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Abstract

String theory and holography have been able to provide the microstates accounting for the entropy of

supersymmetric and extremal black objects, such as black holes and black strings. Gauged supergravity in

different spacetime dimensions allows for rotating, charged black objects displaying inner horizons, in addition

to the outer event horizon. The product of the areas of these horizons has been shown to depend on angular

momenta and electric charges, but not on the mass. The thesis studies these features both from first principles

and in concrete examples. The main aim is to implement the extremal and supersymmetric limit of the black

hole thermodynamics. It is found that in this limit the area product formulae reproduce certain relations between

the conserved charges that have been emphasized recently. A key role is played by the recently discovered

extremization principle for the black hole thermodynamics in the supersymmetric and extremal limit. We show

that this in fact captures the areas of all horizons as well as the area product formula. We give an explicit

proof of these results in the context of black holes in five-dimensional N = 2, U(1)3 gauged supergravity and

four-dimensional N = 2, U(1)4 gauged supergravity and argue that they hold more generally.
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Chapter 1

Introduction

It is well known that black holes are thermal objects, their thermodynamics is derived from quantities

related to the outer event horizon. One of the aim of a fundamental theory of quantum gravity is to account

for the thermodynamics of black objects, starting from a microscopic statistical description. This has been first

achieved, in the framework of string theory, for a class of asymptotically flat black holes [1] and from there a

lot of work has been done.

On the other hand, after the discovery of the AdS/CFT correspondence [2], the interest in the study of

asymptotic Anti de Sitter (AdS) black holes has grown. The correspondence was originally formulated in type

IIB string theory on AdS5 × S5, whose low energy limit is described by a supergravity theory on the same

background, and states that the theory is dual to a conformal field theory in four flat spacetime dimensions.

One of the main features of the AdS/CFT correspondence is that it is a weak/strong duality, meaning that if

one of the two holographic duals is a weakly coupled theory, the other is strongly coupled and vice versa. Many

generalizations of the correspondence have been found later on (e.g. AdS4/CFT3 [3]).

In this context, studying black hole solutions on AdSD backgrounds has proven to be a powerful tool to

test the validity of the correspondence, these black holes are solutions of gauged D dimensional supergravities,

which are obtained from dimensional reduction of the original eleven/ten dimensional supergravity [4]. Black

holes are related to thermal states of the dual CFT [5] meaning that, assuming the validity of the correspondence,

one can give a microscopic interpretation of the black hole thermodynamics in terms of an ensemble of states

in the dual CFT.

Despite many (AdS) black hole solutions have been constructed in the last twenty years, only recently

there have been some advances in proving the validity of the picture of black holes as made by microscopic

constituents of the dual field theory, the reason is the difficulty in dealing with strongly coupled field theories.

In [6, 7] the Bekenstein-Hawking entropy of a class of supersymmetric AdS4 black holes has been reproduced

from an exact localization computation in the dual field theory, considering the leading order in the large N

expansion1. A similar result has been obtained later for supersymmetric AdS5 black holes in [8, 9, 10].

The requirement of supersymmetry is usually needed to have a good control of the two sides of the holo-

graphic picture. On the gravity side, a peculiarity of these supersymmetric black hole solutions is that they are

generally not well-behaved unless one further imposes extremality [11]. This happens because supersymmetric

but non extremal black holes are characterized by the presence of a naked singularity, or by causal pathologies

such as closed timelike curves (CTCs) outside the event horizon. We will call "BPS" the solutions that are both

supersymmetric and extremal. BPS black holes in different dimensions and with different sets of charges seem

1Dual field theories are generally gauge theories with gauge group given by e.g. SU(N). Requiring that N is large is needed to

account for the large value of the black hole entropy (even in the zero temperature case), which implies a large number of microscopic

degrees of freedom.
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2 Chapter 1. Introduction

to share some general properties.

In particular it has been found in all cases that the Bekenstein-Hawking entropy can be obtained from an

extremization principle [12, 13, 14]. One can define a rather simple, homogeneous function I(ωi, φ
I) of some

variables (ωi, φ
I) related to the chemical potentials of the black hole thermodynamics. These satisfy a linear

constraint of the form:
∑

i

ωi −
∑

I

φI = ±2πi, (1.1)

the entropy of the BPS black hole is then found by extremizing the following entropy function:

I(ωi, φ
I)− ωi Ji − φI QI , (1.2)

with respect to the (ωi, φ
I) variables subjected to the constraint (1.1), (Ji, QI) are the conserved charges of the

black hole solution, corresponding to angular momenta and electric-like charges.

The works cited above did not derive the entropy function, nor give a meaning to the (ωi, φ
I) variables,

which moreover, are found to be complex when solving the extremization equations. These explanations re-

cently came from the work of [8] who derived the extremization principle for a class of five dimensional AdS

black holes. They considered a complexified family of supersymmetric but not extremal solutions in Euclidean

signature, this allowed to identify I(ωi, φ
I) as the Euclidean on-shell action in the supersymmetric solution,

that is a saddle point of the gravitational path integral, and the (ωi, φ
I) variables as a modified set of chemical

potentials which, in the extremal and supersymmetric (BPS) limit allows to define a non-trivial thermodynam-

ics. Moreover, condition (1.1) has been interpreted as a regularity condition for the killing spinor near the event

horizon.

In this framework the extremization of the entropy function (1.2) corresponds to the (constrained) Legendre

transform of the grand-canonical potential I in the supersymmetric solution. A key point in the discussion of

[8], was to implement the constraint (1.1) in the Legendre transform via a Lagrange multiplier Λ, which is

found to be determined (via the extremization equations) in terms of the charges from the cubic equation:

Λ3 + p2(Ji, QI)Λ
2 + p1(Ji, Q

I)Λ + p0(Ji, Q
I) = 0. (1.3)

Moreover, the homogeneity of degree 1 of the Euclidean supersymmetric action I allows to obtain the

entropy simply as S = ±2πiΛ where Λ has to be chosen as one of the roots of (1.3), requiring reality of S

obtained in this way allows one to derive the BPS entropy.

In the last few years, it has been shown that the extremization principle is a general feature of many classes

of static [6] and rotatingAdS black holes inD = 4, 5, 6, 7 dimensions [15],AdS4 black holes with acceleration

[16], and it has been explored considering higher derivative corrections to the original five-dimensional theories

[17] and also for asymptotically flat black holes [18].

In our work we are going to reconsider the extremization principle as discussed by [8], we will show that

there is actually more to learn about it which regards the properties of the inner horizons of the black hole.

The idea of black hole solutions with multiple horizons is not a new one, e.g. four-dimensional Reissner-

Nordstrom and Kerr-Newman black holes have an internal Cauchy horizon, together with the outer event hori-

zon. Properties of these internal horizons have been studied since the eighties. A remarkable feature is that, in

some classes of four and five dimensional multi charged, static and/or stationary asymptotically flat black holes,

the wave equation for a minimally coupled scalar field in the black hole background is sensitive to the geometry

near both horizons [19, 20]. Moreover the Bekenstein-Hawking entropy2 for the outer and inner horizons can

2It should be noted that one can formally define quantities such as the entropy, or chemical potentials for the Cauchy horizon. The

way to do it is to repeat the same calculations that one usually does for the outer horizon also for the Cauchy horizon. In this way one
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be rewritten as [19, 20, 21] (regardless of supersymmetry and extremality):

S± =
A±
4

=
√

NR ±
√

NL, (1.4)

where NR/L = NR/L(M,Ji, Q
I) are generally functions of all the charges. Remarkably the product of the

two entropies S−S+ = NR −NL turns out to be independent of the mass M of the black hole, which implies

that it should be quantized at the quantum level, due to the quantization of the electric charges and the angular

momenta.

The splitting of the entropy (1.4) into two distinct contributions and the properties of the scalar wave

equation, led the authors of [19, 20, 21] to conjecture the possibility of explaining the microscopic origin

of the thermodynamic properties of the black hole by considering an effective string model (or equivalently

two-dimensional CFT). The two contributions appearing in the entropy S+ are interpreted as deriving from the

right/left moving modes on the string (or right/left moving sectors of a CFT2), which has to be taken weakly

interacting to allow for the splitting in (1.4). In this picture the mass-independence of the entropy product

formula, and the consequent quantization at the quantum level, played a special role as it was related to the

level matching condition of the dual3 CFT2.

This conjecture has been proved valid in specific cases where the near horizon geometry contains an AdS3

factor, which is holographycally dual to a CFT2. This happens for specific types of black hole solutions [23]

(here the inner horizon were not considered), and in the extremal case [24, 25, 26]. Very recently these ideas

have been applied also to the AdS5 black holes that we have discussed in the beginning [27, 28], where an

agreement with the results obtained by studying the dual field theory on the boundary at infinity has been

found. Outside of extremality, where the duality with the CFT2 is not as well established, one usually exploit

the thermodynamic properties of the outer and inner horizon, to infer the thermodynamic properties of theR/L

sectors of the effective dual CFT2 [28, 29, 30].

Inspired by the possibility to obtain a microscopic interpretation of the outer and inner horizons properties

in terms of a dual CFT2, some authors have studied the properties of the area product formula in more general

settings, see e.g. [31]. In almost all cases the area product formula is found to be mass-independent. In partic-

ular in [32] some of the AdS black holes discussed at the beginning have been studied, again the independence

of the area product formula on the mass of the solution holds, but only if one considers also more general

horizons than the event and Cauchy horizons, specifically complex horizons. These "virtual" horizons emerge

as complex zeroes of the function which determines the position of the "physical" event and Cauchy horizon as

its positive real zeroes r±. The authors of [32], treated these complex horizons as formal loci which however

turn out to be necessary to obtain the area product formula. It is important to stress that in a general setting only

the mass independence of the area product formula is recovered. Instead the splitting in Eq. (1.4) generally

appears for black holes with at most two horizons.

Quoting [32], the independence of the area product formula: "would suggest the possibility of an explana-

can compute an area A−, surface gravity κ− and (in the stationary case) finding a null killing vector of the form V = ∂r + Ω−∂φ for

the Cauchy horizon, it is then natural to interpret these as thermodynamic quantities (e.g. S− = 1
4
A− or T− =

κ
−

2π
). Clearly, it should

be kept in mind that these are only formal definitions, and one should then work to understand what is the meaning of these quantities

as thermodynamics quantities.
3Some concerns about this conjecture have been raised by Visser [22], in particular the NR/L variables should be integers in order

to be associated with a number of excitations. Moreover interpreting the area product mass-independence in terms of the level matching

condition, implies that the product of the areas should be quantized as S−S+ ∝ L4
PN (LP is the Planck length), again with N integer.

These requirements do not follow immediately from the observations of [19, 20, 21] unless one considers the supersymmetric and

extremal solution. For example the quantization of the area product in terms of integers does not follow generally from the mass

independence, which simply states that S+S− only depends on the quantized charges. This additional requirement can be obtained

provided that one tunes the elementary electric charges, upon which the charges QI are quantized, so that once S+S− is written in

terms of the quantized charges and angular momenta, one correctly obtains S−S+ ∝ L4
pN with N ∈ N. Moreover NR/L ∈ N implies

the quantization of the mass of the black hole solution.
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tion for the microscopic behaviour of such black holes in terms of a field theory in more than two dimensions",

where all horizons may be relevant to study the microscopic properties of the given black hole solutions. Un-

fortunately however, at least to our knowledge, very little to no work has been done in understanding these

complex horizons, contrary to the Cauchy and event horizons as we have briefly discussed above.

The present thesis aims at making some steps forward in the understanding of the properties of these com-

plex horizons. We will concentrate on the black hole solutions of four and five dimensional gauged super-

gravities discussed at the beginning, dual to thermal states of three and four dimensional field theories on the

boundary of the spacetime. The end goal would be to obtain a microscopic interpretation of the properties of

all the horizons. If possible, it is natural to assume that it would arise by considering the dual field theory on

the boundary. This would be different from what we have briefly described above, the reason being that the

dual CFT2 description formally arises by studying certain near horizon geometry, while here we will consider

the asymptotic AdSD geometry. One may speculate that both pictures can be used and could be related, some

indications may have been given by [28], which however did not consider the virtual horizons. Understanding

if such an interpretation actually exists would be an ambitious result, which would certainly require much more

work than what can be done in this thesis. Indeed, we will not directly address these problems, but rather give

an analysis of the properties of the different horizons4, concentrating on the gravitational side of what we hope

is a broader holographic picture.

We will first consider the known area product formula and show that, in the BPS solution, it is equivalent

to the BPS constraint on the charges, which allows us to get extremality from the supersymmetric solution. We

will briefly argue why this is actually a non trivial result, and use this as our starting observation. In trying

to frame this result in a more fundamental picture we will define a set of thermodynamic variables (entropies

and chemical potentials) for each horizon, showing that they trivially satisfy a first law of thermodynamics, in

doing so we will generalize some results previously obtained for other kind of black holes [29, 31, 30].

A key role in our discussion will be played by a sort of "exchange symmetry" which relates quantities

defined for each horizon5. Using this symmetry we will deduce the possibility of defining a set of universal

quantities which allows us to capture the properties of all horizons at once. This idea applied to the quantities in

Eqs. (1.1, 1.2), will allow us to show that the extremization principle is universal in the sense that it reproduces

all the horizons entropies in the BPS limit. A key role is played by the Lagrange multiplier (1.3). Indeed,

we find that while the purely imaginary root of (1.3) gives the outer horizon area, the other roots provide

the "entropy" associated with the other horizons. Promoting the extremization principle to an "universal"

extremization principle, will explain our starting result regarding the area product formula in the BPS limit,

and allows to unify the properties of all horizons in the BPS limit (and formally also in the supersymmetric but

not extremal case) in a more fundamental picture. We will explicitly show that our results are valid for many

classes of AdS black holes, in different dimensions and with different set of conserved charges, we will also

prove it for a new generalization for a class of AdS4 black hole solutions with acceleration. We will argue why

this result can be seen as a starting point to obtain a holographic interpretation of the properties of all horizons,

and also argue how these results may be extended to non-supersymmetric solutions. We leave for future work

4Studying these complex horizons, formally requires to consider complex solutions for the metric and gauge/scalar fields, with

analytically continued radial variable or, equivalently, complexified parameters (see e.g. [8] Sec. 3.1). These would not be allowed

as Lorentzian solutions. However, we are interested in studying these horizons interpreted as formal loci, and in particular, their

generalized thermodynamics (which is characterized by formal complex thermodynamic quantities), without addressing what physical

meaning these quantities might have (this is not so clear neither for the "physical" Cauchy horizons). The motivation to do so is found

in the properties of the area product formula. Moreover, one can regard these complexified solutions as complex saddle points of the

gravitational path integral (hence as formal solutions of the equations of motion), we will make some quick comments about this when

studying the five-dimensional black holes.
5This symmetry has already been observed for black holes with only an event and Cauchy horizon. In this case it has been argued

that the exchange symmetry of the horizons is related to the T -duality of the dual CFT2 (See [19], in particular Sec. 4).
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a better explanation of these aspects.

The plan of the rest of this work is as follows. In chapter 2 we give a review of elementary aspects of

supergravity in D = 4, 5 dimensions and on supersymmetric and BPS, asymptotically AdS black hole solu-

tions. In chapter 3 we concentrate on two classes of solutions of gauged D = 5 supergravity. Starting from the

single charged, double spinning black hole solution, we will first give a detailed review of its known properties

(Sec. 3.1); then we also present the extremization procedure discussed in [8] and the derivation of the area

product formula of [32]. Next in Sec. 3.2 we prove our original results about, where we first analyse what kind

of horizons does the solution admit, and then show in detail how the results that we have just anticipated are

derived. In particular showing how the extremization principle can be promoted to a universal extremization

principle for all horizons.

In Sec. 3.3 we move on discussing the consequences of the universal extremization principle for the general

double spinning black hole with three charges, of the U(1)3 gauged theory (STU model). We explicitly check

the validity of these results for the simpler solution where the two angular momenta are set equal in Sec. 3.4.

For this black hole solution we follow a similar logic as for the single charged case, for this reason we don’t go

at the same level of detail.

In chapter 4 we generalize our results to theAdS black holes in four dimensions which arise from the U(1)4

gauged theory. We first consider the spinning single charged solution, showing how the universal extremization

principle is carried out in this case (Sec. 4.1, 4.2), next we quickly discuss the pairwise equal charged case

(Sec. 4.3). Also in this case we discuss the consequences of the universal extremization principle for the

most general solution with four independent charges, explicitly showing the validity of this universality for the

specific solutions discussed before. Finally, in Sec. 4.5 we conclude discussing the generalization of the single

charged solution with acceleration, and we explain the new features that arise when acceleration is present.

For this solution the universal area product has never been discussed before, so we will derive it and show its

equivalence with the BPS constraint between the electric charge and the angular momentum. Again we will

show that the universality of the extremization principle works out also in this case.





Chapter 2

Review of supergravity and supersymmetric

black hole solutions in AdS backgrounds

The main subjects of our investigations are asymptotically AdS black hole solutions in supergravity theo-

ries. It is therefore useful to give a brief introduction to supergravity before starting with the main subjects. A

complete review on how to construct supergravity theories would go beyond the scope of the present thesis.

Here we only provide a brief introduction to their structure, focusing on the features that will be relevant in the

following chapters.

We are interested in N = 2 gauged supergravity in D = 4, 5 dimensions, possibly coupled to a certain

number of Abelian vector fields which generally allow to gauge a larger Abelian group U(1)n, translating

in the possibility of having black hole solutions with multiple electric-like charges. The reason why we are

interested in these theories, for a certain number of vector multiplets, is that they can be obtained as consistent

truncations of supergravity theories in ten or eleven dimensions where the AdS/CFT correspondence is naturally

established. We will say a little more about this when introducing each specific theory, in the next chapters.

We are going to follow closely the presentation of [33], and discuss the on-shell, component formulation of

the above supergravity theories, not considering auxiliary fields.

2.1 Elementary aspects of supersymmetry in D = 4, 5

The properties of supersymmetric theories depend on the number of spacetime dimensions where they are

formulated in. On one hand, massless physical states in D (flat) dimensions, which are massless irreducible

representations of the Poincaré group ISO(1, D−1), are classified by representations of the SO(D−2) group.

In four,(five) dimensions massless particles are characterized by helicity,(spin) and are therefore described by

2, (2s+ 1) states.

This is important because massless particles are the "building blocks" of the irreducible representations of

the super-Poincaré group, the supermultiplets, which must contain the same number of fermionic and bosonic

degrees of freedom. This requirement implies that in higher dimensions, one has to consider longer supermulti-

plets, for example, the supergravity multiplet inD = 4 contains just the spin-2 graviton and the spin-32 gravitino

(gµν , ψµ), while in D = 5 the minimal supergravity multiplet contains also a gauge field (gµν , ψµ, Aµ).

Moreover, the properties of the spinorial representations of the Lorentz group are different in different

dimensions [34], this directly influences the properties of the supercharges. In particular, remember that any

irrep. of the Clifford algebra in D Lorentzian dimensions,

{Γa,Γb} = 2ηab, ηab = diag(−1,+1, · · · ,+1), (2.1)

7
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is also a representation of the Lorentz algebra via the map:

ˆρ(Mab) =
1

4
[Γa,Γb], (2.2)

here (a, b = 0, 1, · · · , D − 1) and Mab are the generators of the D-dimensional Lorentz algebra.

Generally these spinorial representations of the Lorentz group are reducible. Take, for example, the irrep. of

the four-dimensional Clifford algebra given by Dirac matrices, the corresponding representation of the Lorentz

group is the (12 , 0) ⊕ (0, 12). An irreducible spinor representation can be obtained by imposing constraints on

the spinors on which the wanted representation acts. These constraints can be chirality conditions or reality

conditions, in four dimensions these give rise to Weyl or Majorana spinors.

What kind of constraints one can impose depends on the dimension D, due to the different properties of the

Lorentz group in different dimensions, and halve the independent components of a spinor, hence influencing

the minimal number of real independent supercharges one can have. This is reflected in the length of the

supersymmetry representations, denoted as supermultiplets.

In D = 4 either a chirality or Majorana condition can be imposed on Dirac spinors to get an irrep. of the

Lorentz group, but not both. The minimal amount of supersymmetry in 4D is achieved by considering, for

example, one Majorana supercharge, which contains four independent real components.

In D = 5 one can show that two inequivalent irreps. of the Clifford algebra can be obtained by starting

from the four-dimensional Γa matrices and adding one of±Γ5. The corresponding representation of the Lorentz

group acts again on four-components complex Dirac spinors. In 5D one cannot impose neither a chirality nor

a reality condition, meaning that the minimal amount of supersymmetry is achieved considering one Dirac

supercharge, containing eight independent real components. For this reason, the D = 5 supergravity multiplet

contains more states with respect to the four-dimensional one.

However, in D = 5 there is a special type of condition that one can impose, called symplectic Majorana

condition. First one has to double the number of Dirac spinors (e.g. the supercharges Qi) so that to have an

even number of them 2N , then one imposes the following condition:

(Qi)⋆ = ΩijBQj , (2.3)

where Ωij is a real antisymmetric matrix such that Ω2 = −I2N and B is the matrix that allows us to express

(Γa)
⋆ as (Γa)

⋆ = −BΓaB
−1, the number of independent components does not change, as we had to double

the number of supercharges first. This allows to make explicit the R-symmetry group, which in D = 5 is found

to be USp(2N) ≡ U(2N) ∩ Sp(2N,R).
It is equivalent to work with N Dirac supercharges or 2N symplectic Majorana ones, but usually in the

literature one refers to N extended D = 5 supersymmetry to the one with an even number of symplectic

Majorana supercharges. Hence, the N = 2 supergravity we are going to consider is truly the minimal one

despite the N = 2 designation. Similarly, when considering the D = 5 supergravity multiplet, the eight

fermionic degrees of freedom can be thought of as distributed between two symplectic Majorana Dirac spinors

ψiµ so that the multiplet is given by (gµν , ψ
i
µ, Aµ), where the i indices are in the fundamental of USp(2) ∼=

SU(2)R.

2.2 Pure supergravity

Supergravity can be thought of as a gauge theory of supersymmetry where the supersymmetry transforma-

tions with fermionic parameter ǫ are promoted to local transformations. To see how this works (following the
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discussion of [33], Ch. 2), let us start with a supersymmetric theory with Lagrangian L . Let us considerD = 4

and N = 1 supersymmetry so that we have only one global fermionic symmetry with parameter ǫ, such that

δǫL = ∂µV
µ.

If we promote ǫ to a local parameter, we lose the invariance under supersymmetry as the Lagrangian now

transforms as δǫL = ∂µV
µ+∂µǭJ

µ, where Jµ is the conserved current associated with global supersymmetry

transformations. Notice that the components of Jµ must be spinorial quantities.

Following the Noether procedure, supersymmetry is restored by adding to the Lagrangian a term like:

L
′ = − 1

Mp
ψ̄µJ

µ, δǫψµ =Mp∂µǫ, (2.4)

where Mp is a (for now arbitrary) mass parameter needed to get a mass-dimension 4 Lagrangian, and ψµ is the

gauge field associated with the local supersymmetry transformation, which couples to the supercurrent Jµ of

the original theory. Its components are Majorana spinors, so it carries both a spinorial and a Lorentz index ψαµ.

We are not finished yet, as generally one finds that the supercurrent is not gauge invariant, which means

that we need to add more terms to the Lagrangian. In particular, one finds that (after some calculations):

δǫL
′ = − 1

Mp
δǫψ̄µ J

µ +
1

Mp
ψµ δǫJ

µ ∼ −∂µǭ Jµ +
1

Mp
ǭ γµψνT

µν + · · · , (2.5)

the first term exactly cancels the variation of L by construction. Instead, the variation of the current gives

rise to many terms, one of which is proportional to the stress-energy tensor of the original theory Tµν . The

cancellation of this particular term can be achieved by adding to the Lagrangian a new coupling between Tµν

and a symmetric tensor field gµν such that:

L
′′ = −gµνTµν , δǫgµν ∼

1

Mp
ǭ γ(µψν), (2.6)

gµν can only be the spacetime metric, and therefore ψµ must be its superpartner, the spin-32 gravitino.

Promoting supersymmetry to a local symmetry requires coupling the original theory to the supergravity

multiplet (gµν , ψµ), which can be made dynamical by adding the corresponding kinetic terms. To fully restore

supersymmetry in the original Lagrangian L (which contains also matter fields) one should add more terms. In

this way, one would get a matter-coupled supergravity theory. However, what we have discussed above already

allows us to obtain the supersymmetric Lagrangian for the pure supergravity multiplet, not coupled to matter.

It can be shown that this is nothing but the sum of the kinetic terms for the graviton and the gravitino, after

having performed the required spacetime covariantizations1

S =

∫

d4x
√−g

(

M2
p

2
R− 1

2
ψ̄µγ

µνρDνψρ

)

,







δǫψµ =MpDµǫ

δǫgµν = 1
2Mp

ǭ γ(µψν)
, (2.7)

in these conventions, we have Mp = (8πGN )
−1/2, which is the reduced Planck mass [33], moreover γµνρ =

γ[µγνγρ] and Dµ = ∂µ + 1
4ω

ab
µ γab is the covariant derivative2 acting on spinors via the spin connection ωabµ ,

latin letters indicate flat indices and are related to the curved (greek) ones via the vielbein (e.g. γa = eaµγ
µ).

The specific form of the kinetic term for the gravitino in (2.7), allows to have the propagation of only the

1Having not included auxiliary fields, the supersymmetry algebra closes only on-shell, hence [δǫ1 , δǫ2 ]ψµ = δ[ǫ1,ǫ2]ψµ holds only

on-shell. δ[ǫ1,ǫ2]ψµ is the variation of ψµ under the element of the super-Poincaré group given by: [ǫ1Q, ǭ2Q̄].
2The covariant derivative acting on the gravitino should also take into account the Lorentz index in ψµ so that one should have

∇µψν = Dµψν − Γρ
µνψρ, but in the action (2.7), it always appears the antisymmetrized covariant derivative of ψµ which satisfies

∇[µψν] = D[µψν], due to the torsionless condition on the Levi-Civita connection Γρ
[µν] = 0.
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physical spin-32 degrees of freedom contained in the ψµ field, and is called the Rarita-Schwinger action [35].

An important comment has to be made about the way the spin connection ωab is interpreted (let us also

treat the vielbein and spin connection as 1-forms). Recall that in Einstein gravity (not coupled to matter), the

spin connection is determined in terms of the vielbein 1-forms ωab = ωab(e) via the torsionless condition

T a = Dea = 0, hence it is a composite field depending on ea. This is known as the second-order formulation

of general relativity [33, 36]. However, one can adopt a different point of view and treat ωab as an independent

field. In this way the wanted gravitational degrees of freedom are described on-shell, as one finds that the

equation of motion for the spin connection is precisely the torsionless condition δSEH

δωab
µ

= 0 ⇔ Dea = 0. This

is called first order (or Palatini) formalism [33, 36].

This distinction is important in supergravity theories, where fermions are always present. In a general

gravity theory coupled to fermions, one finds that in the first order formalism, the equation of motion for the

spin connection acquires an extra term that is bilinear in the fermions. Considering the example given in Eq.

(2.7), one would find [33]: Dea − 1
4M2

p
ψ̄ ∧ γaψ = 0. In this case, the symmetry under local supersymmetry

for the theory in Eq. (2.7), can be proven by fixing the susy transformation for ωab in such a way that δǫS =

0. Alternatively, adopting the second order formalism, one interprets ωab as a composite field which is now

determined by the condition T a = Dea = 1
4M2

p
ψ̄∧ γaψ [33]. In this case, ωab(e, ψ) = ωab(e)+Kab(ψ) is not

a torsionless connection anymore, due to Kab(ψ) which is quadratic in the fermions, but one can show that the

equations of motion in the two formalisms are equivalent [36]. Notice also that one has to add interaction terms

for the fermions in this case (due to the Kab(ψ) piece). Moreover, ωab(e, ψ) and the Levi-Civita connection

Γρµν are now not equivalent, the latter still being torsionless as Γρ[µν] = 0, and only determining ωab(e) (this

means that footnote 2 is still true). In this case, the susy transformation of ωab(e, ψ) is fixed by those of the

vielbein and the gravitino. However, in order to prove the invariance under local supersymmetry in the action

(2.7) one simply needs the condition T a = Dea = 1
4M2

p
ψ̄ ∧ γaψ.

2.2.1 N = 2 extended pure supergravity

Eq. (2.7) is the pure N = 1 supergravity action in D = 4, but we are going to work in N = 2 extended

supergravities, which allows to have gaugings within the pure supergravity theory itself. Moreover, in D = 5

there is not a generalization of (2.7) due to the different field content of the minimal supergravity multiplet,

which instead is similar to the four-dimensional N = 2 one.

Let us stick to D = 4, in N = 2 extended supersymmetry the supergravity multiplet is now given by:

(gµν , ψ
i
µ, Aµ), where the two gravitini now form a doublet in the fundamental representation of the SU(2)R

R-symmetry subgroup of the full U(2)R symmetry.

It is tempting to view the supergravity multiplet as a sort of combination ofN = 1 multiplets as (gµν , ψ
i
µ, Aµ) ≡

(
gµν , ψ

(1)
µ

)
⊕
(
ψ
(2)
µ , Aµ

)
. The second one is the N = 1 gravitino multiplet whose globally supersymmetric

action is given by:

S =

∫

d4x

(

−1

2
ψ̄µγ

µνρ∂νψρ −
1

4
FµνF

µν

)






δǫψµ = 1
4γ

νργµǫFνρ

δǫAµ = ǭ ψµ
, (2.8)

Indeed, by coupling pure supergravity (gµν , ψ
(1)
µ ) (2.7) with the above theory (ψ

(2)
µ , Aµ) (2.8) interpreted as

a sort of "matter theory", following the Noether procedure described in the last section, allows one to get

a local supersymmetric theory, with parameter ǫ(1), for the desired physical fields (gµν , ψ
i
µ, Aµ). One has

to add interaction terms of the form ψ̄ψF and ψ4, and also covariantize (2.8) under space-time coordinates

redefinitions. One then realizes that this new theory enjoys an SO(2) symmetry which rotates the two gravitini



2.2. Pure supergravity 11

ψiµ, this implies that the theory is also invariant under another local supersymmetry transformation ǫ(2) which

can be obtained by essentially swapping the role of the two gravitini.

In this way, one gets the pure N = 2 supergravity theory [37, 38], only the SO(2) ∼= U(1) ∈ U(2)R

symmetry is evident if one uses Majorana spinors ψiµ, ǫ
i, which can be interpreted as SO(2) doublets, and it is

the only symmetry that can be gauged by using theAµ gauge field present in the supermultiplet, without adding

matter.

We will need only the bosonic part of this theory when discussing black holes, which is simply given by

summing the bosonic parts of (2.7, 2.8), and the supersymmetry transformation rule of the gravitini:

δψµ =MpDµǫ−
1

4
γνργµFνρ ǫ+O(ψ2) (2.9)

where the two Majorana gravitini and supersymmetry parameters ǫi have been combined into one Dirac spinor,

ψµ = ψ
(1)
µ + iψ

(2)
µ [39] in this way, the SO(2) symmetry that rotates the two real spinors, becomes an U(1)

symmetry for the complex Dirac spinor. TheO(ψ2) terms are not going to be relevant for us, since the gravitino

is set to zero in the background.

What about D = 5 pure supergravity? Unfortunately, one cannot repeat the procedure we have described

above, and one has to resort to other methods [40]. Skipping the details, the pure D = 5, N = 2 supergravity

theory is actually similar to the four-dimensional one. For example, the bosonic part of the Lagrangian, which

we are interested in, has the same structure but in five-dimensions one is allowed to add a Chern-Simons gauge

invariant term proportional to the 5-form F ∧ F ∧ A = −
√−g
4 ǫµνρσλFµνFρσAλ, it is easy to see that under a

gauge transformation Aµ → Aµ + ∂µΛ this term transforms as a total derivative.

Regarding the gravitino supersymmetry transformation, one finds again a similar result as in D = 4 (2.9):

δψiµ =MpDµǫ
i − i 1

4
√
3

(
Γ νρ
µ − 4δνµΓ

ρ
)
Fνρǫ

i +O(ψ2), (2.10)

Mp here is related to the five-dimensional Newton’s constant, so it is formally different from the one used

before. Remember that in this case the spinors are symplectic Majorana and form a doublet of the USp(2)R ∼=
SU(2)R R-symmetry group of the five-dimensional Poincaré superalgebra. Also in five-dimensions the pure

supergravity theory contains only one gauge field Aµ which allows to gauge only a global U(1) symmetry of

the theory (contained in the R-symmetry group).

