatomic potential. From now on, molecular vibrations and
phonons will be referred to interchangeably; the only distinction lies in the fact that in the case of
molecular vibrations, the absence of periodic structure prevents propagation of vibrations, whereas,
in the context of crystalline lattices, the phonon acquires quasi-particle properties.
The significance of molecular vibrations is evidenced by their role (not yet systematically understood)
in biological phenomena. These phenomena include protein folding and misfolding [19], which are
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CHAPTER 1. INTRODUCTION

understood as the processes by which a protein chain assumes or loses its three-dimensional structure,
referred to as tertiary structure. The structure undergoes changes via energy minimization, implying
the participation of the vibrational spectrum in this process.

The role of molecular vibrations has been also supposed in intracellular signaling, the process in which
cell information is propagated to other ones with a signal transduction; molecular vibrations in the
infrared frequency range play a pivotal role in the emission and resonance of electromagnetic patterns
capable of activating enzymes [17]. This process implies the presence of some efficient EPC mechanism.
Relevant EPC effects have also been confirmed in recent experiments [21], wherein following excitation
induced by optical pumping, bovine serum albumin exhibited pronounced occupation of vibrational
modes at a specific frequency (0.314 THz) [25].
Vibrational spectroscopy is also powerful in the inspection of the enzyme-carrier interactions [27].

This thesis will first investigate molecular vibrations in their theoretical and computational aspects
as an independent phenomenon. Subsequently, it will propose models capable of predicting EPC. The
focus will be on the activation of normal modes of vibration, due to excitation of collective electronic
modes (excitons), within the MBD theoretical framework. As previously mentioned, long-range exci-
tons activate optical van der Waals forces. These forces can be treated semi-classically or quantum
mechanically, and facilitate the construction of rigorous models wherein the activation of vibrational
modes is obtained by time-evolution of a suitable wavefunction within perturbation theory.
This thesis will also try to understand whether phenomena such as photoisomerization of photorecep-
tors can be explained (and to what extent). One of the macromolecules involved in human vision is
rhodopsin. This molecules is found in the rods of the retina and it is composed of two substructures,
opsin and retinal. The latter, also known as retinaldehyde or vitamin A aldehyde, is a small-sized
molecule (49 atoms) bound to opsin. In its bound state, retinal is inactive and, in animal organisms,
it exists in the 11-cis configuration. Upon absorption of a photon, the retinal undergoes isomerization
to the all-trans structure. Assuming an all-trans configuration, rhodopsin sets off a signaling cascade,
prompting the activation of enzymes and ion channels within the photoreceptor cell. This sequence
of events culminates in the production of electrical signals (action potential) that get transmitted to
the brain through the optic nerve. Another photoreceptor protein is the photoactive yellow protein
(PYP), which is present in different bacteria. The p-coumaric acid, which is chemically bound within
the protein, reacts to light absorption (around 446 nm, i.e. 2.77 eV) [15] by isomerization. This
triggers structural changes in the protein, that influence its activity.
The number of atoms in rhodopsin is quite high (5068 [26]); therefore, retinal will be analyzed as
an independent structure. Conversely, PYP has a number of atoms (1912) that allows for the com-
prehensive study of its entire structure with the available computational resources, and will be fully
analyzed in this thesis.
However, the aforementioned structural changes imply rearrangements of chemical bonds, and such
effects (being local and short-ranged) are poorly described a priori only in terms of vdW forces.
Nonetheless, it is still relevant to observe whether there are electronic excitations that could facilitate
or contribute to the process. Furthermore, the role of molecular vibrations in the isomerization process
is not entirely clear. There is a body of research from the early 2000s, which, however, does not appear
to have yielded definitive answers; for the most significant contributions, reference can be made to [12].

Due to the long-range and non-local character of vdW interactions, the MBD theory is expected to
mainly address large-scale collective phenomena. For instance, we will consider macromolecules and
host-guest systems, where vdW forces can play a major role. Host-guest complexes are particularly
relevant in supramolecular chemistry, having implications in several areas, such as molecular recog-
nition, molecular delivery, and so on. More details are found in Ambrosetti et al. Hard Numbers
for Large Molecules: Toward Exact Energetics for Supramolecular Systems [4]. This work indicates
that the interaction energies of such complexes are extremely sensitive to many body effects, so that
contributions beyond (standard) pairwise London dispersion and Axilrod-Teller terms are necessary
for a reliable description. Molecular vibrations may also play a crucial role in the interaction between
host and guest, since the structure of the ’host’ molecule directly influences the van der Waals forces
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CHAPTER 1. INTRODUCTION

experienced by the ’guest’ molecule.
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CHAPTER 2. MANY BODY DISPERSION

2.1 Theory of Many body dispersion

2.1.1 Many body dispersion hamiltonian

The concept of many-body dispersion is associated to the collective interaction that emerges within
atomic structures as a result of van der Waals (vdW) forces. The description of dispersion forces
owes its development to various contributions in the field of computational chemistry and condensed
matter physics, such as the TS method [30] by A. Tkatchenko and M. Scheffler, the D2 method by
S. Grimme [13], the many-body dispersion (MBD) approach by A. Ambrosetti et al. [5], and many
others. Their work has provided valuable insights into the role of quantum mechanical effects in in-
termolecular forces and has led to improved computational models for describing the properties of
materials and molecules. In the context of many-body dispersion, vdW intermolecular forces are not
solely limited to pairwise interactions between individual particles. Instead, they encompass interac-
tions involving multiple particles simultaneously. This collective behavior arises due to the quantum
mechanical nature of electrons and their distribution around atoms or molecules.
The Coupled Fluctuating Dipole Model (CFDM) provides a description of molecular systems by con-
sidering them as a collection of coupled three-dimensional quantum harmonic oscillators (QHOs).
CFDM is primarily used for computing the many-body van der Waals (vdW) energy. Within CFDM,
each atom is associated to a (charged) QHO, also called ”quantum Drude oscillator” (QDO). By
replacing the true set of electrons and protons of an atom with a single negatively charged light
quasiparticle, harmonically bound to a positively charged heavy quasinucleus, the Drude oscillator
model emulates the electronic response to applied electric fields. The ”drudon”, i.e. the quantum
Drude “quasiparticle”, has a negative charge −q, and is balanced by a classical particle, the Drude
“nucleus” that is placed at the center of oscillation and is characterized by an opposite charge. The
drudon mimics the effect of the electron cloud surrounding ions, and its characteristic parameters are
the charge, the mass and the frequency, that are determined computationally in the framework of
density functional theory (DFT), in such a way to exactly reproduce static atomic polarizabilities and
homoatomic C6 coefficients. All QDO’s are coupled: the long range interactions between different
electron clouds are described by the dipole-dipole interaction tensor T , which depends on the atomic
distances. The physical model describing a system of drudons and Drude nuclei is a set of interacting
quantum harmonic oscillators [7].

The dipole moments of the atoms are considered to be the primary contributors to intermolecular
dispersion interactions. This corresponds to the adoption of the dipole-dipole approximation, which
is valid in the long range limit. By analyzing the distribution of dipole moments and their corre-
lations, the CFDM offers valuable insights into various properties such as structural characteristics,
dielectric response, and dynamical behavior. It allows for a comprehensive understanding of the sys-
tem’s behavior in all phases. Although the CFDM is an effective model that neglects certain intricate
aspects of molecular interactions, such as higher-order multipolar interactions and explicit treatment
of charge transfer effects, it remains a useful framework for predicting and comprehending long-range
interactions in molecular systems and condensed phases.

The expressions ”Many-Body Dispersion (MBD) Hamiltonian” and ”Coupled Fluctuating Dipole
Model (CFDM) Hamiltonian” can be used interchangeably. From now on, we will uniquely refer
to the ”MBD Hamiltonian” to indicate the following expression:

Ĥmbd = −1

2

N∑
i=1

∇2
ζi

m̃i
+

1

2

N∑
i=1

m̃iω
2
i ζ

2
i +

1

2

N∑
i,j=1
i ̸=j

eiejζiTij(dij)ζj . (2.1)

Here N is the number of atoms, ζi = r̃i − ri is the displacement from i-th ionic position ri for a
Drude particle at position r̃i, T is the dipole-dipole interaction tensor, depending on dij , the distance
between atoms i and j.
m̃i and ωi are respectively the mass of i-th Drude oscillator and the frequency associated fluctuations
in the electronic charge distribution. Rescaling displacements with oscillator masses ξi =

√
m̃iζi
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CHAPTER 2. MANY BODY DISPERSION

and introducing the polarizability αi =
q2i

m̃iω2
i

(q is the atomic charge), such that in Hartree units

m̃i = q2(αiω
2
i )

−1 [30] is equal to one, Eq.2.1 reads:

Ĥmbd = −1

2

N∑
i=1

∇2
ξi
+

1

2

N∑
i,j

∑
a,b=(x,y,z)

ξai ωiωj

[
δabij +

√
αiαjT

ab
ij (dij)

]
ξbj . (2.2)

The description is switched from N 3D harmonic oscillators to 3N independent 1D harmonic oscilla-
tors:

Ĥmbd = −1

2

3N∑
p=1

∇2
ξp +

1

2

3N∑
p,q

ξpωpωq

[
δpq +

√
αpαqTpq(dij)

]
ξq . (2.3)

It is important to emphasize the relationship between indices: p = 3(i − 1) + a , q = 3(j − 1) + b,
where a, b = 1, 2, 3 (accounting for x, y, z cartesian components). We define here the matrix C, which
contains the interactions between electron clouds in Eq. 2.2. This is reported according to both index
sets:

Cab
ij = ωiωj

[
δabij +

√
αiαjT

ab
ij (dij)

]
, (2.4)

Cpq = ωpωq

[
δpq +

√
αpαqTpq(dij)

]
. (2.5)

The dipole-dipole tensor T is obtained considering the Coulomb interaction between two spherical
Gaussian charge densities, which leads to the introduction of a short-range damping [29] due to charge

overlap vij =
erf(dij/σij)

dij
(here dij = |ri − rj | is the distance between atoms i and j). This short-range

damping is compatible with the ground state wavefunction of quantum harmonic oscillator which has

a gaussian form, where σij =
√
σ2i + σ2j is the gaussian width of atoms i and j.

T ab
ij = ∇ri ⊗∇rjv

gg
ij = ∇ri ⊗∇rj

(
erf(dij/σij)

dij

)
(2.6)

= −
3rarb − d2ijδab

d5ij

erf (dij
σij

)
− 2√

π

dij
σij

e
−
(

dij
σij

)2
+

4√
π

1

σ3ij

rarb
d2ij

e
−
(

dij
σij

)2

, (2.7)

where in the latter ra = ria − rja, i.e. the a-th component of the vector (ri − rj) .
The energy spectrum of the MBD hamiltonian, Eq. 2.2, is obtained from the eigenvalues λp = ω̃2

p of

C, which is a symmetric 3N × 3N matrix. Eventually, Ĥmbd can be reduced to normal form [11]:

Ĥmbd = −1

2

3N∑
p=1

∇2
χp

+
1

2

3N∑
p

χ2
pω̃

2
p , (2.8)

where χ is the set of collective coordinates depending on the fixed ionic configuration r; for each normal

mode n the transformation χn =
∑
p

MT
npξp =

∑
p

MT
np

√
m̃pζp holds, where the matrix M contains

the eigenvectors of C as columns. In atomic units, ω̃n is the vibrational frequency (i.e. energy) of the
n-th Drude normal mode, given by the square root of the n-th eigenvalues of C, λn, which depends
on the space coordinates r of the atoms. The many-body dispersion energy is finally computed as the
energy difference between the interacting Drude oscillators and the independent Drude oscillators:

Embd =
1

2

3N∑
i=1

ω̃i − 3

N∑
i=1

ωi . (2.9)

Fig.2.1 depicts the MBD spectrum for selected molecules, aimed at comprehending the energy range
of collective excitations. The spectra are obtained by applying a variable Gaussian broadening around
discrete frequency values and can be compared with those presented in Ref. [3].
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CHAPTER 2. MANY BODY DISPERSION

2.1.2 van der Waals forces

By incorporating many-body dispersion effects, MBD provides an accurate description of vdW forces,
beyond the two-body pairwise approximation. The force Flc exerted by an atom l along the coordinate
c, is evaluated through the gradient of the many-body dispersion energy

Flc(r) = −∂E(r)

∂rlc
, (2.10)

and depends on the atomic configuration r.
The energy spectrum of the MBD hamiltonian is that of a set of quantum oscillators with frequencies
ω̃. This can be expressed as:

Embd =
3N∑
i=1

ω̃i

(
1

2
+ ni

)
= E

(0)
mbd + E

(n)
mbd , (2.11)

where E
(0)
mbd is the MBD ground state, while E

(n)
mbd is the excitation energy term depending on the

quantum numbers ni different from zero and it is responsible for the ”optical” van der Waals forces
occuring inside the atomic complex. If a single excitation of the γ-th mode occurs, then nγ = 1 is
the only quantum number different from zero, and the (single-)excitation energy associated to the
”optical” vdW forces is:

E
(γ)
vdw = ω̃γ . (2.12)

The frequencies ω̃γ relative to the collective MBD dipole modes provide a spectrum of ”single” excita-
tions for the MBD model. The MBD spectra for benzene monomer, 11-cis-retinal, C60-clamp complex
and PYP are reported for instance in Fig. 2.1.