2.2.2 Gauging and AdS background

We will now describe the procedure of gauging the above pure supergravity theories, specifically we want

to give an idea of what kind of modifications are needed in the Lagrangian and in the gravitino supersymmetric

transformation rule. The most important point for us is that upon gauging, a negative cosmological constant ap-

pears, meaning that the gauged version of the above supergravities haveAdSD and notMinkD as a background

solution. Similarly, black hole solutions in these gauged supergravities are asymptotically AdSD.

Let us consider again the four-dimensional case. As we have already said, we can only gauge the global

SO(2) symmetry rotating the two Majorana gravitini (and correspondingly the two supersymmetry parameters

ǫ(i), or equivalently the U(1) symmetry associated with the Dirac gravitino ψµ → eigα(x)ψµ where g is the

gauge coupling constant. Local U(1) symmetry is then restored by minimally coupling the gravitino with the

gauge field Aµ (now seen as the gauge field associated with the local U(1) symmetry), hence one promotes the

Lorentz-covariant derivative of the gravitino to a Lorentz and gauge-covariant derivative:

Dµ −→ D̂µ = Dµ − igAµ, (2.11)
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this implies that the gravitino susy rule (2.9) acquires a newO(g) term of the form δψnew
µ = δψold

µ − iMp gAµǫ,

while the other supersymmetry transformations are unchanged.

The action that one gets at this stage is not locally supersymmetric anymore. To restore supersymmetry,

one has to add other O(g) and O(g2) terms in the Lagrangian and further modify the susy rule of the gravitino.

For example, the supersymmetry variation of the kinetic term of the gravitino produces a new O(g) term of

the form: igMpǭFµνγ
µνρψρ, which appears as a consequence of the new O(g) variation δψ̄µ ∼ igMpAµǭ, (an

integration by parts is also required). This term can be (partially) cancelled by the ψ̄ψF term cited above, if we

further modify the gravitino susy rule as δψnew
µ = δψold

µ − igMpAµǫ+
g
2M

2
pγµǫ, [41].

This new piece in the gravitino susy rule produces yet new terms when considering the variation of the La-

grangian, for example, from the kinetic term of the gravitino one gets a newO(g) term of the form gM2
p ψ̄µγ

µνργρDνǫ,

this is trivially removed if one adds to the Lagrangian a mass term for the gravitino of the form3 Lm ∝
gMpψ̄µγ

µνψν , the variation of this piece cancels the above term upon considering δψµ ∼MpDµǫ.

Finally, we arrive at the last relevant piece that one has to add to the Lagrangian, this is the O(g2) cosmo-

logical constant that essentially allows to cancel the O(g2) variation of the gravitino mass term Lm obtained

by considering δψµ ∼ g
2M

2
pγµǫ, so one has to add the following term4 L ′ =

√−g g2M4
p . Where the use of

the same letter for the gauge coupling constant and the determinant of the metric hopefully does not cause any

confusion, given that the latter always appears under a square root.

Remarkably, these modifications are sufficient to restore the invariance under local supersymmetry. Notice

that we had to add a cosmological constant term Λ ∝ −g2M2
p whose sign is negative and fixed, hence the

background solution of this gauged supergravity theory is AdS4.

The fact that the gauging procedure introduces a negative cosmological constant is a general fact for gauged

suepergravities. For more complicated cases where there are also matter couplings and scalar fields, the mass

term Lm and the cosmological constant will become scalar field dependent, producing a Yukawa-like coupling

for ψµ and a scalar potential, which can be seen as an effective cosmological constant. It turns out that only

vacua with negative or vanishing cosmological constant can be compatible with supersymmetry, while gener-

ally dS vacua break supersymmetry. The reason for this can be deduced from algebraic considerations (see e.g.

[33]). Indeed, once a cosmological constant is introduced the background solution is either AdS or dS space-

time, the isometry group is not Poincaré anymore but SO(1, 4) or SO(2, 3) for dS or AdS in four dimensions.

A consistent supersymmetric gravity theory with cosmological constant should then be obtained by promoting

the symmetry groups of dS or AdS to supergroups. It turns out that this can be consistently done only for the

AdS isometry group SO(2, 3) (in this way, the corresponding superalgebra closes).

These algebraic considerations also help to understand another peculiarity of the gauged theory that we

have found above, which is the fact that the gravitino acquires a mass mψ ∼ gMp while all other states

in the supergravity multiplet stay massless. This would not be possible for the super-Poincaré group irreps.

(each supermultiplet is degenerate in mass) but in the gauged case we should consider the irreps. of the super-

SO(2, 3) group. In this case, one finds that the generators of spacetime translation Pa are such that5 [P 2,Q] 6= 0

and moreover, P 2 is not anymore a Casimir of the algebra. This means that the definition of the mass of the

3One can immediately see this by noticing that it holds γµνργρ = −γµν .
4This term does vary under local supersymmetric transformation as it depends on the metric via its determinant, one can then show

that its variation cancels the O(g2) variation of the gravitino mass term [33].
5It is also true that [Pa,Q] ∝ g 6= 0, this is different from what happens in the super Poincaré group and is needed in order to satisfy

the super Jacobi identities [33]. From this, one can show that the super Jacobi identities can be satisfied only for AdS space, using

the properties of its isometry group. Moreover, the modification of the Pa, Q commutator is at the origin of the constant ∼ gγµǫ term

appearing in the gravitino susy rule, which also makes the mass term Lm and the cosmological constant appear in the action. This is

true also for Pure N = 1, D = 4 AdS supergravity, where the g parameter is not a gauge coupling constant. However, if one couples

this pure AdS supergravity with suitable supersymmetric matter, as we did above, one would find that one has to make the gravitini

become charged under the gauge field, with g becoming the gauge coupling constant [38].
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elementary particles in AdS is trickier, and does not need to be degenerate in the supermultiplets.

Finally ,the bosonic part of the action for N = 2, D = 4 pure gauged supergravity relevant for our

discussions is given by:

S =

∫

d4x
√−g

(

M2
p

2
R+ 3g2M4

p −
1

4
FµνF

µν

)

, (2.12)

while the susy transformation of the gravitino is given by:

δψµ =Mp

(

Dµ − igAµ −
g

2
Mpγµ

)

ǫ− 1

4
γνργµFνρ ǫ+O(ψ2). (2.13)

In five dimensions, the discussion follows the same. Remember now that there are two symplectic Majorana

gravitini carrying an SU(2) index i. We can consider the U(1) transformation generated by the σ3 generator

of SU(2) which acts on the gravitini as ψ
(1)
µ → eigα(x)ψ

(1)
µ and ψ

(2)
µ → e−igα(x)ψ(2)

µ . The gauging procedure

produces similar modifications to the Lagrangian and gravitino susy transformation rule, also in this case a

negative cosmological constant appears (see e.g. [42]).

The explicit gravitino susy transformation rule is given by:

δψiµ = Dµǫ
i − i 1

4
√
3

(

Γ νρ
µ − 4δνµΓ

ρ
)

Fνρǫ
i − g

(

1

2
√
3
Γµ + iAµ

)

ǫijǫj +O(ψ2), (2.14)

remember that ψiµ and ǫi are symplectic Majorana spinors, moreover ǫij = −ǫji and ǫ12 = 1.

2.3 Coupling pure supergravity to vector multiplets

As we have anticipated in the introduction, we are also interested in supergravity theories where we gauge

larger Abelian U(1)n groups. This cannot be done in pure supergravity as there are not enough vector fields

which can play the role of gauge fields. This problem can be solved by coupling the pure supergravity theory

with vector multiplets, we are then going to give a rather brief and incomplete overview on this topic, hoping

to convey some basic ideas on the structure of this matter coupled supergravities, (more details can be found,

for instance, in [33] and [36]).

Let us again stick to D = 4. We want to couple the pure supergravity theory toN = 2 vector multiplets. In

D = 4 these contain a gauge field Aµ, two Majorana spin-12 gaugini λi whose i index transforms under the R

symmetry group, and a complex scalar φ. N = 2 matter coupled supergravity necessarily contains scalar fields,

it is well known that when scalar fields are present in a generic supersymmetric theory, the properties of such a

theory strongly depend on the geometry of the scalar field manifold6 M. The idea is that in a supersymmetric

theory the ns scalars {φn}n=1,··· ,ns can be seen as (complex) coordinates for M. However, the presence of

other fields and the requirement of preserving supersymmetry impose some constraints onM.

For example, considering the globally supersymmetric N = 1 most general (non-renormalizable) Wess-

Zumino model, there are also ns (Majorana) fermions χn in the same multiplet as the scalars, whose susy

transformation contains a term like: δχnL ∼ /∂φnǫR and δχn̄R ∼ /∂φn̄ ǫL, using the notation of [33] we denote

φ̄n = φn̄. Supersymmetry relates the left handed component of χ to φ and the right handed one to φn̄, this

structure must be preserved by the internal geometry of M which implies that it should be thought of as a

6Thinking at the most general non-renormalizable theory, it is allowed to have non-minimal kinetic terms, e.g. gij(φ)∂µφ
i∂µφj , and

possibly other kinds of non-minimal couplings between the scalars and other fields. Even without considering supersymmetry, in gen-

eral non-renormalizable theories for scalar fields (non-linear sigma models) it is natural to view the scalars as coordinates parametrizing

a (scalar)manifold M. This allows to give a geometrical interpretation of the various couplings that one has in the theory. For example,

in the non-minimal scalar kinetic term one identifies gij(φ) as the metric of the scalar field manifold.
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complex manifold, covered by biholomorphic coordinate systems7. Other constraints can be deduced from

this. For example, by studying the holonomy group ofM and requiring that it does not mix φn and φn̄, one

can derive thatM must be a Kähler manifold.

Oversimplifying it, we may say that in this case the geometry of M is determined by a real function

K(φn, φn̄) called Kähler potential (for example the metric onM is gmn̄ = ∂m∂n̄K), which is invariant under

the Kähler transformations: K → K+h(φn)+ h̄(φn̄). These relate the different expressions of K on different

coordinate patches on M. Notice also that the susy transformation rules of the fermions indicate that they

should be thought as tangent vectors onM, hence one has to covariantize all derivatives of the χ fields with

respect to scalar field redefinitions, which adds non minimal couplings between scalars and fermions.

What happens when supersymmetry is made local? Generally new structures and constraints have to be

imposed on M. For example, one can couple the above general non-renormzalizable Wess-Zumino model

to the supergravity multiplet by generalizing the Noether procedure discussed previously. Restoring local su-

persymmetry requires adding many terms to the Lagrangian, together with the metric and the gravitino. One

realizes that in this way all fermions must transform under Kähler transformations as (e.g. taking the gravitino):

ψµ → exp
[ −i
2Mp

Im(h(φ))γ5
]
ψµ, this implies that all derivatives of the fermions must be made Kähler covari-

ant. The new terms that appear in the Lagrangian in this way are precisely (part of) those needed to restore

local supersymmetry.

Fermions should now be thought of as sections in a principal U(1) bundle overM, Kähler transformations

on them can be seen as the maps that relate the different local definitions of the fermions on different coordinate

patches onM, similarly as happened for the Kahler potential. This additional structure onM constrains further

the geometry of M which now becomes a so called Kähler-Hodge manifold. More details can be found in

[33, 36]

Finally, let us consider extended (specifically N = 2) supergravity coupled to matter. Assume that only

N = 2 Abelian vector multiplets are involved, in this case, scalars appear in the same multiplet as the vectors.

Moreover, the number of vectors does not match the number of scalars as also the supergravityN = 2 multiplet

contains a vector, the graviphoton. The field content of N = 2 supergravity coupled to nV vector multiplets is

then: (gµν , ψ
i
µ, A

I
µ, λ

n,i, φn), where the graviphoton is generally not distinguished from the other nV vectors.

indeed, the I index runs from 0 to nV , while the n indices run from 1 to nV as there are nV scalars. The i index

is instead related to the usual SU(2)R doublets.

In this case,M turns out to be still a Hodge-Kähler manifold, but of special type, the reason is that once

Abelian vector fields are involved (and we have not yet gauged any symmetry), the theory exhibits the phe-

nomenon of electric-magnetic duality. These are a set of symmetries of the equations of motion plus Bianchi

identities for the vector fields which, if the Lagrangian of the theory is L , can be written as:







∇µ ∂L

∂F Iµν = 0

dF I = 0
=⇒







dGI = 0

dF I = 0
, where:

1

2
ǫµνρσG

ρσ
I = 2

∂L

∂F Iµν
, (2.15)

here we allow for the most general gauge kinetic terms in L of the form Lvec ∼ PIJF IµνF Jµν+RIJF IµνF̃ Jµν+
2OµνI F Iµν , where the matrices PIJ and RIJ possibly depend on the scalar fields. Electric-magnetic duality

acts as rotations of the following two-component vector:

F ≡
[

F I

GJ

]

, F′ = SF, (2.16)

7As chirality is a physical spacetime property, it must be preserved. From the susy transformation rules of the fermions this implies

that φn and φn̄ should not "mix". Hence, we cannot view M as a real manifold of dimension 2ns, as parametrizing it with real

coordinates necessarily requires to mix φn and φn̄.
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the equations of motion plus the Bianchi identities and the definition of GJ in terms of the F I field strengths

(2.15) are left invariant by any S ∈ Sp(2nV ,R).
Duality transformations generally change the Lagrangian but leave invariant the equations of motion, mean-

ing that they can be seen as a way to describe the same underlying physics with different fields or explicit

degrees of freedom8. Coming back to supersymmetry, if one uses a different set of gauge fields after a duality

transformation, one may expect to also have a different set of scalar fields as they sit in the same multiplet as

the vectors. Again, these new scalars would not be different degrees of freedom, but only a different way to

describe the original ones given by φn.

Moreover, there is one more vector than the number of scalars, and also this aspect should be taken into

account. The way to deal with this is to mimic what we have done in the F symplectic vector, and define the

following scalar-field dependent symplectic vector V:

V(φ) =
[

XI(φ)

FJ(φ)

]

, V ′ = SV, for a symplectic transformation: S ∈ Sp(2nV + 2,R), (2.17)

XI(φ) and FJ(φ) are a set of nV + 1 auxiliary scalar fields and their duals, which depend on the physical nV

scalars φn. The auxiliary fields make it easier to take into account the duality.

For consistency, one finds that V(φ) should transform under Kähler transformations V → exp[−h(φ)]V ,

meaning that V(φ) should be thought as a section of a flat holomorphic vector bundle with a symplectic structure

group over M. Moreover, by taking Kähler covariant derivatives of V one obtains quantities that carry both

an I index and an m index, which again transform covariantly under Kähler transformations but also under

scalar field reparametrizations. The auxiliary fields and their kähler covariant derivatives can be used to obtain

quantities that are simultaneously, duality, Kahler and scalar field redefinition covariant. These are needed to

consistently write (for example) the susy transformation rules of the fermions, which are considered invariant

under duality transformations, but transform under Kähler and scalars redefinitions.

The structure ofM is now determined from the auxiliary scalar fields9. This imposes some other constraints

onM which now becomes a local (or "projective") special Kähler manifold10.

The main message that we want to convey is the importance of the scalar field manifold in matter coupled

supergravity theories, and the need to use the auxiliary scalar fields X once extended, matter-coupled super-

gravities are taken into account. In practice, however, we will always work in a fixed symplectic frame where all

the physical degrees of freedom are described by the F I field strengths and XI(φ) auxiliary scalars11. Finally,

having more vector fields at our disposal allows us to gauge a larger global symmetry group.

The considerations above can be repeated also in the five-dimensional theories, but in this case the structure

of the scalar manifold is drastically different. The reason is that theN = 2 vector multiplet in this case contains

a real scalar field φ instead of a complex field. Moreover, the two spin−1
2 fields are now symplectic Majorana

spinors. Again, scalars and vectors are in the same multiplets, this implies that the properties of M can be

described by nV + 1 real auxiliary scalars XI(φ), in particularM is given as the hypersurface in the auxiliary

RnV +1 space parametrized by the XI , defined via the constraint:

M = {XI ∈ RnV +1|CIJKXIXJXK = 1}, (2.18)

8For example, one may use only the electric field strengths F I as is usually done, only the magnetic GJ ones or a combination of

both.
9for example K is determined in a symplectic invariant way in terms of V

10"projective" refers to the fact that we have to use the X auxiliary scalars, which provide a redundant description being the physical

scalars one less in number.
11In this case XI can be viewed as simple functions of the scalars, so we may as well write the actions in terms of only the physical

scalars φ, knowing that under a duality transformation the explicit expression of the action may change.
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where the CIJK constants define the Chern-Simons term CIJKF
I ∧ F J ∧ AK . One finds that the CIJK

constants completely determine the structure of the supergravity theory in this case.

It is a general fact that in different dimensions and in different N -extended supergravities, the scalar field

manifold may be completely different. This happens even when considering scalar fields in different multiplets,

for example, the scalars in the four-dimensional N = 2 hypermultiplets (generalizing the N = 1 chiral mul-

tiplets), would produce a completely different scalar field manifoldMhyper with respect to the one associated

with the scalars in the vector multiplets.

For the explicit actions ofN = 2, D = 5 ungauged and gauged supergravity coupled to nV Abelian vector

fields See [42, 43].

2.4 Supersymmetric, extremal and BPS black hole solutions in gauged super-

gravities

When discussing black hole solutions in supergravity theories, one usually set to zero all fermionic fields in

the action. This allows to simplify a lot the equations of motion, which can be solved more easily. Doing this,

the four and five dimensional pure N = 2 gauged supergravity reduces to the Maxwell-Einstein theory with a

cosmological constant (and Chern-Simons term in five dimensions).

Clearly, the general black hole solutions of these bosonic theories do not preserve supersymmetry, as the

supersymmetric transformations would make non-zero fermionic fields appear. The standard way to restore

at least part of the original supersymmetry in the above black hole solutions, is to require that there exists

(at least one) killing spinor ǫ [39, 44, 45, 46]. A killing spinor is a spinorial field that satisfies the equation

δsusyψµ|ψ=0 = ∇̂µǫ = 0, which for the pure gauged supergravities described above is simply given by setting

to zero Eqs. (2.13, 2.14). If matter is present, one should require that also the susy transformation rule for all

the fermions vanishes (see e.g. [47]). To fully restore the original supersymmetry, one would need more than

one independent killing spinor, but generally one is able to restore only a fraction of it12, for example, inD = 5

gaugedN = 2 supergravity the only solution that is maximally supersymmetric is emptyAdS5 spacetime [44].

Requiring the existence of at least one killing spinor imposes some constraints on the parameters of the

solution, which usually arise from an integrability condition derived from the killing spinor equation [44, 48],

this is a necessary but not sufficient condition. As an example, in D = 4 it is given by [∇̂µ, ∇̂ν ]ǫ = Rµνǫ = 0,

whereRµν is called supercurvature, and one has to require that its determinant vanishes (Rµν is a 4× 4 matrix

in spinor space).

A different but equivalent way to derive the conditions that allow to restore supersymmetry, is to study

the Bogomol’nyi matrix obtained from the anticommutator of the supercharges13 Q evaluated on the given

solution, and in particular requiring that it admits at least one vanishing eigenvalue, from similar considerations

as in footnote 12 each vanishing eigenvalue allows to restore a fraction (1/4 in the N = 2 case) of the original

supersymmetry [11, 49]. The supersymmetric condition that is obtained in this way is a constraint on the

conserved charges, but is equivalent to the one that is obtained from the integrability condition of the killing

12Remember that in the N = 2 theories above, there are eight real supercharges that can be organized in four couples of operators

that rise/lower the spin of a state in the supermultiplet. Requiring that one killing spinor exists can naively be seen as requiring that

one of the four couples of real supercharges acts trivially on the fermions in the specific solution considered, so that once we set the

fermions to 0 they do not appear under the action of this restricted set of supercharges. In this way we restore one quarter of the original

supersymmetry per independent killing spinor .
13This is related to the integrability condition [∇̂µ, ∇̂ν ]ǫ = 0. To see this, notice that the latter is essentially [δǫ1 , δǫ2 ]ψµ = 0,

then one can interpret the gravitino ψµ as the gauge field associated with the gauging of the supersymmetry parameters. This allows

to derive the gravitino susy transformation rule from purely algebraic considerations interpreting the supergravity theory as a sort of

Yang-Mills theory [33]. It is a general feature of Yang-Mills theories that [δǫ1 , δǫ2 ]ψµ = δ[ǫ1,ǫ2]ψµ, the latter is the transformation of

the gravitino under the element [ǫ1Q, ǫ2Q] of the given superalgebra, which is related to the anticommutator of the supercharges.
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spinor, which is instead a constraint on the parameters of the solution.

An important point has to be made now. If one simply imposes the supersymmetry conditions described

above, either requiring the existence of a killing spinor or vanishing of the eigenvalues of the Bogomol’nyi

matrix, one gets a (partially) supersymmetric solution, which however, is generally a not well-behaved black

hole solution. For example, if one considers the Lorentzian solution, one usually finds that the supersymmetric

solution has a naked singularity or causal pathologies such as closed timelike curves outside of the event horizon

[11], a different kind of problem arises in the Euclidean supersymmetric solution [8].

To regulate these pathologies, one has to further constrain the solution, for example, requiring the absence

of closed timelike curves or of naked singularities will produce an additional constraint. Remarkably, the well

behaved solution obtained in this way is also extremal. In the cases we are going to study we will always find

that supersymmetric but not yet extremal solutions have naked singularities, requiring that an event horizon

exists will always imply that the solution is also extremal, and in particular that the function determining the

position of the horizons has a double root.





Chapter 3

Asymptotically AdS5 black holes in 5D,

N = 2 gauged supergravity

In this chapter, we will discuss in detail the results that we anticipated in the introduction. We are going

to consider asymptotically AdS5 rotating and electrically charged black hole solutions of 5D, N = 2 minimal

gauged and U(1)3 gauged supergravity also known as STU model. The former can be thought of as a special

case of the second one where we set the three gauge fields equal and the scalar fields to suitable constant values

[50].

As anticipated in the introduction, this supergravity theory can be obtained as a consistent truncation on S5

of type IIB supergravity onAdS5×S5 background toN = 2 supersymmetry [4], in this way the original SO(6)

isometry group of S5 is reduced to its Cartan subgroup U(1)3, which is the gauge group of the supergravity

theory we consider. By means of the AdS5/CFT4 correspondence, this supergravity is dual to a N = 4 SYM

field theory [2], if black holes are involved, the duality correlates the thermodynamics of the black hole and the

dual field theory [51, 52, 53].

The generic black hole solution admits six independent conserved charges: two angular momenta associated

with the two independent rotations along two orthogonal spatial planes1, three electric charges associated with

the U(1)3 gauge group and the energy (or mass). We will directly consider the solution with one electric charge

and two angular momenta [54] of minimal gauged supergravity, and the solution with one angular momentum

and three electric charges [50] of the U(1)3 gauged supergravity. Other non-extremal black hole solutions of

this theory with different combinations of charges can be found in [55, 56, 57].

3.1 Review of the double spinning charged AdS5 black hole solution

3.1.1 Review of the general non extremal and non supersymmetric solution

Following the conventions of [8] with non canonically normalized gauge kinetic term, the bosonic sector of

minimal 5D gauged supergravity contains the metric and the graviphoton A, gauging the R symmetry group,

the Lagrangian is given by [42, 43]:

L = (R+ 12g2) ⋆ 1− 2

3g2
F ∧ ⋆F +

8

27g3
F ∧ F ∧A, (3.1)

1we are considering asymptotically AdS5 spacetimes meaning that the asymptotic isometries are given by the SO(2, 4) group,

rotations are generated by the subgroup SO(4) which admits two commuting U(1) rotations.

19
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where g > 0 is related to the cosmological constant and it is the inverse of the AdS radius. The general (non

extremal) asymptotically AdS black hole solution with two unequal angular momenta was first found in [54],

in the conventions of [8] the solution is:

ds2 =− ∆θ[(1 + g2r2)ρ2dt+ 2qν]dt

ΞaΞbρ2
+

2q νω

ρ2
+
f

ρ4

( ∆θ

ΞaΞb
dt− ω

)2
+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
r2 + a2

Ξa
sin2 θ dφ2 +

r2 + b2

Ξb
cos2 θ dψ2, (3.2)

A =
3gq

2ρ2

( ∆θ

ΞaΞb
dt− ω

)

+ αdt, (3.3)

where:

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ,

Ξa = 1− a2g2, Ξb = 1− g2g2, f = 2mρ2 − q2 + 2abqg2ρ2,

ν = b sin2 θ dφ+ a cos2 θ dψ, ω =
a sin2 θ

Ξa
dφ+

b cos2 θ

Ξb
dψ. (3.4)

The explicit components of the metric can be found in [54], we allow for different gauge choices for the A

field parametrized by the α parameter [8]. The solution is given in terms of Boyer-Lindquist type coordinates

(t, r, θ ∈ [0, π2 ], φ ∼ φ+2π, ψ ∼ ψ+2π) which are not rotating at infinity2, and depends on the four parameters

(a, b, q,m), which must satisfy a2g2 < 1, b2g2 < 1 to avoid faster than light speed rotations of the 4D Einstein

universe on the r →∞ boundary where the dual CFT lives [52, 53].

Thermodynamics

The solution above admits four conserved charges associated with the three killing vectors (∂t → E, ∂φ →
J1, ∂ψ → J2) and one electric charge Q. The angular momenta and the electric charge can be unambiguously

evaluated by using the appropriate Komar integrals [54]. Following the conventions of [8], these quantities are

given by:

J1 =
π[2am+ qb(1 + a2g2)]

4Ξ2
aΞb

, J2 =
π[2bm+ qa(1 + b2g2)]

4ΞaΞ2
b

, Q =
πq

2gΞaΞb
, (3.5)

the calculation of the conserved energy/mass is more subtle due to the appearance of IR divergences caused

by the infinite volume of the AdS5 background, these can be removed via different procedures (background

subtraction method [52], holographic renormalization [53, 58]). In our case, the conserved energy has been

calculated by integrating the first law of BH thermodynamics [59]: dE = TdS + Ω1dJ1 + Ω2dJ2 + ΦdQ,

where the temperature, entropy, and angular/electric potentials will be defined momentarily3, the expression

for the energy that one obtains in this way is:

E =
mπ(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

. (3.6)

2Taking the large r limit of the metric (3.3), one finds [8]: ds2 ≈ dr2

r2
+ r2(− ∆θ

ΞaΞb
dt2 + dθ2

∆θ
+ sin2 θ

Ξa
dφ2 + cos2 θ

Ξb
dψ2), which can

be shown to be the metric of AdS5 as seen by a non rotating observer, in non-standard coordinates [52].
3The conserved mass has also been obtained [60] from the integration of a conserved quantityQ[K], associated with the asymptotic

killing vector K = ∂t, where Q[K] is obtained following the AMD construction from the asymptotic Weyl tensor on the conformal

boundary of the spacetime, and also more recently [8] via holographic renormalization which makes use of the boundary stress-energy

tensor. This provides a connection between the "thermodynamic" definition of the mass and its definition as the conserved charge

associated with an isometry of the spacetime.
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The other quantities are expressed in terms of the outer horizon radius r+, which is the largest real root of

∆r(r). The Killing vector that vanishes on the horizon is V = ∂t + Ω1∂φ + Ω2∂ψ, where the two angular

velocities relative to a non rotating frame at infinity are given by:

Ω1 =
a(r2+ + b2)(1 + g2r2+) + bq

(r2+ + a2)(r2+ + b2) + abq
, Ω2 =

b(r2+ + b2)(1 + g2r2+) + aq

(r2+ + a2)(r2+ + b2) + abq
, (3.7)

the Hawking temperature, proportional to the surface gravity is:

T =
r4+[1 + g2(2r2+ + a2 + b2)]− (ab+ q)2

2πr+[(r2+ + a2)(r2+ + b2) + abq]
, (3.8)

the electrostatic potential on the horizon is:

Φ = V µAµ
∣
∣r+
∞ =

3gqr2+
2[(r2+ + a2)(r2+ + b2) + abq]

, (3.9)

finally the Bekenstein-Hawking entropy of the outer horizon is:

S =
π2[(r2+ + a2)(r2+ + b2) + abq]

2ΞaΞbr+
. (3.10)

These quantities obey the first law of thermodynamics by construction

dE = T dS +Ω1 dJ1 +Ω2 dJ2 +Φ dQ, (3.11)

the fact that we can integrate the first law to get the energy depends crucially on the definition of S as one

quarter of the area of the outer horizon4.

Finally, one can define a grand-canonical potential TI for the thermal ensemble at fixed chemical potentials,

from the principles of Euclidean quantum gravity this is calculated from the Euclidean on-shell action I [61].

The Euclidean on-shell action I should be evaluated on the regular Euclidean section from r+ to infinity,

where the metric should be kept real and positive definite. Following [8, 60], this can be achieved by first

performing the Wick rotation t → −iτ , then the additional analytic continuation5 a, b → ia, ib allows to

recover a real Euclidean metric, the m, q parameters remain real.

Regularity can be achieved by studying the near horizon Euclidean metric which, from [8, 54], is:

ds25 ≈
4ρ2

∆′
r

[

dR2 +R2

(
2π

β

)2

dτ2
]

+
ρ2

∆θ
dθ2 + gφφ(dφ+ iΩ1dτ)

2 + gψψ(dψ + iΩ2dτ)
2

+ 2gφψ(dφ+ iΩ1dτ)(dψ + iΩ2dτ), (3.12)

where R2 = r − r+, and notice that after the analytic continuation of the (a, b) parameters, iΩi are real.

(R, τ) parametrize an R2 plane in polar coordinates, and the spacetime comes to an end on the horizon at

the origin of this plane atR = 0. A conical singularity atR = 0 is avoided if one performs the standard thermal

identifications τ ∼ τ + β. Moreover, the presence of rotation, and of the mixed dtdφ and dtdψ terms requires

4Other definitions of S as a monotonically increasing function of A would not produce a closed differential on the RHS of Eq.

(3.11), which would not be exact either.
5After the wick rotation, the dtdφ and dtdψ terms in the metric become imaginary, by making also a, b imaginary one recovers a

real Euclidean metric. Notice that as m, q remain real, the gauge field necessarily remains imaginary in Euclidean signature.
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us to impose the following identifications [61], when one goes around the Euclidean time circle:

(τ, φ, ψ) ∼ (τ + β, φ− iΩ1β, ψ − iβΩ2). (3.13)

A regularity condition also has to be imposed on the gauge field. As the Euclidean time circle shrinks to a

point atR = 0 one has to require that the component of the gauge field along the direction that shrinks vanishes.

However, it is not sufficient to require that ι∂tA
∣
∣
r→r+

= 0 because when one goes around the time circle, one

also moves along the (φ, ψ) directions due to rotation.

To see what the correct regularity condition is, one can introduce the coordinates [8]:

τ = τ̂ , φ = φ̂− iΩ1τ̂ , ψ = ψ̂ − iΩ2τ̂ , (3.14)

in this way, the mixed φ, ψ/t terms in the near horizon metric (3.12) disappear, and the regularity conditions

that one has to impose are the standard "untwisted" identifications: (τ̂ , φ̂, ψ̂) ∼ (τ̂ + β, φ̂, ψ̂).

A rotation along the Euclidean time circle is now not accompanied by rotations along the φ̂,ψ̂ directions in

the near horizon limit, hence the regularity condition for the gauge field is: ι∂τ̂A
∣
∣
r→r+

= ιVA
∣
∣
r→r+

= 0, where

one can easily see that the killing vector V that vanishes on the horizon is simply V = i∂τ̂ in these coordinates.

It is easy to see that this condition on the gauge field can be implemented by performing a gauge transfor-

mation and fixing the α parameter in Eq. (3.3) as [8, 61]:

ιVA
∣
∣
r→r+

= 0 ⇐⇒ α = −Φ. (3.15)

From the real, positive definite metric on the regular Euclidean section outside the horizon, one computes

the on-shell action, which provides the semiclassical approximation of the full quantum gravity theory, and in

particular of the grand-canonical partition function6 Z = e−I . It then follows that TI can be considered as the

grand-canonical potential.

The calculation of the Euclidean on-shell action was first performed by [60], who removed the long range

divergences appearing in the calculation of the integral using the background subtraction method.

The result they found was:

I =
πβ

4ΞaΞb

[

m− g2(r2+ + a2)(r2+ + b2)− q2r2+
(r2+ + a2)(r2+ + b2) + abq

]

, (3.16)

and one can show using Eqs. (3.5) to (3.10) that the quantum statistical relation (QSR) is satisfied in the form:

T I = E − S − Ω1 J1 − Ω2 J2 − ΦQ, (3.17)

justifying that TI is indeed the grand-canonical potential.

As a final remark, remember that the angular velocities and the electrostatic potential relevant for the

thermodynamics, must be considered relatively to the observer at infinity [53, 59]. The metric (3.3) is non

rotating at infinity, so the angular velocities of the horizon in Eqs. (3.7) are already the ones entering the

thermodynamics.