E
(0)
mbd is responsible for the dispersion forces that characterize the molecule in its ground state and can

be absorbed by the ion-ion potential V , for which more detailed explanations will be provided in the
subsequent chapters.
Instead, optical van der Waals forces, due to the extra energy term ω̃γ can be computed as the gradient
of the vdW energy. Hence the force exterted by atom l along c direction, given a ionic configuration
r is

F
(γ)
lc (r) = −∂ω̃γ

∂rlc
= −

∂
√(

MTCM
)
γγ

∂rlc

= − 1

2
√(

MTCM
)
γγ

∂
(
MTCM

)
γγ

∂rlc
(2.13)

= − 1

2ω̃γ

∑
j

∑
k

MT
γjMkγ

∂Cjk

∂rlc
. (2.14)

As already mentioned, matrix M contains the eigenvectors of C as columns, hence, adopting index

notation for eigenvalue relation,
∑
k

CjkMki = λiMji, where λi =
∑

kj M
T
ijCjkMki is the i-th eigen-

value of C matrix.
A short demonstration, following the principles of the Hellmann-Feynman force theorem [8], is pre-
sented in Appendix A. This demonstration elucidates the mathematical steps that lead to the deriva-

tion of Eq. 2.14. The coordinates dependence in C arises from the T matrix. The derivation of
∂Cjk

∂rlc
is reported in Appendix B. The set of optical van der Waals forces is represented by a 3N ×3Nmatrix
F , in which the row index is associated with the oscillator upon which the force acts, and the column
with the excited MBD mode. The derivatives of C are switched from atomic coordinates to QHO
ones, recalling the relationship between the sets of indices: p = 3(k − 1) + a , q = 3(j − 1) + b ,
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CHAPTER 2. MANY BODY DISPERSION

(a) (b)

(c) (d)

Figure 2.1: MBD exciton spectra. MBD spectrum of benzene molecule C6H6 (a), 11-cis-retinal (b) and
C60-clamp complex (c), all get with gaussian broadening of 0.2 eV around discrete frequencies. MBD spectrum
for photoactive yellow protein (PYP) [6] [14] (d) with gaussian broadening of 0.02 eV.

a, b = 1, 2, 3, σ = 3(l − 1) + c, and a compact form is adopted
∂Cjk

∂rσ
≡ C ′

σjk.

Hence exploiting QHO indices one has:

F γ
σ = − 1

2ω̃γ

∑
j

∑
k

MT
γjMkγC

′
σjk . (2.15)

Since C ′ is a tensor with three indices (and (3N)3 elements), the numerical evaluation of the forces
matrix could be computationally demanding, especially for large systems. Throughout the thesis,
tensor calculations are frequently employed, which is why index notation is commonly adopted. This
notation intuitively conveys the type of tensor contractions involved and quickly adapts to the numer-
ical computation methods employed in this thesis. Specifically, a high-performing and user-friendly
algorithm has been identified within the pre-implemented tensorprod function in MATLAB [16].

The aim of the thesis is to investigate the primary effects arising from the excitation of MBD modes
on atom dynamics and, above all, to comprehend the theoretical regime within which the model finds
successful application and where it reveals limitations. We are dealing with an approximation that
facilitates the efficient assessment of long-range interactions, and this is expected to provide best de-
scription of systems with a substantial number of atoms. Of clear relevance is the energy range within
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CHAPTER 2. MANY BODY DISPERSION

which such modes can be excited. It is evident that in biology and biophysics, the visible spectrum
represents the most pertinent energy window, given its association with photoreceptor activation. The
effect of optical excitations is explored through two distinct models. In the first, van der Waals forces
are treated as a perturbation to atomic dynamics, following a ’semiclassical’ approach. In the second,
a rigorous coupling between atomic and electronic degrees of freedom is theorized, employing a quan-
tum approach rooted in the premises of the Born-Oppenheimer approximation. In this latter case,
van der Waals forces are embedded within the coupling.

In addition to energy spectra, an intuitive interpretation of MBD modes is provided through the ge-
ometric patterns of forces and dipole oscillation directions, whose relationship is found in Eq. 2.15.
Particularly for complex systems, MBD modes can both give rise to ”localized” and ”highly delocal-
ized” forces, depending on the corresponding MBD exciation (see Figs.2.2c, 2.2d, 2.2e and 2.2f). It
will be demonstrated later that these geometries adhere to certain symmetries, which play a key role
in understanding the reciprocal compatibility between optical excitations and ion dynamics.

11
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Geometrical visualization of MBD modes. Optical vdW forces and dipole oscillation direc-
tions are reported for systems of interest. Benzene monomer’s 34-th exciton mode is reported in vdW forces
(a) (red arrows) and dipole oscillations (b) (green arrows).
Localization properties of MBD modes are visualized in the Buckminsterfullerene-clamp complex and PYP.
Forces are depicted for low frequencies excitations and high energies. In particular, for Buckminsterfullerene-
clamp modes 15 (c) and 412 (d); for PYP modes 5 (e) and 4000 (f). Modal indices are reported in ascending
order of frequency.
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CHAPTER 3. MOLECULAR VIBRATIONS AND NORMAL MODE ANALYSIS

3.1 Molecular vibrations and phonons

Molecular vibrations refer to the oscillatory motion of atomic ions within a molecule. Within the
quadratic approximation, a molecule is described as a system of N atoms connected by chemical
bonds acting like springs. This allows atoms to vibrate around their equilibrium positions, denoted
as R. A pattern of atomic displacements, all oscillating with the same frequency is called ”normal
mode” (NM).
The number of physical NMs for molecules is usually 3N − 6, since translations and rotations are
excluded from the counting. Structure, dynamical and thermodynamical properties of molecules are
strongly affected by these collective vibrations. In the context of condensed matter, it is common to
refer interchangeably to ’phonons’ and NMs; however, phonons are quasiparticles arising on a periodic
lattice, while the case of molecular vibrations is simpler and does not involve Fourier analysis due to
the lack of periodicity.
Both phonons and NM are associated to quantized, discrete energy levels, but in the second case it
is the potential energy surface of the molecule to determine vibrations, implying dependence on bond
strengths, bond angles, and other molecular properties. The molecular vibrational properties are
therefore described by a wavefunction, whose state is related to the probability to find the molecule
in a particular vibrational mode.

The harmonic oscillator model is the fundamental concept used to describe NMs. In this model one
assumes that the bonds between atoms behave like simple springs, each obeying Hooke’s law. The
vibrational spectrum is given by the characteristic frequencies at which all atoms in the whole molecule
oscillate, following a different trajectory for each mode. The strength of the bonds connecting atoms,
the masses and also the van der Waals forces between atoms determine the frequency spectrum.
At this stage, the harmonic approximation for the atom-atom interaction potential is assumed, while
higher-order corrections are neglected. However, molecular vibrations can be anharmonic, meaning
that they can deviate from the simple harmonic oscillator model. Anharmonicity can arise due to
the non-quadratic nature of the potential energy surface, which affects the bond strength when atoms
move far away from their equilibrium positions.

Suppose atoms to move within a potential V (r) (r, without any index represent the whole set of
coordinates) depending only on atomic positions. At this stage we assume that electronic effects
simply determine the the inter-ionic potential, hence vibrational properties are only related to the
dynamics of ions.

Ĥions =
∑
i

∇2
ri

2mi
+ V ({r}) . (3.1)

Ions are free to oscillate around their equilibrium positions R, and when oscillations are small, the
potential is approximated by the harmonic [32] term:

V (r) ≃ V (R) +
1

2

∑
ij

∂2V

∂ri∂rj
(R)dridrj

= V (R) +
1

2

∑
ij

driHijdrj . (3.2)

HereH is the Hessian matrix relative to the ionic potential, evaluated at the equilibrium configuration.
Shifting the potential energy in order to incorporate the constant term V ({R}), Ĥions reads:

Ĥions = −
∑
i

∇2
ri

2mi
+

1

2

∑
ij

driHijdrj . (3.3)

Rescaling also the ionic positions by the corresponding atomic mass, and switching the description

14
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from positions to displacements q, r′i =
√
miri , qi =

√
mi(ri −Ri) one has:

Ĥions = −1

2

∑
i

∇2
r′
i
+

1

2

∑
ij

dr′i
Hij√
mimj

dr′j

= −1

2

∑
i

∇2
qi

+
1

2

∑
ij

qiHijqj , (3.4)

where H is a symmetric matrix, namely the so-called mass-weighted Hessian. Ĥions describes a set
of N 3D harmonic oscillators. Diagonalization leads to a collection of 3N 1D independent harmonic
oscillators, so, globally, the system can be viewed as a set of 3N independent one dimensional harmonic
oscillators:

Ĥions = −1

2

3N∑
i=1

∇2
qi +

1

2

3N∑
ij=1

qiHijqj . (3.5)

Denoting by S the rotation matrix such that D = S−1HS is the diagonal matrix whose elements are
the eigenvalues of H (Dij = δijλij) , one can recast Ĥions in the normal form:

Ĥions = −1

2

3N∑
i=1

∇2
Qi

+
1

2

3N∑
ij=1

QiλiQi . (3.6)

The transformation from the initial basis to the eigenvectors is:

Qj =
∑
i

ST
jiqi =

∑
i

ST
ji

√
mi dri , (3.7)

while the inverse transformation is qi =
∑

j SijQj . Regarding the laplacian operator, since S−1 = ST ,

STS = 1 i.e. δij =
∑
k

ST
ikSkj .

∑
i

∇2
qif =

∑
i

∂

∂qi

∑
k

∂

∂Qk

∂Qk

∂qi
f (3.8)

=
∑
i

∂

∂qi

∑
k

∂

∂Qk
ST
kjδijf (3.9)

=
∑
k

∑
i

ST
ki

∑
l

∂

∂Ql

(
∂Ql

∂qi
f

)
(3.10)

=
∑
k

∑
i

ST
ki

∑
l

∂

∂Ql
ST
li f (3.11)

=
∑
kl

∂

∂Qk

∂

∂Ql
f
∑
i

ST
kiS

T
li︸ ︷︷ ︸

δkl

(3.12)

=
∑
k

∂2

∂Q2
k

f (3.13)

=
∑
k

∇2
Qk
f . (3.14)
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About the potential energy term:∑
ij

qiHijqj =
∑
ij

∑
l

SilQlHij

∑
k

SjkQk (3.15)

=
∑
lk

QlQk

∑
ij

SilHijSjk (3.16)

=
∑
lk

QlQk

∑
ij

ST
liHijSjk (3.17)

=
∑
lk

QlQkλkδlk (3.18)

=
∑
k

QkQkλk . (3.19)

The square root of the H eigenvalues are the collective frequencies of the NMs,
√
λi = Ωi. These only

depend on ionic positions in the equilibrium configuration: Ω = Ω(R).

Ĥions = −1

2

∑
i

∇2
Qi

+
1

2

∑
i

Q2
iΩ

2
i ({R}) . (3.20)

Here Q represents the set of collective ion coordinates called ’normal coordinates’. The newly defined
coordinates Q have the dimensions of a distance multiplied by the square root of a mass; to obtain
pure collective coordinates, it is necessary to introduce an effective mass µ for each ionic harmonic
oscillator. For this purpose, a new set of coordinates ρ is defined, such that for i-th harmonic ionic

oscillator ρi =
Qi√
µi

. Following this approach the goal is to find a unitary transformation from the

ionic displacements dr to ρ sets, starting from the definition of Q, finding a suitable expression for
the phononic effective masses.

ρi =
Qi√
µi

=
∑
j

ST
ij

√
mj

√
µi
drj (3.21)

≡
∑
j

S
′T
ij drj , (3.22)

where matrix S′ is the transformation from ionic coordinates to collective ones S′
ij = Sij

√
mi

µj
.

The orthonormality of matrix S is reflected in the relation
∑
k

ST
ikSkj = δij . By imposing the same

for S′, the effective masses are found, hence:

1 =
∑
k

S′T
ik S

′
ki (3.23)

=
∑
k

ST
ik

√
mk

µi
Ski

√
mk

µi
(3.24)

=
1

µi

∑
k

mkS
T
ikSki . (3.25)

The effective mass for the i-th ionic normal mode is

µi =
∑
k

mkS
2
ki , (3.26)

in this way the ionic hamiltonian reads:

Ĥions = −1

2

∑
i

∇2
ρi

µi
+

1

2

∑
i

ρ2iµiΩ
2
i =

∑
i

Ĥ i
ions . (3.27)
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Since we are also willing to investigate which processes can induce a system to alter its conformation
towards a desired structure, a filter is applied to all potential modes of vibration to discern which of
them can generate a geometry compatible with the intended configuration. A unitary motion along the

normal coordinate ρk corresponds to a displacement dr
(k)
i for each i-th quantum harmonic oscillator:

dr
(k)
i =

∑
j

S
′
ijρjδjk = S

′
ik . (3.28)

In order to understand which of the normal modes makes the molecule oscillate towards a certain
spatial configuration R(c), a displacement vector ∆r joining the equilibrium position R to the desired

molecular configuration R(c) is obtained: ∆Ri = R
(c)
i − Ri. For each normal mode k the overlap is

defined as:

O(k) =
1

N

∑
i

|∆Ri· dr(k)i |
∥∆Ri∥ ∥dr(k)i ∥

. (3.29)

In the latter · denotes the scalar product between 3D atomic coordinates and the sum is performed
over all atoms. O(k) is a parameter ranging from 0 to 1, that quantifies how the k-th normal mode’s
vibration displaces atoms toward the target configuration R(c).
Eq.3.29 is valid only if each atom occupies a different position in R and R(c) configurations. If
position of atom i is unchanged ∥∆Ri∥ = 0, hence singularity occurs. To address this issue, the
overlap parameter can be defined as follows:

O(k) =
1

N

∑
i

|
(
∆Ri − dr

(k)
i

)
· dr(k)i |

∥∆Ri − dr
(k)
i ∥ ∥dr(k)i ∥

. (3.30)

The range for the overlap value is kept between zero and one. In addition to avoiding singularities,
the advantage is that if there are atoms occupying the same position between the initial and target
configurations, the highest overlap will correspond to modes that induce the least displacement of the
atoms.

3.1.1 Second quantization of the phonon wave function

As already observed, the harmonic approximation for the motion of ions allows for a description of the
molecular system in terms of 3N independent degrees of freedom (referred to as collective coordinates
or normal coordinates).
The global motion of the system along one of these coordinates indicates that one of the 3N possi-
ble normal modes of oscillation has been excited. The system is now described by 3N independent
harmonic oscillators, with frequency Ω and mass µ. The remaining task is to solve the problem of
calculating the energy spectrum, which has already been extensively addressed within the framework
of ”second quantization”.
The energy spectrum of the ionic system is evaluated solving the Schrödinger equation for the Hamil-
tonian Hions (Eq.3.27). Since this hamiltonian is approximated by a quadratic form, it will be referred
to hereafter as the ”phononic” Hamiltonian Hph. Its diagonalization yields a wave function Φ, which
describes a set of independent 1-dimensional harmonic oscillators. In general, the state m satisfies

ĤphΦ
m = Eph

m Φm . (3.31)

The independence of the harmonic oscillators is reflected into the factorization of an arbitrary many-
body eigenstate Φ, which globally depends on the entire set of coordinates ρ, but can be expressed as
a product of functions, each depending only on one of the 3N collective coordinates [31].