6The thermal identifications (3.13) imply that a Euclidean QFT on this geometry describes thermal states at finite T and Ω1,2. To

see why we also have a fixed electrostatic potential Φ one should look at the transformation properties of charged correlators when

τ → τ + β. However, as the graviphoton and the graviton are both neutral, these transformation properties do not appear on the metric

or the gauge field. Alternatively, one notices that the regularity condition implies that α = −Φ meaning that any matter outside the

horizon is immersed in the same electric potential as the black hole. Moreover, the boundary gauge filed readsAbdry = iΦdt, meaning

that the thermodynamics of the black hole should be matched to one of the dual CFT at fixed electrostatic potential.
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3.1.2 Supersymmetry and BPS solutions

Following the discussion in Sec. 2.4, to restore at least part of the supersymmetry, one has to impose

additional constraints on the parameters of the theory. In particular, on supersymmetric solutions one has to

impose that a solution of the killing spinor equation δsusyψµ = 0 exists [44]. In this case, it turns out that the

solution admits one killing spinor, hence restoring one quarter of the total supersymmetry, if the parameters

satisfy the constraint:

q =
m

1 + ag + bg
, (3.18)

the same condition was obtained in [54] following the discussion of [11], by requiring that the Bogomol’nyi

matrix evaluated on the solution admits at least one vanishing eigenvalue, for this solution only one eigenvalue

can be set to zero at a time (other cases are related by changing the signs of the parameters), this produces the

following constraint on the conserved charges (which can be shown to be the same as Eq. (3.18)):

E − gJ1 − gJ2 −
3

2
gQ = 0, (3.19)

Purely supersymmetric solutions are in general non physical due to the appearance of closed timelike curves

(CTCs) [11, 54] and naked singularities in the Lorentzian solution or, if one passes to Euclidean signature,

because one needs to consider a complexified family of solutions characterized by a complex value of the

charges and potentials (See [8] in particular Sec.3.1 and appendix A). Either requiring the absence of CTCs and

naked singularities in the Lorentzian solution, or to have a real value for the charges and chemical potentials in

the Euclidean case, one must impose the additional constraints on the parameters

m =
1

g
(a+ b)(1 + ag)(1 + bg)(1 + ag + bg), (3.20)

a+ b+ abg > 0, (3.21)

the solution that one gets in this way can be shown to be also extremal. We will refer to "BPS" solution as the

one for which both supersymmetry and extremality are realized.

BPS solutions have a fixed value of all the chemical potentials7:

β →∞, Ω1 → Ω⋆1 = g, Ω2 → Ω⋆2 = g, Φ→ Φ⋆ =
3

2
g. (3.22)

The condition ∆r(r) = 0 can now be easily solved and gives as largest root:

r⋆ =

√
1

g
(a+ b+ abg), (3.23)

which is real due to Eq. (3.21), the conserved charges and entropy then reads:

J⋆1 =
π(a+ b)(2a+ b+ abg)

4g(1− ag)2(1− bg) , J⋆2 =
π(a+ b)(a+ 2b+ abg)

4g(1− ag)(1− bg)2 , Q⋆ =
π(a+ b)

2g2(1− ag)(1− bg) ,
(3.24)

S⋆ =
π2(a+ b)r⋆

2g(1− ag)(1− bg) = π

√

3(Q⋆)2 − π

g3
(J⋆1 + J⋆2 ), (3.25)

the energy can be obtained from the supersymmetry condition on the charges Eq. (3.19), while the other three

charges are not all independent, remember that the BPS solution has only two free parameters left, hence only

7In the BPS solution we only impose two conditions on the parameters (3.18, 3.20), so one may expect that only two chemical

potentials are fixed. However, a consistent BPS partition function can be obtained only via a specific limit of all chemical potentials,

which enforces the constraint (3.19) and allows to have states with non-zero statistical weight despite β → ∞ [62].



24 Chapter 3. Asymptotically AdS5 black holes in 5D, N = 2 gauged supergravity

two charges are independent. Indeed, a non-linear relation for the conserved charges can be found and is given

by:

(Q⋆)3 +
2π

g3
J⋆1J

⋆
2 =

(

3Q⋆ +
π

2g3

)(

3(Q⋆)2 − π

g3
(J⋆1 + J⋆2 )

)

, (3.26)

as anticipated in the introduction, this condition will turn out to be equivalent to the area product formula, when

considered in the BPS limit. In anticipation of the explicit check of this fact, notice that in the RHS of Eq.

(3.26) appears the BPS entropy squared (S⋆)2. We will return to this important point later.

3.1.3 BPS limit of black hole thermodynamics

In this section, we will give a review on how to get a consistent BPS thermodynamics, using the complex-

ified family of supersymmetric and Euclidean solutions introduced by [8]. As anticipated in the introduction,

this will also provide the basis to derive the extremization principle.

As a starting point, notice that the temperature vanishes and β → ∞ in BPS solutions due to extremality.

This makes quantities like I (3.16) diverge making the thermodynamics in the BPS solution apparently ill-

defined. Notice however, that the grand-potential T I should remain finite, suggesting that it is possible to

define a consistent thermodynamics in the extremal limit, where a quantum statistical relation should still hold.

However, remember that BPS solutions also require to impose supersymmetry. This makes all the chemical

potentials take a fixed value in the BPS solution (3.22). This means that if we want to study the grand-canonical

thermal ensemble for the BPS black hole, we cannot use the chemical potentials (3.22) as thermodynamic

variables.

A possible solution for these problems, and especially for the triviality of the chemical potentials (3.22), has

been explored by some authors [8, 62]. The key idea is to consider the BPS solution via a limiting procedure

along a specific trajectory in the parameter space, this is usually chosen to be non extremal so that to avoid

the divergence of β but preserving one of the two conditions which define the BPS solution. For example [8]

considered a trajectory preserving supersymmetry, while [62] considered a trajectory preserving the condition

q = q⋆ (3.18), parametrized via a parameter µ such that m = m⋆ + µ, so that the BPS solution is obtained

in the µ → 0 limit (q⋆ and m⋆ are the BPS parameters obtained by (3.18, 3.20)). As was pointed out in [8]

there are actually infinite possible trajectories that one can consider, because the BPS solution is obtained by

imposing two independent conditions.

By doing things carefully, one is able to define a non trivial thermodynamics for the BPS solution in this

limit, and particularly to define some modified chemical potentials that remain non-trivial in the BPS limit, this

also allows to remove any possible divergences caused by β.

As anticipated, we will follow [8]. We first need to consider supersymmetry alone, which means that we

must impose the constraint, setting g = 1:

q =
m

1 + a+ b
, (3.27)

it is convenient to parametrize the supersymmetric trajectory using as a parameter the outer horizon radius r+,

this can be done by trading m with r+ using Eq. (3.60), obtaining a relation m = m(r+), inserting this relation

in the supersymmetric constraint (3.27) one gets a quadratic equation in q with solutions:

q = −ab+ (1 + a+ b)r2+ ± ir+(r2+ − r⋆2) , (3.28)

remember that r2⋆ = a+ b+ ab, is the BPS value of the outer horizon radius.

In [8] it was chosen to keep r+ positive and real, then one must necessarily promote q to a complex pa-
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rameter, unless one is exactly considering the BPS solution8 r+ = r⋆. This happens because in the pure

supersymmetric case, positive real solutions of the ∆r = 0 condition do not exist, and hence there is not an

outer horizon. This will be explicitly checked later.

A complex q (but also m) parameter implies that also the metric and the gauge field are complex, so effec-

tively one is considering a complexified family of solutions parametrized by the real parameter r+. This would

not be allowed in Lorentzian signature, however, one finds that these solutions formally satisfy the requirement

of preserving supersymmetry (a killing spinor exists also in this complexified background) provided that one

rotates to Euclidean signature [8]. These solutions are clearly unphysical, as one realizes by considering the

Lorentzian solution, but are nevertheless useful as they reduce to the physical BPS solution in the r+ → r⋆

limit, in such a way that one is able to obtain a consistent thermodynamics in the limit. Moreover, some relevant

quantities will take a particularly simple form if supersymmetry is first imposed.

Moving on, the next step is to rewrite the chemical potentials and the conserved charges of the supersym-

metric solution in terms of the (a, b, r+) parameters:

Ω1 =
(1± ir+)(r⋆2 ∓ iar+)
(a± ir+)(r⋆2 ∓ ir+)

, Ω2 =
(1± ir+)(r⋆2 ∓ ibr+)
(b± ir+)(r⋆2 ∓ ir+)

, Φ =
3

2

r+(r+ ∓ i)
r⋆2 ∓ ir+

,

T =
(r⋆2 − r2+)[2(1 + a+ b)r+ ∓ i(r⋆2 − 3r2+)]

−2π(a± ir−)(b± ir−)(r⋆2 ∓ ir−)
, (3.29)

the supersymmetric chemical potentials of the outer horizon are now complex, the sign ambiguity is related to

the one in Eq. (3.28). When r+ → r⋆, the chemical potentials become real and take the fixed values (3.22).

Similarly, the conserved charges and entropy take the form:

J1 =
π(2a+ b+ ab)

4(1− a)(1− a2)(1− b2)
[
−ab+ (1 + a+ b)r2+ ∓ ir+(r⋆2 − r2+)

]
,

J2 =
π(a+ 2b+ ab)

4(1− b)(1− a2)(1− b2)
[
−ab+ (1 + a+ b)r2+ ∓ ir+(r⋆2 − r2+)

]
,

Q =
π

2(1− a2)(1− b2)
[
−ab+ (1 + a+ b)r2+ ∓ ir+(r⋆2 − r2+)

]
,

E = J1 + J2 +
3

2
Q, S =

π2(a± ir+)(b± ir+)(∓ir⋆2 − r+)
2(1− a2)(1− b2) , (3.30)

again, the charges are complex unless r+ = r⋆ in this case they take the BPS value (3.24).

Finally, one can show that the chemical potentials in Eqs. (3.29) satisfy the following constraint:

β(1 + Ω1 +Ω2 − 2Φ) = ∓2πi, (3.31)

this is one of the results anticipated in the introduction (1.1).

Eq. (3.31) is a consequence of the fact that we are reducing the number of independent parameters by

imposing the supersymmetry constraint (3.27), this is also reflected in the chemical potentials, which are not

all independent. The same is true for the charges Eq. (3.19). If one chooses different trajectories that satisfy

different conditions one would still find some conditions that would be different from (3.31, 3.19) (see [8]).

Condition (3.31) appears frequently in the discussion of supersymmetric black holes, and in [8] it was

shown to be related to a regularity condition of the killing spinor near the outer horizon in Euclidean signature.

8As we are using r+ as parameter for the supersymmetric trajectory, then in the limit r+ → r⋆ one obtains the BPS solution where

all physical quantities must be real.
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New chemical potentials

We have not solved the problem of finding a set of suitable chemical potentials, that allows to non-trivially

describe the thermodynamics in the BPS limit, yet.

Following [8, 62], these quantities are given by:

ω1 = β(Ω1 − Ω⋆1), ω2 = β(Ω2 − Ω⋆2), φ = β(Φ− Φ⋆),

ω1 + ω2 − 2φ = ∓2πi, (3.32)

one can explicitly check that, in the BPS limit r+ → r⋆ equivalent to T → 0, the quantities in Eq. (3.32) take

a non-trivial value in terms of the parameters (a, b) 9:

ω⋆i (a, b) = lim
r+→r⋆

ωi(r+, a, b), φ⋆(a, b) = lim
r+→r⋆

φ(r+, a, b), ω⋆1 + ω⋆2 − 2φ⋆ = ∓2πi, (3.33)

the explicit expressions are not important and can be found in [8].

Remarkably, using the new variables (3.32) the supersymmetric Euclidean on-shell action I can be rewritten

as:

I =
2π

27

φ3

ω1ω2
, (3.34)

this is the supersymmetric Euclidean on-shell action appearing in the entropy function (1.2).

The rather simple and homogeneous expression (3.34) is a peculiarity of having chosen to preserve super-

symmetry. If instead one considers a different trajectory to define the BPS limit, one would generally get a more

complicated expression for the Euclidean action I which cannot be easily rewritten in terms of the variables

(ωi, φ), this will turn out to be very important later.

In terms of the new variables (3.33), the QSR can be rewritten as follows:

I = −S − ω1 J1 − ω2 J2 − φQ. (3.35)

Notice that the dependence on β has disappeared, and one can safely take the extremal limit T → 0 in

the above quantities. Moreover, in this limit, the quantities (3.32) take a non-trivial value in terms of the (a, b)

parameters, which means that we can obtain a well defined and non-trivial BPS on-shell action I and QSR.

Essentially Eqs. (3.34, 3.35) still holds when considering the "star" BPS quantities.

It has been argued in [8] that the quantities in Eq. (3.33) can be interpreted as the chemical potentials

associated with the Ji, Q charges, once β is interpreted as the conjugate variable to the charge associated with

the supersymmetric Hamiltonian {Q, Q̄} = E − J1 − J2 − 3
2Q.

This interpretation can be demonstrated by performing the extremization principle, which consists in eval-

uating the Legendre transform of the action I (which is interpreted as the grand-potential) with respect to the

(ωiφ) variables, in order to obtain the entropy as a function of the charges S(Ji, Q). This can formally be

done without taking the BPS limit, which instead can be derived by imposing reality of the relevant physical

quantities, such as the entropy and the charges10.

In practice, one needs to remember that the chemical potentials, both in the supersymmetric and not ex-

tremal and in the BPS solution, are not independent but satisfy the constraint (3.33) meaning that they cannot

be varied independently. To solve the problem, one can either parametrize (ωi, φ) in terms of three auxiliary

9From their definition, it is easy to realize that (ω⋆
i , φ

⋆) are the sub-leading order terms in the expansion of the chemical potentials

(Ωi,Φ) around the BPS value Ω = Ω⋆
i + 1

β
ω⋆
i and similarly for the electrostatic potential.

10Notice that contrary to the charges and entropy, the supersymmetric chemical potentials (ωi, φ) remain complex even in the BPS

solution.
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variables in such a way that the constraint (3.33) is automatically satisfied, and then consider variations of these

auxiliary parameters [12], or add a Lagrange multiplier Λ which enforces the constraint [8].

What we have just described is precisely the extremization principle that we anticipated in the introduction.

As promised, we are now going to review how it is carried out, following [8].

3.1.4 The extremization principle

From what we have said above, the entropy (as a function of the charges) can be obtained from the following

constrained Legendre transform:

S(Q, J1, J2) = ext{ωi,φ,Λ}
[

−I(ωi, φ)− ω1 J1 − ω2 J2 − φQ− Λ
(
ω1 + ω2 − 2φ± 2πi

)]

, (3.36)

notice the appearance of the entropy function as anticipated in the introduction (1.2), plus the Lagrange multi-

plier Λ enforcing the constraint (3.33). Notice also that we have not taken the BPS limit yet, meaning that we

are formally dealing with a complex value of the charges and the entropy.

The extremization is carried out as usual by evaluating the RHS after having expressed the chemical poten-

tials and the Lagrange multiplier in terms of the charges, this is done by solving the extremization equations:

∂I

∂ωi
= −Ji − Λ,

∂I

∂φ
= −Q+ 2Λ, ω1 + ω2 − 2φ = ∓2πi, (3.37)

notice that as the action I (3.34) depends only on the chemical potentials, one can easily solve the extremization

equations by means of some algebraic manipulations. One would have to do much more calculations if I would

have been expressed in terms of the (a, b, r+) parameters, as it generally happens when a different trajectory is

chosen. The expressions of the chemical potentials in terms of the charges and λ can be found in [8] and will

not be needed here.

Obviously, one of the equations in (3.37) has to be used to find Λ as a function of the charges, it is however

much simpler to notice that the following identity holds:

(
∂I

∂φ

)3

−2π
(
∂I

∂ω1

)(
∂I

∂ω2

)

= 0 −→ (−Q+ 2Λ)3 − 2π(J1 + Λ)(J2 + Λ) = 0, (3.38)

this is the cubic equation for Λ anticipated in the introduction (1.3):

Λ3 + p2Λ
2 + p1Λ + p0 = 0, (3.39)

with coefficients:

p0 = −
1

8

(
Q3 + 2πJ1J2

)
, p1 =

1

4

(
3Q2 − π(J1 + J2)

)
, p2 = −

1

2

(

3Q+
π

2

)

, (3.40)

remember that these coefficients are complex, as the charges in the non extremal solution are also complex.

For the purpose of finding the entropy S = S(J1, J2, Q), it is sufficient to only consider the solution of

(3.39) Λ = Λ(J1, J2, Q), the reason is that the entropy is proportional to Λ. To see this, notice that I is an

homogeneous function of degree 1 of the chemical potentials, then by using the Euler theorem one finds that:

I = ωi
∂I

∂ωi
+ φ

∂I

∂φ
= ωi(−Ji − Λ) + φ(−Q+ 2Λ), (3.41)

inserting this into (3.36) one finds:

S = extΛ
[
±2πiΛ

]
, (3.42)
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where Λ has to be taken from the solutions of (3.39).

This discussion also allows us to see what conditions we should impose to obtain a physical solution,

particularly from Eq. (3.42) we see that a physical real value for the entropy can be obtained if Λ is purely

imaginary, this is always true if the following condition on the coefficients of the cubic polynomial (3.39) is

satisfied:

p0 = p1p2, (3.43)

moreover, one should require that the charges are all real. In this way, the cubic polynomial factorizes as

follows:

(Λ2 + p1)(Λ + p2) = 0, (3.44)

meaning that there are two conjugated imaginary roots given by Λ = ±i√p1, choosing the one that produces a

positive entropy from Eq. (3.42) one finds:

S = 2π
√
p1 = π

√

3(Q)2 − π(J1 + J2), (3.45)

which is real provided that the charges are real and exactly correspond to the expression for the BPS entropy

that we have found before (3.25), with g = 1.

Moreover, notice that the condition (3.43) which allows to get a real entropy, is exactly the BPS non-linear

constraint (3.26), once we explicitly write the pi coefficients in terms of the charges. This means that in this

way we are truly reproducing the entropy of the BPS solution as we have already imposed supersymmetry, and

the BPS non-linear constraint is an equivalent way to express the extremality condition (3.20).

Actually, the full BPS thermodynamics is reproduced, as one may check that the expressions for (ω⋆i , φ
⋆)

(3.33) are the saddles that solve the extremization equations (3.37), once we substitute Λ = Λ(J⋆1 , J
⋆
2 , Q

⋆) and

we rewrite the BPS chemical potentials and the BPS charges in terms of the (a, b) parameters.

As pointed out in [8] this is a non-trivial result as one has to consider a specific BPS limit along a trajectory

which preserves supersymmetry. Precisely supersymmetry allows to obtain the constraint (3.32) and the super-

symmetric Euclidean on-shell action (3.34) in the simple form that we have shown. This is crucial to obtain the

results that we have discussed above.

As anticipated in the introduction the extremization principle has been considered in many other classes of

black holes (See [6, 15, 16, 18]).

To conclude the actual review of the known results about this black hole solution (that are relevant for us)

we should address the universal area product formula of [32]. However, we find more useful to first introduce

the notion of physical and virtual (or "complex") horizons that we will use throughout all our work. This will

make it much easier to correctly interpret the universal area product formula, and also to understand our first

main results regarding the area product formula and the BPS non-linear constraint (3.26).

3.2 Properties of the general horizons for the single charged, double spinning

black hole solution

Let us now consider the properties of the general horizons of the above black hole solutions. We start by

first clarifying what these general horizons are, and how we interpret them. Next, we derive a formula for the

inner virtual horizon entropy as a function of the charges S⋆−(Q
⋆, J⋆1 , J

⋆
2 ) valid in the BPS limit11. This allows

us to explicitly show the equivalence of the universal area product formula and the BPS non-linear constraint

11It is understood that by "extremality" we always mean vanishing of the outer horizon temperature. To avoid confusion, we clarify

right away that we will never consider "extremality" in terms of vanishing of the inner horizons temperature.
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(3.26). We then derive a set of thermodynamic quantities for each horizon, discussing the symmetry that relates

the horizons. Using this symmetry, we prove the validity of the first law of thermodynamics for each horizon,

and give a proposal for a definition of a grand-canonical potential for each horizon thermodynamics. This is

equivalently obtained by imposing the validity of the QSR. We will not give an independent derivation of these

generalized grand-potentials, accordingly, we will not rely much on them.

Based on these considerations, we conclude that the extremization principle of Sec. 3.1.4, can be pro-

moted to a universal extremization principle. In doing so, we derive the BPS entropies of all horizons from

one calculation, and provide an independent derivation of the area product formula. In this framework, the

equivalence between the area product formula and the BPS non-linear constraint is explained and is related to

the factorization condition (3.43).

The results that we are going to prove represent our original contribution in the study of the above black

hole solution.

3.2.1 Physical and virtual horizons

Following [32], we will consider as "horizon" any constant ri hypersurface, where ri is any root of the

∆r radial function, being it real or complex. Hence the terms "horizon" or "root of ∆r" can then be used

interchangeably.

Formally, any horizon defined in this way is a null hypersurface (grr = ∆r
ρ2

vanishes if evaluated at ri), and

it exists a killing vector V = ∂
∂x0

, in an appropriate coordinate system, whose norm vanishes on all the horizons.

To check this one has to consider the gt′t′ component of the metric (in the appropriate coordinate system where

V = ∂
∂x0

), and evaluate it at r = ri. One realizes that gt′t′(ri) = 0 whenever it holds ∆r(ri) = 0, which is

the definition of a general horizon. This is an instance of the symmetry that relates the horizons, the idea is

that in many cases it is only needed that ∆r(ri) = 0 is satisfied to perform a given calculation, this does not

distinguish the horizons, which are then treated symmetrically.

An important comment has to be made now. Despite some horizons are associated with an imaginary,

or even complex, root ri this will generally not represent an obstruction for our calculations, which however

should be treated as formal. An example has been given above when we stated that virtual horizons can be

seen as null hypersurfaces at constant ri. Despite being formally true (grr vanishes regardless of the fact that

ri can be complex), this implies to consider the metric for complex values of the radial coordinate, and hence

consider an analytically continued solution (equivalently one can keep a real radial coordinate and complexify

the parameters of the solution [8]). As already said in footnote 4, we are interested in considering these complex

horizons as formal loci satisfying the ∆r = 0 condition, and in studying the properties of the generalized

(complex) thermodynamics that can be defined for them. We are not going to directly address the problem of

giving a physical interpretation for the complex horizons, and simply make some comments about it.

A similar discussion holds also for the various thermodynamic quantities that we are going to derive for

them, which should be thought of as formal quantities. These quantities can be derived by simply using the

properties of the ∆r function and the symmetry that relates the horizons, starting from those of the outer

horizon. However, these quantities are the same that one would derive by studying the complexified metric

(e.g. by studying the near horizon metric).

In the following, we will refer to the complex horizons as virtual or inner horizons, while by physical

horizons we mean the event or Cauchy horizons associated with real and positive roots of ∆r.

Let us now quickly discuss what kind of horizons we may expect for the present black hole, we need to

study the solutions of ∆r(r) = 0 (Eq. (3.4)) whichis a cubic polynomial in the r2 variable12 meaning that there

12The metric (3.3) depends only on r2, hence it enjoys a symmetry under exchange of r → −r with curvature singularity located at
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are three horizons. In Fig. 3.1, the curves ∆r = 0 are depicted in the (r2,m) plane for a fixed value of the

other parameters, whose specific value does not change the qualitative behaviour shown.

When m > mext there are two physical horizons associated with the r2+ > r20 ∈ R+ roots, while a virtual

horizon always exists and is associated with the r2− < 0 root. For this reason this black hole solution is special,

because the virtual horizon appears for a purely imaginary value of r−, or better, a negative value of r2− (and

not for a genuine complex r−). Notice that when m = q = 0, the inner horizon is associated with the root

r2− = − 1
g2

, meaning that an inner horizon is present also in pure AdS5 space. This can be trivially seen by

considering that the metric (3.3) reduces to the one of AdS5 space if one sets m = q = 0 and performs a

suitable change of coordinates, which essentially removes the dependence on the (a, b) parameters [52]

ds2AdS5
= −(1 + g2r2)dt2 +

dr2

(1 + g2r2)
+ r2dΩ3, (3.46)

if we allow for r2 < 0, a virtual horizon appears at r2 = − 1
g2

.

If one wants to take seriously the spacetime at r2 < 0, one may first notice that the metric (3.46) has sig-

nature (−,+,−,−,−) for small values of |r2| and (+,−,−,−,−) for large values of |r2|. When r2 becomes

negative the signature of the metric changes, this happens because one has to cross the r2 = 0 point where the

metric degenerates. One could interpret these two sections as separate spacetimes which both solve the Einstein

equations and are connected to different spatial infinities for r2 → +∞ or r2 → −∞, the latter happens to also

contain an event horizon. This observation could be relevant to give a physical meaning to the virtual horizon.

We can immediately realize that the inner horizon is characterized by an imaginary value of the area (or

entropy with abuse of terminology). This immediately follows if one generalizes the formula of the entropy for

the outer horizon (3.10), for r2− < 0. Instead, interpreting the virtual horizon as a genuine hypersurface, one

may notice that the determinant of the metric induced on the (θ, φ, ψ) coordinates:

det(g|θ,φ,ψ) =
(
ab(ab+ q) + (a2 + b2)r2 + r4

)2
cos2 θ sin2 θ

(1− a2g2)2(1− b2g2)2r2 , (3.47)

is negative as soon as r2 < 0. The area of the inner horizon evaluated at r− is therefore necessarily imaginary13.

Notice that at r2− = −g−2 the above determinant takes the value det(g|θ,φ,ψ) = − 1
g6

cos2 θ sin θ2, which

formally is the surface element of a three-sphere of radius r− = i
g .

As a final comment, notice that if one wants to consider the extension of the black hole metric (3.3) for

r2 < 0 seriously, one has to face the problem that a new curvature singularity appears. Indeed, the function

ρ2 = r2 + a2 cos θ2 + b2 sin θ2 can now vanish, producing some divergences in the metric. This is actually

a genuine curvature singularity as one can see that the Ricci scalar diverges when ρ2 = 0. Indeed, taking the

trace of the Einstein equations, one gets the following expression for the Ricci scalar:

R =
1

12
F 2 − 20g2 −→ R = −

(

20g + 2q2
∆2
θ

ρ4

)

, (3.48)

however, one can show that the inner horizon never touches this new curvature singularity, as it holds:







ρ2 = 0

r2+ + r20 + r2− = −(a2 + b2 + g−2)
−→







r2 = −a2 cos2 θ − b2 sin2 θ
r2− < −(a2 + b2)

−→







|r2| < a2 + b2

|r2−| > a2 + b2
.

(3.49)

r = 0 [55], it is then reasonable to consider r2 rather than r as a more natural radial coordinate.
13One may argue that one should consider the root of the modulus of the determinant of the metric so that a real value for the area is

re-established. This however breaks the symmetry under exchange of horizon radius ri.
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As we have already said, we will not elaborate more on these considerations.

Figure 3.1: The solid lines represent the curves ∆r(r
2;m) = 0 in the (r2,m) plane (for them the vertical axes represents

m), for a fixed value of the other parameters and g = 1. The qualitative behaviour is not influenced much by the specific

value of the parameters. The different colors differentiate the three horizons, one can recognize the extremal solution,

where r20 = r2+. Notice that an inner horizon r2− < 0 always exists , even when m = 0 as we have previously observed.

The dashed curves instead represent the behaviour of the temperature T (r2, a, b, q) Eq. (3.8), where r2 should be thought

of as one of the horizons radii, substituting m via Eq. (3.60) (for this curve the vertical axes represents T ). When r2 < 0
the imaginary part of T is shown, as the temperature is imaginary in this case. The specific value of the temperature, for

a fixed value of the m parameter, of the three horizons is shown, again the colours differentiate the three horizons. Notice

that at the extremal configuration, the temperature vanishes as expected, and is negative for the intermediate horizon.

3.2.2 Inner horizon radius and area in the BPS limit

Let us now consider again the supersymmetric and extremal (BPS) solution, we are interested in finding an

expression for the area of the inner horizon in terms of only the conserved BPS charges. From now on, we will

use "area" and "entropy" interchangeably assuming that S = A
4 . Remember that the expression for A− in the

general solution is given by Eq. (3.10) with r− substituting r+. The idea now is to determine r− in terms of the

parameters (a, b,m, q), in this way one gets A−(a, b,m, q) and then use the definition of the conserved charges

to write A−(E, J1, J2, Q). In the BPS solution this can be easily done.

Notice that by rewriting the radial function ∆r as:

r2∆r(r) = (r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq − 2mr2 = g2
2∏

i=0

(r2 − r2i ), (3.50)

one can obtain a system of equations that determine the horizon radii ri:







r2+ + r20 + r2− = −(a2 + b2 + g−2)

r2+r
2
0 + r20r

2
− + r2−r

2
+ = g−2(a2 + b2 + a2b2g2 − 2m)

r2+r
2
0r

2
− = −g−2(ab+ q)2

, (3.51)

in the BPS case, this system can be solved analytically in terms of the two independent parameters (a, b),

remember that q and m are fixed by Eqs. (3.18, 3.20), and are real being the BPS solution physical.
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The BPS values of the inner and outer horizon radii are given by:

r⋆ =

√
1

g
(a+ b+ abg) , r⋆− = ± i

g
(1 + ag + bg) , (3.52)

inserting this result in the formula for A−, after some algebraic , one can prove that in the BPS limit it holds:

A⋆− = − 2π2i

(1− ag)(1− bg)g3
[

(1 + ag + bg) + g(a+ b+ abg)
]

, (3.53)

where we have chosen the plus sign in the expression for r⋆− (3.52), the other sign choice can be obtained by

sending i→ −i. As expected A⋆− is imaginary as a, b, g are real.

Finally, using the definition of Q⋆ (3.24) one is able to find the following expression for A⋆−:

A⋆− = −4πi
(

3Q⋆ +
π

2g3

)

, (3.54)

notice that A⋆− depends only on Q⋆ and not on the angular momenta as we might have expected, and receives

a constant contribution from the cosmological constant parameter g. This contribution survives in the Q⋆ = 0

case where a = b = m = q = 0 and the metric trivially reduces to the one of static AdS5 spacetime (3.46),

which has a virtual horizon at r2 = −g−2 as we have seen before. A direct computation of the area of this

virtual horizon in AdS5 spacetime gives exactly A− = −2π2i
g3

, which is the area of an S3 sphere of radius

r = ig−1. It is not clear what the meaning of this contribution is, and whether it can be thought of as a

contribution from empty AdS5 spacetime. However, this observation might be an indication that we have to

consider the spacetime with r2 < 0 more seriously.

Notice also that the BPS value of the virtual horizon area (or entropy)(3.54) is quantized in terms of the

electric charge, at the quantum level. This may indicate the possibility of finding a microscopic interpretation

for this quantity, which could also explain why it turns out to be independent on the angular momenta J⋆1 , J
⋆
2 .

One could have somehow expected a similar result for A⋆−, indeed, the BPS solution is described by only

two independent parameters so it is natural to expect that BPS quantities depend only on (Q, J1, J2) up to the

BPS non-linear condition. The only non trivial result in this sense is that we are actually able to invert the

relations that define the charges, in terms of the other parameters, in a closed manner. This is easily done by

noticing that one can obtain the following relations:

r⋆ =
π
√

3(Q⋆)2 − π(J⋆1 + J⋆2 )

πQ⋆
, r⋆− = i

Q⋆(12Q⋆ + π)− 2π(J⋆1 + J⋆2 )

Q⋆(π + 4Q⋆)
, (3.55)

from which one can obtain all other quantities in terms of the conserved charges, remembering the dependence

of r⋆ and r⋆− on a and b, and from this all the results that we have found above follow.

3.2.3 Universal area product

We will now consider the area product formula obtained by [32], let us first give a review of how it can be

derived in the general solution, and then discuss its implications when considering the BPS solution.

Following [32] one notices that the radial function ∆r can be rewritten as in (3.50), this allows us to

calculate products of the form
∏

i(c
2 − r2i ) = g−2r−2∆(c) which appear in the product of the three areas.

To exploit this observation, one rewrites the horizon areas as [32]:

Ai =
2π2[(r2i + a2)(r2i + b2) + abq]

ΞaΞbri
= −2π2(2m+ abqg2)

ΞaΞb(1 + g2r2i )ri

[
q(q + ab)

2m+ abqg2
− r2i

]

, (3.56)
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the product of the areas can then be computed in terms of the parameters (a, b, q,m) using Eq. (3.50) to trade

products of the roots ri. Then, using the expressions for the conserved charges (3.5) one can show that the

product of the areas can be rewritten in terms of only the (J1, J2, Q) charges, and takes the expression14:

A+A0A− = −i(4π)3
(

Q3 +
2π

g3
J1J2

)

, (3.57)

this result holds for the general non supersymmetric and non extremal solution.