Φ(ρ) = Φ(ρ1, . . . , ρ3N ) = ϕ1(ρ1)⊗ ϕ2(ρ2)⊗ . . .⊗ ϕ3N (ρ3N ) . (3.32)

More precisely, an arbitrary eigenstate Φm corresponds to a set of quantum numbers of each single-
particle wave function, m = {m1, . . . ,m3N}, hence

Φm(ρ) = ϕm1
1 (ρ1)⊗ ϕm2

2 (ρ2)⊗ . . .⊗ ϕm3N
3N (ρ3N ) , (3.33)
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and satisfies, for each i = 1, . . . , 3N

−1

2

∇2
ρi

µi
ϕmi
i (ρi) +

1

2
ρ2iµiΩ

2
iϕ

mi
i (ρi) = Emi

ph,iϕ
mi
i (ρi) . (3.34)

If ϕmi
i (ρi) corresponds to

ϕmi
i (ρi) =

1√
2mimi!

(
µiΩi

π

)1/4

e−
µiΩiρ

2
i

2 Hmi

(√
µiΩiρi

)
, mi = 0, 1, 2, . . . , (3.35)

where Hmi(z) = (−1)miez
2 dmi

dzmi

(
e−z2

)
is the mi-th Hermite polynomial, the energy eigenvalue Emi

ph,i

is (half-integer) multiple of the frequency of the i-th vibrational normal mode Ωi, i.e. Emi
ph,i =

Ωi

(
mi +

1
2

)
, and the total energy of state m is the sum of the energies of each oscillator Em

ph =∑
iΩi

(
mi +

1
2

)
.

The integer value mi can be interpreted as the number of excitations of the i-th harmonic oscillator.
It is thus conveninent to adopt a compact Dirac bra-ket notation.

Given an arbitrary wavefunction ϕi(ρi), this can be expressed as as a linear combination of eigenstates

|m⟩ (denoting the multiplicity of the single QHO excitations), ϕi(ρi) =
∑
m

cmφm(ρi) |m⟩. More

explicitly, the state Φm is depicted as

Φm = |m1⟩ ⊗ |m2⟩ ⊗ . . .⊗ |m3N ⟩ ≡ |m⟩ , (3.36)

and Schrödinger’s equation then reads

Ĥph |m⟩ = Eph
m |m⟩ . (3.37)

From now on, to simplify the notation, the wave function will be labelled with the indices of the
excited harmonic oscillators: for example the ground state, in which ni = 0 ∀ i is |0⟩, and the state
|1γ⟩ is the one with ni = δnγ ,1δγi, in other words vibrational excitation γ as occurred.

|1γ⟩ = |0, . . . , 1γ , . . . , 0⟩ . (3.38)

Each collective single-oscillator Hamiltonian Hph,i can be re-expressed introducing ladder operators.

Recalling that in space-representation the momentum operator is P̂ρi = −i∇ρi :

b̂†i =
1√

2µiΩi
(µiΩiρi − iPρi) , (3.39)

b̂i =
1√

2µiΩi
(µiΩiρi + iPρi) . (3.40)

These operators are well defined, and one has:

b̂†i b̂i =
1

2Ωiµi

(
−∇2

ρi
+ µiΩi [ρi,∇ρi ] + µ2i ρ

2
iΩ

2
i

)
(3.41)

Using a generic auxiliary wave function ψ, the commutator is:

[ρi,∇ρi ]ψ = −(∇ρiρi)ψ = −ψ (3.42)

The Hamiltonian Ĥph can be written in terms of these operators:

b̂†i b̂i =
1

2µiΩi

(
−∇2

ρi
+ µ2iQ

2
iΩ

2
i − µiΩi

)
=

1

Ωi

(
Ĥph,i −

Ωi

2

)
, (3.43)
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Ĥph,i = Ωi

(
b̂†i b̂i +

1

2

)
, (3.44)

Ĥph =
∑
i

Ωi

(
b̂†i b̂i +

1

2

)
. (3.45)

It is also expedient to report the effect of b̂ operators on the phononic wave function:

Ĥph
(
b̂†γ |n⟩

)
=
∑
i

Ωi

(
b̂†i b̂i +

1

2

)(
b̂†γ |n⟩

)
= Ωγ b̂

†
γ

(
b̂†γ b̂γ + 1 +

1

2

)
|n⟩ +

∑
i ̸=γ

Ωi

(
b̂†i b̂ib̂

†
γ |n⟩+

1

2
b̂†γ |n⟩

)
(3.46)

= b̂†γ
∑
i

Ĥ i
ph |n⟩+Ωγ b̂

†
γ |n⟩

= b̂†γ

(
Eph

n +Ωγ

)
|n⟩

=
(
Eph

n +Ωγ

)
b̂†γ |n⟩ . (3.47)

Following the definitions of b̂i and b̂
†
i :

ρi =
1√

2µiΩi

(
b̂i + b̂†i

)
(3.48)

,∇ρi =

√
µiΩi

2

(
b̂i − b̂†i

)
. (3.49)

3.2 Force field and ”ab initio” approaches

The evaluation of the vibrational spectrum for a molecule is related to the correct diagonalization of
the mass-weighted hessian matrix (sometimes called ’dynamical matrix’) H, that requires the deter-
mination of the molecular potential V . The more accurate the potential, the more reliable will be the
energetic spectrum. In computational chemistry two main classes of methods are normally adopted,
depending on the size of the explored systems, on the available computational power, and on the
required precision: these are ”ab initio” and ”force fields” approaches. In this work, both methods
are tested, and force fields are adopted in the most demanding calculations.
Softwares based on ”ab initio” methods provide an approximate solution of the electronic Schrödinger
equation, using quantum mechanical principles, and avoiding the introduction of empirical parame-
ters. Once the electronic structure of the molecule is computed, the ionic vibrational frequencies are
determined from the potential energy surface.
High accuracy is reached at the price of a high computational cost, due to the need to solve the
all-electron Schrödinger equation numerically, including electronic correlation effects. This class of ap-
proaches is thus well suited for addressing NM’s of small molecules. Instead, larger systems composed
by many atoms will be addressed via force fields.
Force fields rely on suitably parameterized effective potentials, that model the interatomic interactions
in molecules and are based on classical mechanics and do not explicitly consider the electronic struc-
ture, but only the effective interaction between atoms. The ionic potential, from which the Hessian
matrix is computed, is of a classical nature and therefore is directly calculated as the negative gradient
of the forces acting on the atoms. For this reason, the problem boils down to the force calculation,
which is profoundly different in the two computational approaches.

3.2.1 Vibrational spectra

Since a prerequisite of this thesis is a reliable methodology capable to obtain vibrational spectra at
affordable computational cost, even in large nanoscale systems, ”force field’ methods will be preferred.
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Nonetheless, before proceeding with large-scale calculations, we explicitly tested the vibrational spec-
tra obtained from ”force fields” against ”ab-initio” methods for a set of small molecules, where the
latter (more demanding) approach is applicable. A comparison is performed in order to assess the
reliability of the force fields method that will be used in the following chapters.

A finite-difference evaluation of the Hessian matrix is performed starting from ouput forces, computed
via density functional theory, with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.
The Quantum Espresso package is exploited in order to perform calculations. This benchmarking
enables to analyze the limits beyond which the two methods start to diverge and the range of modes
where similar results are instead obtained.

As a start, we need to clarify that every NM analysis implies the evaluation of the potential energy
surface at its minimum, i.e. in the equilibrium configuration. Different approaches can lead to different
equilibrium configurations. For this reason, geometrical relaxation is performed for each molecule and
each method, before computing NM’s. The only inputs needed by QE are the atomic coordinates, the
pseudopotentials (ultrasoft here) [2] and the masses. Moreover, one needs to provide some parameters
such as the energy cutoff for the plane-wave expansion of the electronic wavefunctions and the kinetic
energy cutoff for charge density, that are respectively fixed here to 30 Ry and 180 Ry.

In QE, the optimal molecular structure R is reached by a relaxation process (routine relax) that
iteratively adjusts atomic positions until a minimum in the energy landscape is reached. Forces acting
on atoms are then evaluated in the equilibrium configuration using the ”self-consistent field” (scf)
calculation. After these two steps, F eq and R are obtained and saved. By displacing a single atom,
along one direction at a time, and re-evaluating atomic forces in the new configuration, the so-call
’dynamical’ or ’hessian’ matrix is obtained numerically, with a simple algorithm that we call NDM
(numerical dynamical matrix):

Hab
ij =

∂2V

∂rai ∂r
b
j

= −
∂F b

j

∂rai
= −

F b
j (R+drai )− F b

j (R)

drai
, (3.50)

where bold drai denotes a small displacement of atom i along axis a. To take into account the inertial
nature of each harmonic oscillator, one needs to rescale the H matrix by atomic masses, obtaining

the mass-weighted hessian matrix Hab
ij =

Hab
ij√

mimj
. The diagonalization of the 3N × 3N matrix H is

performed with the MatLAB routine eig [16] (based on LAPACK libraries), and yields the NM spectrum
on output.

In order to compute the vibrational spectrum with GROMACS, it is imperative to possess specific
input files. While Quantum Espresso only necessitated atomic positions, an approach based on force
fields requires prior knowledge of certain chemical properties of the system. Consequently, two primary
files are essential: a .pdb file and a .top file.

A PDB (Protein Data Bank) file conforms to a standardized file format utilized for storing atomic
coordinates and molecular data. It encompasses a structured representation of the molecule’s three-
dimensional structure, including atom positions and types, connectivity details, chemical bonds,
charges and supplementary annotations such as secondary protein structure and ligand binding sites.
NMR (Nuclear magnetic resonance) spectroscopy and X-ray crystallography are the main experimen-
tal techniques to obtain PDB parameters. The correct units in a PDB file are: Å for gometrical
coordinates and bond lengths, and degrees (◦) for bond angles and dihedral angles. Conversely, a
topology file (.top) in GROMACS includes comprehensive details concerning the force field parame-
ters employed to describe interactions between atoms within the system. It specifies atom types, their
charges, bond parameters (bond lengths and force constants), angle parameters, dihedral parameters,
as well as non-bonded interaction parameters (including van der Waals and electrostatic interactions).
The topology file provides essential input for the molecular dynamics simulation by defining the force
field parameters indispensable for calculating the system’s potential energy. In summary, a PDB file
supplies initial atomic coordinates and connectivity information for the molecular system, while the
GROMACS topology file (.top) delineates the force field parameters requisite for modeling atom in-
teractions during molecular dynamics simulations. These files collectively facilitate the configuration
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and simulation of molecular systems employing GROMACS. Both .top and .pdb files were obtained
from the ATB website [1], that provides also a custom force field package as extension of the GROMOS

54A7 forcefield. GROMACS reads .mdp files in which the simulation parameters are reported. For
our aim just two of them are required: one specifies the energy-minimization algorithm, choosing be-
tween Steepest Descent steep, Conjugate Gradient cg, L-BFGS and others, and the other are related
to the NM analysis (method nm) that evaluates the hessian matrix, which is then postprocessed by
GROMACS routines nmeig and anaeig. The other significant parameters of an .mdp file include the
type of boundary conditions, the van der Waals radius, the Coulomb radius, and the cutoff scheme,
that determine how interactions between atoms are treated beyond a certain distance, known as the
cut-off distance. It is important to mention the appropriate units in which the spectra will be re-
ported; due to different energy scales, vibrational spectra are indicated in cm−1, while MBD spectra
are indicated in eV. In all graphs representing vibrational spectra, an additional axis is included to
display the values in electronvolts. Spectra for selected molecules, ranging in atom numbers from 3
(water) to 60 (Buckminsterfullerene) are reported in Fig.3.1, while tables with results are reported in
Appendix C.

Overall, we observe fair qualitative agreement between vibrational spectra of the selected molecules,
which encompass different size, chemical composition, structure and topology. Ab-initio frequencies
are not always closer to experimental data with respect to force fields. The main challenge for force
field calculations is reproducing the ”higher peaks”, that correspond to degenerate or closely spaced
modes. We stress in any case that slight frequency shifts are not expected to imply a major deficiency
for quasielectron-phonon couplings. In fact, vibrational frequencies only cause a renormalization of
the coupling factors.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Vibrational spectra. Comparison between vibrational spectra of reference molecules obtained
from: i) GROMACS (GRO) nm analysis, ii) Quantum espresso (QE) scf+NDM, and iii) reference data (exper-
imental, theorical or numerical, depending on availability) (REF) – a) Water (H2O); b) Ammonia (NH3); c)
Propane (C3H8); d) Benzene (C6H6); e) Naphtalene (C10H8); f) Buckminsterfullerene (C60). The discrete
spectra are converted into continuous spectra using a Gaussian broadening with variable width (from 20 to 30
cm−1) and presented in cm−1, which is the common unit of measurement for IR and Raman spectroscopy, and
in eV, consistently with the different energy scale of MV and MBD spectra, reported in the previous chapter. All
molecular structures and topologies are obtained from the repository ATB (Automated Topology Builder) [1],
while the involved pseudopotentials used in QE relax and scf are reported in Appendix C. REF data sources
too are reported in Appendix C.
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CHAPTER 4. COUPLING BETWEEN MANY-BODY DISPERSION AND VIBRATIONAL
MODES

4.1 Semi-classical coupling between phonons and optical vdW forces

Our aim here is to address the effect of ”optical vdW forces” on ionic dynamics. Upon photon ab-
sorption, a system can undergo electronic excitation, and this will imply the emergence of interatomic
forces and possible excitation of vibrational modes. Since MBD provides a reliable many-body de-
scription of polarizability and non-covalent forces, this will be adopted as a reference method for the
quantum mechanical description of ”optical vdW forces”. Short-range optical forces may also arise
upon electron excitation, but will not be considered in this thesis. As a starting point, we thus assume
that short-range electron correlations can be approximated by a semi-classical potential Vions, while
long-range correlations are treated from a quantum-mechanical point of view, via the MBD model.
The total hamiltonian can thus be expressed as:

Ĥ = Ĥmbd + Ĥions

= −1

2

3N∑
p=1

∇2
χp(r)

+
1

2

3N∑
p

χ(r)2pω̃
2
p(r)−

N∑
i

∇2
ri

2mi
+ Vions(r) . (4.1)

This hamiltonian describes two sets of quantum harmonic oscillators, coupled to each other. In
fact, ions move subject to a potential energy surface which is influenced by the MBD modes. We
already note here that the Born-Oppenheimer approximation should be eventually overcome in order
to rigorously treat this problem, but this will be fully addressed in the next chapters.