Even if we will not use much this fact, it is important to stress that the product of the areas does not depend

on the mass of the solution, as we have discussed in the introduction.

Equivalence between the universal area product and the BPS non-linear condition in the BPS limit

We are finally ready to prove one of the main results of this thesis. Consider the universal area product

found above (3.57), in the BPS solution the areas of the physical horizons are equal A⋆0 = A⋆+ = A⋆ and can

be rewritten in terms of only the BPS charges using (3.25). We also found that the inner horizon BPS area A⋆−
is a function of the BPS charges (3.54), if one inserts these informations in the area product formula one finds:

− i(4π)3
(

(Q⋆)3 +
2π

g3
J⋆1J

⋆
2

)

= A⋆−(A
⋆)2 = −i(4π)3

(

3Q⋆ +
π

2g3

)(

3(Q⋆)2 − π

g3
(J⋆1 + J⋆2 )

)

, (3.58)

the RHS is precisely the BPS non-linear constraint (3.26).

We have shown that considering the universal area product formula in the BPS limit allows to derive the

BPS non-linear constraint in a different way. One could have somehow expected this result as in the BPS

solution the universal area product formula represents a constraint on J1, J2, Q, once we rewrite the areas in

terms of them. However, we might have found that this constraint was trivially satisfied, for example A⋆−(A
⋆)2

might have been identically equal to the RHS of (3.57) after having expressed the BPS horizons areas in terms

of the BPS charges and finding the less exciting result 1 = 1.

For this reason, this is a non trivial result, this is also true because we had to consider the virtual inner

horizon on the same footing as the physical event and Cauchy horizons, indeed the explicit expression of A⋆−
in terms of the charges is crucial to obtain the equivalence between the area product and the BPS non-linear

constraint.

The main task we will pursue now is to understand if this relation between the area product formula and

the BPS non-linear constraint can be obtained from an independent, and more fundamental calculation. As we

have anticipated, this will lead us to discover that the extremization principle can be promoted to an universal

extremization principle, which is able to reproduce the BPS thermodynamics of all horizons in a unified way.

It is worth mentioning that the results we have found above are valid in the BPS limit, moreover, part of what

we will find in the following depends crucially on the presence of supersymmetry, or better, on the constraint

that supersymmetry imposes. However, remember that when supersymmetry is present, there is also a relation

of the type (3.19), meaning that the mass-independence of certain quantities (for example the BPS entropies)

is a less striking result. In any case, the mass-independence implies the quantization of such quantities at

the quantum level. It would be interesting to understand if in the BPS solution, one could account for the

(quantized) entropies of all horizons (and not only the outermost one) starting from a microscopic description,

similarly as it was done for black holes with two horizons or, in this case, by considering the description in

terms of the dual field theory on the boundary.

However, we need to remember that the area product formula remains mass-independent also in the non-

14The result found in [32] is different with respect to the one we present here due to the different normalization choice regarding the

electric charge used in [8].
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supersymmetric solution, in this case, this is a non trivial result. It would then be interesting to explore the

implications of this fact without having to resort on supersymmetry, which forces all quantities to be mass

independent by means of (3.19). The price to pay is that in this case a holographic description (in terms of

the boundary field theory) is not well established. A possible way to study this problem could be to consider

different BPS limits along different trajectories that do not preserve supersymmetry, as we have discussed in

Sec. 3.1.3. In this way, at least in the BPS limit, one recovers the holographic description and may be able to

understand something about the non supersymmetric solutions.

As for the microscopic accounting of all BPS entropies, we may leave a possible answer to these questions

for future works.

3.2.4 Thermodynamics quantities and relations for the other horizons

Chemical potentials and first law for the other horizons

We are now going to give a definition for a set of thermodynamic quantities, specifically chemical potentials,

associated with each horizon. The conserved charges are instead considered universal, hence, the same for all

horizons.

Inspired by [30, 31] the idea is that once we get the thermodynamic quantities associated with the outer

horizon, the ones associated with the other horizons can be obtained simply by swapping r+ with ri. This only

regards the chemical potentials (T,Ω1,Ω2,Φ) and the area, which are intrinsic properties of the horizons, while

the charges (E, J1, J2, Q) are the same for all horizons, indeed, they are calculated with suitable integrals at

infinity so it is natural to assume their independence with respect to the horizon we consider. Accordingly, one

notices from Eqs.(3.5) that the conserved charges can be expressed without the need to use the horizons radii

ri, unlike the chemical potentials. This identification of the horizons’ properties seems standard in the literature

up to a sign difference in the definition of the temperature, which we will discuss briefly.

In our case, the chemical potentials for the outer horizon are given by Eqs. (3.7) to (3.9), the dependence

on r+ is already explicit and allows to get the chemical potentials for the other horizons without further work.

We can be more precise about this statement. Take the temperature as an example. It can be calculated from

the surface gravity, which is obtained from the following scalar function, where V is the null killing vector on

the horizon

κ(r, θ;m, a, b, q) =

√

−1

2
∇µVν∇µV ν , (3.59)

which also depends on the parameters of the black hole solution. The surface gravity of (say) the outer horizon

is obtained by taking the limit r → r+(m, a, b, q) and one gets a constant depending only on the parameters of

the solution.

In our case, we do not know the explicit form of r+(m, a, b, q), we solve this problem by trading one of

the parameters of the solution with r+ using the defining condition of the horizon position ∆r(r+) = 0, in this

way we trivially get:

m =
(r2+ + a2)(r2+ + b2)(1 + g2r2+) + q2 + 2abq

2r2+
, (3.60)

the surface gravity of the outer horizon is then evaluated by the limit15:

κ+(r+, a, b, q) = lim
r→r+

κ
(
r, θ; m(r+, a, b, q), a, b, q

)
, (3.61)

15Generally, it is sufficient to naively impose the condition (3.60) and substitute r with r+ to get the correct result, but in some cases,

like the calculation of the surface gravity, one needs to take the limit with care, for example by setting ∆r = ǫ and m = (· · · )− ǫ
2

and

taking the ǫ→ 0 limit at the end.
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providing the result in Eq. (3.8).

Notice that there are two "sources" for the r+ dependence in the final expression for κ+ coming from

the explicit r dependence in the scalar function Eq. (3.59) and from the exchange m ↔ r+. Turning to

the evaluation of the surface gravity for the other horizons, we can still use Eq. (3.59) and take the suitable

r → r0;− limit in Eq. (3.61), the dependence on r+ that still remains inm(r+) can be traded with a dependence

on r0;− by noticing that Eq. (3.60) holds regardless of which solution of ∆r(ri) = 0 is used.

In this sense, the surface gravity (and consequently the temperature) of each horizon is obtained simply by

replacing r+ with r0 or r−.

κi(ri, a, b, q) = lim
r→ri

κ
(
r, θ; m(ri, a, b, q), a, b, q

)
, (3.62)

The same argument can also be made for the other chemical potentials.

Notice that we only have to use the symmetry under the exchange of the horizons and the properties of

the ∆r polynomial, to define the chemical potentials for each horizon. However, if we consider the Cauchy

horizon, these quantities are exactly the ones that can be derived from the metric, and the same would still be

true for the inner horizon if we regard it as an hypersurface in the space with r2− < 0.

One may notice a sign difference in the definition of the temperature with respect to the usual identifications

found in literature ([28, 31]) which we will discuss later. The chemical potentials on each horizon are then

defined starting from those of the outer horizon as:

Ti = T+(r+ → ri), Ω1/2;i = Ω1/2;+(r+ → ri), Φi = Φ+(r+ → ri), (3.63)

Verification of the validity of the first law for each horizon

Having clarified how to evaluate the thermodynamic quantities on each horizon, we are now ready to verify

the first law of thermodynamics for each horizon. This can actually be done almost effortlessly as follows.

Let us consider a generic horizon i, first we trade the parameter m with ri from the definition of the charges

(3.5) then it is only a matter of using the chain rule to rewrite the first law that we want to check as:

dE = Ti dSi +Ω1;i dJ1 +Ω2;i dJ2 +Φi dQ

=
dE

dri
dri +

dE

da
da+

dE

db
db+

dE

dq
dq, (3.64)

one immediately realizes that checking the first law for a given horizon is only a matter of relabelling the ri

parameter16 on the various chemical potentials and on the entropy appearing in the above equation, then the

same relabelling can be made also in the charges asm is equivalently expressed in terms of each ri. This means

that checking the first law for each horizon can be made equivalent to a global relabelling of the ri parameter

in the above equations which cannot alter its validity.

From this discussion, one can conclude that the first law is in some sense a universal relation valid for each

horizon. The key relation that one has to satisfy is ∆r(r) = 0 which is independent on the particular solution

ri we choose, this independence ultimately reflects on the first law, provided that we identify the chemical

potentials of the horizons as done above.

Notice also that these arguments are valid only if we assume as first law for the intermediate and inner

horizons the one in Eq. (3.64) and not the modified first law that is most commonly found in the literature,

16Remember that even if we could have a complex value for ri, all quantities that are involved depend only on ri and not r̄i, hence

are holomorphic functions of ri which can be differentiated without problems.
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which, for the intermediate horizon would read:

dE = −TdS + · · · , (3.65)

the reason for this difference is that the temperature for the intermediate horizon (usually referred to as "inner

horizon" [28, 30, 31] for black holes with only two physical horizons) should be negative. An intuitive reason

is that the intermediate and outer horizons have mirroring behaviours. Think for example about what happens

to the areas of the two horizons when the black hole approaches extremality [31].

This implies that along the same thermodynamic transformation, dS+ and dS0 have an opposite sign, which

also implies that the first law of the intermediate horizon is satisfied with a negative value of the temperature,

see also [63] for a discussion. In the literature, it is usually chosen to keep the temperature positive, which

forces to use the modified first law Eq. (3.65).

In our case, from the definition of the intermediate horizon temperature in Eq. (3.63), one actually finds

that T0 is negative. This can be seen, for example, graphically in Fig. (3.1).

A similar analysis can be done for the inner horizon, associated with r2− < 0. In this case, the first law is

verified provided that the inner horizon temperature is taken to be purely imaginary as can be easily seen from

the dependence of T− on 1
r−

. Again, insisting on having a positive temperature also for the inner horizon would

force us to modify the first law in a similar way as before, introducing an i factor.

Recalling that also S− is purely imaginary, we can then recover a first law involving purely real quantities.

Remember that all other thermodynamic quantities depend on r2− only

dE = ±i|T−| dS− + · · · = ±|T−| d|S−|+ · · · . (3.66)

Area product formula and first laws

The first law for the three horizons, allows to get another interesting relation by starting from the universal

area product formula (3.57), in particular the fact that the product of the areas is independent of the energy of

the BH can be equivalently expressed as a relation involving Si Ti terms.

To get this relation, one considers the variation of the product of the areas with respect to variations of the

conserved charges:

d(S+S0S−) =

(
dS+
dE

S0S− + S+
dS0
dE

S− + S+S0
dS−
dE

)

dE + · · · , (3.67)

using the first laws (3.64), we have the standard relation dSi
dE = 1

Ti
. The independence of the area product from

the energy can then be rewritten as the following condition:

0 =
S0S−
T+

+
S+S−
T0

+
S+S0
T−

=
(S0T0)(S−T−) + (S+T+)(S−T−) + (S+T+)(S−T−)

T+T0T−
, (3.68)

where the temperatures are those defined through Eq. (3.63), again using the positive temperatures would

require to modify the above relation with suitable signs or i factors.

We want to check if the above relation holds in the present case, to do that we notice that the product TiSi

is explicitly given by:

TiSi =
π

4ΞaΞb

r4i [1 + g2(2r2+ + a2 + b2)]− (ab+ q)2

r2i
, (3.69)

then, using Eqs. (3.51) which define the horizon positions we can substitute in the above expression a2 + b2 =

−(r2+ + r20 + r2− + g−2) and (ab+ q)2 = −g2r2+r20r2−.
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After some easy simplifications, one gets the following result

T+S+ =
g2π

4ΞaΞb

(
r4+ − r2+r20 − r2+r2− + r20r

2
−
)
=

g2π

4ΞaΞb

(
r2+ − r20

)(
r2+ − r2−

)
, (3.70)

the relations for the other horizons are easily obtained by appropriately permuting the indices. Using this result,

one can easily verify the validity of the condition Eq. (3.68) as the numerator of the RHS vanishes identically.

In [30, 63], similar relations appeared for black holes with two horizons for which the area product is

independent of the mass, in that case, it reads T+S+ + T−S− = 0.

Notice also that Eqs. (3.68, 3.70) agree with the ones shown in [63] (Eqs. 5.34, 5.35) for the Wu black hole

with three independent electric charges and two angular momenta once we reduce to the solution that we are

studying here, after some basic algebraic manipulations.

Grand-canonical potential for each horizon and quantum statistical relations

The universality of the thermodynamic properties of each horizon described above, allows us to give a pro-

posal for a definition of the thermodynamic potential for each horizon, this is essentially obtained by imposing

that a suitable quantum statistical relation holds.

To do so, one can start from the grand-canonical potential of the outer horizon (3.16), and trivially substitute

r+ with ri, then our proposal for the universal grand-canonical potentials Ti Ii is:

Ti Ii =
π

4ΞaΞb

[

m− g2(r2i + a2)(r2i + b2)− q2r2i
(r2i + a2)(r2i + b2) + abq

]

, (3.71)

this definition could be equivalently obtained by imposing that the following QSR holds:

Ii = −Si − Ω1,i J1 − Ω2,iJ2 − ΦiQ, (3.72)

once we trade the m parameter with the horizon radius ri in the definition of the charges.

Notice that with this definition, one should be careful about the sign of the potential for the intermediate

horizon, and one would definitely get an imaginary value for the potential of the inner horizon, due to our

definition of βi we have β0 < 0 and β− is imaginary.

It would be useful if we were actually able to get Eq. (3.71) from an independent calculation, in the same

way as we can get I+ as the Euclidean on-shell action on the appropriate regular Euclidean section, hoping

also to be able to develop a physical interpretation of these new quantities in the process. We have explored the

possibility of performing such a calculation, but we have not found a simple way to do it. We leave for a future

work the task of finding a better explanation of these generalized grand-potentials Ii. However, we can make

some considerations.

To calculate I0 it may be possible to follow a similar strategy as for I+. In this case, one should also consider

the spacetime between these two horizons and evaluate the Euclidean on-shell action from r0 to infinity. The

reason why one should integrate up to infinity and not up to r+, for example, can be guessed from the fact that

the chemical potentials for r0 are all relative to their value at infinity, following the definitions in Eq. (3.63),

similarly the conserved charges are evaluated from integrals at infinity.

One should also remember that in Euclidean signature, the spacetime "comes to an end" on the horizons,

in the sense that the Euclidean time circle shrinks to a point. Integrating from r0 to infinity then means to

consider the Euclidean section contained between r0 and r+ plus the one from r+ to infinity, the on shell action

evaluated on the latter gives the known result I+ in [60], so we should only evaluate the on shell action in the
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intermediate Euclidean section I0→+ and so:

I0 = I0→+ + I+, (3.73)

this calculation must be done carefully as, despite not having long range divergences as the spacetime is fi-

nite between r0 and r+, there are two horizons and hence two sets of regularity conditions to impose on the

Euclidean time circle to avoid conical singularities. This can be done only if the temperatures and the other

chemical potentials of the two horizons are the same17, which however should not be the case as one can easily

see by looking at the behaviour of the temperatures for the two horizons in Fig. 3.1. Another fact to take in

consideration is that, when performing the Wick rotation t→ −iτ the spacetime between the two horizons has

signature (−,−,+,+,+). Clearly, we expect I0→r+ to vanish in the extremal limit.

The situation is much trickier for I−, as the inner horizon is located at r2− < 0, this means that integrating

from r2− to infinity one encounters the black hole (ring) singularity, but also the other singularity appearing at

ρ = 0. A possible way out could be to analytically continue the solution and smoothly change the integration

path in such a way to avoid the singularity, but it is not clear how to do it. A physical interpretation of the nature

of the inner horizon would be helpful in this case.

3.2.5 Universality of the extremization principle

We are finally ready to discuss the generalization of the extremization principle as a universal extremization

principle, able to reproduce the thermodynamics of all horizons in the BPS solution (but also formally in the

supersymmetric but not extremal one).

The idea now is that we can repeat the procedure discussed in Sec. 3.1.3 separately for each horizon18. By

virtue of the symmetry under the exchange of horizons radii ri as parameters, the results that we have already

discussed generalize to all horizons. However, there are some caveats that one has to take care.

The first step is to parametrize the supersymmetric trajectory whose limit is the BPS solution in terms of

ri, this can be done by simply trading r+ for ri in the supersymmetric constraint (3.28):

q =
m

1 + a+ b
= −ab+ (1 + a+ b)r2i ± iri(r2i − r⋆2) , (3.74)

where r⋆ is the BPS value of the outer horizon radius.

We have already seen that if we want to keep r+ (but also r0) real, then one is forced to introduce a complex

q parameter [8]. However, if we use the inner horizon radius r− in (3.74) one would get a real q parameter

because r− is imaginary. One can understand why this happens by looking at Fig. 3.1. In practice, the condition

∆r(r
2) = 0 can always be solved for any real value of the parameters if one considers r2 < 0, hence, one can

always find r2− < 0 which produces any given real value of m (also in the supersymmetric solution where m

is fixed by q, a, b) this, however, is not always true for the outer or intermediate horizons, for example if one

considers the supersymmetric but non-extremal solution.

This produces an apparent contradiction with what we have said so far, as it seems that using r+ (or r0)

as a parameter and using r− produces different results (complex or real q parameter,) breaking the symmetry

under the exchange of ri. This is solved if one remembers that the symmetry exists only among the roots of ∆r

and we clearly cannot compare the roots of different ∆r polynomials. What was done in [8] was to consider a

17This is true provided that the regularity conditions on the intermediate horizon are related to its chemical potentials in the same

way as it is for the outer horizon. This may be checked by a near horizon limit analysis, but one can expect that this is actually the case

due to the symmetry under exchange of r+ and r0.
18we are going to change perspective in a moment and rather think in terms of universal quantities instead of treating each horizon

separately. For now, it is useful to proceed in this way.
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family of supersymmetric solutions with complex q and m parameters, in such a way that the complexified ∆′
r

radial function had two real positive roots r′+ and r′0, but in this case the third root r′− is not purely imaginary

but complex, so that also q from Eq. (3.74) is complex.

The other possibility is instead to keep all parameters real, this forces us to consider complex conjugated

r+ and r0 variables which produce a real value of q from Eq. (3.74), which is the same that we would obtain

using the imaginary root r−.

For a simple matter of convenience, we are going to to consider the second choice and keep real a, b, q,m

parameters, which also allows to maintain a real value of the conserved charges in the supersymmetric and

non-extremal solution, the entropies S+,0 are still complex. It is important to stress that this is only a matter of

choosing a parametrization to describe the supersymmetric trajectory, and accordingly, the complex variables

r+ and r0 should be thought of as the parameters describing such supersymmetric trajectories, or equivalently

as "convenient parameters" that can be used instead of m, rather than an analytically continued radial coordi-

nate. We will briefly discuss what constraints one has to impose on these parameters to truly parametrize our

supersymmetric solutions. Clearly, the BPS solution is obtained when r+ = r0 → r⋆ or equivalently r− → r⋆−.

Coming back to our discussion, notice that if we impose q to be real in (3.74), then the requirement q = q̄

implies that once we choose the sign convention for r+, we also fix the sign convention for r0 to be the opposite.

The same happens for r− because

√

(r2− − r⋆2)2 = −(r2− − r⋆2).We choose the negative sign for r+ as in [8],

then Eq. (3.74) for the other parameters reads:

q =







−ab+ (1 + a+ b)r2+ − ir+(r2+ − r⋆2)
−ab+ (1 + a+ b)r20,− + ir0,−(r20,− − r⋆2)

, (3.75)

we can now fully generalize the results of Sec. 3.1.3, and for each horizon we can parametrize the various

supersymmetric thermodynamic quantities in terms of (a, b, ri), the expressions that one would find are exactly

equal to Eqs. (3.29, 3.30), we can then define the "lower case" chemical potentials:

ω1,i = βi(Ω1,i − 1), ω2,i = βi(Ω2,i − 1), φi = βi

(

Φi −
3

2

)

, (3.76)

ω1,i + ω2,i − 2φi = ∓2πi, (3.77)

the upper sign is related to the outer horizon quantities, while the lower one is related to the intermediate and

inner ones.

For the inner horizon, this redefinition of the chemical potentials would not be needed, indeed, one can

check that Ω⋆i,−,Φ
⋆
− do not take fixed values in the BPS solution, as happens for the outer and intermediate

horizons, so the interpretation of these new chemical potentials that we have developed in Sec. 3.1.3, does not

hold if we consider the inner horizon.

This redefinition is useful as it allows to rewrite all the grand-potentials Ii as we have already seen (3.34)

Ii =
2π

27

φ3i
ω1,i ω2,i

, Ii = −Si − ω1,i J1 − ω2,i J2 − φiQi, (3.78)

one can explicitly check these results, but they are automatically true starting from those of the outer horizon.

Combining Eqs. (3.77, 3.78) one may repeat the extremization procedure singularly for each horizon, the

calculations that one has to do are exactly the same as those that we have already discussed in Sec. 3.1.4, and

one should recover the BPS thermodynamics for each horizon.

We are now going to show this, but adopting a different point of view. Notice that in the discussion above we

have distinguished between each horizon (essentially, we have kept the i indices). However, one does not need
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to do so, as we have seen that we eventually arrive at expressions that are universal (3.77, 3.78). Then, instead of

performing three separate extremizations for each horizon, we will define an universal supersymmetric grand-

potential I defined in terms of universal chemical potentials (ω1, ω2, φ), these have to be thought of as not

associated with a specific horizon and satisfy the relations found above.

We will then perform one universal extremization procedure considering the universal quantities given

above (this has essentially already been done in Sec. 3.1.4), and we will be able to reproduce the BPS ther-

modynamics of all horizons at once. This has the advantage that one does not have to necessarily use the Ii

grand-potentials, instead one simply needs to consider the universal quantities.

Let us see how this works.

Proof of the universality of the extremization principle

The starting point is given by the universal relations:

I =
2π

27

φ3

ω1ω2
, I = −S − ω1 J − ω2 J2 − φQ, ω1 + ω2 − 2φ = ±2πi , (3.79)

from the extremization procedure discussed in Sec. 3.1.4, the entropy is given by:

S = extΛ
[
±2πiΛ

]
, (3.80)

where Λ has to be taken from the solutions of the cubic polynomial (3.39):

Λ3 + p2Λ
2 + p1Λ + p0 = 0, (3.81)

where the coefficients can be found in (3.40).

Our claim now is that the three roots Λi reproduce the thermodynamics of the three horizons, for example,

the entropies are given by:

S+ = 2πiΛ1, S0 = −2πiΛ̄1, S− = −2πiΛ3, (3.82)

the sign difference is related to the one in (3.74).

Notice that with our choice of parametrization of the supersymmetric solution, the charges and hence the

coefficients of the cubic polynomial are real, meaning that there will always be a real root Λ3 and two complex

conjugated roots Λ1. It is natural to associate Λ3 to the inner horizon as it always produces an imaginary entropy

as we expect.

Following our claim, the three roots Λi of (3.39) also determine the supersymmetric chemical potentials of

each horizon (ω1,i, ω2,i, φi) as, possibly complex, functions of the charges. This can be seen by starting with

the universal supersymmetric chemical potentials (ω1, ω2, φ), which, upon solving the extremization equations,

can be written as functions of the charges and Λ (see [8]). Inserting one of the three roots Λi in these functions

reproduces the chemical potentials of the horizon associated with the Λi root:

ω1,i = ω1(Q, J1, J2,Λi), ω2,i = ω2(Q, J1, J2,Λi), φi = φi(Q, J1, J2,Λi) (3.83)

To verify the validity of our claim (considering for example the entropies), we should compare the expres-

sions that we get from the extremization principle (Eq. (3.82)), with the ones that we already know in the

supersymmetric (3.10) or BPS case (3.25, 3.54). The same check should be performed on the supersymmetric

chemical potentials.
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It is easier to do these checks in the BPS case, where the entropies and the chemical potentials for each

horizon acquire distinct expressions in terms of the parameters (a, b). In this case, one can easily distinguish

between the various horizons. Instead, in the supersymmetric but not extremal case, the above quantities are

expressed in terms of the ri parameters. Then, the symmetry under the exchange of ri does not allow to

distinguish the horizons, unless one is able to find an explicit expression for the ri radii in terms of the other

parameters in the supersymmetric solution. Luckily, one needs less to distinguish the horizons in the susy case,

we will discuss this later.

Notice that by assuming the validity of Eqs. (3.82), the universal area product formula immediately follows:

S+S0S− = (2πi)3Λ1Λ̄1Λ3 = −(2πi)3p0 = −iπ3
(

Q3 + 2πJ1J2

)

. (3.84)

Validity of our claim in the BPS case

As we have already discussed, the BPS solution can be recovered from the extremization principle if one

imposes the condition (3.43), which makes the cubic polynomial in Λ factorize as:

p0 = p1p2 −→







(Λ + p2)(Λ
2 + p1) = 0

(Q⋆)3 + 2πJ⋆1J
⋆
2 =

(

3Q⋆ + π
2

)(

3(Q⋆)2 − π(J⋆1 + J⋆2 )

)
, (3.85)

the charges are real, meaning that the two roots Λ = ±i√p1 are purely imaginary. By means of our definition

of the entropies S+ and S0 (3.82) one gets the same positive real value19 for them as expected.

The other root of the cubic polynomial instead is real and is given by Λ = −p2 and has to be associated with

the inner horizon entropy. By substituting the explicit expression of the parameters pi in terms of the charges

(Eqs. (3.40)), one gets for the three entropies:

S⋆+ = S⋆0 = 2π
√
p1 = π

√

3(Q⋆)2 − π(J⋆1 + J⋆2 ), S⋆− = 2πip2 = −πi
(

3Q⋆ +
π

2

)

, (3.86)

remarkably, these are precisely the BPS entropies for the various horizons that we have already found before

(3.25, 3.54), this result was already known for the outer horizon but is new for the outer horizons.

Notice also that if we define the entropies as in (3.82), we automatically derive the universal area product

formula, but we also automatically find that in the BPS solution the area product formula and the BPS non-linear

constraint are equivalent due to the factorization condition (3.85).

As anticipated, the extremization principle is able to reproduce all the horizon entropies in the BPS limit.

Furthermore, one can explicitly check that the extremization equations Eqs. (3.37) for a given horizon are

satisfied in the BPS limit if one chooses the correct root Λi. This can be quite easily checked as the BPS value

of every relevant quantity is easily expressed in terms of (a, b) using Eqs. (3.24), (3.55) and (3.34), this proves

that the full thermodynamics of each horizon is reproduced.

Validity of our claim in the supersymmetric but non extremal case

One can show that the universality of the extremization principle discussed above also holds in the super-

symmetric but not extremal case (which we will refer to as simply "supersymmetric" now on), meaning that

the thermodynamic quantities for each horizon are all reproduced at once by the extremization principle, also

in this case. These results must be interpreted as formal results, as the pure supersymmetric configurations

are non physical if one does not impose extremality. However, there are cases where proving the validity of

19For this to happen, it is important that the S+ and S0 entropies have an opposite sign in their definition in terms of the Λ1 roots

(3.82), this happens precisely due to the sign difference in (3.74)
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the universality of the extremization principle along the full trajectory and not only in the BPS limit, may be

physically relevant. This is the case if the BPS solution is reached via a trajectory that always contains physical

solutions (that are causally well-behaved and do not allow for naked singularities). For an example, see [62].

In the pure susy case there is no constraint on the coefficients of the cubic polynomial (3.39), and generally

there are two complex conjugate roots and one real root Λi as we have already discussed.

To compare the definitions of the entropies obtained from the Λ roots with the expected supersymmetric

expressions for the entropies (3.30), we should formally find the explicit solutions for the three horizon radii ri.

Indeed, to make the comparison, both (3.30) and the Λi have to be expressed in terms of the same parameters

(ri, a, b), but the symmetry under exchange of ri would not allow us to truly differentiate between the horizons,

and we could not check which of the three roots Λi have to be associated with which horizon.

Luckily, it turns out that it is sufficient to find the range of validity for each horizon radius ri interpreted

as a parameter describing the solution. This information is sufficient to differentiate the various horizons. For

example, the simple requirement that r− should be imaginary and r+,r0 complex allows to differentiate these

two sets of horizons. To find the range of validity for each parameter ri we can use the requirement that the

relation m = m(ri) is a bijective function.

Let us start with the inner horizon, one can immediately associate the real Λ3 root with the inner horizon,

as in this way one correctly gets an imaginary value of the inner entropy. Λ3 is given in terms of the conserved

supersymmetric charges (J1, J2, Q) via the complicated cubic root formula, and by using Eqs. (3.30) one gets

Λ3 in terms of the parameters (r−, a, b), which can be directly compared with (3.30):

S− =
−iπ2(a+ ir−)(b+ ir−)(r⋆2 − ir−)

2(1− a2)(1− b2) , (3.87)

the two expressions do not agree if one allows r− to take any imaginary value, see Fig. (3.2) on the left. The

problem is that for small values of m the condition ∆r = 0 admits three imaginary ri (or equivalently negative

r2i ) roots20. This can be immediately seen in the q = 0 → m = 0 case, where ∆r = 0 has the three trivial

solutions: r2 = −1, r2 = −a2,r2 = −b2, or by looking at Fig. 3.2 where the behaviour of the ∆r(r,m) = 0

supersymmetric curves has been shown for small values of m and for imaginary values of r.

If we associate all the pure imaginary roots of ∆r = 0 with the inner horizon r−, the function m(r−)

would not be invertible. We can make it invertible by restricting the range of validity for Im[r−] = −ir−
as shown by the green curve in Fig. 3.2 in the center, where remember that the BPS solution is located at

Im[r⋆−] = 1 + a+ b > 1 hence on the right branch of the curve.

From a direct computation, we find that:

Im[r−] ∈ (−∞, rC) ∪ (rA,∞), where:







rA = 1
3

(

1 + a+ b+
√
a2 + b2 − ab− a− b+ 1

)

rC = 1
3

(

1 + a+ b− 2
√
a2 + b2 − ab− a− b+ 1

) ,

(3.88)

by taking this into account one finds a perfect agreement between the two definitions of the entropies, as shown

in Fig. (3.2).

The same check can be performed for the complex root Λ1 which is associated with either the outer or

intermediate horizon. Let us consider the intermediate horizon, as the m(r0) relation has the same sign choice

as for the inner one (3.74). Again, Λ1 can be rewritten in terms of the parameters (r0, a, b) and the expression

we get can be compared to the expected supersymmetric entropy of the intermediate horizon, which has exactly

the same form as Eq. (3.87) (after we substitute r− for r0).

20This means that for small values of the m parameter, there are three imaginary values that satisfy the relation m = m(ri).
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In this case, one has to take into account only the complex values of r0 that produce real m, q parameters.

In other words, we have to take r0 such that it solves ∆r = 0 with real coefficients. The requirement that m, q

are real imposes a constraint between the real and imaginary parts of r0 (that can be obtained by studying q(r0)

(3.74)). By taking this into account, r0 is given in terms of a variable x ∈ R as:

r0 = ±
√

ab+ a+ b− 2x(1 + a+ b) + 3x2+ix , −→ q =
m

1 + a+ b
= (a+1−2x)(b+1−2x)(a+b−2x),

(3.89)

if x = 0, and choosing the positive sign in front of the root, one gets the BPS outer horizon radius r⋆ ∈ R, and

the BPS value of the q parameter as expected. The sign of q does not depend on the sign of the real part of r0.

Notice that r0 becomes purely imaginary if x ∈ [rB, rA], where:

rB =
1

3

(

1 + a+ b−
√

a2 + b2 − ab− a− b+ 1
)

, (3.90)

because the term under the square root is negative, meaning that x = Im[r0] only if x /∈ [rB, rA].

One can see that the functionm(r0(x)) (3.89) is not injective as a function of x precisely when x ∈ [rB, rA],

meaning that in this region, x is not a good parameter to use. Instead of x one can use Im[r0] = −ir0 ∈ R

when x ∈ [rB, rA]→ r0 ∈ iR. This is shown in Fig. 3.2 on the right, representing the function:

m
(

r0
(
Im[r0])

)

=







m
(
r0(x)

)
, when: x /∈ [rB, rA]

m
(
− ir0

)
, when: x ∈ [rB, rA]

, (3.91)

hence, the mass parameter interpreted as a function of Im[r0]. It is demonstrated graphically that this is indeed

a bijective function, hence Im[r0] can be used as a good, real parameter to trade m.

Moreover, we immediately see that in the region where r0 is purely imaginary (blue line) the plot of m(r0)

exactly matches the corresponding piece that we have found when discussing the inner horizon as a parameter,

this confirms the fact that not all purely imaginary roots ri have to be associated with the inner horizon.

Keeping in mind the above considerations, one finds that the definition of the entropy from Λ1 and from

Eq. (3.87) agree, provided that one chooses the right sign for the real part of r0, which turns out to be positive

for the left branch of the curve at Im[r0] < rB (this is also required to recover the BPS horizon radius when

Im[r0] = 0), and negative for the right branch for Im[r0] > rA

Figure 3.2: (Left plot: ) Comparison between the definitions of the inner horizon supersymmetric entropy, from Λ3

(dashed curve), and from Eq. (3.87) (solid red curve), the two definitions agree only for the expected values of Im[r−].
(Central plot: ) behaviour of m(r) when r ∈ iR. For small values of m there are three imaginary roots ri, these must

be associated with r− (green curve), r0 (blue curve) and r+ (red curve), in order for the three horizons radii to be good

parameters. Notice that when m = 0 there appear the three expected solutions: r− = i, r0 = ai, r+ = bi.
(Right plot: ) Plot of Eq. (3.91), the black line being the m(r0(x)) function and the blue line being m(−ir0). This

definition is needed for m(r0) to be bijective. When r0 ∈ iR (blue line) the m(r0) curve matches the corresponding piece

in the central plot, meaning that those imaginary values of ri must be associated with the intermediate horizon.

Similar considerations hold true for the outer horizon. When r0 is imaginary also r+ must be imaginary
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and its imaginary part must take values in [rC , rB] (red curve in the central plot of Fig. 3.2.

Discussion

As we have claimed, the thermodynamics of all the horizons can be reproduced from one universal extrem-

ization principle, which is also able to reproduce the area product formula, the BPS non-linear constraint, and

explain the equivalence between these two formulas in the BPS limit. These are interpreted by means of the

factorization condition (3.43) for the cubic polynomial, which allows to get real entropies. As new results, we

have derived the inner and intermediate horizons areas, the universal area product, and its equivalence with the

BPS non-linear constraint, directly from the extremization principle.

A key role is played by the constraint on the chemical potentials (3.32), this makes the Legendre trans-

form determining the entropy a constrained Legendre transform, which can be carried over by introducing the

Lagrange multiplier Λ which, being determined by the roots of a cubic polynomial, reproduces all horizons

thermodynamics.

The constraint (3.32) takes that specific form because we are considering a BPS limit along trajectories that

preserve supersymmetry. The advantage of preserving supersymmetry is that the action I in terms of chemical

potentials takes a rather simple form (3.71). This makes it much easier to solve the constrained Legendre

transform. Moreover, remember that the Euclidean on-shell action I , has been reproduced from the dual field

theory only in a supersymmetric setting up to now [8].

Another comment regards the possibility of finding the cubic polynomial (3.39) in a different way. Indeed,

one could generalize the procedure to derive the product of the areas of Sec. (3.2.3), and derive formulas for

the sum and mixed products of the entropies S−+S0+S+, and S+S0+S+S−+S0S− in terms of the charges.

This would allow one to derive a Christodulou-Ruffini-like formula:

(S − S−)(S − S0)(S − S+) = 0, −−→
BPS

(S − S⋆−)(S − S⋆)2 = 0, (3.92)

this relation holds regardless of supersymmetry or extremality and will generally be mass-dependent. Moreover,

in the BPS limit, this formula should be equivalent (but not the same due to (3.82)) to the cubic polynomial

(3.39). A Christodulou-Ruffini formula has been given in [63] for a class of 4D black holes, by manipulating the

horizon equation. This may be possible to do also in the 5D case, but one has to deal with rather complicated

expressions of the (m, a, b, q) parameters, which means that rewriting the sum and partial products of the

entropies in terms of only the charges would be difficult.

Another comment regards the expression of the BPS inner horizon entropy as a function of the charges.

We have already noted that it does not depend on the angular momenta A⋆− = −4πi
(
3Q⋆ + π

2

)
, this can be

understood by looking at the structure of the cubic polynomial (3.39) and the fact that A⋆− is related to the p2

parameter, which is the coefficient of the quadratic term. One can immediately see from the factorized form of

the polynomial in Eq. (3.44) that the angular momenta can only appear in the p1 and p0 coefficients.

This is a consequence of the structure of the Euclidean action, which is related to the fact that this particular

black hole solution only allows for two independent angular momenta. Moreover, the electrostatic potential

must appear cubed in the Euclidean action (for a reason that we will explain briefly). Then the requirement of

having an homogeneous function of degree 1 of the chemical potentials, as it is found in the supersymmetric

case, fixes the form of the action, which in turn determines the cubic polynomial.

To see why the electrostatic potential must appear cubed, one has to view this black hole solution as a

particular class of solutions of N = 2, U(1)n gauged supergravity (See [47, 64]), whose general black hole

solutions admit n independent charges and two angular momenta. Our case can be obtained by setting the n

charges equal.
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It has then been conjectured in [13] that the BPS outer horizon entropy, can be obtained by extremizing the

following function of the chemical potentials (I, J,K = {1, · · · , n})

I = µ
CIJKφ

IφJφK

ω1ω2
, (3.93)

where φI is the electrostatic potential associated with the n− th gauge field AI .

We also have to impose the usual constraint21 ω1 + ω2 +
∑

I φ
I = 1, here µ is an arbitrary parameter

that depends on the normalization of the chemical potentials, while CIJK is the completely symmetric tensor

appearing in the Chern-Simons term, which fixes the structure of the whole Lagrangian. The extremization

procedure in this case has been carried out in [15], showing that the outer horizon entropy is the same as the

one originally found in [65].

The structure of the supersymmetric Euclidean action I in Eq. (3.93) is fixed by the supergravity theory

properties, in particular the CIJK tensor, which imposes that I depends on cubic monomials of the potentials

φI . This ultimately reflects in the way the entropies depend on the various conserved charges.

As a final comment, notice that the extremization principle gives a method to derive the thermodynamic

properties of all horizons (in the supersymmetric case), starting from the dual field theory via the AdS/CFT cor-

respondence. The reason is that the universal Euclidean action I , which appears in the extremization principle,

can be computed in a supersymmetric setting from the dual CFT on the boundary. This is arguably one of our

most important observations, as it may directly connect the properties of all horizons with the dual field theory

description.

This concludes the analysis of the single charged black hole solution. In the next sections, we are going

to extend the results we found to other black hole solutions, following a similar logic. The next case we

are going to consider is the single spinning black hole solution with three electric charges of U(1)3 gauged

D = 5 supergravity. Before analizing it, we consider the consequences of the universality of the extremization

principle for the general solution with three charges and two angular momenta. Then we specialize to the single

spinning case, showing that the results obtained via the universal extremization principle are correct.

3.3 Universality of the extremization principle and U(1)3 gauged supergravity

general black hole solution

The extremization principle has been derived for a large class of black hole solutions, see [8, 15] for the

U(1)3 and U(1)n gauged cases. It is always able to correctly reproduce the outer horizon BPS entropy, but what

about the other horizons? Luckily, generalizing the results found above is quite straightforward. We discuss the

case of the general U(1)3 gauged black hole solution, concentrating on the BPS case22.

The supersymmetric Euclidean action and the supersymmetric constraint now read ([8, 12]):







I = 2π φ
1φ2φ3

ω1ω2

ω1 + ω2 − 2φ1 − 2φ2 − 2φ3 = ±2πi
, (3.94)

where φI are the electrostatic potentials associated with the AIµ independent gauge fields.

The coefficient µ and the normalization of the chemical potentials has been fixed in such a way that by

21Remember that one can always rescale the chemical potentials in order to make the constraint have the same form as the one

discussed here.
22To study the pure supersymmetric case one would have to find the range of validity of each horizon radius ri intended as a

parameter. This would require studying the properties of the metric, which we are not going to do here.
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setting φ1 = φ2 = φ3 = 1
3φ, one recovers the previous results for the one charge case (Eqs. (3.34, 3.31)).

Instead, by setting ω1 = ω2 = 1
2ω and φi → φi

2 one recovers the case with three charges and one angular

momentum discussed in [15] (Eqs. (2.51, 2.53)).

The extremization procedure goes through as before [15], and we simply review the main steps. First, one

defines the entropy function whose extrema give the entropy as a function of the charges, the supersymmetric

constraint is taken into account by adding the usual Lagrange multiplier:

S = ext{ωi,φi,Λ}
[
−I − ωi Ji − φI QI − Λ(ω1 + ω2 − 2φ1 − 2φ2 − 2φ3 ± 2πi)

]
, (3.95)

at this stage, one should admit the possibility of having complex charges. Then, by imposing that the physical

quantities are real, we can recover the BPS limit.

One should now write the chemical potentials and Λ as functions of the conserved charges using the ex-

tremization equations, however Λ can be obtained by exploiting the identity:

0 = (2Λ−Q1)(2Λ−Q2)(2Λ−Q3)− 2π(Λ + J1)(Λ + J2), (3.96)

which is a cubic equation for Λ:

Λ3 + p2Λ
2 + p1Λ + p0 = 0, (3.97)

with coefficients: 





p2 = −1
2

(

Q1 +Q2 +Q3 +
π
2

)

p1 =
1
4

(

Q1Q2 +Q2Q3 +Q3Q1 − π(J1 + J2)
)

p0 = −1
8

(

Q1Q2Q3 + 2πJ1J2

)

, (3.98)

the homogeneity of degree 1 of the Euclidean action I simplifies the calculation of the entropy, which is given

by S = extΛ[±2πiΛ], where Λ has to be chosen among the solutions of the cubic polynomial. The claim is

that the three roots represent the entropies of the three horizons following Eqs. (3.82).

Let us now specialize to the BPS case, the entropies obtained from the roots of the cubic polynomial are

generally complex, in order to get a real value for the outer and intermediate horizons entropies, one has to

impose the factorization condition:

p0 = p1p2 →







(Λ + p2)(Λ
2 + p1) = 0

Q⋆1Q
⋆
2Q

⋆
3 + 2πJ⋆1J

⋆
2 =

(

Q⋆1 +Q⋆2 +Q⋆3 +
π
2

)(

Q⋆1Q
⋆
2 +Q⋆2Q

⋆
3 +Q⋆3Q

⋆
1 − π(J⋆1 + J⋆2 )

)
,

(3.99)

this condition is the generalization of the BPS non-linear condition to the three charges, two angular momenta

case, this indicates that requiring reality for the entropies is equivalent to considering the BPS case.

The three BPS entropies are then given by:







S⋆+ = S⋆0 = 2π
√
p1 = π

√

Q⋆1Q
⋆
2 +Q⋆2Q

⋆
3 +Q⋆3Q

⋆
1 − π(J⋆1 + J⋆2 )

S⋆− = 2πip2 = −πi
(

Q⋆1 +Q⋆2 +Q⋆3 +
π
2

)
. (3.100)

In the general supersymmetric case, the universal area product is also derived, and from the factorization con-

dition (3.99) follows its equivalence with the BPS constraint in the BPS limit.

S+S0S− = −(2πi)3p0 = −iπ3
(

Q⋆1Q
⋆
2Q

⋆
3 + 2πJ⋆1J

⋆
2

)

, (3.101)
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this result for the area product formula, agrees with the one found in [66].

In the next section (3.4), we verify the validity of these results for the black hole solution with three charges

and one angular momenta. In particular, we re-derive the BPS horizons entropies, the BPS non-linear constraint,

and the universal area product formula. Then, from the discussion made in this section, the proof of the

universality of the extremization principle directly follows.

Remember that the original results that we find, are related to the fact that we consider all horizons rather

than just the outer horizon, as was done in the literature.

3.4 Single spinning U(1)3 charged AdS5 black hole solution

Motivated by the observations of the previous sections, we want to verify if those results hold for the black

hole solution with one angular momentum and three unequal charges, arising from the N = 2, 5D, U(1)3

gauged supergravity theory, also known as STU model.

We follow the same logic as for the single charged solution, and for this reason we are not going to go at the

same level of detail. First, we give a review of the general black hole solution of [50], following the discussion

of [15]. We then discuss the generalization of the thermodynamics of all the horizons and derive the formulae

involving the TS products. Then we obtain the area product formula, which has not been directly derived yet

but follows from the analysis of [66], showing that it agrees with the result that we have obtained from the

extremization principle of Sec. 3.3.

Next, we move on studying the BPS solution, deriving the relation A⋆−(J
⋆, Q⋆I). In the process, we show

that the properties of all three BPS horizons, the area product formula, and the BPS non-linear constraint, are

the same as those derived from the universal extremization principle, hence proving the validity of our claim

also in this case.

3.4.1 Review of the solution

The bosonic part of the Lagrangian is [42, 43]( following the conventions of [15, 50]):

S =
1

16π

∫ [(

R+4g2
3∑

I=1

(XI)−1− 1

2
∂~φ 2

)

⋆1− 1

2

3∑

I=1

(
XI
)−2

F I∧⋆F I− 1

6
|ǫIJK |AI∧F J∧F k

]

, (3.102)

The AI fields are three Abelian gauge fields and the ~φ = (φ1, φ2) are the real physical scalars, while the {XI}
are the auxiliary scalars given by:

X1 = e
− 1√

6
φ1− 1√

2
φ2
, X2 = e

− 1√
6
φ1+ 1√

2
φ2
, X3 = e

2
3
φ1 , (3.103)

the scalar field manifold is given by the submanifold in the {XI} field space given by X1X2X3 = 1.

The black hole solution with three independent electric charges and one angular momentum can be obtained

by setting the two independent angular momenta equal. The solution can be expressed in terms of coordinates

(t, r, θ, φ, ψ), these coordinates are different from the ones used in the previous section ("old") and are related

by:

φ = ψold − φold, ψ = ψold + φold, θ =
1

2
θold, (3.104)

with this set of coordinates the rotation only occurs along the ψ coordinate.
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It is convenient to use the following left-invariant 1-forms of S3:

σ1 + iσ2 = e−iψ(dθ + i sin θdφ),

σ3 = dψ + cos θdφ . (3.105)

The black hole solution is given by:

ds25 =
(
H1H2H3

)1/3

[

−r
2Y

f1
dt2 +

r4

Y
dr2 +

r2

4
(σ21 + σ22) +

f1
4r4H1H2H3

(

σ3 −
2f2
f1
dt

)2
]

, (3.106)

XI =
(H1H2H3)

1/3

HI
, AI = AIt dt+AIψσ3, (3.107)

and it depends on the parameters (m, a, δ1, δ2, δ3). If one sets δ1 = δ2 = δ3 this black hole solution reduces to

the one with one angular momentum and one electric charge of minimal N = 2 supergravity [50], as the three

gauge fields AI become equal, and the three auxiliary scalars XI become constants.

The functions (HI , f1, f2, f3, Y ) are defined as:

HI = 1 +
2ms2I
r2

,

f1 = r6H1H2H3 + 2ma2r2 + 4m2a2
[

2(c1c2c3 − s1s2s3)s1s2s3 − s21s22 − s22s23 − s23s21
]

,

f2 = 2ma
(
c1c2c3 − s1s2s3

)
r2 + 4m2as1s2s3,

f3 = 2ma2(1 + g2r2) + 4g2m2a2
[

2(c1c2c3 − s1s2s3)s1s2s3 − s21s22 − s22s23 − s23s21
]

,

Y = f3 + g2r6H1H2H3 + r4 − 2mr2, (3.108)

with sI = sinh δI , cI = cosh δI . The components of the AI fields will not be needed and can be found in [15].

The position of the outer horizon is given by the largest root r+ of the Y function, this is a Killing horizon

associated with the killing vector:

V = ∂t + 2
f2(r+)

f1(r+)
∂ψ, (3.109)

it is trivial to check that this vector has a vanishing norm on the horizon. As anticipated, rotation occurs only

along psi in these coordinates.

Thermodynamics

The solution has five conserved charges (E, J,QI), in [50] the electric charges and angular momentum

were obtained from the usual Komar integrals, while the energy from the integration of the first law. The

same results were obtained in the framework of holographic renormalization by [15] up to a constant shift of

the conserved energy, this shift is related to the renormalization scheme that is used to regulate the divergent

integral defining the energy.

The conserved charges are found to be:

E = E0+
mπ

4

(

3+a2g2+2s21+2s22+2s23

)

, J =
maπ

2
(c1c2c3−s1s2s3), QI =

mπ

2
sIcI , (3.110)

E0 is the constant shift cited above, it can be interpreted as a contribution to the energy from empty AdS5

space, as it survives when m = 0.
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Again, the chemical potentials for the black hole thermodynamics are expressed in terms of the outer

horizon radius r+ as:

T =
dY (r+)

dr

(

4πr+
√

f1(r+)

)−1

, Ω = 2
f2(r+)

f1(r+)
, ΦI =

2m

r2+HI(r+)

(

sIcI +
1

2
aΩ(cIsJsK − sIcJcK)

)

,

(3.111)

where T is obtained as usual from the surface gravity , Ω is the horizon angular velocity relative to a non rotating

observer at infinity, and ΦI are the electrostatic potentials, defined as ΦI = ιVA
I |∞r+ .

Finally, the Bekenstein-Hawking entropy of the outer horizon is:

S =
π2

2

√

f1(r+), (3.112)

notice that one has to require f1(r+) > 0 in order to have a real value for the temperature and entropy.

These quantities satisfy the first law of thermodynamics:

dE = T dS +Ω dJ +ΦI QI , (3.113)

and the quantum statistical relation, in the following form [15]:

I = βE − S − β Ω J − β ΦI QI , (3.114)

where the Euclidean on-shell action was calculated in [15] using holographic renormalization. They showed

that also in the definition of the action it appears a constant term I0 = βE0 , that is interpreted as the on-shell

action of the empty AdS5 space.

From the same considerations that we did in the single charge case, we can interpret the on-shell action I

as minus the logarithm of the grand-canonical partition function.

Supersymmetry and setup of the extremization principle

In [11], it was found that the solution preserves one quarter of the original supersymmetry if the parameters

satisfy:

ag = e−(δ1+δ2+δ3), (3.115)

this condition is equivalent to the following one on the charges:

E − E0 = 2g J + g
(
Q1 +Q2 +Q3

)
, (3.116)

which is obtained by requiring that the Bogomol’nyi matrix has at least one vanishing eigenvalue [11].

For simplicity, we set g = 1 now on. Supersymmetric solutions are naturally parametrized by the four

parameters (m, δI). Equivalently, one can trade the δI for the new parameters µI defined as [15]:

e4δ1 =
µ1(µ2 + 2)(µ3 + 2)

(µ1 + 2)µ2µ3
, e4δ2 =

µ2(µ3 + 2)(µ1 + 2)

(µ2 + 2)µ3µ1
, e4δ3 =

µ3(µ1 + 2)(µ2 + 2)

(µ3 + 2)µ1µ2
, (3.117)

in terms of these parameters the susy condition (3.115) becomes:

a =

(
µ1µ2µ3

(µ1 + 2)(µ2 + 2)(µ3 + 2)

)1/4

. (3.118)

In anticipation of performing the extremization principle, we want to parametrize the supersymmetric so-
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lutions with the r+ parameter by trading m using the Y = 0 condition23. In doing this, one faces the problem

that Y is of third order in m, making the relation m(r+, δI) quite complicated. The situation improves if one

defines the new radial coordinate [15]:

r2 = R2 +
m

m⋆

(

r⋆2 − µ1
)

, (3.119)

where m⋆ is the BPS value of the m parameter which will be given below. Because of this coordinate redefini-

tion, Y (R) is only quadratic in m, so that one can more easily invert the Y = 0 relation:

Y (R, δI ;m) = 0 −→ m = m(R, δI), (3.120)

notice that the symmetry under exchange of horizon radius ri is not altered by the change of coordinates given

above, and in any case, the condition Y (R) = 0 still does not differentiate between the roots Ri. Therefore, all

the results discussed by [15] generalize for all horizons, as we have seen before.

Again, one finds that either m or R+ are generally complex. In particular, this happens close to the BPS

solutionR⋆2+ = µ1, and one has to choose which variable to complexify. For large values ofR+ instead, bothm

and R+ can be chosen real, However, when moving towards the BPS solution, one always needs to complexify

one of the two parameters. We will not study the pure susy case for this black hole solution, so we will not

elaborate more on this.

It was then shown in [15], that the modified supersymmetric chemical potentials (ω, φI) satisfy the key

relation:

ω − φ1 − φ2 − φ3 = ∓2πi, where: ω = β(Ω− 2), φI = β(ΦI − 1), (3.121)

where the sign ambiguity is a reflection of the sign ambiguity in the definition of m(R+, δI) as the root of a

quadratic polynomial, it is important to remember that once the sign choice for the outer horizon is fixed, the

sign choice for the other two horizons is fixed as well, and one has to take the opposite sign.

The supersymmetric action takes the form:

I − I0 = π
φ1φ2φ3

ω2
, I − I0 = −S − ωJ − φIQI , (3.122)

these quantities allow to define a non-trivial thermodynamics in the BPS limit.

Remember that even if we have derived these quantities for the outer horizon, we prefer to think about

these as universal quantities, not related to a specific horizon yet. The distinction emerges only after having

performed the extremization principle. Our results are also true if one performs the three extremizations distin-

guishing each horizon from the beginning. This implies, however, to rely on the non-fundamental definitions

of I0 and I−.

This serves as the setup for the extremization principle. Then, the entropy of the outer horizon is given by

the following constrained Legendre transform, as shown in [8, 15]:

S = ext{ω,φI ,Λ}
[

−(I − I0)− ωJ − φIQI − Λ
(
ω − φ1 − φ2 − φ3 ± 2πi

)]

. (3.123)

Following our claim, this constrained Legendre transform should also reproduce the entropies of the other

horizons. We have already explored the consequences of this assumption in Sec. 3.3, where we notice that

the general relation Eq. (3.95) reduces to the one relevant for this black hole solution (3.123) once we set

ω1 = ω2 = ω
2 and rescale φI → φI

2 and also QI → 2QI . This will allow us to compare the results obtained in

23Notice that it would be easier to trade a instead of m for r+, due to the structure of the Y function. However, a is fixed by the susy

condition (3.115).
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Sec. 3.3 with those that we are going to obtain by studying the solution directly, in the next sections.

The BPS solution

General supersymmetric solutions have causal pathologies, these can be avoided by imposing other condi-

tions on the parameters, which also make the solution extremal.

In particular, one finds that CTCs can be avoided by imposing the constraints [47]:

m = m⋆ ≡ 1

2

√

µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2) , µI > 0,

4µ1µ2µ3(µ1 + µ2 + µ3 + 1) > (µ1µ2 + µ2µ3 + µ3µ1)
2 , (3.124)

one can see that by imposing also this condition one gets an extremal solution and that the outer horizon position

is real and positive r⋆ > 0.

The BPS value of the charges is given by [47]:

J⋆ =
π

8
(2µ1µ2µ3 + µ1µ2 + µ2µ3 + µ3µ1),

Q⋆1 =
π

8
(2µ1 + µ1µ2 + µ1µ3 − µ2µ3), (3.125)

the other electric charges Q⋆I , can be obtained from the expression of Q⋆1 by cyclic permutations of the indices,

while the conserved energy can be obtained by using the susy constraint on the charges (3.116).

The BPS outer horizon entropy reads:

S⋆ =
π2

4

√

4µ1µ2µ3(µ1 + µ2 + µ3 + 1)− (µ1µ2 + µ2µ3 + µ3µ1)2 ,

= 2π

√

Q⋆1Q
⋆
2 +Q⋆2Q

⋆
3 +Q⋆3Q

⋆
1 −

π

2
J⋆ , (3.126)

the chemical potentials take the fixed values Ω⋆ = 2 and ΦI⋆ = 1, justifying the definition of the modified

supersymmetric chemical potentials (ω, φI) given in (3.121).

A non-linear relation between the three BPS electric charges and the angular momentum can also be found

in this case. Indeed, after imposing susy and extremality, only three independent parameters are left, meaning

that only three conserved charges are independent. The non-linear relation can be found to be:

Q⋆1Q
⋆
2Q

⋆
3 +

π

4
J⋆2 =

(

Q⋆1Q
⋆
2 +Q⋆2Q

⋆
3 +Q⋆3Q

⋆
1 −

π

2
J⋆
)

︸ ︷︷ ︸

S⋆2/(2π)2

(

Q⋆1 +Q⋆2 +Q⋆3 +
π

4

)

. (3.127)

Notice that the outer horizon BPS entropy (3.126) is the same as the one found via the extremization

principle (3.100) upon suitably manipulating the charges, and the same holds true for the BPS non-linear

condition (3.127) as compared to (3.99).

Notice that in the RHS of Eq. (3.127) it appears the BPS entropy squared (S⋆)2. This has been explained

in Sec. 3.3 as being a consequence of the equivalence between the universal area product formula (LHS of

(3.127)), and the BPS non-linear constraint.

We now proceed to study the properties of the general horizons of this solution. In particular, we want to

show that the universal area product formula and the BPS inner horizons entropies, as obtained by studying the

solution directly, agree with the definitions given in Sec. 3.3.
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3.4.2 Properties of the general horizons

Let us start by giving a brief analysis of what kind of horizons we may expect for the above black hole

solution. The situation is similar to the single charged case (Sec. 3.2.1) but we will find some qualitative

differences.

As Y is a cubic polynomial in r2, there will be three horizons once more. The usual set of relations that

determine the three radii ri can be found by rewriting:

Y (r) = g2
3∏

i=1

(r2 − r2i ), (3.128)

by matching the coefficients with the expression in Eq. (3.108) one gets:







r2+ + r20 + r2− = −2m(s21 + s22 + s23)− g−2

r2+r
2
0 + r2−r

2
+ + r2−r

2
+ = 4m2(s21s

2
2 + s22s

2
3 + s23s

2
1) + 2m(a2 − g−2)

r2+r
2
0r

2
− = −8m3s21s

2
2s

2
3 − g−2f3(r = 0)

. (3.129)

To understand what kind of horizons we may expect, consider the curves Y (r2,m) = 0 in the (r2,m)

plane. In this case, these curves are qualitatively different from those of the single charged solution because Y

is cubic in m and not linear, see Fig. 3.3. In particular, for appropriate fixed values of the (δI , a) parameters,

there are two extremal configurations mext,± associated with a minimum and maximum value of m. When

these two extremal values coincide, the BPS solution is obtained. To see this, we can fix the δI parameters,

which parametrize the general BPS solution, and follow a trajectory where a approaches its BPS value (3.115).

This is shown in Fig. 3.3, where the black dot represents the BPS solution for the given δI parameters.

If one considers any possible value of (δI , a), one would find qualitatively different behaviours for the

Y = 0 curves. However, we shall only consider the ones described above, as they generally admit a BPS limit.

In this case, there are two physical horizons located at real and positive radii r+ and r0 (the event and Cauchy

horizons), and a virtual horizon located at a negative value of r2−. Similarly to the single charged black hole

solution, an inner horizon with r2− < 0 always exists for every value of the parameters24. This is not true for

the outer and intermediate horizons, for example, in the supersymmetric but not extremal solutions.

Giving a complete analysis of the regularity conditions for this black hole solution is quite involved [50],

and goes beyond the scopes of our work. For this reason, we limit ourselves to the points discussed above,

which are sufficient for what we are going to show next.

Thermodynamics of the other horizons and TS product formulae

The same reasoning used in the single charged case can also be applied here. The chemical potentials and

the entropies of each horizon can be obtained from those of the outer horizon (3.111, 3.112) by the replacement:

r+ → ri. The same holds for the on-shell action, so we could give a proposal for an "on-shell" action, or

better, a thermodynamic potential, for each horizon but we will not use these generalized definitions as already

discussed.

The conserved charges are the same for each horizon. This is confirmed by looking at the definitions (3.110)

where one does not need to use ri as parameter.

Then, proving the validity of the first law and the QSR for each horizon is only a matter of relabelling the

r+ parameter in the expressions associated with the outer horizon. This is true after we have traded one of the

24Because Y (r) is a cubic polynomial in r2, there must be at least one real root, provided that the parameters of the solution are kept

real.
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Figure 3.3: The solid (blue) lines represent the curves Y (r2;m) = 0 in the (r2,m) plane for a fixed value of the δI
parameters, while the a parameter tends to the BPS value, which in this case is approximately given by a ≈ 0.368. The

BPS solution is represented by the black dot. The solid (red) line represents the locus where T (r2;m) = 0. The qualitative

behaviour of the Y = 0 curves is different from that of the single charged black hole in Fig. 3.1. In this case, there are two

physical horizons for suitable values of the (δI , a) parameters, if m is contained between two extremal values mext,±.

For both of these extremal configurations, the temperature vanishes. This behaviour does not appear for every possible

value of the (δI , a) parameters. However, in these cases, we find that the solutions do not admit a BPS limit, or they are

characterized by the presence of a naked singularity.

parameters for a given horizon radius ri using the condition Y (r) = 0. Y (r) is linear in25 a2, so we can easily

trade a in favour of ri:

Y (r; a,m, δI) = 0 −→ a2 = a2(ri,m, δI). (3.130)

With these definitions, we should find a negative temperature for the intermediate horizon, and an imaginary

temperature for the inner horizon.

The validity of the first law for each horizon allows us to derive a relation of the form of Eq. (3.68), which

expresses the mass-independence of the product of the areas in an equivalent way. Indeed, the products (Ti)(Si)

can be rewritten as in Eq. (3.69):

TiSi =
π

8

Y
′
(ri)

ri
=
πg2

4

(
r2i − r2j

)(
r2i − r2k

)
, with: j, k 6= i, (3.131)

this is the analogue of Eq. (5.34) of [63], and were also found in [15]. Using this result and the first laws, it is

trivial to check that it holds:

0 =
S0S−
T+

+
S+S−
T0

+
S+S0
T−

︸ ︷︷ ︸

d(S+S−S0)/dE

=
(S0T0)(S−T−) + (S+T+)(S−T−) + (S+T+)(S−T−)

T+T0T−
. (3.132)

3.4.3 Area product formula

We now turn our attention to the area product formula. This has not been directly derived yet but can be

easily obtained as a special case of [66] and Eq. (3.101). In particular, by setting J1 = J2 and rescaling

QI → 2QI in Eq. (3.101), one expects to find the following entropy product formula for this case:

S−S0S+ = −i
(2π

g

)3
(

Q1Q2Q3 +
π

4
J2

)

, (3.133)

25for each value of the parameters one finds two solutions ±a related to R/L handed rotating Black Holes
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as expected, the product of the areas does not depend on the mass of the solution, which is exactly what is

expressed by Eq. (3.132).

We now verify the validity of Eq. (3.133) following the procedure of [32]. From the definitions of Y, f1, f3

in Eqs. (3.108), we can rewrite the Y function as follows:

Y (r) = f3 + g2r6H1H2H3 + r4 − 2mr2 = g2f1(r) + r4 + 2m(a2 − r2), (3.134)

if we evaluate the above equality on a given root ri of Y we immediately find the following result:

g2f1(ri) = −r4i + 2m(r2i − a2) = −(c2 − r2i )(d2 − r2i ), (3.135)

where, in the second equality we have rewritten g2f1(ri), which is a quadratic polynomial in r2i , in terms of its

roots (c2, d2), which then satisfy:







c2 d2 = 2ma2

c2 + d2 = 2m
,







Y (c) = g2f1(c) + c4 − 2m(c2 − a2) = g2f1(c)

Y (d) = g2f1(d) + d4 − 2m(d2 − a2) = g2f1(d)
, (3.136)

the second set of equations is obtained because (c2, d2) are the roots of the polynomial that appears in the

definition of Y (r), if we use (3.134). Eq. (3.135) allows us to rewrite the entropy of a general horizon as:

Si =
π2

2

√

f1(ri) =
π2

2g

√

−(c2 − r2i )(d2 − r2i ) , (3.137)

therefore:

S−S0S+ = −π
6i

8g3

∏

i

(c2 − r2i )1/2(d2 − r2i )1/2 = −
π6i

8g5

√

Y (c)Y (d) = −π
6i

8g3

√

f1(c)f1(d) , (3.138)

where we have used Eqs. (3.128, 3.136).

The expression obtained in this way is rather complicated, but it can be explicitly checked that it agrees with

the expected formula in terms of charges (3.133). To see this, it is convenient to trade the (m, a) parameters for

the (c2, d2) in the definition of the charges. This can be done easily using Eqs. (3.136).

3.4.4 Independent derivation of S⋆−

The final step to prove the universality of the extremization principle, is the derivation of S⋆− by directly

studying the black hole solution. We should recover the result in Eq. (3.100), once we put J⋆1 = J⋆2 .