We now assume that the γ-th collective MBD mode is excited by phonon absorption; then the MBD
energy is expressed as:

E
(γ)
mbd = E

(0)
mbd + ω̃γ . (4.2)

The groundstate-energy term E
(0)
mbd is absorbed in the inter-ionic potential V (r) = Vions(r) + E

(0)
mbd,

that can be treated as a harmonic potential so that the total hamiltonian becomes the sum of a
phononic hamiltonian Ĥph and an energy term due to photoexcitation:

Ĥ = Ĥmbd − E
(0)
mbd −

∑
i

∇2
ri

2mi
+ V (r) = Ĥmbd − E

(0)
mbd + Ĥph . (4.3)

Henceforth, this method will be referred to as the ’semiclassical method’ (SC), to distinguish it from
a fully quantum model that will be presented later on. The extra energy term can be interepreted as
a perturbation of the phononic hamiltonian.

The unperturbed spectrum of Ĥph is exactly known and following the formalism of the second quan-
tization it is possible to understand the effect of the perturbation due to optical vdW forces on the
vibrational state.

Coming back to the total hamiltonian (Eq.4.3), it will be clear why a second quantization turns out
to be a good choice. The MBD excitation energy ω̃γ (which depends on r) can be expanded to first
order in the displacement operators, in the following way:

ω̃γ(r) = ω̃γ(R)− F (γ)· dr ,

= const−
∑
σ

F (γ)
σ drσ . (4.4)

where drσ is the displacement of oscillator σ, and F
(γ)
σ is the van der Waals force acting on it due to

excitation of the MBD γ-th mode, while the constant term is irrelevant and will be neglected hereafter.
Recalling the transformation from cartesian to collective coordinates and the second quantization
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expression for collective displacement (Eq. 3.49), one has:

ω̃γ(r) = −
∑
σi

F (γ)
σ S′

σiρi (4.5)

= −
∑
σi

F (γ)
σ

Sσi
µi

√
mσ

2Ωi

(
b̂i + b̂†i

)
(4.6)

= −
∑
σi

F
(γ)
σ S′

σi√
2µiΩi

(
b̂i + b̂†i

)
(4.7)

Now, the hamiltonian Eq. 4.3 (where the constant term has been neglected) can be expressed in terms
of ladder operators,

Ĥ =
∑
i

Ωi

(
b̂†i b̂i +

1

2

)
−
∑
σi

F
(γ)
σ S′

σi√
2µiΩi

(
b̂i + b̂†i

)
, (4.8)

and within a perturbative framework, it is possible to identify the preferred phononic transitions of
the system and the corresponding amplitudes.

A short mathematical derivation is provided here for the quantum mechanical transitions due to the
coupling between MBD forces and vibrational modes. More specifically, transitions between vibra-
tional states are described as due to a perturbation Ĥ

′
(t) of the (phononic) Hamiltonian that describes

the system in the unperturbed state. Obviously, this perturbative term is identified with the first term
in Eq.(4.8),

A global time-dependent wavefunction |Ψ(t)⟩, built as superposition of the unperturbed eigenstates
|Ψn(t)⟩ (see Eq.3.37), is written as

|Ψ(t)⟩ =
∑
n

cn(t) |Ψn(t)⟩ =
∑
n

cn(t) |n⟩ e−iEn
pht . (4.9)

By following mathematical steps that mirror the derivation of the so-called Fermi’s golden rule in the
framework of perturbation theory [18], the expansion coefficients cf , related to the transition from an
initial state |i⟩, to a final one |f⟩ are:

cf (t) = − i

ℏ

∫ t

0
dt′ ⟨f |H ′ |i⟩ e−i(Ei−Ef )t

′
. (4.10)

Here, we will restrict to very short time-intervals, after photoexcitation. The main reason is that the
induced dynamics would eventually bring our geometrical conformation far away from the equilibrium
structure, where vibrational modes are well defined. We will thus investigate the first instants of the
dynamics, unveiling how energy is transferred to vibrational modes.

Time integration will thus be avoided, considering only evolution for small time steps. The probability
to observe the system in the state |f⟩ is c∗fcf = |cf |2. In our case Ei and Ef in Eq.4.10 denote the
unperturbed energy eigenvalues in the initial and final states, respectively, and the ’perturbative’ term
is:

Ĥ
′
= −

∑
σi

F
(γ)
σ S′

σi√
2µiΩi

(
b̂i + b̂†i

)
(4.11)

This perturbative term enables excitation or annihilation of single vibrational modes due to optical
vdW forces, hence it produces an effective coupling between electronic excitations and ion dynamics.

25



CHAPTER 4. COUPLING BETWEEN MANY-BODY DISPERSION AND VIBRATIONAL
MODES

If the initial state corresponds to the vibrational vacuum |0⟩, the matrix element in Eq.4.10, can be
expressed as:

⟨f |H ′ |i⟩ = −
∑
σn

F
(γ)
σ S′

σn√
2µnΩn

⟨f | b̂†n + b̂n |0⟩ (4.12)

= −
∑
σn

F
(γ)
σ S′

σn√
2µnΩn

⟨f |1n⟩︸ ︷︷ ︸
δf,1n

. (4.13)

It is clear that under these assumptions the final state will be characterized by the excitation of a
single vibrational mode, such as |1k⟩ or |k⟩:

⟨1k| Ĥ ′ |0⟩ = − 1√
2µkΩk

∑
σ

F (γ)
σ S′

σk (4.14)

= − 1√
2µkΩk

F (γ)·S′ (k)
. (4.15)

According to the present model, the ”transition amplitude” P (proportional to the transition prob-
ablility but not normalized) from the ground state ϕ(0) = |0⟩ to state ϕk = |1k⟩, due to the optical
excitation γ is:

P γ
0→k = | ⟨k|H ′ |0⟩ |2

=
1

2µkΩk

∣∣∣F (γ)·S′ (k)
∣∣∣2 . (4.16)

F (γ) is the 3N -dimensional vector of vdW forces due to excitation of γ-th MBD mode, and S
′(k) is the

k-th (3N -dimensional) eigenvector of the mass-weighted hessian matrix (Eq. 3.4), rescaled by effective
masses in order to ensure normalization (Eq. 3.22). The SC transition probability for phonon states,
due optical vdW forces (within the MBD framework), depends on the scalar product between vdW
forces and excited phonon geometries. According to Eq. 4.16 larger transition rates are expected when
optical vdW forces are ”aligned” with the direction of collective vibrational modes, expecially when
the vibrational frequency is low. Conversely, when forces and vibrations are orthogonal, no transition
will occur.

4.1.1 Semi-Classical approach: results

Transition amplitudes in Eq.4.16 are the main results for the SC approach: they are represented by
a heatmap, whose abscissa corresponds to the initial MBD state (representing van der Waals forces
between atoms), while the ordinate labels the excited vibrational state (NM) in the final outcome.
The entries of the heatmap are the transition amplitudes.
As from Fig.4.1a, most vibrational modes cannot be excited semi-classically by optical vdW forces, so
that no signal is present in the heatmap. Since the number of modes (both vibrational and MBD) is
three times the number of atoms, for clearer visualization one can select only those vibrational modes
that admit finite transition amplitudes, and can compute the overlap of the vibrational mode with a
sought configuration.
While benzene, given its planar structure, lacks vibrational modes that can significantly alter its
atomic configuration, some more complex structures may exhibit interesting structures induced by
certain vibrational modes.
For example, an interesting system is a complex formed by a buckminsterfullerene C60 and a carbon-
oxygen structure shaped like a clamp. One may search for MBD excitations capable of exciting
vibrational modes that could open or close the ’clamp’ and hold the C60, molding the structure
until it becomes compatible with the one shown in Fig.4.4. Among other structural transformations,
there is the isomerization of retinal from 11-cis to all-trans, as shown in Figs.4.4a and 4.4c. However, a
substantial difference exists between the two structural changes. In the case of C60-clamp, the chemical
bonds within the structure remain roughly unaltered. On the other hand, the process involving
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(a)

initial final

MBD NM P (×10−5)

10 36 2.47
15 36 2.34
12 36 2.26
14 36 2.21
34 36 2.21
5 36 2.02
9 36 1.85
8 36 1.81
13 35 1.72
11 35 1.67

(b)

(c) (d) (e)

Figure 4.1: Transition amplitudes for the C6H6 monomer (SC). Visual representation of (a) transition
amplitudes for vibrational states (y-axis) triggered by excitation of individual MBD modes (x-axis). Pairs of
indices (MBD and NM) associated with the highest amplitudes P are reported (b) in descending order. Geo-
metric visualization of the modes involved in preferred transitions, using blue arrows for phonon displacements
and red arrows for vdW forces: vibrational normal mode 36 (c), exciton MBD modes 10 (d) and 15 (e).

retinal entails the breaking and subsequent formation of covalent chemical bonds, which transition
between double and single bonds or vice versa. Since MBD only accounts for non covalent vdW
forces we anticipate that we cannot expect an accurate description of covalent bonding effects. We
rather expect to correctly reproduce large-scale geometry deformations that do not directly depend
on covalent bonding.

Moreover, even the molecular size is of interest. In fact, complex structures can exhibit attractive
or repulsive optical vdW forces acting non-locally between different parts of the molecule. These
non-local forces can influence dynamical geometry rearrangements, as observed in various proteins
- a phenomenon unlikely to occur in a stiff and small molecule such as benzene. Another relevant
and crucial aspect is that the existence of a vibrational mode with a high overlap with structural
changes of interest is not guaranteed a priori. There are fortunate cases, such as the C60-clamp, where
the overlap with clamp-opening deformation is complete, and others, like the case of 11-cis-retinal,
where no oscillation exists that could entirely lead to the final ”all-trans” isomer. Nevertheless, one
should consider that the transition to the ”all-trans” conformer implies a large rotation of a molecular
segment. A much smaller rotation along the same axis could in principle better overlap with a few
vibrational modes, and this could still suggest which modes can facilitate the transformation onset.
The interpretation of the SC model is straightforward: the larger the alignment between phonon
displacements and van der Waals forces, the higher the transition rate for the excitation of the corre-
sponding phonon. Hence, when willing to deform a system by optical absorption, the challenge is to
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(a) (b)

Figure 4.2: Geometrical structure of the ’C60-clamp’ complex. The equilibrium configuration from
GROMACS energy minimization (a), the ’closed clamp’ configuration (b), which is used to calculate the overlap
with the vibrational modes.

find the appropriate vibrational mode (and a compatible MBD mode). The SC model preditcs moder-
ate transition amplitudes for the opening/closure of the C60-clamp complex, since the vdW forces tend
to be oriented parallel to the planes formed by the carbon ’clamps’. As can be observed in Figs. 4.1d
and 4.1e, the MBD modes that admit opening/closure are those in which the forces primarily act on
the tail of the structure. Based on these premises, it is nevertheless evident that the coupling between
phonons and MBD modes depends on the symmetries of the considered system. Somewhat larger tran-
sition amplitudes can be found for vibrational modes that are compatible with the initial step of the
conformational change of retinal. One can conclude that the semi-classical exciton-phonon coupling
term is relevant only when phonon geometries satisfy the symmetry relationships that characterize
van der Waals interactions.

4.1.2 Symmetries

The SC coupling between MBD oscillations and phononic degrees of freedom provides a possible es-
timate of the transition coefficients. The heatmaps presented in this section (Figs.4.1a, 4.3a, 4.5a,
4.6) exhibit a pronounced dependence on the excited vibrational mode, displaying a ’striped’ ap-
pearance. Dark colors indicate that for some of these phonon modes, the transition is improbable,
regardless of the initial MBD state. This suggests that the favored phononic geometries should ex-
hibit some geometrical properties that are compatible with optical van der Waals forces. For instance,
since the MBD model is characterized by certain symmetries, these could play a role in the coupling.
It is evident that the system energy is invariant under translation. Envisioning a rigid translation
of the molecule along a direction represented by r

′
= (a, b, c), the energy must remain constant

E(r1, . . . , rN ) = E(r1 + r
′
, . . . , rN + r

′
). Hence, the relationship

∑N
i=1∇riE(r) · dri = 0 holds, from

which we deduce that

−
∑
i

F vdW
i · dri = −

∑
i

(
F vdW
i,x a+ F vdW

i,y b+ F vdW
i,z c

)
= 0 . (4.17)

For each MBD mode γ, adopting QDO indexing one has:

N∑
i=1

F
(γ)
i = 0 . (4.18)

Since the sum of forces is zero, the variation of linear momentum is also zero: ∆p = F (γ)∆t = 0,
and the center of mass cannot be displaced by vdW forces. Since transition amplitudes in Eq.4.16 are
higher when forces align with the geometries of vibrational modes, one expects that admitted phonon
transitions should be best compatible with this symmetry.
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(a)

initial final

MBD NM P (×10−6)

94 11 2.69
101 11 2.11
320 41 2.04
142 18 1.87
133 11 1.83
153 11 1.73
110 11 1.35
134 11 1.34
137 11 1.32
135 11 1.27

(b) (c) (d) (e)

Figure 4.3: Transition amplitudes for the C60-clamp complex (SC) . Visual representation (a) of
transition amplitudes to vibrational state (y-axis) due to excitation of MBD modes (x-axis). The normal modes
under consideration are the top 20 modes with the highest overlap with the structural deformation of Fig.4.2b
(closed clamp), as indicated by the values reported to the right. Pairs of indices associated with the highest
amplitudes P (b), are reported in descending order. Geometric visualization of the modes involved in the
preferred transitions, using blue arrows for phonon displacements and red arrows for vdW forces: vibrational
mode 7 (c), MBD exciton modes 94 (d) and 101 (e).

We thus compute the displacement of the center of mass:

N∑
i=1

S
′(k)
i mi∑
j mj

≡ v(k) = 0 . (4.19)

In this case S
′(k)
i is a 3D vector that denotes the displacement direction of i-th atom in k-th vibrational

mode (as well as S′ matrix is defined in Eq.3.22 in quantum harmonic oscillators indices), furthermore
the vector vk is just defined as the sum of all S′

i of the mode k, weighted by atomic masses. For
each vibrational mode we evaluated the norm of the v(k) vector: comparing Fig.4.7a and heatmap of
Fig.4.1a for the benzene molecule. It becomes clear that the modes for which the transition amplitudes
are non-zero satisfy the condition |v| = 0.