We need to find the BPS value of the inner horizon r⋆−. First, it is convenient to find the expression of the

sI parameters in terms of the µI . After a bit of algebra, we find:

s21 =
1

4

(√

µ1(µ2 + 2)(µ3 + 2)

(µ1 + 2)µ2µ3
+

√

(µ1 + 2)µ2µ3
µ1(µ2 + 2)(µ3 + 2)

− 2

)

, (3.139)

the RHS is always positive because of the condition (3.124). The other sI parameters are found via obvious

permutations of the indices.

Then, using the known value of the outer horizon BPS radius:

r⋆2 =
1

2

(
√

µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2)− µ1µ2µ3 − µ1µ2 − µ2µ3 − µ3µ1
)

, (3.140)
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and exploiting the first of Eqs. (3.129), one is able to derive the following expression for the inner horizon

radius:

r⋆2− =
1

2

(
√

µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2)− µ1µ2µ3 − µ1µ2 − µ2µ3 − µ3µ1 − 2µ1 − 2µ2 − 2µ3 − 2

)

,

(3.141)

Setting µ1 = µ2 = µ3 = 0 and thus reducing to empty AdS5 spacetime, we find r⋆2− = −1 in g = 1 units,

which is the radius of the virtual horizon appearing in the AdS5 space discussed in the single charged case.

To evaluate the inner horizon entropy, we can use the same trick that we used in the discussion of the

universal area product, this allows to simplify the expression for the Bekenstein-Hawking entropy initially

given in Eq. (3.112), to the one in Eq. (3.137):

Si =
π2

2

√

−r4i + 2m(r2i − a2), (3.142)

Specializing to the inner horizon, using the definition (3.142) for the entropy and remembering the BPS

value of the a and m parameters in Eqs. (3.118, 3.124), one can show that:

S⋆− = −2π2i
[

1 + µ1 + µ2 + µ3 +
1

2

(
µ1µ2 + µ2µ3 + µ3µ1

)]

,

= −2πi
(

Q⋆1 +Q⋆2 +Q⋆3 +
π

4

)

, (3.143)

proving the validity of the result that we have already found from the extremization principle.

As a final test of the validity of the extremization principle’s universality, we have checked that the extrem-

ization equations are actually solved in the BPS case. From Eq. (3.123) the equations that one has to verify

are:
∂(I − I0)

∂ω
= −2πφ

1φ2φ3

ω3
= −J − Λ,

∂(I − I0)
∂φI

= π
φJφK

ω2
= −QI + Λ, (3.144)

if one considers the explicit expression for a given root (in the BPS solution) Λi(J
⋆, Q⋆I), and the expressions of

the chemical potentials (ωi, φ
I
i ) that can be obtained from Eqs. (3.111, 3.121), then, the extremization equations

are found to hold in the BPS solution, after we express all quantities in terms of only the µI parameters.

This concludes the explicit proof of the universality of the extremization principle for the single spinning,

triple charged black hole solution. We are now going to turn our attention to a different class of (AdS) black

holes in four dimensions.





Chapter 4

Asymptotically AdS4 black holes in 4D,

N = 2 gauged supergravity

In this chapter, we are going to turn our attention to some special cases of the general asymptotically AdS4

black hole solutions of U(1)4 gauged N = 2, D = 4 supergravity.

This supergravity theory arises as a consistent truncation of SO(8) gaugedN = 8, D = 4 supergravity [4],

the procedure reduces the original SO(8) gauge group to its Cartan U(1)4 subgroup. Furthermore, the N = 8

theory can be obtained as a consistent truncation on S7 of D = 11 supergravity on AdS4 × S7. By means of

the AdS/CFT correspondence [3], the thermodynamics of the black holes that we are going to consider should

be reproduced by a dual three-dimensional conformal field theory [6, 67].

The most general black hole solution is described by six conserved charges [68]: the energy E, one angular

momentum J , and four electric charges associated with the four U(1) gauge symmetries. We are going to

directly consider the solution with two independent charges of [68], and the one with one charge [69] which is

also a solution of pure N = 2 supergravity. We are also going to consider the generalization with acceleration

and magnetic charge [16, 70] of the latter.

We discuss the three black hole solutions separately, first giving a review of the known properties of the

solutions and then generalizing the results that we have found in the previous sections to the current ones.

For the black hole solution with acceleration, we also derive the area product formula, which has never been

discussed before. We also discuss the consequences of the universality of the extremization principle in the

general solution with four charges, starting from the supersymmetric entropy function proposed by [14]. In this

case, we will not provide an explicit proof of the universality of the extremization principle.

4.1 Review of the single charged, spinning AdS4 black hole solution

Let us start discussing the single charged solution of pure N = 2 gauged supergravity. This was originally

found in [71], but we will follow the presentation of [69].

The bosonic part of the action for D = 4 minimal N = 2 gauged supergravity is given by:

S =
1

16π

∫

d4x
√−g

(

R+ 6− 1

4
F 2

)

, (4.1)

where we have fixed the cosmological constant so that the AdS4 solution has radius 1 [69].

This theory admits an electrically charged, spinning, asymptoticallyAdS4 black hole solution parametrized

by three constants (m, a, δ). In Boyer-Lindquist type coordinates (t, r, θ, φ), the metric and the graviphoton

57
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gauge field describing the solution are given by:

ds24 = −
∆r

W

(

dt− a sin2 θ

Ξ
dφ

)2

+W

(
dr2

∆r
+
dθ2

∆θ

)

+
∆θ sin

2 θ

W

(

adt− (r̃2 + a2)

Ξ
dφ

)2

,

A =
2mr̃ sinh 2δ

W

(

dt− a sin2 θ

Ξ
dφ

)

, (4.2)

where the gauge field can always be modified by adding a pure gauge term of the form αdt, which is required

when discussing the regularity of the solution in the Euclidean signature.

The functions that appear in the metric and the gauge field are defined as:

r̃ = r + 2m sinh2 δ, ∆r = r2 + a2 − 2mr + r̃2(r̃2 + a2), Ξ = 1− a2,

∆θ = 1− a2 cos2 θ, W = r̃2 + a2 cos2 θ, (4.3)

the position of the horizons is given by the roots of the ∆r quartic polynomial.

We need to assume a2 < 1 so that the Einstein universe on the conformal boundary does not rotate faster

than the speed of light [53], and we can assume without loss of generality that all parameters are non negative

[69], a,m, δ ≥ 0.

The black hole solution is characterized by three conserved charges, its energy E, charge Q and angular

momentum J which are given by:

E =
m cosh 2δ

Ξ2
, Q =

m sinh 2δ

Ξ
, J =

ma cosh 2δ

Ξ2
, (4.4)

these are all positive, due to our assumptions on the parameters.

The Bekenstein-Hawking entropy of the outer horizon is:

S =
π(r̃2+ + a2)

Ξ
, (4.5)

where clearly r+ is the outer horizon radius, hence the largest real root of the ∆r polynomial.

The chemical potentials of the outer horizon are given by:

T =
∆′
r(r+)

4π(r̃2+ + a2)
, Ω =

a(1 + r̃2+)

r̃2+ + a2
, Φ =

mr̃+ sinh 2δ

r̃2+ + a2
, (4.6)

where one needs to remember that the angular velocity relevant for the thermodynamics is not directly the one

of the horizon ΩH , obtained by requiring the vanishing of the norm of the killing vector V = ∂t + ΩH∂φ

on the horizon, but rather the difference between ΩH and the angular velocity of the asymptotic observer

Ω = ΩH − Ω∞ [53]. Similarly, the electrostatic potential is defined as Φ = V µAµ|r+∞ .

With these definitions, one can easily show that the first law of thermodynamics is satisfied, together with

the quantum statistical relation:

dE = T dS +Ω dJ +Φ dQ, I = β E − S − β Ω J − β ΦQ, (4.7)

where the Euclidean on-shell action is given by:

I =
β

2(a2 − 1)

[

r3+ + 6ms2r2+ + r+
(
a2 + 12m2s4

)
+ 2ms2

(
a2 + 4m2s4 − 1

)
−m+

4m2c2s2r̃+
R2

+ + a2

]

(4.8)
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with s, c used as a shorthand notation for sinh δ and cosh δ. This can be obtained from the more general black

hole solution discussed in [15] with two pairwise equal charges, by setting δ1 = δ2 = δ in such a way to reduce

to the present one charged solution.

4.1.1 Supersymmetric and BPS solution

It can be shown that half of the total N = 2 supersymmetry can be restored by imposing the following

constraint on the conserved charges [72] :

E = J +Q ←→







a = 2
e4δ−1

eδ > 4
√
3

, (4.9)

this follows as usual from the requirement that the Bogomol’nyi matrix has a vanishing eigenvalue.

It can be shown [69] that by imposing the supersymmetry constraint (4.9) in the definition of the chemical

potentials Eqs. (4.6) one finds that they satisfy the usual constraint:

β(1 + Ω− 2Φ) = ±2πi, (4.10)

in the spirit of [8], these should be thought of as functions of the (r+, δ) parameters, where m has been traded

for r+ using the ∆r(r) = 0 condition. We discuss this in more detail later. This will also allow us to explain

the origin of the sign ambiguity in the above relation.

As usual, one defines the modified chemical potentials (ω, φ) as:

ω = β(Ω− 1) = ± 2πi(a− 1)

1 + a± 2ir̃+
, φ = β(Φ− 1) = ±2πi(a± ir̃+)

1 + a± 2ir̃+
,

ω − 2φ = ±2πi, (4.11)

these provide the non-trivial intensive parameters describing the thermodynamics of the BPS solution.

The quantum statistical relation and the supersymmetric action for each horizon now take the form:

I = S − ω J − φQ, I = ∓ i
2

φ2

ω
(4.12)

from this, one can develop the extremization principle, and obtain the black hole entropy from the constrained

Legendre transform:

S(Q, J) = ext{ω,φ,Λ}
[

−I − ω J − φQ+ Λ(ω − 2φ∓ 2πi)
]

. (4.13)

It was shown in [69] that this extremization principle correctly reproduces the outer horizon thermodynamics

in the supersymmetric solution. The same result can also be obtained from the discussion of [14] after having

reduced to the present solution.

Extremality and BPS solution

Pure supersymmetric solutions are characterized by causal pathologies in Lorentzian signature, as usual.

Moreover, the function ∆r does not have positive real zeros. However, one can obtain a regular and supersym-

metric solution free from causal pathologies, by imposing also the condition [69]:

m = a(1 + a)
√
2 + a =

2
√
2e2
(
e4 + 1

)

(e4 − 1)5/2
, (4.14)
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in this limit, one can show that the ∆r polynomial has a double real root corresponding to the physical outer

horizon, and the black hole is extremal.

In this case, one can check that the outer horizon chemical potentials take a fixed value1 Ω⋆ = Φ⋆ = 1 and

T ⋆ = 0.

In the BPS limit, the charges are given by:

Q⋆ =

√
2
√
e4 − 1

e4 − 3
, J⋆ =

2
√
2
√
e4 − 1

(e4 − 3)2
, (4.15)

and they satisfy the following constraint:

J⋆ =
Q⋆

2

(√

1 + 4Q⋆2 − 1
)

, (4.16)

in addition to (4.9).

The Bekenstein Hawking entropy for the outer horizon can be shown to be equal to:

S⋆ =
π

2

(√

1 + 4Q⋆2 − 1
)

. (4.17)

One may notice that now the BPS constraint (4.16) has a different structure with respect to the ones that we

have found in the five-dimensional case. However, the equivalence between the area product formula and the

BPS constraint continues to hold, the only difference being that in this case it is not directly evident.

4.2 Properties of the general horizons of the single charged solution

Let us now turn to our original analysis of the properties of the general horizons of this black hole solution.

The main task of this section is to show the validity of our claim regarding the universality of the extremization

principle also for this solution. This universality holds true also in this case.

We also discuss the relation between the universal area product, which we have directly derived, and the

BPS condition, showing again that in the BPS limit they are equivalent, provided that one knows the expressions

of the BPS entropies of all the horizons.

4.2.1 Physical and virtual horizons

Let us consider the ∆r polynomial (4.3) and rewrite it as:

∆r = r2 + a2 − 2mr + r̃2(r̃2 + a2) =
∏

i

(r − ri), (4.18)

where remember that r̃ = r + 2ms2.

As we have already noticed, there are four roots ri of ∆r, which satisfy (using r or r̃):







r1 + r2 + r3 + r4 = −8ms2

r1r2 + r1r3 + · · · = 1 + a2 + 24m2s4

r1r2r3 + · · · = 2m(1− 2a2s2 − 16m2s6)

r1r2r3r4 = a2 + 4m2s4(1 + 4m2s4)

,







r̃1 + r̃2 + r̃3 + r̃4 = 0

r̃1r̃2 + r̃1r̃3 + · · · = a2 + 1

r̃1r̃2r̃3 + · · · = 2m(1 + 2s2)

r̃1r̃2r̃3r̃4 = a2 + 4m2s2(1 + s2)

, (4.19)

1This justify the definition in Eq. (4.11).
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from the first equation, involving the sum of the roots, we conclude that at least one root must be negative.

However, it is easy to see that the polynomial ∆r(r) is strictly positive if r < 0 and we assume all parameters

to be non negative, as we did at the beginning. This means that there are no real negative roots. The only

possibility is that there are at least two complex conjugated roots whose real part is negative.

This means that there will always be at most two physical horizons associated with the real positive roots

(r0, r+), and at least two virtual horizons associated with a couple of complex conjugated roots (r−, r̄−).

Giving a physical meaning to these complex roots is even more difficult than it would be in the five-dimensional

case, where the virtual horizon is associated with the real root r2− < 0. However, we will see that some of the

observations that we have made for the inner horizon in relation to the spacetime with r2 < 0 are also valid

here.

We could argue, for example, that the virtual horizons are somehow associated with the virtual horizon

that appears in the empty AdS4 spacetime when we allow r2 to be negative. Indeed, notice that when we set

m = δ = 0, so that to recover empty AdS4 spacetime2, the polynomial ∆r reduces to a quadratic in the r2

coordinate, with r2− = −1 and r2 = −a as zeroes. The latter can be removed via the change of coordinates

[52] that removes the a parameter and puts the metric (4.2) into the standard form of static AdS4 spacetime.

Instead, r2− = −1 is the genuine virtual horizon (remember that we have set the AdS4 radius to 1), notice that

it is associated with the complex conjugate pair of roots r− = ±i.
As soon as we let m > 0, the polynomial (4.18) becomes of quartic order in r, and one can check that

already at first order in m the root r2− splits into two complex conjugate solutions of ∆r = 0, given by:

r− = ±i− m
(
2s2(1− a2) + 1

)
)

1− a2 +O(m2), (4.20)

notice that the real part of r− is negative as expected.

Similarly to the five-dimensional case, the virtual horizons reduce to the one of pure AdS4 space in the

m → 0 limit. The difference being that in the five-dimensional case, the polynomial determining the horizon

radii is always cubic in r2, allowing us to use it as a coordinate. In this way, even if there are two complex

conjugated horizons also in the five-dimensional case, at r− = ±i(· · · ), we can regard them as the same

horizon, related to the same value of r2−.

From a more detailed analysis of the roots of the ∆r polynomial, one realizes that there are two physical

horizons if m ∈ [mext,−,mext+ ] meaning that there are two extremal values for the m parameter. When m

takes one of the extremal values, the solution is extremal. This is similar to what we saw for the five-dimensional

black hole solution with three independent charges in Sec. 3.4.2, and happens because the ∆r(r) polynomial is

of fourth order in m.

This can be seen more easily by passing to the r̃ radial coordinate, which makes ∆r(r̃) only quadratic in

m. The condition ∆r(r̃;m) = 0 can be equivalently expressed by considering the relation m = m(r̃) given

by:

m(r̃) =
r̃2
(
2s2 + 1

)
±
√

r̃2 (2s2 + 1)2 − 4s2 (s2 + 1) (r̃2 + 1) (a2 + r̃2)

4s2 (s2 + 1)
, (4.21)

plotting these curves, one finds the behaviour shown in Fig. 4.1 which is similar to what we have seen in Fig.

3.3. where one can also see that for m = mextr,± the solution is extremal. For other values of m there are

always four complex roots if we keep the parameters of the solution real.

As a final note, one can explicitly check that the BPS solution can be equivalently obtained by simultane-

2As previously discussed in the five-dimensional case, by setting m = δ = 0 one gets the metric of AdS4 spacetime but in non-

standard coordinates due to the presence of the a parameter (and hence rotation). The standard metric of the AdS4 spacetime can be

obtained via a suitable change of coordinates [52].
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Figure 4.1: Behaviour of the ∆r(r;m) = 0 curves (solid line) in the (r,m) plane, for a fixed value of the s parameter,

while a tends to the BPS value, which in this case is approximately a ≈ 0.88. The dashed line represents the locus

where T+(r+;m) = 0, while the black dot represents the BPS solution associated with the given value of the s parameter.

The situation is the same as for the five-dimensional black hole solution with three charges 3.3. There are two extremal

configurations associated with mext,±, which coincide and produce the BPS solution once a = a⋆. The qualitative

behaviour does not change if we consider different ranges of the parameters.

ously requiring that mext,+ = mext,− = m⋆ by using the general relation (4.21) and imposing extremality.

Supersymmetric and BPS horizons

From now on we will use R instead of r̃ to make the notation lighter.

It is important to consider what happens in the supersymmetric case, following [8] we want to use an

horizon radius r̃i as a parameter describing the supersymmetric solutions, we need to study Eq. (4.21) after

having imposed the constraint (4.9), in this way the relation3 m = m(Ri) becomes:

m =
2e2
[

Ri(1 + e4)± i
(
R2
i (e

4 − 1)− 2
)]

R4
i − 1

, (4.22)

remember that e = eδ.

If one forces the horizon radius to be real, then one must introduce a complexified family of solutions char-

acterized by a complex value of the m parameter, one also has to pass to Euclidean signature for consistency.

This is analogous to what we have seen in the five-dimensional case [8].

However, we will follow the same conventions that we used when discussing the five-dimensional case and

keep the parameters of the solution real. This implies that in the general supersymmetric solution we will have

four virtual horizons, associated with two pairs of complex conjugated roots (R, R̄) and (R−, R̄−). This is only

a choice of parametrization that is more convenient to us, as it allows us to keep a real value of the charges.

Moreover, in this way we keep the symmetry under exchange of horizon radius Ri when used as a parameter

describing the solution.

Notice that by keepingm real and fixing one of the two signs in (4.22) when using one of the complex roots

R, we are forced to choose the opposite sign when considering the same relations in terms of R̄i. This happens

in order to satisfy m = m̄. The sign differences in Eq. (4.22) propagates in many places when discussing

the universal extremization principle, and determines which sign appears in the expression determining a given

horizon entropy in terms of the corresponding Λ root.

3Remember that this relation does not distinguish between the horizons, meaning that all roots solving ∆r(R;m) = 0 can be used

here.
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Finally, notice that in the BPS solution, obtained after having imposed both (4.9) and (4.14), one is able to

explicitly find all the roots of the ∆r polynomial, which are given by:

R⋆ =
√
a, R⋆− = −√a± i(a+ 1), (4.23)

clearly R⋆ is a double root. This solution corresponds to the point in Fig.4.1. Having found the explicit value

of R⋆−, we can directly derive the expressions of the inner horizons entropies, which are obtained as usual from

the generalization of Eq. (4.5). Remembering the expression of the BPS electric charge (4.15) we find:

S⋆ =
π

2

(√

1 + 4Q⋆2 − 1
)

, S⋆− = −π
2

(

1 + 4iQ⋆ +
√

1 + 4Q⋆2
)

, (4.24)

where we have also given the BPS value of the physical BPS entropy for completeness.

Notice that when we set Q⋆ = 0, hence reducing to empty AdS4 spacetime, the BPS entropies reduce to

S⋆ = 0 and S⋆− = −π. The latter is precisely one quarter of the area of a 2-sphere with radius r2 = −1 that

appears in empty AdS4 space when we allow r2 < 0. This is the same observation that we made in the five-

dimensional case in Sec. 3.2.2. This observation reinforces the idea that we might have to treat the spacetime

with r2 < 0 more seriously, as it seems to be a general feature for theseAdS black holes which does not depend

on the number of dimensions of the spacetime, nor on the number of independent charges that characterize the

solution.

These results can be used to show the equivalence between the BPS constraint (4.14) with the universal

area product, which we are now going to derive.

4.2.2 Universal area product formula

The universal area product has not been derived yet for this specific solution, however, it should trivially

follow from the results of [32] for the pairwise equal charged case.

We can proceed as in Sec. 3.4.3, first notice that the condition ∆r(r) = 0 is equivalent to:

r̃2 + a2 =
−r2 + 2mr − a2
(r + 2ms2)2

= −(r − b)(r − d)
(r + 2ms2)2

, (4.25)

where:

b+ d = 2m, bd = a2 (4.26)

moreover, ∆r evaluated on either b or d reads:

∆r(b) = (b+ 2ms2)2
(
(b+ 2ms2)2 + a2

)
, (4.27)

exploiting this result, the product of the four entropies can be rewritten as (using Si =
π
Ξ(r̃

2
i + a2), Eq. (4.5)):

4∏

i=1

Si =
( π

1− a2
)4

4∏

i=1

(r̃i − b)(r̃i − d)
(r̃i + 2ms2)2

=
( π

1− a2
)4

4∏

i=1

∆r(b)∆r(d)

∆r(−2ms2)2
, (4.28)

rearranging the above expression in such a way that only terms depending on bd and b+d appear one finds that

the product of the entropies reads (also using Eqs. (4.4)):

4∏

i=1

Si =
4m2π4

(1− a2)4
(

4m2s4c4 + a2(s2 + c2)
)

= π4
(

Q4 + 4J2
)

, (4.29)
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this result agrees with the expected one found in [32] for the pairwise equal case, once we reduce to the one

charged case and suitably rescale (Q, J).

We can now specialize to the BPS solution, where S⋆+ = S⋆0 = S⋆ and the BPS entropies are given by Eqs.

(4.24). By inserting these informations in the area product formula one finds:

π4Q⋆2
(

2 + 5Q⋆2 − 2
√

1 + 4Q⋆2
)

= S⋆− S̄
⋆
− S

⋆2 = π4
(

Q⋆4 + 4J⋆2
)

, (4.30)

this is precisely the BPS constraint (4.14). To see this, one can view the above equation as an equation for J⋆,

whose solution is precisely (4.14).

In anticipation of what we have shown, also in this case the equivalence of the area product formula and the

BPS constraint can be interpreted by means of a factorization condition, needed to obtain real entropies from

the extremization principle.

4.2.3 Thermodynamics of all the horizons

Following the logic of the five dimensional case, we will now proceed to define the generalized thermo-

dynamics for each horizon. Again, we can do this in such a way that the first law and the quantum statistical

relations are automatically satisfied. This, will also prepare the ground to show the universality of the extrem-

ization principle.

Following Sec. (3.2.4) it is quite easy to define the relevant thermodynamic quantities for the other horizons.

In particular, the conserved charges remain fixed while the chemical potentials, the entropy, and the on-shell

action are simply obtained by replacing the explicit dependence on r+ with the appropriate ri root in the various

definitions associated with the outer horizon (4.5, 4.6, 4.8). Clearly, the two virtual horizons are characterized

by a complex value of these quantities, which we treat as formal quantities.

The first law of thermodynamics and the QSR for each horizon, are immediately derived from those of the

outer horizon once we trade one parameter of the solution with a given Ri (e.g. we can trade m using Eq.

(4.21)). It does not matter which horizon radius is used until ∆r = 0 is satisfied, and again checking the first

law or the QSR for each horizon is only a matter of relabelling the ri parameter. For the intermediate horizon

at r0 one would get a negative temperature.

We can now easily generalize equations (3.68, 3.69). From the mass-independence of the entropy product

formula, combined with the generalized first law for each horizon, we get:







d(S1S2S3S4)
dE = 0

dSi
dE = 1

Ti

, At fixed Q and J, (4.31)

implying the following identity which generalizes Eq. (3.68) in the case where there are 4 horizons:

(S2T2)(S3T3)(S4T4) + (S1T1)(S3T3)(S4T4) + (S1T1)(S2T2)(S4T4) + (S1T1)(S2T2)(S3T3) = 0, (4.32)

this relation can be easily checked by noticing that the products Ti Si for a given horizon can be rewritten as

(using Eqs. (4.19)):

T1S1 =
m(1 + 2s2)−R1(2R

2
1 + 1 + a2)

2Ξ
=

1

4Ξ

(

(R1−R2)(R1−R3)(R1−R4)+3R2
1(R1 +R2 +R3 +R4
︸ ︷︷ ︸

0

)
)

,

(4.33)

this generalizes Eq. (3.69) and allows to easily check the validity of Eq. (4.32).
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Supersymmetric case and setup of the universal extremization principle

As a final step, before moving on proving the universality of the extremization principle, let us consider

the supersymmetric chemical potentials for each horizon. These are obtained by imposing the supersymmetric

constraint and trading m for the appropriate Ri parameter in Eqs. (4.6), one gets:

Ti =
e8R2

i (2Ri ∓ i) + e4
(
−4R3

i − 4Ri ± 2i
)
+ 2R3

i + 4Ri ± i(R2
i + 2)

2π
(

(e4 − 1)2R2
i + 4

) , (4.34)

Ωi =
2
(
e4 − 1

) (
R2
i + 1

)

(e4 − 1)2R2
i + 4

, Φi =

(
e4 − 1

)
(1± iRi)Ri

(e4 − 1)Ri ± 2i
,

1 + Ωi − 2Φi
Ti

= ∓2πi, (4.35)

the sign ambiguity is correlated to the one in the m = m(Ri) relation (4.22). As we have already discussed,

once we choose a sign convention for a given horizon, we have to choose the opposite sign for the conjugated

horizon. These relations are the same in form if we choose to work with complex horizons radii Ri and real m

or if we force (R0, R+) to be real and complexify m (as done in [8]). However, the two choices give different

chemical potentials, because the two possibilities above correspond to two different ways that can be used to

parametrize the supersymmetric solution.

Next we introduce the usual modified chemical potentials (ωi, φi):

ωi = βi(Ωi − 1), φi = βi(Φi − 1), ωi,−2φi = ∓2πi, (4.36)

by virtue of the symmetry under exchange of horizon radius Ri, these have the same expression as the ones

given in Eq. (4.11). Remember that only for the outer and intermediate horizons these represent, in the T+ → 0

or T0 → 0 limit, the subleading order contributions in the expansion of the potentials around the BPS solution,

following a supersymmetric trajectory.

The quantum statistical relation and the supersymmetric action for each horizon now take the form:

Ii = Si − ωi J − φiQ, Ii = ∓
i

2

φ2i
ωi
. (4.37)

We are now ready to define the universal action I , depending on the universal chemical potentials (ω, φ) not

associated with any particular horizon. As we have already discussed in the five-dimensional case, this allows

us to not depend on the definitions of the Ii actions.

Notice that the sign ambiguity appearing in the relation m = m(Ri), which we have seen to be fixed

between two conjugated horizons, has propagated to the supersymmetric constraint (4.36), but also to the

action Ii (4.37), this means that one has to formally define two universal actions, one associated with the

horizons located at (R,R−) and one, with opposite sign, associated with the conjugated horizons at (R̄, R̄−).

We are now ready to prove the universality of the extremization principle.

4.2.4 Universal extremization principle

In [69] the extremization principle was briefly discussed (concentrating only on the outer horizon). We are

going to consider their discussion, extending their calculations and taking all the horizons in considerations.

The starting point is given by the following universal relations:

ω − 2φ = ∓2πi, I = ∓ i
2

φ2

ω
, (4.38)

the fact that the two couples of conjugated horizons (R,R−) and (R̄, R̄−) have a sign difference in the definition
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of the action, implies that we should formally treat the two couples separately. This is different from what we

have done in the five-dimensional case and, indeed, the procedure is slightly different in this case. However, we

are going to show that one can derive the properties of all four horizons from one calculation, which directly

generalizes what we have done in the five-dimensional case.

The entropy S = S(Q, J) can be obtained from the following constrained Legendre transform:

S = ext{ω,φ,Λ}
[

−I − ω J − φQ+ Λ(ω − 2φ± 2πi)
]

, (4.39)

following our choice of parametrization, the charges are real.

The extremization equations are:

∂I

∂ω
= −J + Λ,

∂I

∂φ
= −Q− 2Λ, (4.40)

together with the supersymmetric constraint, they should be used to determine the chemical potentials and Λ.

Combining the second extremization equation and the supersymmetric constraint gives:

φ =
2πi

2(Q+ 2Λ)− i , ω = 2πi

(
2− 2(Q+ 2Λ)− i
2(Q+ 2Λ)− i

)

, (4.41)

these depend on J through Λ, once we have solved the extremization equations to determine Λ = Λ(Q, J).

The Lagrange multiplier can be obtained by noticing that the following combination of derivatives of the

supersymmetric action vanishes:

(
∂I

∂φ

)2

∓ 2i
∂I

∂ω
= 0 −→

(
Q+ 2Λ

)2 ∓ 2i
(
−J + Λ

)
= 0, (4.42)

the Euclidean action is an homogeneous function of degree one of the chemical potentials, meaning that it still

holds:

Si = ±2πiΛi, (4.43)

where Λi is a root of the polinomial in Eq. (4.42).

To associate the right root Λi to its corresponding horizon, one should choose the root that satisfies the

extremization equations Eqs. (4.40), once we consider the explicit expressions for the chemical potentials

associated with that given horizon, and we express everything in terms of the (a, e) parameters. This can be

easily done in the BPS limit and, with some care, also in the general supersymmetric case. The discussion is

similar to that of the five-dimensional solution.

Notice that in this case, we have two quadratic polynomials determining the Lagrange multiplier Λ. The

two pairs of roots (Λ,Λ−) and (Λ̄, Λ̄−) are separately associated with the horizons at (R,R−) and (R̄, R̄−).

This happens because of the sign difference in the definition of the supersymmetric action.

However, we can recover a completely unified description of all four horizons by considering the following

quartic polynomial determining the Λ roots:

(Q+2Λ)4+4(−J+Λ)2 = 0 ←→
[(
Q+2Λ

)2−2i
(
−J+Λi

)][(
Q+2Λ

)2
+2i

(
−J+Λi

)]

= 0. (4.44)

Even if one could formally work by using only the quadratic polynomial in Λ it is worth considering also

the procedure with the quartic polynomial, which directly generalizes the one discussed in the five-dimensional

case. Moreover, we will need it in the following, when discussing the extremization principle for the general

solution with four charges.
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Extremization principle using the quadratic polynomial

Let us choose the + sign in Eq. (4.42), one gets the following:

Λ2 + Λ
1

2
(2Q− i) + 1

4
(2iJ +Q2) = 0, (4.45)

the roots are given by:

Λ =
1

4

(

−2Q+ i± i
√

1 + 4i(Q+ 2J)
)

, (4.46)

these are complex, as the charges are real, but this is coherent with the fact that in the general supersymmetric

solution all horizons are complex. The BPS case is obtained by imposing that at least one of the two Λ roots

is purely imaginary, we cannot require to have two conjugated imaginary roots as the quadratic polynomial has

complex coefficients, this confirms our interpretation that each quadratic polynomial reproduces either (R,R−)

or its conjugated pair of horizons, as one of the two must always be complex.

One can see that only the root with the − sign in (4.46) can be made purely imaginary by requiring4

Im
[√

1 + 4i(Q+ 2J)
]

= 2Q −→
(

1 + 16(Q+ 2J)2
) 1

4
sin

[
1

2
arctan

[
4(Q+ 2J)

]
]

= 2Q. (4.47)

A solution can be found by exploit the trigonometric identities sin(x2 ) =
√

1−cosx
2 and cos[arctanx] =

(x2 + 1)−
1
2 . This allows us to rewrite the above condition as the following quadratic equation in J :

J2 + JQ−Q4 = 0, −→ J =
Q

2

(√

1 + 4Q2 − 1
)

, (4.48)

whose solution is exactly the BPS condition (4.15). Imposing the above constraint, the two roots of the quadratic

polynomial becomes5:

Λ⋆ = − i
4

(√

1 + 4Q⋆2 − 1
)

, Λ⋆− =
i

4

(

1 + 4iQ⋆ +
√

1 + 4Q⋆2
)

, (4.49)

by using the definition of the entropy in terms of the Lagrange multiplier S = 2πiΛ, we immediately see that

we correctly reproduce the results already found in the BPS solution for the entropies Eqs. (4.17). The results

for the conjugated horizons can be easily obtained by replacing i→ −i in all expressions.

Finally, notice that exploiting Eqs. (4.49), the expressions for the BPS charges (4.15) and the expressions

for the BPS chemical potentials for the two horizons, one can check that the extremization equations are solved,

this confirms that the two roots Λ are correctly associated with the expected horizon.