Similar considerations can also apply to rotational symmetries. If a rotation matrix R(θ) is applied
to position vectors, the MBD energy does not change, as in the translational case; in fact, the energy
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(a) (b) (c)

Figure 4.4: Geometrical structure of the retinal molecule. Equilibrium configurations obtained by
GROMACS energy minimization for the 11-cis isomer (a) and all-trans isomer (c), i.e. the configuration
reached after light absorption in animals. Configuration (b) is and intermediate structure obtained by partially
rotating the 11-cis-retinal tail around 11-th carbon, by an angle of π/8 rad.

only depends on the interatomic distances, encoded in the dipole tensor.

E(r1, . . . , rN ) = E(R(θ)r1, . . . , R(θ)rN ) . (4.20)

In a molecular system the torque is the sum of the cross products between forces exerted by atoms
and position vectors, and its norm is the derivative of the total energy with respect to rotation angle:

|M | =

∣∣∣∣∣∑
i

ri × F i

∣∣∣∣∣ =
∣∣∣∣∂E∂θ

∣∣∣∣ = 0 . (4.21)

This is zero due to the rotational symmetry. After confirming that the relationship in Eq.4.21 is
compatible with each set of vdW forces generated by MBD modes, the same analysis can be carried
out for phonon displacements. Hence, the phonon k modes compatible with the property

τ (k) ≡

∣∣∣∣∣∑
i

miri∑
j mj

× S
′(k)
i

∣∣∣∣∣ = 0 , (4.22)

are expected to better couple with vdW forces.

The case of the benzene molecule is taken as an example, given that its planar nature allows for a
simplification of the analysis. The benzene molecule lies in the xy plane and has its center of mass set
as the origin of the coordinates. The vector τ is evaluated with respect to the axis perpendicular to
the molecular plane and passing through its center of mass. As from Fig.4.7b, the condition τ = 0 is
respected in approximate form on active modes (small vector products are found there). We expect
this is due to the numerical approximations introduced in the geometrical structure and hessian, which
are eventually reflected in phonon modes.

We also note that additional symmetries are present in benzene: for instance, discrete rotation of
the molecular plane by multiples of 30◦ introduce neither energy change nor configurational variation.
Inspection of the individual phonon modes of benzene for which finite transition probability is found
reveals that: i) all phonon modes that are compatible with excitation exhibit a discrete rotational
symmetry (either by 30 or 180 degrees); ii) phonon modes that involve displacements that are orthog-
onal to the molecular plane are incompatible with excitation; iii) some phonon modes have in-plane
geometry, but are still incompatible with excitation; these modes are antisymmetric either by rotation
by 30, 60, or 180 degrees. We expect analogous conclusions to hold also for other molecules. Detection
of molecular symmetries should enable the predictivity of allowed phonon excitations.
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(a)

initial final

MBD NM P (×10−5)

22 7 6.49
116 7 3.47
15 7 3.32
93 7 3.15
25 7 3.06
128 7 2.16
108 7 2.04
119 7 2.00
106 7 1.64
42 7 1.63

(b) (c) (d)

Figure 4.5: Transition amplitudes for the retinal molecule (SC). Visual representation (a) of the
transition amplitude for given vibrational modes (y-axis, in ascending order in frequency) due to excitation of
an individual MBD mode (x-axis, in ascending order in frequency). For each normal mode, the overlap with
the structural deformation of 4.4b is on the right side of the heatmap. Pairs of indices associated with the
highest amplitudes P (b) are reported in descending order. Geometric representation of the modes involved
in higher-amplitude transition, using blue arrows for phonon displacements and red arrows for vdW forces:
vibrational normal mode 7 (c), exciton MBD mode 22 (d).
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(a)

initial final

MBD eV NM P (×10−6)

18 4.025 2815 9.4
18 4.025 3172 8.7
16 3.835 3428 8.4
18 4.025 3366 7.5
17 3.991 2810 5.3
17 3.991 3170 4.8
18 4.025 3388 4.7
20 4.087 3025 4.6
16 3.835 3459 3.9
17 3.991 3380 3.6

(b)

Figure 4.6: Transition amplitudes for PYP (SC). Visual representation (a) of the transition amplitude
P for given vibrational normal mode (y-axis, in ascending order in frequency), due to excitation of an individual
MBD mode (x-axis, in ascending order in frequency). Pairs of indices associated with the highest amplitudes
(b) are reported in descending order with the energy of the matching MBD mode (in eV).

(a)

(b)

Figure 4.7: Symmetry analysis. Norm of v (a) and τ (b) vectors for each vibrational mode of the benzene.
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4.2 Theory of quasielectron-phonon coupling beyond the
Born-Oppenheimer approximation

A comprehensive description of a molecular system entails the intricate interplay between electrons
and ions, and requires a solution of the Schrödinger equation associated with the global wave function.
This endeavor would enable in principle the determination of an energy spectrum that fully accounts
for coupled electronic and ionic contributions within the molecular structure of choice. However,
solving such a problem is computationally and analytically demanding, especially when dealing with
large molecules. The total Hamiltonian depends on both electronic and ionic degrees of freedom.
However, within the framework of the Many-Body Dispersion approach, electron clouds are mapped
into quasiparticles (referred to as ”drudons”) that oscillate around the ionic positions and interact
with each other through dipole-dipole tensors. This model circumvents the need to explicitly consider
the kinetic energy of individual electrons but does not guarantee an independent description of ionic
and electronic phenomena.

To simplify the problem, the Born-Oppenheimer (BO) approximation is widely adopted in electronic
structure calculations. This approximation implies the separation of ionic and electronic degrees of
freedom and facilitates the overall analysis. Shortly, with the BO approximation, one assumes that the
electrons are so fast that their wavefunction can instantaneously ”adapt” to the ionic configuration.
On the other hand, ions should be so slow that they simply determine the external potential of the
electrons, and can thus be treated as ”frozen” parameters in the electronic wavefunction.

In our specific case, MBD provides an explicit quantum mechanical description of vdW forces, whereas
short-range interactions are treated semiclassically. Then, the total Hamiltonian can be expressed as:

Ĥ = Ĥmbd + Ĥions

= −1

2

N∑
i=1

∇2
ξi
+

1

2

N∑
i,j

ξiωiωj

[
δabij +

√
αiαjT

ab
ij (dij)

]
ξj −

1

2

N∑
i=1

∇2
ri

mi
+ Vions({r}) . (4.23)

We recall that ξi is the mass-weighted drudon displacement, while dij is the distance between ions
i and j. It is clear that Ĥ depends on both ”electronic” (QDO) (pr̃, r̃) and ionic (ionic quantum
harmonic oscillators IQHO) (pr, r) degrees of freedom. Hence, the Schrödinger equation for a state
Φi (r̃, r), depending on all ionic and electronic coordinates should be:

ĤΦi (r̃, r) = Ei
totΦ

i (r̃, r) . (4.24)

Given the much larger masses of the ions compared to electrons, within the BO approximation one ne-
glects the ionic kinetic energy. Ions are thus treated as ”fixed” at their positions r. This assumption is
the first premise of the Born-Oppenheimer approximation. Once ions are ”fixed”, a new Hamiltonian,
referred to as the ”electronic” Hamiltonian Ĥel, is obtained, where only QHO’s (electronic degrees of
freedom) are treated quantum mechanically:

Ĥel = −1

2

N∑
i=1

∇2
ξi
+

1

2

N∑
i,j

ξiωiωj

[
δabij +

√
αiαjT

ab
ij (dij)

]
ξj + Vions({r}) . (4.25)

Here, the term Vions({r}) could be neglected since it solely depends on the positions of the ions and
only contributes with a constant shift to the MBD energy spectrum. Under this assumption, Ĥel

equals Ĥmbd. We observe that Ĥmbd depends both on QDO coordinates, and on ionic positions r, but
the latter are only treated as external parameters. This is the ”clamped-nuclei” Schrödinger equation:

Ĥmbdψ
n
r (r̃) = En

mbd(r)ψ
n
r (r̃) . (4.26)

Here, the so called ”electronic” wave function ψ inherits the ”parametric” dependence on ionic posi-
tions. Under the assumptions of the adiabatic approximation, a continuous change in the parameters
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r enables instantaneous rearrangement of the electronic degrees of freedom (for instance into the up-
dated groundstate). Switching to (quasi-electron) harmonic oscillators’ indices (dij is left in atomic
indices) one has:

Ĥmbd = −1

2

3N∑
p=1

∇2
ξp +

1

2

3N∑
p,q

ξpωpωq

[
δpq +

√
αpαqTpq(dij)

]
ξq . (4.27)

Diagonalization of Ĥmbd will produce a set of orthogonal set of eigenstates ψ
n
r (r̃) with energies En

mbd(r)
depending on ionic positions r. Each electronic state n that solves Eq.4.26 is the product of 3N
independent harmonic oscillator wave functions, each of which depends on a single component of the
collective coordinate set χ, as defined in Eq.2.8. The state index n summarizes the set of quantum
numbers describing the state of each QDO, n = {n1, n2, . . . , n3N}.

ψn
r (χ) = ψn1

1,r(χ1)⊗ . . .⊗ ψn3N
3N,r(χ3N ) . (4.28)

It is important to clarify how the introduced wave functions depend on the different sets of coordinates
relevant to a global description of the system. The MBD hamiltonian describes a set of interacting
QDO through the dipole-dipole tensor T , that depends on the ionic distances (i.e. positions). Di-
agonalization of the MBD Hamiltonian means to find a set of collective coordinates χ depending on
the whole ionic configuration r present within T itself. The interacting QDO set is transformed into
a new set of non interacting QDO, each one characterized by frequency ω̃i and coordinate χi. Both
of them do not depend on the initial ”drudon positions” but still depend on the ionic configuration,
hence all components of MBD collective coordinates depend on r: χ(r) = χ1(r), . . . , χ3N (r).
The global wave function Φi corresponding to the arbitrary i-th electro-nuclear eigenstate can thus

be conveniently expanded as Φi (χ, r) =
∑
n

cin(r)ψ
n
r (χ). The expansion coefficients cin depend on

the ionic configuration, so they are renamed for convenience as ϕin(r). The global wave function is
thus factorized, partially separating ionic and electronic degrees of freedom. After re-introducing the
ionic kinetic energy and the semi-classical potential, Schrödinger’s equation for the total Hamiltonian
becomes:

Ĥ
∑
n

ψn
r (χ)ϕin(r) = Ei

tot

∑
n

ψn
r (χ)ϕin(r) (4.29)

Left-multiplying by ψ
n′

r (χ) (bar denotes complex conjugate) and integrating with respect to the QDO
coordinates one obtains:∑

n

∫
ψ
n′

r (χ) (Ĥmbd + Ĥions)ψ
n
r (χ)ϕin(r)dχ =

∑
n

∫
ψ
n′

r (χ)Ei
totψ

n
r (χ)ϕin′(r)dχ . (4.30)

Recalling Eq. 4.26, and splitting the many body dispersion energy into En′
mbd(r) = E0

mbd(r)+∆E0n′
mbd(r)

(for sake of notation the dependence on r and χ is now omitted):∑
n

∫ (
ψ
n′

r Ĥmbdψ
n
r + ψ

n′

r T̂ionsψ
n
r + ψ

n′

r V̂ionsψ
n
r

)
ϕindχ = Ei

totϕ
i
n′ , (4.31)

(
E0

mbd(r) + ∆E0n′
mbd(r) + V̂ions

)
ϕin′ +

∑
n

∫
ψ
n′

r T̂ionsψ
n
rϕ

i
ndχ = Ei

totϕ
i
n′ . (4.32)

The term

∫
ψ
n′

r T̂ionsψ
n
rϕ

i
ndχ needs to be carefully analyzed. The operations regarding electronic

states ψn
r (χ) are recast following Dirac’s bra-ket notation, for two states ψn

r (χ) and ψn′
r (χ) and an

operator Â, both parametrically depending on the same ionic configuration r. We accordingly define

⟨n′r| Â |nr⟩ =
∫
ψ
n′

r Âψn
rdχ =

∫
ψ
n′

r Âψn
rdχ1 . . . χ3N . Obviously, the final integral will still depend on
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r.∫
ψ
n′

r T̂ionsψ
n
rϕ

i
ndχ = −1

2

∑
p

1

mp

∫
ψ
n′

r ∇2
rp

(
ψn
rϕ

i
n

)
dχ

= −1

2

∑
p

1

mp

∫
ψ
n′

r

((
∇2

rpψ
n
r

)
ϕin + 2(∇rpψ

n
r )(∇rpϕ

i
n) + ψn

r∇2
rpϕ

i
n

)
dχ

= −1

2

∑
p

1

mp

∫ (
ψ
n′

r

(
∇2

rpψ
n
r

)
ϕin + 2ψ

n′

r

(
∇rpψ

n
r

) (
∇ϕin

)
+ ψ

n′

r

(
∇2

rpϕ
i
n

)
ψn
r

)
dχ

= −1

2

∑
p

1

mp

(
⟨n′r| ∇2

rp |nr⟩ϕ
i
n + 2 ⟨n′r| ∇rp |nr⟩∇rpϕ

i
n + δnn′∇2

rpϕ
i
n

)
. (4.33)

Plugging this result into the Eq. 4.32 one has:(
E0

mbd(r)−
1

2

∑
p

∇2
rp

mp
+ V̂ions +∆E0n′

mbd(r)

)
ϕin′

−
∑
pn

1

mp

(
1

2
⟨n′r| ∇2

rp |nr⟩+ ⟨n′r| ∇rp |nr⟩∇rp

)
ϕin

= Ei
totϕ

i
n′ . (4.34)

The functions ϕin(r) will be related to the nuclear dynamics. Expanding in vibrational eigenstates φa

one finds:

ϕin(r) =
∑
a

Ci
naφa(r) , (4.35)

(
E0

mbd(r)−
1

2

∑
p

∇2
rp

mp
+ V̂ions +∆E0n′

mbd(r)

)∑
a

Ci
n′aφa (4.36)

−
∑
pn

1

mp

(
1

2
⟨n′r| ∇2

rp |nr⟩+ ⟨n′r| ∇rp |nr⟩∇rp

)∑
a

Ci
naφa

= Ei
tot

∑
a

Ci
n′aφa . (4.37)

Since V (r) = E0
mbd(r) + V̂ions(r) is a potential involving both the short-range inter-ionic potential

and (groundstate) dispersion interactions, the term −1

2

∑
p

∇2
rp

mp
+ V (r) is commonly interpreted as

the quantum mechanical Hamiltonian Ĥph for the nuclei. Adopting the harmonic approximation for
V (r) (which is appropriate at the overall equilibrium geometry and will be adopted hereafter), one
obtains the same Hamiltonian introduced in Chapter 3 to describe molecular vibrations:

Ĥph(r) = −1

2

3N∑
p=1

∇2
qp +

1

2

3N∑
pq=1

qpHpqqq . (4.38)

Here qi is the mass-weighted i-th ionic QHO displacement operator and
∇2

rp

mp
= ∇2

qp . The nuclear

vibrational spectrum is obtained by diagonalizing the mass-weighted Hessian matrix H, and it only
depends on the equilibrium configuration R. In this case as well, as shown in Section 3.1.1, it is
convenient to adopt an ionic wave function that is a product of single-particle functions. To achieve
this, the description of ion dynamics is shifted from Cartesian positions r to collective coordinates ρ,
defined in Eq. 3.22. Hence the ionic wave function in Eq.4.35 becames

ϕin(r) = ϕin(ρ) =
∑
a

Ci
naφa(ρ) , (4.39)

φa(ρ) = φ1,a1(ρ1)⊗ . . .⊗ φ3N,a3N (ρ3N ) , (4.40)
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where in Eq. 4.40 the ionic state index a describes a set of quantum numbers for single QHO,
a = {a1, . . . , a3N}. The vibrational eigenstates φa are chosen to diagonalize Ĥph∫

φb(ρ)Ĥph(ρ)φa(ρ)dρ = δabE
ph
a (R) . (4.41)

For an arbitrary ionic operator B̂ we now extend the bra-ket notation introduced above ⟨φb| B̂ |φa⟩ =∫
φb(ρ)B̂φa(ρ)dρ . Then, after left multiplication for φb and integration with respect to ionic collective

coordinates one has: ∑
a

Ci
n′a

∫
φbE

ph
a φadρ +

∑
a

Ci
n′a

∫
φb∆E

0n′
mbd(r)φadρ

−1

2

∫ ∑
pna

1

mp
Ci
naφb(ρ) ⟨n′r| ∇2

rp |nr⟩φa(ρ)dρ

−
∑
pna

1

mp
Ci
na

∫
φb ⟨n′r| ∇rp |nr⟩∇rpφa dρ

=
∑
a

Ei
totC

i
n′a

∫
φbφadρ︸ ︷︷ ︸
δab

. (4.42)

In Eq. 4.42 the presence of ’electronic’ matrix elements of the kind ⟨n′r| Â |nr⟩ make the integration
with respect to ionic coordinates not trivial since the interdependence between r and ρ coordinates’
sets, hence some approximations is introduced. The term ∆E0n′

mbd(r) is expanded in Taylor series for
small displacements around the equilibrium configuration R:

∆E0n′
mbd(r) ≃ ∆E0n′

mbd(R) +
∑
σ

∂∆E0n′
mbd

∂rσ

∣∣∣
r=R

(rσ −Rσ) (4.43)

= ∆E0n′
mbd(R)−

∑
σ

Fn′
σ (R)drσ . (4.44)

Then, the electronic states are assumed to be nearly constant, given the small oscillations of the ions:

⟨n′r| ∇rp |nr⟩ ≃ ⟨n′R| ∇rp |nR⟩ , (4.45)

⟨n′r| ∇2
rp |nr⟩ ≃ ⟨n′R| ∇2

rp |nR⟩ . (4.46)

In this way ⟨n′R| ∇rp |nR⟩ and ⟨n′R| ∇2
rp |nR⟩ depend only on R and are taken out of the integral:∑

a

Ci
n′aE

ph
a (R) ⟨φb|φa⟩︸ ︷︷ ︸

δab

+
∑
a

Ci
n′a∆E

0n′
mbd(R) ⟨φb|φa⟩︸ ︷︷ ︸

δab

−
∑
a

Ci
n′a

∑
σ

Fn′
σ (R) ⟨φb| drσ |φa⟩

−1

2

∑
pna

1

mp
Ci
na ⟨n′R| ∇2

rp |nR⟩ ⟨φb|φa⟩︸ ︷︷ ︸
δab

−
∑
pna

1

mp
Ci
na ⟨n′R| ∇rp |nR⟩ ⟨φb| ∇rp |φa⟩

=
∑
a

Ei
totC

i
n′a ⟨φb|φa⟩︸ ︷︷ ︸

δab

. (4.47)

Therefore, after contraction with MBD and ionic states, Schrödiger’s equation takes the following
form:

Ci
n′bE

ph
b (R) + Ci

n′b∆E
0n′
mbd(R)−

∑
a

Ci
n′a

∑
σ

Fn′
σ (R) ⟨φb| drσ |φa⟩

−1

2

∑
pn

1

mp
Ci
nb ⟨n′R| ∇2

rp |nR⟩ −
∑
pna

1

mp
Ci
na ⟨n′R| ∇rp |nR⟩ ⟨φb| ∇rp |φa⟩

= Ei
totC

i
n′b . (4.48)
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One can now assume that at some initial time the system occupies well defined vibrational and
MBD states, i.e. the tensor product of |φa⟩ and |nR⟩, associated to the vibrational and MBD
energies Eph

a (R) and ∆E0n′
mbd(R), respectively. According to Eq. (4.48) the system has the possibility

to transition from one state to another, due to the presence of non-diagonal ”electron-phonon” coupling
terms, that effectively act as perturbations. In the framework of perturbation theory the transition
amplitude is obtained from the square modulus of the bra-ket product of the operator describing the

perturbation Ĥ ′ and the initial and final states, in the unperturbed picture: P (a→ b) =
∣∣∣⟨a| Ĥ ′ |b⟩

∣∣∣2.
In our case:

⟨φb| ⟨n′R| Ĥ ′ |nR⟩ |φa⟩ = δnn′
∑
σ

Fn′
σ (R) ⟨φb| drσ |φa⟩ −

δab
2

∑
p

1

mp
⟨n′R| ∇2

rp |nR⟩

−
∑
p

1

mp
⟨n′R| ∇rp |nR⟩ ⟨φb| ∇rp |φa⟩ . (4.49)

To simplify the overall notation, we introduce the following definitions:∑
σ

Fn′
σ (R) ⟨φb| drσ |φa⟩ = Un′ (a→ b) ,

∑
p

1

mp
⟨n′R| ∇rp |nR⟩ ⟨φb| ∇rp |φa⟩ = V

(
a→ b, n→ n′

)
,

∑
p

1

mp
⟨n′R| ∇2

rp |nR⟩ =W
(
n→ n′

)
. (4.50)

The term Un′ (a→ b) leaves the MBD state unchanged, thus it is different from zero only if |n′⟩ =
|n⟩, while it implies a single vibrational excitation/de-excitation. V

(
a→ b, n→ n′

)
involves both

vibrational and MBD transitions, while W
(
n→ n′

)
only introduces MBD transitions.

Since our aim is to investigate the photoinduced energy transfer from electronic to vibrational modes,
we will only focus on terms enabling vibrational transitions. In computing the transition probability
from a vibrational state to another, we will ignore at the moment which final MBD state is eventually
reached, and W

(
n→ n′

)
will be neglected. Conversely, Un′ (a→ b) and V

(
a→ b, n→ n′

)
will be

explicitly evaluated for an initial state corresponding to the vibrational groundstate, accompanied by
a single γ excitation, induced after light absorbtion: Φin = |φ0⟩ ⊗ |1γR⟩. Under this assumption one
has:

U1γ (0 → b) =
∑
σ

F
1γ
σ (R) ⟨φb| drσ |φ0⟩ . (4.51)

The displacement for the i-th harmonic oscillator dri = ri−Ri is a linear combination of the collective

normal coordinates ρ, dri =
∑
j

S′
ijρj , with ρi =

1√
2µiΩi

(
b̂i + b̂†i

)
, with b̂i,b̂

†
i respectively annihilation

and destruction operators for i-th quantum of vibrational state.

U1γ (0 → b) = −
∑
pj

F
(1γ)
p S

′
pj ⟨φb| ρj |φ0⟩

= −
∑
pj

F
(1γ)
p

S′
pj√

2µjΩj

⟨φb| b̂j + b̂†j |φ0⟩︸ ︷︷ ︸
δbj

= − 1√
2µbΩb

∑
p

F
(1γ)
p S′

pb (4.52)

= − 1√
2µbΩb

F (1γ) · S′(b) . (4.53)

F (1γ) is the force vector which arises upon excitation of the 1γ MBD state, and S
′(b) is the b-th column

of the atomic to normal coordinates transformation matrix S′. We note that this term exactly matches
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that obtained in Eq. (4.15) from semi-classical considerations. This semi-classical coupling term is
commonly expected to provide the leading-order contribution to the photoexcitation of vibrational
modes.

The coefficient V ba
n′n, instead, is a quantum correction (QC), which involves a change in both vibrational

and MBD states. This can be evaluated as:

V
(
0 → b, 1γ → n′

)
=
∑
p

1

mp
⟨n′R| ∇rp |1γR⟩ ⟨φb| ∇rp |φ0⟩ . (4.54)

In particular, considering that

⟨n′R| [Hmbd, Pp] |nR⟩ = ⟨n′R|HmbdPp |nR⟩ − ⟨n′R|PpHmbd |nR⟩

=
(
En′

mbd(R)− En
mbd(R)

)
⟨n′R|Pp |nR⟩ , (4.55)

and since momentum operators and space derivatives are related by Pp = −i∇rp , one finds:

⟨n′R|Pp |nR⟩ =
⟨n′R| [Hmbd, Pp] |nR⟩(
En′

mbd(R)− En
mbd(R)

) . (4.56)

Exploiting now the expression for the commutator [Hmbd, Pp] = i∇rpHmbd one can write

⟨n′R| ∇rp |nR⟩ = i
⟨n′R| [Hmbd, Pp] |nR⟩(
En′

mbd(R)− En
mbd(R)

)
= −

⟨n′R| (∇rpHmbd) |nR⟩(
En′

mbd(R)− En
mbd(R)

) . (4.57)

Finally, exploiting the above relations, V
(
0 → b, 1γ → n′

)
can be computed as:

V
(
0 → b, 1γ → n′

)
= −

∑
p

⟨n′R| (∇rpHmbd) |1γ⟩(
En′

mbd(R)− E
1γ
mbd(R)

) ⟨φb| ∇rp |φ0⟩
mp

. (4.58)

In order to explicitly evaluate this expression and to understand the allowed transitions, it is necessary
to clearly emphasize the operatorial nature of ∇rpHmbd. Since the dipole-dipole tensor T depends on
atomic distances, the analytic computation is performed in atomic indices (p = 3(l − 1) + c):

∂Ĥmbd

∂rcl
=
∂T̂mbd

∂rcl
+
∂V̂mbd

∂rcl
(4.59)

=
1

2

∑
j,k

∑
a,b

∂

∂rcl

[
ξakC

ab
kj (dkj)ξ

b
j

]

=
1

2

∑
j,k

∑
a,b

(
∂ξakξ

b
j

∂rcl
Cab
kj (dkj) + ξakξ

b
j

∂Cab
kj (dkj)

∂rcl

)

=
1

2

∑
j,k

∑
a,b

((
ξbjδ

ac
lk + ξakδ

bc
lj

)
Cab
kj + ξakξ

b
j

∂Cab
kj

∂rcl

)

=
∑
jkab

ξbjδ
ca
lkC

ab
kj +

1

2

∑
jkab

ξakξ
b
j

∂Cab
kj (dkj)

∂rcl
(4.60)

=
∑
jb

ξbjC
cb
lj +

1

2

∑
jkab

ξakξ
b
j

∂Cab
kj

∂rcl
. (4.61)

The step in Eq.4.59 is elaborated upon in the Appendix D, where it is demonstrated that the deriva-
tive with respect to the ionic coordinates of the MBD kinetic term is zero. Switching again to
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QHO indices (s = 3(k − 1) + a, q = 3(j − 1) + b), after the transformation ξq =
∑

µMqµχµ =∑
µMqµ

1√
2ω̃µ

(
âµ + â†µ

)
≡
∑

µM qµ

(
âµ + â†µ

)
, where annihilation and creation operators for the i-th

MBD mode âi, â
†
i satisfy χi =

1√
2ω̃i

(
âi + â†i

)
, Eq.4.61 becomes:

∂Ĥmbd

∂rp
=
∑
q

ξqCpq +
1

2

∑
qs

ξsξq
∂Csq

∂rp
(4.62)

=
∑
qµ

M qµCpq

(
âµ + â†µ

)
+

1

2

∑
qsµν

M qµM sνC
′
psq

(
âµ + â†µ

)(
âν + â†ν

)
. (4.63)

Hence, the derivative of a function F (r), with respect to the ionic displacement is in this manner
transformed:

∇rpF (r1, . . . , r3N ) =
∑
i

∂F

∂ρi

∂ρi
∂rp

=
∑
i

∂F

∂ρi

∂
(∑

j S
′T
ij rj

)
∂rp

=
∑
i

∂F

∂ρi

∑
j

δjpS
′T
ij =

∑
i

S
′T
ip ∇ρiF . (4.64)

Vibrational ladder operators also satisfy ∇ρi =

√
µiΩi

2

(
b̂i − b̂†i

)
, therefore

∇rp =
∑
i

S
′T
ip ∇ρi =

∑
i

S
′
pi

√
µiΩi

2

(
b̂i − b̂†i

)
. (4.65)

Briefly, the bra-ket product involving phonon states and gradient coordinates is

⟨φb| ∇rp |φ0⟩ = −S′
pb

√
µbΩb

2
. (4.66)

Therefore, combining Eq. 4.61, Eq. 4.66 and Eq. 4.58, defining for sake of notation Λ and Π tensors
as

Λbµ =

√
µbΩb

2

∑
pq

M qµCpqS
′
pb

mp
, (4.67)

Πbµν =

√
µbΩb

8

∑
pqs

M qµM sνC
′
psqS

′
pb

mp
, (4.68)

the V coefficient is

V
(
0 → b, 1γ → n′

)
=
∑
µ

⟨n′|
(
âµ + â†µ

)
|1γ⟩(

En′
mbd(R)− E

1γ
mbd(R)

)Λbµ +
∑
µν

⟨n′|
(
âµ + â†µ

)(
âν + â†ν

)
|1γ⟩(

En′
mbd(R)− E

1γ
mbd(R)

) Πbµν ,

(4.69)

where MBD states are always assumed to be parametrically dependent on R, thus |n′⟩ = |n′R⟩.
To understand which quantum transitions are allowed, it is necessary to calculate bra-ket products of
Eq. 4.69:
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⟨n′| âµ + â†µ |1γ⟩ =

{
⟨n′|0⟩+

√
2 ⟨n′|2γ⟩ µ = γ

⟨n′|1γ , 1µ⟩ µ ̸= γ ,
(4.70)

⟨n′| âµâν |1γ⟩ =
{
0 ∀ µ, ν , (4.71)

⟨n′| âµâ†ν |1γ⟩ =

{
2 ⟨n′|1γ⟩ µ = ν = γ

⟨n′|1ν⟩ µ = γ , µ ̸= ν ,
(4.72)

⟨n′| â†µâν |1γ⟩ =

{
⟨n′|1γ⟩ µ = ν = γ

⟨n′|1µ⟩ ν = γ , µ ̸= ν ,
(4.73)

⟨n′| â†µâ†ν |1γ⟩ =



√
6 ⟨n′|3γ⟩ µ = ν = γ√
2 ⟨n′|2γ , 1µ⟩ ν = γ , µ ̸= ν, γ√
2 ⟨n′|2γ , 1ν⟩ ν ̸= γ, µ = γ√
2 ⟨n′|1γ , 2µ⟩ ν ̸= γ , µ ̸= γ, µ = ν

⟨n′|1γ , 1µ, 1ν⟩ ν ̸= γ , µ ̸= ν, γ ̸= µ .