The product formula for the entropies can also be derived from the extremization principle, the constant

term in the quadratic polynomial gives the product of two horizons meaning that:

∏

i

Si = (4π)4ΛΛ−Λ̄Λ̄− = π4(Q2 + 2iJ)(Q2 − 2iJ) = π4
[
Q4 + 4J2

]
. (4.50)

Supersymmetric but non extremal case

Eq. (4.46) allows us to find a formal expression for the supersymmetric entropies S, S− as a function of

only the conserved charges. The entropy product formula is always satisfied by means of Eq. (4.50).

We can check if the entropies obtained from this definition agree with the ones that one would get from the

4Remember that we have initially fixed the parameters to be positive, meaning that also the charges are positive. One finds that the

other root can become, real but only if the charges are negative.
5To find the expression for the complex root one needs to exploit the identity 1 + 4iQ

√

1 + 4Q2 = (2iQ+
√

1 + 4Q2)2.
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formula of the area Eq. (4.5). As we have seen in the five-dimensional case, to correctly associate each Λ root

to the corresponding horizon entropy:

Λ =
1

4

(

−2Q+ i− i
√

1 + 4i(Q+ 2J)
)∣
∣
∣
Q(e,R),J(e,R)

←→ π
(R2 + a2)

1− a2

Λ− =
1

4

(

−2Q+ i+ i
√

1 + 4i(Q+ 2J)
)∣
∣
∣
Q(e,R−),J(e,R−)

←→ π
(R2

− + a2)

1− a2 , (4.51)

we need to find the range of validity for R and R− interpreted as "good" parameters that substitute m, where

with "good" we simply mean that the inverting relation m = m(Ri) is bijective, remember also that m > 0.

With our parametrization, we havem ∈ R. This requirement imposes a constraint on the real and imaginary

part of the complex horizon radii, in particular, using the inversion relation Eq. (4.22) one easily finds that it

must hold:

R =

√

(e4 − 1)x2 − (e4 + 1)x+ 2

e4 − 1
+ ix, R− = −

√

(e4 − 1)x2 − (e4 + 1)x+ 2

e4 − 1
+ ix (4.52)

The + sign is associated with the R root while the − sign is associated with the R− root whose real part must

be negative. Setting x = 0 we recover the real BPS solution for the physical outer horizon radiusR⋆ =
√
a, and

similarly setting x = 1 + a we recover the BPS solution for the virtual horizon radius R⋆− = −√a+ i(1 + a).

The roots become purely imaginary if the radical is negative, this happens if x ∈
(

2
e4−1

, 1
)
, this is similar

to what happened to the r0 root in the five-dimensional case. However, we cannot allow x to take these values

as it would produce an imaginary m = m(R). To see this, let us insert Eqs. (4.52) into the inverting relation

(4.22), obtaining:

m
(
Ri(x)

)
= ±

2e2
√

(x− 1)
(
(e4 − 1)x− 2

)
(e4(1− 2x) + 2x+ 1)

(e4 − 1)5/2
, (4.53)

the sign depends on which horizon radius R or R−) is considered. Notice that precisely when x ∈ ( 2
e4−1

, 1)

the mass parameter is imaginary, hence we should exclude those values from the range of validity of x. There

are two separate branches of allowed values for the x parameter, one finds that each branch must be associated

with either R or R− in such a way to satisfy the condition m > 0 see Fig. (4.2).

Figure 4.2: Behaviour of m = m
(
Ri(x)

)
in Eq. (4.53), associated with R in red, and R− in black. We see that,

imposing m > 0 implies that the two allowed regions for the x = Im[Ri] parameter are associated with either one of the

two horizons. Notice that the BPS value for m (4.14) (with e = 1.5 we have m⋆(e) ≈ 1.16) is obtained precisely when

R is real (x = 0) and when Im[R−] = x = 1 + a⋆(e).

In particular, one finds that the complex variable R(x) (associated with the outer horizon) is related to a
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positive value for m if x < 2
e4−1

. Instead, R−(x) (associated with the inner horizon), produces a positive value

for m if x > 1.

After having understood which numerical (complex) values R and R− can take, one can easily check

numerically that the relations in Eqs. (4.51) are satisfied, provided that one evaluates them in the correct range

of the x parameter.

Extremization principle using the quartic polynomial

Consider now the quartic polynomial obtained by multiplying the two quadratic polynomials generating the

two couples of roots, from this the thermodynamics of all four horizons can be reproduced at once.

(
Q+ 2Λ

)4
+ 4
(
−J + Λ

)2
=
[(
Q+ 2Λ

)2 − 2i
(
−J +Q

)][(
Q+ 2Λ

)2
+ 2i

(
−J +Q

)]

, (4.54)

explicitly, it is given by:

Λ4 + p3Λ
3 + p2Λ

2 + p1Λ + p0, where:







p3 = 2Q

p2 =
1
4

(
1 + 6Q2

) ,







p1 =
1
2

(
Q3 − J

)

p0 =
1
16

(
Q4 + 4J2

) . (4.55)

The entropy product formula can be immediately read off from the p0 parameter. Proceeding as usual, the

BPS solution can be imposed requiring that the quartic polynomial has two conjugated imaginary roots, this

can be done as the polynomial has real coefficients. This is achieved by imposing the following condition on

the pi coefficients:

p1
p3

+
p0p3
p1

= p2 →
(
4Q2 + 1

) (
J2 + JQ−Q4

)

4 (Q4 − JQ)
= 0 (4.56)

and again, one easily sees that this condition is equivalent to imposing the BPS constraint (4.15). The above

condition is the factorization condition which puts the quartic polynomial in the form:

(

Λ2 +
p1
p3

)(

Λ2 + p3Λ + p2 −
p1
p3

)

, (4.57)

then in the BPS limit one finds for the outer physical horizon that6:

S⋆ = 2π

√
p1
p3

=
π

2

(√

1 + 4Q⋆2 − 1
)

(4.58)

while the BPS value of the two virtual horizons entropies, are obtained by considering the roots Λ− of the

quadratic polynomial7 Λ2 + p3Λ + p2 − p1
p3

:

S⋆− = ±πi
(

−p3 ±
√

4
p1
p3
− 4p2 + p3

)

= −π
2

(

1± 4iQ+
√

1 + 4Q2
)

. (4.59)

These are exactly the results found in Eqs. (4.24), moreover, the extremization equations can be found to

be satisfied for each horizon by choosing the appropriate root for Λ, this has essentially already been checked

when discussing the case generated by the quadratic polynomial.

As a final comment, notice that the equivalence between the universal area product formula and the BPS

constraint, can be derived using the definitions of the BPS entropies in terms of the pi parameters (4.58, 4.59),

6One needs to use (
√

1 + 4Q2 − 1)2 = −1− 2Q2 +
√

1 + 4Q2 .
7One needs to use: (

√

1 + 4Q2 + 1)2 = 2 + 4Q2 + 2
√

1 + 4Q2 .
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and rewriting the factorization condition (4.56) as:

p0 =
p1
p3

(

p2 −
p1
p3

)

−→ p0 = S⋆2 S⋆− S̄
⋆
−. (4.60)

This concludes our discussion for the present black hole solution.

4.3 Pairwise equal charged, spinning AdS4 black hole solution

In this section, we are going to generalize some of the previous results also to the pairwise equal charged

solution. We will mostly concentrate on the properties of the BPS horizons in order to prove the universality of

the extremization principle. We will not elaborate on the details of the solution as it does not bring any novelty

with respect to the single charged case, which can be trivially obtained from the present solution.

Let us start with an overview of the properties of the solution.

Review of the black hole solution

Consider the black hole solution of [68], we simply give a review the relevant features of the solution

skipping all the details that are not directly needed.

This is a particular solution of U(1)4 gauged N = 2 supergravity, the bosonic fields of this theory are: the

metric gµν , four Abelian gauge fields AI which are then set pairwise equal A1 = A2 and A3 = A4 and two

real scalar fields, the axion and the dilaton8. One can find in [15, 68] the specific expressions for the metric and

the other fields characterizing the solution.

The solution is given using coordinates (t, r, θ, φ), with θ ∈ [0, π] and φ ∼ φ + 2π parametrizing a 2-

sphere, and depends on four parameters (m, a, δ1, δ2) which can be roughly associated with the mass, angular

momenta, and the two independent electric charges. It is interesting to notice that the scalar fields depend on

the combination r1 − r2 where ri = r+ 2m sinh2 δi, meaning that by setting δ1 = δ2 = δ the two scalar fields

can be set to zero, while the two gauge fields become equal. One can easily check that in this way one recovers

the single charged solution discussed in Sec. 4.1.

The function determining the position of the horizons is now given by:

∆r = r2 + a2 − 2mr + r1r2
(
r1r2 + a2

)
, (4.61)

where we have set the AdS4 radius to 1 as usual, notice that it trivially reduces to (4.3) if δ1 = δ2.

The solution has four independent conserved charges:

E =
m

Ξ2
(1 + s21 + s22), J =

ma

Ξ2
(1 + s21 + s22),

Q1 = Q2 =
ms1 c1
2Ξ

, Q3 = Q4 =
ms2 c2
2Ξ

, (4.62)

where si = sinh δi, ci = cosh δi and Ξ = 1 − a2. These have been obtained via the standard Maxwell and

Komar integrals, and by integrating the first law to get the energy in [11], or via holographic renormalization in

[15].

The chemical potentials of the outer horizon, which is located at the largest positive root r+ of ∆r, are

8The original U(1)4 gauged N = 2 supergravity theory is obtained by coupling the N = 2 supergravity multiplet with three vector

multiplets, hence the theory would contain a total of three complex scalars, or equivalently, six real scalars. After having set the four

gauge fields pairwise equal, one also sets four of the total scalar fields to constants so that only two non-trivial real scalar fields [68]

remain. Equivalently, one realizes that the field content described above is consistent with the one that one gets when considering pure

supergravity coupled to one vector multiplet
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given by the following expressions:

T =
∆′
r(r+)

4π(r1 r2 + a2)
, Ω =

a(1 + r1 r2)

r1 r2 + a2
, Φ1 = Φ2 =

2ms1 c1 r2
r1 r2 + a2

, Φ3 = Φ4 =
2ms2 c2 r1
r1 r2 + a2

, (4.63)

these have been calculated in a non-rotating frame at infinity with coordinates (t′ = t, φ′ = φ+ at) (see [15])

hence the angular velocity is both the horizon angular velocity (the killing vector generating the horizon is

V = ∂t′ +Ω∂φ′) and the thermodynamic one. Moreover, having set the gauge fields pairwise equal, also makes

the electrostatic potentials pairwise equal as they are defined via the usual relation ΦI = ιVA
I
∣
∣∞
r+

.

Finally the Bekenstein-Hawking entropy is:

S =
π(r1 r2 + a2)

Ξ
. (4.64)

Notice that all the thermodynamic quantities reduce to the ones of Sec. 4.1 upon setting δ1 = δ2, with the

exception of the electric charges that reduce to Q1 = Q3 =
Q
4 where Q has been defined in (4.4).

The above thermodynamic quantities satisfy the first law of thermodynamics in the form:

dE = T dS +Ω dJ + 2Φ1 dQ1 + 2Φ3 dQ3, (4.65)

and the quantum statistical relation:

I = βE − S − β Ω J − 2β Φ1Q1 − 2β Φ3Q3, (4.66)

where I is the Euclidean on-shell action that was calculated in [15] by using holographic renormalization.

Supersymmetric solutions

Supersymmetry is (partially) restored if the above solution satisfies the condition9 [15]:

a =
2

e2(δ1+δ2) − 1
, (4.67)

again, one finds that the supersymmetric chemical potentials and charges satisfy the standard supersymmetric

constraints:

β(1 + Ω− Φ1 − Φ3) = ∓2πi, E − J − 2Q1 − 2Q3 = 0, (4.68)

where as usual, one should think of these quantities as parametrized by the (r+, δ1, δ2) parameters, with r+

substituting m by using the ∆r(r+) = 0 condition. Also in this case ∆r (4.61) is quartic in m so to effectively

trade m for the outer horizon radius, one needs to introduce the new coordinate R = r + 2ms21 which makes

∆r(R) only quadratic in m. This is similar to what we did before (Sec. (4.1.1)) and was discussed in [15].

One can introduce the modified chemical potentials:

ω = β(Ω− 1), φI = β(ΦI − 1), ω − φ1 − φ3 = ∓2πi, (4.69)

in terms of which, the supersymmetric Euclidean action and the QSR take the usual form:

I = ∓ i
2

φ1φ3

ω
, I = −S − ω J − 2φ1Q1 − 2φ3Q3. (4.70)

9Notice that if we impose to have real parameters, this condition satisfies the bound a2 < 1 only provided that a > 1 because

e2(δ1+δ2) > 0, moreover one has to impose δ1 + δ2 > log(
√
3).
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The quantities (4.69, 4.70) remain well defined in the BPS limit and allow to describe a non trivial BPS

thermodynamics. Moreover, starting from these relations it can be shown [14] that the constrained Legendre

transform of the supersymmetric action I , with respect to all chemical potential is able to reproduce the BPS

entropy, after having imposed the usual reality condition.

Extremality and BPS solution

As usual, supersymmetric solutions have causal pathologies, and the condition ∆r(r) = 0 determining the

position of the horizons only has complex roots. One can obtain a well-behaved solutions by imposing another

constraint on the parameters10 [11]:

m2 = m2
⋆ ≡

cosh2(δ1 + δ2)

4eδ1+δ2 sinh3(δ1 + δ2) c1 s1 c2 s2
, (4.71)

it can be shown that in this way the solution becomes extremal and ∆r has a real double root at:

r⋆ =
2m⋆ s1 s2

cosh(δ1 + δ2)
, (4.72)

the chemical potentials of the outer horizon take the fixed values: Ω⋆ = 1, Φ1 ⋆ = Φ3 ⋆ = 1 and T = 0, while

the charges now depend only on (δ1, δ2) and satisfy the constraint [14]:

J⋆ = (Q⋆1 +Q⋆3)
(√

1 + 64Q⋆1Q
⋆
3 − 1

)

, (4.73)

together with the one in (4.68).

The BPS outer horizon entropy is given in terms of the charges as [14]:

S⋆ =
π

2

(√

1 + 64Q⋆1Q
⋆
3 − 1

)

, (4.74)

again the results for the single charged case in Sec. 4.1.1 can be recovered by setting Q⋆1 = Q⋆3 =
Q⋆

4 .

4.3.1 Properties of the BPS horizons

In this section, we are going to derive the BPS entropies and radii for the virtual inner horizons. Notice that

also in this case the ∆r function (4.61) is a quartic polynomial in r, hence there are four horizons (possibly

complex conjugated).

It is useful to work with the parameters ei = eδi . In terms of these, one can easily find that the supersym-

metry and BPS conditions on the (a,m) parameters (4.67, 4.71) become:

a =
2

e21 e
2
2 − 1

, m =
2
√
2 e1 e2(1 + e21 e

2
2)

(e21 e
2
2 − 1)

3
2

√

(e41 − 1)(e42 − 1)
. (4.75)

We need to find the BPS value for the inner horizon radius R⋆− = r⋆− − 2ms21. This can be done by

rewriting: ∆r(R) =
∏

i(R − Ri), where Ri are the general horizons radii. In this way, one gets the usual

10A real mass parameter is obtained provided that δ1δ2 > 0 so that s1s2 > 0, and remember that δ1 + δ2 has already been set

positive when considering the supersymmetry condition (4.67). The combination of these 2 bounds forces δ1 and δ2 to be positive.

Then, if we also require r⋆ > 0 this forces also m to be positive, meaning that the BPS solution is characterized by a positive value of

all parameters and hence charges from Eqs. (4.62).
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relations between the roots:







R1 +R2 +R3 +R4 = 4m(s21 − s22) ≡ A0

R1R2 + · · · = 1 + a2 + 4m2(s21 − s22)2 ≡ A1

R1R2R3 + · · · = 2m
(
1 + 2s21 + a2(s21 − s22)

)
≡ A2

R1R2R3R4 = a2 + 4m2s21(1 + s21) ≡ A3

BPS−−−−−−−→
R3=R4=R⋆







2Re[R⋆−] + 2R⋆ = A0

|R⋆−|2 + 2Re[R⋆−]R
⋆ +R2⋆

− = A1

2|R⋆−|2R⋆ + 2Re[R⋆−]R
2⋆ = A2

|R⋆−|2R⋆2 = A3

(4.76)

where clearly one should impose the constraints (4.75) on the Ai coefficients, and we have written the inner

virtual horizons radii as R1 = R̄2 = R−.

Combining the first and the last equations above, one gets:

|R⋆−|2 =
A3

R⋆2
, Re

[
R⋆−
]
=

1

2
A0 −R⋆, (4.77)

which, after some calculations, and using the known result for R⋆ that follows from Eq. (4.72), one finds that:

R⋆ =
e2
√

2(e41 − 1)

e1
√

(e42 − 1)(e21 e
2
2 − 1)

, R⋆− = − e1
√

2(e42 − 1)

e2
√

(e41 − 1)(e21 e
2
2 − 1)

+ i
e21 e

2
2 + 1

e21 e
2
2 − 1

, (4.78)

the other equations hold with these definitions. Everything reduces to the previous single charged BPS solution

upon setting δ1 = δ2.

Inserting the result for R⋆− in the definition of the entropy (4.64), one finds an expression for the virtual

horizons BPS entropies in terms of the (e1, e2) parameters. We will not explicitly show it as it is quite long, but

it can be used to explicitly check that the virtual horizon BPS entropy is equivalent to the following expression:

S⋆− = −π
2

[

1 + 8i(Q⋆1 +Q⋆3) +
√

1 + 64Q⋆1Q
⋆
3

]

. (4.79)

Also in this case, one can notice that by setting Q⋆1 = Q⋆3 = 0 and reducing to AdS4 space, one obtains

R⋆− = ±i and S⋆− = −π. As we have seen in the single charged case.

As a final comment, notice that by using the universal area product formula, which was derived in [32] for

this solution, and the expressions for the BPS horizons entropies one can recover the BPS constraint (4.73):

S⋆−S̄
⋆
−S

2⋆ = (2π)4
[
J⋆2

4
+ 16Q⋆21 Q

⋆2
3

]

−→ J⋆ = J⋆
(
Q⋆i , S

⋆
i (Q

⋆
i )
)
. (4.80)

Instead of discussing the universality of the extremization principle for this solution, which is a rather trivial

generalization of the procedure discussed in 4.2.4, we are going to discuss it for the more general four-charged

solution in the next section, and then reducing those results to the pairwise equal case.

4.4 Universal extremization principle for the four-charge black holes

The extremization principle for the general black hole solution was discussed in [14] who concentrated, as

usual, on the physical outer horizon. We are going to revisit their discussion following a different procedure,

analogous to the one in Sec. 4.2.4, and extending their results by explicitly solving the extremization equations

and deriving the universal area product and BPS constraint on the charges for the general four-charged solution.

We will also consider the inner horizons. Finally, we will reduce to the pairwise equal case showing the validity

of our claim for this solution as well.
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The form of the supersymmetric on-shell action proposed in [14] is the following:

I = ±2i
√

φ1φ2φ3φ4

ω
, (4.81)

here we work in units where the Newton’s constant and the AdS4 radius are both one, we also consider a

different proportionality constant with respect to [14].

The proposed action depends on the (φI , ω) variables, which we interpret as the supersymmetric chemical

potentials generalizing the ones defined in Eq. (3.32), and satisfying the usual constraint given by:

ω − φ1 − φ2 − φ3 − φ4 = ±2πi, (4.82)

the ambiguity in the signs has been clarified when discussing the single charged solution, remember that of the

four supersymmetric horizons, two are associated with the complex roots (R,R−) for which one can choose

one of the two sign conventions. Then, the conjugated horizons at (R̄, R̄−) must be associated with the opposite

sign convention11.

The entropies of all horizons should then be reproduced by the following constrained Legendre transform:

S = ext{ω,φI ,Λ}
[

−I − ωJ − φIQI + Λ(ω − φ1 − φ2 − φ3 − φ4 ∓ 2πi)
]

, (4.83)

where clearly J andQI are the supersymmetric charges of the black hole, which at this stage should be allowed

to be complex, similarly as for the chemical potentials.

Performing the extremization principle with respect to the chemical potentials requires solving the follow-

ing extremization equations:
∂I

∂ω
= Λ− J, ∂J

∂φI
= −Λ−QI , (4.84)

plus the constraint (4.82), in order to find the chemical potentials and Λ in terms of the charges. We find a

solution to the above equations to be:

ω =
2π

√

Q̃1Q̃2Q̃3Q̃4

Θ
, φI = −Q̃JQ̃KQ̃L

Θ
, with: I 6= J 6= K 6= L,

Θ =
∑

I<J<K

Q̃IQ̃JQ̃K ∓ i
√

Q̃1Q̃2Q̃3Q̃4 (4.85)

where Q̃I = QI + Λ, the dependence on J is hidden in the definition of Λ = Λ(QI , J).

As before, one can find an equation that determines Λ by noticing that a suitable combination of derivatives

of the action I vanishes, this observation leads to the following equation determining Λ:

0 = (Λ +Q1)(Λ +Q2)(Λ +Q3)(Λ +Q4) +
1

4
(Λ− J)2 = Λ4 + p3Λ

3 + p2Λ
2 + p1Λ + p0, (4.86)

notice that in the general case it is not possible to find a quadratic equation determining Λ as for the single

charged case.

11This should be true also in the four-charged solution, for which we don’t have the explicit solution. However, the condition ∆r = 0
should still be of quartic order in r, and moreover, by making the usual choice of keeping the parameters of the solution real in the pure

supersymmetric solution, the structure described above for the four roots should hold.
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The coefficients of the quartic polynomial are given by:







p3 = P1

p2 =
1
4 + P2

p1 = −J
2 + P3

p0 =
J2

4 + P4

, where:







P1 = Q1 +Q2 +Q3 +Q4

P2 =
∑

I<J QIQJ

P3 =
∑

I<J<K QIQJQK

P4 = Q1Q2Q3Q4

. (4.87)

Being the Euclidean action I an homogeneous function of degree 1 of the chemical potentials, it still holds:

Si = ±2πiΛi, (4.88)

where Λi should be taken among the roots of Eq. (4.86). Notice that by assuming the validity of this definition

for the supersymmetric entropies of each horizon, one immediately derives the universal area product formula,

but formally only in the supersymmetric case:

∏

i

Si = (2π)4
(

Q1Q2Q3Q4 +
J2

4

)

. (4.89)

Generally, the roots of the quartic polynomial (4.86) are complex, arranged in conjugated pairs if we work

in a parametrization that leaves the charges real. Following the same procedure of Sec. (4.2.4) we should

recover the BPS solution by requiring that the quartic polynomial admits two conjugated purely imaginary

roots (when the charges are all real). This is always the case provided that we can factorize the polynomial as

in (4.56):
(

Λ2 +
p1
p3

)(

Λ2 + p3Λ + p2 −
p1
p3

)

, (4.90)

this is possible provided that on requires the factorization condition:

p1
p3

+
p0p3
p1

= p2 −→ 1

4
P 2
1

(
J2 + 4P4

)
− 1

8
P1(4P2 + 1)(2P3 − J) +

(

P3 −
J

2

)2

= 0, (4.91)

which, as we know, allows us to derive the BPS constraint on the charges. Indeed, this is a quadratic equation

in J which can be solved to give:

J =
8P3 − 4P1P2 − P1 ± |P1|

√
X

4(1 + P1)2
, (4.92)

where:

X =
[(
1 + 4(Q2 +Q3)(Q1 +Q4)

)(
1 + 4(Q1 +Q3)(Q2 +Q4)

)(
1 + 4(Q1 +Q2)(Q3 +Q4)

)]

, (4.93)

remember that imposing Eq. (4.92), one should recover the BPS solution where the charges are real, and hence

one must have X ≥ 0. Moreover, we will see that the correct BPS constraint is reproduced in the pairwise

equal and single charged case provided that one choose the plus sign in Eq. (4.92).

The BPS entropy of the outer horizon is then obtained from the imaginary root Λi = i
√

p1
p3

Λ2 =
p1
p3

=
1 + 4P2 + 8P1P3 −

√
X

8(1 + P 2
1 )

, (4.94)

where the BPS condition (4.92) has already been imposed.
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Finally, one can find the entropies of the remaining two horizons by solving the quadratic equation Λ2 +

p3Λ + p2 − p1
p3

= 0. The virtual horizons entropies (S−, S̄−) are then proportional to the roots:

Λ− =
1

2

[

− p3±
√

4
p1
p3
− 4p2 + p3

]

=
1

2

[

−P1∓ i
√

1− 2P 4
1 + 8P2P 2

1 − 8P3P1 + 4P2 +
√
X

2P 2
1 + 2

]

, (4.95)

again we have already imposed the BPS condition (4.92).

Finally, following the same logic as in (4.60) one can show that the universal area product and the BPS

constraint are equivalent in the BPS solution.

Reduction to the pairwise equal and single charged cases

Let us see what results we find when we reduce to the pairwise equal or single charged solutions. We can

get these cases by imposing the following redefinitions for the pairwise equal case:







φ1 = φ2 → 1
2φ

1, φ3 = φ4 → 1
2φ

3

Q1 = Q2 → 2Q1, Q3 = Q4 → 2Q3

−→







I = ± i
2
φ1φ3

ω , ω − φ1 − φ3 = ±2πi
I = −S − ωJ − 2φ1Q1 − 2φ3Q3

,

(4.96)

while the single charged case is obtained by imposing the redefinitions:







φI → 1
2φ

QI → 1
2Q

−→







I = ± i
2
(φ)2

ω , ω − 2φ = ±2πi
I = −S − ωJ − φQ

, (4.97)

in these two cases, the main results that we have found above simplify a lot. Starting from the BPS condition

(4.92) one gets:

J = (Q1 +Q3)
(√

1 + 64Q1Q3 − 1
)

, J =
Q

2

(√

1 + 4Q2 − 1
)

(4.98)

which are exactly the results found in (4.15, 4.73) , then the outer horizon BPS entropy is found to be propor-

tional to the purely imaginary root Λ = ±i
√

p3
p1

which is given by:

Λ2 =
1

8

(

1 + 32Q1Q3 −
√

1 + 64Q1Q3

)

=
1

16

(√

1 + 64Q1Q3 − 1
)2
, (4.99)

Λ2 =
1

8

(

1 + 2Q−
√

1 + 4Q2
)

=
1

16

(√

1 + 4Q2 − 1
)2
. (4.100)

Similarly, one finds that also the roots associated with the virtual horizons Λ− simplify, they are given by:

Λ− = −2(Q1 +Q3)∓
i

4

(√

1 + 64Q1Q3 + 1
)

, Λ− = −Q∓ i

4

(√

1 + 4Q2 + 1
)

, (4.101)

for the pairwise equal case one can easily check that Λ− correctly reproduces the expected value for the BPS

inner horizon entropy Eq. (4.80).

This proves the universality of the extremization principle also for the pairwise equal charged solution.

4.5 Single charged, spinning AdS4 black hole with acceleration

As our last example, we are going to consider the generalization of the black hole solution of minimal

D = 4,N = 2 gauged supergravity discussed in Sec. 4.1, with acceleration and magnetic charge [70]. This
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solution depends on two more parameters p, α related to the magnetic charge and acceleration.

The presence of the acceleration makes the event horizon, and more generally all constant (t, r) slices have

conical singularities, these stretch up to the AdS boundary and are usually referred to as cosmic strings [16].

These singularities can be completely removed if one embeds the D = 4 solution in D = 11 supergravity

[73] and imposes some constraints on the parameters of the D = 4 solution. In particular, one needs to

quantize the conical deficits on the north and south poles of the horizon, this makes the horizon a spindle whose

topology is determined by two different integers n±, related to the N/S pole singularities. For the purposes

of our discussion, the only new property that we are going to use about the horizon geometry is its Euler

characteristics χ. Other details about the geometry of the horizons will not be needed.

From the constraints that one has to impose to get a regular solution, after the uplifting, one finds that

the magnetic charge is fixed and depends on the properties of the spindle, in particular G(4)Qm = (n− −
n+)/(4n−n+) where G(4) is the four-dimensional Newton’s constant. This implies that one necessarily has

to consider a magnetically charged solution (to have regularity after the uplifting). We will also see that the

presence of the magnetic charge is necessary in order to impose supersymmetry.

Unless explicitly stated, we will work with fixed spindle topology, hence fixed n± parameters, and in

the assumption that the solution is regular under the uplifting. In this way, it has been shown [70] that the new

parameters p, α are fixed in terms of the spindle topology. This means that the solution we are going to consider

is described by the same three parameters (or charges) of Sec. 4.1, plus two fixed constants n± or equivalently

(G(4)Qm, χ) which are treated on the same footing as the AdS radius12 g. However, some of the results that we

are going to find are true also in the general case, where we do not make any assumption on the new parameters

or the horizon topology.

In this framework, we want to see if the results of Sec. 4.1 generalizes to the present case, we will give first

a review of the solution and explain the role of the new parameters, next we will discuss the properties of all

the horizons of this solution and prove the universality of the extremization principle. We will also derive the

universal area product formula which has never appeared before in the literature for this solution.

4.5.1 Review of the solution

We will quickly review the black hole solution following [16], the metric is given by:

ds2 =
1

H2

[

−Q
Σ

(
1

κ
dt− a sin2 θdφ

)2

+
Σ

Q
dr2

+
Σ

P
dθ2 +

P

Σ
sin2 θ

(
a

κ
dt− (r2 + a2)dφ

)2
]

, (4.102)

where we have defined:

P (θ) = 1− 2αm cos θ +
(

α2(a2 + e2 + p2)− a2)
)

cos2 θ,

Q(r) = (r2 − 2mr + a2 + e2 + p2)(1− α2r2) + r2(a2 + r2),

H(r, θ) = 1− αr cos θ, Σ(r, θ) = r2 + a2 cos2 θ. (4.103)

12One can relax these assumptions and still obtain a consistent thermodynamics by considering the AdS radius, the magnetic charge,

and the cosmic strings, as thermodynamic variables [16], the reason why we want to fix all these parameters is that in this way we get a

fixed geometry on the conformal boundary where the dual CFT lives, remember that the cosmic strings "touch" the conformal boundary

because all constant (t, r) slices have conical singularities. Moreover, the presence of a magnetic charge influences the properties of

the gauge field at infinity.
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In order to avoid confusion with the notation of the previous sections, we denote the parameter associated with

the magnetic charge as p instead of g as was done in [16].

The expression of the gauge field can be found in the references. The solution depends on the already

mentioned parameters (m, e, p, a, α) which we consider to be all positive following [16]. κ is a normalization

constant for the time coordinate, it turns out that it is related to the acceleration parameter α in order to have a

first law of the correct form [16]. Notice that the parameters that we are using here are not exactly the same as

the ones in Sec. 4.1, as one can easily see by setting p = α = 0 in the above metric. However, in this case it

can be shown that the solution reduces to the one discussed in Sec. 4.1 [70].

The positions of the horizons are given by the roots of the Q(r) quartic polynomial, so there are four

horizons (either physical or virtual). In this case, we need to require for the outer horizon radius, the following

condition:

0 < r+ <
1

α
, (4.104)

which ensures that the outer horizon is located between the singularity at r = 0 and the conformal boundary at

H(r, θ) = 0, and that the horizon does not touch the conformal boundary at θ = 0.

Horizon topology and regularity

To understand how the n± parameters appear, we need to study the constant (t, r) slices ΣΣ parametrized

by (θ, φ). These have the topology of a 2-sphere but with conical singularities at the poles. As usual, θ can

be taken with range 0 ≤ θ ≤ π, next let us consider the restriction of the metric on the (θ, φ) coordinates and

evaluate it near the north/south poles at θ+,− = 0, π.

ds2|θ,φ =
1

H2

[

Σ

P
dθ2 +

P

Σ

(

(r2 + a2)2 − Q

P
a2 sin2 θ

)

sin2 θdφ2

]

−−−−→
θ≈0,π

(r2 + a2)

H2P±

[

dθ2 + sin2 θP 2
±dφ

2

]

, (4.105)

where

P± = P (θ)|0,π = Ξ± 2αm, Ξ = 1 + α2(a2 + e2 + p2)− a2. (4.106)

Eq. (4.105) is the metric of a 2-sphere (near the poles), which is regular only provided that the φ coordinate

is chosen with periodicity ∆φ = 2π/P±.

Clearly, unless αm = 0 we have P+ 6= P−, meaning that one cannot avoid at least one conical singularity

on ΣΣ. This singularity stretches up to the boundary generating the "cosmic string", as it is present for all

constant (t, r) slices.

Following [16, 73] we choose the periodicity ∆φ to be:

∆φ

2π
=

1

n+P+
=

1

n−P−
, (4.107)

this implies that the conical defects at the poles have deficit angles given by 2π
(
1 − 1

n±

)
, and one has ΣΣ= S2

if n+ = n− = 1, which is possible only provided that αm = 0.

Notice that Eq. (4.107) fixes ∆φ but also represents a constraint on the parameters once we fix both n±.

The idea is that both conical singularities are fixed by ∆φ, as it is expressed by the above equation. This also

implies that once we fix the conical singularity on one pole, say the n+ parameter, the conical singularity on

the other pole is fixed by n− = P+

P−
n+ and cannot be chosen freely. We have to tune the parameters of the

solution in such a way that after we have independently chosen n+ and n−, it holds the relation (4.107), and
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specifically:
n+
n−

=
P−
P+

=
Ξ− 2αm

Ξ + 2αm
, (4.108)

remember that this happens only if we fix both n+ and n− as it was done in [16, 73], this condition will be used

later to fix the α parameter in terms of n±.

For later convenience, it is useful to define the tensions of the "cosmic strings" as the parameters:

µ± =
1

4G(4)

[

1− 1

n±
]

=
1

4G(4)

[

1− (Ξ± 2αm)
∆φ

2π
)

]

. (4.109)

and the Euler characteristic of ΣΣ:

χ =
1

n+
+

1

n−
= 2− 4G(4)(µ− + µ+), (4.110)

which computes to χ = 2 if n− = n+ = 1 as expected for a sphere.

We can now clarify in which sense we quantize the conical defects on the horizon, this simply means that

we have to choose n± as coprime positive integers, this makes ΣΣ a weighted projective space, which is an

orbifold also known as a spindle [16]. This quantization condition is one of the requirements that allow to

obtain a regular solution after the uplifting13.

The quantization condition is not sufficient to describe a regular solution, one also needs to impose the

following condition on the parameters14:

p = αm, (4.111)

this will turn out to be also one of the supersymmetry constraints.

Before moving on, let us recap what we have found so far for these "regular" solutions. We have the

parameters15 (m, e, p, a, α;n±), plus two constraints (4.108, 4.111), the latter can be directly implemented,

while the first one can be solved more easily by first introducing the parameter [16]:

µ ≡
1− 2G(4)(µ− + µ+)

2G(4)(µ− − µ+)
=
n− + n+
n− − n+

, (4.112)

this allows us to rewrite the condition (4.108) as follows:

n−
n+

=
Ξ+ 2αm

Ξ− 2αm
−→ Ξ = 2αmµ −−−−→

αm=p
Ξ = 2pµ, (4.113)

remembering the definition of Ξ we can easily find for α the following:

α2 =
2pµ− 1 + a2

a2 + e2 + p2
, (4.114)

this fixes α in terms of the spindle data n± and the other parameters.

Notice that this condition and (4.111) are then easily implemented if one uses p as a parameter describing

the solution, while α and m are fixed in terms of the others. In the following, we may want to use as parameter

m instead and consider α, p fixed. This can formally be done but one has to deal with a cumbersome expression

for α (and therefore p) as now the condition (4.114) (or equivalently (4.112)), is a fourth order equation in α.

13From now on, we will simply refer to these regular solutions, which can be obtained after the uplift, as "regular solutions"
14There would also be another technical condition to impose on the geometry of the D = 11 supergravity theory, which is obtained

after the uplift, but it does not play any role in our discussion so we will ignore it.
15Clearly, we assume the AdS radius g as fixed, and we do not include the κ parameter which turns out to be fixed in terms of the

others.
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Either way, we will refer to the above conditions (4.112, 4.114) as "regularity" conditions, it is understood that

when we impose these we are thinking n± as taking fixed values, hence fixing the spindle geometry.

We will consider this case in more detail later but for now it is sufficient to keep in mind that α and p can

formally be expressed in terms of m and the other parameters.

Thermodynamics

From now on we will set also G(4) = 1.

In this section, we provide the relevant quantities entering the thermodynamics of this black hole solution,

more details can be found in16 [16, 73] but they are not essential for our discussion.

The solution admits four conserved charges (E, J,Qe, Qm):

Qe =
e∆φ

2π
, Qm =

p∆φ

2π
, J = am

(
∆φ

2π

)2

, E =
m∆φ

2πκ

(Ξ + a2)(1− a2Ξ)
Ξ(1 + α2a2)

, (4.115)

these definitions are true in the general solution, where we have not imposed the regularity conditions yet.

These quantities were calculated in [16] using holographic renormalization. In order to do so, one needs

to remember that the conformal boundary of the metric (4.102), where the charges are calculated as surface

integrals by using the boundary stress-tensor, is located at H(r, θ) = 0. Furthermore, the energy E of the

solution must be calculated considering the asymptotic killing vector ∂t̄ = ∂t + Ω∞
∆φ

2π ∂φ, where Ω∞ =

− 2π
κ∆φ

a(1−α2Ξ)
Ξ(1+a2α2)

. These definitions allow us to obtain a set of charges that satisfy standard thermodynamics

relations.

Notice that once we impose the regularity conditions, from the definition of the magnetic charge Qm and

p = αm one can show that:

Qm = µ− − µ+ =
n− − n+
4n−n+

=
1

2n+(1 + µ)
, (4.116)

hence, the magnetic charge is completely determined by the spindle data n± in the regular solution17. This

allows us to equivalently use the combinations (n+, n−),(µ, n+) or (Qm, χ) to express the spindle data.

Moving on with the thermodynamics, the chemical potentials associated with the above charges are given

by:

Ω =
2π

κ∆φ

a

r2+ + a2
︸ ︷︷ ︸

ΩH

−Ω∞, T =
Q′(r+)

4πκ(a2 + r2+)
, Φe =

er+
κ(r2+ + a2)

, (4.117)

where V is the null killing vector on the horizon: V = ∂t +
∆φ

2π ΩH∂φ, one may also define a magnetostatic

potential Φm, which one has to take into account when considering the thermodynamics of the general solution,

but it does not play any role for us.

The Bekenstein-Hawking entropy reads:

S =
∆φ

2

r2+ + a2

1− α2r2+
, (4.118)

16See also [74] for a discussion of the thermodynamics of this black hole solution with vanishing magnetic charge.
17The idea is that in the regular solution all topological data (the cosmic strings and the magnetic charge) are fixed in such a way that

after the uplifting the singularities are removed [16].
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while the Euclidean on-shell action associated with the outer horizon is given by [16]:

I =
β∆φ

16πκ

[

−4r+
(

a2 + r2+
(α2r2+ − 1)2

+
e2 − p2
a2 + r2+

)

+ 4m

(

1− 2α2 − 2α4(e2 + p2)

1 + α2a2

)]

. (4.119)

One can show that these quantities satisfy the following quantum statistical relation, independently from

the value of κ, and also without imposing the regularity conditions

I = −S + β E − β Ω J − β ΦeQe, (4.120)

while the usual first law is recovered only provided that one fixes κ =

√
(Ξ+a2)(1−α2Ξ)

1+a2α2 and imposes the

regularity conditions, so that the thermodynamics of the solution depends on the 3 charges (E, J,Qe), and their

corresponding chemical potentials defined above

dE = T dS +Ω dJ +Φe dQe, (4.121)

notice that if the acceleration is absent α = 0 then κ = 1, hence this parameter is intrinsically related to the

acceleration.

4.5.2 Supersymmetry and BPS solutions

Let us consider the regular solution in this section (fixed spindle topology). Following [16, 73] the solution

admits a killing (Dirac) spinor, and hence preserves supersymmetry provided that the parameters satisfy the

conditions:

p = αm,

0 = α2(e2 + p2)(Ξ + a2)− (p− aαe)2, (4.122)

the first condition is also one of the two regularity conditions, and can only be satisfied provided that p 6= 0.

The supersymmetric solution is also extremal if the parameters satisfy the additional constraint [73]:

ap2(aαe− p)(e+ aαp) + α3e2(e2 + p2)2 = 0, (4.123)

unfortunately, implementing these conditions is rather cumbersome.

Luckily, the situation simplifies if one introduces the new set of parameters (b, c, s) given by [16]:

e =
bs

α2c
, p =

s

α2c
, m =

s

α3c
, a =

s

α
, ⇐⇒ b =

e

p
, c =

a

pα
, s = αa, (4.124)

we need to assume a, α 6= 0. Remembering that we are considering all parameters to be non-negative then we

have b ≥ 0 and c, s > 0. The first supersymmetry condition is automatically implemented in these definitions.

In the following, we will provide only the explicit expressions for the quantities that we will directly use, and

briefly summarize how the BPS solution is obtained. More details can be found in [16].

In terms of the new parameters one finds that the charges take the simple expressions:

Qe = bQm, J = cQ2
m, M =

Qm
√

(2cQm − χs)(2csQm + χ)

χ
√
s

, (4.125)

positivity of the mass M implies that c > 2sµ.
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The supersymmetry condition in Eq. (4.122) reduces to a linear equation for c, which is solved by:

c =
2(1 + b2)sµ

1− 2bs− s2 , (4.126)

the extremality condition Eq. (4.123) now becames:

b2(1 + b2)2s = c2(1− bs)(b+ s) −−−−−−→
Eq. (4.126)

b2(b2 + 1) = c(c+ 2bµ), (4.127)

unfortunately, this condition is still not practical to implement. We will need to exploit a different method, to

obtain the BPS solution, which we are going to discuss later.

Remember that α is determined from the other parameters as:

α2 =
2pµ− 1 + a2

a2e2 + p2
=
s[2cµ+ s(c2 − 1− b2)]

c2(1 + s2)
−−→
susy

4µ2(1− bs)2 − (1− 2bs− s2)2
4µ2(1 + b2)(1 + s2)

, (4.128)

the supersymmetric solution is now parametrized by (b, s), plus the two constants (χ,Qm). Accordingly, only

two charges are independent and indeed, they satisfy the usual relation:

M =
2

χ
J +Qe, (4.129)

which may be expected to be a consequence of the supersymmetry algebra evaluated on the solution [16].

The supersymmetric trajectory

As usual, we want to use one of the horizon radii as parameter for the supersymmetric solution by inverting

the relation Q(r) = 0. This will also allow us to more easily obtain the BPS solution.

Following [16], it is convenient to define first:

r ≡ s

α
ρ, (4.130)

where it is understood that we can formally work with any horizon radius ri, solution of Q(ri) = 0.

The new quartic polynomial Q(ρ), despite being more complicated than the starting one (Eq. (4.103)), is

now only quadratic in b. The condition Q(ρ) is thus easily solved as:

b =
2µρ

ρ2 − 1
+

(1− s2 ± 2iµs)

2s(ρ2 − 1)
(
ρ2s2 − 1∓ iµs(ρ2 + 1)

)B(ρ, s), (4.131)

where:

B(ρ, s) = (1− ρ2)(1− ρ2s2) + 2µ(1 + ρ2)ρs, (4.132)

imposing that b remains real, as we have done before, forces us to consider complex ρ radii, which are organized

in two complex conjugated pairs asQ(ρ) has real coefficients. This is analogous to the discussion in Sec. 4.2.1,

remember that one has to choose the opposite sign choice in (4.131) when considering the conjugated horizons.

Alternatively, one can keep ρ ∈ R and introduce complex b and s parameters as in [16]. Eq. (4.131) is the

usual equation that allows to trade one of the parameters of the solution (in this case b) for one of the horizons

radii.

The chemical potentials can be shown to satisfy the usual relation:

β
(

1 +
χ

2
Ω− 2Φe

)

= ∓2πi, (4.133)
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the sign is correlated to the sign choice in Eq. (4.131). The modified chemical potentials (ω, φ) are:

ω = β

(

Ω− 2

χ

)

, φ = β(Φe − 1),
χ

4
ω − φ = ∓πi, (4.134)

notice that the same relations of the non-accelerating case (Eqs. (4.11)) can be obtained by setting χ = 2.

In terms of the supersymmetric chemical potentials, the universal euclidean action can be rewritten as

follows:

I = −S − ω J − φQe = ∓
i

2

[
φ2

ω
+Q2

m ω

]

, (4.135)

with our choice of parametrization, we have real charges, while the entropy and the chemical potentials are

complex. Notice that the above result reduces to the non-accelerating one in Eq. (4.37) by setting Qm = 0.

This discussion was originally made for the outer horizon, but we can generalize it with no effort to any

horizon. Hence we can immediately regard the chemical potentials (4.134) and the supersymmetric Euclidean

action (4.135), as the universal ones.

The BPS solution

Let us now consider how the BPS solution can be derived. We need to impose extremality on the solution,

which is achieved whenever the quartic polynomialQ has a vanishing first derivative when evaluated on a real

value of ρ, which then becomes the radius of the BPS outer horizon. This is equivalent to requiring that Q has

a double real root ρ+.

Q′(ρ) =
4s2µ2(1 + s2)2(ρ∓ i)

(
±iρs2 + µ(ρ∓ i)s− 1

)

(
1− ρ2s2 ± iµ(1 + ρ2)s

)2 B(ρ, s) = 0, (4.136)

where we have used the definition of the b parameter in Eq. (4.131).

By solving the extremality condition for a real value of ρ, we clearly break the invariance under exchange

of horizon radius as parameter, as requiring reality forces us to consider the outer (physical) horizon radius.

The only allowed real solution of Eq. (4.136) is obtained if B(ρ+, s) = 0 which can be seen as a quadratic

equation in s, the other possibility would need to require ρ+s = 1 and µ = 1 which is not possible due to the

definition of µ.

In this way, the BPS solution is parametrized in terms of ρ+ and µ as follows:

s⋆ =
−µ(1 + ρ2+) +

√

µ2(1 + ρ2+) + (ρ2+ − 1)2

ρ+(ρ2+ − 1)
, c⋆ =

2µρ

ρ2+ − 1

[

−µ+

√

µ2(ρ2+ + 1)2 + (ρ2+ − 1)2

ρ2+ − 1

]

,

b⋆ =
2µρ+
ρ2+ − 1

, (4.137)

from the constraints 0 < αr+ = sρ+ < 1 and s > 0 one immediately finds that 0 < s⋆ < 1 and ρ+ > 1.

Equivalently, after some calculations, one can re-express the BPS solution in terms of b and µ as follows:

ρ+ =
µ+

√

b2 + µ2

µ
, s⋆ =

(

−µ+
√

b2 + µ2
)(

µ+
√

1 + b2 + µ2
)

b
− b, c⋆ = b

(√

1 + b2 + µ2 − µ2
)

,

(4.138)

in both cases, one can check that the supersimmetry and extremality conditions Eqs. (4.126, 4.127) are both

satisfied, and that ρ+(b;µ) is a root of the Q polynomial.
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One can show that in the BPS limit, the conserved charges satisfy the additional constraint:

J⋆ =
Q⋆e
4

(

−χ+

√

χ2 + 16
(
Q⋆2e +Q⋆m

)2

)

, (4.139)

and the outer horizon chemical potentials take the fixed value:

T ⋆ = 0, Ω⋆ =
2

χ
, Φ⋆e = 1, Φ⋆m =

1

b⋆
, (4.140)

finally the outer horizon BPS entropy takes the following expression:

S⋆ = πQms
⋆c⋆

ρ2+ + 1

1− s⋆2ρ2+
=
π

4

(√

χ2 + 16
(
Q⋆2e +Q2

m

)
− χ

)

, (4.141)

notice that in all expressions involving only the charges, by setting χ = 2, Qm = 0 one again obtains exactly

the solution of the non-accelerating case discussed before18.

4.5.3 Properties of the general horizons of the black hole solution

We turn our attention to the other horizons of this black hole solution, following closely the presentation in

Sec. 4.2, as the results that we are going to find are the generalizations of those of the non-accelerating solution.

Many calculations will be only briefly described as they represent a trivial generalization of those of Sec. 4.2.

Qualitative behaviour of the 4 roots of Q(r) in the regular solution

Let us concentrate on the regular solution in the following discussion.

In order to study what kind of horizons characterize this black hole solution, we need to study the Q(r)

polynomial. Remember that we have to impose the following condition on the position of the outer horizon:

0 < r+ <
1

α
. (4.142)

The relations that determine the four roots are obtained as usual by rewriting the Q(r) polynomial as:

Q(r) = (1− α2)
∏

i

(r − ri) −→







r1 + r2 + r3 + r4 = −2mα2

1−α2

r1r2 + · · · = 1+a2(1−α2)−α2(e2+p2)
1−α2

r1r2r3 + · · · = 2m
1−α2

r1r2r3r4 =
a2+e2+p2

1−α2

. (4.143)

Due to the acceleration, it is not true anymore that two of the four roots are necessarily complex. Indeed,

by looking at the expression of Q(r) we see that negative roots are now possible provided that |ri| > 1
α , and

the argument that we have made in Sec. 4.1 breaks down. However, also in this case, there are generally only

two physical horizons (when they exists) located at 0 < ri <
1
α while the other two horizons are complex

conjugated, hence virtual.

First of all, notice that we can have at least one physical horizon located at r+ < 1
α only provided that the

acceleration parameter satisfies the bound:

0 ≤ α < 1, (4.144)

18The non accelerating limit is more delicate if one wants to take it also for the b, c, s parameters as from their definition, if α = 0
these parameters become infinite
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this can be easily seen by imposing p = αm and noticing that Q(r) is strictly positive if a ≥ 1 and r < 1
α as:

Q(r) = (r2 − 2mr + a2 + e2 + α2m2)(1− α2r2) + r2(a2 + r2)

> (r2 − 2mr + α2m2)
︸ ︷︷ ︸

>0

(1− α2r2)
︸ ︷︷ ︸

>0

, (4.145)

the quadratic polynomial in the second line vanishes if α = b(1±
√
1− α2), meaning that if α > 1 it is never

zero and has a fixed positive sign. From this discussion we also see that as α approaches 1, the other parameters

must be closer to 0 in order to have a physical horizon that does not touch the boundary.

We should now also impose the condition (4.114) in order to truly parametrize the "regular" solution, it

would be more convenient to use the p parameter, but we use m instead, which allows us to more directly

compare the following results with those of Sec. 4.1.

Using p = αm into Eq.(4.114) produces a quartic equation for α:

α2 =
2αmµ− 1 + a2

a2e2 + α2m2a2
, (4.146)

for suitable values of the (m, e, a;µ) parameters, there are two real and positive solutions α = α1,2(m, e, a;µ)

of (4.146). The greater of the two (say α2) can possibly be bigger or smaller than 1 and one can check graph-

ically that it is never associated with a solution with physical horizons at r+ < 1
α2

, for any value of the

(m, e, a;µ) parameters. Instead, the smaller solution α1(m) generally allows to find a black hole solution that

admits two physical horizons r+ > r0, where r+ satisfies the bound r+ < 1
α1

. In this case, when the two

physical horizons exist, the other two horizons are always found to be complex. Moreover, these configura-

tions reduce to the BPS solutions discussed in Sec. 4.5.2 for suitable values of the parameters that satisfy the

supersymmetric and extremality constraints.

The qualitative behaviour of the Q(r,m;α1,2(m)) = 0 curves is shown in Fig.4.3.

Figure 4.3: The solid lines represent the graphs of Q(r,m;αi(m)) = 0, associated with the regular solution, obtained

by setting p = α
m

, and α = αi(m) as given by the two real solution of (4.114) (when they exists). The blue/orange

solid lines are obtained considering the two real roots αi(m), respectively the smaller(α1)/largest(α2) one. The dashed

lines represent the r = αi(m)−1 curves (position of the boundary at θ = 0), again the blue/red one is associated with

the smaller/largest root αi(m). Choosing the smaller solution α1(m) of (4.114) produces a solution with two physical

horizons that never touch the boundary (for every fixed value of m, the points on the blue solid line always satisfy

r < α1(m)−1 ). Moreover, these solutions admit a BPS limit, meaning that we can continuoulsy change the parameters

to obtain a BPS solution. Instead, choosing the largest root α2(m) never produces a physical solution as the horizons

always stretch beyond the boundary. Moreover, these solutions are not connected to BPS configurations. The qualitative

behaviour does not change if we vary the parameters.
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Finally, notice the different qualitative behaviour with respect to the case studied in Sec. 4.1. In particular,

in this case there is only one lower extremal solution (if one takes into account the cases where physical outer

and intermediate horizons exist). For suitable values of the parameters (which satisfy the supersymmetry and

BPS constraints), this extremal configuration is a BPS solution.

Virtual horizons BPS entropies

As we have discussed above, the BPS solutions are characterized by the presence of two physical horizons

(which coincide, being the solution extremal) and two additional virtual horizons, associated with the two

complex conjugated roots of the Q(r) or Q(ρ) polynomial. Let us then call ρ− the complex root associated

with the virtual horizon with entropy S⋆−, which is given by the same formula as the one for the outer horizon

BPS entropy:

S⋆− = πQms
⋆c⋆

ρ2− + 1

1− s⋆2ρ2−
, (4.147)

we want to find an expression for S⋆− depending only on the charges. To do so we need to find ρ−, which we

parametrize as ρ− = A + iB. Then, we can obtain the usual relations which determine the four roots ρi of

Q(ρ) by rewriting: Q(ρ) =∏i(ρ−ρi), remembering that there is a double root ρ+, as the solution is extremal,

one finds: 





A+ ρ+ = −p3
A2 +B2 + 4Aρ+ + ρ2+ = p2

2ρ+(A
2 +B2 +Aρ+) = −p1

(A2 +B2)ρ2+ = p0

−→







A = −p3
2 − ρ+

B = ±
√

p0
ρ2+
−A2

, (4.148)

The ± sign in front of the B coefficient is associated with the fact that we have two complex conjugated roots.

Let us take the root with a positive imaginary part, by finding the parameters pi from Q(ρ) and using either

Eqs. (4.137) or Eqs. (4.138) to parametrize the BPS solution in terms of (ρ+;µ) or (b;µ), one can show that

the following relation holds for the virtual horizon:

S⋆− = −π
4

[

χ+ 8iQ⋆e +
√

χ2 + 16
(
Q⋆2e +Q2

m

)
]

, (4.149)

which again correctly reduces to the expression found for the non-accelerating case (Eq. (4.17)) in the usual

limit.

We can use this result, together with the expression for the BPS outer horizon entropy (4.141), to show the

equivalence between the BPS constraint (4.139) and the area product formula, which we are going to derive

now.

Universal area product formula

The area product formula for this black hole solution has not been derived yet, but it should reduce to the

one found before, Eq. (4.29), when we set (Qm = 0, χ = 2). Accordingly, following the same steps as in Sec.

4.2.2, and remembering the definition of the conserved charges (Eqs. (4.115)) one is able to find the following

result for the product of the entropies:

∏

i

Si = π4
[

(Q2
e +Q2

m)
2 + 4J2

]

, (4.150)

the calculations are exactly the same as those we have already done for the non accelerating solution, so we

will not repeat them here.
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We find that the area product formula is the natural generalization of the one previously found for the non-

accelerating case (4.29). This result actually holds in the general solution where we do not have imposed the

regularity conditions yet. In this case Qm can be chosen freely and does not depend on the topology of the

horizon or acceleration. This means that in the general solution we are allowed to consider a non-vanishing

acceleration and also Qm = 0, in this case we see that the area product formula for the accelerating (4.150) and

non-accelerating (4.29) black hole solutions are the same. This implies that the universal area product formula

in the general solution is independent of both the energy, and the acceleration of the solution.

The situation is qualitatively different in the regular solution, in this chase Qm is fixed in terms of the

spindle data n± and hence depends on acceleration. However, the area product formula is still valid in the form

(4.150), and depends only on Qm. This implies that, despite having formally added two new constants n±,

which characterize a specific family of accelerating black holes by fixing the topology of the ΣΣ hypersurfaces,

the area product formula formally depends on only one of them.

Remember in fact that the (n+, n−) constants can be traded for (Qm, χ) in the regular solution, but the area

product formula does not explicitly depend on χ. This means that the product formula is invariant under any

transformation of the n± constants that leaves Qm invariant19. Remembering that Qm = µ− − µ+ we see that

the transformation µ± → µ± + k leaves the magnetic charge invariant, which translates in a transformation of

the spindle parameters n± of the form:

n± −→
n±

1− 4n±k
, where: k ∈ Q s.t







n+

1−4n+k
∈ N

n−
1−4n−k

∈ N
, (4.151)

Finally, it is quite easy to show that using Eqs. (4.147, 4.149) for the horizons BPS entropies, and the area

product formula Eq. (4.150) one can derive the BPS non-linear condition Eq. (4.139).

J⋆2 =
4

π4

∏

i

S⋆i − 4
(
Q⋆2e +Q2

m

)2 ⇐⇒ J⋆ =
Q⋆e
4

(

−χ+

√

χ2 + 16
(
Q⋆2e +Q2

m

)2

)

. (4.152)

4.5.4 Universal extremization principle

The universal chemical potentials and thermodynamic potential I have been computed in Sec. 4.5.2 fol-

lowing the discussion of [16], they also showed that the outer horizon BPS entropy (4.147) is reproduced in the

usual way from the extremization principle. We are now going to briefly discuss the extremization principle,

partially discussed by (4.147), and extending their discussion also for the other horizons.

The starting point is given by the usual universal quantities:

I = ∓ i
2

[φ2

ω
+Q2

m ω
]

,
χ

4
ω − φ = ∓πi, (4.153)

we are considering the supersymmetric but non-extremal solution which is characterized by four complex hori-

zons, organized in two coupled of conjugated horizons. In this framework, remember that the sign ambiguity in

(4.153), is associated with the sign ambiguity in the inverting relation b = b(ρi) (4.131), and one has to choose

the opposite sign when considering an horizon and its conjugated.

The entropy is obtained from the constrained Legendre transform:

S = ext{ω,φ,Λ}

[

−I − ωJ − φQe + Λ

(
χ

4
ω − φ± πi

)]

, (4.154)

19We also must require that Qe and J are left invariant, but this can be easily done by suitably changing the parameters e and a,

remember the definition of the charges in Eq. (4.115).
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by solving the extremization equations, plus the supersymmetric constraint,

∂I

∂ω
= −J +

χ

4
Λ,

∂I

∂φ
= −Qe − Λ, −→







ω = ∓πi
χ
4
±i(Qe+Λ)

φ = ±πi+ χ
4ω

, (4.155)

where as usual, being the action I an homogeneous function of degree 1 of the chemical potentials, implies:

Si = ±πiΛi, (4.156)

where Λi are the roots of either one of the two following quadratic polynomials or of the quartic polynomial:

Λ2 + Λ

(

2Qe ∓ i
χ

2

)

+Q2
e +Q2

m ± 2iJ = 0, (4.157)

Λ4 + 4Qe
︸︷︷︸
p3

Λ3 +

(

6Q2
e + 2Q2

m +
χ2

4
︸ ︷︷ ︸

p2

)

Λ2 +
(
4Q3

e + 4QeQ
2
m − 2Jχ

︸ ︷︷ ︸
p1

)
Λ + 4J2 +

(
Q2
e +Q2

m

)2

︸ ︷︷ ︸
p0

= 0, (4.158)

selecting the appropriate root allows to reproduce the thermodynamics of the corresponding horizon. Notice

that by setting Qm = 0, χ = 2 and rescaling Λ → 2Λ one gets exactly the same results as in the non-

accelerating case.

Notice also that by using the quartic polynomial, one can immediately read from the p0 coefficient the

entropy product formula Eq. (4.150) (up to a π4 coefficient).

The BPS limit can be obtained by imposing that the above quadratic(quartic) polynomial has one(two)

purely imaginary roots. If we consider the quadratic, polynomial this condition has to be directly imposed on

one of the two roots Λi of the quadratic polynomial (4.157):

Λi = ±i
χ

4
−Qe ± η

i

4

√

χ2 + 4Q2
m ± 8i(χQe + 4J), (4.159)

where η takes the values±1 and differentiates the two roots of each quadratic polynomial, essentially choosing

η corresponds to choosing the horizon at ρ+ or ρ−, (and similarly for the conjugated horizons). The calculations

are similar to those of the non-accelerating case.

Alternatively, the BPS solution can be obtained from the quartic polynomial by requiring that the coeffi-

cients of (4.158) satisfy the factorization condition:

p1
p3

+
p0p3
p1

= p2 (4.160)

in both cases, one can show that imposing these conditions is equivalent to imposing the non-linear BPS con-

dition Eq. (4.139), and hence one correctly obtains the BPS solution.

Finally, in this limit, it is easy to prove that the four roots Λi correctly reproduce the BPS value for the

entropies shown in Eqs. (4.147, 4.149), hence showing that the universality of the extremization principle can

actually be generalized also in the accelerating case as expected. We do not show the calculations, which are

the direct generalization of those of the non-accelerating case.
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Conclusions

In this thesis, we have explicitly shown the equivalence between the universal area product formula [32] in

the BPS limit, and the BPS constraint on the charges, for different classes of asymptotically AdS black hole

solutions in gauged supergravity. This was one of our main results and we have briefly argued why it can be

regarded as a non-trivial fact.

This result has motivated us to explore the properties of the general horizons for the above black hole

solutions. These were interpreted as formal loci, satisfying a condition of the form ∆r(r) = 0 for either real

or complex values of the radial coordinate (horizon radius ri). The area product formula can be derived only if

one considers also these complex horizons, and treats them on the same footing as the real Cauchy and event

horizons.

Following this logic, we have given a definition for a set of thermodynamic variables for each horizon,

valid in the general non-supersymmetric solution. We generalized some results that were previously obtained

for other classes of black holes [30, 31]. In particular, we have found that the conserved charges are universal

quantities, in the sense that they are defined asymptotically and do not depend on which horizon is considered.

Instead, the entropy and the chemical potentials are intrinsic properties of each horizon. These can be defined

exploiting the symmetry that exchanges the various horizons, which we have discovered being a consequence of

the ∆r = 0 condition not distinguishing between its roots (hence between the various horizons). Exploiting this

symmetry, we have shown that, once the thermodynamics associated with the outer horizon is defined, one can

define a generalized (formal) thermodynamics for all horizons. The quantities defined in this way agree with

the ones that one would formally get by studying the metric (e.g. in the near horizon limit for each horizon).

In this way, the first law of thermodynamics is trivially satisfied for each horizon, together with a quantum

statistical relation. The latter can be used to define a grand-canonical potential for each horizon. However, we

have not been able to relate these generalized grand-potentials to independent quantities, calculated directly in

the supergravity theory. Indeed, one may expect they are related to a suitably defined on-shell action, as it is

for the grand-canonical potential associated with the outer horizon thermodynamics.

Using the first law of thermodynamics for each horizon, we have rephrased the mass independence of the

area product formula by means of a condition involving Ti Si terms. These were obtained in [63] for the five-

dimensional black hole solution with two angular momenta and three charges, but in a different context. Similar

relations have also appeared in [30] for black holes with only two horizons.

The symmetry under exchange of horizon radius inspired us to define a set of universal thermodynamic

quantities, in particular, the chemical potentials and the Euclidean action. This idea allowed us to consider the

extremization principle as discussed in [8] in a different way. The extremization principle has been explored

for many (supersymmetric) AdS black hole solutions [10, 13, 14, 15, 16], and it is always able to reproduce the

outer horizon BPS entropy by means of a constrained Legendre transform. We have proven that the extrem-
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ization principle is able to reproduce the BPS entropies of all horizons in the BPS limit (and formally also in

the general supersymmetric solution), and not only of the outermost one. For this reason, we have said that

the extremization principle can be promoted to a universal extremization principle. We have also seen that the

area product formula can be derived from the extremization principle in the general supersymmetric solution.

Moreover, in the BPS case, the requirement of having purely imaginary solutions for the Lagrange multiplier

Λ = Λ(Ji, QI) (and hence real BPS entropies), given by the factorization condition, is equivalent to the BPS

constraint on the charges. The factorization condition also directly shows the equivalence between the area

product formula in the BPS limit, and the BPS constraint.

We have explicitly shown these results for some classes of AdS5 [50, 54] and AdS4 black holes [68,

69], also considering AdS4 black holes with acceleration [70]. We have discussed the consequences of the

universality of the extremization principle for the most general black hole solutions (with no restrictions on the

independent charges) for each theory. Our work seems to indicate that, when the extremization reproduces the

outer horizon BPS entropy, it can also be used to describe all horizons thermodynamics, by viewing it as an

universal extremization principle.

It would be interesting to explore these results for other AdS black holes in D = 6, 7, or for asymptotically

flat black holes [18], or by taking into account higher derivatives corrections in the original theory [17]. It

would also be interesting to understand if an universal extremization principle can be found without having to

resort to supersymmetry.

On a more fundamental level, it would be interesting to explain the results that we have obtained by con-

sidering the dual field theory description. In this sense, the extremization principle may play a central role as

the supersymmetric Euclidean action, which appears in it, has been obtained from calculations in the dual field

theory via the AdS/CFT correspondence. This means that, by using the extremization principle, we have a

method to derive the entropies for all horizons (in the supersymmetric case) starting from the dual field theory

perspective. The end goal would be to account for the thermodynamics of all the horizons, by means of mi-

crostates of the dual field theory. This may also give some indications on how these complex horizons (but also

the Cauchy horizon) can be physically interpreted.
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