(4.74)

Depending on the final MBD state n′ and vibrational state b, the product between the V coefficient

and the MBD energy difference ∆E
1γ ,n′

mbd = En′
mbd(R) − E

1γ
mbd(R) is (final MBD states will be labeled

by indices γ, α, β):

V
(
0 → b, 1γ → n′

)
∆E

1γ ,n′

mbd =



Λbγ if ⟨n′| = ⟨0|√
2Λbγ if ⟨n′| = ⟨2γ |

Λbα if ⟨n′| = ⟨1γ , 1α| and α ̸= γ

2Πbγα if ⟨n′| = ⟨1α| and α ̸= γ√
6Πbγγ if ⟨n′| = ⟨3γ |

2
√
2Πbαγ if ⟨n′| = ⟨2γ , 1α| and α ̸= γ

Πbαβ if ⟨n′| = ⟨1γ , 1α, 1β| and α ̸= β, α ̸= γ, β ̸= γ√
2Πbαα if ⟨n′| = ⟨1γ , 2α| and α ̸= γ .

(4.75)

Among all possible transitions, Eq.4.75 does not report the one with ⟨n′| = ⟨1γ |, i.e. where the MBD
state remains unchanged. At first sight, such term could seem divergent, due to the vanishing denom-
inator (difference between identical energies). However, this singularity can be avoided. Discretizing
the derivative of the MBD state |nr⟩ with respect to ionic coordinate r one has

⟨n′r| ∇r |nr⟩ ≃ ⟨n′r|
[
|nr+∆r⟩ − |nr⟩

∆r

]
, (4.76)

the wave function |nr+∆r⟩ can be calculated by first-order perturbation thery, using as a perturbing
potential the derivative of the MBD hamiltonian with respect to the ionic coordinates, and treating
|nr⟩ as the unperturbed state.

|nr+∆r⟩ ≃ |nr⟩+
∑
m ̸=n

⟨mr|∆r∇rHmbd |nr⟩
Em

mbd(r)− En
mbd(r)

|mr⟩ , (4.77)

⟨n′r| ∇rp |nr⟩ = ⟨n′r|
∑
m ̸=n

⟨mr| ∇rpHmbd |nr⟩
Em

mbd(r)− En
mbd(r)

|mr⟩ (4.78)

=
∑
m̸=n

⟨mr| ∇rpHmbd |nr⟩
Em

mbd(r)− En
mbd(r)

⟨n′r|mr⟩︸ ︷︷ ︸
δn′m

. (4.79)
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When n′ = n the term ⟨n′r| ∇rp |nr⟩ is zero, because the sum over the indexm excludes the casem = n.

Unlike the SC model, the final states are characterized here by a vibrational state and a multiplicity
of MBD states. Hence, it is necessary to first understand the total probability of reaching the target
vibrational state, regardless of the final MBD state. Subsequently, one can discern which MBD states
contribute most significantly to the active transitions. The transition amplitude from vibrational
vacuum to a selected phonon mode b, is therefore:

P (|1γ⟩ ⊗ |φ0⟩) → |φb⟩) =
∣∣∣U1γ (0 → b)

∣∣∣2+ ∑
allowed n′

∣∣∣V (0 → b, 1γ → n′
) ∣∣∣2 . (4.80)

In analogy with the SC term, transition amplitudes relative to the QC are presented in heatmaps. For
the C60-catcher, and the 11-cis-retinal molecule, transition amplitudes are accompanied by a graph
illustrating the overlap between the final vibrational mode and the desired target geometrical config-
uration.

Reported data consistently demonstrate that the amplitudes due to the QC are not negligible with
respect to the SC contributions, although the latter were naively expected to be the leading terms.
Largest QC transition amplitudes are found when some vibrational excitations are accompanied by
de-excitation of a given MBD mode and subsequent re-excitation of a second MBD mode with similar
energy. In fact, computation of the V coefficient as from Eq. (4.58), implies that nearly-degenerate
MBD energies can eventually lead to a quasi-vanishing denominator. The unexpectedly large QC
terms shed light on the limits of the SC approximation, which may not accurately describe systems
where quasi-degenerate electronic levels arise.

Transition amplitudes are related to the Λ and Π tensors (Eq.4.68). Here, the leading contributions
are given by the latter, that account for the states of the kind |1α⟩, as reported (fourth line) in Eq.4.75.
For this type of transition, the first of the 3 indices of Π labels the phonon, while the second and
third indicates the initial and final MBD states, respectively. Overall, the transition amplitudes are
symmetric under the exchange of initial and final MBD states. This symmetry arises not only from
the symmetry of Π with respect to the second and third indices, but also because the energy difference
∆E in Eq.4.80 is ultimately squared. This eliminates the sign dependence which distinguishes between
the initial and final states.

Comparing Figs. 4.1a and 4.8a we observe that some QC transition amplitudes can be even larger
than the SC. However, we recall that the approximation introduced in Eq. 4.46 could imply effective
renormalization of V coefficients. Hence, the relatively large numerical values reported for QC rates
should not be overemphasized. According to Eq. 4.46, the potential energy surface experienced by the
ions is due to quasi-electrons, whose energy state is always referenced to oscillations around the posi-
tions of ionic equilibrium. This approximation is consistent with the spirit of the Born-Oppenheimer
approximation, which posits that the electrons adiabatically follow the ions.

In the QC heatmaps we note a localization of the most-probable transitions, in analogy with the SC
term. As evidenced also by Figs. 4.9a, 4.10a,4.11d here the localization is two-fold, i.e. it involves
both normal vibrational modes and MBD modes. The localization with respect to normal vibrational
modes indicates the presence of selection rules which can be attributed to geometrical constraints, in
analogy to the SC case. Localization with respect to MBD modes, instead, is related to the presence
of quasi-degeneracy in the spectrum.

Concerning C60-catcher, and the 11-cis-retinal, we observe no significant overlap between the phonon
modes that can be activated by the QC term, and the target configurational changes. However,
closure of the clamp around the C60 fullerene remains possible through SC terms. On the other hand,
interesting results are observed for PYP (Fig.4.11). In fact, the energies of those MBD states that
exhibit largest coupling with vibrational modes are highly compatible with the photon energies that
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(a)

initial final final

MBD MBD NM P (×10−1)

23 24 19 1.77
24 23 19 1.77
34 33 32 0.73
33 34 32 0.73
23 24 20 0.41
24 23 20 0.41
34 33 31 0.26
33 34 31 0.26
34 33 33 0.06
33 34 33 0.06

(b)

(c) (d) (e)

Figure 4.8: Transition amplitudes for benzene molecule (SC + QC). Semiclassical term and quantum
correction contributions to the transition amplitudes for C6H6 molecule (a) and higher probability transitions
(b). Geometrical visualization of the modes involved in the preferred transition. MBD mode 23: vdW forces
(c) and directions of dipole oscillations (d); phonon displacements for final vibrational mode 19 (e).

can induce isomerization of the p-coumaric acid, (i.e. ∼2.77 eV). It is thus possible that the excitation
of the corresponding vibrational modes may play a role in the biological phenomena that interest this
protein. Moreover, this also suggests that a broader study of rhodopsin (not limited to retinal) may
also lead to similar conclusions. In summary, the non-locality of both vdW forces and phonon modes
implies that large and seemingly inert structures can collectively participate to phenomena that are
conventionally believed to be localized only on small molecular fragments.

We also remark that the aforementioned localization of the transition rates – also observed in SC
contributions – appears compatible with the experimental observations [21] by Nardecchia et al., which
reveal macroscopic occupation of a collective phonon mode, after some animal proteins undergoes
light absorption. In practice, after light absorption, the photon energy is efficiently transferred into
excitation of a single vibrational mode. In the presence of two-fold localization of the admitted
transitions, this scenario is easier to interpret: if the frequency of the incoming photons matches a
quasi-degenerate electronic excitation that exhibits high coupling with a given vibrational state, the
observed effect can be easily obtained.
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(a)

initial final final

MBD MBD NM P (×10−4)

29 28 106 2.81
28 29 106 2.81
194 193 37 2.43
193 194 37 2.43
308 309 106 1.90
309 308 106 1.90
182 183 106 1.71
290 289 209 1.51
289 290 209 1.51
148 147 220 1.35

(b) (c) (d) (e)

Figure 4.9: Transition amplitudes for Buckminsterfullerene-clamp complex ( SC + QC). Semi-
classical term and quantum correction contributions to the transition amplitudes for C60-clamp complex, and
overlap parameter for phonon-closed clamp configuration (a). Higher probability transitions (b) and geomet-
rical visualization of the modes involved in the preferred transition. MBD mode 29: vdW forces (c) and dipole
oscillation directions (d); phonon displacements for vibrational final mode 106 (e).
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(a)

initial final final

MBD MBD NM P (×10−3)

60 61 118 3.23
61 60 118 3.23
54 53 118 1.91
53 54 118 1.91
18 19 144 1.79
19 18 144 1.79
61 60 114 1.76
60 61 114 1.76
20 19 145 1.39
19 20 145 1.39

(b)

(c)

(d) (e)

Figure 4.10: Transition amplitudes for 11-cis-retinal (SC + QC). Semiclassical term and quantum
correction contributions to the transition amplitudes for isolated 11-cis-retinal molecule, with overlap parameter
for phonon modes and intermediate structure (Fig.4.4b) (a). Higher probability transitions (b) and geometrical
visualization of the modes involved in the preferred transition. MBD mode 60: dipole oscillations directions (c)
and vdW forces (d); phonon displacements for final vibrational mode 118 (e).
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(a)

initial final final

MBD eV MBD NM P

4 2.752 5 2557 0.24
5 2.753 4 2557 0.24
4 2.752 5 2562 0.09
5 2.753 4 2562 0.09
5 2.753 4 3256 0.06
4 2.752 5 3256 0.06
4 2.752 5 3259 0.06
5 2.753 4 3259 0.06
5 2.753 6 2567 0.05
6 2.754 5 2567 0.05

(b)

(c) (d)

Figure 4.11: Transition amplitudes for PYP (SC + QC). Semiclassical term and quantum correction
contributions to transition amplitudes for PYP. Only few MBD modes, the twenty normal modes with the lowest
energy, are reported. Since they cover an energetic range (2.7 to 4.08 eV) compatible with visible and ultraviolet
light. Higher probability transitions (b) with initial energy reported in eV. High amplitude transition involves
MBD mode 4 (vdW forces directions (c)) and final vibrational mode 2557 (phonon displacements (d)).
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This thesis addresses the excitation of vibrational modes of large molecules due to absorption of
optical photons. The coupling between optically-induced collective charge displacements and mechan-
ical vibrations is mediated here by non-covalent optical vdW forces, described by the MBD model.
Short-range optical interactions due to chemical bondings are instead neglected. Our model is thus
specifically designed for addressing long-range collective phenomena, rather than local changes of sin-
gle chemical bonds.
Two different approaches based on perturbative time-evolution of a suitable initial wavefunction are
proposed, in order to estimate the transition amplitudes from the vibrational groundstate to a singly
excited target mode. Within the first approach, optical vdW forces caused by excitation of a given
MBD mode, are treated as a perturbation to the ion dynamics, according to a semi-classical approach.
The second strategy involves a rigorous description of the full Hamiltonian beyond the Born-Oppenheimer
approximation. Interestingly, this approach recovers the above semi-classical term, and further intro-
duces a quantum correction that enables for quantum-mechanical transitions between quasi-electron
MBD states. Both quasi-electron and phonon Hamiltonians are quantized by suitable ladder op-
erators, that provide an intelligible description of the transition between different states. To guide
intuition, the many-body wavefunction is accordingly expanded into products of quasi-electron (MBD)
and ionic (phononic) wavefunctions. Within the quantum correction term, multi-mode excitation is
allowed, and phonon excitation is accompanied by a multiplicity of possible final MBD states. How-
ever, the transitions between singly-occupied MBD quasi-degenerate states tend to be dominant, due
to inverse proportionality of the transition matrix with respect to MBD energy differences.
Analyzing the transition amplitudes, a remarkable selectivity of the electron-phonon coupling emerges:
many vibrational modes are essentially inert, and can hardly be excited. Geometrical analysis suggests
a major role of molecular symmetries in determining the permitted transitions. Although the semi-
classical term is naively expected to provide dominant coupling contributions, the quantum correction
introduces a few strongly preferred transitions, whose transition amplitude can dominate over the
semi-classical. This is qualitatively compatible with the ’phonon condensation’, [25] experimentally
evidenced in photo-excited bovine proteins. In fact, macroscopic occupation of a single vibrational
state was observed after photoexcitation.
Future studies, will analyze the role and significance of the approximation in Eq.4.46. In fact, transi-
tion amplitudes between quasi-degenerate MBD states may undergo renormalization. As mentioned,
the present results provide an indication of active and inert vibrational modes, but the numerical
values of the transition amplitudes should not be overemphasized.
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Appendix A

Derivation of MBD forces within a
Hellman-Feynman framework

In the following lines, the detailed calculations required to evaluate the spatial derivative of the
eigenvalues of the matrix C are presented, using a procedure analogous to the demonstration of the
Hellmann-Feynman theorem.

Given λi the i-th eigenvalue of the symmetric matrix C, and M the matrix whose columns are its
eigenvectors, using index notation it holds that

λi =
∑
jk

MT
ijCjkMki . (A.1)

The derivative is explicitly evaluated:

∂λi
∂rlc

=
∑
j

∑
k

{
CjkMki

∂MT
ij

∂rlc
+MT

ijMki
∂Cjk

∂rlc
+MT

ijCjk
∂Mki

∂rlc

}
(A.2)

=
∑
j

(
∂MT

ij

∂rlc

)
λiMji +

∑
j

∑
k

MT
ijMki

∂Cjk

∂rlc
+
∑
k

(
∂Mki

∂rlc

)
λiMki (A.3)

= λi
∑
j

(
∂Mji

∂rlc

)
Mji + λi

∑
k

(
∂Mki

∂rlc

)
Mki +

∑
j

∑
k

MT
ijMki

∂Cjk

∂rlc
(A.4)

= λi
∂

∂rlc

∑
j

M−1
ij Mji +

∑
j

∑
k

MT
ijMki

∂Cjk

∂rlc
(A.5)

= λi
∂δii
∂rlc

+
∑
j

∑
k

MT
ijMki

∂Cjk

∂rlc
(A.6)

=
∑
j

∑
k

MT
ijMki

∂Cjk

∂rlc
, (A.7)

where eigenvalue relation (Av⃗ = λv⃗) and properties of orthogonal matrices have been used:∑
k

CjkMki = λiMji , (A.8)∑
j

M2
ji = 1 ∀i . (A.9)
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Appendix B

First derivative of the dipole-dipole
matrix T

In the following lines the mathematical details for the derivative of T matrix elements, with respect
to atomic coordinates, are reported. Dipole-dipole tensor reads:

T ab
ij = −

3rarb − d2ijδab

d5ij︸ ︷︷ ︸
f

erf (dij
σij

)
− 2√

π

dij
σij

e
−
(

dij
σij

)2


︸ ︷︷ ︸
g

+
4√
π

1

σ3ij

rarb
d2ij

e
−
(

dij
σij

)2

︸ ︷︷ ︸
h

, (B.1)

In order to evaluate the derivative with respect to position of atom l along coordinate c = x, y, z

∂T ab
ij

∂rlc
= g

∂f

∂rlc
+ f

∂g

∂rlc
+

∂h

∂rlc
, (B.2)

∂g

∂rlc
=
∂erf

(
dij
σij

)
∂rlc

− 2

σij
√
π

dij ∂ e
−
(

dij
σij

)2

∂rlc
+ e

−
(

dij
σij

)2

∂dij
∂rlc

 , (B.3)

∂f

∂rlc
= −3

δab
d4ij

∂dij
∂rlc

− 3

d5ij

(
∂rarb
∂rlc

− 5
rarb
dij

∂dij
∂rlc

)
, (B.4)

∂h

∂rlc
=

4

σ3ij
√
π

rarbd2ij

∂e
−
(

dij
σij

)2

∂rlc
+
e
−
(

dij
σij

)2

d2ij

∂rarb
∂rlc

− 2
rarb
d3ij

e
−
(

dij
σij

)2

∂dij
∂rlc

 . (B.5)

While the not-already evaluated derivatives inside the latters are explicitly

∂rarb
∂rlc

= (δli − δlj)(δcarb + δcbra) , (B.6)

∂dij
∂rlc

= (1− δij)

(
rc
dij

)
(δli − δlj) with rc = ric − rjc , (B.7)

∂e
−
(

dij
σij

)2

∂rcl
= −2e

−
(

dij
σij

)2

σ2ij
rij
∂dij
∂rcl

, (B.8)

∂ erf
(
dij
σij

)
∂rlc

=
2

σij
√
π
e
−
(

dij
σij

)2

∂dij
∂rlc

. (B.9)
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Appendix C

NM analysis methods comparison

In this appendix, reference, Quantum Espresso (QE) and GROMACS (GRO) frequencies are reported
for water, ammonia, propane, benzene, napthalene and buckminsterfullere molecules.
Reference values from NIST database [28] for each molecule except naphtalene [24] and C60 [23].

Ref QE GRO

3756 4075.86 3319.61
3657 3956.67 3276.31
1595 1316.09 1579.86

Table C.1:
H2O vibrational frequencies.

Ref QE GRO

3444 3037.84 3370.50
3445 3029.48 3365.65
3337 2920.97 3283.88
3336 1612.72 1745.68
1627 1599.60 1744.43
1626 1154.14 1396.00
968 306.54 138.57
933 291.26 134.22

Table C.2:
NH3 vibrational frequencies.

Ref QE GRO

2977 2801.53 3037.98
2973 2794.07 3031.02
2968 2792.00 3016.08
2968 2783.72 3013.50
2967 2743.23 3010.87
2962 2729.22 2972.51
2887 2725.83 2916.61
2887 2722.14 2909.87
1476 1410.64 1765.59
1472 1398.83 1740.81
1464 1396.97 1705.27
1462 1380.84 1701.00
1451 1380.18 1680.47
1392 1346.90 1679.95
1378 1340.58 1668.87
1338 1283.56 1502.03
1278 1225.66 1245.99
1192 1141.96 1181.49
1158 1120.23 1179.88
1054 1106.65 1078.16
940 913.10 1058.28
922 868.61 1033.80
869 838.97 943.76
748 688.75 797.44
369 359.14 382.41
268 225.19 258.34
216 212.42 213.45

Table C.3:
C3H8 vibrational frequencies.

Ref QE GRO

3068 3141.97 2998.57
3063 3131.68 2997.39
3063 3125.61 2994.25
3062 3115.38 2993.70
3047 3110.25 2986.22
3047 3099.55 2974.54
1596 1603.75 1692.46
1596 1599.71 1691.73
1486 1470.33 1670.92
1486 1467.48 1597.63
1326 1357.15 1592.48
1310 1330.69 1502.80
1178 1162.68 1251.92
1178 1161.84 1179.09
1150 1139.39 1177.49
1038 1039.54 1132.86
1038 1039.54 958.03
1010 1001.70 952.66
995 999.68 900.44
992 982.46 848.99
975 955.31 769.09
975 955.05 754.72
849 834.60 544.44
849 834.12 542.63
703 713.19 498.93
673 665.29 477.25
606 609.38 456.32
606 607.16 359.89
410 409.99 318.63
410 409.52 302.63

Table C.4:
C6H6 vibrational frequencies.
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Ref QE GRO

3230 2996.43 3000.56
3180 2983.69 3000.40
3098 2983.17 2999.17
3076 2975.18 2998.13
3060 2971.78 2991.22
3027 2959.30 2990.94
3010 2948.52 2987.60
2987 2938.46 2987.38
2968 1418.37 1816.40
2851 1403.49 1747.22
2256 1363.14 1724.08
2114 1353.74 1672.95
1939 1344.84 1589.11
1908 1338.72 1562.75
1896 1316.87 1554.63
1830 1211.78 1536.13
1804 1125.08 1472.78
1770 1121.52 1324.16
1715 1095.91 1260.41
1669 1060.08 1256.55
1652 1054.47 1234.04
1592 1044.44 1188.26
1506 1027.68 1178.25
1458 978.34 1140.16
1419 974.13 1125.97
1387 960.83 1003.71
1361 946.73 845.58
1295 939.93 778.58
1267 891.81 761.98
1238 876.62 757.73
1210 862.47 730.44
1163 861.63 705.04
1138 820.08 697.05
1128 818.45 603.32
1011 793.04 534.74
958 769.11 511.97
943 722.29 488.66
877 654.71 480.97
825 623.47 445.48
782 587.08 440.94
753 561.88 417.59
739 541.51 359.82
717 468.74 348.07
689 455.68 345.17
655 440.82 337.07
618 383.15 294.62
562 293.96 179.88
476 283.79 93.60
359 186.42 10.23

Table C.5:
C10H8 vibrational frequencies.

Deg Ref GRO

5 272 215.96 216.06 216.11 216.18 216.22
3 343 290.52 292.27 294.87
4 353 298.09 300.69 301.15 302.72
5 403 322.90 323.92 326.09 328.72 329.51
5 433 349.21 355.06 362.28 370.58 376.72
4 485 386.61 392.61 429.87 431.67
1 496 439.23
3 526 442.91 448.08 457.30
5 534 469.89 471.76 483.16 493.81 496.13
3 553 501.65 504.33 511.42
4 567 514.52 519.33 521.17 533.67
3 568 539.08 539.55 542.56
3 575 551.29 581.66 597.53
5 668 625.20 628.32 639.76 649.59 661.49
5 709 674.84 677.10 680.18 686.18 698.18
4 736 706.02 710.24 712.39 714.60
5 743 715.45 717.12 726.09 735.39 738.84
3 753 740.70 746.46 749.98
3 756 763.60 772.54 776.10
4 764 776.90 789.95 797.64 817.01
5 772 829.89 842.93 853.05 859.31 870.89
4 776 882.08 891.06 898.25 908.33
3 796 920.42 928.92 934.14
3 831 962.09 968.83 974.14
4 961 980.00 1023.44 1036.31 1038.97
3 973 1041.37 1051.68 1056.00
1 984 1068.38
4 1079 1103.91 1108.53 1111.49 1115.22
5 1099 1118.47 1130.25 1135.02 1149.46 1151.17
3 1182 1227.59 1230.50 1235.19
3 1205 1243.80 1246.88 1255.96
5 1223 1261.65 1262.05 1339.52 1339.56 1340.73
5 1252 1355.10 1355.39 1356.16 1357.01 1358.58
3 1289 1385.95 1393.24 1400.52
4 1309 1498.73 1499.99 1501.36 1505.62
4 1310 1508.43 1519.95 1522.10 1523.04
5 1344 1525.94 1554.21 1555.60 1556.05 1557.07
3 1345 1573.41 1586.42 1586.84
4 1422 1589.81 1595.89 1596.07 1596.12
5 1425 1620.74 1620.94 1621.22 1621.46 1621.72
3 1429 1638.62 1639.58 1643.75
1 1470 1674.34
4 1482 1674.95 1677.25 1678.11 1679.21
3 1525 1680.20 1681.12 1682.96
5 1567 1725.25 1726.36 1728.04 1728.44 1729.17
5 1575 1729.71 1730.08 1731.43 1732.29 1733.37

Table C.6: Buckminsterfullerene (C60) vibrational frequencies.
Since the high number of frequencies (174), is reported the frequencies de-
generacy (Deg) in the first column, and all the GROMACS-computed fre-
quencies belonging to the same reference value.
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Appendix D

Kinetic MBD spatial derivative

In this appendix, typical second quantization methods are employed to demonstrate that the derivative
of the kinetic term of the MBD Hamiltonian, with respect to ionic coordinates, is zero. It’s convenient
to express Hmbd in normal form, clearly showing the dependence on ionic positions r = {r1, . . . , r3N}.

Ĥmbd(r) = −1

2

∑
q

∇2
χq(r)

+
1

2

∑
q

χ2
q(r)ω̃

2
q (r) (D.1)

= T̂mbd(r) + V̂mbd(r) (D.2)

where χq(r) =
∑
µ

MT
qµ(r) (r̃µ − rµ) is the q-th collective MBD displacement coordinate.

Kinetic and potential terms are respectively equal even if expressed in the basis of the collective

coordinates or of the atomic ones, thus the term ∂V̂mbd
∂rp

(r) is the one evaluated in Eq.4.63. With
regard to the kinetic term, its operatorial nature emerges by employing an auxiliary function φ:(

∂T̂mbd

∂rp

)
φ = −1

2

(∑
q

∇rp∇2
χq(r)

)
φ

= −1

2

∑
q

(
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(
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. (D.3)

Symbol ◦ denotes the composition of operators. Recalling the cartesian to MBD collective coordinates
transormation for the derivative

∇rp =
∑
j

∂

∂χj(r)

dχj(r)
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= −
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j

MT
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∂
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Eq.D.3 reads:(
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âq − â†q
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âj − â†j
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In the latter, [Â, B̂] is the commutator for bosonic operators Â and B̂.

Since
(
âq − â†q

)2
= −1 + âqâq − 2â†qâq + â†qâ

†
q, commutator in Eq. D.5 is explicitly evaluated.[(
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âj − â†j

)
,−1 + âqâq − 2â†qâq + â†qâ

†
q

]
=
[(
âj − â†j

)
, âqâq − 2â†qâq + â†qâ

†
q

]
=
[
âj − â†j ,−2â†qâq

]
+
[
âj , â

†
qâ

†
q

]
−
[
â†j , âqâq

]
= −2

[
âj , â

†
qâq

]
+ 2

[
â†j , â

†
qâq

]
+
[
âj , â

†
qâ

†
q

]
−
[
â†j , âqâq

]
. (D.6)

Each term in the latter is computed:[
âj , â

†
qâq

]
= âj â

†
q︸︷︷︸

δjq+â†q âj

âq − â†qâqâj = δjqâq + â†qâj âq − â†qâqâj

= δjqâq , (D.7)[
â†j , â

†
qâq

]
= â†j â

†
qâq − â†qâqâ

†
j = â†q â†j âq︸︷︷︸

−δjq+âq â
†
j

−â†qâqâ
†
j

= −δjqâ†q + â†qâqâ
†
j − â†qâqâ

†
j

= −δjqâ†q , (D.8)[
â†j , âqâq

]
= â†j âqâq − âqâqâ

†
j = −δqj âq + âqâ

†
j âq − δqj âq − âqâ

†
j âq

= 2δjqâ
†
q , (D.9)[

â†j , âqâq

]
= â†j âqâq − âqâqâ

†
j = −δqj âq + âqâ

†
j âq − δqj âq − âqâ

†
j âq

= −2δqj âq . (D.10)

Hence it holds that[(
âj − â†j

)
,
(
âq − â†q

)2]
= −2δjqâq − 2δjqâ

†
q + 2δjqâ

†
q + 2δqj âq = 0 . (D.11)

54



Bibliography

[1] ATB - atomic simulation environment. https://atb.uq.edu.au/. Accessed: June 23, 2023.

[2] Legacy pseudopotentials. http://pseudopotentials.quantum-espresso.org/legacy_tables.
Accessed: 22/06/2023.

[3] A. Ambrosetti, Paolo Umari, Pier Silvestrelli, Joshua Elliott, and Alexandre Tkatchenko. Optical
van-der-waals forces in molecules: from electronic bethe-salpeter calculations to the many-body
dispersion model. Nature Communications, 13:813, 2022.
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